--- /dev/null 2015-11-23 13:25:22.000000000 -0800 +++ new/src/java.desktop/share/classes/sun/java2d/marlin/Renderer.java 2015-11-23 13:25:22.000000000 -0800 @@ -0,0 +1,1546 @@ +/* + * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package sun.java2d.marlin; + +import java.util.Arrays; +import sun.awt.geom.PathConsumer2D; +import static sun.java2d.marlin.OffHeapArray.SIZE_INT; +import jdk.internal.misc.Unsafe; + +final class Renderer implements PathConsumer2D, MarlinConst { + + static final boolean DISABLE_RENDER = false; + + static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags(); + static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics(); + + private static final int ALL_BUT_LSB = 0xfffffffe; + private static final int ERR_STEP_MAX = 0x7fffffff; // = 2^31 - 1 + + private static final double POWER_2_TO_32 = FloatMath.powerOfTwoD(32); + + // use float to make tosubpix methods faster (no int to float conversion) + public static final float f_SUBPIXEL_POSITIONS_X + = (float) SUBPIXEL_POSITIONS_X; + public static final float f_SUBPIXEL_POSITIONS_Y + = (float) SUBPIXEL_POSITIONS_Y; + public static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1; + public static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1; + + // number of subpixels corresponding to a tile line + private static final int SUBPIXEL_TILE + = TILE_SIZE << SUBPIXEL_LG_POSITIONS_Y; + + // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K + static final int INITIAL_BUCKET_ARRAY + = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y; + + public static final int WIND_EVEN_ODD = 0; + public static final int WIND_NON_ZERO = 1; + + // common to all types of input path segments. + // OFFSET as bytes + // only integer values: + public static final long OFF_CURX_OR = 0; + public static final long OFF_ERROR = OFF_CURX_OR + SIZE_INT; + public static final long OFF_BUMP_X = OFF_ERROR + SIZE_INT; + public static final long OFF_BUMP_ERR = OFF_BUMP_X + SIZE_INT; + public static final long OFF_NEXT = OFF_BUMP_ERR + SIZE_INT; + public static final long OFF_YMAX = OFF_NEXT + SIZE_INT; + + // size of one edge in bytes + public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT); + + // curve break into lines + // cubic error in subpixels to decrement step + private static final float CUB_DEC_ERR_SUBPIX + = 2.5f * (NORM_SUBPIXELS / 8f); // 2.5 subpixel for typical 8x8 subpixels + // cubic error in subpixels to increment step + private static final float CUB_INC_ERR_SUBPIX + = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels + + // cubic bind length to decrement step = 8 * error in subpixels + // pisces: 20 / 8 + // openjfx pisces: 8 / 3.2 + // multiply by 8 = error scale factor: + public static final float CUB_DEC_BND + = 8f * CUB_DEC_ERR_SUBPIX; // 20f means 2.5 subpixel error + // cubic bind length to increment step = 8 * error in subpixels + public static final float CUB_INC_BND + = 8f * CUB_INC_ERR_SUBPIX; // 8f means 1 subpixel error + + // cubic countlg + public static final int CUB_COUNT_LG = 2; + // cubic count = 2^countlg + private static final int CUB_COUNT = 1 << CUB_COUNT_LG; + // cubic count^2 = 4^countlg + private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG); + // cubic count^3 = 8^countlg + private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG); + // cubic dt = 1 / count + private static final float CUB_INV_COUNT = 1f / CUB_COUNT; + // cubic dt^2 = 1 / count^2 = 1 / 4^countlg + private static final float CUB_INV_COUNT_2 = 1f / CUB_COUNT_2; + // cubic dt^3 = 1 / count^3 = 1 / 8^countlg + private static final float CUB_INV_COUNT_3 = 1f / CUB_COUNT_3; + + // quad break into lines + // quadratic error in subpixels + private static final float QUAD_DEC_ERR_SUBPIX + = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels + + // quadratic bind length to decrement step = 8 * error in subpixels + // pisces and openjfx pisces: 32 + public static final float QUAD_DEC_BND + = 8f * QUAD_DEC_ERR_SUBPIX; // 8f means 1 subpixel error + +////////////////////////////////////////////////////////////////////////////// +// SCAN LINE +////////////////////////////////////////////////////////////////////////////// + // crossings ie subpixel edge x coordinates + private int[] crossings; + // auxiliary storage for crossings (merge sort) + private int[] aux_crossings; + + // indices into the segment pointer lists. They indicate the "active" + // sublist in the segment lists (the portion of the list that contains + // all the segments that cross the next scan line). + private int edgeCount; + private int[] edgePtrs; + // auxiliary storage for edge pointers (merge sort) + private int[] aux_edgePtrs; + + // max used for both edgePtrs and crossings (stats only) + private int activeEdgeMaxUsed; + + // per-thread initial arrays (large enough to satisfy most usages) (1024) + private final int[] crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K + // +1 to avoid recycling in Helpers.widenArray() + private final int[] edgePtrs_initial = new int[INITIAL_SMALL_ARRAY + 1]; // 4K + // merge sort initial arrays (large enough to satisfy most usages) (1024) + private final int[] aux_crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K + // +1 to avoid recycling in Helpers.widenArray() + private final int[] aux_edgePtrs_initial = new int[INITIAL_SMALL_ARRAY + 1]; // 4K + +////////////////////////////////////////////////////////////////////////////// +// EDGE LIST +////////////////////////////////////////////////////////////////////////////// + private float edgeMinY = Float.POSITIVE_INFINITY; + private float edgeMaxY = Float.NEGATIVE_INFINITY; + private float edgeMinX = Float.POSITIVE_INFINITY; + private float edgeMaxX = Float.NEGATIVE_INFINITY; + + // edges [floats|ints] stored in off-heap memory + private final OffHeapArray edges; + + private int[] edgeBuckets; + private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed) + // used range for edgeBuckets / edgeBucketCounts + private int buckets_minY; + private int buckets_maxY; + // sum of each edge delta Y (subpixels) + private int edgeSumDeltaY; + + // +1 to avoid recycling in Helpers.widenArray() + private final int[] edgeBuckets_initial + = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K + private final int[] edgeBucketCounts_initial + = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K + + // Flattens using adaptive forward differencing. This only carries out + // one iteration of the AFD loop. All it does is update AFD variables (i.e. + // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings). + private void quadBreakIntoLinesAndAdd(float x0, float y0, + final Curve c, + final float x2, final float y2) + { + int count = 1; // dt = 1 / count + + // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1) + float maxDD = FloatMath.max(Math.abs(c.dbx), Math.abs(c.dby)); + + final float _DEC_BND = QUAD_DEC_BND; + + while (maxDD >= _DEC_BND) { + // divide step by half: + maxDD /= 4f; // error divided by 2^2 = 4 + + count <<= 1; + if (doStats) { + RendererContext.stats.stat_rdr_quadBreak_dec.add(count); + } + } + + int nL = 0; // line count + if (count > 1) { + final float icount = 1f / count; // dt + final float icount2 = icount * icount; // dt^2 + + final float ddx = c.dbx * icount2; + final float ddy = c.dby * icount2; + float dx = c.bx * icount2 + c.cx * icount; + float dy = c.by * icount2 + c.cy * icount; + + float x1, y1; + + while (--count > 0) { + x1 = x0 + dx; + dx += ddx; + y1 = y0 + dy; + dy += ddy; + + addLine(x0, y0, x1, y1); + + if (doStats) { nL++; } + x0 = x1; + y0 = y1; + } + } + addLine(x0, y0, x2, y2); + + if (doStats) { + RendererContext.stats.stat_rdr_quadBreak.add(nL + 1); + } + } + + // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these + // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce + // numerical errors, and our callers already have the exact values. + // Another alternative would be to pass all the control points, and call + // c.set here, but then too many numbers are passed around. + private void curveBreakIntoLinesAndAdd(float x0, float y0, + final Curve c, + final float x3, final float y3) + { + int count = CUB_COUNT; + final float icount = CUB_INV_COUNT; // dt + final float icount2 = CUB_INV_COUNT_2; // dt^2 + final float icount3 = CUB_INV_COUNT_3; // dt^3 + + // the dx and dy refer to forward differencing variables, not the last + // coefficients of the "points" polynomial + float dddx, dddy, ddx, ddy, dx, dy; + dddx = 2f * c.dax * icount3; + dddy = 2f * c.day * icount3; + ddx = dddx + c.dbx * icount2; + ddy = dddy + c.dby * icount2; + dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount; + dy = c.ay * icount3 + c.by * icount2 + c.cy * icount; + + // we use x0, y0 to walk the line + float x1 = x0, y1 = y0; + int nL = 0; // line count + + final float _DEC_BND = CUB_DEC_BND; + final float _INC_BND = CUB_INC_BND; + + while (count > 0) { + // divide step by half: + while (Math.abs(ddx) >= _DEC_BND || Math.abs(ddy) >= _DEC_BND) { + dddx /= 8f; + dddy /= 8f; + ddx = ddx/4f - dddx; + ddy = ddy/4f - dddy; + dx = (dx - ddx) / 2f; + dy = (dy - ddy) / 2f; + + count <<= 1; + if (doStats) { + RendererContext.stats.stat_rdr_curveBreak_dec.add(count); + } + } + + // double step: + // TODO: why use first derivative dX|Y instead of second ddX|Y ? + // both scale changes should use speed or acceleration to have the same metric. + + // can only do this on even "count" values, because we must divide count by 2 + while (count % 2 == 0 + && Math.abs(dx) <= _INC_BND && Math.abs(dy) <= _INC_BND) + { + dx = 2f * dx + ddx; + dy = 2f * dy + ddy; + ddx = 4f * (ddx + dddx); + ddy = 4f * (ddy + dddy); + dddx *= 8f; + dddy *= 8f; + + count >>= 1; + if (doStats) { + RendererContext.stats.stat_rdr_curveBreak_inc.add(count); + } + } + if (--count > 0) { + x1 += dx; + dx += ddx; + ddx += dddx; + y1 += dy; + dy += ddy; + ddy += dddy; + } else { + x1 = x3; + y1 = y3; + } + + addLine(x0, y0, x1, y1); + + if (doStats) { nL++; } + x0 = x1; + y0 = y1; + } + if (doStats) { + RendererContext.stats.stat_rdr_curveBreak.add(nL); + } + } + + private void addLine(float x1, float y1, float x2, float y2) { + if (doMonitors) { + RendererContext.stats.mon_rdr_addLine.start(); + } + if (doStats) { + RendererContext.stats.stat_rdr_addLine.add(1); + } + int or = 1; // orientation of the line. 1 if y increases, 0 otherwise. + if (y2 < y1) { + or = 0; + float tmp = y2; + y2 = y1; + y1 = tmp; + tmp = x2; + x2 = x1; + x1 = tmp; + } + + // convert subpixel coordinates (float) into pixel positions (int) + + // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5) + // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply + // ceil(y1) or ceil(y2) + // upper integer (inclusive) + final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY); + + // note: use boundsMaxY (last Y exclusive) to compute correct coverage + // upper integer (exclusive) + final int lastCrossing = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY); + + /* skip horizontal lines in pixel space and clip edges + out of y range [boundsMinY; boundsMaxY] */ + if (firstCrossing >= lastCrossing) { + if (doMonitors) { + RendererContext.stats.mon_rdr_addLine.stop(); + } + if (doStats) { + RendererContext.stats.stat_rdr_addLine_skip.add(1); + } + return; + } + // edge min/max X/Y are in subpixel space (inclusive) + if (y1 < edgeMinY) { + edgeMinY = y1; + } + if (y2 > edgeMaxY) { + edgeMaxY = y2; + } + + // Use double-precision for improved accuracy: + final double x1d = x1; + final double y1d = y1; + final double slope = (x2 - x1d) / (y2 - y1d); + + if (slope >= 0.0) { // <==> x1 < x2 + if (x1 < edgeMinX) { + edgeMinX = x1; + } + if (x2 > edgeMaxX) { + edgeMaxX = x2; + } + } else { + if (x2 < edgeMinX) { + edgeMinX = x2; + } + if (x1 > edgeMaxX) { + edgeMaxX = x1; + } + } + + // local variables for performance: + final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES; + + final OffHeapArray _edges = edges; + + // get free pointer (ie length in bytes) + final int edgePtr = _edges.used; + + // use substraction to avoid integer overflow: + if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) { + // suppose _edges.length > _SIZEOF_EDGE_BYTES + // so doubling size is enough to add needed bytes + // note: throw IOOB if neededSize > 2Gb: + final long edgeNewSize = ArrayCache.getNewLargeSize(_edges.length, + edgePtr + _SIZEOF_EDGE_BYTES); + + if (doStats) { + RendererContext.stats.stat_rdr_edges_resizes.add(edgeNewSize); + } + _edges.resize(edgeNewSize); + } + + + final Unsafe _unsafe = OffHeapArray.unsafe; + final long SIZE_INT = 4L; + long addr = _edges.address + edgePtr; + + // The x value must be bumped up to its position at the next HPC we will evaluate. + // "firstcrossing" is the (sub)pixel number where the next crossing occurs + // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5" + // so the Y distance we cover is "firstcrossing + 0.5 - trueY". + // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have + // y1 = trueY - 0.5 + // trueY = y1 + 0.5 + // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5) + // = firstcrossing - y1 + // The x coordinate at that HPC is then: + // x1_intercept = x1 + (firstcrossing - y1) * slope + // The next VPC is then given by: + // VPC index = ceil(x1_intercept - 0.5), or alternately + // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon) + // epsilon is hard to pin down in floating point, but easy in fixed point, so if + // we convert to fixed point then these operations get easier: + // long x1_fixed = x1_intercept * 2^32; (fixed point 32.32 format) + // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1) + // = fixed_floor(x1_fixed + 2^31 - 1) + // = fixed_floor(x1_fixed + 0x7fffffff) + // and error = fixed_fract(x1_fixed + 0x7fffffff) + final double x1_intercept = x1d + (firstCrossing - y1d) * slope; + + // inlined scalb(x1_intercept, 32): + final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept)) + + 0x7fffffffL; + // curx: + // last bit corresponds to the orientation + _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or); + addr += SIZE_INT; + _unsafe.putInt(addr, ((int) x1_fixed_biased) >>> 1); + addr += SIZE_INT; + + // inlined scalb(slope, 32): + final long slope_fixed = (long) (POWER_2_TO_32 * slope); + + // last bit set to 0 to keep orientation: + _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB)); + addr += SIZE_INT; + _unsafe.putInt(addr, ((int) slope_fixed) >>> 1); + addr += SIZE_INT; + + final int[] _edgeBuckets = edgeBuckets; + final int[] _edgeBucketCounts = edgeBucketCounts; + + final int _boundsMinY = boundsMinY; + + // each bucket is a linked list. this method adds ptr to the + // start of the "bucket"th linked list. + final int bucketIdx = firstCrossing - _boundsMinY; + + // pointer from bucket + _unsafe.putInt(addr, _edgeBuckets[bucketIdx]); + addr += SIZE_INT; + // y max (inclusive) + _unsafe.putInt(addr, lastCrossing); + + // Update buckets: + // directly the edge struct "pointer" + _edgeBuckets[bucketIdx] = edgePtr; + _edgeBucketCounts[bucketIdx] += 2; // 1 << 1 + // last bit means edge end + _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1; + + // update sum of delta Y (subpixels): + edgeSumDeltaY += (lastCrossing - firstCrossing); + + // update free pointer (ie length in bytes) + _edges.used += _SIZEOF_EDGE_BYTES; + + if (doMonitors) { + RendererContext.stats.mon_rdr_addLine.stop(); + } + } + +// END EDGE LIST +////////////////////////////////////////////////////////////////////////////// + + // Cache to store RLE-encoded coverage mask of the current primitive + final MarlinCache cache; + + // Bounds of the drawing region, at subpixel precision. + private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY; + + // Current winding rule + private int windingRule; + + // Current drawing position, i.e., final point of last segment + private float x0, y0; + + // Position of most recent 'moveTo' command + private float pix_sx0, pix_sy0; + + // per-thread renderer context + final RendererContext rdrCtx; + // dirty curve + private final Curve curve; + + Renderer(final RendererContext rdrCtx) { + this.rdrCtx = rdrCtx; + + this.edges = new OffHeapArray(rdrCtx, INITIAL_EDGES_CAPACITY); // 96K + + this.curve = rdrCtx.curve; + + edgeBuckets = edgeBuckets_initial; + edgeBucketCounts = edgeBucketCounts_initial; + + alphaLine = alphaLine_initial; + + this.cache = rdrCtx.cache; + + // ScanLine: + crossings = crossings_initial; + aux_crossings = aux_crossings_initial; + edgePtrs = edgePtrs_initial; + aux_edgePtrs = aux_edgePtrs_initial; + + edgeCount = 0; + activeEdgeMaxUsed = 0; + } + + Renderer init(final int pix_boundsX, final int pix_boundsY, + final int pix_boundsWidth, final int pix_boundsHeight, + final int windingRule) { + + this.windingRule = windingRule; + + // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY + this.boundsMinX = pix_boundsX << SUBPIXEL_LG_POSITIONS_X; + this.boundsMaxX = + (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X; + this.boundsMinY = pix_boundsY << SUBPIXEL_LG_POSITIONS_Y; + this.boundsMaxY = + (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y; + + if (doLogBounds) { + MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... " + + boundsMaxX + "[ [" + boundsMinY + " ... " + + boundsMaxY + "["); + } + + // see addLine: ceil(boundsMaxY) => boundsMaxY + 1 + // +1 for edgeBucketCounts + final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1; + + if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) { + if (doStats) { + RendererContext.stats.stat_array_renderer_edgeBuckets + .add(edgeBucketsLength); + RendererContext.stats.stat_array_renderer_edgeBucketCounts + .add(edgeBucketsLength); + } + edgeBuckets = rdrCtx.getIntArray(edgeBucketsLength); + edgeBucketCounts = rdrCtx.getIntArray(edgeBucketsLength); + } + + edgeMinY = Float.POSITIVE_INFINITY; + edgeMaxY = Float.NEGATIVE_INFINITY; + edgeMinX = Float.POSITIVE_INFINITY; + edgeMaxX = Float.NEGATIVE_INFINITY; + + // reset used mark: + edgeCount = 0; + activeEdgeMaxUsed = 0; + edges.used = 0; + + edgeSumDeltaY = 0; + + return this; // fluent API + } + + /** + * Disposes this renderer and recycle it clean up before reusing this instance + */ + void dispose() { + if (doStats) { + RendererContext.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed); + RendererContext.stats.stat_rdr_edges.add(edges.used); + RendererContext.stats.stat_rdr_edges_count + .add(edges.used / SIZEOF_EDGE_BYTES); + } + if (doCleanDirty) { + // Force zero-fill dirty arrays: + Arrays.fill(crossings, 0); + Arrays.fill(aux_crossings, 0); + Arrays.fill(edgePtrs, 0); + Arrays.fill(aux_edgePtrs, 0); + } + // Return arrays: + if (crossings != crossings_initial) { + rdrCtx.putDirtyIntArray(crossings); + crossings = crossings_initial; + if (aux_crossings != aux_crossings_initial) { + rdrCtx.putDirtyIntArray(aux_crossings); + aux_crossings = aux_crossings_initial; + } + } + if (edgePtrs != edgePtrs_initial) { + rdrCtx.putDirtyIntArray(edgePtrs); + edgePtrs = edgePtrs_initial; + if (aux_edgePtrs != aux_edgePtrs_initial) { + rdrCtx.putDirtyIntArray(aux_edgePtrs); + aux_edgePtrs = aux_edgePtrs_initial; + } + } + if (alphaLine != alphaLine_initial) { + rdrCtx.putIntArray(alphaLine, 0, 0); // already zero filled + alphaLine = alphaLine_initial; + } + if (blkFlags != blkFlags_initial) { + rdrCtx.putIntArray(blkFlags, 0, 0); // already zero filled + blkFlags = blkFlags_initial; + } + + if (edgeMinY != Float.POSITIVE_INFINITY) { + // clear used part + if (edgeBuckets == edgeBuckets_initial) { + // fill only used part + IntArrayCache.fill(edgeBuckets, buckets_minY, + buckets_maxY, 0); + IntArrayCache.fill(edgeBucketCounts, buckets_minY, + buckets_maxY + 1, 0); + } else { + // clear only used part + rdrCtx.putIntArray(edgeBuckets, buckets_minY, + buckets_maxY); + edgeBuckets = edgeBuckets_initial; + + rdrCtx.putIntArray(edgeBucketCounts, buckets_minY, + buckets_maxY + 1); + edgeBucketCounts = edgeBucketCounts_initial; + } + } else if (edgeBuckets != edgeBuckets_initial) { + // unused arrays + rdrCtx.putIntArray(edgeBuckets, 0, 0); + edgeBuckets = edgeBuckets_initial; + + rdrCtx.putIntArray(edgeBucketCounts, 0, 0); + edgeBucketCounts = edgeBucketCounts_initial; + } + + // At last: resize back off-heap edges to initial size + if (edges.length != INITIAL_EDGES_CAPACITY) { + // note: may throw OOME: + edges.resize(INITIAL_EDGES_CAPACITY); + } + if (doCleanDirty) { + // Force zero-fill dirty arrays: + edges.fill(BYTE_0); + } + if (doMonitors) { + RendererContext.stats.mon_rdr_endRendering.stop(); + } + } + + private static float tosubpixx(final float pix_x) { + return f_SUBPIXEL_POSITIONS_X * pix_x; + } + + private static float tosubpixy(final float pix_y) { + // shift y by -0.5 for fast ceil(y - 0.5): + return f_SUBPIXEL_POSITIONS_Y * pix_y - 0.5f; + } + + @Override + public void moveTo(float pix_x0, float pix_y0) { + closePath(); + this.pix_sx0 = pix_x0; + this.pix_sy0 = pix_y0; + this.y0 = tosubpixy(pix_y0); + this.x0 = tosubpixx(pix_x0); + } + + @Override + public void lineTo(float pix_x1, float pix_y1) { + float x1 = tosubpixx(pix_x1); + float y1 = tosubpixy(pix_y1); + addLine(x0, y0, x1, y1); + x0 = x1; + y0 = y1; + } + + @Override + public void curveTo(float x1, float y1, + float x2, float y2, + float x3, float y3) + { + final float xe = tosubpixx(x3); + final float ye = tosubpixy(y3); + curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), + tosubpixx(x2), tosubpixy(y2), xe, ye); + curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); + x0 = xe; + y0 = ye; + } + + @Override + public void quadTo(float x1, float y1, float x2, float y2) { + final float xe = tosubpixx(x2); + final float ye = tosubpixy(y2); + curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye); + quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye); + x0 = xe; + y0 = ye; + } + + @Override + public void closePath() { + // lineTo expects its input in pixel coordinates. + lineTo(pix_sx0, pix_sy0); + } + + @Override + public void pathDone() { + closePath(); + } + + @Override + public long getNativeConsumer() { + throw new InternalError("Renderer does not use a native consumer."); + } + + // clean alpha array (zero filled) + private int[] alphaLine; + // 2048 (pixelsize) pixel large + private final int[] alphaLine_initial = new int[INITIAL_AA_ARRAY]; // 8K + + private void _endRendering(final int ymin, final int ymax) { + if (DISABLE_RENDER) { + return; + } + + // Get X bounds as true pixel boundaries to compute correct pixel coverage: + final int bboxx0 = bbox_spminX; + final int bboxx1 = bbox_spmaxX; + + final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD); + + // Useful when processing tile line by tile line + final int[] _alpha = alphaLine; + + // local vars (performance): + final MarlinCache _cache = cache; + final OffHeapArray _edges = edges; + final int[] _edgeBuckets = edgeBuckets; + final int[] _edgeBucketCounts = edgeBucketCounts; + + int[] _crossings = this.crossings; + int[] _edgePtrs = this.edgePtrs; + + // merge sort auxiliary storage: + int[] _aux_crossings = this.aux_crossings; + int[] _aux_edgePtrs = this.aux_edgePtrs; + + // copy constants: + final long _OFF_ERROR = OFF_ERROR; + final long _OFF_BUMP_X = OFF_BUMP_X; + final long _OFF_BUMP_ERR = OFF_BUMP_ERR; + + final long _OFF_NEXT = OFF_NEXT; + final long _OFF_YMAX = OFF_YMAX; + + final int _ALL_BUT_LSB = ALL_BUT_LSB; + final int _ERR_STEP_MAX = ERR_STEP_MAX; + + // unsafe I/O: + final Unsafe _unsafe = OffHeapArray.unsafe; + final long addr0 = _edges.address; + long addr; + final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X; + final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y; + final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X; + final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y; + final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X; + + final int _MIN_VALUE = Integer.MIN_VALUE; + final int _MAX_VALUE = Integer.MAX_VALUE; + + // Now we iterate through the scanlines. We must tell emitRow the coord + // of the first non-transparent pixel, so we must keep accumulators for + // the first and last pixels of the section of the current pixel row + // that we will emit. + // We also need to accumulate pix_bbox, but the iterator does it + // for us. We will just get the values from it once this loop is done + int minX = _MAX_VALUE; + int maxX = _MIN_VALUE; + + int y = ymin; + int bucket = y - boundsMinY; + + int numCrossings = this.edgeCount; + int edgePtrsLen = _edgePtrs.length; + int crossingsLen = _crossings.length; + int _arrayMaxUsed = activeEdgeMaxUsed; + int ptrLen = 0, newCount, ptrEnd; + + int bucketcount, i, j, ecur; + int cross, lastCross; + int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err; + int pix_x, pix_xmaxm1, pix_xmax; + + int low, high, mid, prevNumCrossings; + boolean useBinarySearch; + + final int[] _blkFlags = blkFlags; + final int _BLK_SIZE_LG = BLOCK_SIZE_LG; + final int _BLK_SIZE = BLOCK_SIZE; + + final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags; + + // Use block flags if large pixel span and few crossings: + // ie mean(distance between crossings) is high + boolean useBlkFlags = this.prevUseBlkFlags; + + final int stroking = rdrCtx.stroking; + + int lastY = -1; // last emited row + + + // Iteration on scanlines + for (; y < ymax; y++, bucket++) { + // --- from former ScanLineIterator.next() + bucketcount = _edgeBucketCounts[bucket]; + + // marker on previously sorted edges: + prevNumCrossings = numCrossings; + + // bucketCount indicates new edge / edge end: + if (bucketcount != 0) { + if (doStats) { + RendererContext.stats.stat_rdr_activeEdges_updates + .add(numCrossings); + } + + // last bit set to 1 means that edges ends + if ((bucketcount & 0x1) != 0) { + // eviction in active edge list + // cache edges[] address + offset + addr = addr0 + _OFF_YMAX; + + for (i = 0, newCount = 0; i < numCrossings; i++) { + // get the pointer to the edge + ecur = _edgePtrs[i]; + // random access so use unsafe: + if (_unsafe.getInt(addr + ecur) > y) { + _edgePtrs[newCount++] = ecur; + } + } + // update marker on sorted edges minus removed edges: + prevNumCrossings = numCrossings = newCount; + } + + ptrLen = bucketcount >> 1; // number of new edge + + if (ptrLen != 0) { + if (doStats) { + RendererContext.stats.stat_rdr_activeEdges_adds + .add(ptrLen); + if (ptrLen > 10) { + RendererContext.stats.stat_rdr_activeEdges_adds_high + .add(ptrLen); + } + } + ptrEnd = numCrossings + ptrLen; + + if (edgePtrsLen < ptrEnd) { + if (doStats) { + RendererContext.stats.stat_array_renderer_edgePtrs + .add(ptrEnd); + } + this.edgePtrs = _edgePtrs + = rdrCtx.widenDirtyIntArray(_edgePtrs, numCrossings, + ptrEnd); + + edgePtrsLen = _edgePtrs.length; + // Get larger auxiliary storage: + if (_aux_edgePtrs != aux_edgePtrs_initial) { + rdrCtx.putDirtyIntArray(_aux_edgePtrs); + } + // use ArrayCache.getNewSize() to use the same growing + // factor than widenDirtyIntArray(): + if (doStats) { + RendererContext.stats.stat_array_renderer_aux_edgePtrs + .add(ptrEnd); + } + this.aux_edgePtrs = _aux_edgePtrs + = rdrCtx.getDirtyIntArray( + ArrayCache.getNewSize(numCrossings, ptrEnd) + ); + } + + // cache edges[] address + offset + addr = addr0 + _OFF_NEXT; + + // add new edges to active edge list: + for (ecur = _edgeBuckets[bucket]; + numCrossings < ptrEnd; numCrossings++) + { + // store the pointer to the edge + _edgePtrs[numCrossings] = ecur; + // random access so use unsafe: + ecur = _unsafe.getInt(addr + ecur); + } + + if (crossingsLen < numCrossings) { + // Get larger array: + if (_crossings != crossings_initial) { + rdrCtx.putDirtyIntArray(_crossings); + } + if (doStats) { + RendererContext.stats.stat_array_renderer_crossings + .add(numCrossings); + } + this.crossings = _crossings + = rdrCtx.getDirtyIntArray(numCrossings); + + // Get larger auxiliary storage: + if (_aux_crossings != aux_crossings_initial) { + rdrCtx.putDirtyIntArray(_aux_crossings); + } + if (doStats) { + RendererContext.stats.stat_array_renderer_aux_crossings + .add(numCrossings); + } + this.aux_crossings = _aux_crossings + = rdrCtx.getDirtyIntArray(numCrossings); + + crossingsLen = _crossings.length; + } + if (doStats) { + // update max used mark + if (numCrossings > _arrayMaxUsed) { + _arrayMaxUsed = numCrossings; + } + } + } // ptrLen != 0 + } // bucketCount != 0 + + + if (numCrossings != 0) { + /* + * thresholds to switch to optimized merge sort + * for newly added edges + final merge pass. + */ + if ((ptrLen < 10) || (numCrossings < 40)) { + if (doStats) { + RendererContext.stats.hist_rdr_crossings + .add(numCrossings); + RendererContext.stats.hist_rdr_crossings_adds + .add(ptrLen); + } + + /* + * threshold to use binary insertion sort instead of + * straight insertion sort (to reduce minimize comparisons). + */ + useBinarySearch = (numCrossings >= 20); + + // if small enough: + lastCross = _MIN_VALUE; + + for (i = 0; i < numCrossings; i++) { + // get the pointer to the edge + ecur = _edgePtrs[i]; + + /* convert subpixel coordinates (float) into pixel + positions (int) for coming scanline */ + /* note: it is faster to always update edges even + if it is removed from AEL for coming or last scanline */ + + // random access so use unsafe: + addr = addr0 + ecur; // ecur + OFF_F_CURX + + // get current crossing: + curx = _unsafe.getInt(addr); + + // update crossing with orientation at last bit: + cross = curx; + + // Increment x using DDA (fixed point): + curx += _unsafe.getInt(addr + _OFF_BUMP_X); + + // Increment error: + err = _unsafe.getInt(addr + _OFF_ERROR) + + _unsafe.getInt(addr + _OFF_BUMP_ERR); + + // Manual carry handling: + // keep sign and carry bit only and ignore last bit (preserve orientation): + _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); + _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); + + if (doStats) { + RendererContext.stats.stat_rdr_crossings_updates + .add(numCrossings); + } + + // insertion sort of crossings: + if (cross < lastCross) { + if (doStats) { + RendererContext.stats.stat_rdr_crossings_sorts + .add(i); + } + + /* use binary search for newly added edges + in crossings if arrays are large enough */ + if (useBinarySearch && (i >= prevNumCrossings)) { + if (doStats) { + RendererContext.stats. + stat_rdr_crossings_bsearch.add(i); + } + low = 0; + high = i - 1; + + do { + // note: use signed shift (not >>>) for performance + // as indices are small enough to exceed Integer.MAX_VALUE + mid = (low + high) >> 1; + + if (_crossings[mid] < cross) { + low = mid + 1; + } else { + high = mid - 1; + } + } while (low <= high); + + for (j = i - 1; j >= low; j--) { + _crossings[j + 1] = _crossings[j]; + _edgePtrs [j + 1] = _edgePtrs[j]; + } + _crossings[low] = cross; + _edgePtrs [low] = ecur; + + } else { + j = i - 1; + _crossings[i] = _crossings[j]; + _edgePtrs[i] = _edgePtrs[j]; + + while ((--j >= 0) && (_crossings[j] > cross)) { + _crossings[j + 1] = _crossings[j]; + _edgePtrs [j + 1] = _edgePtrs[j]; + } + _crossings[j + 1] = cross; + _edgePtrs [j + 1] = ecur; + } + + } else { + _crossings[i] = lastCross = cross; + } + } + } else { + if (doStats) { + RendererContext.stats.stat_rdr_crossings_msorts + .add(numCrossings); + RendererContext.stats.hist_rdr_crossings_ratio + .add((1000 * ptrLen) / numCrossings); + RendererContext.stats.hist_rdr_crossings_msorts + .add(numCrossings); + RendererContext.stats.hist_rdr_crossings_msorts_adds + .add(ptrLen); + } + + // Copy sorted data in auxiliary arrays + // and perform insertion sort on almost sorted data + // (ie i < prevNumCrossings): + + lastCross = _MIN_VALUE; + + for (i = 0; i < numCrossings; i++) { + // get the pointer to the edge + ecur = _edgePtrs[i]; + + /* convert subpixel coordinates (float) into pixel + positions (int) for coming scanline */ + /* note: it is faster to always update edges even + if it is removed from AEL for coming or last scanline */ + + // random access so use unsafe: + addr = addr0 + ecur; // ecur + OFF_F_CURX + + // get current crossing: + curx = _unsafe.getInt(addr); + + // update crossing with orientation at last bit: + cross = curx; + + // Increment x using DDA (fixed point): + curx += _unsafe.getInt(addr + _OFF_BUMP_X); + + // Increment error: + err = _unsafe.getInt(addr + _OFF_ERROR) + + _unsafe.getInt(addr + _OFF_BUMP_ERR); + + // Manual carry handling: + // keep sign and carry bit only and ignore last bit (preserve orientation): + _unsafe.putInt(addr, curx - ((err >> 30) & _ALL_BUT_LSB)); + _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX)); + + if (doStats) { + RendererContext.stats.stat_rdr_crossings_updates + .add(numCrossings); + } + + if (i >= prevNumCrossings) { + // simply store crossing as edgePtrs is in-place: + // will be copied and sorted efficiently by mergesort later: + _crossings[i] = cross; + + } else if (cross < lastCross) { + if (doStats) { + RendererContext.stats.stat_rdr_crossings_sorts + .add(i); + } + + // (straight) insertion sort of crossings: + j = i - 1; + _aux_crossings[i] = _aux_crossings[j]; + _aux_edgePtrs[i] = _aux_edgePtrs[j]; + + while ((--j >= 0) && (_aux_crossings[j] > cross)) { + _aux_crossings[j + 1] = _aux_crossings[j]; + _aux_edgePtrs [j + 1] = _aux_edgePtrs[j]; + } + _aux_crossings[j + 1] = cross; + _aux_edgePtrs [j + 1] = ecur; + + } else { + // auxiliary storage: + _aux_crossings[i] = lastCross = cross; + _aux_edgePtrs [i] = ecur; + } + } + + // use Mergesort using auxiliary arrays (sort only right part) + MergeSort.mergeSortNoCopy(_crossings, _edgePtrs, + _aux_crossings, _aux_edgePtrs, + numCrossings, prevNumCrossings); + } + + // reset ptrLen + ptrLen = 0; + // --- from former ScanLineIterator.next() + + + /* note: bboxx0 and bboxx1 must be pixel boundaries + to have correct coverage computation */ + + // right shift on crossings to get the x-coordinate: + curxo = _crossings[0]; + x0 = curxo >> 1; + if (x0 < minX) { + minX = x0; // subpixel coordinate + } + + x1 = _crossings[numCrossings - 1] >> 1; + if (x1 > maxX) { + maxX = x1; // subpixel coordinate + } + + + // compute pixel coverages + prev = curx = x0; + // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. + // last bit contains orientation (0 or 1) + crorientation = ((curxo & 0x1) << 1) - 1; + + if (windingRuleEvenOdd) { + sum = crorientation; + + // Even Odd winding rule: take care of mask ie sum(orientations) + for (i = 1; i < numCrossings; i++) { + curxo = _crossings[i]; + curx = curxo >> 1; + // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. + // last bit contains orientation (0 or 1) + crorientation = ((curxo & 0x1) << 1) - 1; + + if ((sum & 0x1) != 0) { + // TODO: perform line clipping on left-right sides + // to avoid such bound checks: + x0 = (prev > bboxx0) ? prev : bboxx0; + x1 = (curx < bboxx1) ? curx : bboxx1; + + if (x0 < x1) { + x0 -= bboxx0; // turn x0, x1 from coords to indices + x1 -= bboxx0; // in the alpha array. + + pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; + pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; + + if (pix_x == pix_xmaxm1) { + // Start and end in same pixel + tmp = (x1 - x0); // number of subpixels + _alpha[pix_x ] += tmp; + _alpha[pix_x + 1] -= tmp; + + if (useBlkFlags) { + // flag used blocks: + _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; + } + } else { + tmp = (x0 & _SUBPIXEL_MASK_X); + _alpha[pix_x ] + += (_SUBPIXEL_POSITIONS_X - tmp); + _alpha[pix_x + 1] + += tmp; + + pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; + + tmp = (x1 & _SUBPIXEL_MASK_X); + _alpha[pix_xmax ] + -= (_SUBPIXEL_POSITIONS_X - tmp); + _alpha[pix_xmax + 1] + -= tmp; + + if (useBlkFlags) { + // flag used blocks: + _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; + _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; + } + } + } + } + + sum += crorientation; + prev = curx; + } + } else { + // Non-zero winding rule: optimize that case (default) + // and avoid processing intermediate crossings + for (i = 1, sum = 0;; i++) { + sum += crorientation; + + if (sum != 0) { + // prev = min(curx) + if (prev > curx) { + prev = curx; + } + } else { + // TODO: perform line clipping on left-right sides + // to avoid such bound checks: + x0 = (prev > bboxx0) ? prev : bboxx0; + x1 = (curx < bboxx1) ? curx : bboxx1; + + if (x0 < x1) { + x0 -= bboxx0; // turn x0, x1 from coords to indices + x1 -= bboxx0; // in the alpha array. + + pix_x = x0 >> _SUBPIXEL_LG_POSITIONS_X; + pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X; + + if (pix_x == pix_xmaxm1) { + // Start and end in same pixel + tmp = (x1 - x0); // number of subpixels + _alpha[pix_x ] += tmp; + _alpha[pix_x + 1] -= tmp; + + if (useBlkFlags) { + // flag used blocks: + _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; + } + } else { + tmp = (x0 & _SUBPIXEL_MASK_X); + _alpha[pix_x ] + += (_SUBPIXEL_POSITIONS_X - tmp); + _alpha[pix_x + 1] + += tmp; + + pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X; + + tmp = (x1 & _SUBPIXEL_MASK_X); + _alpha[pix_xmax ] + -= (_SUBPIXEL_POSITIONS_X - tmp); + _alpha[pix_xmax + 1] + -= tmp; + + if (useBlkFlags) { + // flag used blocks: + _blkFlags[pix_x >> _BLK_SIZE_LG] = 1; + _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1; + } + } + } + prev = _MAX_VALUE; + } + + if (i == numCrossings) { + break; + } + + curxo = _crossings[i]; + curx = curxo >> 1; + // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1. + // last bit contains orientation (0 or 1) + crorientation = ((curxo & 0x1) << 1) - 1; + } + } + } // numCrossings > 0 + + // even if this last row had no crossings, alpha will be zeroed + // from the last emitRow call. But this doesn't matter because + // maxX < minX, so no row will be emitted to the MarlinCache. + if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) { + lastY = y >> _SUBPIXEL_LG_POSITIONS_Y; + + // convert subpixel to pixel coordinate within boundaries: + minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; + maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; + + if (maxX >= minX) { + // note: alpha array will be zeroed by copyAARow() + // +2 because alpha [pix_minX; pix_maxX+1] + // fix range [x0; x1[ + copyAARow(_alpha, lastY, minX, maxX + 2, useBlkFlags); + + // speculative for next pixel row (scanline coherence): + if (_enableBlkFlagsHeuristics) { + // Use block flags if large pixel span and few crossings: + // ie mean(distance between crossings) is larger than + // 1 block size; + + // fast check width: + maxX -= minX; + + // if stroking: numCrossings /= 2 + // => shift numCrossings by 1 + // condition = (width / (numCrossings - 1)) > blockSize + useBlkFlags = (maxX > _BLK_SIZE) && (maxX > + (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG)); + + if (doStats) { + tmp = FloatMath.max(1, + ((numCrossings >> stroking) - 1)); + RendererContext.stats.hist_tile_generator_encoding_dist + .add(maxX / tmp); + } + } + } else { + _cache.clearAARow(lastY); + } + minX = _MAX_VALUE; + maxX = _MIN_VALUE; + } + } // scan line iterator + + // Emit final row + y--; + y >>= _SUBPIXEL_LG_POSITIONS_Y; + + // convert subpixel to pixel coordinate within boundaries: + minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X; + maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X; + + if (maxX >= minX) { + // note: alpha array will be zeroed by copyAARow() + // +2 because alpha [pix_minX; pix_maxX+1] + // fix range [x0; x1[ + copyAARow(_alpha, y, minX, maxX + 2, useBlkFlags); + } else if (y != lastY) { + _cache.clearAARow(y); + } + + // update member: + edgeCount = numCrossings; + prevUseBlkFlags = useBlkFlags; + + if (doStats) { + // update max used mark + activeEdgeMaxUsed = _arrayMaxUsed; + } + } + + boolean endRendering() { + if (doMonitors) { + RendererContext.stats.mon_rdr_endRendering.start(); + } + if (edgeMinY == Float.POSITIVE_INFINITY) { + return false; // undefined edges bounds + } + + final int _boundsMinY = boundsMinY; + final int _boundsMaxY = boundsMaxY; + + // bounds as inclusive intervals + final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX); + final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX - 1); + + // y1 (and y2) are already biased by -0.5 in tosubpixy(): + final int spminY = FloatMath.max(FloatMath.ceil_int(edgeMinY), _boundsMinY); + int maxY = FloatMath.ceil_int(edgeMaxY); + + final int spmaxY; + + if (maxY <= _boundsMaxY - 1) { + spmaxY = maxY; + } else { + spmaxY = _boundsMaxY - 1; + maxY = _boundsMaxY; + } + buckets_minY = spminY - _boundsMinY; + buckets_maxY = maxY - _boundsMinY; + + if (doLogBounds) { + MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX + + "][" + edgeMinY + " ... " + edgeMaxY + "]"); + MarlinUtils.logInfo("spXY = [" + spminX + " ... " + spmaxX + + "][" + spminY + " ... " + spmaxY + "]"); + } + + // test clipping for shapes out of bounds + if ((spminX > spmaxX) || (spminY > spmaxY)) { + return false; + } + + // half open intervals + // inclusive: + final int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X; + // exclusive: + final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X; + // inclusive: + final int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y; + // exclusive: + final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y; + + // store BBox to answer ptg.getBBox(): + this.cache.init(pminX, pminY, pmaxX, pmaxY, edgeSumDeltaY); + + // Heuristics for using block flags: + if (ENABLE_BLOCK_FLAGS) { + enableBlkFlags = this.cache.useRLE; + prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS; + + if (enableBlkFlags) { + // ensure blockFlags array is large enough: + // note: +2 to ensure enough space left at end + final int nxTiles = ((pmaxX - pminX) >> TILE_SIZE_LG) + 2; + if (nxTiles > INITIAL_ARRAY) { + blkFlags = rdrCtx.getIntArray(nxTiles); + } + } + } + + // memorize the rendering bounding box: + /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries + to have correct coverage computation */ + // inclusive: + bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X; + // exclusive: + bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X; + // inclusive: + bbox_spminY = spminY; + // exclusive: + bbox_spmaxY = FloatMath.min(spmaxY + 1, pmaxY << SUBPIXEL_LG_POSITIONS_Y); + + if (doLogBounds) { + MarlinUtils.logInfo("pXY = [" + pminX + " ... " + pmaxX + + "[ [" + pminY + " ... " + pmaxY + "["); + MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... " + + bbox_spmaxX + "[ [" + bbox_spminY + " ... " + + bbox_spmaxY + "["); + } + + // Prepare alpha line: + // add 2 to better deal with the last pixel in a pixel row. + final int width = (pmaxX - pminX) + 2; + + // Useful when processing tile line by tile line + if (width > INITIAL_AA_ARRAY) { + if (doStats) { + RendererContext.stats.stat_array_renderer_alphaline + .add(width); + } + alphaLine = rdrCtx.getIntArray(width); + } + + // process first tile line: + endRendering(pminY); + + return true; + } + + private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY; + + void endRendering(final int pminY) { + if (doMonitors) { + RendererContext.stats.mon_rdr_endRendering_Y.start(); + } + + final int spminY = pminY << SUBPIXEL_LG_POSITIONS_Y; + final int fixed_spminY = FloatMath.max(bbox_spminY, spminY); + + // avoid rendering for last call to nextTile() + if (fixed_spminY < bbox_spmaxY) { + // process a complete tile line ie scanlines for 32 rows + final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE); + + // process tile line [0 - 32] + cache.resetTileLine(pminY); + + // Process only one tile line: + _endRendering(fixed_spminY, spmaxY); + } + if (doMonitors) { + RendererContext.stats.mon_rdr_endRendering_Y.stop(); + } + } + + private boolean enableBlkFlags = false; + private boolean prevUseBlkFlags = false; + + private final int[] blkFlags_initial = new int[INITIAL_ARRAY]; // 1 tile line + /* block flags (0|1) */ + private int[] blkFlags = blkFlags_initial; + + void copyAARow(final int[] alphaRow, + final int pix_y, final int pix_from, final int pix_to, + final boolean useBlockFlags) + { + if (useBlockFlags) { + if (doStats) { + RendererContext.stats.hist_tile_generator_encoding.add(1); + } + cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to); + } else { + if (doStats) { + RendererContext.stats.hist_tile_generator_encoding.add(0); + } + cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to); + } + } +}