/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package javafx.scene.canvas; import com.sun.javafx.geom.Arc2D; import com.sun.javafx.geom.IllegalPathStateException; import com.sun.javafx.geom.Path2D; import com.sun.javafx.geom.PathIterator; import com.sun.javafx.geom.transform.Affine2D; import com.sun.javafx.geom.transform.NoninvertibleTransformException; import com.sun.javafx.image.*; import com.sun.javafx.image.impl.ByteBgraPre; import com.sun.javafx.sg.prism.GrowableDataBuffer; import com.sun.javafx.sg.prism.NGCanvas; import com.sun.javafx.tk.Toolkit; import javafx.geometry.NodeOrientation; import javafx.geometry.VPos; import javafx.scene.effect.Blend; import javafx.scene.effect.BlendMode; import javafx.scene.effect.Effect; import javafx.scene.image.Image; import javafx.scene.image.PixelFormat; import javafx.scene.image.PixelReader; import javafx.scene.image.PixelWriter; import javafx.scene.paint.Color; import javafx.scene.paint.Paint; import javafx.scene.shape.ArcType; import javafx.scene.shape.FillRule; import javafx.scene.shape.StrokeLineCap; import javafx.scene.shape.StrokeLineJoin; import javafx.scene.text.Font; import javafx.scene.text.TextAlignment; import javafx.scene.transform.Affine; import java.nio.Buffer; import java.nio.ByteBuffer; import java.nio.IntBuffer; import java.util.LinkedList; /** * This class is used to issue draw calls to a {@code Canvas} using a buffer. *

* Each call pushes the necessary parameters onto the buffer * where it is executed on the image of the {@code Canvas} node. *

* A {@code Canvas} only contains one {@code GraphicsContext}, and only one buffer. * If it is not attached to any scene, then it can be modified by any thread, * as long as it is only used from one thread at a time. Once a {@code Canvas} * node is attached to a scene, it must be modified on the JavaFX Application * Thread. *

* Calling any method on the {@code GraphicsContext} is considered modifying * its corresponding {@code Canvas} and is subject to the same threading * rules. *

* A {@code GraphicsContext} also manages a stack of state objects that can * be saved or restored at anytime. * *

Example:

* *

*

import javafx.scene.*;
import javafx.scene.paint.*;
import javafx.scene.canvas.*;

Group root = new Group();
Scene s = new Scene(root, 300, 300, Color.BLACK);

final Canvas canvas = new Canvas(250,250);
GraphicsContext gc = canvas.getGraphicsContext2D();
 
gc.setFill(Color.BLUE);
gc.fillRect(75,75,100,100);
 
root.getChildren().add(canvas);
 * 
*

* * @since JavaFX 2.2 */ public final class GraphicsContext { Canvas theCanvas; Path2D path; boolean pathDirty; State curState; LinkedList stateStack; LinkedList clipStack; GraphicsContext(Canvas theCanvas) { this.theCanvas = theCanvas; this.path = new Path2D(); pathDirty = true; this.curState = new State(); this.stateStack = new LinkedList(); this.clipStack = new LinkedList(); } static class State { double globalAlpha; BlendMode blendop; Affine2D transform; Paint fill; Paint stroke; double linewidth; StrokeLineCap linecap; StrokeLineJoin linejoin; double miterlimit; int numClipPaths; Font font; TextAlignment textalign; VPos textbaseline; Effect effect; FillRule fillRule; State() { init(); } final void init() { set(1.0, BlendMode.SRC_OVER, new Affine2D(), Color.BLACK, Color.BLACK, 1.0, StrokeLineCap.SQUARE, StrokeLineJoin.MITER, 10.0, 0, Font.getDefault(), TextAlignment.LEFT, VPos.BASELINE, null, FillRule.NON_ZERO); } State(State copy) { set(copy.globalAlpha, copy.blendop, new Affine2D(copy.transform), copy.fill, copy.stroke, copy.linewidth, copy.linecap, copy.linejoin, copy.miterlimit, copy.numClipPaths, copy.font, copy.textalign, copy.textbaseline, copy.effect, copy.fillRule); } State(double globalAlpha, BlendMode blendop, Affine2D transform, Paint fill, Paint stroke, double linewidth, StrokeLineCap linecap, StrokeLineJoin linejoin, double miterlimit, int numClipPaths, Font font, TextAlignment align, VPos baseline, Effect effect, FillRule fillRule) { set(globalAlpha, blendop, new Affine2D(transform), fill, stroke, linewidth, linecap, linejoin, miterlimit, numClipPaths, font, textalign, textbaseline, effect, fillRule); } final void set(double globalAlpha, BlendMode blendop, Affine2D transform, Paint fill, Paint stroke, double linewidth, StrokeLineCap linecap, StrokeLineJoin linejoin, double miterlimit, int numClipPaths, Font font, TextAlignment align, VPos baseline, Effect effect, FillRule fillRule) { this.globalAlpha = globalAlpha; this.blendop = blendop; this.transform = transform; this.fill = fill; this.stroke = stroke; this.linewidth = linewidth; this.linecap = linecap; this.linejoin = linejoin; this.miterlimit = miterlimit; this.numClipPaths = numClipPaths; this.font = font; this.textalign = align; this.textbaseline = baseline; this.effect = effect; this.fillRule = fillRule; } State copy() { return new State(this); } void restore(GraphicsContext ctx) { ctx.setGlobalAlpha(globalAlpha); ctx.setGlobalBlendMode(blendop); ctx.setTransform(transform.getMxx(), transform.getMyx(), transform.getMxy(), transform.getMyy(), transform.getMxt(), transform.getMyt()); ctx.setFill(fill); ctx.setStroke(stroke); ctx.setLineWidth(linewidth); ctx.setLineCap(linecap); ctx.setLineJoin(linejoin); ctx.setMiterLimit(miterlimit); GrowableDataBuffer buf = ctx.getBuffer(); while (ctx.curState.numClipPaths > numClipPaths) { ctx.curState.numClipPaths--; ctx.clipStack.removeLast(); buf.putByte(NGCanvas.POP_CLIP); } ctx.setFillRule(fillRule); ctx.setFont(font); ctx.setTextAlign(textalign); ctx.setTextBaseline(textbaseline); ctx.setEffect(effect); } } private GrowableDataBuffer getBuffer() { return theCanvas.getBuffer(); } private float coords[] = new float[6]; private static final byte pgtype[] = { NGCanvas.MOVETO, NGCanvas.LINETO, NGCanvas.QUADTO, NGCanvas.CUBICTO, NGCanvas.CLOSEPATH, }; private static final int numsegs[] = { 2, 2, 4, 6, 0, }; private void markPathDirty() { pathDirty = true; } private void writePath(byte command) { updateTransform(); GrowableDataBuffer buf = getBuffer(); if (pathDirty) { buf.putByte(NGCanvas.PATHSTART); PathIterator pi = path.getPathIterator(null); while (!pi.isDone()) { int pitype = pi.currentSegment(coords); buf.putByte(pgtype[pitype]); for (int i = 0; i < numsegs[pitype]; i++) { buf.putFloat(coords[i]); } pi.next(); } buf.putByte(NGCanvas.PATHEND); pathDirty = false; } buf.putByte(command); } private void writePaint(Paint p, byte command) { GrowableDataBuffer buf = getBuffer(); buf.putByte(command); buf.putObject(Toolkit.getPaintAccessor().getPlatformPaint(p)); } private void writeArcType(ArcType closure) { byte type; switch (closure) { case OPEN: type = NGCanvas.ARC_OPEN; break; case CHORD: type = NGCanvas.ARC_CHORD; break; case ROUND: type = NGCanvas.ARC_PIE; break; default: return; // ignored for consistency with other attributes } writeParam(type, NGCanvas.ARC_TYPE); } private void writeRectParams(GrowableDataBuffer buf, double x, double y, double w, double h, byte command) { buf.putByte(command); buf.putFloat((float) x); buf.putFloat((float) y); buf.putFloat((float) w); buf.putFloat((float) h); } private void writeOp4(double x, double y, double w, double h, byte command) { updateTransform(); writeRectParams(getBuffer(), x, y, w, h, command); } private void writeOp6(double x, double y, double w, double h, double v1, double v2, byte command) { updateTransform(); GrowableDataBuffer buf = getBuffer(); buf.putByte(command); buf.putFloat((float) x); buf.putFloat((float) y); buf.putFloat((float) w); buf.putFloat((float) h); buf.putFloat((float) v1); buf.putFloat((float) v2); } private float polybuf[] = new float[512]; private void flushPolyBuf(GrowableDataBuffer buf, float polybuf[], int n, byte command) { curState.transform.transform(polybuf, 0, polybuf, 0, n/2); for (int i = 0; i < n; i += 2) { buf.putByte(command); buf.putFloat(polybuf[i]); buf.putFloat(polybuf[i+1]); command = NGCanvas.LINETO; } } private void writePoly(double xPoints[], double yPoints[], int nPoints, boolean close, byte command) { if (xPoints == null || yPoints == null) return; GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.PATHSTART); int pos = 0; byte polycmd = NGCanvas.MOVETO; for (int i = 0; i < nPoints; i++) { if (pos >= polybuf.length) { flushPolyBuf(buf, polybuf, pos, polycmd); pos = 0; polycmd = NGCanvas.LINETO; } polybuf[pos++] = (float) xPoints[i]; polybuf[pos++] = (float) yPoints[i]; } flushPolyBuf(buf, polybuf, pos, polycmd); if (close) { buf.putByte(NGCanvas.CLOSEPATH); } buf.putByte(NGCanvas.PATHEND); buf.putByte(command); // Now that we have changed the PG layer path, we need to mark our path dirty. markPathDirty(); } private void writeImage(Image img, double dx, double dy, double dw, double dh) { if (img == null || img.getProgress() < 1.0) return; Object platformImg = img.impl_getPlatformImage(); if (platformImg == null) return; updateTransform(); GrowableDataBuffer buf = getBuffer(); writeRectParams(buf, dx, dy, dw, dh, NGCanvas.DRAW_IMAGE); buf.putObject(platformImg); } private void writeImage(Image img, double dx, double dy, double dw, double dh, double sx, double sy, double sw, double sh) { if (img == null || img.getProgress() < 1.0) return; Object platformImg = img.impl_getPlatformImage(); if (platformImg == null) return; updateTransform(); GrowableDataBuffer buf = getBuffer(); writeRectParams(buf, dx, dy, dw, dh, NGCanvas.DRAW_SUBIMAGE); buf.putFloat((float) sx); buf.putFloat((float) sy); buf.putFloat((float) sw); buf.putFloat((float) sh); buf.putObject(platformImg); } private void writeText(String text, double x, double y, double maxWidth, byte command) { if (text == null) return; updateTransform(); GrowableDataBuffer buf = getBuffer(); buf.putByte(command); buf.putFloat((float) x); buf.putFloat((float) y); buf.putFloat((float) maxWidth); buf.putBoolean(theCanvas.getEffectiveNodeOrientation() == NodeOrientation.RIGHT_TO_LEFT); buf.putObject(text); } void writeParam(double v, byte command) { GrowableDataBuffer buf = getBuffer(); buf.putByte(command); buf.putFloat((float) v); } private void writeParam(byte v, byte command) { GrowableDataBuffer buf = getBuffer(); buf.putByte(command); buf.putByte(v); } private boolean txdirty; private void updateTransform() { if (txdirty) { txdirty = false; GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.TRANSFORM); buf.putDouble(curState.transform.getMxx()); buf.putDouble(curState.transform.getMxy()); buf.putDouble(curState.transform.getMxt()); buf.putDouble(curState.transform.getMyx()); buf.putDouble(curState.transform.getMyy()); buf.putDouble(curState.transform.getMyt()); } } void updateDimensions() { GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.SET_DIMS); buf.putFloat((float) theCanvas.getWidth()); buf.putFloat((float) theCanvas.getHeight()); } private void reset() { GrowableDataBuffer buf = getBuffer(); // Only reset if we have a significant amount of data to omit, // this prevents a common occurence of "setFill(bg); fillRect();" // at the start of a session from invoking a reset. // But, do a reset anyway if the rendering layer has been falling // behind because that lets the synchronization step throw out the // older buffers that have been backing up. if (buf.writeValuePosition() > Canvas.DEFAULT_VAL_BUF_SIZE || theCanvas.isRendererFallingBehind()) { buf.reset(); buf.putByte(NGCanvas.RESET); updateDimensions(); txdirty = true; pathDirty = true; State s = this.curState; int numClipPaths = this.curState.numClipPaths; this.curState = new State(); for (int i = 0; i < numClipPaths; i++) { Path2D clip = clipStack.get(i); buf.putByte(NGCanvas.PUSH_CLIP); buf.putObject(clip); } this.curState.numClipPaths = numClipPaths; s.restore(this); } } private void resetIfCovers(Paint p, double x, double y, double w, double h) { Affine2D tx = this.curState.transform; if (tx.isTranslateOrIdentity()) { x += tx.getMxt(); y += tx.getMyt(); if (x > 0 || y > 0 || (x+w) < theCanvas.getWidth() || (y+h) < theCanvas.getHeight()) { return; } } else { // quad test for coverage...? return; } if (p != null) { if (this.curState.blendop != BlendMode.SRC_OVER) return; if (!p.isOpaque() || this.curState.globalAlpha < 1.0) return; } if (this.curState.numClipPaths > 0) return; if (this.curState.effect != null) return; reset(); } /** * Gets the {@code Canvas} that the {@code GraphicsContext} is issuing draw * commands to. There is only ever one {@code Canvas} for a * {@code GraphicsContext}. * * @return Canvas the canvas that this {@code GraphicsContext} is issuing draw * commands to. */ public Canvas getCanvas() { return theCanvas; } /** * Saves the following attributes onto a stack. *
    *
  • Global Alpha
  • *
  • Global Blend Operation
  • *
  • Transform
  • *
  • Fill Paint
  • *
  • Stroke Paint
  • *
  • Line Width
  • *
  • Line Cap
  • *
  • Line Join
  • *
  • Miter Limit
  • *
  • Number of Clip Paths
  • *
  • Font
  • *
  • Text Align
  • *
  • Text Baseline
  • *
  • Effect
  • *
  • Fill Rule
  • *
* This method does NOT alter the current state in any way. Also, not that * the current path is not saved. */ public void save() { stateStack.push(curState.copy()); } /** * Pops the state off of the stack, setting the following attributes to their * value at the time when that state was pushed onto the stack. If the stack * is empty then nothing is changed. * *
    *
  • Global Alpha
  • *
  • Global Blend Operation
  • *
  • Transform
  • *
  • Fill Paint
  • *
  • Stroke Paint
  • *
  • Line Width
  • *
  • Line Cap
  • *
  • Line Join
  • *
  • Miter Limit
  • *
  • Number of Clip Paths
  • *
  • Font
  • *
  • Text Align
  • *
  • Text Baseline
  • *
  • Effect
  • *
  • Fill Rule
  • *
*/ public void restore() { if (!stateStack.isEmpty()) { State savedState = stateStack.pop(); savedState.restore(this); txdirty = true; } } /** * Translates the current transform by x, y. * @param x value to translate along the x axis. * @param y value to translate along the y axis. */ public void translate(double x, double y) { curState.transform.translate(x, y); txdirty = true; } /** * Scales the current transform by x, y. * @param x value to scale in the x axis. * @param y value to scale in the y axis. */ public void scale(double x, double y) { curState.transform.scale(x, y); txdirty = true; } /** * Rotates the current transform in degrees. * @param degrees value in degrees to rotate the current transform. */ public void rotate(double degrees) { curState.transform.rotate(Math.toRadians(degrees)); txdirty = true; } /** * Concatenates the input with the current transform. * * @param mxx - the X coordinate scaling element of the 3x4 matrix * @param myx - the Y coordinate shearing element of the 3x4 matrix * @param mxy - the X coordinate shearing element of the 3x4 matrix * @param myy - the Y coordinate scaling element of the 3x4 matrix * @param mxt - the X coordinate translation element of the 3x4 matrix * @param myt - the Y coordinate translation element of the 3x4 matrix */ public void transform(double mxx, double myx, double mxy, double myy, double mxt, double myt) { curState.transform.concatenate(mxx, mxy, mxt, myx, myy, myt); txdirty = true; } /** * Concatenates the input with the current transform. Only 2D transforms are * supported. The only values used are the X and Y scaling, translation, and * shearing components of a transform. A {@code null} value is treated as identity. * * @param xform The affine to be concatenated with the current transform or null. */ public void transform(Affine xform) { if (xform == null) return; curState.transform.concatenate(xform.getMxx(), xform.getMxy(), xform.getTx(), xform.getMyx(), xform.getMyy(), xform.getTy()); txdirty = true; } /** * Sets the current transform. * @param mxx - the X coordinate scaling element of the 3x4 matrix * @param myx - the Y coordinate shearing element of the 3x4 matrix * @param mxy - the X coordinate shearing element of the 3x4 matrix * @param myy - the Y coordinate scaling element of the 3x4 matrix * @param mxt - the X coordinate translation element of the 3x4 matrix * @param myt - the Y coordinate translation element of the 3x4 matrix */ public void setTransform(double mxx, double myx, double mxy, double myy, double mxt, double myt) { curState.transform.setTransform(mxx, myx, mxy, myy, mxt, myt); txdirty = true; } /** * Sets the current transform. Only 2D transforms are supported. The only * values used are the X and Y scaling, translation, and shearing components * of a transform. * * @param xform The affine to be copied and used as the current transform. */ public void setTransform(Affine xform) { curState.transform.setTransform(xform.getMxx(), xform.getMyx(), xform.getMxy(), xform.getMyy(), xform.getTx(), xform.getTy()); txdirty = true; } /** * Returns a copy of the current transform. * * @param xform A transform object that will be used to hold the result. * If xform is non null, then this method will copy the current transform * into that object. If xform is null a new transform object will be * constructed. In either case, the return value is a copy of the current * transform. * * @return A copy of the current transform. */ public Affine getTransform(Affine xform) { if (xform == null) { xform = new Affine(); } xform.setMxx(curState.transform.getMxx()); xform.setMxy(curState.transform.getMxy()); xform.setMxz(0); xform.setTx(curState.transform.getMxt()); xform.setMyx(curState.transform.getMyx()); xform.setMyy(curState.transform.getMyy()); xform.setMyz(0); xform.setTy(curState.transform.getMyt()); xform.setMzx(0); xform.setMzy(0); xform.setMzz(1); xform.setTz(0); return xform; } /** * Returns a copy of the current transform. * * @return a copy of the transform of the current state. */ public Affine getTransform() { return getTransform(null); } /** * Sets the global alpha of the current state. * * @param alpha value in the range {@code 0.0-1.0}. The value is clamped if it is * out of range. */ public void setGlobalAlpha(double alpha) { if (curState.globalAlpha != alpha) { curState.globalAlpha = alpha; alpha = (alpha > 1.0) ? 1.0 : (alpha < 0.0) ? 0.0 : alpha; writeParam(alpha, NGCanvas.GLOBAL_ALPHA); } } /** * Gets the current global alpha. * * @return the current global alpha. */ public double getGlobalAlpha() { return curState.globalAlpha; } /** * Sets the global blend mode. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param op the {@code BlendMode} that will be set or null. */ public void setGlobalBlendMode(BlendMode op) { if (op != null && op != curState.blendop) { GrowableDataBuffer buf = getBuffer(); curState.blendop = op; buf.putByte(NGCanvas.COMP_MODE); buf.putObject(Blend.impl_getToolkitMode(op)); } } /** * Gets the global blend mode. * * @return the global {@code BlendMode} of the current state. */ public BlendMode getGlobalBlendMode() { return curState.blendop; } /** * Sets the current fill attribute. This method affects the paint used for any * method with "fill" in it. For Example, fillRect(...), fillOval(...). * A {@code null} value will be ignored and the current value will remain unchanged. * * @param p The {@code Paint} to be used as the fill {@code Paint} or null. */ public void setFill(Paint p) { if (p != null && curState.fill != p) { curState.fill = p; writePaint(p, NGCanvas.FILL_PAINT); } } /** * Gets the current fill attribute. This method affects the paint used for any * method with "fill" in it. For Example, fillRect(...), fillOval(...). * * @return p The {@code Paint} to be used as the fill {@code Paint}. */ public Paint getFill() { return curState.fill; } /** * Sets the current stroke. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param p The Paint to be used as the stroke Paint or null. */ public void setStroke(Paint p) { if (p != null && curState.stroke != p) { curState.stroke = p; writePaint(p, NGCanvas.STROKE_PAINT); } } /** * Gets the current stroke. * * @return the {@code Paint} to be used as the stroke {@code Paint}. */ public Paint getStroke() { return curState.stroke; } /** * Sets the current line width. * * @param lw value in the range {0-positive infinity}, with any other value * being ignored and leaving the value unchanged. */ public void setLineWidth(double lw) { // Per W3C spec: On setting, zero, negative, infinite, and NaN // values must be ignored, leaving the value unchanged if (lw > 0 && lw < Double.POSITIVE_INFINITY) { if (curState.linewidth != lw) { curState.linewidth = lw; writeParam(lw, NGCanvas.LINE_WIDTH); } } } /** * Gets the current line width. * * @return value between 0 and infinity. */ public double getLineWidth() { return curState.linewidth; } /** * Sets the current stroke line cap. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param cap {@code StrokeLineCap} with a value of Butt, Round, or Square or null. */ public void setLineCap(StrokeLineCap cap) { if (cap != null && curState.linecap != cap) { byte v; switch (cap) { case BUTT: v = NGCanvas.CAP_BUTT; break; case ROUND: v = NGCanvas.CAP_ROUND; break; case SQUARE: v = NGCanvas.CAP_SQUARE; break; default: return; } curState.linecap = cap; writeParam(v, NGCanvas.LINE_CAP); } } /** * Gets the current stroke line cap. * * @return {@code StrokeLineCap} with a value of Butt, Round, or Square. */ public StrokeLineCap getLineCap() { return curState.linecap; } /** * Sets the current stroke line join. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param join {@code StrokeLineJoin} with a value of Miter, Bevel, or Round or null. */ public void setLineJoin(StrokeLineJoin join) { if (join != null && curState.linejoin != join) { byte v; switch (join) { case MITER: v = NGCanvas.JOIN_MITER; break; case BEVEL: v = NGCanvas.JOIN_BEVEL; break; case ROUND: v = NGCanvas.JOIN_ROUND; break; default: return; } curState.linejoin = join; writeParam(v, NGCanvas.LINE_JOIN); } } /** * Gets the current stroke line join. * * @return {@code StrokeLineJoin} with a value of Miter, Bevel, or Round. */ public StrokeLineJoin getLineJoin() { return curState.linejoin; } /** * Sets the current miter limit. * * @param ml miter limit value between 0 and positive infinity with * any other value being ignored and leaving the value unchanged. */ public void setMiterLimit(double ml) { // Per W3C spec: On setting, zero, negative, infinite, and NaN // values must be ignored, leaving the value unchanged if (ml > 0.0 && ml < Double.POSITIVE_INFINITY) { if (curState.miterlimit != ml) { curState.miterlimit = ml; writeParam(ml, NGCanvas.MITER_LIMIT); } } } /** * Gets the current miter limit. * * @return the miter limit value in the range {@code 0.0-positive infinity} */ public double getMiterLimit() { return curState.miterlimit; } /** * Sets the current Font. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param f the Font or null. */ public void setFont(Font f) { if (f != null && curState.font != f) { curState.font = f; GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.FONT); buf.putObject(f.impl_getNativeFont()); } } /** * Gets the current Font. * * @return the Font */ public Font getFont() { return curState.font; } /** * Defines horizontal text alignment, relative to the text {@code x} origin. *

* Let horizontal bounds represent the logical width of a single line of * text. Where each line of text has a separate horizontal bounds. *

* Then TextAlignment is specified as: *

    *
  • Left: the left edge of the horizontal bounds will be at {@code x}. *
  • Center: the center, halfway between left and right edge, of the * horizontal bounds will be at {@code x}. *
  • Right: the right edge of the horizontal bounds will be at {@code x}. *
*

* * Note: Canvas does not support line wrapping, therefore the text * alignment Justify is identical to left aligned text. *

* A {@code null} value will be ignored and the current value will remain unchanged. * * @param align {@code TextAlignment} with values of Left, Center, Right or null. */ public void setTextAlign(TextAlignment align) { if (align != null && curState.textalign != align) { byte a; switch (align) { case LEFT: a = NGCanvas.ALIGN_LEFT; break; case CENTER: a = NGCanvas.ALIGN_CENTER; break; case RIGHT: a = NGCanvas.ALIGN_RIGHT; break; case JUSTIFY: a = NGCanvas.ALIGN_JUSTIFY; break; default: return; } curState.textalign = align; writeParam(a, NGCanvas.TEXT_ALIGN); } } /** * Gets the current {@code TextAlignment}. * * @return {@code TextAlignment} with values of Left, Center, Right, or * Justify. */ public TextAlignment getTextAlign() { return curState.textalign; } /** * Sets the current Text Baseline. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param baseline {@code VPos} with values of Top, Center, Baseline, or Bottom or null. */ public void setTextBaseline(VPos baseline) { if (baseline != null && curState.textbaseline != baseline) { byte b; switch (baseline) { case TOP: b = NGCanvas.BASE_TOP; break; case CENTER: b = NGCanvas.BASE_MIDDLE; break; case BASELINE: b = NGCanvas.BASE_ALPHABETIC; break; case BOTTOM: b = NGCanvas.BASE_BOTTOM; break; default: return; } curState.textbaseline = baseline; writeParam(b, NGCanvas.TEXT_BASELINE); } } /** * Gets the current Text Baseline. * * @return {@code VPos} with values of Top, Center, Baseline, or Bottom */ public VPos getTextBaseline() { return curState.textbaseline; } /** * Fills the given string of text at position x, y (0,0 at top left) * with the current fill paint attribute. * A {@code null} text value will be ignored. * * @param text the string of text or null. * @param x position on the x axis. * @param y position on the y axis. */ public void fillText(String text, double x, double y) { writeText(text, x, y, 0, NGCanvas.FILL_TEXT); } /** * draws the given string of text at position x, y (0,0 at top left) * with the current stroke paint attribute. * A {@code null} text value will be ignored. * * @param text the string of text or null. * @param x position on the x axis. * @param y position on the y axis. */ public void strokeText(String text, double x, double y) { writeText(text, x, y, 0, NGCanvas.STROKE_TEXT); } /** * Fills text and includes a maximum width of the string. * * If the width of the text extends past max width, then it will be sized * to fit. * A {@code null} text value will be ignored. * * @param text the string of text or null. * @param x position on the x axis. * @param y position on the y axis. * @param maxWidth maximum width the text string can have. */ public void fillText(String text, double x, double y, double maxWidth) { if (maxWidth <= 0) return; writeText(text, x, y, maxWidth, NGCanvas.FILL_TEXT); } /** * Draws text with stroke paint and includes a maximum width of the string. * * If the width of the text extends past max width, then it will be sized * to fit. * A {@code null} text value will be ignored. * * @param text the string of text or null. * @param x position on the x axis. * @param y position on the y axis. * @param maxWidth maximum width the text string can have. */ public void strokeText(String text, double x, double y, double maxWidth) { if (maxWidth <= 0) return; writeText(text, x, y, maxWidth, NGCanvas.STROKE_TEXT); } /** * Set the filling rule constant for determining the interior of the path. * A {@code null} value will be ignored and the current value will remain unchanged. * * @param fillRule {@code FillRule} with a value of Even_odd or Non_zero or null. */ public void setFillRule(FillRule fillRule) { if (fillRule != null && curState.fillRule != fillRule) { byte b; if (fillRule == FillRule.EVEN_ODD) { b = NGCanvas.FILL_RULE_EVEN_ODD; } else { b = NGCanvas.FILL_RULE_NON_ZERO; } curState.fillRule = fillRule; writeParam(b, NGCanvas.FILL_RULE); } } /** * Get the filling rule constant for determining the interior of the path. * The default value is {@code FillRule.NON_ZERO}. * * @return current fill rule. */ public FillRule getFillRule() { return curState.fillRule; } /** * Starts a Path */ public void beginPath() { path.reset(); markPathDirty(); } /** * Issues a move command for the current path to the given x,y coordinate. * * @param x0 the X position for the move to command. * @param y0 the Y position for the move to command. */ public void moveTo(double x0, double y0) { coords[0] = (float) x0; coords[1] = (float) y0; curState.transform.transform(coords, 0, coords, 0, 1); path.moveTo(coords[0], coords[1]); markPathDirty(); } /** * Adds segments to the current path to make a line at the given x,y * coordinate. * * @param x1 the X coordinate of the ending point of the line. * @param y1 the Y coordinate of the ending point of the line. */ public void lineTo(double x1, double y1) { coords[0] = (float) x1; coords[1] = (float) y1; curState.transform.transform(coords, 0, coords, 0, 1); if (path.getNumCommands() == 0) { path.moveTo(coords[0], coords[1]); } path.lineTo(coords[0], coords[1]); markPathDirty(); } /** * Adds segments to the current path to make a quadratic curve. * * @param xc the X coordinate of the control point * @param yc the Y coordinate of the control point * @param x1 the X coordinate of the end point * @param y1 the Y coordinate of the end point */ public void quadraticCurveTo(double xc, double yc, double x1, double y1) { coords[0] = (float) xc; coords[1] = (float) yc; coords[2] = (float) x1; coords[3] = (float) y1; curState.transform.transform(coords, 0, coords, 0, 2); if (path.getNumCommands() == 0) { path.moveTo(coords[0], coords[1]); } path.quadTo(coords[0], coords[1], coords[2], coords[3]); markPathDirty(); } /** * Adds segments to the current path to make a cubic bezier curve. * * @param xc1 the X coordinate of first bezier control point. * @param yc1 the Y coordinate of the first bezier control point. * @param xc2 the X coordinate of the second bezier control point. * @param yc2 the Y coordinate of the second bezier control point. * @param x1 the X coordinate of the end point. * @param y1 the Y coordinate of the end point. */ public void bezierCurveTo(double xc1, double yc1, double xc2, double yc2, double x1, double y1) { coords[0] = (float) xc1; coords[1] = (float) yc1; coords[2] = (float) xc2; coords[3] = (float) yc2; coords[4] = (float) x1; coords[5] = (float) y1; curState.transform.transform(coords, 0, coords, 0, 3); if (path.getNumCommands() == 0) { path.moveTo(coords[0], coords[1]); } path.curveTo(coords[0], coords[1], coords[2], coords[3], coords[4], coords[5]); markPathDirty(); } /** * Adds segments to the current path to make an arc. * * @param x1 the X coordinate of the first point of the arc. * @param y1 the Y coordinate of the first point of the arc. * @param x2 the X coordinate of the second point of the arc. * @param y2 the Y coordinate of the second point of the arc. * @param radius the radius of the arc in the range {0.0-positive infinity}. */ public void arcTo(double x1, double y1, double x2, double y2, double radius) { if (path.getNumCommands() == 0) { moveTo(x1, y1); lineTo(x1, y1); } else if (!tryArcTo((float) x1, (float) y1, (float) x2, (float) y2, (float) radius)) { lineTo(x1, y1); } } private static double lenSq(double x0, double y0, double x1, double y1) { x1 -= x0; y1 -= y0; return x1 * x1 + y1 * y1; } private boolean tryArcTo(float x1, float y1, float x2, float y2, float radius) { float x0, y0; if (curState.transform.isTranslateOrIdentity()) { x0 = (float) (path.getCurrentX() - curState.transform.getMxt()); y0 = (float) (path.getCurrentY() - curState.transform.getMyt()); } else { coords[0] = path.getCurrentX(); coords[1] = path.getCurrentY(); try { curState.transform.inverseTransform(coords, 0, coords, 0, 1); } catch (NoninvertibleTransformException e) { return false; } x0 = coords[0]; y0 = coords[1]; } // call x1,y1 the corner point // If 2*theta is the angle described by p0->p1->p2 // then theta is the angle described by p0->p1->centerpt and // centerpt->p1->p2 // We know that the distance from the arc center to the tangent points // is r, and if A is the distance from the corner to the tangent point // then we know: // tan(theta) = r/A // A = r / sin(theta) // B = A * cos(theta) = r * (sin/cos) = r * tan // We use the cosine rule on the triangle to get the 2*theta angle: // cosB = (a^2 + c^2 - b^2) / (2ac) // where a and c are the adjacent sides and b is the opposite side // i.e. a = p0->p1, c=p1->p2, b=p0->p2 // Then we can use the tan^2 identity to compute B: // tan^2 = (1 - cos(2theta)) / (1 + cos(2theta)) double lsq01 = lenSq(x0, y0, x1, y1); double lsq12 = lenSq(x1, y1, x2, y2); double lsq02 = lenSq(x0, y0, x2, y2); double len01 = Math.sqrt(lsq01); double len12 = Math.sqrt(lsq12); double cosnum = lsq01 + lsq12 - lsq02; double cosden = 2.0 * len01 * len12; if (cosden == 0.0 || radius <= 0f) { return false; } double cos_2theta = cosnum / cosden; double tansq_den = (1.0 + cos_2theta); if (tansq_den == 0.0) { return false; } double tansq_theta = (1.0 - cos_2theta) / tansq_den; double A = radius / Math.sqrt(tansq_theta); double tx0 = x1 + (A / len01) * (x0 - x1); double ty0 = y1 + (A / len01) * (y0 - y1); double tx1 = x1 + (A / len12) * (x2 - x1); double ty1 = y1 + (A / len12) * (y2 - y1); // The midpoint between the two tangent points double mx = (tx0 + tx1) / 2.0; double my = (ty0 + ty1) / 2.0; // similar triangles tell us that: // len(m,center)/len(m,tangent) = len(m,tangent)/len(corner,m) // len(m,center) = lensq(m,tangent)/len(corner,m) // center = m + (m - p1) * len(m,center) / len(corner,m) // = m + (m - p1) * (lensq(m,tangent) / lensq(corner,m)) double lenratioden = lenSq(mx, my, x1, y1); if (lenratioden == 0.0) { return false; } double lenratio = lenSq(mx, my, tx0, ty0) / lenratioden; double cx = mx + (mx - x1) * lenratio; double cy = my + (my - y1) * lenratio; if (!(cx == cx && cy == cy)) { return false; } // Looks like we are good to draw, first we have to get to the // initial tangent point with a line segment. if (tx0 != x0 || ty0 != y0) { lineTo(tx0, ty0); } // We need sin(arc/2), cos(arc/2) // and possibly sin(arc/4), cos(arc/4) if we need 2 cubic beziers // We have tan(theta) = tan(tri/2) // arc = 180-tri // arc/2 = (180-tri)/2 = 90-(tri/2) // sin(arc/2) = sin(90-(tri/2)) = cos(tri/2) // cos(arc/2) = cos(90-(tri/2)) = sin(tri/2) // 2theta = tri, therefore theta = tri/2 // cos(tri/2)^2 = (1+cos(tri)) / 2.0 = (1+cos_2theta)/2.0 // sin(tri/2)^2 = (1-cos(tri)) / 2.0 = (1-cos_2theta)/2.0 // sin(arc/2) = cos(tri/2) = sqrt((1+cos_2theta)/2.0) // cos(arc/2) = sin(tri/2) = sqrt((1-cos_2theta)/2.0) // We compute cos(arc/2) here as we need it in either case below double coshalfarc = Math.sqrt((1.0 - cos_2theta) / 2.0); boolean ccw = (ty0 - cy) * (tx1 - cx) > (ty1 - cy) * (tx0 - cx); // If the arc covers more than 90 degrees then we must use 2 // cubic beziers to get a decent approximation. // arc = 180-tri // arc = 180-2*theta // arc > 90 implies 2*theta < 90 // 2*theta < 90 implies cos_2theta > 0 // So, we need 2 cubics if cos_2theta > 0 if (cos_2theta <= 0.0) { // 1 cubic bezier double sinhalfarc = Math.sqrt((1.0 + cos_2theta) / 2.0); double cv = 4.0 / 3.0 * sinhalfarc / (1.0 + coshalfarc); if (ccw) cv = -cv; double cpx0 = tx0 - cv * (ty0 - cy); double cpy0 = ty0 + cv * (tx0 - cx); double cpx1 = tx1 + cv * (ty1 - cy); double cpy1 = ty1 - cv * (tx1 - cx); bezierCurveTo(cpx0, cpy0, cpx1, cpy1, tx1, ty1); } else { // 2 cubic beziers // We need sin(arc/4) and cos(arc/4) // We computed cos(arc/2), so we can compute them as follows: // sin(arc/4) = sqrt((1 - cos(arc/2)) / 2) // cos(arc/4) = sart((1 + cos(arc/2)) / 2) double sinqtrarc = Math.sqrt((1.0 - coshalfarc) / 2.0); double cosqtrarc = Math.sqrt((1.0 + coshalfarc) / 2.0); double cv = 4.0 / 3.0 * sinqtrarc / (1.0 + cosqtrarc); if (ccw) cv = -cv; double midratio = radius / Math.sqrt(lenratioden); double midarcx = cx + (x1 - mx) * midratio; double midarcy = cy + (y1 - my) * midratio; double cpx0 = tx0 - cv * (ty0 - cy); double cpy0 = ty0 + cv * (tx0 - cx); double cpx1 = midarcx + cv * (midarcy - cy); double cpy1 = midarcy - cv * (midarcx - cx); bezierCurveTo(cpx0, cpy0, cpx1, cpy1, midarcx, midarcy); cpx0 = midarcx - cv * (midarcy - cy); cpy0 = midarcy + cv * (midarcx - cx); cpx1 = tx1 + cv * (ty1 - cy); cpy1 = ty1 - cv * (tx1 - cx); bezierCurveTo(cpx0, cpy0, cpx1, cpy1, tx1, ty1); } return true; } /** * Adds path elements to the current path to make an arc that uses Euclidean * degrees. This Euclidean orientation sweeps from East to North, then West, * then South, then back to East. * * @param centerX the center x position of the arc. * @param centerY the center y position of the arc. * @param radiusX the x radius of the arc. * @param radiusY the y radius of the arc. * @param startAngle the starting angle of the arc in the range {@code 0-360.0} * @param length the length of the baseline of the arc. */ public void arc(double centerX, double centerY, double radiusX, double radiusY, double startAngle, double length) { Arc2D arc = new Arc2D((float) (centerX - radiusX), // x (float) (centerY - radiusY), // y (float) (radiusX * 2.0), // w (float) (radiusY * 2.0), // h (float) startAngle, (float) length, Arc2D.OPEN); path.append(arc.getPathIterator(curState.transform), true); markPathDirty(); } /** * Adds path elements to the current path to make a rectangle. * * @param x x position of the upper left corner of the rectangle. * @param y y position of the upper left corner of the rectangle. * @param w width of the rectangle. * @param h height of the rectangle. */ public void rect(double x, double y, double w, double h) { coords[0] = (float) x; coords[1] = (float) y; coords[2] = (float) w; coords[3] = (float) 0; coords[4] = (float) 0; coords[5] = (float) h; curState.transform.deltaTransform(coords, 0, coords, 0, 3); float x0 = coords[0] + (float) curState.transform.getMxt(); float y0 = coords[1] + (float) curState.transform.getMyt(); float dx1 = coords[2]; float dy1 = coords[3]; float dx2 = coords[4]; float dy2 = coords[5]; path.moveTo(x0, y0); path.lineTo(x0+dx1, y0+dy1); path.lineTo(x0+dx1+dx2, y0+dy1+dy2); path.lineTo(x0+dx2, y0+dy2); path.closePath(); markPathDirty(); // path.moveTo(x0, y0); // not needed, closepath leaves pen at moveto } /** * Appends an SVG Path string to the current path. If there is no current * path the string must then start with either type of move command. * A {@code null} value or incorrect SVG path will be ignored. * @param svgpath the SVG Path string. * */ public void appendSVGPath(String svgpath) { if (svgpath == null) return; boolean prependMoveto = true; boolean skipMoveto = true; for (int i = 0; i < svgpath.length(); i++) { switch (svgpath.charAt(i)) { case ' ': case '\t': case '\r': case '\n': continue; case 'M': prependMoveto = skipMoveto = false; break; case 'm': if (path.getNumCommands() == 0) { // An initial relative moveTo becomes absolute prependMoveto = false; } // Even if we prepend an initial moveTo in the temp // path, we do not want to delete the resulting initial // moveTo because the relative moveto will be folded // into it by an optimization in the Path2D object. skipMoveto = false; break; } break; } Path2D p2d = new Path2D(); if (prependMoveto && path.getNumCommands() > 0) { float x0, y0; if (curState.transform.isTranslateOrIdentity()) { x0 = (float) (path.getCurrentX() - curState.transform.getMxt()); y0 = (float) (path.getCurrentY() - curState.transform.getMyt()); } else { coords[0] = path.getCurrentX(); coords[1] = path.getCurrentY(); try { curState.transform.inverseTransform(coords, 0, coords, 0, 1); } catch (NoninvertibleTransformException e) { } x0 = coords[0]; y0 = coords[1]; } p2d.moveTo(x0, y0); } else { skipMoveto = false; } try { p2d.appendSVGPath(svgpath); PathIterator pi = p2d.getPathIterator(curState.transform); if (skipMoveto) { // We need to delete the initial moveto and let the path // extend from the actual existing geometry. pi.next(); } path.append(pi, false); } catch (IllegalArgumentException | IllegalPathStateException ex) { //Ignore incorrect path } } /** * Closes the path. */ public void closePath() { if (path.getNumCommands() > 0) { path.closePath(); markPathDirty(); } } /** * Fills the path with the current fill paint. */ public void fill() { writePath(NGCanvas.FILL_PATH); } /** * Strokes the path with the current stroke paint. */ public void stroke() { writePath(NGCanvas.STROKE_PATH); } /** * Clips using the current path */ public void clip() { Path2D clip = new Path2D(path); clipStack.addLast(clip); curState.numClipPaths++; GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.PUSH_CLIP); buf.putObject(clip); } /** * Returns true if the the given x,y point is inside the path. * * @param x the X coordinate to use for the check. * @param y the Y coordinate to use for the check. * @return true if the point given is inside the path, false * otherwise. */ public boolean isPointInPath(double x, double y) { // TODO: HTML5 considers points on the path to be inside, but we // implement a halfin-halfout approach... return path.contains((float) x, (float) y); } /** * Clears a portion of the canvas with a transparent color value. * * @param x X position of the upper left corner of the rectangle. * @param y Y position of the upper left corner of the rectangle. * @param w width of the rectangle. * @param h height of the rectangle. */ public void clearRect(double x, double y, double w, double h) { if (w != 0 && h != 0) { resetIfCovers(null, x, y, w, h); writeOp4(x, y, w, h, NGCanvas.CLEAR_RECT); } } /** * Fills a rectangle using the current fill paint. * * @param x the X position of the upper left corner of the rectangle. * @param y the Y position of the upper left corner of the rectangle. * @param w the width of the rectangle. * @param h the height of the rectangle. */ public void fillRect(double x, double y, double w, double h) { if (w != 0 && h != 0) { resetIfCovers(this.curState.fill, x, y, w, h); writeOp4(x, y, w, h, NGCanvas.FILL_RECT); } } /** * Strokes a rectangle using the current stroke paint. * * @param x the X position of the upper left corner of the rectangle. * @param y the Y position of the upper left corner of the rectangle. * @param w the width of the rectangle. * @param h the height of the rectangle. */ public void strokeRect(double x, double y, double w, double h) { if (w != 0 || h != 0) { writeOp4(x, y, w, h, NGCanvas.STROKE_RECT); } } /** * Fills an oval using the current fill paint. * * @param x the X coordinate of the upper left bound of the oval. * @param y the Y coordinate of the upper left bound of the oval. * @param w the width at the center of the oval. * @param h the height at the center of the oval. */ public void fillOval(double x, double y, double w, double h) { if (w != 0 && h != 0) { writeOp4(x, y, w, h, NGCanvas.FILL_OVAL); } } /** * Strokes a rectangle using the current stroke paint. * * @param x the X coordinate of the upper left bound of the oval. * @param y the Y coordinate of the upper left bound of the oval. * @param w the width at the center of the oval. * @param h the height at the center of the oval. */ public void strokeOval(double x, double y, double w, double h) { if (w != 0 || h != 0) { writeOp4(x, y, w, h, NGCanvas.STROKE_OVAL); } } /** * Fills an arc using the current fill paint. A {@code null} ArcType or * non positive width or height will cause the render command to be ignored. * * @param x the X coordinate of the arc. * @param y the Y coordinate of the arc. * @param w the width of the arc. * @param h the height of the arc. * @param startAngle the starting angle of the arc in degrees. * @param arcExtent the angular extent of the arc in degrees. * @param closure closure type (Round, Chord, Open) or null. */ public void fillArc(double x, double y, double w, double h, double startAngle, double arcExtent, ArcType closure) { if (w != 0 && h != 0 && closure != null) { writeArcType(closure); writeOp6(x, y, w, h, startAngle, arcExtent, NGCanvas.FILL_ARC); } } /** * Strokes an Arc using the current stroke paint. A {@code null} ArcType or * non positive width or height will cause the render command to be ignored. * * @param x the X coordinate of the arc. * @param y the Y coordinate of the arc. * @param w the width of the arc. * @param h the height of the arc. * @param startAngle the starting angle of the arc in degrees. * @param arcExtent arcExtent the angular extent of the arc in degrees. * @param closure closure type (Round, Chord, Open) or null */ public void strokeArc(double x, double y, double w, double h, double startAngle, double arcExtent, ArcType closure) { if (w != 0 && h != 0 && closure != null) { writeArcType(closure); writeOp6(x, y, w, h, startAngle, arcExtent, NGCanvas.STROKE_ARC); } } /** * Fills a rounded rectangle using the current fill paint. * * @param x the X coordinate of the upper left bound of the oval. * @param y the Y coordinate of the upper left bound of the oval. * @param w the width at the center of the oval. * @param h the height at the center of the oval. * @param arcWidth the arc width of the rectangle corners. * @param arcHeight the arc height of the rectangle corners. */ public void fillRoundRect(double x, double y, double w, double h, double arcWidth, double arcHeight) { if (w != 0 && h != 0) { writeOp6(x, y, w, h, arcWidth, arcHeight, NGCanvas.FILL_ROUND_RECT); } } /** * Strokes a rounded rectangle using the current stroke paint. * * @param x the X coordinate of the upper left bound of the oval. * @param y the Y coordinate of the upper left bound of the oval. * @param w the width at the center of the oval. * @param h the height at the center of the oval. * @param arcWidth the arc width of the rectangle corners. * @param arcHeight the arc height of the rectangle corners. */ public void strokeRoundRect(double x, double y, double w, double h, double arcWidth, double arcHeight) { if (w != 0 && h != 0) { writeOp6(x, y, w, h, arcWidth, arcHeight, NGCanvas.STROKE_ROUND_RECT); } } /** * Strokes a line using the current stroke paint. * * @param x1 the X coordinate of the starting point of the line. * @param y1 the Y coordinate of the starting point of the line. * @param x2 the X coordinate of the ending point of the line. * @param y2 the Y coordinate of the ending point of the line. */ public void strokeLine(double x1, double y1, double x2, double y2) { writeOp4(x1, y1, x2, y2, NGCanvas.STROKE_LINE); } /** * Fills a polygon with the given points using the currently set fill paint. * A {@code null} value for one of the arrays will be ignored and nothing will be drawn. * * @param xPoints array containing the x coordinates of the polygon's points or null. * @param yPoints array containing the y coordinates of the polygon's points or null. * @param nPoints the number of points that make the polygon. */ public void fillPolygon(double xPoints[], double yPoints[], int nPoints) { if (nPoints >= 3) { writePoly(xPoints, yPoints, nPoints, true, NGCanvas.FILL_PATH); } } /** * Strokes a polygon with the given points using the currently set stroke paint. * A {@code null} value for one of the arrays will be ignored and nothing will be drawn. * * @param xPoints array containing the x coordinates of the polygon's points or null. * @param yPoints array containing the y coordinates of the polygon's points or null. * @param nPoints the number of points that make the polygon. */ public void strokePolygon(double xPoints[], double yPoints[], int nPoints) { if (nPoints >= 2) { writePoly(xPoints, yPoints, nPoints, true, NGCanvas.STROKE_PATH); } } /** * Draws a polyline with the given points using the currently set stroke * paint attribute. * A {@code null} value for one of the arrays will be ignored and nothing will be drawn. * * @param xPoints array containing the x coordinates of the polyline's points or null. * @param yPoints array containing the y coordinates of the polyline's points or null. * @param nPoints the number of points that make the polyline. */ public void strokePolyline(double xPoints[], double yPoints[], int nPoints) { if (nPoints >= 2) { writePoly(xPoints, yPoints, nPoints, false, NGCanvas.STROKE_PATH); } } /** * Draws an image at the given x, y position using the width * and height of the given image. * A {@code null} image value or an image still in progress will be ignored. * * @param img the image to be drawn or null. * @param x the X coordinate on the destination for the upper left of the image. * @param y the Y coordinate on the destination for the upper left of the image. */ public void drawImage(Image img, double x, double y) { if (img == null) return; double sw = img.getWidth(); double sh = img.getHeight(); writeImage(img, x, y, sw, sh); } /** * Draws an image into the given destination rectangle of the canvas. The * Image is scaled to fit into the destination rectagnle. * A {@code null} image value or an image still in progress will be ignored. * * @param img the image to be drawn or null. * @param x the X coordinate on the destination for the upper left of the image. * @param y the Y coordinate on the destination for the upper left of the image. * @param w the width of the destination rectangle. * @param h the height of the destination rectangle. */ public void drawImage(Image img, double x, double y, double w, double h) { writeImage(img, x, y, w, h); } /** * Draws the current source rectangle of the given image to the given * destination rectangle of the Canvas. * A {@code null} image value or an image still in progress will be ignored. * * @param img the image to be drawn or null. * @param sx the source rectangle's X coordinate position. * @param sy the source rectangle's Y coordinate position. * @param sw the source rectangle's width. * @param sh the source rectangle's height. * @param dx the destination rectangle's X coordinate position. * @param dy the destination rectangle's Y coordinate position. * @param dw the destination rectangle's width. * @param dh the destination rectangle's height. */ public void drawImage(Image img, double sx, double sy, double sw, double sh, double dx, double dy, double dw, double dh) { writeImage(img, dx, dy, dw, dh, sx, sy, sw, sh); } private PixelWriter writer; /** * Returns a {@link PixelWriter} object that can be used to modify * the pixels of the {@link Canvas} associated with this * {@code GraphicsContext}. * All coordinates in the {@code PixelWriter} methods on the returned * object will be in device space since they refer directly to pixels. * * @return the {@code PixelWriter} for modifying the pixels of this * {@code Canvas} */ public PixelWriter getPixelWriter() { if (writer == null) { writer = new PixelWriter() { @Override public PixelFormat getPixelFormat() { return PixelFormat.getByteBgraPreInstance(); } private BytePixelSetter getSetter() { return ByteBgraPre.setter; } @Override public void setArgb(int x, int y, int argb) { GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.PUT_ARGB); buf.putInt(x); buf.putInt(y); buf.putInt(argb); } @Override public void setColor(int x, int y, Color c) { if (c == null) throw new NullPointerException("Color cannot be null"); int a = (int) Math.round(c.getOpacity() * 255.0); int r = (int) Math.round(c.getRed() * 255.0); int g = (int) Math.round(c.getGreen() * 255.0); int b = (int) Math.round(c.getBlue() * 255.0); setArgb(x, y, (a << 24) | (r << 16) | (g << 8) | b); } private void writePixelBuffer(int x, int y, int w, int h, byte[] pixels) { GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.PUT_ARGBPRE_BUF); buf.putInt(x); buf.putInt(y); buf.putInt(w); buf.putInt(h); buf.putObject(pixels); } private int[] checkBounds(int x, int y, int w, int h, PixelFormat pf, int scan) { // assert (w >= 0 && h >= 0) - checked by caller int cw = (int) Math.ceil(theCanvas.getWidth()); int ch = (int) Math.ceil(theCanvas.getHeight()); if (x >= 0 && y >= 0 && x+w <= cw && y+h <= ch) { return null; } int offset = 0; if (x < 0) { w += x; if (w < 0) return null; if (pf != null) { switch (pf.getType()) { case BYTE_BGRA: case BYTE_BGRA_PRE: offset -= x * 4; break; case BYTE_RGB: offset -= x * 3; break; case BYTE_INDEXED: case INT_ARGB: case INT_ARGB_PRE: offset -= x; break; default: throw new InternalError("unknown Pixel Format"); } } x = 0; } if (y < 0) { h += y; if (h < 0) return null; offset -= y * scan; y = 0; } if (x + w > cw) { w = cw - x; if (w < 0) return null; } if (y + h > ch) { h = ch - y; if (h < 0) return null; } return new int[] { x, y, w, h, offset }; } @Override public void setPixels(int x, int y, int w, int h, PixelFormat pixelformat, T buffer, int scan) { if (pixelformat == null) throw new NullPointerException("PixelFormat cannot be null"); if (buffer == null) throw new NullPointerException("Buffer cannot be null"); if (w <= 0 || h <= 0) return; int offset = buffer.position(); int adjustments[] = checkBounds(x, y, w, h, pixelformat, scan); if (adjustments != null) { x = adjustments[0]; y = adjustments[1]; w = adjustments[2]; h = adjustments[3]; offset += adjustments[4]; } byte pixels[] = new byte[w * h * 4]; ByteBuffer dst = ByteBuffer.wrap(pixels); PixelGetter getter = PixelUtils.getGetter(pixelformat); PixelConverter converter = PixelUtils.getConverter(getter, getSetter()); converter.convert(buffer, offset, scan, dst, 0, w * 4, w, h); writePixelBuffer(x, y, w, h, pixels); } @Override public void setPixels(int x, int y, int w, int h, PixelFormat pixelformat, byte[] buffer, int offset, int scanlineStride) { if (pixelformat == null) throw new NullPointerException("PixelFormat cannot be null"); if (buffer == null) throw new NullPointerException("Buffer cannot be null"); if (w <= 0 || h <= 0) return; int adjustments[] = checkBounds(x, y, w, h, pixelformat, scanlineStride); if (adjustments != null) { x = adjustments[0]; y = adjustments[1]; w = adjustments[2]; h = adjustments[3]; offset += adjustments[4]; } byte pixels[] = new byte[w * h * 4]; BytePixelGetter getter = PixelUtils.getByteGetter(pixelformat); ByteToBytePixelConverter converter = PixelUtils.getB2BConverter(getter, getSetter()); converter.convert(buffer, offset, scanlineStride, pixels, 0, w * 4, w, h); writePixelBuffer(x, y, w, h, pixels); } @Override public void setPixels(int x, int y, int w, int h, PixelFormat pixelformat, int[] buffer, int offset, int scanlineStride) { if (pixelformat == null) throw new NullPointerException("PixelFormat cannot be null"); if (buffer == null) throw new NullPointerException("Buffer cannot be null"); if (w <= 0 || h <= 0) return; int adjustments[] = checkBounds(x, y, w, h, pixelformat, scanlineStride); if (adjustments != null) { x = adjustments[0]; y = adjustments[1]; w = adjustments[2]; h = adjustments[3]; offset += adjustments[4]; } byte pixels[] = new byte[w * h * 4]; IntPixelGetter getter = PixelUtils.getIntGetter(pixelformat); IntToBytePixelConverter converter = PixelUtils.getI2BConverter(getter, getSetter()); converter.convert(buffer, offset, scanlineStride, pixels, 0, w * 4, w, h); writePixelBuffer(x, y, w, h, pixels); } @Override public void setPixels(int dstx, int dsty, int w, int h, PixelReader reader, int srcx, int srcy) { if (reader == null) throw new NullPointerException("Reader cannot be null"); if (w <= 0 || h <= 0) return; int adjustments[] = checkBounds(dstx, dsty, w, h, null, 0); if (adjustments != null) { int newx = adjustments[0]; int newy = adjustments[1]; srcx += newx - dstx; srcy += newy - dsty; dstx = newx; dsty = newy; w = adjustments[2]; h = adjustments[3]; } byte pixels[] = new byte[w * h * 4]; reader.getPixels(srcx, srcy, w, h, PixelFormat.getByteBgraPreInstance(), pixels, 0, w * 4); writePixelBuffer(dstx, dsty, w, h, pixels); } }; } return writer; } /** * Sets the effect to be applied after the next draw call, or null to * disable effects. * @param e the effect to use, or null to disable effects */ public void setEffect(Effect e) { GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.EFFECT); if (e == null) { curState.effect = null; buf.putObject(null); } else { curState.effect = e.impl_copy(); curState.effect.impl_sync(); buf.putObject(curState.effect.impl_getImpl()); } } /** * Gets a copy of the effect to be applied after the next draw call. * A null return value means that no effect will be applied after future * rendering calls. * @param e an {@code Effect} object that may be used to store the * copy of the current effect, if it is of a compatible type * @return the current effect used for all rendering calls, * or null if there is no current effect */ public Effect getEffect(Effect e) { return curState.effect == null ? null : curState.effect.impl_copy(); } /** * Applies the given effect to the entire canvas. * A {@code null} value will be ignored. * @param e the effect to apply onto the entire destination or null. */ public void applyEffect(Effect e) { if (e == null) return; GrowableDataBuffer buf = getBuffer(); buf.putByte(NGCanvas.FX_APPLY_EFFECT); Effect effect = e.impl_copy(); effect.impl_sync(); buf.putObject(effect.impl_getImpl()); } }