1 /*
   2  * Copyright 2009 Google Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 /**
  29  * This is a near duplicate of {@link TimSort}, modified for use with
  30  * arrays of objects that implement {@link Comparable}, instead of using
  31  * explicit comparators.
  32  *
  33  * <p>If you are using an optimizing VM, you may find that ComparableTimSort
  34  * offers no performance benefit over TimSort in conjunction with a
  35  * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
  36  * If this is the case, you are better off deleting ComparableTimSort to
  37  * eliminate the code duplication.  (See Arrays.java for details.)
  38  *
  39  * @author Josh Bloch
  40  */
  41 class ComparableTimSort {
  42     /**
  43      * This is the minimum sized sequence that will be merged.  Shorter
  44      * sequences will be lengthened by calling binarySort.  If the entire
  45      * array is less than this length, no merges will be performed.
  46      *
  47      * This constant should be a power of two.  It was 64 in Tim Peter's C
  48      * implementation, but 32 was empirically determined to work better in
  49      * this implementation.  In the unlikely event that you set this constant
  50      * to be a number that's not a power of two, you'll need to change the
  51      * {@link #minRunLength} computation.
  52      *
  53      * If you decrease this constant, you must change the stackLen
  54      * computation in the TimSort constructor, or you risk an
  55      * ArrayOutOfBounds exception.  See listsort.txt for a discussion
  56      * of the minimum stack length required as a function of the length
  57      * of the array being sorted and the minimum merge sequence length.
  58      */
  59     private static final int MIN_MERGE = 32;
  60 
  61     /**
  62      * The array being sorted.
  63      */
  64     private final Object[] a;
  65 
  66     /**
  67      * When we get into galloping mode, we stay there until both runs win less
  68      * often than MIN_GALLOP consecutive times.
  69      */
  70     private static final int  MIN_GALLOP = 7;
  71 
  72     /**
  73      * This controls when we get *into* galloping mode.  It is initialized
  74      * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
  75      * random data, and lower for highly structured data.
  76      */
  77     private int minGallop = MIN_GALLOP;
  78 
  79     /**
  80      * Maximum initial size of tmp array, which is used for merging.  The array
  81      * can grow to accommodate demand.
  82      *
  83      * Unlike Tim's original C version, we do not allocate this much storage
  84      * when sorting smaller arrays.  This change was required for performance.
  85      */
  86     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
  87 
  88     /**
  89      * Temp storage for merges.
  90      */
  91     private Object[] tmp;
  92 
  93     /**
  94      * A stack of pending runs yet to be merged.  Run i starts at
  95      * address base[i] and extends for len[i] elements.  It's always
  96      * true (so long as the indices are in bounds) that:
  97      *
  98      *     runBase[i] + runLen[i] == runBase[i + 1]
  99      *
 100      * so we could cut the storage for this, but it's a minor amount,
 101      * and keeping all the info explicit simplifies the code.
 102      */
 103     private int stackSize = 0;  // Number of pending runs on stack
 104     private final int[] runBase;
 105     private final int[] runLen;
 106 
 107     /**
 108      * Creates a TimSort instance to maintain the state of an ongoing sort.
 109      *
 110      * @param a the array to be sorted
 111      */
 112     private ComparableTimSort(Object[] a) {
 113         this.a = a;
 114 
 115         // Allocate temp storage (which may be increased later if necessary)
 116         int len = a.length;
 117         @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
 118         Object[] newArray = new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
 119                                        len >>> 1 : INITIAL_TMP_STORAGE_LENGTH];
 120         tmp = newArray;
 121 
 122         /*
 123          * Allocate runs-to-be-merged stack (which cannot be expanded).  The
 124          * stack length requirements are described in listsort.txt.  The C
 125          * version always uses the same stack length (85), but this was
 126          * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
 127          * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
 128          * large) stack lengths for smaller arrays.  The "magic numbers" in the
 129          * computation below must be changed if MIN_MERGE is decreased.  See
 130          * the MIN_MERGE declaration above for more information.
 131          */
 132         int stackLen = (len <    120  ?  5 :
 133                         len <   1542  ? 10 :
 134                         len < 119151  ? 19 : 40);
 135         runBase = new int[stackLen];
 136         runLen = new int[stackLen];
 137     }
 138 
 139     /*
 140      * The next two methods (which are package private and static) constitute
 141      * the entire API of this class.  Each of these methods obeys the contract
 142      * of the public method with the same signature in java.util.Arrays.
 143      */
 144 
 145     static void sort(Object[] a) {
 146           sort(a, 0, a.length);
 147     }
 148 
 149     static void sort(Object[] a, int lo, int hi) {
 150         rangeCheck(a.length, lo, hi);
 151         int nRemaining  = hi - lo;
 152         if (nRemaining < 2)
 153             return;  // Arrays of size 0 and 1 are always sorted
 154 
 155         // If array is small, do a "mini-TimSort" with no merges
 156         if (nRemaining < MIN_MERGE) {
 157             int initRunLen = countRunAndMakeAscending(a, lo, hi);
 158             binarySort(a, lo, hi, lo + initRunLen);
 159             return;
 160         }
 161 
 162         /**
 163          * March over the array once, left to right, finding natural runs,
 164          * extending short natural runs to minRun elements, and merging runs
 165          * to maintain stack invariant.
 166          */
 167         ComparableTimSort ts = new ComparableTimSort(a);
 168         int minRun = minRunLength(nRemaining);
 169         do {
 170             // Identify next run
 171             int runLen = countRunAndMakeAscending(a, lo, hi);
 172 
 173             // If run is short, extend to min(minRun, nRemaining)
 174             if (runLen < minRun) {
 175                 int force = nRemaining <= minRun ? nRemaining : minRun;
 176                 binarySort(a, lo, lo + force, lo + runLen);
 177                 runLen = force;
 178             }
 179 
 180             // Push run onto pending-run stack, and maybe merge
 181             ts.pushRun(lo, runLen);
 182             ts.mergeCollapse();
 183 
 184             // Advance to find next run
 185             lo += runLen;
 186             nRemaining -= runLen;
 187         } while (nRemaining != 0);
 188 
 189         // Merge all remaining runs to complete sort
 190         assert lo == hi;
 191         ts.mergeForceCollapse();
 192         assert ts.stackSize == 1;
 193     }
 194 
 195     /**
 196      * Sorts the specified portion of the specified array using a binary
 197      * insertion sort.  This is the best method for sorting small numbers
 198      * of elements.  It requires O(n log n) compares, but O(n^2) data
 199      * movement (worst case).
 200      *
 201      * If the initial part of the specified range is already sorted,
 202      * this method can take advantage of it: the method assumes that the
 203      * elements from index {@code lo}, inclusive, to {@code start},
 204      * exclusive are already sorted.
 205      *
 206      * @param a the array in which a range is to be sorted
 207      * @param lo the index of the first element in the range to be sorted
 208      * @param hi the index after the last element in the range to be sorted
 209      * @param start the index of the first element in the range that is
 210      *        not already known to be sorted ({@code lo <= start <= hi})
 211      */
 212     @SuppressWarnings("fallthrough")
 213     private static void binarySort(Object[] a, int lo, int hi, int start) {
 214         assert lo <= start && start <= hi;
 215         if (start == lo)
 216             start++;
 217         for ( ; start < hi; start++) {
 218             @SuppressWarnings("unchecked")
 219             Comparable<Object> pivot = (Comparable) a[start];
 220 
 221             // Set left (and right) to the index where a[start] (pivot) belongs
 222             int left = lo;
 223             int right = start;
 224             assert left <= right;
 225             /*
 226              * Invariants:
 227              *   pivot >= all in [lo, left).
 228              *   pivot <  all in [right, start).
 229              */
 230             while (left < right) {
 231                 int mid = (left + right) >>> 1;
 232                 if (pivot.compareTo(a[mid]) < 0)
 233                     right = mid;
 234                 else
 235                     left = mid + 1;
 236             }
 237             assert left == right;
 238 
 239             /*
 240              * The invariants still hold: pivot >= all in [lo, left) and
 241              * pivot < all in [left, start), so pivot belongs at left.  Note
 242              * that if there are elements equal to pivot, left points to the
 243              * first slot after them -- that's why this sort is stable.
 244              * Slide elements over to make room for pivot.
 245              */
 246             int n = start - left;  // The number of elements to move
 247             // Switch is just an optimization for arraycopy in default case
 248             switch (n) {
 249                 case 2:  a[left + 2] = a[left + 1];
 250                 case 1:  a[left + 1] = a[left];
 251                          break;
 252                 default: System.arraycopy(a, left, a, left + 1, n);
 253             }
 254             a[left] = pivot;
 255         }
 256     }
 257 
 258     /**
 259      * Returns the length of the run beginning at the specified position in
 260      * the specified array and reverses the run if it is descending (ensuring
 261      * that the run will always be ascending when the method returns).
 262      *
 263      * A run is the longest ascending sequence with:
 264      *
 265      *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
 266      *
 267      * or the longest descending sequence with:
 268      *
 269      *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
 270      *
 271      * For its intended use in a stable mergesort, the strictness of the
 272      * definition of "descending" is needed so that the call can safely
 273      * reverse a descending sequence without violating stability.
 274      *
 275      * @param a the array in which a run is to be counted and possibly reversed
 276      * @param lo index of the first element in the run
 277      * @param hi index after the last element that may be contained in the run.
 278               It is required that {@code lo < hi}.
 279      * @return  the length of the run beginning at the specified position in
 280      *          the specified array
 281      */
 282     @SuppressWarnings("unchecked")
 283     private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
 284         assert lo < hi;
 285         int runHi = lo + 1;
 286         if (runHi == hi)
 287             return 1;
 288 
 289         // Find end of run, and reverse range if descending
 290         if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
 291             while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
 292                 runHi++;
 293             reverseRange(a, lo, runHi);
 294         } else {                              // Ascending
 295             while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
 296                 runHi++;
 297         }
 298 
 299         return runHi - lo;
 300     }
 301 
 302     /**
 303      * Reverse the specified range of the specified array.
 304      *
 305      * @param a the array in which a range is to be reversed
 306      * @param lo the index of the first element in the range to be reversed
 307      * @param hi the index after the last element in the range to be reversed
 308      */
 309     private static void reverseRange(Object[] a, int lo, int hi) {
 310         hi--;
 311         while (lo < hi) {
 312             Object t = a[lo];
 313             a[lo++] = a[hi];
 314             a[hi--] = t;
 315         }
 316     }
 317 
 318     /**
 319      * Returns the minimum acceptable run length for an array of the specified
 320      * length. Natural runs shorter than this will be extended with
 321      * {@link #binarySort}.
 322      *
 323      * Roughly speaking, the computation is:
 324      *
 325      *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
 326      *  Else if n is an exact power of 2, return MIN_MERGE/2.
 327      *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
 328      *   is close to, but strictly less than, an exact power of 2.
 329      *
 330      * For the rationale, see listsort.txt.
 331      *
 332      * @param n the length of the array to be sorted
 333      * @return the length of the minimum run to be merged
 334      */
 335     private static int minRunLength(int n) {
 336         assert n >= 0;
 337         int r = 0;      // Becomes 1 if any 1 bits are shifted off
 338         while (n >= MIN_MERGE) {
 339             r |= (n & 1);
 340             n >>= 1;
 341         }
 342         return n + r;
 343     }
 344 
 345     /**
 346      * Pushes the specified run onto the pending-run stack.
 347      *
 348      * @param runBase index of the first element in the run
 349      * @param runLen  the number of elements in the run
 350      */
 351     private void pushRun(int runBase, int runLen) {
 352         this.runBase[stackSize] = runBase;
 353         this.runLen[stackSize] = runLen;
 354         stackSize++;
 355     }
 356 
 357     /**
 358      * Examines the stack of runs waiting to be merged and merges adjacent runs
 359      * until the stack invariants are reestablished:
 360      *
 361      *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
 362      *     2. runLen[i - 2] > runLen[i - 1]
 363      *
 364      * This method is called each time a new run is pushed onto the stack,
 365      * so the invariants are guaranteed to hold for i < stackSize upon
 366      * entry to the method.
 367      */
 368     private void mergeCollapse() {
 369         while (stackSize > 1) {
 370             int n = stackSize - 2;
 371             if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
 372                 if (runLen[n - 1] < runLen[n + 1])
 373                     n--;
 374                 mergeAt(n);
 375             } else if (runLen[n] <= runLen[n + 1]) {
 376                 mergeAt(n);
 377             } else {
 378                 break; // Invariant is established
 379             }
 380         }
 381     }
 382 
 383     /**
 384      * Merges all runs on the stack until only one remains.  This method is
 385      * called once, to complete the sort.
 386      */
 387     private void mergeForceCollapse() {
 388         while (stackSize > 1) {
 389             int n = stackSize - 2;
 390             if (n > 0 && runLen[n - 1] < runLen[n + 1])
 391                 n--;
 392             mergeAt(n);
 393         }
 394     }
 395 
 396     /**
 397      * Merges the two runs at stack indices i and i+1.  Run i must be
 398      * the penultimate or antepenultimate run on the stack.  In other words,
 399      * i must be equal to stackSize-2 or stackSize-3.
 400      *
 401      * @param i stack index of the first of the two runs to merge
 402      */
 403     @SuppressWarnings("unchecked")
 404     private void mergeAt(int i) {
 405         assert stackSize >= 2;
 406         assert i >= 0;
 407         assert i == stackSize - 2 || i == stackSize - 3;
 408 
 409         int base1 = runBase[i];
 410         int len1 = runLen[i];
 411         int base2 = runBase[i + 1];
 412         int len2 = runLen[i + 1];
 413         assert len1 > 0 && len2 > 0;
 414         assert base1 + len1 == base2;
 415 
 416         /*
 417          * Record the length of the combined runs; if i is the 3rd-last
 418          * run now, also slide over the last run (which isn't involved
 419          * in this merge).  The current run (i+1) goes away in any case.
 420          */
 421         runLen[i] = len1 + len2;
 422         if (i == stackSize - 3) {
 423             runBase[i + 1] = runBase[i + 2];
 424             runLen[i + 1] = runLen[i + 2];
 425         }
 426         stackSize--;
 427 
 428         /*
 429          * Find where the first element of run2 goes in run1. Prior elements
 430          * in run1 can be ignored (because they're already in place).
 431          */
 432         int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
 433         assert k >= 0;
 434         base1 += k;
 435         len1 -= k;
 436         if (len1 == 0)
 437             return;
 438 
 439         /*
 440          * Find where the last element of run1 goes in run2. Subsequent elements
 441          * in run2 can be ignored (because they're already in place).
 442          */
 443         len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
 444                 base2, len2, len2 - 1);
 445         assert len2 >= 0;
 446         if (len2 == 0)
 447             return;
 448 
 449         // Merge remaining runs, using tmp array with min(len1, len2) elements
 450         if (len1 <= len2)
 451             mergeLo(base1, len1, base2, len2);
 452         else
 453             mergeHi(base1, len1, base2, len2);
 454     }
 455 
 456     /**
 457      * Locates the position at which to insert the specified key into the
 458      * specified sorted range; if the range contains an element equal to key,
 459      * returns the index of the leftmost equal element.
 460      *
 461      * @param key the key whose insertion point to search for
 462      * @param a the array in which to search
 463      * @param base the index of the first element in the range
 464      * @param len the length of the range; must be > 0
 465      * @param hint the index at which to begin the search, 0 <= hint < n.
 466      *     The closer hint is to the result, the faster this method will run.
 467      * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
 468      *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
 469      *    In other words, key belongs at index b + k; or in other words,
 470      *    the first k elements of a should precede key, and the last n - k
 471      *    should follow it.
 472      */
 473     private static int gallopLeft(Comparable<Object> key, Object[] a,
 474             int base, int len, int hint) {
 475         assert len > 0 && hint >= 0 && hint < len;
 476 
 477         int lastOfs = 0;
 478         int ofs = 1;
 479         if (key.compareTo(a[base + hint]) > 0) {
 480             // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
 481             int maxOfs = len - hint;
 482             while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
 483                 lastOfs = ofs;
 484                 ofs = (ofs << 1) + 1;
 485                 if (ofs <= 0)   // int overflow
 486                     ofs = maxOfs;
 487             }
 488             if (ofs > maxOfs)
 489                 ofs = maxOfs;
 490 
 491             // Make offsets relative to base
 492             lastOfs += hint;
 493             ofs += hint;
 494         } else { // key <= a[base + hint]
 495             // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
 496             final int maxOfs = hint + 1;
 497             while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
 498                 lastOfs = ofs;
 499                 ofs = (ofs << 1) + 1;
 500                 if (ofs <= 0)   // int overflow
 501                     ofs = maxOfs;
 502             }
 503             if (ofs > maxOfs)
 504                 ofs = maxOfs;
 505 
 506             // Make offsets relative to base
 507             int tmp = lastOfs;
 508             lastOfs = hint - ofs;
 509             ofs = hint - tmp;
 510         }
 511         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
 512 
 513         /*
 514          * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
 515          * to the right of lastOfs but no farther right than ofs.  Do a binary
 516          * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
 517          */
 518         lastOfs++;
 519         while (lastOfs < ofs) {
 520             int m = lastOfs + ((ofs - lastOfs) >>> 1);
 521 
 522             if (key.compareTo(a[base + m]) > 0)
 523                 lastOfs = m + 1;  // a[base + m] < key
 524             else
 525                 ofs = m;          // key <= a[base + m]
 526         }
 527         assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
 528         return ofs;
 529     }
 530 
 531     /**
 532      * Like gallopLeft, except that if the range contains an element equal to
 533      * key, gallopRight returns the index after the rightmost equal element.
 534      *
 535      * @param key the key whose insertion point to search for
 536      * @param a the array in which to search
 537      * @param base the index of the first element in the range
 538      * @param len the length of the range; must be > 0
 539      * @param hint the index at which to begin the search, 0 <= hint < n.
 540      *     The closer hint is to the result, the faster this method will run.
 541      * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
 542      */
 543     private static int gallopRight(Comparable<Object> key, Object[] a,
 544             int base, int len, int hint) {
 545         assert len > 0 && hint >= 0 && hint < len;
 546 
 547         int ofs = 1;
 548         int lastOfs = 0;
 549         if (key.compareTo(a[base + hint]) < 0) {
 550             // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
 551             int maxOfs = hint + 1;
 552             while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
 553                 lastOfs = ofs;
 554                 ofs = (ofs << 1) + 1;
 555                 if (ofs <= 0)   // int overflow
 556                     ofs = maxOfs;
 557             }
 558             if (ofs > maxOfs)
 559                 ofs = maxOfs;
 560 
 561             // Make offsets relative to b
 562             int tmp = lastOfs;
 563             lastOfs = hint - ofs;
 564             ofs = hint - tmp;
 565         } else { // a[b + hint] <= key
 566             // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
 567             int maxOfs = len - hint;
 568             while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
 569                 lastOfs = ofs;
 570                 ofs = (ofs << 1) + 1;
 571                 if (ofs <= 0)   // int overflow
 572                     ofs = maxOfs;
 573             }
 574             if (ofs > maxOfs)
 575                 ofs = maxOfs;
 576 
 577             // Make offsets relative to b
 578             lastOfs += hint;
 579             ofs += hint;
 580         }
 581         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
 582 
 583         /*
 584          * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
 585          * the right of lastOfs but no farther right than ofs.  Do a binary
 586          * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
 587          */
 588         lastOfs++;
 589         while (lastOfs < ofs) {
 590             int m = lastOfs + ((ofs - lastOfs) >>> 1);
 591 
 592             if (key.compareTo(a[base + m]) < 0)
 593                 ofs = m;          // key < a[b + m]
 594             else
 595                 lastOfs = m + 1;  // a[b + m] <= key
 596         }
 597         assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
 598         return ofs;
 599     }
 600 
 601     /**
 602      * Merges two adjacent runs in place, in a stable fashion.  The first
 603      * element of the first run must be greater than the first element of the
 604      * second run (a[base1] > a[base2]), and the last element of the first run
 605      * (a[base1 + len1-1]) must be greater than all elements of the second run.
 606      *
 607      * For performance, this method should be called only when len1 <= len2;
 608      * its twin, mergeHi should be called if len1 >= len2.  (Either method
 609      * may be called if len1 == len2.)
 610      *
 611      * @param base1 index of first element in first run to be merged
 612      * @param len1  length of first run to be merged (must be > 0)
 613      * @param base2 index of first element in second run to be merged
 614      *        (must be aBase + aLen)
 615      * @param len2  length of second run to be merged (must be > 0)
 616      */
 617     @SuppressWarnings("unchecked")
 618     private void mergeLo(int base1, int len1, int base2, int len2) {
 619         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
 620 
 621         // Copy first run into temp array
 622         Object[] a = this.a; // For performance
 623         Object[] tmp = ensureCapacity(len1);
 624         System.arraycopy(a, base1, tmp, 0, len1);
 625 
 626         int cursor1 = 0;       // Indexes into tmp array
 627         int cursor2 = base2;   // Indexes int a
 628         int dest = base1;      // Indexes int a
 629 
 630         // Move first element of second run and deal with degenerate cases
 631         a[dest++] = a[cursor2++];
 632         if (--len2 == 0) {
 633             System.arraycopy(tmp, cursor1, a, dest, len1);
 634             return;
 635         }
 636         if (len1 == 1) {
 637             System.arraycopy(a, cursor2, a, dest, len2);
 638             a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
 639             return;
 640         }
 641 
 642         int minGallop = this.minGallop;  // Use local variable for performance
 643     outer:
 644         while (true) {
 645             int count1 = 0; // Number of times in a row that first run won
 646             int count2 = 0; // Number of times in a row that second run won
 647 
 648             /*
 649              * Do the straightforward thing until (if ever) one run starts
 650              * winning consistently.
 651              */
 652             do {
 653                 assert len1 > 1 && len2 > 0;
 654                 if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
 655                     a[dest++] = a[cursor2++];
 656                     count2++;
 657                     count1 = 0;
 658                     if (--len2 == 0)
 659                         break outer;
 660                 } else {
 661                     a[dest++] = tmp[cursor1++];
 662                     count1++;
 663                     count2 = 0;
 664                     if (--len1 == 1)
 665                         break outer;
 666                 }
 667             } while ((count1 | count2) < minGallop);
 668 
 669             /*
 670              * One run is winning so consistently that galloping may be a
 671              * huge win. So try that, and continue galloping until (if ever)
 672              * neither run appears to be winning consistently anymore.
 673              */
 674             do {
 675                 assert len1 > 1 && len2 > 0;
 676                 count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
 677                 if (count1 != 0) {
 678                     System.arraycopy(tmp, cursor1, a, dest, count1);
 679                     dest += count1;
 680                     cursor1 += count1;
 681                     len1 -= count1;
 682                     if (len1 <= 1)  // len1 == 1 || len1 == 0
 683                         break outer;
 684                 }
 685                 a[dest++] = a[cursor2++];
 686                 if (--len2 == 0)
 687                     break outer;
 688 
 689                 count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
 690                 if (count2 != 0) {
 691                     System.arraycopy(a, cursor2, a, dest, count2);
 692                     dest += count2;
 693                     cursor2 += count2;
 694                     len2 -= count2;
 695                     if (len2 == 0)
 696                         break outer;
 697                 }
 698                 a[dest++] = tmp[cursor1++];
 699                 if (--len1 == 1)
 700                     break outer;
 701                 minGallop--;
 702             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
 703             if (minGallop < 0)
 704                 minGallop = 0;
 705             minGallop += 2;  // Penalize for leaving gallop mode
 706         }  // End of "outer" loop
 707         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
 708 
 709         if (len1 == 1) {
 710             assert len2 > 0;
 711             System.arraycopy(a, cursor2, a, dest, len2);
 712             a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
 713         } else if (len1 == 0) {
 714             throw new IllegalArgumentException(
 715                 "Comparison method violates its general contract!");
 716         } else {
 717             assert len2 == 0;
 718             assert len1 > 1;
 719             System.arraycopy(tmp, cursor1, a, dest, len1);
 720         }
 721     }
 722 
 723     /**
 724      * Like mergeLo, except that this method should be called only if
 725      * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
 726      * may be called if len1 == len2.)
 727      *
 728      * @param base1 index of first element in first run to be merged
 729      * @param len1  length of first run to be merged (must be > 0)
 730      * @param base2 index of first element in second run to be merged
 731      *        (must be aBase + aLen)
 732      * @param len2  length of second run to be merged (must be > 0)
 733      */
 734     @SuppressWarnings("unchecked")
 735     private void mergeHi(int base1, int len1, int base2, int len2) {
 736         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
 737 
 738         // Copy second run into temp array
 739         Object[] a = this.a; // For performance
 740         Object[] tmp = ensureCapacity(len2);
 741         System.arraycopy(a, base2, tmp, 0, len2);
 742 
 743         int cursor1 = base1 + len1 - 1;  // Indexes into a
 744         int cursor2 = len2 - 1;          // Indexes into tmp array
 745         int dest = base2 + len2 - 1;     // Indexes into a
 746 
 747         // Move last element of first run and deal with degenerate cases
 748         a[dest--] = a[cursor1--];
 749         if (--len1 == 0) {
 750             System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
 751             return;
 752         }
 753         if (len2 == 1) {
 754             dest -= len1;
 755             cursor1 -= len1;
 756             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
 757             a[dest] = tmp[cursor2];
 758             return;
 759         }
 760 
 761         int minGallop = this.minGallop;  // Use local variable for performance
 762     outer:
 763         while (true) {
 764             int count1 = 0; // Number of times in a row that first run won
 765             int count2 = 0; // Number of times in a row that second run won
 766 
 767             /*
 768              * Do the straightforward thing until (if ever) one run
 769              * appears to win consistently.
 770              */
 771             do {
 772                 assert len1 > 0 && len2 > 1;
 773                 if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
 774                     a[dest--] = a[cursor1--];
 775                     count1++;
 776                     count2 = 0;
 777                     if (--len1 == 0)
 778                         break outer;
 779                 } else {
 780                     a[dest--] = tmp[cursor2--];
 781                     count2++;
 782                     count1 = 0;
 783                     if (--len2 == 1)
 784                         break outer;
 785                 }
 786             } while ((count1 | count2) < minGallop);
 787 
 788             /*
 789              * One run is winning so consistently that galloping may be a
 790              * huge win. So try that, and continue galloping until (if ever)
 791              * neither run appears to be winning consistently anymore.
 792              */
 793             do {
 794                 assert len1 > 0 && len2 > 1;
 795                 count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
 796                 if (count1 != 0) {
 797                     dest -= count1;
 798                     cursor1 -= count1;
 799                     len1 -= count1;
 800                     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
 801                     if (len1 == 0)
 802                         break outer;
 803                 }
 804                 a[dest--] = tmp[cursor2--];
 805                 if (--len2 == 1)
 806                     break outer;
 807 
 808                 count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, 0, len2, len2 - 1);
 809                 if (count2 != 0) {
 810                     dest -= count2;
 811                     cursor2 -= count2;
 812                     len2 -= count2;
 813                     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
 814                     if (len2 <= 1)
 815                         break outer; // len2 == 1 || len2 == 0
 816                 }
 817                 a[dest--] = a[cursor1--];
 818                 if (--len1 == 0)
 819                     break outer;
 820                 minGallop--;
 821             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
 822             if (minGallop < 0)
 823                 minGallop = 0;
 824             minGallop += 2;  // Penalize for leaving gallop mode
 825         }  // End of "outer" loop
 826         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
 827 
 828         if (len2 == 1) {
 829             assert len1 > 0;
 830             dest -= len1;
 831             cursor1 -= len1;
 832             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
 833             a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
 834         } else if (len2 == 0) {
 835             throw new IllegalArgumentException(
 836                 "Comparison method violates its general contract!");
 837         } else {
 838             assert len1 == 0;
 839             assert len2 > 0;
 840             System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
 841         }
 842     }
 843 
 844     /**
 845      * Ensures that the external array tmp has at least the specified
 846      * number of elements, increasing its size if necessary.  The size
 847      * increases exponentially to ensure amortized linear time complexity.
 848      *
 849      * @param minCapacity the minimum required capacity of the tmp array
 850      * @return tmp, whether or not it grew
 851      */
 852     private Object[]  ensureCapacity(int minCapacity) {
 853         if (tmp.length < minCapacity) {
 854             // Compute smallest power of 2 > minCapacity
 855             int newSize = minCapacity;
 856             newSize |= newSize >> 1;
 857             newSize |= newSize >> 2;
 858             newSize |= newSize >> 4;
 859             newSize |= newSize >> 8;
 860             newSize |= newSize >> 16;
 861             newSize++;
 862 
 863             if (newSize < 0) // Not bloody likely!
 864                 newSize = minCapacity;
 865             else
 866                 newSize = Math.min(newSize, a.length >>> 1);
 867 
 868             @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
 869             Object[] newArray = new Object[newSize];
 870             tmp = newArray;
 871         }
 872         return tmp;
 873     }
 874 
 875     /**
 876      * Checks that fromIndex and toIndex are in range, and throws an
 877      * appropriate exception if they aren't.
 878      *
 879      * @param arrayLen the length of the array
 880      * @param fromIndex the index of the first element of the range
 881      * @param toIndex the index after the last element of the range
 882      * @throws IllegalArgumentException if fromIndex > toIndex
 883      * @throws ArrayIndexOutOfBoundsException if fromIndex < 0
 884      *         or toIndex > arrayLen
 885      */
 886     private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
 887         if (fromIndex > toIndex)
 888             throw new IllegalArgumentException("fromIndex(" + fromIndex +
 889                        ") > toIndex(" + toIndex+")");
 890         if (fromIndex < 0)
 891             throw new ArrayIndexOutOfBoundsException(fromIndex);
 892         if (toIndex > arrayLen)
 893             throw new ArrayIndexOutOfBoundsException(toIndex);
 894     }
 895 }