1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_bsd.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfMemory.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/statSampler.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "services/runtimeService.hpp"
  62 #include "utilities/decoder.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/growableArray.hpp"
  66 #include "utilities/vmError.hpp"
  67 
  68 // put OS-includes here
  69 # include <sys/types.h>
  70 # include <sys/mman.h>
  71 # include <sys/stat.h>
  72 # include <sys/select.h>
  73 # include <pthread.h>
  74 # include <signal.h>
  75 # include <errno.h>
  76 # include <dlfcn.h>
  77 # include <stdio.h>
  78 # include <unistd.h>
  79 # include <sys/resource.h>
  80 # include <pthread.h>
  81 # include <sys/stat.h>
  82 # include <sys/time.h>
  83 # include <sys/times.h>
  84 # include <sys/utsname.h>
  85 # include <sys/socket.h>
  86 # include <sys/wait.h>
  87 # include <time.h>
  88 # include <pwd.h>
  89 # include <poll.h>
  90 # include <semaphore.h>
  91 # include <fcntl.h>
  92 # include <string.h>
  93 # include <sys/param.h>
  94 # include <sys/sysctl.h>
  95 # include <sys/ipc.h>
  96 # include <sys/shm.h>
  97 #ifndef __APPLE__
  98 # include <link.h>
  99 #endif
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 # include <sys/syscall.h>
 104 
 105 #if defined(__FreeBSD__) || defined(__NetBSD__)
 106 # include <elf.h>
 107 #endif
 108 
 109 #ifdef __APPLE__
 110 # include <mach/mach.h> // semaphore_* API
 111 # include <mach-o/dyld.h>
 112 # include <sys/proc_info.h>
 113 # include <objc/objc-auto.h>
 114 #endif
 115 
 116 #ifndef MAP_ANONYMOUS
 117 #define MAP_ANONYMOUS MAP_ANON
 118 #endif
 119 
 120 #define MAX_PATH    (2 * K)
 121 
 122 // for timer info max values which include all bits
 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 124 
 125 #define LARGEPAGES_BIT (1 << 6)
 126 ////////////////////////////////////////////////////////////////////////////////
 127 // global variables
 128 julong os::Bsd::_physical_memory = 0;
 129 
 130 
 131 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 132 pthread_t os::Bsd::_main_thread;
 133 int os::Bsd::_page_size = -1;
 134 
 135 static jlong initial_time_count=0;
 136 
 137 static int clock_tics_per_sec = 100;
 138 
 139 // For diagnostics to print a message once. see run_periodic_checks
 140 static sigset_t check_signal_done;
 141 static bool check_signals = true;
 142 
 143 static pid_t _initial_pid = 0;
 144 
 145 /* Signal number used to suspend/resume a thread */
 146 
 147 /* do not use any signal number less than SIGSEGV, see 4355769 */
 148 static int SR_signum = SIGUSR2;
 149 sigset_t SR_sigset;
 150 
 151 
 152 ////////////////////////////////////////////////////////////////////////////////
 153 // utility functions
 154 
 155 static int SR_initialize();
 156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 157 
 158 julong os::available_memory() {
 159   return Bsd::available_memory();
 160 }
 161 
 162 // available here means free
 163 julong os::Bsd::available_memory() {
 164   uint64_t available = physical_memory() >> 2;
 165 #ifdef __APPLE__
 166   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 167   vm_statistics64_data_t vmstat;
 168   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 169                                          (host_info64_t)&vmstat, &count);
 170   assert(kerr == KERN_SUCCESS,
 171          "host_statistics64 failed - check mach_host_self() and count");
 172   if (kerr == KERN_SUCCESS) {
 173     available = vmstat.free_count * os::vm_page_size();
 174   }
 175 #endif
 176   return available;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Bsd::physical_memory();
 181 }
 182 
 183 ////////////////////////////////////////////////////////////////////////////////
 184 // environment support
 185 
 186 bool os::getenv(const char* name, char* buf, int len) {
 187   const char* val = ::getenv(name);
 188   if (val != NULL && strlen(val) < (size_t)len) {
 189     strcpy(buf, val);
 190     return true;
 191   }
 192   if (len > 0) buf[0] = 0;  // return a null string
 193   return false;
 194 }
 195 
 196 
 197 // Return true if user is running as root.
 198 
 199 bool os::have_special_privileges() {
 200   static bool init = false;
 201   static bool privileges = false;
 202   if (!init) {
 203     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 204     init = true;
 205   }
 206   return privileges;
 207 }
 208 
 209 
 210 
 211 // Cpu architecture string
 212 #if   defined(ZERO)
 213 static char cpu_arch[] = ZERO_LIBARCH;
 214 #elif defined(IA64)
 215 static char cpu_arch[] = "ia64";
 216 #elif defined(IA32)
 217 static char cpu_arch[] = "i386";
 218 #elif defined(AMD64)
 219 static char cpu_arch[] = "amd64";
 220 #elif defined(ARM)
 221 static char cpu_arch[] = "arm";
 222 #elif defined(PPC32)
 223 static char cpu_arch[] = "ppc";
 224 #elif defined(SPARC)
 225 #  ifdef _LP64
 226 static char cpu_arch[] = "sparcv9";
 227 #  else
 228 static char cpu_arch[] = "sparc";
 229 #  endif
 230 #else
 231 #error Add appropriate cpu_arch setting
 232 #endif
 233 
 234 // Compiler variant
 235 #ifdef COMPILER2
 236 #define COMPILER_VARIANT "server"
 237 #else
 238 #define COMPILER_VARIANT "client"
 239 #endif
 240 
 241 
 242 void os::Bsd::initialize_system_info() {
 243   int mib[2];
 244   size_t len;
 245   int cpu_val;
 246   julong mem_val;
 247 
 248   /* get processors count via hw.ncpus sysctl */
 249   mib[0] = CTL_HW;
 250   mib[1] = HW_NCPU;
 251   len = sizeof(cpu_val);
 252   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 253        assert(len == sizeof(cpu_val), "unexpected data size");
 254        set_processor_count(cpu_val);
 255   }
 256   else {
 257        set_processor_count(1);   // fallback
 258   }
 259 
 260   /* get physical memory via hw.memsize sysctl (hw.memsize is used
 261    * since it returns a 64 bit value)
 262    */
 263   mib[0] = CTL_HW;
 264 
 265 #if defined (HW_MEMSIZE) // Apple
 266   mib[1] = HW_MEMSIZE;
 267 #elif defined(HW_PHYSMEM) // Most of BSD
 268   mib[1] = HW_PHYSMEM;
 269 #elif defined(HW_REALMEM) // Old FreeBSD
 270   mib[1] = HW_REALMEM;
 271 #else
 272   #error No ways to get physmem
 273 #endif
 274 
 275   len = sizeof(mem_val);
 276   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 277        assert(len == sizeof(mem_val), "unexpected data size");
 278        _physical_memory = mem_val;
 279   } else {
 280        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
 281   }
 282 
 283 #ifdef __OpenBSD__
 284   {
 285        // limit _physical_memory memory view on OpenBSD since
 286        // datasize rlimit restricts us anyway.
 287        struct rlimit limits;
 288        getrlimit(RLIMIT_DATA, &limits);
 289        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 290   }
 291 #endif
 292 }
 293 
 294 #ifdef __APPLE__
 295 static const char *get_home() {
 296   const char *home_dir = ::getenv("HOME");
 297   if ((home_dir == NULL) || (*home_dir == '\0')) {
 298     struct passwd *passwd_info = getpwuid(geteuid());
 299     if (passwd_info != NULL) {
 300       home_dir = passwd_info->pw_dir;
 301     }
 302   }
 303 
 304   return home_dir;
 305 }
 306 #endif
 307 
 308 void os::init_system_properties_values() {
 309 //  char arch[12];
 310 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 311 
 312   // The next steps are taken in the product version:
 313   //
 314   // Obtain the JAVA_HOME value from the location of libjvm.so.
 315   // This library should be located at:
 316   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 317   //
 318   // If "/jre/lib/" appears at the right place in the path, then we
 319   // assume libjvm.so is installed in a JDK and we use this path.
 320   //
 321   // Otherwise exit with message: "Could not create the Java virtual machine."
 322   //
 323   // The following extra steps are taken in the debugging version:
 324   //
 325   // If "/jre/lib/" does NOT appear at the right place in the path
 326   // instead of exit check for $JAVA_HOME environment variable.
 327   //
 328   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 329   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 330   // it looks like libjvm.so is installed there
 331   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 332   //
 333   // Otherwise exit.
 334   //
 335   // Important note: if the location of libjvm.so changes this
 336   // code needs to be changed accordingly.
 337 
 338   // The next few definitions allow the code to be verbatim:
 339 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 340 #define getenv(n) ::getenv(n)
 341 
 342 /*
 343  * See ld(1):
 344  *      The linker uses the following search paths to locate required
 345  *      shared libraries:
 346  *        1: ...
 347  *        ...
 348  *        7: The default directories, normally /lib and /usr/lib.
 349  */
 350 #ifndef DEFAULT_LIBPATH
 351 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 352 #endif
 353 
 354 #define EXTENSIONS_DIR  "/lib/ext"
 355 #define ENDORSED_DIR    "/lib/endorsed"
 356 #define REG_DIR         "/usr/java/packages"
 357 
 358 #ifdef __APPLE__
 359 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 360 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 361         const char *user_home_dir = get_home();
 362         // the null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir
 363         int system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 364             sizeof(SYS_EXTENSIONS_DIRS);
 365 #endif
 366 
 367   {
 368     /* sysclasspath, java_home, dll_dir */
 369     {
 370         char *home_path;
 371         char *dll_path;
 372         char *pslash;
 373         char buf[MAXPATHLEN];
 374         os::jvm_path(buf, sizeof(buf));
 375 
 376         // Found the full path to libjvm.so.
 377         // Now cut the path to <java_home>/jre if we can.
 378         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 379         pslash = strrchr(buf, '/');
 380         if (pslash != NULL)
 381             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 382         dll_path = malloc(strlen(buf) + 1);
 383         if (dll_path == NULL)
 384             return;
 385         strcpy(dll_path, buf);
 386         Arguments::set_dll_dir(dll_path);
 387 
 388         if (pslash != NULL) {
 389             pslash = strrchr(buf, '/');
 390             if (pslash != NULL) {
 391                 *pslash = '\0';       /* get rid of /<arch> (/lib on macosx) */
 392 #ifndef __APPLE__
 393                 pslash = strrchr(buf, '/');
 394                 if (pslash != NULL)
 395                     *pslash = '\0';   /* get rid of /lib */
 396 #endif
 397             }
 398         }
 399 
 400         home_path = malloc(strlen(buf) + 1);
 401         if (home_path == NULL)
 402             return;
 403         strcpy(home_path, buf);
 404         Arguments::set_java_home(home_path);
 405 
 406         if (!set_boot_path('/', ':'))
 407             return;
 408     }
 409 
 410     /*
 411      * Where to look for native libraries
 412      *
 413      * Note: Due to a legacy implementation, most of the library path
 414      * is set in the launcher.  This was to accomodate linking restrictions
 415      * on legacy Bsd implementations (which are no longer supported).
 416      * Eventually, all the library path setting will be done here.
 417      *
 418      * However, to prevent the proliferation of improperly built native
 419      * libraries, the new path component /usr/java/packages is added here.
 420      * Eventually, all the library path setting will be done here.
 421      */
 422     {
 423         char *ld_library_path;
 424 
 425         /*
 426          * Construct the invariant part of ld_library_path. Note that the
 427          * space for the colon and the trailing null are provided by the
 428          * nulls included by the sizeof operator (so actually we allocate
 429          * a byte more than necessary).
 430          */
 431 #ifdef __APPLE__
 432         ld_library_path = (char *) malloc(system_ext_size);
 433         sprintf(ld_library_path, "%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS, user_home_dir);
 434 #else
 435         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 436             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 437         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 438 #endif
 439 
 440         /*
 441          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 442          * should always exist (until the legacy problem cited above is
 443          * addressed).
 444          */
 445 #ifdef __APPLE__
 446         // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code can specify a directory inside an app wrapper
 447         char *l = getenv("JAVA_LIBRARY_PATH");
 448         if (l != NULL) {
 449             char *t = ld_library_path;
 450             /* That's +1 for the colon and +1 for the trailing '\0' */
 451             ld_library_path = (char *) malloc(strlen(l) + 1 + strlen(t) + 1);
 452             sprintf(ld_library_path, "%s:%s", l, t);
 453             free(t);
 454         }
 455 
 456         char *v = getenv("DYLD_LIBRARY_PATH");
 457 #else
 458         char *v = getenv("LD_LIBRARY_PATH");
 459 #endif
 460         if (v != NULL) {
 461             char *t = ld_library_path;
 462             /* That's +1 for the colon and +1 for the trailing '\0' */
 463             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 464             sprintf(ld_library_path, "%s:%s", v, t);
 465             free(t);
 466         }
 467 
 468 #ifdef __APPLE__
 469         // Apple's Java6 has "." at the beginning of java.library.path.
 470         // OpenJDK on Windows has "." at the end of java.library.path.
 471         // OpenJDK on Linux and Solaris don't have "." in java.library.path
 472         // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 473         // "." is appended to the end of java.library.path. Yes, this
 474         // could cause a change in behavior, but Apple's Java6 behavior
 475         // can be achieved by putting "." at the beginning of the
 476         // JAVA_LIBRARY_PATH environment variable.
 477         {
 478             char *t = ld_library_path;
 479             // that's +3 for appending ":." and the trailing '\0'
 480             ld_library_path = (char *) malloc(strlen(t) + 3);
 481             sprintf(ld_library_path, "%s:%s", t, ".");
 482             free(t);
 483         }
 484 #endif
 485 
 486         Arguments::set_library_path(ld_library_path);
 487     }
 488 
 489     /*
 490      * Extensions directories.
 491      *
 492      * Note that the space for the colon and the trailing null are provided
 493      * by the nulls included by the sizeof operator (so actually one byte more
 494      * than necessary is allocated).
 495      */
 496     {
 497 #ifdef __APPLE__
 498         char *buf = malloc(strlen(Arguments::get_java_home()) +
 499             sizeof(EXTENSIONS_DIR) + system_ext_size);
 500         sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":"
 501             SYS_EXTENSIONS_DIRS, user_home_dir, Arguments::get_java_home());
 502 #else
 503         char *buf = malloc(strlen(Arguments::get_java_home()) +
 504             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 505         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 506             Arguments::get_java_home());
 507 #endif
 508 
 509         Arguments::set_ext_dirs(buf);
 510     }
 511 
 512     /* Endorsed standards default directory. */
 513     {
 514         char * buf;
 515         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 516         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 517         Arguments::set_endorsed_dirs(buf);
 518     }
 519   }
 520 
 521 #ifdef __APPLE__
 522 #undef SYS_EXTENSIONS_DIR
 523 #endif
 524 #undef malloc
 525 #undef getenv
 526 #undef EXTENSIONS_DIR
 527 #undef ENDORSED_DIR
 528 
 529   // Done
 530   return;
 531 }
 532 
 533 ////////////////////////////////////////////////////////////////////////////////
 534 // breakpoint support
 535 
 536 void os::breakpoint() {
 537   BREAKPOINT;
 538 }
 539 
 540 extern "C" void breakpoint() {
 541   // use debugger to set breakpoint here
 542 }
 543 
 544 ////////////////////////////////////////////////////////////////////////////////
 545 // signal support
 546 
 547 debug_only(static bool signal_sets_initialized = false);
 548 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 549 
 550 bool os::Bsd::is_sig_ignored(int sig) {
 551       struct sigaction oact;
 552       sigaction(sig, (struct sigaction*)NULL, &oact);
 553       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 554                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 555       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 556            return true;
 557       else
 558            return false;
 559 }
 560 
 561 void os::Bsd::signal_sets_init() {
 562   // Should also have an assertion stating we are still single-threaded.
 563   assert(!signal_sets_initialized, "Already initialized");
 564   // Fill in signals that are necessarily unblocked for all threads in
 565   // the VM. Currently, we unblock the following signals:
 566   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 567   //                         by -Xrs (=ReduceSignalUsage));
 568   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 569   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 570   // the dispositions or masks wrt these signals.
 571   // Programs embedding the VM that want to use the above signals for their
 572   // own purposes must, at this time, use the "-Xrs" option to prevent
 573   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 574   // (See bug 4345157, and other related bugs).
 575   // In reality, though, unblocking these signals is really a nop, since
 576   // these signals are not blocked by default.
 577   sigemptyset(&unblocked_sigs);
 578   sigemptyset(&allowdebug_blocked_sigs);
 579   sigaddset(&unblocked_sigs, SIGILL);
 580   sigaddset(&unblocked_sigs, SIGSEGV);
 581   sigaddset(&unblocked_sigs, SIGBUS);
 582   sigaddset(&unblocked_sigs, SIGFPE);
 583   sigaddset(&unblocked_sigs, SR_signum);
 584 
 585   if (!ReduceSignalUsage) {
 586    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 587       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 588       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 589    }
 590    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 591       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 592       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 593    }
 594    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 595       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 596       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 597    }
 598   }
 599   // Fill in signals that are blocked by all but the VM thread.
 600   sigemptyset(&vm_sigs);
 601   if (!ReduceSignalUsage)
 602     sigaddset(&vm_sigs, BREAK_SIGNAL);
 603   debug_only(signal_sets_initialized = true);
 604 
 605 }
 606 
 607 // These are signals that are unblocked while a thread is running Java.
 608 // (For some reason, they get blocked by default.)
 609 sigset_t* os::Bsd::unblocked_signals() {
 610   assert(signal_sets_initialized, "Not initialized");
 611   return &unblocked_sigs;
 612 }
 613 
 614 // These are the signals that are blocked while a (non-VM) thread is
 615 // running Java. Only the VM thread handles these signals.
 616 sigset_t* os::Bsd::vm_signals() {
 617   assert(signal_sets_initialized, "Not initialized");
 618   return &vm_sigs;
 619 }
 620 
 621 // These are signals that are blocked during cond_wait to allow debugger in
 622 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 623   assert(signal_sets_initialized, "Not initialized");
 624   return &allowdebug_blocked_sigs;
 625 }
 626 
 627 void os::Bsd::hotspot_sigmask(Thread* thread) {
 628 
 629   //Save caller's signal mask before setting VM signal mask
 630   sigset_t caller_sigmask;
 631   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 632 
 633   OSThread* osthread = thread->osthread();
 634   osthread->set_caller_sigmask(caller_sigmask);
 635 
 636   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 637 
 638   if (!ReduceSignalUsage) {
 639     if (thread->is_VM_thread()) {
 640       // Only the VM thread handles BREAK_SIGNAL ...
 641       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 642     } else {
 643       // ... all other threads block BREAK_SIGNAL
 644       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 645     }
 646   }
 647 }
 648 
 649 
 650 //////////////////////////////////////////////////////////////////////////////
 651 // create new thread
 652 
 653 // check if it's safe to start a new thread
 654 static bool _thread_safety_check(Thread* thread) {
 655   return true;
 656 }
 657 
 658 #ifdef __APPLE__
 659 // library handle for calling objc_registerThreadWithCollector()
 660 // without static linking to the libobjc library
 661 #define OBJC_LIB "/usr/lib/libobjc.dylib"
 662 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 663 typedef void (*objc_registerThreadWithCollector_t)();
 664 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 665 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 666 #endif
 667 
 668 #ifdef __APPLE__
 669 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 670   // Additional thread_id used to correlate threads in SA
 671   thread_identifier_info_data_t     m_ident_info;
 672   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 673 
 674   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 675               (thread_info_t) &m_ident_info, &count);
 676 
 677   return m_ident_info.thread_id;
 678 }
 679 #endif
 680 
 681 // Thread start routine for all newly created threads
 682 static void *java_start(Thread *thread) {
 683   // Try to randomize the cache line index of hot stack frames.
 684   // This helps when threads of the same stack traces evict each other's
 685   // cache lines. The threads can be either from the same JVM instance, or
 686   // from different JVM instances. The benefit is especially true for
 687   // processors with hyperthreading technology.
 688   static int counter = 0;
 689   int pid = os::current_process_id();
 690   alloca(((pid ^ counter++) & 7) * 128);
 691 
 692   ThreadLocalStorage::set_thread(thread);
 693 
 694   OSThread* osthread = thread->osthread();
 695   Monitor* sync = osthread->startThread_lock();
 696 
 697   // non floating stack BsdThreads needs extra check, see above
 698   if (!_thread_safety_check(thread)) {
 699     // notify parent thread
 700     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 701     osthread->set_state(ZOMBIE);
 702     sync->notify_all();
 703     return NULL;
 704   }
 705 
 706   osthread->set_thread_id(os::Bsd::gettid());
 707 
 708 #ifdef __APPLE__
 709   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 710   guarantee(unique_thread_id != 0, "unique thread id was not found");
 711   osthread->set_unique_thread_id(unique_thread_id);
 712 #endif
 713   // initialize signal mask for this thread
 714   os::Bsd::hotspot_sigmask(thread);
 715 
 716   // initialize floating point control register
 717   os::Bsd::init_thread_fpu_state();
 718 
 719 #ifdef __APPLE__
 720   // register thread with objc gc
 721   if (objc_registerThreadWithCollectorFunction != NULL) {
 722     objc_registerThreadWithCollectorFunction();
 723   }
 724 #endif
 725 
 726   // handshaking with parent thread
 727   {
 728     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 729 
 730     // notify parent thread
 731     osthread->set_state(INITIALIZED);
 732     sync->notify_all();
 733 
 734     // wait until os::start_thread()
 735     while (osthread->get_state() == INITIALIZED) {
 736       sync->wait(Mutex::_no_safepoint_check_flag);
 737     }
 738   }
 739 
 740   // call one more level start routine
 741   thread->run();
 742 
 743   return 0;
 744 }
 745 
 746 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 747   assert(thread->osthread() == NULL, "caller responsible");
 748 
 749   // Allocate the OSThread object
 750   OSThread* osthread = new OSThread(NULL, NULL);
 751   if (osthread == NULL) {
 752     return false;
 753   }
 754 
 755   // set the correct thread state
 756   osthread->set_thread_type(thr_type);
 757 
 758   // Initial state is ALLOCATED but not INITIALIZED
 759   osthread->set_state(ALLOCATED);
 760 
 761   thread->set_osthread(osthread);
 762 
 763   // init thread attributes
 764   pthread_attr_t attr;
 765   pthread_attr_init(&attr);
 766   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 767 
 768   // stack size
 769   if (os::Bsd::supports_variable_stack_size()) {
 770     // calculate stack size if it's not specified by caller
 771     if (stack_size == 0) {
 772       stack_size = os::Bsd::default_stack_size(thr_type);
 773 
 774       switch (thr_type) {
 775       case os::java_thread:
 776         // Java threads use ThreadStackSize which default value can be
 777         // changed with the flag -Xss
 778         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 779         stack_size = JavaThread::stack_size_at_create();
 780         break;
 781       case os::compiler_thread:
 782         if (CompilerThreadStackSize > 0) {
 783           stack_size = (size_t)(CompilerThreadStackSize * K);
 784           break;
 785         } // else fall through:
 786           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 787       case os::vm_thread:
 788       case os::pgc_thread:
 789       case os::cgc_thread:
 790       case os::watcher_thread:
 791         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 792         break;
 793       }
 794     }
 795 
 796     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 797     pthread_attr_setstacksize(&attr, stack_size);
 798   } else {
 799     // let pthread_create() pick the default value.
 800   }
 801 
 802   ThreadState state;
 803 
 804   {
 805     pthread_t tid;
 806     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 807 
 808     pthread_attr_destroy(&attr);
 809 
 810     if (ret != 0) {
 811       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 812         perror("pthread_create()");
 813       }
 814       // Need to clean up stuff we've allocated so far
 815       thread->set_osthread(NULL);
 816       delete osthread;
 817       return false;
 818     }
 819 
 820     // Store pthread info into the OSThread
 821     osthread->set_pthread_id(tid);
 822 
 823     // Wait until child thread is either initialized or aborted
 824     {
 825       Monitor* sync_with_child = osthread->startThread_lock();
 826       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 827       while ((state = osthread->get_state()) == ALLOCATED) {
 828         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 829       }
 830     }
 831 
 832   }
 833 
 834   // Aborted due to thread limit being reached
 835   if (state == ZOMBIE) {
 836       thread->set_osthread(NULL);
 837       delete osthread;
 838       return false;
 839   }
 840 
 841   // The thread is returned suspended (in state INITIALIZED),
 842   // and is started higher up in the call chain
 843   assert(state == INITIALIZED, "race condition");
 844   return true;
 845 }
 846 
 847 /////////////////////////////////////////////////////////////////////////////
 848 // attach existing thread
 849 
 850 // bootstrap the main thread
 851 bool os::create_main_thread(JavaThread* thread) {
 852   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 853   return create_attached_thread(thread);
 854 }
 855 
 856 bool os::create_attached_thread(JavaThread* thread) {
 857 #ifdef ASSERT
 858     thread->verify_not_published();
 859 #endif
 860 
 861   // Allocate the OSThread object
 862   OSThread* osthread = new OSThread(NULL, NULL);
 863 
 864   if (osthread == NULL) {
 865     return false;
 866   }
 867 
 868   osthread->set_thread_id(os::Bsd::gettid());
 869 
 870   // Store pthread info into the OSThread
 871 #ifdef __APPLE__
 872   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 873   guarantee(unique_thread_id != 0, "just checking");
 874   osthread->set_unique_thread_id(unique_thread_id);
 875 #endif
 876   osthread->set_pthread_id(::pthread_self());
 877 
 878   // initialize floating point control register
 879   os::Bsd::init_thread_fpu_state();
 880 
 881   // Initial thread state is RUNNABLE
 882   osthread->set_state(RUNNABLE);
 883 
 884   thread->set_osthread(osthread);
 885 
 886   // initialize signal mask for this thread
 887   // and save the caller's signal mask
 888   os::Bsd::hotspot_sigmask(thread);
 889 
 890   return true;
 891 }
 892 
 893 void os::pd_start_thread(Thread* thread) {
 894   OSThread * osthread = thread->osthread();
 895   assert(osthread->get_state() != INITIALIZED, "just checking");
 896   Monitor* sync_with_child = osthread->startThread_lock();
 897   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 898   sync_with_child->notify();
 899 }
 900 
 901 // Free Bsd resources related to the OSThread
 902 void os::free_thread(OSThread* osthread) {
 903   assert(osthread != NULL, "osthread not set");
 904 
 905   if (Thread::current()->osthread() == osthread) {
 906     // Restore caller's signal mask
 907     sigset_t sigmask = osthread->caller_sigmask();
 908     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 909    }
 910 
 911   delete osthread;
 912 }
 913 
 914 //////////////////////////////////////////////////////////////////////////////
 915 // thread local storage
 916 
 917 int os::allocate_thread_local_storage() {
 918   pthread_key_t key;
 919   int rslt = pthread_key_create(&key, NULL);
 920   assert(rslt == 0, "cannot allocate thread local storage");
 921   return (int)key;
 922 }
 923 
 924 // Note: This is currently not used by VM, as we don't destroy TLS key
 925 // on VM exit.
 926 void os::free_thread_local_storage(int index) {
 927   int rslt = pthread_key_delete((pthread_key_t)index);
 928   assert(rslt == 0, "invalid index");
 929 }
 930 
 931 void os::thread_local_storage_at_put(int index, void* value) {
 932   int rslt = pthread_setspecific((pthread_key_t)index, value);
 933   assert(rslt == 0, "pthread_setspecific failed");
 934 }
 935 
 936 extern "C" Thread* get_thread() {
 937   return ThreadLocalStorage::thread();
 938 }
 939 
 940 
 941 ////////////////////////////////////////////////////////////////////////////////
 942 // time support
 943 
 944 // Time since start-up in seconds to a fine granularity.
 945 // Used by VMSelfDestructTimer and the MemProfiler.
 946 double os::elapsedTime() {
 947 
 948   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 949 }
 950 
 951 jlong os::elapsed_counter() {
 952   return javaTimeNanos() - initial_time_count;
 953 }
 954 
 955 jlong os::elapsed_frequency() {
 956   return NANOSECS_PER_SEC; // nanosecond resolution
 957 }
 958 
 959 bool os::supports_vtime() { return true; }
 960 bool os::enable_vtime()   { return false; }
 961 bool os::vtime_enabled()  { return false; }
 962 
 963 double os::elapsedVTime() {
 964   // better than nothing, but not much
 965   return elapsedTime();
 966 }
 967 
 968 jlong os::javaTimeMillis() {
 969   timeval time;
 970   int status = gettimeofday(&time, NULL);
 971   assert(status != -1, "bsd error");
 972   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 973 }
 974 
 975 #ifndef CLOCK_MONOTONIC
 976 #define CLOCK_MONOTONIC (1)
 977 #endif
 978 
 979 #ifdef __APPLE__
 980 void os::Bsd::clock_init() {
 981         // XXXDARWIN: Investigate replacement monotonic clock
 982 }
 983 #else
 984 void os::Bsd::clock_init() {
 985   struct timespec res;
 986   struct timespec tp;
 987   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 988       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 989     // yes, monotonic clock is supported
 990     _clock_gettime = ::clock_gettime;
 991   }
 992 }
 993 #endif
 994 
 995 
 996 jlong os::javaTimeNanos() {
 997   if (os::supports_monotonic_clock()) {
 998     struct timespec tp;
 999     int status = Bsd::clock_gettime(CLOCK_MONOTONIC, &tp);
1000     assert(status == 0, "gettime error");
1001     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1002     return result;
1003   } else {
1004     timeval time;
1005     int status = gettimeofday(&time, NULL);
1006     assert(status != -1, "bsd error");
1007     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1008     return 1000 * usecs;
1009   }
1010 }
1011 
1012 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1013   if (os::supports_monotonic_clock()) {
1014     info_ptr->max_value = ALL_64_BITS;
1015 
1016     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1017     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1018     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1019   } else {
1020     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1021     info_ptr->max_value = ALL_64_BITS;
1022 
1023     // gettimeofday is a real time clock so it skips
1024     info_ptr->may_skip_backward = true;
1025     info_ptr->may_skip_forward = true;
1026   }
1027 
1028   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1029 }
1030 
1031 // Return the real, user, and system times in seconds from an
1032 // arbitrary fixed point in the past.
1033 bool os::getTimesSecs(double* process_real_time,
1034                       double* process_user_time,
1035                       double* process_system_time) {
1036   struct tms ticks;
1037   clock_t real_ticks = times(&ticks);
1038 
1039   if (real_ticks == (clock_t) (-1)) {
1040     return false;
1041   } else {
1042     double ticks_per_second = (double) clock_tics_per_sec;
1043     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1044     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1045     *process_real_time = ((double) real_ticks) / ticks_per_second;
1046 
1047     return true;
1048   }
1049 }
1050 
1051 
1052 char * os::local_time_string(char *buf, size_t buflen) {
1053   struct tm t;
1054   time_t long_time;
1055   time(&long_time);
1056   localtime_r(&long_time, &t);
1057   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1058                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1059                t.tm_hour, t.tm_min, t.tm_sec);
1060   return buf;
1061 }
1062 
1063 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1064   return localtime_r(clock, res);
1065 }
1066 
1067 ////////////////////////////////////////////////////////////////////////////////
1068 // runtime exit support
1069 
1070 // Note: os::shutdown() might be called very early during initialization, or
1071 // called from signal handler. Before adding something to os::shutdown(), make
1072 // sure it is async-safe and can handle partially initialized VM.
1073 void os::shutdown() {
1074 
1075   // allow PerfMemory to attempt cleanup of any persistent resources
1076   perfMemory_exit();
1077 
1078   // needs to remove object in file system
1079   AttachListener::abort();
1080 
1081   // flush buffered output, finish log files
1082   ostream_abort();
1083 
1084   // Check for abort hook
1085   abort_hook_t abort_hook = Arguments::abort_hook();
1086   if (abort_hook != NULL) {
1087     abort_hook();
1088   }
1089 
1090 }
1091 
1092 // Note: os::abort() might be called very early during initialization, or
1093 // called from signal handler. Before adding something to os::abort(), make
1094 // sure it is async-safe and can handle partially initialized VM.
1095 void os::abort(bool dump_core) {
1096   os::shutdown();
1097   if (dump_core) {
1098 #ifndef PRODUCT
1099     fdStream out(defaultStream::output_fd());
1100     out.print_raw("Current thread is ");
1101     char buf[16];
1102     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1103     out.print_raw_cr(buf);
1104     out.print_raw_cr("Dumping core ...");
1105 #endif
1106     ::abort(); // dump core
1107   }
1108 
1109   ::exit(1);
1110 }
1111 
1112 // Die immediately, no exit hook, no abort hook, no cleanup.
1113 void os::die() {
1114   // _exit() on BsdThreads only kills current thread
1115   ::abort();
1116 }
1117 
1118 // unused on bsd for now.
1119 void os::set_error_file(const char *logfile) {}
1120 
1121 
1122 // This method is a copy of JDK's sysGetLastErrorString
1123 // from src/solaris/hpi/src/system_md.c
1124 
1125 size_t os::lasterror(char *buf, size_t len) {
1126 
1127   if (errno == 0)  return 0;
1128 
1129   const char *s = ::strerror(errno);
1130   size_t n = ::strlen(s);
1131   if (n >= len) {
1132     n = len - 1;
1133   }
1134   ::strncpy(buf, s, n);
1135   buf[n] = '\0';
1136   return n;
1137 }
1138 
1139 // Information of current thread in variety of formats
1140 pid_t os::Bsd::gettid() {
1141   int retval = -1;
1142 
1143 #ifdef __APPLE__ //XNU kernel
1144   // despite the fact mach port is actually not a thread id use it
1145   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1146   retval = ::pthread_mach_thread_np(::pthread_self());
1147   guarantee(retval != 0, "just checking");
1148   return retval;
1149 
1150 #elif __FreeBSD__
1151   retval = syscall(SYS_thr_self);
1152 #elif __OpenBSD__
1153   retval = syscall(SYS_getthrid);
1154 #elif __NetBSD__
1155   retval = (pid_t) syscall(SYS__lwp_self);
1156 #endif
1157 
1158   if (retval == -1) {
1159     return getpid();
1160   }
1161 }
1162 
1163 intx os::current_thread_id() {
1164 #ifdef __APPLE__
1165   return (intx)::pthread_mach_thread_np(::pthread_self());
1166 #else
1167   return (intx)::pthread_self();
1168 #endif
1169 }
1170 
1171 int os::current_process_id() {
1172 
1173   // Under the old bsd thread library, bsd gives each thread
1174   // its own process id. Because of this each thread will return
1175   // a different pid if this method were to return the result
1176   // of getpid(2). Bsd provides no api that returns the pid
1177   // of the launcher thread for the vm. This implementation
1178   // returns a unique pid, the pid of the launcher thread
1179   // that starts the vm 'process'.
1180 
1181   // Under the NPTL, getpid() returns the same pid as the
1182   // launcher thread rather than a unique pid per thread.
1183   // Use gettid() if you want the old pre NPTL behaviour.
1184 
1185   // if you are looking for the result of a call to getpid() that
1186   // returns a unique pid for the calling thread, then look at the
1187   // OSThread::thread_id() method in osThread_bsd.hpp file
1188 
1189   return (int)(_initial_pid ? _initial_pid : getpid());
1190 }
1191 
1192 // DLL functions
1193 
1194 #define JNI_LIB_PREFIX "lib"
1195 #ifdef __APPLE__
1196 #define JNI_LIB_SUFFIX ".dylib"
1197 #else
1198 #define JNI_LIB_SUFFIX ".so"
1199 #endif
1200 
1201 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1202 
1203 // This must be hard coded because it's the system's temporary
1204 // directory not the java application's temp directory, ala java.io.tmpdir.
1205 #ifdef __APPLE__
1206 // macosx has a secure per-user temporary directory
1207 char temp_path_storage[PATH_MAX];
1208 const char* os::get_temp_directory() {
1209   static char *temp_path = NULL;
1210   if (temp_path == NULL) {
1211     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1212     if (pathSize == 0 || pathSize > PATH_MAX) {
1213       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1214     }
1215     temp_path = temp_path_storage;
1216   }
1217   return temp_path;
1218 }
1219 #else /* __APPLE__ */
1220 const char* os::get_temp_directory() { return "/tmp"; }
1221 #endif /* __APPLE__ */
1222 
1223 static bool file_exists(const char* filename) {
1224   struct stat statbuf;
1225   if (filename == NULL || strlen(filename) == 0) {
1226     return false;
1227   }
1228   return os::stat(filename, &statbuf) == 0;
1229 }
1230 
1231 bool os::dll_build_name(char* buffer, size_t buflen,
1232                         const char* pname, const char* fname) {
1233   bool retval = false;
1234   // Copied from libhpi
1235   const size_t pnamelen = pname ? strlen(pname) : 0;
1236 
1237   // Return error on buffer overflow.
1238   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1239     return retval;
1240   }
1241 
1242   if (pnamelen == 0) {
1243     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1244     retval = true;
1245   } else if (strchr(pname, *os::path_separator()) != NULL) {
1246     int n;
1247     char** pelements = split_path(pname, &n);
1248     if (pelements == NULL) {
1249       return false;
1250     }
1251     for (int i = 0 ; i < n ; i++) {
1252       // Really shouldn't be NULL, but check can't hurt
1253       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1254         continue; // skip the empty path values
1255       }
1256       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1257           pelements[i], fname);
1258       if (file_exists(buffer)) {
1259         retval = true;
1260         break;
1261       }
1262     }
1263     // release the storage
1264     for (int i = 0 ; i < n ; i++) {
1265       if (pelements[i] != NULL) {
1266         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1267       }
1268     }
1269     if (pelements != NULL) {
1270       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1271     }
1272   } else {
1273     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1274     retval = true;
1275   }
1276   return retval;
1277 }
1278 
1279 // check if addr is inside libjvm.so
1280 bool os::address_is_in_vm(address addr) {
1281   static address libjvm_base_addr;
1282   Dl_info dlinfo;
1283 
1284   if (libjvm_base_addr == NULL) {
1285     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1286       libjvm_base_addr = (address)dlinfo.dli_fbase;
1287     }
1288     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1289   }
1290 
1291   if (dladdr((void *)addr, &dlinfo) != 0) {
1292     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1293   }
1294 
1295   return false;
1296 }
1297 
1298 
1299 #define MACH_MAXSYMLEN 256
1300 
1301 bool os::dll_address_to_function_name(address addr, char *buf,
1302                                       int buflen, int *offset) {
1303   // buf is not optional, but offset is optional
1304   assert(buf != NULL, "sanity check");
1305 
1306   Dl_info dlinfo;
1307   char localbuf[MACH_MAXSYMLEN];
1308 
1309   if (dladdr((void*)addr, &dlinfo) != 0) {
1310     // see if we have a matching symbol
1311     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1312       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1313         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1314       }
1315       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1316       return true;
1317     }
1318     // no matching symbol so try for just file info
1319     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1320       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1321                           buf, buflen, offset, dlinfo.dli_fname)) {
1322          return true;
1323       }
1324     }
1325 
1326     // Handle non-dynamic manually:
1327     if (dlinfo.dli_fbase != NULL &&
1328         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1329                         dlinfo.dli_fbase)) {
1330       if (!Decoder::demangle(localbuf, buf, buflen)) {
1331         jio_snprintf(buf, buflen, "%s", localbuf);
1332       }
1333       return true;
1334     }
1335   }
1336   buf[0] = '\0';
1337   if (offset != NULL) *offset = -1;
1338   return false;
1339 }
1340 
1341 // ported from solaris version
1342 bool os::dll_address_to_library_name(address addr, char* buf,
1343                                      int buflen, int* offset) {
1344   // buf is not optional, but offset is optional
1345   assert(buf != NULL, "sanity check");
1346 
1347   Dl_info dlinfo;
1348 
1349   if (dladdr((void*)addr, &dlinfo) != 0) {
1350     if (dlinfo.dli_fname != NULL) {
1351       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1352     }
1353     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1354       *offset = addr - (address)dlinfo.dli_fbase;
1355     }
1356     return true;
1357   }
1358 
1359   buf[0] = '\0';
1360   if (offset) *offset = -1;
1361   return false;
1362 }
1363 
1364 // Loads .dll/.so and
1365 // in case of error it checks if .dll/.so was built for the
1366 // same architecture as Hotspot is running on
1367 
1368 #ifdef __APPLE__
1369 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1370   void * result= ::dlopen(filename, RTLD_LAZY);
1371   if (result != NULL) {
1372     // Successful loading
1373     return result;
1374   }
1375 
1376   // Read system error message into ebuf
1377   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1378   ebuf[ebuflen-1]='\0';
1379 
1380   return NULL;
1381 }
1382 #else
1383 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1384 {
1385   void * result= ::dlopen(filename, RTLD_LAZY);
1386   if (result != NULL) {
1387     // Successful loading
1388     return result;
1389   }
1390 
1391   Elf32_Ehdr elf_head;
1392 
1393   // Read system error message into ebuf
1394   // It may or may not be overwritten below
1395   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1396   ebuf[ebuflen-1]='\0';
1397   int diag_msg_max_length=ebuflen-strlen(ebuf);
1398   char* diag_msg_buf=ebuf+strlen(ebuf);
1399 
1400   if (diag_msg_max_length==0) {
1401     // No more space in ebuf for additional diagnostics message
1402     return NULL;
1403   }
1404 
1405 
1406   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1407 
1408   if (file_descriptor < 0) {
1409     // Can't open library, report dlerror() message
1410     return NULL;
1411   }
1412 
1413   bool failed_to_read_elf_head=
1414     (sizeof(elf_head)!=
1415         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1416 
1417   ::close(file_descriptor);
1418   if (failed_to_read_elf_head) {
1419     // file i/o error - report dlerror() msg
1420     return NULL;
1421   }
1422 
1423   typedef struct {
1424     Elf32_Half  code;         // Actual value as defined in elf.h
1425     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1426     char        elf_class;    // 32 or 64 bit
1427     char        endianess;    // MSB or LSB
1428     char*       name;         // String representation
1429   } arch_t;
1430 
1431   #ifndef EM_486
1432   #define EM_486          6               /* Intel 80486 */
1433   #endif
1434 
1435   #ifndef EM_MIPS_RS3_LE
1436   #define EM_MIPS_RS3_LE  10              /* MIPS */
1437   #endif
1438 
1439   #ifndef EM_PPC64
1440   #define EM_PPC64        21              /* PowerPC64 */
1441   #endif
1442 
1443   #ifndef EM_S390
1444   #define EM_S390         22              /* IBM System/390 */
1445   #endif
1446 
1447   #ifndef EM_IA_64
1448   #define EM_IA_64        50              /* HP/Intel IA-64 */
1449   #endif
1450 
1451   #ifndef EM_X86_64
1452   #define EM_X86_64       62              /* AMD x86-64 */
1453   #endif
1454 
1455   static const arch_t arch_array[]={
1456     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1457     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1458     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1459     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1460     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1461     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1462     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1463     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1464     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1465     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1466     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1467     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1468     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1469     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1470     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1471     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1472   };
1473 
1474   #if  (defined IA32)
1475     static  Elf32_Half running_arch_code=EM_386;
1476   #elif   (defined AMD64)
1477     static  Elf32_Half running_arch_code=EM_X86_64;
1478   #elif  (defined IA64)
1479     static  Elf32_Half running_arch_code=EM_IA_64;
1480   #elif  (defined __sparc) && (defined _LP64)
1481     static  Elf32_Half running_arch_code=EM_SPARCV9;
1482   #elif  (defined __sparc) && (!defined _LP64)
1483     static  Elf32_Half running_arch_code=EM_SPARC;
1484   #elif  (defined __powerpc64__)
1485     static  Elf32_Half running_arch_code=EM_PPC64;
1486   #elif  (defined __powerpc__)
1487     static  Elf32_Half running_arch_code=EM_PPC;
1488   #elif  (defined ARM)
1489     static  Elf32_Half running_arch_code=EM_ARM;
1490   #elif  (defined S390)
1491     static  Elf32_Half running_arch_code=EM_S390;
1492   #elif  (defined ALPHA)
1493     static  Elf32_Half running_arch_code=EM_ALPHA;
1494   #elif  (defined MIPSEL)
1495     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1496   #elif  (defined PARISC)
1497     static  Elf32_Half running_arch_code=EM_PARISC;
1498   #elif  (defined MIPS)
1499     static  Elf32_Half running_arch_code=EM_MIPS;
1500   #elif  (defined M68K)
1501     static  Elf32_Half running_arch_code=EM_68K;
1502   #else
1503     #error Method os::dll_load requires that one of following is defined:\
1504          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1505   #endif
1506 
1507   // Identify compatability class for VM's architecture and library's architecture
1508   // Obtain string descriptions for architectures
1509 
1510   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1511   int running_arch_index=-1;
1512 
1513   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1514     if (running_arch_code == arch_array[i].code) {
1515       running_arch_index    = i;
1516     }
1517     if (lib_arch.code == arch_array[i].code) {
1518       lib_arch.compat_class = arch_array[i].compat_class;
1519       lib_arch.name         = arch_array[i].name;
1520     }
1521   }
1522 
1523   assert(running_arch_index != -1,
1524     "Didn't find running architecture code (running_arch_code) in arch_array");
1525   if (running_arch_index == -1) {
1526     // Even though running architecture detection failed
1527     // we may still continue with reporting dlerror() message
1528     return NULL;
1529   }
1530 
1531   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1532     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1533     return NULL;
1534   }
1535 
1536 #ifndef S390
1537   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1538     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1539     return NULL;
1540   }
1541 #endif // !S390
1542 
1543   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1544     if ( lib_arch.name!=NULL ) {
1545       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1546         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1547         lib_arch.name, arch_array[running_arch_index].name);
1548     } else {
1549       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1550       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1551         lib_arch.code,
1552         arch_array[running_arch_index].name);
1553     }
1554   }
1555 
1556   return NULL;
1557 }
1558 #endif /* !__APPLE__ */
1559 
1560 void* os::get_default_process_handle() {
1561 #ifdef __APPLE__
1562   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1563   // to avoid finding unexpected symbols on second (or later)
1564   // loads of a library.
1565   return (void*)::dlopen(NULL, RTLD_FIRST);
1566 #else
1567   return (void*)::dlopen(NULL, RTLD_LAZY);
1568 #endif
1569 }
1570 
1571 // XXX: Do we need a lock around this as per Linux?
1572 void* os::dll_lookup(void* handle, const char* name) {
1573   return dlsym(handle, name);
1574 }
1575 
1576 
1577 static bool _print_ascii_file(const char* filename, outputStream* st) {
1578   int fd = ::open(filename, O_RDONLY);
1579   if (fd == -1) {
1580      return false;
1581   }
1582 
1583   char buf[32];
1584   int bytes;
1585   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1586     st->print_raw(buf, bytes);
1587   }
1588 
1589   ::close(fd);
1590 
1591   return true;
1592 }
1593 
1594 void os::print_dll_info(outputStream *st) {
1595   st->print_cr("Dynamic libraries:");
1596 #ifdef RTLD_DI_LINKMAP
1597   Dl_info dli;
1598   void *handle;
1599   Link_map *map;
1600   Link_map *p;
1601 
1602   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1603       dli.dli_fname == NULL) {
1604     st->print_cr("Error: Cannot print dynamic libraries.");
1605     return;
1606   }
1607   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1608   if (handle == NULL) {
1609     st->print_cr("Error: Cannot print dynamic libraries.");
1610     return;
1611   }
1612   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1613   if (map == NULL) {
1614     st->print_cr("Error: Cannot print dynamic libraries.");
1615     return;
1616   }
1617 
1618   while (map->l_prev != NULL)
1619     map = map->l_prev;
1620 
1621   while (map != NULL) {
1622     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1623     map = map->l_next;
1624   }
1625 
1626   dlclose(handle);
1627 #elif defined(__APPLE__)
1628   uint32_t count;
1629   uint32_t i;
1630 
1631   count = _dyld_image_count();
1632   for (i = 1; i < count; i++) {
1633     const char *name = _dyld_get_image_name(i);
1634     intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1635     st->print_cr(PTR_FORMAT " \t%s", slide, name);
1636   }
1637 #else
1638   st->print_cr("Error: Cannot print dynamic libraries.");
1639 #endif
1640 }
1641 
1642 void os::print_os_info_brief(outputStream* st) {
1643   st->print("Bsd");
1644 
1645   os::Posix::print_uname_info(st);
1646 }
1647 
1648 void os::print_os_info(outputStream* st) {
1649   st->print("OS:");
1650   st->print("Bsd");
1651 
1652   os::Posix::print_uname_info(st);
1653 
1654   os::Posix::print_rlimit_info(st);
1655 
1656   os::Posix::print_load_average(st);
1657 }
1658 
1659 void os::pd_print_cpu_info(outputStream* st) {
1660   // Nothing to do for now.
1661 }
1662 
1663 void os::print_memory_info(outputStream* st) {
1664 
1665   st->print("Memory:");
1666   st->print(" %dk page", os::vm_page_size()>>10);
1667 
1668   st->print(", physical " UINT64_FORMAT "k",
1669             os::physical_memory() >> 10);
1670   st->print("(" UINT64_FORMAT "k free)",
1671             os::available_memory() >> 10);
1672   st->cr();
1673 
1674   // meminfo
1675   st->print("\n/proc/meminfo:\n");
1676   _print_ascii_file("/proc/meminfo", st);
1677   st->cr();
1678 }
1679 
1680 void os::print_siginfo(outputStream* st, void* siginfo) {
1681   const siginfo_t* si = (const siginfo_t*)siginfo;
1682 
1683   os::Posix::print_siginfo_brief(st, si);
1684 
1685   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1686       UseSharedSpaces) {
1687     FileMapInfo* mapinfo = FileMapInfo::current_info();
1688     if (mapinfo->is_in_shared_space(si->si_addr)) {
1689       st->print("\n\nError accessing class data sharing archive."   \
1690                 " Mapped file inaccessible during execution, "      \
1691                 " possible disk/network problem.");
1692     }
1693   }
1694   st->cr();
1695 }
1696 
1697 
1698 static void print_signal_handler(outputStream* st, int sig,
1699                                  char* buf, size_t buflen);
1700 
1701 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1702   st->print_cr("Signal Handlers:");
1703   print_signal_handler(st, SIGSEGV, buf, buflen);
1704   print_signal_handler(st, SIGBUS , buf, buflen);
1705   print_signal_handler(st, SIGFPE , buf, buflen);
1706   print_signal_handler(st, SIGPIPE, buf, buflen);
1707   print_signal_handler(st, SIGXFSZ, buf, buflen);
1708   print_signal_handler(st, SIGILL , buf, buflen);
1709   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1710   print_signal_handler(st, SR_signum, buf, buflen);
1711   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1712   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1713   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1714   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1715 }
1716 
1717 static char saved_jvm_path[MAXPATHLEN] = {0};
1718 
1719 // Find the full path to the current module, libjvm
1720 void os::jvm_path(char *buf, jint buflen) {
1721   // Error checking.
1722   if (buflen < MAXPATHLEN) {
1723     assert(false, "must use a large-enough buffer");
1724     buf[0] = '\0';
1725     return;
1726   }
1727   // Lazy resolve the path to current module.
1728   if (saved_jvm_path[0] != 0) {
1729     strcpy(buf, saved_jvm_path);
1730     return;
1731   }
1732 
1733   char dli_fname[MAXPATHLEN];
1734   bool ret = dll_address_to_library_name(
1735                 CAST_FROM_FN_PTR(address, os::jvm_path),
1736                 dli_fname, sizeof(dli_fname), NULL);
1737   assert(ret, "cannot locate libjvm");
1738   char *rp = NULL;
1739   if (ret && dli_fname[0] != '\0') {
1740     rp = realpath(dli_fname, buf);
1741   }
1742   if (rp == NULL)
1743     return;
1744 
1745   if (Arguments::sun_java_launcher_is_altjvm()) {
1746     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1747     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1748     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1749     // appears at the right place in the string, then assume we are
1750     // installed in a JDK and we're done. Otherwise, check for a
1751     // JAVA_HOME environment variable and construct a path to the JVM
1752     // being overridden.
1753 
1754     const char *p = buf + strlen(buf) - 1;
1755     for (int count = 0; p > buf && count < 5; ++count) {
1756       for (--p; p > buf && *p != '/'; --p)
1757         /* empty */ ;
1758     }
1759 
1760     if (strncmp(p, "/jre/lib/", 9) != 0) {
1761       // Look for JAVA_HOME in the environment.
1762       char* java_home_var = ::getenv("JAVA_HOME");
1763       if (java_home_var != NULL && java_home_var[0] != 0) {
1764         char* jrelib_p;
1765         int len;
1766 
1767         // Check the current module name "libjvm"
1768         p = strrchr(buf, '/');
1769         assert(strstr(p, "/libjvm") == p, "invalid library name");
1770 
1771         rp = realpath(java_home_var, buf);
1772         if (rp == NULL)
1773           return;
1774 
1775         // determine if this is a legacy image or modules image
1776         // modules image doesn't have "jre" subdirectory
1777         len = strlen(buf);
1778         jrelib_p = buf + len;
1779 
1780         // Add the appropriate library subdir
1781         snprintf(jrelib_p, buflen-len, "/jre/lib");
1782         if (0 != access(buf, F_OK)) {
1783           snprintf(jrelib_p, buflen-len, "/lib");
1784         }
1785 
1786         // Add the appropriate client or server subdir
1787         len = strlen(buf);
1788         jrelib_p = buf + len;
1789         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1790         if (0 != access(buf, F_OK)) {
1791           snprintf(jrelib_p, buflen-len, "%s", "");
1792         }
1793 
1794         // If the path exists within JAVA_HOME, add the JVM library name
1795         // to complete the path to JVM being overridden.  Otherwise fallback
1796         // to the path to the current library.
1797         if (0 == access(buf, F_OK)) {
1798           // Use current module name "libjvm"
1799           len = strlen(buf);
1800           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1801         } else {
1802           // Fall back to path of current library
1803           rp = realpath(dli_fname, buf);
1804           if (rp == NULL)
1805             return;
1806         }
1807       }
1808     }
1809   }
1810 
1811   strcpy(saved_jvm_path, buf);
1812 }
1813 
1814 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1815   // no prefix required, not even "_"
1816 }
1817 
1818 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1819   // no suffix required
1820 }
1821 
1822 ////////////////////////////////////////////////////////////////////////////////
1823 // sun.misc.Signal support
1824 
1825 static volatile jint sigint_count = 0;
1826 
1827 static void
1828 UserHandler(int sig, void *siginfo, void *context) {
1829   // 4511530 - sem_post is serialized and handled by the manager thread. When
1830   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1831   // don't want to flood the manager thread with sem_post requests.
1832   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1833       return;
1834 
1835   // Ctrl-C is pressed during error reporting, likely because the error
1836   // handler fails to abort. Let VM die immediately.
1837   if (sig == SIGINT && is_error_reported()) {
1838      os::die();
1839   }
1840 
1841   os::signal_notify(sig);
1842 }
1843 
1844 void* os::user_handler() {
1845   return CAST_FROM_FN_PTR(void*, UserHandler);
1846 }
1847 
1848 extern "C" {
1849   typedef void (*sa_handler_t)(int);
1850   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1851 }
1852 
1853 void* os::signal(int signal_number, void* handler) {
1854   struct sigaction sigAct, oldSigAct;
1855 
1856   sigfillset(&(sigAct.sa_mask));
1857   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1858   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1859 
1860   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1861     // -1 means registration failed
1862     return (void *)-1;
1863   }
1864 
1865   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1866 }
1867 
1868 void os::signal_raise(int signal_number) {
1869   ::raise(signal_number);
1870 }
1871 
1872 /*
1873  * The following code is moved from os.cpp for making this
1874  * code platform specific, which it is by its very nature.
1875  */
1876 
1877 // Will be modified when max signal is changed to be dynamic
1878 int os::sigexitnum_pd() {
1879   return NSIG;
1880 }
1881 
1882 // a counter for each possible signal value
1883 static volatile jint pending_signals[NSIG+1] = { 0 };
1884 
1885 // Bsd(POSIX) specific hand shaking semaphore.
1886 #ifdef __APPLE__
1887 typedef semaphore_t os_semaphore_t;
1888 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1889 #define SEM_WAIT(sem)           semaphore_wait(sem)
1890 #define SEM_POST(sem)           semaphore_signal(sem)
1891 #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1892 #else
1893 typedef sem_t os_semaphore_t;
1894 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1895 #define SEM_WAIT(sem)           sem_wait(&sem)
1896 #define SEM_POST(sem)           sem_post(&sem)
1897 #define SEM_DESTROY(sem)        sem_destroy(&sem)
1898 #endif
1899 
1900 class Semaphore : public StackObj {
1901   public:
1902     Semaphore();
1903     ~Semaphore();
1904     void signal();
1905     void wait();
1906     bool trywait();
1907     bool timedwait(unsigned int sec, int nsec);
1908   private:
1909     jlong currenttime() const;
1910     os_semaphore_t _semaphore;
1911 };
1912 
1913 Semaphore::Semaphore() : _semaphore(0) {
1914   SEM_INIT(_semaphore, 0);
1915 }
1916 
1917 Semaphore::~Semaphore() {
1918   SEM_DESTROY(_semaphore);
1919 }
1920 
1921 void Semaphore::signal() {
1922   SEM_POST(_semaphore);
1923 }
1924 
1925 void Semaphore::wait() {
1926   SEM_WAIT(_semaphore);
1927 }
1928 
1929 jlong Semaphore::currenttime() const {
1930     struct timeval tv;
1931     gettimeofday(&tv, NULL);
1932     return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1933 }
1934 
1935 #ifdef __APPLE__
1936 bool Semaphore::trywait() {
1937   return timedwait(0, 0);
1938 }
1939 
1940 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1941   kern_return_t kr = KERN_ABORTED;
1942   mach_timespec_t waitspec;
1943   waitspec.tv_sec = sec;
1944   waitspec.tv_nsec = nsec;
1945 
1946   jlong starttime = currenttime();
1947 
1948   kr = semaphore_timedwait(_semaphore, waitspec);
1949   while (kr == KERN_ABORTED) {
1950     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1951 
1952     jlong current = currenttime();
1953     jlong passedtime = current - starttime;
1954 
1955     if (passedtime >= totalwait) {
1956       waitspec.tv_sec = 0;
1957       waitspec.tv_nsec = 0;
1958     } else {
1959       jlong waittime = totalwait - (current - starttime);
1960       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1961       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1962     }
1963 
1964     kr = semaphore_timedwait(_semaphore, waitspec);
1965   }
1966 
1967   return kr == KERN_SUCCESS;
1968 }
1969 
1970 #else
1971 
1972 bool Semaphore::trywait() {
1973   return sem_trywait(&_semaphore) == 0;
1974 }
1975 
1976 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1977   struct timespec ts;
1978   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1979 
1980   while (1) {
1981     int result = sem_timedwait(&_semaphore, &ts);
1982     if (result == 0) {
1983       return true;
1984     } else if (errno == EINTR) {
1985       continue;
1986     } else if (errno == ETIMEDOUT) {
1987       return false;
1988     } else {
1989       return false;
1990     }
1991   }
1992 }
1993 
1994 #endif // __APPLE__
1995 
1996 static os_semaphore_t sig_sem;
1997 static Semaphore sr_semaphore;
1998 
1999 void os::signal_init_pd() {
2000   // Initialize signal structures
2001   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2002 
2003   // Initialize signal semaphore
2004   ::SEM_INIT(sig_sem, 0);
2005 }
2006 
2007 void os::signal_notify(int sig) {
2008   Atomic::inc(&pending_signals[sig]);
2009   ::SEM_POST(sig_sem);
2010 }
2011 
2012 static int check_pending_signals(bool wait) {
2013   Atomic::store(0, &sigint_count);
2014   for (;;) {
2015     for (int i = 0; i < NSIG + 1; i++) {
2016       jint n = pending_signals[i];
2017       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2018         return i;
2019       }
2020     }
2021     if (!wait) {
2022       return -1;
2023     }
2024     JavaThread *thread = JavaThread::current();
2025     ThreadBlockInVM tbivm(thread);
2026 
2027     bool threadIsSuspended;
2028     do {
2029       thread->set_suspend_equivalent();
2030       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2031       ::SEM_WAIT(sig_sem);
2032 
2033       // were we externally suspended while we were waiting?
2034       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2035       if (threadIsSuspended) {
2036         //
2037         // The semaphore has been incremented, but while we were waiting
2038         // another thread suspended us. We don't want to continue running
2039         // while suspended because that would surprise the thread that
2040         // suspended us.
2041         //
2042         ::SEM_POST(sig_sem);
2043 
2044         thread->java_suspend_self();
2045       }
2046     } while (threadIsSuspended);
2047   }
2048 }
2049 
2050 int os::signal_lookup() {
2051   return check_pending_signals(false);
2052 }
2053 
2054 int os::signal_wait() {
2055   return check_pending_signals(true);
2056 }
2057 
2058 ////////////////////////////////////////////////////////////////////////////////
2059 // Virtual Memory
2060 
2061 int os::vm_page_size() {
2062   // Seems redundant as all get out
2063   assert(os::Bsd::page_size() != -1, "must call os::init");
2064   return os::Bsd::page_size();
2065 }
2066 
2067 // Solaris allocates memory by pages.
2068 int os::vm_allocation_granularity() {
2069   assert(os::Bsd::page_size() != -1, "must call os::init");
2070   return os::Bsd::page_size();
2071 }
2072 
2073 // Rationale behind this function:
2074 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2075 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2076 //  samples for JITted code. Here we create private executable mapping over the code cache
2077 //  and then we can use standard (well, almost, as mapping can change) way to provide
2078 //  info for the reporting script by storing timestamp and location of symbol
2079 void bsd_wrap_code(char* base, size_t size) {
2080   static volatile jint cnt = 0;
2081 
2082   if (!UseOprofile) {
2083     return;
2084   }
2085 
2086   char buf[PATH_MAX + 1];
2087   int num = Atomic::add(1, &cnt);
2088 
2089   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2090            os::get_temp_directory(), os::current_process_id(), num);
2091   unlink(buf);
2092 
2093   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2094 
2095   if (fd != -1) {
2096     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2097     if (rv != (off_t)-1) {
2098       if (::write(fd, "", 1) == 1) {
2099         mmap(base, size,
2100              PROT_READ|PROT_WRITE|PROT_EXEC,
2101              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2102       }
2103     }
2104     ::close(fd);
2105     unlink(buf);
2106   }
2107 }
2108 
2109 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2110                                     int err) {
2111   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2112           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2113           strerror(err), err);
2114 }
2115 
2116 // NOTE: Bsd kernel does not really reserve the pages for us.
2117 //       All it does is to check if there are enough free pages
2118 //       left at the time of mmap(). This could be a potential
2119 //       problem.
2120 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2121   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2122 #ifdef __OpenBSD__
2123   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2124   if (::mprotect(addr, size, prot) == 0) {
2125     return true;
2126   }
2127 #else
2128   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2129                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2130   if (res != (uintptr_t) MAP_FAILED) {
2131     return true;
2132   }
2133 #endif
2134 
2135   // Warn about any commit errors we see in non-product builds just
2136   // in case mmap() doesn't work as described on the man page.
2137   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2138 
2139   return false;
2140 }
2141 
2142 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2143                        bool exec) {
2144   // alignment_hint is ignored on this OS
2145   return pd_commit_memory(addr, size, exec);
2146 }
2147 
2148 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2149                                   const char* mesg) {
2150   assert(mesg != NULL, "mesg must be specified");
2151   if (!pd_commit_memory(addr, size, exec)) {
2152     // add extra info in product mode for vm_exit_out_of_memory():
2153     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2154     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2155   }
2156 }
2157 
2158 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2159                                   size_t alignment_hint, bool exec,
2160                                   const char* mesg) {
2161   // alignment_hint is ignored on this OS
2162   pd_commit_memory_or_exit(addr, size, exec, mesg);
2163 }
2164 
2165 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2166 }
2167 
2168 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2169   ::madvise(addr, bytes, MADV_DONTNEED);
2170 }
2171 
2172 void os::numa_make_global(char *addr, size_t bytes) {
2173 }
2174 
2175 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2176 }
2177 
2178 bool os::numa_topology_changed()   { return false; }
2179 
2180 size_t os::numa_get_groups_num() {
2181   return 1;
2182 }
2183 
2184 int os::numa_get_group_id() {
2185   return 0;
2186 }
2187 
2188 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2189   if (size > 0) {
2190     ids[0] = 0;
2191     return 1;
2192   }
2193   return 0;
2194 }
2195 
2196 bool os::get_page_info(char *start, page_info* info) {
2197   return false;
2198 }
2199 
2200 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2201   return end;
2202 }
2203 
2204 
2205 bool os::pd_uncommit_memory(char* addr, size_t size) {
2206 #ifdef __OpenBSD__
2207   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2208   return ::mprotect(addr, size, PROT_NONE) == 0;
2209 #else
2210   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2211                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2212   return res  != (uintptr_t) MAP_FAILED;
2213 #endif
2214 }
2215 
2216 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2217   return os::commit_memory(addr, size, !ExecMem);
2218 }
2219 
2220 // If this is a growable mapping, remove the guard pages entirely by
2221 // munmap()ping them.  If not, just call uncommit_memory().
2222 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2223   return os::uncommit_memory(addr, size);
2224 }
2225 
2226 static address _highest_vm_reserved_address = NULL;
2227 
2228 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2229 // at 'requested_addr'. If there are existing memory mappings at the same
2230 // location, however, they will be overwritten. If 'fixed' is false,
2231 // 'requested_addr' is only treated as a hint, the return value may or
2232 // may not start from the requested address. Unlike Bsd mmap(), this
2233 // function returns NULL to indicate failure.
2234 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2235   char * addr;
2236   int flags;
2237 
2238   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2239   if (fixed) {
2240     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2241     flags |= MAP_FIXED;
2242   }
2243 
2244   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2245   // touch an uncommitted page. Otherwise, the read/write might
2246   // succeed if we have enough swap space to back the physical page.
2247   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2248                        flags, -1, 0);
2249 
2250   if (addr != MAP_FAILED) {
2251     // anon_mmap() should only get called during VM initialization,
2252     // don't need lock (actually we can skip locking even it can be called
2253     // from multiple threads, because _highest_vm_reserved_address is just a
2254     // hint about the upper limit of non-stack memory regions.)
2255     if ((address)addr + bytes > _highest_vm_reserved_address) {
2256       _highest_vm_reserved_address = (address)addr + bytes;
2257     }
2258   }
2259 
2260   return addr == MAP_FAILED ? NULL : addr;
2261 }
2262 
2263 // Don't update _highest_vm_reserved_address, because there might be memory
2264 // regions above addr + size. If so, releasing a memory region only creates
2265 // a hole in the address space, it doesn't help prevent heap-stack collision.
2266 //
2267 static int anon_munmap(char * addr, size_t size) {
2268   return ::munmap(addr, size) == 0;
2269 }
2270 
2271 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2272                          size_t alignment_hint) {
2273   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2274 }
2275 
2276 bool os::pd_release_memory(char* addr, size_t size) {
2277   return anon_munmap(addr, size);
2278 }
2279 
2280 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2281   // Bsd wants the mprotect address argument to be page aligned.
2282   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2283 
2284   // According to SUSv3, mprotect() should only be used with mappings
2285   // established by mmap(), and mmap() always maps whole pages. Unaligned
2286   // 'addr' likely indicates problem in the VM (e.g. trying to change
2287   // protection of malloc'ed or statically allocated memory). Check the
2288   // caller if you hit this assert.
2289   assert(addr == bottom, "sanity check");
2290 
2291   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2292   return ::mprotect(bottom, size, prot) == 0;
2293 }
2294 
2295 // Set protections specified
2296 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2297                         bool is_committed) {
2298   unsigned int p = 0;
2299   switch (prot) {
2300   case MEM_PROT_NONE: p = PROT_NONE; break;
2301   case MEM_PROT_READ: p = PROT_READ; break;
2302   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2303   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2304   default:
2305     ShouldNotReachHere();
2306   }
2307   // is_committed is unused.
2308   return bsd_mprotect(addr, bytes, p);
2309 }
2310 
2311 bool os::guard_memory(char* addr, size_t size) {
2312   return bsd_mprotect(addr, size, PROT_NONE);
2313 }
2314 
2315 bool os::unguard_memory(char* addr, size_t size) {
2316   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2317 }
2318 
2319 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2320   return false;
2321 }
2322 
2323 // Large page support
2324 
2325 static size_t _large_page_size = 0;
2326 
2327 void os::large_page_init() {
2328 }
2329 
2330 
2331 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2332   fatal("This code is not used or maintained.");
2333 
2334   // "exec" is passed in but not used.  Creating the shared image for
2335   // the code cache doesn't have an SHM_X executable permission to check.
2336   assert(UseLargePages && UseSHM, "only for SHM large pages");
2337 
2338   key_t key = IPC_PRIVATE;
2339   char *addr;
2340 
2341   bool warn_on_failure = UseLargePages &&
2342                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2343                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2344                         );
2345   char msg[128];
2346 
2347   // Create a large shared memory region to attach to based on size.
2348   // Currently, size is the total size of the heap
2349   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2350   if (shmid == -1) {
2351      // Possible reasons for shmget failure:
2352      // 1. shmmax is too small for Java heap.
2353      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2354      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2355      // 2. not enough large page memory.
2356      //    > check available large pages: cat /proc/meminfo
2357      //    > increase amount of large pages:
2358      //          echo new_value > /proc/sys/vm/nr_hugepages
2359      //      Note 1: different Bsd may use different name for this property,
2360      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2361      //      Note 2: it's possible there's enough physical memory available but
2362      //            they are so fragmented after a long run that they can't
2363      //            coalesce into large pages. Try to reserve large pages when
2364      //            the system is still "fresh".
2365      if (warn_on_failure) {
2366        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
2367        warning(msg);
2368      }
2369      return NULL;
2370   }
2371 
2372   // attach to the region
2373   addr = (char*)shmat(shmid, req_addr, 0);
2374   int err = errno;
2375 
2376   // Remove shmid. If shmat() is successful, the actual shared memory segment
2377   // will be deleted when it's detached by shmdt() or when the process
2378   // terminates. If shmat() is not successful this will remove the shared
2379   // segment immediately.
2380   shmctl(shmid, IPC_RMID, NULL);
2381 
2382   if ((intptr_t)addr == -1) {
2383      if (warn_on_failure) {
2384        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
2385        warning(msg);
2386      }
2387      return NULL;
2388   }
2389 
2390   // The memory is committed
2391   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2392 
2393   return addr;
2394 }
2395 
2396 bool os::release_memory_special(char* base, size_t bytes) {
2397   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2398   // detaching the SHM segment will also delete it, see reserve_memory_special()
2399   int rslt = shmdt(base);
2400   if (rslt == 0) {
2401     tkr.record((address)base, bytes);
2402     return true;
2403   } else {
2404     tkr.discard();
2405     return false;
2406   }
2407 
2408 }
2409 
2410 size_t os::large_page_size() {
2411   return _large_page_size;
2412 }
2413 
2414 // HugeTLBFS allows application to commit large page memory on demand;
2415 // with SysV SHM the entire memory region must be allocated as shared
2416 // memory.
2417 bool os::can_commit_large_page_memory() {
2418   return UseHugeTLBFS;
2419 }
2420 
2421 bool os::can_execute_large_page_memory() {
2422   return UseHugeTLBFS;
2423 }
2424 
2425 // Reserve memory at an arbitrary address, only if that area is
2426 // available (and not reserved for something else).
2427 
2428 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2429   const int max_tries = 10;
2430   char* base[max_tries];
2431   size_t size[max_tries];
2432   const size_t gap = 0x000000;
2433 
2434   // Assert only that the size is a multiple of the page size, since
2435   // that's all that mmap requires, and since that's all we really know
2436   // about at this low abstraction level.  If we need higher alignment,
2437   // we can either pass an alignment to this method or verify alignment
2438   // in one of the methods further up the call chain.  See bug 5044738.
2439   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2440 
2441   // Repeatedly allocate blocks until the block is allocated at the
2442   // right spot. Give up after max_tries. Note that reserve_memory() will
2443   // automatically update _highest_vm_reserved_address if the call is
2444   // successful. The variable tracks the highest memory address every reserved
2445   // by JVM. It is used to detect heap-stack collision if running with
2446   // fixed-stack BsdThreads. Because here we may attempt to reserve more
2447   // space than needed, it could confuse the collision detecting code. To
2448   // solve the problem, save current _highest_vm_reserved_address and
2449   // calculate the correct value before return.
2450   address old_highest = _highest_vm_reserved_address;
2451 
2452   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2453   // if kernel honors the hint then we can return immediately.
2454   char * addr = anon_mmap(requested_addr, bytes, false);
2455   if (addr == requested_addr) {
2456      return requested_addr;
2457   }
2458 
2459   if (addr != NULL) {
2460      // mmap() is successful but it fails to reserve at the requested address
2461      anon_munmap(addr, bytes);
2462   }
2463 
2464   int i;
2465   for (i = 0; i < max_tries; ++i) {
2466     base[i] = reserve_memory(bytes);
2467 
2468     if (base[i] != NULL) {
2469       // Is this the block we wanted?
2470       if (base[i] == requested_addr) {
2471         size[i] = bytes;
2472         break;
2473       }
2474 
2475       // Does this overlap the block we wanted? Give back the overlapped
2476       // parts and try again.
2477 
2478       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2479       if (top_overlap >= 0 && top_overlap < bytes) {
2480         unmap_memory(base[i], top_overlap);
2481         base[i] += top_overlap;
2482         size[i] = bytes - top_overlap;
2483       } else {
2484         size_t bottom_overlap = base[i] + bytes - requested_addr;
2485         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2486           unmap_memory(requested_addr, bottom_overlap);
2487           size[i] = bytes - bottom_overlap;
2488         } else {
2489           size[i] = bytes;
2490         }
2491       }
2492     }
2493   }
2494 
2495   // Give back the unused reserved pieces.
2496 
2497   for (int j = 0; j < i; ++j) {
2498     if (base[j] != NULL) {
2499       unmap_memory(base[j], size[j]);
2500     }
2501   }
2502 
2503   if (i < max_tries) {
2504     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2505     return requested_addr;
2506   } else {
2507     _highest_vm_reserved_address = old_highest;
2508     return NULL;
2509   }
2510 }
2511 
2512 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2513   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2514 }
2515 
2516 void os::naked_short_sleep(jlong ms) {
2517   struct timespec req;
2518 
2519   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2520   req.tv_sec = 0;
2521   if (ms > 0) {
2522     req.tv_nsec = (ms % 1000) * 1000000;
2523   }
2524   else {
2525     req.tv_nsec = 1;
2526   }
2527 
2528   nanosleep(&req, NULL);
2529 
2530   return;
2531 }
2532 
2533 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2534 void os::infinite_sleep() {
2535   while (true) {    // sleep forever ...
2536     ::sleep(100);   // ... 100 seconds at a time
2537   }
2538 }
2539 
2540 // Used to convert frequent JVM_Yield() to nops
2541 bool os::dont_yield() {
2542   return DontYieldALot;
2543 }
2544 
2545 void os::yield() {
2546   sched_yield();
2547 }
2548 
2549 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2550 
2551 void os::yield_all(int attempts) {
2552   // Yields to all threads, including threads with lower priorities
2553   // Threads on Bsd are all with same priority. The Solaris style
2554   // os::yield_all() with nanosleep(1ms) is not necessary.
2555   sched_yield();
2556 }
2557 
2558 // Called from the tight loops to possibly influence time-sharing heuristics
2559 void os::loop_breaker(int attempts) {
2560   os::yield_all(attempts);
2561 }
2562 
2563 ////////////////////////////////////////////////////////////////////////////////
2564 // thread priority support
2565 
2566 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2567 // only supports dynamic priority, static priority must be zero. For real-time
2568 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2569 // However, for large multi-threaded applications, SCHED_RR is not only slower
2570 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2571 // of 5 runs - Sep 2005).
2572 //
2573 // The following code actually changes the niceness of kernel-thread/LWP. It
2574 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2575 // not the entire user process, and user level threads are 1:1 mapped to kernel
2576 // threads. It has always been the case, but could change in the future. For
2577 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2578 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2579 
2580 #if !defined(__APPLE__)
2581 int os::java_to_os_priority[CriticalPriority + 1] = {
2582   19,              // 0 Entry should never be used
2583 
2584    0,              // 1 MinPriority
2585    3,              // 2
2586    6,              // 3
2587 
2588   10,              // 4
2589   15,              // 5 NormPriority
2590   18,              // 6
2591 
2592   21,              // 7
2593   25,              // 8
2594   28,              // 9 NearMaxPriority
2595 
2596   31,              // 10 MaxPriority
2597 
2598   31               // 11 CriticalPriority
2599 };
2600 #else
2601 /* Using Mach high-level priority assignments */
2602 int os::java_to_os_priority[CriticalPriority + 1] = {
2603    0,              // 0 Entry should never be used (MINPRI_USER)
2604 
2605   27,              // 1 MinPriority
2606   28,              // 2
2607   29,              // 3
2608 
2609   30,              // 4
2610   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2611   32,              // 6
2612 
2613   33,              // 7
2614   34,              // 8
2615   35,              // 9 NearMaxPriority
2616 
2617   36,              // 10 MaxPriority
2618 
2619   36               // 11 CriticalPriority
2620 };
2621 #endif
2622 
2623 static int prio_init() {
2624   if (ThreadPriorityPolicy == 1) {
2625     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2626     // if effective uid is not root. Perhaps, a more elegant way of doing
2627     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2628     if (geteuid() != 0) {
2629       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2630         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2631       }
2632       ThreadPriorityPolicy = 0;
2633     }
2634   }
2635   if (UseCriticalJavaThreadPriority) {
2636     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2637   }
2638   return 0;
2639 }
2640 
2641 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2642   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2643 
2644 #ifdef __OpenBSD__
2645   // OpenBSD pthread_setprio starves low priority threads
2646   return OS_OK;
2647 #elif defined(__FreeBSD__)
2648   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2649 #elif defined(__APPLE__) || defined(__NetBSD__)
2650   struct sched_param sp;
2651   int policy;
2652   pthread_t self = pthread_self();
2653 
2654   if (pthread_getschedparam(self, &policy, &sp) != 0)
2655     return OS_ERR;
2656 
2657   sp.sched_priority = newpri;
2658   if (pthread_setschedparam(self, policy, &sp) != 0)
2659     return OS_ERR;
2660 
2661   return OS_OK;
2662 #else
2663   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2664   return (ret == 0) ? OS_OK : OS_ERR;
2665 #endif
2666 }
2667 
2668 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2669   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2670     *priority_ptr = java_to_os_priority[NormPriority];
2671     return OS_OK;
2672   }
2673 
2674   errno = 0;
2675 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2676   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2677 #elif defined(__APPLE__) || defined(__NetBSD__)
2678   int policy;
2679   struct sched_param sp;
2680 
2681   pthread_getschedparam(pthread_self(), &policy, &sp);
2682   *priority_ptr = sp.sched_priority;
2683 #else
2684   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2685 #endif
2686   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2687 }
2688 
2689 // Hint to the underlying OS that a task switch would not be good.
2690 // Void return because it's a hint and can fail.
2691 void os::hint_no_preempt() {}
2692 
2693 ////////////////////////////////////////////////////////////////////////////////
2694 // suspend/resume support
2695 
2696 //  the low-level signal-based suspend/resume support is a remnant from the
2697 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2698 //  within hotspot. Now there is a single use-case for this:
2699 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2700 //      that runs in the watcher thread.
2701 //  The remaining code is greatly simplified from the more general suspension
2702 //  code that used to be used.
2703 //
2704 //  The protocol is quite simple:
2705 //  - suspend:
2706 //      - sends a signal to the target thread
2707 //      - polls the suspend state of the osthread using a yield loop
2708 //      - target thread signal handler (SR_handler) sets suspend state
2709 //        and blocks in sigsuspend until continued
2710 //  - resume:
2711 //      - sets target osthread state to continue
2712 //      - sends signal to end the sigsuspend loop in the SR_handler
2713 //
2714 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2715 //
2716 
2717 static void resume_clear_context(OSThread *osthread) {
2718   osthread->set_ucontext(NULL);
2719   osthread->set_siginfo(NULL);
2720 }
2721 
2722 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2723   osthread->set_ucontext(context);
2724   osthread->set_siginfo(siginfo);
2725 }
2726 
2727 //
2728 // Handler function invoked when a thread's execution is suspended or
2729 // resumed. We have to be careful that only async-safe functions are
2730 // called here (Note: most pthread functions are not async safe and
2731 // should be avoided.)
2732 //
2733 // Note: sigwait() is a more natural fit than sigsuspend() from an
2734 // interface point of view, but sigwait() prevents the signal hander
2735 // from being run. libpthread would get very confused by not having
2736 // its signal handlers run and prevents sigwait()'s use with the
2737 // mutex granting granting signal.
2738 //
2739 // Currently only ever called on the VMThread or JavaThread
2740 //
2741 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2742   // Save and restore errno to avoid confusing native code with EINTR
2743   // after sigsuspend.
2744   int old_errno = errno;
2745 
2746   Thread* thread = Thread::current();
2747   OSThread* osthread = thread->osthread();
2748   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2749 
2750   os::SuspendResume::State current = osthread->sr.state();
2751   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2752     suspend_save_context(osthread, siginfo, context);
2753 
2754     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2755     os::SuspendResume::State state = osthread->sr.suspended();
2756     if (state == os::SuspendResume::SR_SUSPENDED) {
2757       sigset_t suspend_set;  // signals for sigsuspend()
2758 
2759       // get current set of blocked signals and unblock resume signal
2760       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2761       sigdelset(&suspend_set, SR_signum);
2762 
2763       sr_semaphore.signal();
2764       // wait here until we are resumed
2765       while (1) {
2766         sigsuspend(&suspend_set);
2767 
2768         os::SuspendResume::State result = osthread->sr.running();
2769         if (result == os::SuspendResume::SR_RUNNING) {
2770           sr_semaphore.signal();
2771           break;
2772         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2773           ShouldNotReachHere();
2774         }
2775       }
2776 
2777     } else if (state == os::SuspendResume::SR_RUNNING) {
2778       // request was cancelled, continue
2779     } else {
2780       ShouldNotReachHere();
2781     }
2782 
2783     resume_clear_context(osthread);
2784   } else if (current == os::SuspendResume::SR_RUNNING) {
2785     // request was cancelled, continue
2786   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2787     // ignore
2788   } else {
2789     // ignore
2790   }
2791 
2792   errno = old_errno;
2793 }
2794 
2795 
2796 static int SR_initialize() {
2797   struct sigaction act;
2798   char *s;
2799   /* Get signal number to use for suspend/resume */
2800   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2801     int sig = ::strtol(s, 0, 10);
2802     if (sig > 0 || sig < NSIG) {
2803         SR_signum = sig;
2804     }
2805   }
2806 
2807   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2808         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2809 
2810   sigemptyset(&SR_sigset);
2811   sigaddset(&SR_sigset, SR_signum);
2812 
2813   /* Set up signal handler for suspend/resume */
2814   act.sa_flags = SA_RESTART|SA_SIGINFO;
2815   act.sa_handler = (void (*)(int)) SR_handler;
2816 
2817   // SR_signum is blocked by default.
2818   // 4528190 - We also need to block pthread restart signal (32 on all
2819   // supported Bsd platforms). Note that BsdThreads need to block
2820   // this signal for all threads to work properly. So we don't have
2821   // to use hard-coded signal number when setting up the mask.
2822   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2823 
2824   if (sigaction(SR_signum, &act, 0) == -1) {
2825     return -1;
2826   }
2827 
2828   // Save signal flag
2829   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2830   return 0;
2831 }
2832 
2833 static int sr_notify(OSThread* osthread) {
2834   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2835   assert_status(status == 0, status, "pthread_kill");
2836   return status;
2837 }
2838 
2839 // "Randomly" selected value for how long we want to spin
2840 // before bailing out on suspending a thread, also how often
2841 // we send a signal to a thread we want to resume
2842 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2843 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2844 
2845 // returns true on success and false on error - really an error is fatal
2846 // but this seems the normal response to library errors
2847 static bool do_suspend(OSThread* osthread) {
2848   assert(osthread->sr.is_running(), "thread should be running");
2849   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2850 
2851   // mark as suspended and send signal
2852   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2853     // failed to switch, state wasn't running?
2854     ShouldNotReachHere();
2855     return false;
2856   }
2857 
2858   if (sr_notify(osthread) != 0) {
2859     ShouldNotReachHere();
2860   }
2861 
2862   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2863   while (true) {
2864     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2865       break;
2866     } else {
2867       // timeout
2868       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2869       if (cancelled == os::SuspendResume::SR_RUNNING) {
2870         return false;
2871       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2872         // make sure that we consume the signal on the semaphore as well
2873         sr_semaphore.wait();
2874         break;
2875       } else {
2876         ShouldNotReachHere();
2877         return false;
2878       }
2879     }
2880   }
2881 
2882   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2883   return true;
2884 }
2885 
2886 static void do_resume(OSThread* osthread) {
2887   assert(osthread->sr.is_suspended(), "thread should be suspended");
2888   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2889 
2890   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2891     // failed to switch to WAKEUP_REQUEST
2892     ShouldNotReachHere();
2893     return;
2894   }
2895 
2896   while (true) {
2897     if (sr_notify(osthread) == 0) {
2898       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2899         if (osthread->sr.is_running()) {
2900           return;
2901         }
2902       }
2903     } else {
2904       ShouldNotReachHere();
2905     }
2906   }
2907 
2908   guarantee(osthread->sr.is_running(), "Must be running!");
2909 }
2910 
2911 ///////////////////////////////////////////////////////////////////////////////////
2912 // signal handling (except suspend/resume)
2913 
2914 // This routine may be used by user applications as a "hook" to catch signals.
2915 // The user-defined signal handler must pass unrecognized signals to this
2916 // routine, and if it returns true (non-zero), then the signal handler must
2917 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2918 // routine will never retun false (zero), but instead will execute a VM panic
2919 // routine kill the process.
2920 //
2921 // If this routine returns false, it is OK to call it again.  This allows
2922 // the user-defined signal handler to perform checks either before or after
2923 // the VM performs its own checks.  Naturally, the user code would be making
2924 // a serious error if it tried to handle an exception (such as a null check
2925 // or breakpoint) that the VM was generating for its own correct operation.
2926 //
2927 // This routine may recognize any of the following kinds of signals:
2928 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2929 // It should be consulted by handlers for any of those signals.
2930 //
2931 // The caller of this routine must pass in the three arguments supplied
2932 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2933 // field of the structure passed to sigaction().  This routine assumes that
2934 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2935 //
2936 // Note that the VM will print warnings if it detects conflicting signal
2937 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2938 //
2939 extern "C" JNIEXPORT int
2940 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2941                         void* ucontext, int abort_if_unrecognized);
2942 
2943 void signalHandler(int sig, siginfo_t* info, void* uc) {
2944   assert(info != NULL && uc != NULL, "it must be old kernel");
2945   int orig_errno = errno;  // Preserve errno value over signal handler.
2946   JVM_handle_bsd_signal(sig, info, uc, true);
2947   errno = orig_errno;
2948 }
2949 
2950 
2951 // This boolean allows users to forward their own non-matching signals
2952 // to JVM_handle_bsd_signal, harmlessly.
2953 bool os::Bsd::signal_handlers_are_installed = false;
2954 
2955 // For signal-chaining
2956 struct sigaction os::Bsd::sigact[MAXSIGNUM];
2957 unsigned int os::Bsd::sigs = 0;
2958 bool os::Bsd::libjsig_is_loaded = false;
2959 typedef struct sigaction *(*get_signal_t)(int);
2960 get_signal_t os::Bsd::get_signal_action = NULL;
2961 
2962 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2963   struct sigaction *actp = NULL;
2964 
2965   if (libjsig_is_loaded) {
2966     // Retrieve the old signal handler from libjsig
2967     actp = (*get_signal_action)(sig);
2968   }
2969   if (actp == NULL) {
2970     // Retrieve the preinstalled signal handler from jvm
2971     actp = get_preinstalled_handler(sig);
2972   }
2973 
2974   return actp;
2975 }
2976 
2977 static bool call_chained_handler(struct sigaction *actp, int sig,
2978                                  siginfo_t *siginfo, void *context) {
2979   // Call the old signal handler
2980   if (actp->sa_handler == SIG_DFL) {
2981     // It's more reasonable to let jvm treat it as an unexpected exception
2982     // instead of taking the default action.
2983     return false;
2984   } else if (actp->sa_handler != SIG_IGN) {
2985     if ((actp->sa_flags & SA_NODEFER) == 0) {
2986       // automaticlly block the signal
2987       sigaddset(&(actp->sa_mask), sig);
2988     }
2989 
2990     sa_handler_t hand;
2991     sa_sigaction_t sa;
2992     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2993     // retrieve the chained handler
2994     if (siginfo_flag_set) {
2995       sa = actp->sa_sigaction;
2996     } else {
2997       hand = actp->sa_handler;
2998     }
2999 
3000     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3001       actp->sa_handler = SIG_DFL;
3002     }
3003 
3004     // try to honor the signal mask
3005     sigset_t oset;
3006     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3007 
3008     // call into the chained handler
3009     if (siginfo_flag_set) {
3010       (*sa)(sig, siginfo, context);
3011     } else {
3012       (*hand)(sig);
3013     }
3014 
3015     // restore the signal mask
3016     pthread_sigmask(SIG_SETMASK, &oset, 0);
3017   }
3018   // Tell jvm's signal handler the signal is taken care of.
3019   return true;
3020 }
3021 
3022 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3023   bool chained = false;
3024   // signal-chaining
3025   if (UseSignalChaining) {
3026     struct sigaction *actp = get_chained_signal_action(sig);
3027     if (actp != NULL) {
3028       chained = call_chained_handler(actp, sig, siginfo, context);
3029     }
3030   }
3031   return chained;
3032 }
3033 
3034 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3035   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3036     return &sigact[sig];
3037   }
3038   return NULL;
3039 }
3040 
3041 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3042   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3043   sigact[sig] = oldAct;
3044   sigs |= (unsigned int)1 << sig;
3045 }
3046 
3047 // for diagnostic
3048 int os::Bsd::sigflags[MAXSIGNUM];
3049 
3050 int os::Bsd::get_our_sigflags(int sig) {
3051   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3052   return sigflags[sig];
3053 }
3054 
3055 void os::Bsd::set_our_sigflags(int sig, int flags) {
3056   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3057   sigflags[sig] = flags;
3058 }
3059 
3060 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3061   // Check for overwrite.
3062   struct sigaction oldAct;
3063   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3064 
3065   void* oldhand = oldAct.sa_sigaction
3066                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3067                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3068   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3069       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3070       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3071     if (AllowUserSignalHandlers || !set_installed) {
3072       // Do not overwrite; user takes responsibility to forward to us.
3073       return;
3074     } else if (UseSignalChaining) {
3075       // save the old handler in jvm
3076       save_preinstalled_handler(sig, oldAct);
3077       // libjsig also interposes the sigaction() call below and saves the
3078       // old sigaction on it own.
3079     } else {
3080       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3081                     "%#lx for signal %d.", (long)oldhand, sig));
3082     }
3083   }
3084 
3085   struct sigaction sigAct;
3086   sigfillset(&(sigAct.sa_mask));
3087   sigAct.sa_handler = SIG_DFL;
3088   if (!set_installed) {
3089     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3090   } else {
3091     sigAct.sa_sigaction = signalHandler;
3092     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3093   }
3094 #if __APPLE__
3095   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3096   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3097   // if the signal handler declares it will handle it on alternate stack.
3098   // Notice we only declare we will handle it on alt stack, but we are not
3099   // actually going to use real alt stack - this is just a workaround.
3100   // Please see ux_exception.c, method catch_mach_exception_raise for details
3101   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3102   if (sig == SIGSEGV) {
3103     sigAct.sa_flags |= SA_ONSTACK;
3104   }
3105 #endif
3106 
3107   // Save flags, which are set by ours
3108   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3109   sigflags[sig] = sigAct.sa_flags;
3110 
3111   int ret = sigaction(sig, &sigAct, &oldAct);
3112   assert(ret == 0, "check");
3113 
3114   void* oldhand2  = oldAct.sa_sigaction
3115                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3116                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3117   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3118 }
3119 
3120 // install signal handlers for signals that HotSpot needs to
3121 // handle in order to support Java-level exception handling.
3122 
3123 void os::Bsd::install_signal_handlers() {
3124   if (!signal_handlers_are_installed) {
3125     signal_handlers_are_installed = true;
3126 
3127     // signal-chaining
3128     typedef void (*signal_setting_t)();
3129     signal_setting_t begin_signal_setting = NULL;
3130     signal_setting_t end_signal_setting = NULL;
3131     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3132                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3133     if (begin_signal_setting != NULL) {
3134       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3135                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3136       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3137                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3138       libjsig_is_loaded = true;
3139       assert(UseSignalChaining, "should enable signal-chaining");
3140     }
3141     if (libjsig_is_loaded) {
3142       // Tell libjsig jvm is setting signal handlers
3143       (*begin_signal_setting)();
3144     }
3145 
3146     set_signal_handler(SIGSEGV, true);
3147     set_signal_handler(SIGPIPE, true);
3148     set_signal_handler(SIGBUS, true);
3149     set_signal_handler(SIGILL, true);
3150     set_signal_handler(SIGFPE, true);
3151     set_signal_handler(SIGXFSZ, true);
3152 
3153 #if defined(__APPLE__)
3154     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3155     // signals caught and handled by the JVM. To work around this, we reset the mach task
3156     // signal handler that's placed on our process by CrashReporter. This disables
3157     // CrashReporter-based reporting.
3158     //
3159     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3160     // on caught fatal signals.
3161     //
3162     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3163     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3164     // exception handling, while leaving the standard BSD signal handlers functional.
3165     kern_return_t kr;
3166     kr = task_set_exception_ports(mach_task_self(),
3167         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3168         MACH_PORT_NULL,
3169         EXCEPTION_STATE_IDENTITY,
3170         MACHINE_THREAD_STATE);
3171 
3172     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3173 #endif
3174 
3175     if (libjsig_is_loaded) {
3176       // Tell libjsig jvm finishes setting signal handlers
3177       (*end_signal_setting)();
3178     }
3179 
3180     // We don't activate signal checker if libjsig is in place, we trust ourselves
3181     // and if UserSignalHandler is installed all bets are off
3182     if (CheckJNICalls) {
3183       if (libjsig_is_loaded) {
3184         if (PrintJNIResolving) {
3185           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3186         }
3187         check_signals = false;
3188       }
3189       if (AllowUserSignalHandlers) {
3190         if (PrintJNIResolving) {
3191           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3192         }
3193         check_signals = false;
3194       }
3195     }
3196   }
3197 }
3198 
3199 
3200 /////
3201 // glibc on Bsd platform uses non-documented flag
3202 // to indicate, that some special sort of signal
3203 // trampoline is used.
3204 // We will never set this flag, and we should
3205 // ignore this flag in our diagnostic
3206 #ifdef SIGNIFICANT_SIGNAL_MASK
3207 #undef SIGNIFICANT_SIGNAL_MASK
3208 #endif
3209 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3210 
3211 static const char* get_signal_handler_name(address handler,
3212                                            char* buf, int buflen) {
3213   int offset;
3214   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3215   if (found) {
3216     // skip directory names
3217     const char *p1, *p2;
3218     p1 = buf;
3219     size_t len = strlen(os::file_separator());
3220     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3221     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3222   } else {
3223     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3224   }
3225   return buf;
3226 }
3227 
3228 static void print_signal_handler(outputStream* st, int sig,
3229                                  char* buf, size_t buflen) {
3230   struct sigaction sa;
3231 
3232   sigaction(sig, NULL, &sa);
3233 
3234   // See comment for SIGNIFICANT_SIGNAL_MASK define
3235   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3236 
3237   st->print("%s: ", os::exception_name(sig, buf, buflen));
3238 
3239   address handler = (sa.sa_flags & SA_SIGINFO)
3240     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3241     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3242 
3243   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3244     st->print("SIG_DFL");
3245   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3246     st->print("SIG_IGN");
3247   } else {
3248     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3249   }
3250 
3251   st->print(", sa_mask[0]=");
3252   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3253 
3254   address rh = VMError::get_resetted_sighandler(sig);
3255   // May be, handler was resetted by VMError?
3256   if(rh != NULL) {
3257     handler = rh;
3258     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3259   }
3260 
3261   st->print(", sa_flags=");
3262   os::Posix::print_sa_flags(st, sa.sa_flags);
3263 
3264   // Check: is it our handler?
3265   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3266      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3267     // It is our signal handler
3268     // check for flags, reset system-used one!
3269     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3270       st->print(
3271                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3272                 os::Bsd::get_our_sigflags(sig));
3273     }
3274   }
3275   st->cr();
3276 }
3277 
3278 
3279 #define DO_SIGNAL_CHECK(sig) \
3280   if (!sigismember(&check_signal_done, sig)) \
3281     os::Bsd::check_signal_handler(sig)
3282 
3283 // This method is a periodic task to check for misbehaving JNI applications
3284 // under CheckJNI, we can add any periodic checks here
3285 
3286 void os::run_periodic_checks() {
3287 
3288   if (check_signals == false) return;
3289 
3290   // SEGV and BUS if overridden could potentially prevent
3291   // generation of hs*.log in the event of a crash, debugging
3292   // such a case can be very challenging, so we absolutely
3293   // check the following for a good measure:
3294   DO_SIGNAL_CHECK(SIGSEGV);
3295   DO_SIGNAL_CHECK(SIGILL);
3296   DO_SIGNAL_CHECK(SIGFPE);
3297   DO_SIGNAL_CHECK(SIGBUS);
3298   DO_SIGNAL_CHECK(SIGPIPE);
3299   DO_SIGNAL_CHECK(SIGXFSZ);
3300 
3301 
3302   // ReduceSignalUsage allows the user to override these handlers
3303   // see comments at the very top and jvm_solaris.h
3304   if (!ReduceSignalUsage) {
3305     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3306     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3307     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3308     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3309   }
3310 
3311   DO_SIGNAL_CHECK(SR_signum);
3312   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3313 }
3314 
3315 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3316 
3317 static os_sigaction_t os_sigaction = NULL;
3318 
3319 void os::Bsd::check_signal_handler(int sig) {
3320   char buf[O_BUFLEN];
3321   address jvmHandler = NULL;
3322 
3323 
3324   struct sigaction act;
3325   if (os_sigaction == NULL) {
3326     // only trust the default sigaction, in case it has been interposed
3327     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3328     if (os_sigaction == NULL) return;
3329   }
3330 
3331   os_sigaction(sig, (struct sigaction*)NULL, &act);
3332 
3333 
3334   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3335 
3336   address thisHandler = (act.sa_flags & SA_SIGINFO)
3337     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3338     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3339 
3340 
3341   switch(sig) {
3342   case SIGSEGV:
3343   case SIGBUS:
3344   case SIGFPE:
3345   case SIGPIPE:
3346   case SIGILL:
3347   case SIGXFSZ:
3348     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3349     break;
3350 
3351   case SHUTDOWN1_SIGNAL:
3352   case SHUTDOWN2_SIGNAL:
3353   case SHUTDOWN3_SIGNAL:
3354   case BREAK_SIGNAL:
3355     jvmHandler = (address)user_handler();
3356     break;
3357 
3358   case INTERRUPT_SIGNAL:
3359     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3360     break;
3361 
3362   default:
3363     if (sig == SR_signum) {
3364       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3365     } else {
3366       return;
3367     }
3368     break;
3369   }
3370 
3371   if (thisHandler != jvmHandler) {
3372     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3373     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3374     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3375     // No need to check this sig any longer
3376     sigaddset(&check_signal_done, sig);
3377     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3378     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3379       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3380                     exception_name(sig, buf, O_BUFLEN));
3381     }
3382   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3383     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3384     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3385     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3386     // No need to check this sig any longer
3387     sigaddset(&check_signal_done, sig);
3388   }
3389 
3390   // Dump all the signal
3391   if (sigismember(&check_signal_done, sig)) {
3392     print_signal_handlers(tty, buf, O_BUFLEN);
3393   }
3394 }
3395 
3396 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3397 
3398 extern bool signal_name(int signo, char* buf, size_t len);
3399 
3400 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3401   if (0 < exception_code && exception_code <= SIGRTMAX) {
3402     // signal
3403     if (!signal_name(exception_code, buf, size)) {
3404       jio_snprintf(buf, size, "SIG%d", exception_code);
3405     }
3406     return buf;
3407   } else {
3408     return NULL;
3409   }
3410 }
3411 
3412 // this is called _before_ the most of global arguments have been parsed
3413 void os::init(void) {
3414   char dummy;   /* used to get a guess on initial stack address */
3415 //  first_hrtime = gethrtime();
3416 
3417   // With BsdThreads the JavaMain thread pid (primordial thread)
3418   // is different than the pid of the java launcher thread.
3419   // So, on Bsd, the launcher thread pid is passed to the VM
3420   // via the sun.java.launcher.pid property.
3421   // Use this property instead of getpid() if it was correctly passed.
3422   // See bug 6351349.
3423   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3424 
3425   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3426 
3427   clock_tics_per_sec = CLK_TCK;
3428 
3429   init_random(1234567);
3430 
3431   ThreadCritical::initialize();
3432 
3433   Bsd::set_page_size(getpagesize());
3434   if (Bsd::page_size() == -1) {
3435     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3436                   strerror(errno)));
3437   }
3438   init_page_sizes((size_t) Bsd::page_size());
3439 
3440   Bsd::initialize_system_info();
3441 
3442   // main_thread points to the aboriginal thread
3443   Bsd::_main_thread = pthread_self();
3444 
3445   Bsd::clock_init();
3446   initial_time_count = javaTimeNanos();
3447 
3448 #ifdef __APPLE__
3449   // XXXDARWIN
3450   // Work around the unaligned VM callbacks in hotspot's
3451   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3452   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3453   // alignment when doing symbol lookup. To work around this, we force early
3454   // binding of all symbols now, thus binding when alignment is known-good.
3455   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3456 #endif
3457 }
3458 
3459 // To install functions for atexit system call
3460 extern "C" {
3461   static void perfMemory_exit_helper() {
3462     perfMemory_exit();
3463   }
3464 }
3465 
3466 // this is called _after_ the global arguments have been parsed
3467 jint os::init_2(void)
3468 {
3469   // Allocate a single page and mark it as readable for safepoint polling
3470   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3471   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3472 
3473   os::set_polling_page( polling_page );
3474 
3475 #ifndef PRODUCT
3476   if(Verbose && PrintMiscellaneous)
3477     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3478 #endif
3479 
3480   if (!UseMembar) {
3481     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3482     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3483     os::set_memory_serialize_page( mem_serialize_page );
3484 
3485 #ifndef PRODUCT
3486     if(Verbose && PrintMiscellaneous)
3487       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3488 #endif
3489   }
3490 
3491   // initialize suspend/resume support - must do this before signal_sets_init()
3492   if (SR_initialize() != 0) {
3493     perror("SR_initialize failed");
3494     return JNI_ERR;
3495   }
3496 
3497   Bsd::signal_sets_init();
3498   Bsd::install_signal_handlers();
3499 
3500   // Check minimum allowable stack size for thread creation and to initialize
3501   // the java system classes, including StackOverflowError - depends on page
3502   // size.  Add a page for compiler2 recursion in main thread.
3503   // Add in 2*BytesPerWord times page size to account for VM stack during
3504   // class initialization depending on 32 or 64 bit VM.
3505   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3506             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3507                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3508 
3509   size_t threadStackSizeInBytes = ThreadStackSize * K;
3510   if (threadStackSizeInBytes != 0 &&
3511       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3512         tty->print_cr("\nThe stack size specified is too small, "
3513                       "Specify at least %dk",
3514                       os::Bsd::min_stack_allowed/ K);
3515         return JNI_ERR;
3516   }
3517 
3518   // Make the stack size a multiple of the page size so that
3519   // the yellow/red zones can be guarded.
3520   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3521         vm_page_size()));
3522 
3523   if (MaxFDLimit) {
3524     // set the number of file descriptors to max. print out error
3525     // if getrlimit/setrlimit fails but continue regardless.
3526     struct rlimit nbr_files;
3527     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3528     if (status != 0) {
3529       if (PrintMiscellaneous && (Verbose || WizardMode))
3530         perror("os::init_2 getrlimit failed");
3531     } else {
3532       nbr_files.rlim_cur = nbr_files.rlim_max;
3533 
3534 #ifdef __APPLE__
3535       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3536       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3537       // be used instead
3538       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3539 #endif
3540 
3541       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3542       if (status != 0) {
3543         if (PrintMiscellaneous && (Verbose || WizardMode))
3544           perror("os::init_2 setrlimit failed");
3545       }
3546     }
3547   }
3548 
3549   // at-exit methods are called in the reverse order of their registration.
3550   // atexit functions are called on return from main or as a result of a
3551   // call to exit(3C). There can be only 32 of these functions registered
3552   // and atexit() does not set errno.
3553 
3554   if (PerfAllowAtExitRegistration) {
3555     // only register atexit functions if PerfAllowAtExitRegistration is set.
3556     // atexit functions can be delayed until process exit time, which
3557     // can be problematic for embedded VM situations. Embedded VMs should
3558     // call DestroyJavaVM() to assure that VM resources are released.
3559 
3560     // note: perfMemory_exit_helper atexit function may be removed in
3561     // the future if the appropriate cleanup code can be added to the
3562     // VM_Exit VMOperation's doit method.
3563     if (atexit(perfMemory_exit_helper) != 0) {
3564       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3565     }
3566   }
3567 
3568   // initialize thread priority policy
3569   prio_init();
3570 
3571 #ifdef __APPLE__
3572   // dynamically link to objective c gc registration
3573   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3574   if (handleLibObjc != NULL) {
3575     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3576   }
3577 #endif
3578 
3579   return JNI_OK;
3580 }
3581 
3582 // this is called at the end of vm_initialization
3583 void os::init_3(void) { }
3584 
3585 // Mark the polling page as unreadable
3586 void os::make_polling_page_unreadable(void) {
3587   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3588     fatal("Could not disable polling page");
3589 };
3590 
3591 // Mark the polling page as readable
3592 void os::make_polling_page_readable(void) {
3593   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3594     fatal("Could not enable polling page");
3595   }
3596 };
3597 
3598 int os::active_processor_count() {
3599   return _processor_count;
3600 }
3601 
3602 void os::set_native_thread_name(const char *name) {
3603 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3604   // This is only supported in Snow Leopard and beyond
3605   if (name != NULL) {
3606     // Add a "Java: " prefix to the name
3607     char buf[MAXTHREADNAMESIZE];
3608     snprintf(buf, sizeof(buf), "Java: %s", name);
3609     pthread_setname_np(buf);
3610   }
3611 #endif
3612 }
3613 
3614 bool os::distribute_processes(uint length, uint* distribution) {
3615   // Not yet implemented.
3616   return false;
3617 }
3618 
3619 bool os::bind_to_processor(uint processor_id) {
3620   // Not yet implemented.
3621   return false;
3622 }
3623 
3624 void os::SuspendedThreadTask::internal_do_task() {
3625   if (do_suspend(_thread->osthread())) {
3626     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3627     do_task(context);
3628     do_resume(_thread->osthread());
3629   }
3630 }
3631 
3632 ///
3633 class PcFetcher : public os::SuspendedThreadTask {
3634 public:
3635   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3636   ExtendedPC result();
3637 protected:
3638   void do_task(const os::SuspendedThreadTaskContext& context);
3639 private:
3640   ExtendedPC _epc;
3641 };
3642 
3643 ExtendedPC PcFetcher::result() {
3644   guarantee(is_done(), "task is not done yet.");
3645   return _epc;
3646 }
3647 
3648 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3649   Thread* thread = context.thread();
3650   OSThread* osthread = thread->osthread();
3651   if (osthread->ucontext() != NULL) {
3652     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3653   } else {
3654     // NULL context is unexpected, double-check this is the VMThread
3655     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3656   }
3657 }
3658 
3659 // Suspends the target using the signal mechanism and then grabs the PC before
3660 // resuming the target. Used by the flat-profiler only
3661 ExtendedPC os::get_thread_pc(Thread* thread) {
3662   // Make sure that it is called by the watcher for the VMThread
3663   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3664   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3665 
3666   PcFetcher fetcher(thread);
3667   fetcher.run();
3668   return fetcher.result();
3669 }
3670 
3671 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3672 {
3673   return pthread_cond_timedwait(_cond, _mutex, _abstime);
3674 }
3675 
3676 ////////////////////////////////////////////////////////////////////////////////
3677 // debug support
3678 
3679 bool os::find(address addr, outputStream* st) {
3680   Dl_info dlinfo;
3681   memset(&dlinfo, 0, sizeof(dlinfo));
3682   if (dladdr(addr, &dlinfo) != 0) {
3683     st->print(PTR_FORMAT ": ", addr);
3684     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3685       st->print("%s+%#x", dlinfo.dli_sname,
3686                  addr - (intptr_t)dlinfo.dli_saddr);
3687     } else if (dlinfo.dli_fbase != NULL) {
3688       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3689     } else {
3690       st->print("<absolute address>");
3691     }
3692     if (dlinfo.dli_fname != NULL) {
3693       st->print(" in %s", dlinfo.dli_fname);
3694     }
3695     if (dlinfo.dli_fbase != NULL) {
3696       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3697     }
3698     st->cr();
3699 
3700     if (Verbose) {
3701       // decode some bytes around the PC
3702       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3703       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3704       address       lowest = (address) dlinfo.dli_sname;
3705       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3706       if (begin < lowest)  begin = lowest;
3707       Dl_info dlinfo2;
3708       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3709           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3710         end = (address) dlinfo2.dli_saddr;
3711       Disassembler::decode(begin, end, st);
3712     }
3713     return true;
3714   }
3715   return false;
3716 }
3717 
3718 ////////////////////////////////////////////////////////////////////////////////
3719 // misc
3720 
3721 // This does not do anything on Bsd. This is basically a hook for being
3722 // able to use structured exception handling (thread-local exception filters)
3723 // on, e.g., Win32.
3724 void
3725 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3726                          JavaCallArguments* args, Thread* thread) {
3727   f(value, method, args, thread);
3728 }
3729 
3730 void os::print_statistics() {
3731 }
3732 
3733 int os::message_box(const char* title, const char* message) {
3734   int i;
3735   fdStream err(defaultStream::error_fd());
3736   for (i = 0; i < 78; i++) err.print_raw("=");
3737   err.cr();
3738   err.print_raw_cr(title);
3739   for (i = 0; i < 78; i++) err.print_raw("-");
3740   err.cr();
3741   err.print_raw_cr(message);
3742   for (i = 0; i < 78; i++) err.print_raw("=");
3743   err.cr();
3744 
3745   char buf[16];
3746   // Prevent process from exiting upon "read error" without consuming all CPU
3747   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3748 
3749   return buf[0] == 'y' || buf[0] == 'Y';
3750 }
3751 
3752 int os::stat(const char *path, struct stat *sbuf) {
3753   char pathbuf[MAX_PATH];
3754   if (strlen(path) > MAX_PATH - 1) {
3755     errno = ENAMETOOLONG;
3756     return -1;
3757   }
3758   os::native_path(strcpy(pathbuf, path));
3759   return ::stat(pathbuf, sbuf);
3760 }
3761 
3762 bool os::check_heap(bool force) {
3763   return true;
3764 }
3765 
3766 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3767   return ::vsnprintf(buf, count, format, args);
3768 }
3769 
3770 // Is a (classpath) directory empty?
3771 bool os::dir_is_empty(const char* path) {
3772   DIR *dir = NULL;
3773   struct dirent *ptr;
3774 
3775   dir = opendir(path);
3776   if (dir == NULL) return true;
3777 
3778   /* Scan the directory */
3779   bool result = true;
3780   char buf[sizeof(struct dirent) + MAX_PATH];
3781   while (result && (ptr = ::readdir(dir)) != NULL) {
3782     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3783       result = false;
3784     }
3785   }
3786   closedir(dir);
3787   return result;
3788 }
3789 
3790 // This code originates from JDK's sysOpen and open64_w
3791 // from src/solaris/hpi/src/system_md.c
3792 
3793 #ifndef O_DELETE
3794 #define O_DELETE 0x10000
3795 #endif
3796 
3797 // Open a file. Unlink the file immediately after open returns
3798 // if the specified oflag has the O_DELETE flag set.
3799 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3800 
3801 int os::open(const char *path, int oflag, int mode) {
3802 
3803   if (strlen(path) > MAX_PATH - 1) {
3804     errno = ENAMETOOLONG;
3805     return -1;
3806   }
3807   int fd;
3808   int o_delete = (oflag & O_DELETE);
3809   oflag = oflag & ~O_DELETE;
3810 
3811   fd = ::open(path, oflag, mode);
3812   if (fd == -1) return -1;
3813 
3814   //If the open succeeded, the file might still be a directory
3815   {
3816     struct stat buf;
3817     int ret = ::fstat(fd, &buf);
3818     int st_mode = buf.st_mode;
3819 
3820     if (ret != -1) {
3821       if ((st_mode & S_IFMT) == S_IFDIR) {
3822         errno = EISDIR;
3823         ::close(fd);
3824         return -1;
3825       }
3826     } else {
3827       ::close(fd);
3828       return -1;
3829     }
3830   }
3831 
3832     /*
3833      * All file descriptors that are opened in the JVM and not
3834      * specifically destined for a subprocess should have the
3835      * close-on-exec flag set.  If we don't set it, then careless 3rd
3836      * party native code might fork and exec without closing all
3837      * appropriate file descriptors (e.g. as we do in closeDescriptors in
3838      * UNIXProcess.c), and this in turn might:
3839      *
3840      * - cause end-of-file to fail to be detected on some file
3841      *   descriptors, resulting in mysterious hangs, or
3842      *
3843      * - might cause an fopen in the subprocess to fail on a system
3844      *   suffering from bug 1085341.
3845      *
3846      * (Yes, the default setting of the close-on-exec flag is a Unix
3847      * design flaw)
3848      *
3849      * See:
3850      * 1085341: 32-bit stdio routines should support file descriptors >255
3851      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3852      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3853      */
3854 #ifdef FD_CLOEXEC
3855     {
3856         int flags = ::fcntl(fd, F_GETFD);
3857         if (flags != -1)
3858             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3859     }
3860 #endif
3861 
3862   if (o_delete != 0) {
3863     ::unlink(path);
3864   }
3865   return fd;
3866 }
3867 
3868 
3869 // create binary file, rewriting existing file if required
3870 int os::create_binary_file(const char* path, bool rewrite_existing) {
3871   int oflags = O_WRONLY | O_CREAT;
3872   if (!rewrite_existing) {
3873     oflags |= O_EXCL;
3874   }
3875   return ::open(path, oflags, S_IREAD | S_IWRITE);
3876 }
3877 
3878 // return current position of file pointer
3879 jlong os::current_file_offset(int fd) {
3880   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3881 }
3882 
3883 // move file pointer to the specified offset
3884 jlong os::seek_to_file_offset(int fd, jlong offset) {
3885   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3886 }
3887 
3888 // This code originates from JDK's sysAvailable
3889 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3890 
3891 int os::available(int fd, jlong *bytes) {
3892   jlong cur, end;
3893   int mode;
3894   struct stat buf;
3895 
3896   if (::fstat(fd, &buf) >= 0) {
3897     mode = buf.st_mode;
3898     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3899       /*
3900       * XXX: is the following call interruptible? If so, this might
3901       * need to go through the INTERRUPT_IO() wrapper as for other
3902       * blocking, interruptible calls in this file.
3903       */
3904       int n;
3905       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3906         *bytes = n;
3907         return 1;
3908       }
3909     }
3910   }
3911   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3912     return 0;
3913   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3914     return 0;
3915   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3916     return 0;
3917   }
3918   *bytes = end - cur;
3919   return 1;
3920 }
3921 
3922 int os::socket_available(int fd, jint *pbytes) {
3923    if (fd < 0)
3924      return OS_OK;
3925 
3926    int ret;
3927 
3928    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3929 
3930    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3931    // is expected to return 0 on failure and 1 on success to the jdk.
3932 
3933    return (ret == OS_ERR) ? 0 : 1;
3934 }
3935 
3936 // Map a block of memory.
3937 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3938                      char *addr, size_t bytes, bool read_only,
3939                      bool allow_exec) {
3940   int prot;
3941   int flags;
3942 
3943   if (read_only) {
3944     prot = PROT_READ;
3945     flags = MAP_SHARED;
3946   } else {
3947     prot = PROT_READ | PROT_WRITE;
3948     flags = MAP_PRIVATE;
3949   }
3950 
3951   if (allow_exec) {
3952     prot |= PROT_EXEC;
3953   }
3954 
3955   if (addr != NULL) {
3956     flags |= MAP_FIXED;
3957   }
3958 
3959   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3960                                      fd, file_offset);
3961   if (mapped_address == MAP_FAILED) {
3962     return NULL;
3963   }
3964   return mapped_address;
3965 }
3966 
3967 
3968 // Remap a block of memory.
3969 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3970                        char *addr, size_t bytes, bool read_only,
3971                        bool allow_exec) {
3972   // same as map_memory() on this OS
3973   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3974                         allow_exec);
3975 }
3976 
3977 
3978 // Unmap a block of memory.
3979 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3980   return munmap(addr, bytes) == 0;
3981 }
3982 
3983 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3984 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3985 // of a thread.
3986 //
3987 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3988 // the fast estimate available on the platform.
3989 
3990 jlong os::current_thread_cpu_time() {
3991 #ifdef __APPLE__
3992   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3993 #else
3994   Unimplemented();
3995   return 0;
3996 #endif
3997 }
3998 
3999 jlong os::thread_cpu_time(Thread* thread) {
4000 #ifdef __APPLE__
4001   return os::thread_cpu_time(thread, true /* user + sys */);
4002 #else
4003   Unimplemented();
4004   return 0;
4005 #endif
4006 }
4007 
4008 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4009 #ifdef __APPLE__
4010   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4011 #else
4012   Unimplemented();
4013   return 0;
4014 #endif
4015 }
4016 
4017 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4018 #ifdef __APPLE__
4019   struct thread_basic_info tinfo;
4020   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4021   kern_return_t kr;
4022   thread_t mach_thread;
4023 
4024   mach_thread = thread->osthread()->thread_id();
4025   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4026   if (kr != KERN_SUCCESS)
4027     return -1;
4028 
4029   if (user_sys_cpu_time) {
4030     jlong nanos;
4031     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4032     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4033     return nanos;
4034   } else {
4035     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4036   }
4037 #else
4038   Unimplemented();
4039   return 0;
4040 #endif
4041 }
4042 
4043 
4044 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4045   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4046   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4047   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4048   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4049 }
4050 
4051 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4052   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4053   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4054   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4055   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4056 }
4057 
4058 bool os::is_thread_cpu_time_supported() {
4059 #ifdef __APPLE__
4060   return true;
4061 #else
4062   return false;
4063 #endif
4064 }
4065 
4066 // System loadavg support.  Returns -1 if load average cannot be obtained.
4067 // Bsd doesn't yet have a (official) notion of processor sets,
4068 // so just return the system wide load average.
4069 int os::loadavg(double loadavg[], int nelem) {
4070   return ::getloadavg(loadavg, nelem);
4071 }
4072 
4073 void os::pause() {
4074   char filename[MAX_PATH];
4075   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4076     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4077   } else {
4078     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4079   }
4080 
4081   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4082   if (fd != -1) {
4083     struct stat buf;
4084     ::close(fd);
4085     while (::stat(filename, &buf) == 0) {
4086       (void)::poll(NULL, 0, 100);
4087     }
4088   } else {
4089     jio_fprintf(stderr,
4090       "Could not open pause file '%s', continuing immediately.\n", filename);
4091   }
4092 }
4093 
4094 
4095 // Refer to the comments in os_solaris.cpp park-unpark.
4096 //
4097 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4098 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4099 // For specifics regarding the bug see GLIBC BUGID 261237 :
4100 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4101 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4102 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4103 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4104 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4105 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4106 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4107 // of libpthread avoids the problem, but isn't practical.
4108 //
4109 // Possible remedies:
4110 //
4111 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4112 //      This is palliative and probabilistic, however.  If the thread is preempted
4113 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4114 //      than the minimum period may have passed, and the abstime may be stale (in the
4115 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4116 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4117 //
4118 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4119 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4120 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4121 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4122 //      thread.
4123 //
4124 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4125 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4126 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4127 //      This also works well.  In fact it avoids kernel-level scalability impediments
4128 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4129 //      timers in a graceful fashion.
4130 //
4131 // 4.   When the abstime value is in the past it appears that control returns
4132 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4133 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4134 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4135 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4136 //      It may be possible to avoid reinitialization by checking the return
4137 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4138 //      condvar we must establish the invariant that cond_signal() is only called
4139 //      within critical sections protected by the adjunct mutex.  This prevents
4140 //      cond_signal() from "seeing" a condvar that's in the midst of being
4141 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4142 //      desirable signal-after-unlock optimization that avoids futile context switching.
4143 //
4144 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4145 //      structure when a condvar is used or initialized.  cond_destroy()  would
4146 //      release the helper structure.  Our reinitialize-after-timedwait fix
4147 //      put excessive stress on malloc/free and locks protecting the c-heap.
4148 //
4149 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4150 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4151 // and only enabling the work-around for vulnerable environments.
4152 
4153 // utility to compute the abstime argument to timedwait:
4154 // millis is the relative timeout time
4155 // abstime will be the absolute timeout time
4156 // TODO: replace compute_abstime() with unpackTime()
4157 
4158 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4159   if (millis < 0)  millis = 0;
4160   struct timeval now;
4161   int status = gettimeofday(&now, NULL);
4162   assert(status == 0, "gettimeofday");
4163   jlong seconds = millis / 1000;
4164   millis %= 1000;
4165   if (seconds > 50000000) { // see man cond_timedwait(3T)
4166     seconds = 50000000;
4167   }
4168   abstime->tv_sec = now.tv_sec  + seconds;
4169   long       usec = now.tv_usec + millis * 1000;
4170   if (usec >= 1000000) {
4171     abstime->tv_sec += 1;
4172     usec -= 1000000;
4173   }
4174   abstime->tv_nsec = usec * 1000;
4175   return abstime;
4176 }
4177 
4178 
4179 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4180 // Conceptually TryPark() should be equivalent to park(0).
4181 
4182 int os::PlatformEvent::TryPark() {
4183   for (;;) {
4184     const int v = _Event ;
4185     guarantee ((v == 0) || (v == 1), "invariant") ;
4186     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4187   }
4188 }
4189 
4190 void os::PlatformEvent::park() {       // AKA "down()"
4191   // Invariant: Only the thread associated with the Event/PlatformEvent
4192   // may call park().
4193   // TODO: assert that _Assoc != NULL or _Assoc == Self
4194   int v ;
4195   for (;;) {
4196       v = _Event ;
4197       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4198   }
4199   guarantee (v >= 0, "invariant") ;
4200   if (v == 0) {
4201      // Do this the hard way by blocking ...
4202      int status = pthread_mutex_lock(_mutex);
4203      assert_status(status == 0, status, "mutex_lock");
4204      guarantee (_nParked == 0, "invariant") ;
4205      ++ _nParked ;
4206      while (_Event < 0) {
4207         status = pthread_cond_wait(_cond, _mutex);
4208         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4209         // Treat this the same as if the wait was interrupted
4210         if (status == ETIMEDOUT) { status = EINTR; }
4211         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4212      }
4213      -- _nParked ;
4214 
4215     _Event = 0 ;
4216      status = pthread_mutex_unlock(_mutex);
4217      assert_status(status == 0, status, "mutex_unlock");
4218     // Paranoia to ensure our locked and lock-free paths interact
4219     // correctly with each other.
4220     OrderAccess::fence();
4221   }
4222   guarantee (_Event >= 0, "invariant") ;
4223 }
4224 
4225 int os::PlatformEvent::park(jlong millis) {
4226   guarantee (_nParked == 0, "invariant") ;
4227 
4228   int v ;
4229   for (;;) {
4230       v = _Event ;
4231       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4232   }
4233   guarantee (v >= 0, "invariant") ;
4234   if (v != 0) return OS_OK ;
4235 
4236   // We do this the hard way, by blocking the thread.
4237   // Consider enforcing a minimum timeout value.
4238   struct timespec abst;
4239   compute_abstime(&abst, millis);
4240 
4241   int ret = OS_TIMEOUT;
4242   int status = pthread_mutex_lock(_mutex);
4243   assert_status(status == 0, status, "mutex_lock");
4244   guarantee (_nParked == 0, "invariant") ;
4245   ++_nParked ;
4246 
4247   // Object.wait(timo) will return because of
4248   // (a) notification
4249   // (b) timeout
4250   // (c) thread.interrupt
4251   //
4252   // Thread.interrupt and object.notify{All} both call Event::set.
4253   // That is, we treat thread.interrupt as a special case of notification.
4254   // The underlying Solaris implementation, cond_timedwait, admits
4255   // spurious/premature wakeups, but the JLS/JVM spec prevents the
4256   // JVM from making those visible to Java code.  As such, we must
4257   // filter out spurious wakeups.  We assume all ETIME returns are valid.
4258   //
4259   // TODO: properly differentiate simultaneous notify+interrupt.
4260   // In that case, we should propagate the notify to another waiter.
4261 
4262   while (_Event < 0) {
4263     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4264     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4265       pthread_cond_destroy (_cond);
4266       pthread_cond_init (_cond, NULL) ;
4267     }
4268     assert_status(status == 0 || status == EINTR ||
4269                   status == ETIMEDOUT,
4270                   status, "cond_timedwait");
4271     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4272     if (status == ETIMEDOUT) break ;
4273     // We consume and ignore EINTR and spurious wakeups.
4274   }
4275   --_nParked ;
4276   if (_Event >= 0) {
4277      ret = OS_OK;
4278   }
4279   _Event = 0 ;
4280   status = pthread_mutex_unlock(_mutex);
4281   assert_status(status == 0, status, "mutex_unlock");
4282   assert (_nParked == 0, "invariant") ;
4283   // Paranoia to ensure our locked and lock-free paths interact
4284   // correctly with each other.
4285   OrderAccess::fence();
4286   return ret;
4287 }
4288 
4289 void os::PlatformEvent::unpark() {
4290   // Transitions for _Event:
4291   //    0 :=> 1
4292   //    1 :=> 1
4293   //   -1 :=> either 0 or 1; must signal target thread
4294   //          That is, we can safely transition _Event from -1 to either
4295   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4296   //          unpark() calls.
4297   // See also: "Semaphores in Plan 9" by Mullender & Cox
4298   //
4299   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4300   // that it will take two back-to-back park() calls for the owning
4301   // thread to block. This has the benefit of forcing a spurious return
4302   // from the first park() call after an unpark() call which will help
4303   // shake out uses of park() and unpark() without condition variables.
4304 
4305   if (Atomic::xchg(1, &_Event) >= 0) return;
4306 
4307   // Wait for the thread associated with the event to vacate
4308   int status = pthread_mutex_lock(_mutex);
4309   assert_status(status == 0, status, "mutex_lock");
4310   int AnyWaiters = _nParked;
4311   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4312   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4313     AnyWaiters = 0;
4314     pthread_cond_signal(_cond);
4315   }
4316   status = pthread_mutex_unlock(_mutex);
4317   assert_status(status == 0, status, "mutex_unlock");
4318   if (AnyWaiters != 0) {
4319     status = pthread_cond_signal(_cond);
4320     assert_status(status == 0, status, "cond_signal");
4321   }
4322 
4323   // Note that we signal() _after dropping the lock for "immortal" Events.
4324   // This is safe and avoids a common class of  futile wakeups.  In rare
4325   // circumstances this can cause a thread to return prematurely from
4326   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4327   // simply re-test the condition and re-park itself.
4328 }
4329 
4330 
4331 // JSR166
4332 // -------------------------------------------------------
4333 
4334 /*
4335  * The solaris and bsd implementations of park/unpark are fairly
4336  * conservative for now, but can be improved. They currently use a
4337  * mutex/condvar pair, plus a a count.
4338  * Park decrements count if > 0, else does a condvar wait.  Unpark
4339  * sets count to 1 and signals condvar.  Only one thread ever waits
4340  * on the condvar. Contention seen when trying to park implies that someone
4341  * is unparking you, so don't wait. And spurious returns are fine, so there
4342  * is no need to track notifications.
4343  */
4344 
4345 #define MAX_SECS 100000000
4346 /*
4347  * This code is common to bsd and solaris and will be moved to a
4348  * common place in dolphin.
4349  *
4350  * The passed in time value is either a relative time in nanoseconds
4351  * or an absolute time in milliseconds. Either way it has to be unpacked
4352  * into suitable seconds and nanoseconds components and stored in the
4353  * given timespec structure.
4354  * Given time is a 64-bit value and the time_t used in the timespec is only
4355  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4356  * overflow if times way in the future are given. Further on Solaris versions
4357  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4358  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4359  * As it will be 28 years before "now + 100000000" will overflow we can
4360  * ignore overflow and just impose a hard-limit on seconds using the value
4361  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4362  * years from "now".
4363  */
4364 
4365 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4366   assert (time > 0, "convertTime");
4367 
4368   struct timeval now;
4369   int status = gettimeofday(&now, NULL);
4370   assert(status == 0, "gettimeofday");
4371 
4372   time_t max_secs = now.tv_sec + MAX_SECS;
4373 
4374   if (isAbsolute) {
4375     jlong secs = time / 1000;
4376     if (secs > max_secs) {
4377       absTime->tv_sec = max_secs;
4378     }
4379     else {
4380       absTime->tv_sec = secs;
4381     }
4382     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4383   }
4384   else {
4385     jlong secs = time / NANOSECS_PER_SEC;
4386     if (secs >= MAX_SECS) {
4387       absTime->tv_sec = max_secs;
4388       absTime->tv_nsec = 0;
4389     }
4390     else {
4391       absTime->tv_sec = now.tv_sec + secs;
4392       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4393       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4394         absTime->tv_nsec -= NANOSECS_PER_SEC;
4395         ++absTime->tv_sec; // note: this must be <= max_secs
4396       }
4397     }
4398   }
4399   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4400   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4401   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4402   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4403 }
4404 
4405 void Parker::park(bool isAbsolute, jlong time) {
4406   // Ideally we'd do something useful while spinning, such
4407   // as calling unpackTime().
4408 
4409   // Optional fast-path check:
4410   // Return immediately if a permit is available.
4411   // We depend on Atomic::xchg() having full barrier semantics
4412   // since we are doing a lock-free update to _counter.
4413   if (Atomic::xchg(0, &_counter) > 0) return;
4414 
4415   Thread* thread = Thread::current();
4416   assert(thread->is_Java_thread(), "Must be JavaThread");
4417   JavaThread *jt = (JavaThread *)thread;
4418 
4419   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4420   // Check interrupt before trying to wait
4421   if (Thread::is_interrupted(thread, false)) {
4422     return;
4423   }
4424 
4425   // Next, demultiplex/decode time arguments
4426   struct timespec absTime;
4427   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4428     return;
4429   }
4430   if (time > 0) {
4431     unpackTime(&absTime, isAbsolute, time);
4432   }
4433 
4434 
4435   // Enter safepoint region
4436   // Beware of deadlocks such as 6317397.
4437   // The per-thread Parker:: mutex is a classic leaf-lock.
4438   // In particular a thread must never block on the Threads_lock while
4439   // holding the Parker:: mutex.  If safepoints are pending both the
4440   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4441   ThreadBlockInVM tbivm(jt);
4442 
4443   // Don't wait if cannot get lock since interference arises from
4444   // unblocking.  Also. check interrupt before trying wait
4445   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4446     return;
4447   }
4448 
4449   int status ;
4450   if (_counter > 0)  { // no wait needed
4451     _counter = 0;
4452     status = pthread_mutex_unlock(_mutex);
4453     assert (status == 0, "invariant") ;
4454     // Paranoia to ensure our locked and lock-free paths interact
4455     // correctly with each other and Java-level accesses.
4456     OrderAccess::fence();
4457     return;
4458   }
4459 
4460 #ifdef ASSERT
4461   // Don't catch signals while blocked; let the running threads have the signals.
4462   // (This allows a debugger to break into the running thread.)
4463   sigset_t oldsigs;
4464   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4465   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4466 #endif
4467 
4468   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4469   jt->set_suspend_equivalent();
4470   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4471 
4472   if (time == 0) {
4473     status = pthread_cond_wait (_cond, _mutex) ;
4474   } else {
4475     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4476     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4477       pthread_cond_destroy (_cond) ;
4478       pthread_cond_init    (_cond, NULL);
4479     }
4480   }
4481   assert_status(status == 0 || status == EINTR ||
4482                 status == ETIMEDOUT,
4483                 status, "cond_timedwait");
4484 
4485 #ifdef ASSERT
4486   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4487 #endif
4488 
4489   _counter = 0 ;
4490   status = pthread_mutex_unlock(_mutex) ;
4491   assert_status(status == 0, status, "invariant") ;
4492   // Paranoia to ensure our locked and lock-free paths interact
4493   // correctly with each other and Java-level accesses.
4494   OrderAccess::fence();
4495 
4496   // If externally suspended while waiting, re-suspend
4497   if (jt->handle_special_suspend_equivalent_condition()) {
4498     jt->java_suspend_self();
4499   }
4500 }
4501 
4502 void Parker::unpark() {
4503   int s, status ;
4504   status = pthread_mutex_lock(_mutex);
4505   assert (status == 0, "invariant") ;
4506   s = _counter;
4507   _counter = 1;
4508   if (s < 1) {
4509      if (WorkAroundNPTLTimedWaitHang) {
4510         status = pthread_cond_signal (_cond) ;
4511         assert (status == 0, "invariant") ;
4512         status = pthread_mutex_unlock(_mutex);
4513         assert (status == 0, "invariant") ;
4514      } else {
4515         status = pthread_mutex_unlock(_mutex);
4516         assert (status == 0, "invariant") ;
4517         status = pthread_cond_signal (_cond) ;
4518         assert (status == 0, "invariant") ;
4519      }
4520   } else {
4521     pthread_mutex_unlock(_mutex);
4522     assert (status == 0, "invariant") ;
4523   }
4524 }
4525 
4526 
4527 /* Darwin has no "environ" in a dynamic library. */
4528 #ifdef __APPLE__
4529 #include <crt_externs.h>
4530 #define environ (*_NSGetEnviron())
4531 #else
4532 extern char** environ;
4533 #endif
4534 
4535 // Run the specified command in a separate process. Return its exit value,
4536 // or -1 on failure (e.g. can't fork a new process).
4537 // Unlike system(), this function can be called from signal handler. It
4538 // doesn't block SIGINT et al.
4539 int os::fork_and_exec(char* cmd) {
4540   const char * argv[4] = {"sh", "-c", cmd, NULL};
4541 
4542   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4543   // pthread_atfork handlers and reset pthread library. All we need is a
4544   // separate process to execve. Make a direct syscall to fork process.
4545   // On IA64 there's no fork syscall, we have to use fork() and hope for
4546   // the best...
4547   pid_t pid = fork();
4548 
4549   if (pid < 0) {
4550     // fork failed
4551     return -1;
4552 
4553   } else if (pid == 0) {
4554     // child process
4555 
4556     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4557     // first to kill every thread on the thread list. Because this list is
4558     // not reset by fork() (see notes above), execve() will instead kill
4559     // every thread in the parent process. We know this is the only thread
4560     // in the new process, so make a system call directly.
4561     // IA64 should use normal execve() from glibc to match the glibc fork()
4562     // above.
4563     execve("/bin/sh", (char* const*)argv, environ);
4564 
4565     // execve failed
4566     _exit(-1);
4567 
4568   } else  {
4569     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4570     // care about the actual exit code, for now.
4571 
4572     int status;
4573 
4574     // Wait for the child process to exit.  This returns immediately if
4575     // the child has already exited. */
4576     while (waitpid(pid, &status, 0) < 0) {
4577         switch (errno) {
4578         case ECHILD: return 0;
4579         case EINTR: break;
4580         default: return -1;
4581         }
4582     }
4583 
4584     if (WIFEXITED(status)) {
4585        // The child exited normally; get its exit code.
4586        return WEXITSTATUS(status);
4587     } else if (WIFSIGNALED(status)) {
4588        // The child exited because of a signal
4589        // The best value to return is 0x80 + signal number,
4590        // because that is what all Unix shells do, and because
4591        // it allows callers to distinguish between process exit and
4592        // process death by signal.
4593        return 0x80 + WTERMSIG(status);
4594     } else {
4595        // Unknown exit code; pass it through
4596        return status;
4597     }
4598   }
4599 }
4600 
4601 // is_headless_jre()
4602 //
4603 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4604 // in order to report if we are running in a headless jre
4605 //
4606 // Since JDK8 xawt/libmawt.so was moved into the same directory
4607 // as libawt.so, and renamed libawt_xawt.so
4608 //
4609 bool os::is_headless_jre() {
4610 #ifdef __APPLE__
4611     // We no longer build headless-only on Mac OS X
4612     return false;
4613 #else
4614     struct stat statbuf;
4615     char buf[MAXPATHLEN];
4616     char libmawtpath[MAXPATHLEN];
4617     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4618     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4619     char *p;
4620 
4621     // Get path to libjvm.so
4622     os::jvm_path(buf, sizeof(buf));
4623 
4624     // Get rid of libjvm.so
4625     p = strrchr(buf, '/');
4626     if (p == NULL) return false;
4627     else *p = '\0';
4628 
4629     // Get rid of client or server
4630     p = strrchr(buf, '/');
4631     if (p == NULL) return false;
4632     else *p = '\0';
4633 
4634     // check xawt/libmawt.so
4635     strcpy(libmawtpath, buf);
4636     strcat(libmawtpath, xawtstr);
4637     if (::stat(libmawtpath, &statbuf) == 0) return false;
4638 
4639     // check libawt_xawt.so
4640     strcpy(libmawtpath, buf);
4641     strcat(libmawtpath, new_xawtstr);
4642     if (::stat(libmawtpath, &statbuf) == 0) return false;
4643 
4644     return true;
4645 #endif
4646 }
4647 
4648 // Get the default path to the core file
4649 // Returns the length of the string
4650 int os::get_core_path(char* buffer, size_t bufferSize) {
4651   int n = jio_snprintf(buffer, bufferSize, "/cores");
4652 
4653   // Truncate if theoretical string was longer than bufferSize
4654   n = MIN2(n, (int)bufferSize);
4655 
4656   return n;
4657 }
4658 
4659 #ifndef PRODUCT
4660 void TestReserveMemorySpecial_test() {
4661   // No tests available for this platform
4662 }
4663 #endif