1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 #ifdef _DEBUG
  73 #include <crtdbg.h>
  74 #endif
  75 
  76 
  77 #include <windows.h>
  78 #include <sys/types.h>
  79 #include <sys/stat.h>
  80 #include <sys/timeb.h>
  81 #include <objidl.h>
  82 #include <shlobj.h>
  83 
  84 #include <malloc.h>
  85 #include <signal.h>
  86 #include <direct.h>
  87 #include <errno.h>
  88 #include <fcntl.h>
  89 #include <io.h>
  90 #include <process.h>              // For _beginthreadex(), _endthreadex()
  91 #include <imagehlp.h>             // For os::dll_address_to_function_name
  92 /* for enumerating dll libraries */
  93 #include <vdmdbg.h>
  94 
  95 // for timer info max values which include all bits
  96 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  97 
  98 // For DLL loading/load error detection
  99 // Values of PE COFF
 100 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 101 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 102 
 103 static HANDLE main_process;
 104 static HANDLE main_thread;
 105 static int    main_thread_id;
 106 
 107 static FILETIME process_creation_time;
 108 static FILETIME process_exit_time;
 109 static FILETIME process_user_time;
 110 static FILETIME process_kernel_time;
 111 
 112 #ifdef _M_IA64
 113 #define __CPU__ ia64
 114 #elif _M_AMD64
 115 #define __CPU__ amd64
 116 #else
 117 #define __CPU__ i486
 118 #endif
 119 
 120 // save DLL module handle, used by GetModuleFileName
 121 
 122 HINSTANCE vm_lib_handle;
 123 
 124 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 125   switch (reason) {
 126     case DLL_PROCESS_ATTACH:
 127       vm_lib_handle = hinst;
 128       if(ForceTimeHighResolution)
 129         timeBeginPeriod(1L);
 130       break;
 131     case DLL_PROCESS_DETACH:
 132       if(ForceTimeHighResolution)
 133         timeEndPeriod(1L);
 134 
 135       // Workaround for issue when a custom launcher doesn't call
 136       // DestroyJavaVM and NMT is trying to track memory when free is
 137       // called from a static destructor
 138       if (MemTracker::is_on()) {
 139           MemTracker::shutdown(MemTracker::NMT_normal);
 140       }
 141       break;
 142     default:
 143       break;
 144   }
 145   return true;
 146 }
 147 
 148 static inline double fileTimeAsDouble(FILETIME* time) {
 149   const double high  = (double) ((unsigned int) ~0);
 150   const double split = 10000000.0;
 151   double result = (time->dwLowDateTime / split) +
 152                    time->dwHighDateTime * (high/split);
 153   return result;
 154 }
 155 
 156 // Implementation of os
 157 
 158 bool os::getenv(const char* name, char* buffer, int len) {
 159  int result = GetEnvironmentVariable(name, buffer, len);
 160  return result > 0 && result < len;
 161 }
 162 
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 void os::init_system_properties_values() {
 182   /* sysclasspath, java_home, dll_dir */
 183   {
 184       char *home_path;
 185       char *dll_path;
 186       char *pslash;
 187       char *bin = "\\bin";
 188       char home_dir[MAX_PATH];
 189 
 190       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 191           os::jvm_path(home_dir, sizeof(home_dir));
 192           // Found the full path to jvm.dll.
 193           // Now cut the path to <java_home>/jre if we can.
 194           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 195           pslash = strrchr(home_dir, '\\');
 196           if (pslash != NULL) {
 197               *pslash = '\0';                 /* get rid of \{client|server} */
 198               pslash = strrchr(home_dir, '\\');
 199               if (pslash != NULL)
 200                   *pslash = '\0';             /* get rid of \bin */
 201           }
 202       }
 203 
 204       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 205       if (home_path == NULL)
 206           return;
 207       strcpy(home_path, home_dir);
 208       Arguments::set_java_home(home_path);
 209 
 210       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 211       if (dll_path == NULL)
 212           return;
 213       strcpy(dll_path, home_dir);
 214       strcat(dll_path, bin);
 215       Arguments::set_dll_dir(dll_path);
 216 
 217       if (!set_boot_path('\\', ';'))
 218           return;
 219   }
 220 
 221   /* library_path */
 222   #define EXT_DIR "\\lib\\ext"
 223   #define BIN_DIR "\\bin"
 224   #define PACKAGE_DIR "\\Sun\\Java"
 225   {
 226     /* Win32 library search order (See the documentation for LoadLibrary):
 227      *
 228      * 1. The directory from which application is loaded.
 229      * 2. The system wide Java Extensions directory (Java only)
 230      * 3. System directory (GetSystemDirectory)
 231      * 4. Windows directory (GetWindowsDirectory)
 232      * 5. The PATH environment variable
 233      * 6. The current directory
 234      */
 235 
 236     char *library_path;
 237     char tmp[MAX_PATH];
 238     char *path_str = ::getenv("PATH");
 239 
 240     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 241         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 242 
 243     library_path[0] = '\0';
 244 
 245     GetModuleFileName(NULL, tmp, sizeof(tmp));
 246     *(strrchr(tmp, '\\')) = '\0';
 247     strcat(library_path, tmp);
 248 
 249     GetWindowsDirectory(tmp, sizeof(tmp));
 250     strcat(library_path, ";");
 251     strcat(library_path, tmp);
 252     strcat(library_path, PACKAGE_DIR BIN_DIR);
 253 
 254     GetSystemDirectory(tmp, sizeof(tmp));
 255     strcat(library_path, ";");
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261 
 262     if (path_str) {
 263         strcat(library_path, ";");
 264         strcat(library_path, path_str);
 265     }
 266 
 267     strcat(library_path, ";.");
 268 
 269     Arguments::set_library_path(library_path);
 270     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 271   }
 272 
 273   /* Default extensions directory */
 274   {
 275     char path[MAX_PATH];
 276     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 277     GetWindowsDirectory(path, MAX_PATH);
 278     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 279         path, PACKAGE_DIR, EXT_DIR);
 280     Arguments::set_ext_dirs(buf);
 281   }
 282   #undef EXT_DIR
 283   #undef BIN_DIR
 284   #undef PACKAGE_DIR
 285 
 286   /* Default endorsed standards directory. */
 287   {
 288     #define ENDORSED_DIR "\\lib\\endorsed"
 289     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 290     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 291     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 292     Arguments::set_endorsed_dirs(buf);
 293     #undef ENDORSED_DIR
 294   }
 295 
 296 #ifndef _WIN64
 297   // set our UnhandledExceptionFilter and save any previous one
 298   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 299 #endif
 300 
 301   // Done
 302   return;
 303 }
 304 
 305 void os::breakpoint() {
 306   DebugBreak();
 307 }
 308 
 309 // Invoked from the BREAKPOINT Macro
 310 extern "C" void breakpoint() {
 311   os::breakpoint();
 312 }
 313 
 314 /*
 315  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316  * So far, this method is only used by Native Memory Tracking, which is
 317  * only supported on Windows XP or later.
 318  */
 319 address os::get_caller_pc(int n) {
 320 #ifdef _NMT_NOINLINE_
 321   n ++;
 322 #endif
 323   address pc;
 324   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 325     return pc;
 326   }
 327   return NULL;
 328 }
 329 
 330 
 331 // os::current_stack_base()
 332 //
 333 //   Returns the base of the stack, which is the stack's
 334 //   starting address.  This function must be called
 335 //   while running on the stack of the thread being queried.
 336 
 337 address os::current_stack_base() {
 338   MEMORY_BASIC_INFORMATION minfo;
 339   address stack_bottom;
 340   size_t stack_size;
 341 
 342   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 343   stack_bottom =  (address)minfo.AllocationBase;
 344   stack_size = minfo.RegionSize;
 345 
 346   // Add up the sizes of all the regions with the same
 347   // AllocationBase.
 348   while( 1 )
 349   {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if ( stack_bottom == (address)minfo.AllocationBase )
 352       stack_size += minfo.RegionSize;
 353     else
 354       break;
 355   }
 356 
 357 #ifdef _M_IA64
 358   // IA64 has memory and register stacks
 359   //
 360   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 361   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 362   // growing downwards, 2MB summed up)
 363   //
 364   // ...
 365   // ------- top of stack (high address) -----
 366   // |
 367   // |      1MB
 368   // |      Backing Store (Register Stack)
 369   // |
 370   // |         / \
 371   // |          |
 372   // |          |
 373   // |          |
 374   // ------------------------ stack base -----
 375   // |      1MB
 376   // |      Memory Stack
 377   // |
 378   // |          |
 379   // |          |
 380   // |          |
 381   // |         \ /
 382   // |
 383   // ----- bottom of stack (low address) -----
 384   // ...
 385 
 386   stack_size = stack_size / 2;
 387 #endif
 388   return stack_bottom + stack_size;
 389 }
 390 
 391 size_t os::current_stack_size() {
 392   size_t sz;
 393   MEMORY_BASIC_INFORMATION minfo;
 394   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 395   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 396   return sz;
 397 }
 398 
 399 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 400   const struct tm* time_struct_ptr = localtime(clock);
 401   if (time_struct_ptr != NULL) {
 402     *res = *time_struct_ptr;
 403     return res;
 404   }
 405   return NULL;
 406 }
 407 
 408 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 409 
 410 // Thread start routine for all new Java threads
 411 static unsigned __stdcall java_start(Thread* thread) {
 412   // Try to randomize the cache line index of hot stack frames.
 413   // This helps when threads of the same stack traces evict each other's
 414   // cache lines. The threads can be either from the same JVM instance, or
 415   // from different JVM instances. The benefit is especially true for
 416   // processors with hyperthreading technology.
 417   static int counter = 0;
 418   int pid = os::current_process_id();
 419   _alloca(((pid ^ counter++) & 7) * 128);
 420 
 421   OSThread* osthr = thread->osthread();
 422   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 423 
 424   if (UseNUMA) {
 425     int lgrp_id = os::numa_get_group_id();
 426     if (lgrp_id != -1) {
 427       thread->set_lgrp_id(lgrp_id);
 428     }
 429   }
 430 
 431 
 432   // Install a win32 structured exception handler around every thread created
 433   // by VM, so VM can genrate error dump when an exception occurred in non-
 434   // Java thread (e.g. VM thread).
 435   __try {
 436      thread->run();
 437   } __except(topLevelExceptionFilter(
 438              (_EXCEPTION_POINTERS*)_exception_info())) {
 439       // Nothing to do.
 440   }
 441 
 442   // One less thread is executing
 443   // When the VMThread gets here, the main thread may have already exited
 444   // which frees the CodeHeap containing the Atomic::add code
 445   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 446     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 447   }
 448 
 449   return 0;
 450 }
 451 
 452 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 453   // Allocate the OSThread object
 454   OSThread* osthread = new OSThread(NULL, NULL);
 455   if (osthread == NULL) return NULL;
 456 
 457   // Initialize support for Java interrupts
 458   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 459   if (interrupt_event == NULL) {
 460     delete osthread;
 461     return NULL;
 462   }
 463   osthread->set_interrupt_event(interrupt_event);
 464 
 465   // Store info on the Win32 thread into the OSThread
 466   osthread->set_thread_handle(thread_handle);
 467   osthread->set_thread_id(thread_id);
 468 
 469   if (UseNUMA) {
 470     int lgrp_id = os::numa_get_group_id();
 471     if (lgrp_id != -1) {
 472       thread->set_lgrp_id(lgrp_id);
 473     }
 474   }
 475 
 476   // Initial thread state is INITIALIZED, not SUSPENDED
 477   osthread->set_state(INITIALIZED);
 478 
 479   return osthread;
 480 }
 481 
 482 
 483 bool os::create_attached_thread(JavaThread* thread) {
 484 #ifdef ASSERT
 485   thread->verify_not_published();
 486 #endif
 487   HANDLE thread_h;
 488   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 489                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 490     fatal("DuplicateHandle failed\n");
 491   }
 492   OSThread* osthread = create_os_thread(thread, thread_h,
 493                                         (int)current_thread_id());
 494   if (osthread == NULL) {
 495      return false;
 496   }
 497 
 498   // Initial thread state is RUNNABLE
 499   osthread->set_state(RUNNABLE);
 500 
 501   thread->set_osthread(osthread);
 502   return true;
 503 }
 504 
 505 bool os::create_main_thread(JavaThread* thread) {
 506 #ifdef ASSERT
 507   thread->verify_not_published();
 508 #endif
 509   if (_starting_thread == NULL) {
 510     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 511      if (_starting_thread == NULL) {
 512         return false;
 513      }
 514   }
 515 
 516   // The primordial thread is runnable from the start)
 517   _starting_thread->set_state(RUNNABLE);
 518 
 519   thread->set_osthread(_starting_thread);
 520   return true;
 521 }
 522 
 523 // Allocate and initialize a new OSThread
 524 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 525   unsigned thread_id;
 526 
 527   // Allocate the OSThread object
 528   OSThread* osthread = new OSThread(NULL, NULL);
 529   if (osthread == NULL) {
 530     return false;
 531   }
 532 
 533   // Initialize support for Java interrupts
 534   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 535   if (interrupt_event == NULL) {
 536     delete osthread;
 537     return NULL;
 538   }
 539   osthread->set_interrupt_event(interrupt_event);
 540   osthread->set_interrupted(false);
 541 
 542   thread->set_osthread(osthread);
 543 
 544   if (stack_size == 0) {
 545     switch (thr_type) {
 546     case os::java_thread:
 547       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 548       if (JavaThread::stack_size_at_create() > 0)
 549         stack_size = JavaThread::stack_size_at_create();
 550       break;
 551     case os::compiler_thread:
 552       if (CompilerThreadStackSize > 0) {
 553         stack_size = (size_t)(CompilerThreadStackSize * K);
 554         break;
 555       } // else fall through:
 556         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 557     case os::vm_thread:
 558     case os::pgc_thread:
 559     case os::cgc_thread:
 560     case os::watcher_thread:
 561       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 562       break;
 563     }
 564   }
 565 
 566   // Create the Win32 thread
 567   //
 568   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 569   // does not specify stack size. Instead, it specifies the size of
 570   // initially committed space. The stack size is determined by
 571   // PE header in the executable. If the committed "stack_size" is larger
 572   // than default value in the PE header, the stack is rounded up to the
 573   // nearest multiple of 1MB. For example if the launcher has default
 574   // stack size of 320k, specifying any size less than 320k does not
 575   // affect the actual stack size at all, it only affects the initial
 576   // commitment. On the other hand, specifying 'stack_size' larger than
 577   // default value may cause significant increase in memory usage, because
 578   // not only the stack space will be rounded up to MB, but also the
 579   // entire space is committed upfront.
 580   //
 581   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 582   // for CreateThread() that can treat 'stack_size' as stack size. However we
 583   // are not supposed to call CreateThread() directly according to MSDN
 584   // document because JVM uses C runtime library. The good news is that the
 585   // flag appears to work with _beginthredex() as well.
 586 
 587 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 588 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 589 #endif
 590 
 591   HANDLE thread_handle =
 592     (HANDLE)_beginthreadex(NULL,
 593                            (unsigned)stack_size,
 594                            (unsigned (__stdcall *)(void*)) java_start,
 595                            thread,
 596                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 597                            &thread_id);
 598   if (thread_handle == NULL) {
 599     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 600     // without the flag.
 601     thread_handle =
 602     (HANDLE)_beginthreadex(NULL,
 603                            (unsigned)stack_size,
 604                            (unsigned (__stdcall *)(void*)) java_start,
 605                            thread,
 606                            CREATE_SUSPENDED,
 607                            &thread_id);
 608   }
 609   if (thread_handle == NULL) {
 610     // Need to clean up stuff we've allocated so far
 611     CloseHandle(osthread->interrupt_event());
 612     thread->set_osthread(NULL);
 613     delete osthread;
 614     return NULL;
 615   }
 616 
 617   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 618 
 619   // Store info on the Win32 thread into the OSThread
 620   osthread->set_thread_handle(thread_handle);
 621   osthread->set_thread_id(thread_id);
 622 
 623   // Initial thread state is INITIALIZED, not SUSPENDED
 624   osthread->set_state(INITIALIZED);
 625 
 626   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 627   return true;
 628 }
 629 
 630 
 631 // Free Win32 resources related to the OSThread
 632 void os::free_thread(OSThread* osthread) {
 633   assert(osthread != NULL, "osthread not set");
 634   CloseHandle(osthread->thread_handle());
 635   CloseHandle(osthread->interrupt_event());
 636   delete osthread;
 637 }
 638 
 639 static jlong first_filetime;
 640 static jlong initial_performance_count;
 641 static jlong performance_frequency;
 642 
 643 
 644 jlong as_long(LARGE_INTEGER x) {
 645   jlong result = 0; // initialization to avoid warning
 646   set_high(&result, x.HighPart);
 647   set_low(&result,  x.LowPart);
 648   return result;
 649 }
 650 
 651 
 652 jlong os::elapsed_counter() {
 653   LARGE_INTEGER count;
 654   if (win32::_has_performance_count) {
 655     QueryPerformanceCounter(&count);
 656     return as_long(count) - initial_performance_count;
 657   } else {
 658     FILETIME wt;
 659     GetSystemTimeAsFileTime(&wt);
 660     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 661   }
 662 }
 663 
 664 
 665 jlong os::elapsed_frequency() {
 666   if (win32::_has_performance_count) {
 667     return performance_frequency;
 668   } else {
 669    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 670    return 10000000;
 671   }
 672 }
 673 
 674 
 675 julong os::available_memory() {
 676   return win32::available_memory();
 677 }
 678 
 679 julong os::win32::available_memory() {
 680   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 681   // value if total memory is larger than 4GB
 682   MEMORYSTATUSEX ms;
 683   ms.dwLength = sizeof(ms);
 684   GlobalMemoryStatusEx(&ms);
 685 
 686   return (julong)ms.ullAvailPhys;
 687 }
 688 
 689 julong os::physical_memory() {
 690   return win32::physical_memory();
 691 }
 692 
 693 bool os::has_allocatable_memory_limit(julong* limit) {
 694   MEMORYSTATUSEX ms;
 695   ms.dwLength = sizeof(ms);
 696   GlobalMemoryStatusEx(&ms);
 697 #ifdef _LP64
 698   *limit = (julong)ms.ullAvailVirtual;
 699   return true;
 700 #else
 701   // Limit to 1400m because of the 2gb address space wall
 702   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 703   return true;
 704 #endif
 705 }
 706 
 707 // VC6 lacks DWORD_PTR
 708 #if _MSC_VER < 1300
 709 typedef UINT_PTR DWORD_PTR;
 710 #endif
 711 
 712 int os::active_processor_count() {
 713   DWORD_PTR lpProcessAffinityMask = 0;
 714   DWORD_PTR lpSystemAffinityMask = 0;
 715   int proc_count = processor_count();
 716   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 717       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 718     // Nof active processors is number of bits in process affinity mask
 719     int bitcount = 0;
 720     while (lpProcessAffinityMask != 0) {
 721       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 722       bitcount++;
 723     }
 724     return bitcount;
 725   } else {
 726     return proc_count;
 727   }
 728 }
 729 
 730 void os::set_native_thread_name(const char *name) {
 731   // Not yet implemented.
 732   return;
 733 }
 734 
 735 bool os::distribute_processes(uint length, uint* distribution) {
 736   // Not yet implemented.
 737   return false;
 738 }
 739 
 740 bool os::bind_to_processor(uint processor_id) {
 741   // Not yet implemented.
 742   return false;
 743 }
 744 
 745 void os::win32::initialize_performance_counter() {
 746   LARGE_INTEGER count;
 747   if (QueryPerformanceFrequency(&count)) {
 748     win32::_has_performance_count = 1;
 749     performance_frequency = as_long(count);
 750     QueryPerformanceCounter(&count);
 751     initial_performance_count = as_long(count);
 752   } else {
 753     win32::_has_performance_count = 0;
 754     FILETIME wt;
 755     GetSystemTimeAsFileTime(&wt);
 756     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 757   }
 758 }
 759 
 760 
 761 double os::elapsedTime() {
 762   return (double) elapsed_counter() / (double) elapsed_frequency();
 763 }
 764 
 765 
 766 // Windows format:
 767 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 768 // Java format:
 769 //   Java standards require the number of milliseconds since 1/1/1970
 770 
 771 // Constant offset - calculated using offset()
 772 static jlong  _offset   = 116444736000000000;
 773 // Fake time counter for reproducible results when debugging
 774 static jlong  fake_time = 0;
 775 
 776 #ifdef ASSERT
 777 // Just to be safe, recalculate the offset in debug mode
 778 static jlong _calculated_offset = 0;
 779 static int   _has_calculated_offset = 0;
 780 
 781 jlong offset() {
 782   if (_has_calculated_offset) return _calculated_offset;
 783   SYSTEMTIME java_origin;
 784   java_origin.wYear          = 1970;
 785   java_origin.wMonth         = 1;
 786   java_origin.wDayOfWeek     = 0; // ignored
 787   java_origin.wDay           = 1;
 788   java_origin.wHour          = 0;
 789   java_origin.wMinute        = 0;
 790   java_origin.wSecond        = 0;
 791   java_origin.wMilliseconds  = 0;
 792   FILETIME jot;
 793   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 794     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 795   }
 796   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 797   _has_calculated_offset = 1;
 798   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 799   return _calculated_offset;
 800 }
 801 #else
 802 jlong offset() {
 803   return _offset;
 804 }
 805 #endif
 806 
 807 jlong windows_to_java_time(FILETIME wt) {
 808   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 809   return (a - offset()) / 10000;
 810 }
 811 
 812 FILETIME java_to_windows_time(jlong l) {
 813   jlong a = (l * 10000) + offset();
 814   FILETIME result;
 815   result.dwHighDateTime = high(a);
 816   result.dwLowDateTime  = low(a);
 817   return result;
 818 }
 819 
 820 bool os::supports_vtime() { return true; }
 821 bool os::enable_vtime() { return false; }
 822 bool os::vtime_enabled() { return false; }
 823 
 824 double os::elapsedVTime() {
 825   FILETIME created;
 826   FILETIME exited;
 827   FILETIME kernel;
 828   FILETIME user;
 829   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 830     // the resolution of windows_to_java_time() should be sufficient (ms)
 831     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 832   } else {
 833     return elapsedTime();
 834   }
 835 }
 836 
 837 jlong os::javaTimeMillis() {
 838   if (UseFakeTimers) {
 839     return fake_time++;
 840   } else {
 841     FILETIME wt;
 842     GetSystemTimeAsFileTime(&wt);
 843     return windows_to_java_time(wt);
 844   }
 845 }
 846 
 847 jlong os::javaTimeNanos() {
 848   if (!win32::_has_performance_count) {
 849     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 850   } else {
 851     LARGE_INTEGER current_count;
 852     QueryPerformanceCounter(&current_count);
 853     double current = as_long(current_count);
 854     double freq = performance_frequency;
 855     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 856     return time;
 857   }
 858 }
 859 
 860 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 861   if (!win32::_has_performance_count) {
 862     // javaTimeMillis() doesn't have much percision,
 863     // but it is not going to wrap -- so all 64 bits
 864     info_ptr->max_value = ALL_64_BITS;
 865 
 866     // this is a wall clock timer, so may skip
 867     info_ptr->may_skip_backward = true;
 868     info_ptr->may_skip_forward = true;
 869   } else {
 870     jlong freq = performance_frequency;
 871     if (freq < NANOSECS_PER_SEC) {
 872       // the performance counter is 64 bits and we will
 873       // be multiplying it -- so no wrap in 64 bits
 874       info_ptr->max_value = ALL_64_BITS;
 875     } else if (freq > NANOSECS_PER_SEC) {
 876       // use the max value the counter can reach to
 877       // determine the max value which could be returned
 878       julong max_counter = (julong)ALL_64_BITS;
 879       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 880     } else {
 881       // the performance counter is 64 bits and we will
 882       // be using it directly -- so no wrap in 64 bits
 883       info_ptr->max_value = ALL_64_BITS;
 884     }
 885 
 886     // using a counter, so no skipping
 887     info_ptr->may_skip_backward = false;
 888     info_ptr->may_skip_forward = false;
 889   }
 890   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 891 }
 892 
 893 char* os::local_time_string(char *buf, size_t buflen) {
 894   SYSTEMTIME st;
 895   GetLocalTime(&st);
 896   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 897                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 898   return buf;
 899 }
 900 
 901 bool os::getTimesSecs(double* process_real_time,
 902                      double* process_user_time,
 903                      double* process_system_time) {
 904   HANDLE h_process = GetCurrentProcess();
 905   FILETIME create_time, exit_time, kernel_time, user_time;
 906   BOOL result = GetProcessTimes(h_process,
 907                                &create_time,
 908                                &exit_time,
 909                                &kernel_time,
 910                                &user_time);
 911   if (result != 0) {
 912     FILETIME wt;
 913     GetSystemTimeAsFileTime(&wt);
 914     jlong rtc_millis = windows_to_java_time(wt);
 915     jlong user_millis = windows_to_java_time(user_time);
 916     jlong system_millis = windows_to_java_time(kernel_time);
 917     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 918     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 919     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 920     return true;
 921   } else {
 922     return false;
 923   }
 924 }
 925 
 926 void os::shutdown() {
 927 
 928   // allow PerfMemory to attempt cleanup of any persistent resources
 929   perfMemory_exit();
 930 
 931   // flush buffered output, finish log files
 932   ostream_abort();
 933 
 934   // Check for abort hook
 935   abort_hook_t abort_hook = Arguments::abort_hook();
 936   if (abort_hook != NULL) {
 937     abort_hook();
 938   }
 939 }
 940 
 941 
 942 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 943                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 944 
 945 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 946   HINSTANCE dbghelp;
 947   EXCEPTION_POINTERS ep;
 948   MINIDUMP_EXCEPTION_INFORMATION mei;
 949   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 950 
 951   HANDLE hProcess = GetCurrentProcess();
 952   DWORD processId = GetCurrentProcessId();
 953   HANDLE dumpFile;
 954   MINIDUMP_TYPE dumpType;
 955   static const char* cwd;
 956 
 957 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 958 #ifndef ASSERT
 959   // If running on a client version of Windows and user has not explicitly enabled dumping
 960   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 961     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 962     return;
 963     // If running on a server version of Windows and user has explictly disabled dumping
 964   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 965     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 966     return;
 967   }
 968 #else
 969   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 970     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 971     return;
 972   }
 973 #endif
 974 
 975   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 976 
 977   if (dbghelp == NULL) {
 978     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 979     return;
 980   }
 981 
 982   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 983     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 984     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 985     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 986 
 987   if (_MiniDumpWriteDump == NULL) {
 988     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 989     return;
 990   }
 991 
 992   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 993 
 994 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 995 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 996 #if API_VERSION_NUMBER >= 11
 997   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 998     MiniDumpWithUnloadedModules);
 999 #endif
1000 
1001   cwd = get_current_directory(NULL, 0);
1002   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
1003   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1004 
1005   if (dumpFile == INVALID_HANDLE_VALUE) {
1006     VMError::report_coredump_status("Failed to create file for dumping", false);
1007     return;
1008   }
1009   if (exceptionRecord != NULL && contextRecord != NULL) {
1010     ep.ContextRecord = (PCONTEXT) contextRecord;
1011     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1012 
1013     mei.ThreadId = GetCurrentThreadId();
1014     mei.ExceptionPointers = &ep;
1015     pmei = &mei;
1016   } else {
1017     pmei = NULL;
1018   }
1019 
1020 
1021   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1022   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1023   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1024       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1025         DWORD error = GetLastError();
1026         LPTSTR msgbuf = NULL;
1027 
1028         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1029                       FORMAT_MESSAGE_FROM_SYSTEM |
1030                       FORMAT_MESSAGE_IGNORE_INSERTS,
1031                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1032 
1033           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1034           LocalFree(msgbuf);
1035         } else {
1036           // Call to FormatMessage failed, just include the result from GetLastError
1037           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1038         }
1039         VMError::report_coredump_status(buffer, false);
1040   } else {
1041     VMError::report_coredump_status(buffer, true);
1042   }
1043 
1044   CloseHandle(dumpFile);
1045 }
1046 
1047 
1048 
1049 void os::abort(bool dump_core)
1050 {
1051   os::shutdown();
1052   // no core dump on Windows
1053   ::exit(1);
1054 }
1055 
1056 // Die immediately, no exit hook, no abort hook, no cleanup.
1057 void os::die() {
1058   _exit(-1);
1059 }
1060 
1061 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1062 //  * dirent_md.c       1.15 00/02/02
1063 //
1064 // The declarations for DIR and struct dirent are in jvm_win32.h.
1065 
1066 /* Caller must have already run dirname through JVM_NativePath, which removes
1067    duplicate slashes and converts all instances of '/' into '\\'. */
1068 
1069 DIR *
1070 os::opendir(const char *dirname)
1071 {
1072     assert(dirname != NULL, "just checking");   // hotspot change
1073     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1074     DWORD fattr;                                // hotspot change
1075     char alt_dirname[4] = { 0, 0, 0, 0 };
1076 
1077     if (dirp == 0) {
1078         errno = ENOMEM;
1079         return 0;
1080     }
1081 
1082     /*
1083      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1084      * as a directory in FindFirstFile().  We detect this case here and
1085      * prepend the current drive name.
1086      */
1087     if (dirname[1] == '\0' && dirname[0] == '\\') {
1088         alt_dirname[0] = _getdrive() + 'A' - 1;
1089         alt_dirname[1] = ':';
1090         alt_dirname[2] = '\\';
1091         alt_dirname[3] = '\0';
1092         dirname = alt_dirname;
1093     }
1094 
1095     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1096     if (dirp->path == 0) {
1097         free(dirp, mtInternal);
1098         errno = ENOMEM;
1099         return 0;
1100     }
1101     strcpy(dirp->path, dirname);
1102 
1103     fattr = GetFileAttributes(dirp->path);
1104     if (fattr == 0xffffffff) {
1105         free(dirp->path, mtInternal);
1106         free(dirp, mtInternal);
1107         errno = ENOENT;
1108         return 0;
1109     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1110         free(dirp->path, mtInternal);
1111         free(dirp, mtInternal);
1112         errno = ENOTDIR;
1113         return 0;
1114     }
1115 
1116     /* Append "*.*", or possibly "\\*.*", to path */
1117     if (dirp->path[1] == ':'
1118         && (dirp->path[2] == '\0'
1119             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1120         /* No '\\' needed for cases like "Z:" or "Z:\" */
1121         strcat(dirp->path, "*.*");
1122     } else {
1123         strcat(dirp->path, "\\*.*");
1124     }
1125 
1126     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1127     if (dirp->handle == INVALID_HANDLE_VALUE) {
1128         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1129             free(dirp->path, mtInternal);
1130             free(dirp, mtInternal);
1131             errno = EACCES;
1132             return 0;
1133         }
1134     }
1135     return dirp;
1136 }
1137 
1138 /* parameter dbuf unused on Windows */
1139 
1140 struct dirent *
1141 os::readdir(DIR *dirp, dirent *dbuf)
1142 {
1143     assert(dirp != NULL, "just checking");      // hotspot change
1144     if (dirp->handle == INVALID_HANDLE_VALUE) {
1145         return 0;
1146     }
1147 
1148     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1149 
1150     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1151         if (GetLastError() == ERROR_INVALID_HANDLE) {
1152             errno = EBADF;
1153             return 0;
1154         }
1155         FindClose(dirp->handle);
1156         dirp->handle = INVALID_HANDLE_VALUE;
1157     }
1158 
1159     return &dirp->dirent;
1160 }
1161 
1162 int
1163 os::closedir(DIR *dirp)
1164 {
1165     assert(dirp != NULL, "just checking");      // hotspot change
1166     if (dirp->handle != INVALID_HANDLE_VALUE) {
1167         if (!FindClose(dirp->handle)) {
1168             errno = EBADF;
1169             return -1;
1170         }
1171         dirp->handle = INVALID_HANDLE_VALUE;
1172     }
1173     free(dirp->path, mtInternal);
1174     free(dirp, mtInternal);
1175     return 0;
1176 }
1177 
1178 // This must be hard coded because it's the system's temporary
1179 // directory not the java application's temp directory, ala java.io.tmpdir.
1180 const char* os::get_temp_directory() {
1181   static char path_buf[MAX_PATH];
1182   if (GetTempPath(MAX_PATH, path_buf)>0)
1183     return path_buf;
1184   else{
1185     path_buf[0]='\0';
1186     return path_buf;
1187   }
1188 }
1189 
1190 static bool file_exists(const char* filename) {
1191   if (filename == NULL || strlen(filename) == 0) {
1192     return false;
1193   }
1194   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1195 }
1196 
1197 bool os::dll_build_name(char *buffer, size_t buflen,
1198                         const char* pname, const char* fname) {
1199   bool retval = false;
1200   const size_t pnamelen = pname ? strlen(pname) : 0;
1201   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1202 
1203   // Return error on buffer overflow.
1204   if (pnamelen + strlen(fname) + 10 > buflen) {
1205     return retval;
1206   }
1207 
1208   if (pnamelen == 0) {
1209     jio_snprintf(buffer, buflen, "%s.dll", fname);
1210     retval = true;
1211   } else if (c == ':' || c == '\\') {
1212     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1213     retval = true;
1214   } else if (strchr(pname, *os::path_separator()) != NULL) {
1215     int n;
1216     char** pelements = split_path(pname, &n);
1217     if (pelements == NULL) {
1218       return false;
1219     }
1220     for (int i = 0 ; i < n ; i++) {
1221       char* path = pelements[i];
1222       // Really shouldn't be NULL, but check can't hurt
1223       size_t plen = (path == NULL) ? 0 : strlen(path);
1224       if (plen == 0) {
1225         continue; // skip the empty path values
1226       }
1227       const char lastchar = path[plen - 1];
1228       if (lastchar == ':' || lastchar == '\\') {
1229         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1230       } else {
1231         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1232       }
1233       if (file_exists(buffer)) {
1234         retval = true;
1235         break;
1236       }
1237     }
1238     // release the storage
1239     for (int i = 0 ; i < n ; i++) {
1240       if (pelements[i] != NULL) {
1241         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1242       }
1243     }
1244     if (pelements != NULL) {
1245       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1246     }
1247   } else {
1248     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1249     retval = true;
1250   }
1251   return retval;
1252 }
1253 
1254 // Needs to be in os specific directory because windows requires another
1255 // header file <direct.h>
1256 const char* os::get_current_directory(char *buf, size_t buflen) {
1257   int n = static_cast<int>(buflen);
1258   if (buflen > INT_MAX)  n = INT_MAX;
1259   return _getcwd(buf, n);
1260 }
1261 
1262 //-----------------------------------------------------------
1263 // Helper functions for fatal error handler
1264 #ifdef _WIN64
1265 // Helper routine which returns true if address in
1266 // within the NTDLL address space.
1267 //
1268 static bool _addr_in_ntdll( address addr )
1269 {
1270   HMODULE hmod;
1271   MODULEINFO minfo;
1272 
1273   hmod = GetModuleHandle("NTDLL.DLL");
1274   if ( hmod == NULL ) return false;
1275   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1276                                &minfo, sizeof(MODULEINFO)) )
1277     return false;
1278 
1279   if ( (addr >= minfo.lpBaseOfDll) &&
1280        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1281     return true;
1282   else
1283     return false;
1284 }
1285 #endif
1286 
1287 
1288 // Enumerate all modules for a given process ID
1289 //
1290 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1291 // different API for doing this. We use PSAPI.DLL on NT based
1292 // Windows and ToolHelp on 95/98/Me.
1293 
1294 // Callback function that is called by enumerate_modules() on
1295 // every DLL module.
1296 // Input parameters:
1297 //    int       pid,
1298 //    char*     module_file_name,
1299 //    address   module_base_addr,
1300 //    unsigned  module_size,
1301 //    void*     param
1302 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1303 
1304 // enumerate_modules for Windows NT, using PSAPI
1305 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1306 {
1307   HANDLE   hProcess ;
1308 
1309 # define MAX_NUM_MODULES 128
1310   HMODULE     modules[MAX_NUM_MODULES];
1311   static char filename[ MAX_PATH ];
1312   int         result = 0;
1313 
1314   if (!os::PSApiDll::PSApiAvailable()) {
1315     return 0;
1316   }
1317 
1318   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1319                          FALSE, pid ) ;
1320   if (hProcess == NULL) return 0;
1321 
1322   DWORD size_needed;
1323   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1324                            sizeof(modules), &size_needed)) {
1325       CloseHandle( hProcess );
1326       return 0;
1327   }
1328 
1329   // number of modules that are currently loaded
1330   int num_modules = size_needed / sizeof(HMODULE);
1331 
1332   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1333     // Get Full pathname:
1334     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1335                              filename, sizeof(filename))) {
1336         filename[0] = '\0';
1337     }
1338 
1339     MODULEINFO modinfo;
1340     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1341                                &modinfo, sizeof(modinfo))) {
1342         modinfo.lpBaseOfDll = NULL;
1343         modinfo.SizeOfImage = 0;
1344     }
1345 
1346     // Invoke callback function
1347     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1348                   modinfo.SizeOfImage, param);
1349     if (result) break;
1350   }
1351 
1352   CloseHandle( hProcess ) ;
1353   return result;
1354 }
1355 
1356 
1357 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1358 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1359 {
1360   HANDLE                hSnapShot ;
1361   static MODULEENTRY32  modentry ;
1362   int                   result = 0;
1363 
1364   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1365     return 0;
1366   }
1367 
1368   // Get a handle to a Toolhelp snapshot of the system
1369   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1370   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1371       return FALSE ;
1372   }
1373 
1374   // iterate through all modules
1375   modentry.dwSize = sizeof(MODULEENTRY32) ;
1376   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1377 
1378   while( not_done ) {
1379     // invoke the callback
1380     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1381                 modentry.modBaseSize, param);
1382     if (result) break;
1383 
1384     modentry.dwSize = sizeof(MODULEENTRY32) ;
1385     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1386   }
1387 
1388   CloseHandle(hSnapShot);
1389   return result;
1390 }
1391 
1392 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1393 {
1394   // Get current process ID if caller doesn't provide it.
1395   if (!pid) pid = os::current_process_id();
1396 
1397   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1398   else                    return _enumerate_modules_windows(pid, func, param);
1399 }
1400 
1401 struct _modinfo {
1402    address addr;
1403    char*   full_path;   // point to a char buffer
1404    int     buflen;      // size of the buffer
1405    address base_addr;
1406 };
1407 
1408 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1409                                   unsigned size, void * param) {
1410    struct _modinfo *pmod = (struct _modinfo *)param;
1411    if (!pmod) return -1;
1412 
1413    if (base_addr     <= pmod->addr &&
1414        base_addr+size > pmod->addr) {
1415      // if a buffer is provided, copy path name to the buffer
1416      if (pmod->full_path) {
1417        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1418      }
1419      pmod->base_addr = base_addr;
1420      return 1;
1421    }
1422    return 0;
1423 }
1424 
1425 bool os::dll_address_to_library_name(address addr, char* buf,
1426                                      int buflen, int* offset) {
1427   // buf is not optional, but offset is optional
1428   assert(buf != NULL, "sanity check");
1429 
1430 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1431 //       return the full path to the DLL file, sometimes it returns path
1432 //       to the corresponding PDB file (debug info); sometimes it only
1433 //       returns partial path, which makes life painful.
1434 
1435   struct _modinfo mi;
1436   mi.addr      = addr;
1437   mi.full_path = buf;
1438   mi.buflen    = buflen;
1439   int pid = os::current_process_id();
1440   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1441     // buf already contains path name
1442     if (offset) *offset = addr - mi.base_addr;
1443     return true;
1444   }
1445 
1446   buf[0] = '\0';
1447   if (offset) *offset = -1;
1448   return false;
1449 }
1450 
1451 bool os::dll_address_to_function_name(address addr, char *buf,
1452                                       int buflen, int *offset) {
1453   // buf is not optional, but offset is optional
1454   assert(buf != NULL, "sanity check");
1455 
1456   if (Decoder::decode(addr, buf, buflen, offset)) {
1457     return true;
1458   }
1459   if (offset != NULL)  *offset  = -1;
1460   buf[0] = '\0';
1461   return false;
1462 }
1463 
1464 // save the start and end address of jvm.dll into param[0] and param[1]
1465 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1466                     unsigned size, void * param) {
1467    if (!param) return -1;
1468 
1469    if (base_addr     <= (address)_locate_jvm_dll &&
1470        base_addr+size > (address)_locate_jvm_dll) {
1471          ((address*)param)[0] = base_addr;
1472          ((address*)param)[1] = base_addr + size;
1473          return 1;
1474    }
1475    return 0;
1476 }
1477 
1478 address vm_lib_location[2];    // start and end address of jvm.dll
1479 
1480 // check if addr is inside jvm.dll
1481 bool os::address_is_in_vm(address addr) {
1482   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1483     int pid = os::current_process_id();
1484     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1485       assert(false, "Can't find jvm module.");
1486       return false;
1487     }
1488   }
1489 
1490   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1491 }
1492 
1493 // print module info; param is outputStream*
1494 static int _print_module(int pid, char* fname, address base,
1495                          unsigned size, void* param) {
1496    if (!param) return -1;
1497 
1498    outputStream* st = (outputStream*)param;
1499 
1500    address end_addr = base + size;
1501    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1502    return 0;
1503 }
1504 
1505 // Loads .dll/.so and
1506 // in case of error it checks if .dll/.so was built for the
1507 // same architecture as Hotspot is running on
1508 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1509 {
1510   void * result = LoadLibrary(name);
1511   if (result != NULL)
1512   {
1513     return result;
1514   }
1515 
1516   DWORD errcode = GetLastError();
1517   if (errcode == ERROR_MOD_NOT_FOUND) {
1518     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1519     ebuf[ebuflen-1]='\0';
1520     return NULL;
1521   }
1522 
1523   // Parsing dll below
1524   // If we can read dll-info and find that dll was built
1525   // for an architecture other than Hotspot is running in
1526   // - then print to buffer "DLL was built for a different architecture"
1527   // else call os::lasterror to obtain system error message
1528 
1529   // Read system error message into ebuf
1530   // It may or may not be overwritten below (in the for loop and just above)
1531   lasterror(ebuf, (size_t) ebuflen);
1532   ebuf[ebuflen-1]='\0';
1533   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1534   if (file_descriptor<0)
1535   {
1536     return NULL;
1537   }
1538 
1539   uint32_t signature_offset;
1540   uint16_t lib_arch=0;
1541   bool failed_to_get_lib_arch=
1542   (
1543     //Go to position 3c in the dll
1544     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1545     ||
1546     // Read loacation of signature
1547     (sizeof(signature_offset)!=
1548       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1549     ||
1550     //Go to COFF File Header in dll
1551     //that is located after"signature" (4 bytes long)
1552     (os::seek_to_file_offset(file_descriptor,
1553       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1554     ||
1555     //Read field that contains code of architecture
1556     // that dll was build for
1557     (sizeof(lib_arch)!=
1558       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1559   );
1560 
1561   ::close(file_descriptor);
1562   if (failed_to_get_lib_arch)
1563   {
1564     // file i/o error - report os::lasterror(...) msg
1565     return NULL;
1566   }
1567 
1568   typedef struct
1569   {
1570     uint16_t arch_code;
1571     char* arch_name;
1572   } arch_t;
1573 
1574   static const arch_t arch_array[]={
1575     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1576     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1577     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1578   };
1579   #if   (defined _M_IA64)
1580     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1581   #elif (defined _M_AMD64)
1582     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1583   #elif (defined _M_IX86)
1584     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1585   #else
1586     #error Method os::dll_load requires that one of following \
1587            is defined :_M_IA64,_M_AMD64 or _M_IX86
1588   #endif
1589 
1590 
1591   // Obtain a string for printf operation
1592   // lib_arch_str shall contain string what platform this .dll was built for
1593   // running_arch_str shall string contain what platform Hotspot was built for
1594   char *running_arch_str=NULL,*lib_arch_str=NULL;
1595   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1596   {
1597     if (lib_arch==arch_array[i].arch_code)
1598       lib_arch_str=arch_array[i].arch_name;
1599     if (running_arch==arch_array[i].arch_code)
1600       running_arch_str=arch_array[i].arch_name;
1601   }
1602 
1603   assert(running_arch_str,
1604     "Didn't find runing architecture code in arch_array");
1605 
1606   // If the architure is right
1607   // but some other error took place - report os::lasterror(...) msg
1608   if (lib_arch == running_arch)
1609   {
1610     return NULL;
1611   }
1612 
1613   if (lib_arch_str!=NULL)
1614   {
1615     ::_snprintf(ebuf, ebuflen-1,
1616       "Can't load %s-bit .dll on a %s-bit platform",
1617       lib_arch_str,running_arch_str);
1618   }
1619   else
1620   {
1621     // don't know what architecture this dll was build for
1622     ::_snprintf(ebuf, ebuflen-1,
1623       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1624       lib_arch,running_arch_str);
1625   }
1626 
1627   return NULL;
1628 }
1629 
1630 
1631 void os::print_dll_info(outputStream *st) {
1632    int pid = os::current_process_id();
1633    st->print_cr("Dynamic libraries:");
1634    enumerate_modules(pid, _print_module, (void *)st);
1635 }
1636 
1637 void os::print_os_info_brief(outputStream* st) {
1638   os::print_os_info(st);
1639 }
1640 
1641 void os::print_os_info(outputStream* st) {
1642   st->print("OS:");
1643 
1644   os::win32::print_windows_version(st);
1645 }
1646 
1647 void os::win32::print_windows_version(outputStream* st) {
1648   OSVERSIONINFOEX osvi;
1649   SYSTEM_INFO si;
1650 
1651   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1652   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1653 
1654   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1655     st->print_cr("N/A");
1656     return;
1657   }
1658 
1659   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1660 
1661   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1662   if (os_vers >= 5002) {
1663     // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1664     // find out whether we are running on 64 bit processor or not.
1665     if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1666       os::Kernel32Dll::GetNativeSystemInfo(&si);
1667     } else {
1668       GetSystemInfo(&si);
1669     }
1670   }
1671 
1672   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1673     switch (os_vers) {
1674     case 3051: st->print(" Windows NT 3.51"); break;
1675     case 4000: st->print(" Windows NT 4.0"); break;
1676     case 5000: st->print(" Windows 2000"); break;
1677     case 5001: st->print(" Windows XP"); break;
1678     case 5002:
1679       if (osvi.wProductType == VER_NT_WORKSTATION &&
1680           si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1681         st->print(" Windows XP x64 Edition");
1682       } else {
1683         st->print(" Windows Server 2003 family");
1684       }
1685       break;
1686 
1687     case 6000:
1688       if (osvi.wProductType == VER_NT_WORKSTATION) {
1689         st->print(" Windows Vista");
1690       } else {
1691         st->print(" Windows Server 2008");
1692       }
1693       break;
1694 
1695     case 6001:
1696       if (osvi.wProductType == VER_NT_WORKSTATION) {
1697         st->print(" Windows 7");
1698       } else {
1699         st->print(" Windows Server 2008 R2");
1700       }
1701       break;
1702 
1703     case 6002:
1704       if (osvi.wProductType == VER_NT_WORKSTATION) {
1705         st->print(" Windows 8");
1706       } else {
1707         st->print(" Windows Server 2012");
1708       }
1709       break;
1710 
1711     case 6003:
1712       if (osvi.wProductType == VER_NT_WORKSTATION) {
1713         st->print(" Windows 8.1");
1714       } else {
1715         st->print(" Windows Server 2012 R2");
1716       }
1717       break;
1718 
1719     default: // future os
1720       // Unrecognized windows, print out its major and minor versions
1721       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1722     }
1723   } else {
1724     switch (os_vers) {
1725     case 4000: st->print(" Windows 95"); break;
1726     case 4010: st->print(" Windows 98"); break;
1727     case 4090: st->print(" Windows Me"); break;
1728     default: // future windows, print out its major and minor versions
1729       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1730     }
1731   }
1732 
1733   if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1734     st->print(" , 64 bit");
1735   }
1736 
1737   st->print(" Build %d", osvi.dwBuildNumber);
1738   st->print(" %s", osvi.szCSDVersion);           // service pack
1739   st->cr();
1740 }
1741 
1742 void os::pd_print_cpu_info(outputStream* st) {
1743   // Nothing to do for now.
1744 }
1745 
1746 void os::print_memory_info(outputStream* st) {
1747   st->print("Memory:");
1748   st->print(" %dk page", os::vm_page_size()>>10);
1749 
1750   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1751   // value if total memory is larger than 4GB
1752   MEMORYSTATUSEX ms;
1753   ms.dwLength = sizeof(ms);
1754   GlobalMemoryStatusEx(&ms);
1755 
1756   st->print(", physical %uk", os::physical_memory() >> 10);
1757   st->print("(%uk free)", os::available_memory() >> 10);
1758 
1759   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1760   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1761   st->cr();
1762 }
1763 
1764 void os::print_siginfo(outputStream *st, void *siginfo) {
1765   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1766   st->print("siginfo:");
1767   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1768 
1769   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1770       er->NumberParameters >= 2) {
1771       switch (er->ExceptionInformation[0]) {
1772       case 0: st->print(", reading address"); break;
1773       case 1: st->print(", writing address"); break;
1774       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1775                             er->ExceptionInformation[0]);
1776       }
1777       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1778   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1779              er->NumberParameters >= 2 && UseSharedSpaces) {
1780     FileMapInfo* mapinfo = FileMapInfo::current_info();
1781     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1782       st->print("\n\nError accessing class data sharing archive."       \
1783                 " Mapped file inaccessible during execution, "          \
1784                 " possible disk/network problem.");
1785     }
1786   } else {
1787     int num = er->NumberParameters;
1788     if (num > 0) {
1789       st->print(", ExceptionInformation=");
1790       for (int i = 0; i < num; i++) {
1791         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1792       }
1793     }
1794   }
1795   st->cr();
1796 }
1797 
1798 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1799   // do nothing
1800 }
1801 
1802 static char saved_jvm_path[MAX_PATH] = {0};
1803 
1804 // Find the full path to the current module, jvm.dll
1805 void os::jvm_path(char *buf, jint buflen) {
1806   // Error checking.
1807   if (buflen < MAX_PATH) {
1808     assert(false, "must use a large-enough buffer");
1809     buf[0] = '\0';
1810     return;
1811   }
1812   // Lazy resolve the path to current module.
1813   if (saved_jvm_path[0] != 0) {
1814     strcpy(buf, saved_jvm_path);
1815     return;
1816   }
1817 
1818   buf[0] = '\0';
1819   if (Arguments::sun_java_launcher_is_altjvm()) {
1820     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1821     // for a JAVA_HOME environment variable and fix up the path so it
1822     // looks like jvm.dll is installed there (append a fake suffix
1823     // hotspot/jvm.dll).
1824     char* java_home_var = ::getenv("JAVA_HOME");
1825     if (java_home_var != NULL && java_home_var[0] != 0) {
1826       strncpy(buf, java_home_var, buflen);
1827 
1828       // determine if this is a legacy image or modules image
1829       // modules image doesn't have "jre" subdirectory
1830       size_t len = strlen(buf);
1831       char* jrebin_p = buf + len;
1832       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1833       if (0 != _access(buf, 0)) {
1834         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1835       }
1836       len = strlen(buf);
1837       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1838     }
1839   }
1840 
1841   if (buf[0] == '\0') {
1842     GetModuleFileName(vm_lib_handle, buf, buflen);
1843   }
1844   strcpy(saved_jvm_path, buf);
1845 }
1846 
1847 
1848 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1849 #ifndef _WIN64
1850   st->print("_");
1851 #endif
1852 }
1853 
1854 
1855 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1856 #ifndef _WIN64
1857   st->print("@%d", args_size  * sizeof(int));
1858 #endif
1859 }
1860 
1861 // This method is a copy of JDK's sysGetLastErrorString
1862 // from src/windows/hpi/src/system_md.c
1863 
1864 size_t os::lasterror(char* buf, size_t len) {
1865   DWORD errval;
1866 
1867   if ((errval = GetLastError()) != 0) {
1868     // DOS error
1869     size_t n = (size_t)FormatMessage(
1870           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1871           NULL,
1872           errval,
1873           0,
1874           buf,
1875           (DWORD)len,
1876           NULL);
1877     if (n > 3) {
1878       // Drop final '.', CR, LF
1879       if (buf[n - 1] == '\n') n--;
1880       if (buf[n - 1] == '\r') n--;
1881       if (buf[n - 1] == '.') n--;
1882       buf[n] = '\0';
1883     }
1884     return n;
1885   }
1886 
1887   if (errno != 0) {
1888     // C runtime error that has no corresponding DOS error code
1889     const char* s = strerror(errno);
1890     size_t n = strlen(s);
1891     if (n >= len) n = len - 1;
1892     strncpy(buf, s, n);
1893     buf[n] = '\0';
1894     return n;
1895   }
1896 
1897   return 0;
1898 }
1899 
1900 int os::get_last_error() {
1901   DWORD error = GetLastError();
1902   if (error == 0)
1903     error = errno;
1904   return (int)error;
1905 }
1906 
1907 // sun.misc.Signal
1908 // NOTE that this is a workaround for an apparent kernel bug where if
1909 // a signal handler for SIGBREAK is installed then that signal handler
1910 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1911 // See bug 4416763.
1912 static void (*sigbreakHandler)(int) = NULL;
1913 
1914 static void UserHandler(int sig, void *siginfo, void *context) {
1915   os::signal_notify(sig);
1916   // We need to reinstate the signal handler each time...
1917   os::signal(sig, (void*)UserHandler);
1918 }
1919 
1920 void* os::user_handler() {
1921   return (void*) UserHandler;
1922 }
1923 
1924 void* os::signal(int signal_number, void* handler) {
1925   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1926     void (*oldHandler)(int) = sigbreakHandler;
1927     sigbreakHandler = (void (*)(int)) handler;
1928     return (void*) oldHandler;
1929   } else {
1930     return (void*)::signal(signal_number, (void (*)(int))handler);
1931   }
1932 }
1933 
1934 void os::signal_raise(int signal_number) {
1935   raise(signal_number);
1936 }
1937 
1938 // The Win32 C runtime library maps all console control events other than ^C
1939 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1940 // logoff, and shutdown events.  We therefore install our own console handler
1941 // that raises SIGTERM for the latter cases.
1942 //
1943 static BOOL WINAPI consoleHandler(DWORD event) {
1944   switch(event) {
1945     case CTRL_C_EVENT:
1946       if (is_error_reported()) {
1947         // Ctrl-C is pressed during error reporting, likely because the error
1948         // handler fails to abort. Let VM die immediately.
1949         os::die();
1950       }
1951 
1952       os::signal_raise(SIGINT);
1953       return TRUE;
1954       break;
1955     case CTRL_BREAK_EVENT:
1956       if (sigbreakHandler != NULL) {
1957         (*sigbreakHandler)(SIGBREAK);
1958       }
1959       return TRUE;
1960       break;
1961     case CTRL_LOGOFF_EVENT: {
1962       // Don't terminate JVM if it is running in a non-interactive session,
1963       // such as a service process.
1964       USEROBJECTFLAGS flags;
1965       HANDLE handle = GetProcessWindowStation();
1966       if (handle != NULL &&
1967           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1968             sizeof( USEROBJECTFLAGS), NULL)) {
1969         // If it is a non-interactive session, let next handler to deal
1970         // with it.
1971         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1972           return FALSE;
1973         }
1974       }
1975     }
1976     case CTRL_CLOSE_EVENT:
1977     case CTRL_SHUTDOWN_EVENT:
1978       os::signal_raise(SIGTERM);
1979       return TRUE;
1980       break;
1981     default:
1982       break;
1983   }
1984   return FALSE;
1985 }
1986 
1987 /*
1988  * The following code is moved from os.cpp for making this
1989  * code platform specific, which it is by its very nature.
1990  */
1991 
1992 // Return maximum OS signal used + 1 for internal use only
1993 // Used as exit signal for signal_thread
1994 int os::sigexitnum_pd(){
1995   return NSIG;
1996 }
1997 
1998 // a counter for each possible signal value, including signal_thread exit signal
1999 static volatile jint pending_signals[NSIG+1] = { 0 };
2000 static HANDLE sig_sem = NULL;
2001 
2002 void os::signal_init_pd() {
2003   // Initialize signal structures
2004   memset((void*)pending_signals, 0, sizeof(pending_signals));
2005 
2006   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2007 
2008   // Programs embedding the VM do not want it to attempt to receive
2009   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2010   // shutdown hooks mechanism introduced in 1.3.  For example, when
2011   // the VM is run as part of a Windows NT service (i.e., a servlet
2012   // engine in a web server), the correct behavior is for any console
2013   // control handler to return FALSE, not TRUE, because the OS's
2014   // "final" handler for such events allows the process to continue if
2015   // it is a service (while terminating it if it is not a service).
2016   // To make this behavior uniform and the mechanism simpler, we
2017   // completely disable the VM's usage of these console events if -Xrs
2018   // (=ReduceSignalUsage) is specified.  This means, for example, that
2019   // the CTRL-BREAK thread dump mechanism is also disabled in this
2020   // case.  See bugs 4323062, 4345157, and related bugs.
2021 
2022   if (!ReduceSignalUsage) {
2023     // Add a CTRL-C handler
2024     SetConsoleCtrlHandler(consoleHandler, TRUE);
2025   }
2026 }
2027 
2028 void os::signal_notify(int signal_number) {
2029   BOOL ret;
2030   if (sig_sem != NULL) {
2031     Atomic::inc(&pending_signals[signal_number]);
2032     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2033     assert(ret != 0, "ReleaseSemaphore() failed");
2034   }
2035 }
2036 
2037 static int check_pending_signals(bool wait_for_signal) {
2038   DWORD ret;
2039   while (true) {
2040     for (int i = 0; i < NSIG + 1; i++) {
2041       jint n = pending_signals[i];
2042       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2043         return i;
2044       }
2045     }
2046     if (!wait_for_signal) {
2047       return -1;
2048     }
2049 
2050     JavaThread *thread = JavaThread::current();
2051 
2052     ThreadBlockInVM tbivm(thread);
2053 
2054     bool threadIsSuspended;
2055     do {
2056       thread->set_suspend_equivalent();
2057       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2058       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2059       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2060 
2061       // were we externally suspended while we were waiting?
2062       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2063       if (threadIsSuspended) {
2064         //
2065         // The semaphore has been incremented, but while we were waiting
2066         // another thread suspended us. We don't want to continue running
2067         // while suspended because that would surprise the thread that
2068         // suspended us.
2069         //
2070         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2071         assert(ret != 0, "ReleaseSemaphore() failed");
2072 
2073         thread->java_suspend_self();
2074       }
2075     } while (threadIsSuspended);
2076   }
2077 }
2078 
2079 int os::signal_lookup() {
2080   return check_pending_signals(false);
2081 }
2082 
2083 int os::signal_wait() {
2084   return check_pending_signals(true);
2085 }
2086 
2087 // Implicit OS exception handling
2088 
2089 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2090   JavaThread* thread = JavaThread::current();
2091   // Save pc in thread
2092 #ifdef _M_IA64
2093   // Do not blow up if no thread info available.
2094   if (thread) {
2095     // Saving PRECISE pc (with slot information) in thread.
2096     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2097     // Convert precise PC into "Unix" format
2098     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2099     thread->set_saved_exception_pc((address)precise_pc);
2100   }
2101   // Set pc to handler
2102   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2103   // Clear out psr.ri (= Restart Instruction) in order to continue
2104   // at the beginning of the target bundle.
2105   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2106   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2107 #elif _M_AMD64
2108   // Do not blow up if no thread info available.
2109   if (thread) {
2110     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2111   }
2112   // Set pc to handler
2113   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2114 #else
2115   // Do not blow up if no thread info available.
2116   if (thread) {
2117     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2118   }
2119   // Set pc to handler
2120   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2121 #endif
2122 
2123   // Continue the execution
2124   return EXCEPTION_CONTINUE_EXECUTION;
2125 }
2126 
2127 
2128 // Used for PostMortemDump
2129 extern "C" void safepoints();
2130 extern "C" void find(int x);
2131 extern "C" void events();
2132 
2133 // According to Windows API documentation, an illegal instruction sequence should generate
2134 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2135 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2136 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2137 
2138 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2139 
2140 // From "Execution Protection in the Windows Operating System" draft 0.35
2141 // Once a system header becomes available, the "real" define should be
2142 // included or copied here.
2143 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2144 
2145 // Handle NAT Bit consumption on IA64.
2146 #ifdef _M_IA64
2147 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2148 #endif
2149 
2150 // Windows Vista/2008 heap corruption check
2151 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2152 
2153 #define def_excpt(val) #val, val
2154 
2155 struct siglabel {
2156   char *name;
2157   int   number;
2158 };
2159 
2160 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2161 // C++ compiler contain this error code. Because this is a compiler-generated
2162 // error, the code is not listed in the Win32 API header files.
2163 // The code is actually a cryptic mnemonic device, with the initial "E"
2164 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2165 // ASCII values of "msc".
2166 
2167 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2168 
2169 
2170 struct siglabel exceptlabels[] = {
2171     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2172     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2173     def_excpt(EXCEPTION_BREAKPOINT),
2174     def_excpt(EXCEPTION_SINGLE_STEP),
2175     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2176     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2177     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2178     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2179     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2180     def_excpt(EXCEPTION_FLT_OVERFLOW),
2181     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2182     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2183     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2184     def_excpt(EXCEPTION_INT_OVERFLOW),
2185     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2186     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2187     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2188     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2189     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2190     def_excpt(EXCEPTION_STACK_OVERFLOW),
2191     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2192     def_excpt(EXCEPTION_GUARD_PAGE),
2193     def_excpt(EXCEPTION_INVALID_HANDLE),
2194     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2195     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2196 #ifdef _M_IA64
2197     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2198 #endif
2199     NULL, 0
2200 };
2201 
2202 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2203   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2204     if (exceptlabels[i].number == exception_code) {
2205        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2206        return buf;
2207     }
2208   }
2209 
2210   return NULL;
2211 }
2212 
2213 //-----------------------------------------------------------------------------
2214 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2215   // handle exception caused by idiv; should only happen for -MinInt/-1
2216   // (division by zero is handled explicitly)
2217 #ifdef _M_IA64
2218   assert(0, "Fix Handle_IDiv_Exception");
2219 #elif _M_AMD64
2220   PCONTEXT ctx = exceptionInfo->ContextRecord;
2221   address pc = (address)ctx->Rip;
2222   assert(pc[0] == 0xF7, "not an idiv opcode");
2223   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2224   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2225   // set correct result values and continue after idiv instruction
2226   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2227   ctx->Rax = (DWORD)min_jint;      // result
2228   ctx->Rdx = (DWORD)0;             // remainder
2229   // Continue the execution
2230 #else
2231   PCONTEXT ctx = exceptionInfo->ContextRecord;
2232   address pc = (address)ctx->Eip;
2233   assert(pc[0] == 0xF7, "not an idiv opcode");
2234   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2235   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2236   // set correct result values and continue after idiv instruction
2237   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2238   ctx->Eax = (DWORD)min_jint;      // result
2239   ctx->Edx = (DWORD)0;             // remainder
2240   // Continue the execution
2241 #endif
2242   return EXCEPTION_CONTINUE_EXECUTION;
2243 }
2244 
2245 //-----------------------------------------------------------------------------
2246 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2247   PCONTEXT ctx = exceptionInfo->ContextRecord;
2248 #ifndef  _WIN64
2249   // handle exception caused by native method modifying control word
2250   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2251 
2252   switch (exception_code) {
2253     case EXCEPTION_FLT_DENORMAL_OPERAND:
2254     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2255     case EXCEPTION_FLT_INEXACT_RESULT:
2256     case EXCEPTION_FLT_INVALID_OPERATION:
2257     case EXCEPTION_FLT_OVERFLOW:
2258     case EXCEPTION_FLT_STACK_CHECK:
2259     case EXCEPTION_FLT_UNDERFLOW:
2260       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2261       if (fp_control_word != ctx->FloatSave.ControlWord) {
2262         // Restore FPCW and mask out FLT exceptions
2263         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2264         // Mask out pending FLT exceptions
2265         ctx->FloatSave.StatusWord &=  0xffffff00;
2266         return EXCEPTION_CONTINUE_EXECUTION;
2267       }
2268   }
2269 
2270   if (prev_uef_handler != NULL) {
2271     // We didn't handle this exception so pass it to the previous
2272     // UnhandledExceptionFilter.
2273     return (prev_uef_handler)(exceptionInfo);
2274   }
2275 #else // !_WIN64
2276 /*
2277   On Windows, the mxcsr control bits are non-volatile across calls
2278   See also CR 6192333
2279   */
2280       jint MxCsr = INITIAL_MXCSR;
2281         // we can't use StubRoutines::addr_mxcsr_std()
2282         // because in Win64 mxcsr is not saved there
2283       if (MxCsr != ctx->MxCsr) {
2284         ctx->MxCsr = MxCsr;
2285         return EXCEPTION_CONTINUE_EXECUTION;
2286       }
2287 #endif // !_WIN64
2288 
2289   return EXCEPTION_CONTINUE_SEARCH;
2290 }
2291 
2292 // Fatal error reporting is single threaded so we can make this a
2293 // static and preallocated.  If it's more than MAX_PATH silently ignore
2294 // it.
2295 static char saved_error_file[MAX_PATH] = {0};
2296 
2297 void os::set_error_file(const char *logfile) {
2298   if (strlen(logfile) <= MAX_PATH) {
2299     strncpy(saved_error_file, logfile, MAX_PATH);
2300   }
2301 }
2302 
2303 static inline void report_error(Thread* t, DWORD exception_code,
2304                                 address addr, void* siginfo, void* context) {
2305   VMError err(t, exception_code, addr, siginfo, context);
2306   err.report_and_die();
2307 
2308   // If UseOsErrorReporting, this will return here and save the error file
2309   // somewhere where we can find it in the minidump.
2310 }
2311 
2312 //-----------------------------------------------------------------------------
2313 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2314   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2315   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2316 #ifdef _M_IA64
2317   // On Itanium, we need the "precise pc", which has the slot number coded
2318   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2319   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2320   // Convert the pc to "Unix format", which has the slot number coded
2321   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2322   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2323   // information is saved in the Unix format.
2324   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2325 #elif _M_AMD64
2326   address pc = (address) exceptionInfo->ContextRecord->Rip;
2327 #else
2328   address pc = (address) exceptionInfo->ContextRecord->Eip;
2329 #endif
2330   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2331 
2332   // Handle SafeFetch32 and SafeFetchN exceptions.
2333   if (StubRoutines::is_safefetch_fault(pc)) {
2334     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2335   }
2336 
2337 #ifndef _WIN64
2338   // Execution protection violation - win32 running on AMD64 only
2339   // Handled first to avoid misdiagnosis as a "normal" access violation;
2340   // This is safe to do because we have a new/unique ExceptionInformation
2341   // code for this condition.
2342   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2343     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2344     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2345     address addr = (address) exceptionRecord->ExceptionInformation[1];
2346 
2347     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2348       int page_size = os::vm_page_size();
2349 
2350       // Make sure the pc and the faulting address are sane.
2351       //
2352       // If an instruction spans a page boundary, and the page containing
2353       // the beginning of the instruction is executable but the following
2354       // page is not, the pc and the faulting address might be slightly
2355       // different - we still want to unguard the 2nd page in this case.
2356       //
2357       // 15 bytes seems to be a (very) safe value for max instruction size.
2358       bool pc_is_near_addr =
2359         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2360       bool instr_spans_page_boundary =
2361         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2362                          (intptr_t) page_size) > 0);
2363 
2364       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2365         static volatile address last_addr =
2366           (address) os::non_memory_address_word();
2367 
2368         // In conservative mode, don't unguard unless the address is in the VM
2369         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2370             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2371 
2372           // Set memory to RWX and retry
2373           address page_start =
2374             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2375           bool res = os::protect_memory((char*) page_start, page_size,
2376                                         os::MEM_PROT_RWX);
2377 
2378           if (PrintMiscellaneous && Verbose) {
2379             char buf[256];
2380             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2381                          "at " INTPTR_FORMAT
2382                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2383                          page_start, (res ? "success" : strerror(errno)));
2384             tty->print_raw_cr(buf);
2385           }
2386 
2387           // Set last_addr so if we fault again at the same address, we don't
2388           // end up in an endless loop.
2389           //
2390           // There are two potential complications here.  Two threads trapping
2391           // at the same address at the same time could cause one of the
2392           // threads to think it already unguarded, and abort the VM.  Likely
2393           // very rare.
2394           //
2395           // The other race involves two threads alternately trapping at
2396           // different addresses and failing to unguard the page, resulting in
2397           // an endless loop.  This condition is probably even more unlikely
2398           // than the first.
2399           //
2400           // Although both cases could be avoided by using locks or thread
2401           // local last_addr, these solutions are unnecessary complication:
2402           // this handler is a best-effort safety net, not a complete solution.
2403           // It is disabled by default and should only be used as a workaround
2404           // in case we missed any no-execute-unsafe VM code.
2405 
2406           last_addr = addr;
2407 
2408           return EXCEPTION_CONTINUE_EXECUTION;
2409         }
2410       }
2411 
2412       // Last unguard failed or not unguarding
2413       tty->print_raw_cr("Execution protection violation");
2414       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2415                    exceptionInfo->ContextRecord);
2416       return EXCEPTION_CONTINUE_SEARCH;
2417     }
2418   }
2419 #endif // _WIN64
2420 
2421   // Check to see if we caught the safepoint code in the
2422   // process of write protecting the memory serialization page.
2423   // It write enables the page immediately after protecting it
2424   // so just return.
2425   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2426     JavaThread* thread = (JavaThread*) t;
2427     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2428     address addr = (address) exceptionRecord->ExceptionInformation[1];
2429     if ( os::is_memory_serialize_page(thread, addr) ) {
2430       // Block current thread until the memory serialize page permission restored.
2431       os::block_on_serialize_page_trap();
2432       return EXCEPTION_CONTINUE_EXECUTION;
2433     }
2434   }
2435 
2436   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2437       VM_Version::is_cpuinfo_segv_addr(pc)) {
2438     // Verify that OS save/restore AVX registers.
2439     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2440   }
2441 
2442   if (t != NULL && t->is_Java_thread()) {
2443     JavaThread* thread = (JavaThread*) t;
2444     bool in_java = thread->thread_state() == _thread_in_Java;
2445 
2446     // Handle potential stack overflows up front.
2447     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2448       if (os::uses_stack_guard_pages()) {
2449 #ifdef _M_IA64
2450         // Use guard page for register stack.
2451         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2452         address addr = (address) exceptionRecord->ExceptionInformation[1];
2453         // Check for a register stack overflow on Itanium
2454         if (thread->addr_inside_register_stack_red_zone(addr)) {
2455           // Fatal red zone violation happens if the Java program
2456           // catches a StackOverflow error and does so much processing
2457           // that it runs beyond the unprotected yellow guard zone. As
2458           // a result, we are out of here.
2459           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2460         } else if(thread->addr_inside_register_stack(addr)) {
2461           // Disable the yellow zone which sets the state that
2462           // we've got a stack overflow problem.
2463           if (thread->stack_yellow_zone_enabled()) {
2464             thread->disable_stack_yellow_zone();
2465           }
2466           // Give us some room to process the exception.
2467           thread->disable_register_stack_guard();
2468           // Tracing with +Verbose.
2469           if (Verbose) {
2470             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2471             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2472             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2473             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2474                           thread->register_stack_base(),
2475                           thread->register_stack_base() + thread->stack_size());
2476           }
2477 
2478           // Reguard the permanent register stack red zone just to be sure.
2479           // We saw Windows silently disabling this without telling us.
2480           thread->enable_register_stack_red_zone();
2481 
2482           return Handle_Exception(exceptionInfo,
2483             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2484         }
2485 #endif
2486         if (thread->stack_yellow_zone_enabled()) {
2487           // Yellow zone violation.  The o/s has unprotected the first yellow
2488           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2489           // update the enabled status, even if the zone contains only one page.
2490           thread->disable_stack_yellow_zone();
2491           // If not in java code, return and hope for the best.
2492           return in_java ? Handle_Exception(exceptionInfo,
2493             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2494             :  EXCEPTION_CONTINUE_EXECUTION;
2495         } else {
2496           // Fatal red zone violation.
2497           thread->disable_stack_red_zone();
2498           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2499           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2500                        exceptionInfo->ContextRecord);
2501           return EXCEPTION_CONTINUE_SEARCH;
2502         }
2503       } else if (in_java) {
2504         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2505         // a one-time-only guard page, which it has released to us.  The next
2506         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2507         return Handle_Exception(exceptionInfo,
2508           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2509       } else {
2510         // Can only return and hope for the best.  Further stack growth will
2511         // result in an ACCESS_VIOLATION.
2512         return EXCEPTION_CONTINUE_EXECUTION;
2513       }
2514     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2515       // Either stack overflow or null pointer exception.
2516       if (in_java) {
2517         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2518         address addr = (address) exceptionRecord->ExceptionInformation[1];
2519         address stack_end = thread->stack_base() - thread->stack_size();
2520         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2521           // Stack overflow.
2522           assert(!os::uses_stack_guard_pages(),
2523             "should be caught by red zone code above.");
2524           return Handle_Exception(exceptionInfo,
2525             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2526         }
2527         //
2528         // Check for safepoint polling and implicit null
2529         // We only expect null pointers in the stubs (vtable)
2530         // the rest are checked explicitly now.
2531         //
2532         CodeBlob* cb = CodeCache::find_blob(pc);
2533         if (cb != NULL) {
2534           if (os::is_poll_address(addr)) {
2535             address stub = SharedRuntime::get_poll_stub(pc);
2536             return Handle_Exception(exceptionInfo, stub);
2537           }
2538         }
2539         {
2540 #ifdef _WIN64
2541           //
2542           // If it's a legal stack address map the entire region in
2543           //
2544           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2545           address addr = (address) exceptionRecord->ExceptionInformation[1];
2546           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2547                   addr = (address)((uintptr_t)addr &
2548                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2549                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2550                                     !ExecMem);
2551                   return EXCEPTION_CONTINUE_EXECUTION;
2552           }
2553           else
2554 #endif
2555           {
2556             // Null pointer exception.
2557 #ifdef _M_IA64
2558             // Process implicit null checks in compiled code. Note: Implicit null checks
2559             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2560             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2561               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2562               // Handle implicit null check in UEP method entry
2563               if (cb && (cb->is_frame_complete_at(pc) ||
2564                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2565                 if (Verbose) {
2566                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2567                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2568                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2569                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2570                                 *(bundle_start + 1), *bundle_start);
2571                 }
2572                 return Handle_Exception(exceptionInfo,
2573                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2574               }
2575             }
2576 
2577             // Implicit null checks were processed above.  Hence, we should not reach
2578             // here in the usual case => die!
2579             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2580             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2581                          exceptionInfo->ContextRecord);
2582             return EXCEPTION_CONTINUE_SEARCH;
2583 
2584 #else // !IA64
2585 
2586             // Windows 98 reports faulting addresses incorrectly
2587             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2588                 !os::win32::is_nt()) {
2589               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2590               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2591             }
2592             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2593                          exceptionInfo->ContextRecord);
2594             return EXCEPTION_CONTINUE_SEARCH;
2595 #endif
2596           }
2597         }
2598       }
2599 
2600 #ifdef _WIN64
2601       // Special care for fast JNI field accessors.
2602       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2603       // in and the heap gets shrunk before the field access.
2604       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2605         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2606         if (addr != (address)-1) {
2607           return Handle_Exception(exceptionInfo, addr);
2608         }
2609       }
2610 #endif
2611 
2612       // Stack overflow or null pointer exception in native code.
2613       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2614                    exceptionInfo->ContextRecord);
2615       return EXCEPTION_CONTINUE_SEARCH;
2616     } // /EXCEPTION_ACCESS_VIOLATION
2617     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2618 #if defined _M_IA64
2619     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2620               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2621       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2622 
2623       // Compiled method patched to be non entrant? Following conditions must apply:
2624       // 1. must be first instruction in bundle
2625       // 2. must be a break instruction with appropriate code
2626       if((((uint64_t) pc & 0x0F) == 0) &&
2627          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2628         return Handle_Exception(exceptionInfo,
2629                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2630       }
2631     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2632 #endif
2633 
2634 
2635     if (in_java) {
2636       switch (exception_code) {
2637       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2638         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2639 
2640       case EXCEPTION_INT_OVERFLOW:
2641         return Handle_IDiv_Exception(exceptionInfo);
2642 
2643       } // switch
2644     }
2645     if (((thread->thread_state() == _thread_in_Java) ||
2646         (thread->thread_state() == _thread_in_native)) &&
2647         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2648     {
2649       LONG result=Handle_FLT_Exception(exceptionInfo);
2650       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2651     }
2652   }
2653 
2654   if (exception_code != EXCEPTION_BREAKPOINT) {
2655     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2656                  exceptionInfo->ContextRecord);
2657   }
2658   return EXCEPTION_CONTINUE_SEARCH;
2659 }
2660 
2661 #ifndef _WIN64
2662 // Special care for fast JNI accessors.
2663 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2664 // the heap gets shrunk before the field access.
2665 // Need to install our own structured exception handler since native code may
2666 // install its own.
2667 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2668   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2669   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2670     address pc = (address) exceptionInfo->ContextRecord->Eip;
2671     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2672     if (addr != (address)-1) {
2673       return Handle_Exception(exceptionInfo, addr);
2674     }
2675   }
2676   return EXCEPTION_CONTINUE_SEARCH;
2677 }
2678 
2679 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2680 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2681   __try { \
2682     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2683   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2684   } \
2685   return 0; \
2686 }
2687 
2688 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2689 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2690 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2691 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2692 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2693 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2694 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2695 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2696 
2697 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2698   switch (type) {
2699     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2700     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2701     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2702     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2703     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2704     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2705     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2706     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2707     default:        ShouldNotReachHere();
2708   }
2709   return (address)-1;
2710 }
2711 #endif
2712 
2713 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2714   // Install a win32 structured exception handler around the test
2715   // function call so the VM can generate an error dump if needed.
2716   __try {
2717     (*funcPtr)();
2718   } __except(topLevelExceptionFilter(
2719              (_EXCEPTION_POINTERS*)_exception_info())) {
2720     // Nothing to do.
2721   }
2722 }
2723 
2724 // Virtual Memory
2725 
2726 int os::vm_page_size() { return os::win32::vm_page_size(); }
2727 int os::vm_allocation_granularity() {
2728   return os::win32::vm_allocation_granularity();
2729 }
2730 
2731 // Windows large page support is available on Windows 2003. In order to use
2732 // large page memory, the administrator must first assign additional privilege
2733 // to the user:
2734 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2735 //   + select Local Policies -> User Rights Assignment
2736 //   + double click "Lock pages in memory", add users and/or groups
2737 //   + reboot
2738 // Note the above steps are needed for administrator as well, as administrators
2739 // by default do not have the privilege to lock pages in memory.
2740 //
2741 // Note about Windows 2003: although the API supports committing large page
2742 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2743 // scenario, I found through experiment it only uses large page if the entire
2744 // memory region is reserved and committed in a single VirtualAlloc() call.
2745 // This makes Windows large page support more or less like Solaris ISM, in
2746 // that the entire heap must be committed upfront. This probably will change
2747 // in the future, if so the code below needs to be revisited.
2748 
2749 #ifndef MEM_LARGE_PAGES
2750 #define MEM_LARGE_PAGES 0x20000000
2751 #endif
2752 
2753 static HANDLE    _hProcess;
2754 static HANDLE    _hToken;
2755 
2756 // Container for NUMA node list info
2757 class NUMANodeListHolder {
2758 private:
2759   int *_numa_used_node_list;  // allocated below
2760   int _numa_used_node_count;
2761 
2762   void free_node_list() {
2763     if (_numa_used_node_list != NULL) {
2764       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2765     }
2766   }
2767 
2768 public:
2769   NUMANodeListHolder() {
2770     _numa_used_node_count = 0;
2771     _numa_used_node_list = NULL;
2772     // do rest of initialization in build routine (after function pointers are set up)
2773   }
2774 
2775   ~NUMANodeListHolder() {
2776     free_node_list();
2777   }
2778 
2779   bool build() {
2780     DWORD_PTR proc_aff_mask;
2781     DWORD_PTR sys_aff_mask;
2782     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2783     ULONG highest_node_number;
2784     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2785     free_node_list();
2786     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2787     for (unsigned int i = 0; i <= highest_node_number; i++) {
2788       ULONGLONG proc_mask_numa_node;
2789       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2790       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2791         _numa_used_node_list[_numa_used_node_count++] = i;
2792       }
2793     }
2794     return (_numa_used_node_count > 1);
2795   }
2796 
2797   int get_count() {return _numa_used_node_count;}
2798   int get_node_list_entry(int n) {
2799     // for indexes out of range, returns -1
2800     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2801   }
2802 
2803 } numa_node_list_holder;
2804 
2805 
2806 
2807 static size_t _large_page_size = 0;
2808 
2809 static bool resolve_functions_for_large_page_init() {
2810   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2811     os::Advapi32Dll::AdvapiAvailable();
2812 }
2813 
2814 static bool request_lock_memory_privilege() {
2815   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2816                                 os::current_process_id());
2817 
2818   LUID luid;
2819   if (_hProcess != NULL &&
2820       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2821       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2822 
2823     TOKEN_PRIVILEGES tp;
2824     tp.PrivilegeCount = 1;
2825     tp.Privileges[0].Luid = luid;
2826     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2827 
2828     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2829     // privilege. Check GetLastError() too. See MSDN document.
2830     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2831         (GetLastError() == ERROR_SUCCESS)) {
2832       return true;
2833     }
2834   }
2835 
2836   return false;
2837 }
2838 
2839 static void cleanup_after_large_page_init() {
2840   if (_hProcess) CloseHandle(_hProcess);
2841   _hProcess = NULL;
2842   if (_hToken) CloseHandle(_hToken);
2843   _hToken = NULL;
2844 }
2845 
2846 static bool numa_interleaving_init() {
2847   bool success = false;
2848   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2849 
2850   // print a warning if UseNUMAInterleaving flag is specified on command line
2851   bool warn_on_failure = use_numa_interleaving_specified;
2852 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2853 
2854   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2855   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2856   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2857 
2858   if (os::Kernel32Dll::NumaCallsAvailable()) {
2859     if (numa_node_list_holder.build()) {
2860       if (PrintMiscellaneous && Verbose) {
2861         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2862         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2863           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2864         }
2865         tty->print("\n");
2866       }
2867       success = true;
2868     } else {
2869       WARN("Process does not cover multiple NUMA nodes.");
2870     }
2871   } else {
2872     WARN("NUMA Interleaving is not supported by the operating system.");
2873   }
2874   if (!success) {
2875     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2876   }
2877   return success;
2878 #undef WARN
2879 }
2880 
2881 // this routine is used whenever we need to reserve a contiguous VA range
2882 // but we need to make separate VirtualAlloc calls for each piece of the range
2883 // Reasons for doing this:
2884 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2885 //  * UseNUMAInterleaving requires a separate node for each piece
2886 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2887                                          bool should_inject_error=false) {
2888   char * p_buf;
2889   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2890   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2891   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2892 
2893   // first reserve enough address space in advance since we want to be
2894   // able to break a single contiguous virtual address range into multiple
2895   // large page commits but WS2003 does not allow reserving large page space
2896   // so we just use 4K pages for reserve, this gives us a legal contiguous
2897   // address space. then we will deallocate that reservation, and re alloc
2898   // using large pages
2899   const size_t size_of_reserve = bytes + chunk_size;
2900   if (bytes > size_of_reserve) {
2901     // Overflowed.
2902     return NULL;
2903   }
2904   p_buf = (char *) VirtualAlloc(addr,
2905                                 size_of_reserve,  // size of Reserve
2906                                 MEM_RESERVE,
2907                                 PAGE_READWRITE);
2908   // If reservation failed, return NULL
2909   if (p_buf == NULL) return NULL;
2910   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
2911   os::release_memory(p_buf, bytes + chunk_size);
2912 
2913   // we still need to round up to a page boundary (in case we are using large pages)
2914   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2915   // instead we handle this in the bytes_to_rq computation below
2916   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2917 
2918   // now go through and allocate one chunk at a time until all bytes are
2919   // allocated
2920   size_t  bytes_remaining = bytes;
2921   // An overflow of align_size_up() would have been caught above
2922   // in the calculation of size_of_reserve.
2923   char * next_alloc_addr = p_buf;
2924   HANDLE hProc = GetCurrentProcess();
2925 
2926 #ifdef ASSERT
2927   // Variable for the failure injection
2928   long ran_num = os::random();
2929   size_t fail_after = ran_num % bytes;
2930 #endif
2931 
2932   int count=0;
2933   while (bytes_remaining) {
2934     // select bytes_to_rq to get to the next chunk_size boundary
2935 
2936     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2937     // Note allocate and commit
2938     char * p_new;
2939 
2940 #ifdef ASSERT
2941     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2942 #else
2943     const bool inject_error_now = false;
2944 #endif
2945 
2946     if (inject_error_now) {
2947       p_new = NULL;
2948     } else {
2949       if (!UseNUMAInterleaving) {
2950         p_new = (char *) VirtualAlloc(next_alloc_addr,
2951                                       bytes_to_rq,
2952                                       flags,
2953                                       prot);
2954       } else {
2955         // get the next node to use from the used_node_list
2956         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2957         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2958         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2959                                                             next_alloc_addr,
2960                                                             bytes_to_rq,
2961                                                             flags,
2962                                                             prot,
2963                                                             node);
2964       }
2965     }
2966 
2967     if (p_new == NULL) {
2968       // Free any allocated pages
2969       if (next_alloc_addr > p_buf) {
2970         // Some memory was committed so release it.
2971         size_t bytes_to_release = bytes - bytes_remaining;
2972         // NMT has yet to record any individual blocks, so it
2973         // need to create a dummy 'reserve' record to match
2974         // the release.
2975         MemTracker::record_virtual_memory_reserve((address)p_buf,
2976           bytes_to_release, mtNone, CALLER_PC);
2977         os::release_memory(p_buf, bytes_to_release);
2978       }
2979 #ifdef ASSERT
2980       if (should_inject_error) {
2981         if (TracePageSizes && Verbose) {
2982           tty->print_cr("Reserving pages individually failed.");
2983         }
2984       }
2985 #endif
2986       return NULL;
2987     }
2988 
2989     bytes_remaining -= bytes_to_rq;
2990     next_alloc_addr += bytes_to_rq;
2991     count++;
2992   }
2993   // Although the memory is allocated individually, it is returned as one.
2994   // NMT records it as one block.
2995   address pc = CALLER_PC;
2996   if ((flags & MEM_COMMIT) != 0) {
2997     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
2998   } else {
2999     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
3000   }
3001 
3002   // made it this far, success
3003   return p_buf;
3004 }
3005 
3006 
3007 
3008 void os::large_page_init() {
3009   if (!UseLargePages) return;
3010 
3011   // print a warning if any large page related flag is specified on command line
3012   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3013                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3014   bool success = false;
3015 
3016 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3017   if (resolve_functions_for_large_page_init()) {
3018     if (request_lock_memory_privilege()) {
3019       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3020       if (s) {
3021 #if defined(IA32) || defined(AMD64)
3022         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3023           WARN("JVM cannot use large pages bigger than 4mb.");
3024         } else {
3025 #endif
3026           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3027             _large_page_size = LargePageSizeInBytes;
3028           } else {
3029             _large_page_size = s;
3030           }
3031           success = true;
3032 #if defined(IA32) || defined(AMD64)
3033         }
3034 #endif
3035       } else {
3036         WARN("Large page is not supported by the processor.");
3037       }
3038     } else {
3039       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3040     }
3041   } else {
3042     WARN("Large page is not supported by the operating system.");
3043   }
3044 #undef WARN
3045 
3046   const size_t default_page_size = (size_t) vm_page_size();
3047   if (success && _large_page_size > default_page_size) {
3048     _page_sizes[0] = _large_page_size;
3049     _page_sizes[1] = default_page_size;
3050     _page_sizes[2] = 0;
3051   }
3052 
3053   cleanup_after_large_page_init();
3054   UseLargePages = success;
3055 }
3056 
3057 // On win32, one cannot release just a part of reserved memory, it's an
3058 // all or nothing deal.  When we split a reservation, we must break the
3059 // reservation into two reservations.
3060 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3061                               bool realloc) {
3062   if (size > 0) {
3063     release_memory(base, size);
3064     if (realloc) {
3065       reserve_memory(split, base);
3066     }
3067     if (size != split) {
3068       reserve_memory(size - split, base + split);
3069     }
3070   }
3071 }
3072 
3073 // Multiple threads can race in this code but it's not possible to unmap small sections of
3074 // virtual space to get requested alignment, like posix-like os's.
3075 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3076 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3077   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3078       "Alignment must be a multiple of allocation granularity (page size)");
3079   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3080 
3081   size_t extra_size = size + alignment;
3082   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3083 
3084   char* aligned_base = NULL;
3085 
3086   do {
3087     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3088     if (extra_base == NULL) {
3089       return NULL;
3090     }
3091     // Do manual alignment
3092     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3093 
3094     os::release_memory(extra_base, extra_size);
3095 
3096     aligned_base = os::reserve_memory(size, aligned_base);
3097 
3098   } while (aligned_base == NULL);
3099 
3100   return aligned_base;
3101 }
3102 
3103 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3104   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3105          "reserve alignment");
3106   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3107   char* res;
3108   // note that if UseLargePages is on, all the areas that require interleaving
3109   // will go thru reserve_memory_special rather than thru here.
3110   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3111   if (!use_individual) {
3112     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3113   } else {
3114     elapsedTimer reserveTimer;
3115     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3116     // in numa interleaving, we have to allocate pages individually
3117     // (well really chunks of NUMAInterleaveGranularity size)
3118     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3119     if (res == NULL) {
3120       warning("NUMA page allocation failed");
3121     }
3122     if( Verbose && PrintMiscellaneous ) {
3123       reserveTimer.stop();
3124       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3125                     reserveTimer.milliseconds(), reserveTimer.ticks());
3126     }
3127   }
3128   assert(res == NULL || addr == NULL || addr == res,
3129          "Unexpected address from reserve.");
3130 
3131   return res;
3132 }
3133 
3134 // Reserve memory at an arbitrary address, only if that area is
3135 // available (and not reserved for something else).
3136 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3137   // Windows os::reserve_memory() fails of the requested address range is
3138   // not avilable.
3139   return reserve_memory(bytes, requested_addr);
3140 }
3141 
3142 size_t os::large_page_size() {
3143   return _large_page_size;
3144 }
3145 
3146 bool os::can_commit_large_page_memory() {
3147   // Windows only uses large page memory when the entire region is reserved
3148   // and committed in a single VirtualAlloc() call. This may change in the
3149   // future, but with Windows 2003 it's not possible to commit on demand.
3150   return false;
3151 }
3152 
3153 bool os::can_execute_large_page_memory() {
3154   return true;
3155 }
3156 
3157 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3158   assert(UseLargePages, "only for large pages");
3159 
3160   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3161     return NULL; // Fallback to small pages.
3162   }
3163 
3164   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3165   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3166 
3167   // with large pages, there are two cases where we need to use Individual Allocation
3168   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3169   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3170   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3171     if (TracePageSizes && Verbose) {
3172        tty->print_cr("Reserving large pages individually.");
3173     }
3174     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3175     if (p_buf == NULL) {
3176       // give an appropriate warning message
3177       if (UseNUMAInterleaving) {
3178         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3179       }
3180       if (UseLargePagesIndividualAllocation) {
3181         warning("Individually allocated large pages failed, "
3182                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3183       }
3184       return NULL;
3185     }
3186 
3187     return p_buf;
3188 
3189   } else {
3190     if (TracePageSizes && Verbose) {
3191        tty->print_cr("Reserving large pages in a single large chunk.");
3192     }
3193     // normal policy just allocate it all at once
3194     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3195     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3196     if (res != NULL) {
3197       address pc = CALLER_PC;
3198       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
3199     }
3200 
3201     return res;
3202   }
3203 }
3204 
3205 bool os::release_memory_special(char* base, size_t bytes) {
3206   assert(base != NULL, "Sanity check");
3207   return release_memory(base, bytes);
3208 }
3209 
3210 void os::print_statistics() {
3211 }
3212 
3213 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3214   int err = os::get_last_error();
3215   char buf[256];
3216   size_t buf_len = os::lasterror(buf, sizeof(buf));
3217   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3218           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3219           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3220 }
3221 
3222 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3223   if (bytes == 0) {
3224     // Don't bother the OS with noops.
3225     return true;
3226   }
3227   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3228   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3229   // Don't attempt to print anything if the OS call fails. We're
3230   // probably low on resources, so the print itself may cause crashes.
3231 
3232   // unless we have NUMAInterleaving enabled, the range of a commit
3233   // is always within a reserve covered by a single VirtualAlloc
3234   // in that case we can just do a single commit for the requested size
3235   if (!UseNUMAInterleaving) {
3236     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3237       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3238       return false;
3239     }
3240     if (exec) {
3241       DWORD oldprot;
3242       // Windows doc says to use VirtualProtect to get execute permissions
3243       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3244         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3245         return false;
3246       }
3247     }
3248     return true;
3249   } else {
3250 
3251     // when NUMAInterleaving is enabled, the commit might cover a range that
3252     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3253     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3254     // returns represents the number of bytes that can be committed in one step.
3255     size_t bytes_remaining = bytes;
3256     char * next_alloc_addr = addr;
3257     while (bytes_remaining > 0) {
3258       MEMORY_BASIC_INFORMATION alloc_info;
3259       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3260       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3261       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3262                        PAGE_READWRITE) == NULL) {
3263         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3264                                             exec);)
3265         return false;
3266       }
3267       if (exec) {
3268         DWORD oldprot;
3269         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3270                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3271           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3272                                               exec);)
3273           return false;
3274         }
3275       }
3276       bytes_remaining -= bytes_to_rq;
3277       next_alloc_addr += bytes_to_rq;
3278     }
3279   }
3280   // if we made it this far, return true
3281   return true;
3282 }
3283 
3284 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3285                        bool exec) {
3286   // alignment_hint is ignored on this OS
3287   return pd_commit_memory(addr, size, exec);
3288 }
3289 
3290 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3291                                   const char* mesg) {
3292   assert(mesg != NULL, "mesg must be specified");
3293   if (!pd_commit_memory(addr, size, exec)) {
3294     warn_fail_commit_memory(addr, size, exec);
3295     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3296   }
3297 }
3298 
3299 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3300                                   size_t alignment_hint, bool exec,
3301                                   const char* mesg) {
3302   // alignment_hint is ignored on this OS
3303   pd_commit_memory_or_exit(addr, size, exec, mesg);
3304 }
3305 
3306 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3307   if (bytes == 0) {
3308     // Don't bother the OS with noops.
3309     return true;
3310   }
3311   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3312   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3313   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3314 }
3315 
3316 bool os::pd_release_memory(char* addr, size_t bytes) {
3317   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3318 }
3319 
3320 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3321   return os::commit_memory(addr, size, !ExecMem);
3322 }
3323 
3324 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3325   return os::uncommit_memory(addr, size);
3326 }
3327 
3328 // Set protections specified
3329 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3330                         bool is_committed) {
3331   unsigned int p = 0;
3332   switch (prot) {
3333   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3334   case MEM_PROT_READ: p = PAGE_READONLY; break;
3335   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3336   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3337   default:
3338     ShouldNotReachHere();
3339   }
3340 
3341   DWORD old_status;
3342 
3343   // Strange enough, but on Win32 one can change protection only for committed
3344   // memory, not a big deal anyway, as bytes less or equal than 64K
3345   if (!is_committed) {
3346     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3347                           "cannot commit protection page");
3348   }
3349   // One cannot use os::guard_memory() here, as on Win32 guard page
3350   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3351   //
3352   // Pages in the region become guard pages. Any attempt to access a guard page
3353   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3354   // the guard page status. Guard pages thus act as a one-time access alarm.
3355   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3356 }
3357 
3358 bool os::guard_memory(char* addr, size_t bytes) {
3359   DWORD old_status;
3360   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3361 }
3362 
3363 bool os::unguard_memory(char* addr, size_t bytes) {
3364   DWORD old_status;
3365   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3366 }
3367 
3368 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3369 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3370 void os::numa_make_global(char *addr, size_t bytes)    { }
3371 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3372 bool os::numa_topology_changed()                       { return false; }
3373 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3374 int os::numa_get_group_id()                            { return 0; }
3375 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3376   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3377     // Provide an answer for UMA systems
3378     ids[0] = 0;
3379     return 1;
3380   } else {
3381     // check for size bigger than actual groups_num
3382     size = MIN2(size, numa_get_groups_num());
3383     for (int i = 0; i < (int)size; i++) {
3384       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3385     }
3386     return size;
3387   }
3388 }
3389 
3390 bool os::get_page_info(char *start, page_info* info) {
3391   return false;
3392 }
3393 
3394 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3395   return end;
3396 }
3397 
3398 char* os::non_memory_address_word() {
3399   // Must never look like an address returned by reserve_memory,
3400   // even in its subfields (as defined by the CPU immediate fields,
3401   // if the CPU splits constants across multiple instructions).
3402   return (char*)-1;
3403 }
3404 
3405 #define MAX_ERROR_COUNT 100
3406 #define SYS_THREAD_ERROR 0xffffffffUL
3407 
3408 void os::pd_start_thread(Thread* thread) {
3409   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3410   // Returns previous suspend state:
3411   // 0:  Thread was not suspended
3412   // 1:  Thread is running now
3413   // >1: Thread is still suspended.
3414   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3415 }
3416 
3417 class HighResolutionInterval : public CHeapObj<mtThread> {
3418   // The default timer resolution seems to be 10 milliseconds.
3419   // (Where is this written down?)
3420   // If someone wants to sleep for only a fraction of the default,
3421   // then we set the timer resolution down to 1 millisecond for
3422   // the duration of their interval.
3423   // We carefully set the resolution back, since otherwise we
3424   // seem to incur an overhead (3%?) that we don't need.
3425   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3426   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3427   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3428   // timeBeginPeriod() if the relative error exceeded some threshold.
3429   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3430   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3431   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3432   // resolution timers running.
3433 private:
3434     jlong resolution;
3435 public:
3436   HighResolutionInterval(jlong ms) {
3437     resolution = ms % 10L;
3438     if (resolution != 0) {
3439       MMRESULT result = timeBeginPeriod(1L);
3440     }
3441   }
3442   ~HighResolutionInterval() {
3443     if (resolution != 0) {
3444       MMRESULT result = timeEndPeriod(1L);
3445     }
3446     resolution = 0L;
3447   }
3448 };
3449 
3450 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3451   jlong limit = (jlong) MAXDWORD;
3452 
3453   while(ms > limit) {
3454     int res;
3455     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3456       return res;
3457     ms -= limit;
3458   }
3459 
3460   assert(thread == Thread::current(),  "thread consistency check");
3461   OSThread* osthread = thread->osthread();
3462   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3463   int result;
3464   if (interruptable) {
3465     assert(thread->is_Java_thread(), "must be java thread");
3466     JavaThread *jt = (JavaThread *) thread;
3467     ThreadBlockInVM tbivm(jt);
3468 
3469     jt->set_suspend_equivalent();
3470     // cleared by handle_special_suspend_equivalent_condition() or
3471     // java_suspend_self() via check_and_wait_while_suspended()
3472 
3473     HANDLE events[1];
3474     events[0] = osthread->interrupt_event();
3475     HighResolutionInterval *phri=NULL;
3476     if(!ForceTimeHighResolution)
3477       phri = new HighResolutionInterval( ms );
3478     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3479       result = OS_TIMEOUT;
3480     } else {
3481       ResetEvent(osthread->interrupt_event());
3482       osthread->set_interrupted(false);
3483       result = OS_INTRPT;
3484     }
3485     delete phri; //if it is NULL, harmless
3486 
3487     // were we externally suspended while we were waiting?
3488     jt->check_and_wait_while_suspended();
3489   } else {
3490     assert(!thread->is_Java_thread(), "must not be java thread");
3491     Sleep((long) ms);
3492     result = OS_TIMEOUT;
3493   }
3494   return result;
3495 }
3496 
3497 //
3498 // Short sleep, direct OS call.
3499 //
3500 // ms = 0, means allow others (if any) to run.
3501 //
3502 void os::naked_short_sleep(jlong ms) {
3503   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3504   Sleep(ms);
3505 }
3506 
3507 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3508 void os::infinite_sleep() {
3509   while (true) {    // sleep forever ...
3510     Sleep(100000);  // ... 100 seconds at a time
3511   }
3512 }
3513 
3514 typedef BOOL (WINAPI * STTSignature)(void) ;
3515 
3516 os::YieldResult os::NakedYield() {
3517   // Use either SwitchToThread() or Sleep(0)
3518   // Consider passing back the return value from SwitchToThread().
3519   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3520     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3521   } else {
3522     Sleep(0);
3523   }
3524   return os::YIELD_UNKNOWN ;
3525 }
3526 
3527 void os::yield() {  os::NakedYield(); }
3528 
3529 // Win32 only gives you access to seven real priorities at a time,
3530 // so we compress Java's ten down to seven.  It would be better
3531 // if we dynamically adjusted relative priorities.
3532 
3533 int os::java_to_os_priority[CriticalPriority + 1] = {
3534   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3535   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3536   THREAD_PRIORITY_LOWEST,                       // 2
3537   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3538   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3539   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3540   THREAD_PRIORITY_NORMAL,                       // 6
3541   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3542   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3543   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3544   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3545   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3546 };
3547 
3548 int prio_policy1[CriticalPriority + 1] = {
3549   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3550   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3551   THREAD_PRIORITY_LOWEST,                       // 2
3552   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3553   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3554   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3555   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3556   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3557   THREAD_PRIORITY_HIGHEST,                      // 8
3558   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3559   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3560   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3561 };
3562 
3563 static int prio_init() {
3564   // If ThreadPriorityPolicy is 1, switch tables
3565   if (ThreadPriorityPolicy == 1) {
3566     int i;
3567     for (i = 0; i < CriticalPriority + 1; i++) {
3568       os::java_to_os_priority[i] = prio_policy1[i];
3569     }
3570   }
3571   if (UseCriticalJavaThreadPriority) {
3572     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3573   }
3574   return 0;
3575 }
3576 
3577 OSReturn os::set_native_priority(Thread* thread, int priority) {
3578   if (!UseThreadPriorities) return OS_OK;
3579   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3580   return ret ? OS_OK : OS_ERR;
3581 }
3582 
3583 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3584   if ( !UseThreadPriorities ) {
3585     *priority_ptr = java_to_os_priority[NormPriority];
3586     return OS_OK;
3587   }
3588   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3589   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3590     assert(false, "GetThreadPriority failed");
3591     return OS_ERR;
3592   }
3593   *priority_ptr = os_prio;
3594   return OS_OK;
3595 }
3596 
3597 
3598 // Hint to the underlying OS that a task switch would not be good.
3599 // Void return because it's a hint and can fail.
3600 void os::hint_no_preempt() {}
3601 
3602 void os::interrupt(Thread* thread) {
3603   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3604          "possibility of dangling Thread pointer");
3605 
3606   OSThread* osthread = thread->osthread();
3607   osthread->set_interrupted(true);
3608   // More than one thread can get here with the same value of osthread,
3609   // resulting in multiple notifications.  We do, however, want the store
3610   // to interrupted() to be visible to other threads before we post
3611   // the interrupt event.
3612   OrderAccess::release();
3613   SetEvent(osthread->interrupt_event());
3614   // For JSR166:  unpark after setting status
3615   if (thread->is_Java_thread())
3616     ((JavaThread*)thread)->parker()->unpark();
3617 
3618   ParkEvent * ev = thread->_ParkEvent ;
3619   if (ev != NULL) ev->unpark() ;
3620 
3621 }
3622 
3623 
3624 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3625   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3626          "possibility of dangling Thread pointer");
3627 
3628   OSThread* osthread = thread->osthread();
3629   // There is no synchronization between the setting of the interrupt
3630   // and it being cleared here. It is critical - see 6535709 - that
3631   // we only clear the interrupt state, and reset the interrupt event,
3632   // if we are going to report that we were indeed interrupted - else
3633   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3634   // depending on the timing. By checking thread interrupt event to see
3635   // if the thread gets real interrupt thus prevent spurious wakeup.
3636   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3637   if (interrupted && clear_interrupted) {
3638     osthread->set_interrupted(false);
3639     ResetEvent(osthread->interrupt_event());
3640   } // Otherwise leave the interrupted state alone
3641 
3642   return interrupted;
3643 }
3644 
3645 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3646 ExtendedPC os::get_thread_pc(Thread* thread) {
3647   CONTEXT context;
3648   context.ContextFlags = CONTEXT_CONTROL;
3649   HANDLE handle = thread->osthread()->thread_handle();
3650 #ifdef _M_IA64
3651   assert(0, "Fix get_thread_pc");
3652   return ExtendedPC(NULL);
3653 #else
3654   if (GetThreadContext(handle, &context)) {
3655 #ifdef _M_AMD64
3656     return ExtendedPC((address) context.Rip);
3657 #else
3658     return ExtendedPC((address) context.Eip);
3659 #endif
3660   } else {
3661     return ExtendedPC(NULL);
3662   }
3663 #endif
3664 }
3665 
3666 // GetCurrentThreadId() returns DWORD
3667 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3668 
3669 static int _initial_pid = 0;
3670 
3671 int os::current_process_id()
3672 {
3673   return (_initial_pid ? _initial_pid : _getpid());
3674 }
3675 
3676 int    os::win32::_vm_page_size       = 0;
3677 int    os::win32::_vm_allocation_granularity = 0;
3678 int    os::win32::_processor_type     = 0;
3679 // Processor level is not available on non-NT systems, use vm_version instead
3680 int    os::win32::_processor_level    = 0;
3681 julong os::win32::_physical_memory    = 0;
3682 size_t os::win32::_default_stack_size = 0;
3683 
3684          intx os::win32::_os_thread_limit    = 0;
3685 volatile intx os::win32::_os_thread_count    = 0;
3686 
3687 bool   os::win32::_is_nt              = false;
3688 bool   os::win32::_is_windows_2003    = false;
3689 bool   os::win32::_is_windows_server  = false;
3690 
3691 bool   os::win32::_has_performance_count = 0;
3692 
3693 void os::win32::initialize_system_info() {
3694   SYSTEM_INFO si;
3695   GetSystemInfo(&si);
3696   _vm_page_size    = si.dwPageSize;
3697   _vm_allocation_granularity = si.dwAllocationGranularity;
3698   _processor_type  = si.dwProcessorType;
3699   _processor_level = si.wProcessorLevel;
3700   set_processor_count(si.dwNumberOfProcessors);
3701 
3702   MEMORYSTATUSEX ms;
3703   ms.dwLength = sizeof(ms);
3704 
3705   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3706   // dwMemoryLoad (% of memory in use)
3707   GlobalMemoryStatusEx(&ms);
3708   _physical_memory = ms.ullTotalPhys;
3709 
3710   OSVERSIONINFOEX oi;
3711   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3712   GetVersionEx((OSVERSIONINFO*)&oi);
3713   switch(oi.dwPlatformId) {
3714     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3715     case VER_PLATFORM_WIN32_NT:
3716       _is_nt = true;
3717       {
3718         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3719         if (os_vers == 5002) {
3720           _is_windows_2003 = true;
3721         }
3722         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3723           oi.wProductType == VER_NT_SERVER) {
3724             _is_windows_server = true;
3725         }
3726       }
3727       break;
3728     default: fatal("Unknown platform");
3729   }
3730 
3731   _default_stack_size = os::current_stack_size();
3732   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3733   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3734     "stack size not a multiple of page size");
3735 
3736   initialize_performance_counter();
3737 
3738   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3739   // known to deadlock the system, if the VM issues to thread operations with
3740   // a too high frequency, e.g., such as changing the priorities.
3741   // The 6000 seems to work well - no deadlocks has been notices on the test
3742   // programs that we have seen experience this problem.
3743   if (!os::win32::is_nt()) {
3744     StarvationMonitorInterval = 6000;
3745   }
3746 }
3747 
3748 
3749 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3750   char path[MAX_PATH];
3751   DWORD size;
3752   DWORD pathLen = (DWORD)sizeof(path);
3753   HINSTANCE result = NULL;
3754 
3755   // only allow library name without path component
3756   assert(strchr(name, '\\') == NULL, "path not allowed");
3757   assert(strchr(name, ':') == NULL, "path not allowed");
3758   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3759     jio_snprintf(ebuf, ebuflen,
3760       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3761     return NULL;
3762   }
3763 
3764   // search system directory
3765   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3766     strcat(path, "\\");
3767     strcat(path, name);
3768     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3769       return result;
3770     }
3771   }
3772 
3773   // try Windows directory
3774   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3775     strcat(path, "\\");
3776     strcat(path, name);
3777     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3778       return result;
3779     }
3780   }
3781 
3782   jio_snprintf(ebuf, ebuflen,
3783     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3784   return NULL;
3785 }
3786 
3787 void os::win32::setmode_streams() {
3788   _setmode(_fileno(stdin), _O_BINARY);
3789   _setmode(_fileno(stdout), _O_BINARY);
3790   _setmode(_fileno(stderr), _O_BINARY);
3791 }
3792 
3793 
3794 bool os::is_debugger_attached() {
3795   return IsDebuggerPresent() ? true : false;
3796 }
3797 
3798 
3799 void os::wait_for_keypress_at_exit(void) {
3800   if (PauseAtExit) {
3801     fprintf(stderr, "Press any key to continue...\n");
3802     fgetc(stdin);
3803   }
3804 }
3805 
3806 
3807 int os::message_box(const char* title, const char* message) {
3808   int result = MessageBox(NULL, message, title,
3809                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3810   return result == IDYES;
3811 }
3812 
3813 int os::allocate_thread_local_storage() {
3814   return TlsAlloc();
3815 }
3816 
3817 
3818 void os::free_thread_local_storage(int index) {
3819   TlsFree(index);
3820 }
3821 
3822 
3823 void os::thread_local_storage_at_put(int index, void* value) {
3824   TlsSetValue(index, value);
3825   assert(thread_local_storage_at(index) == value, "Just checking");
3826 }
3827 
3828 
3829 void* os::thread_local_storage_at(int index) {
3830   return TlsGetValue(index);
3831 }
3832 
3833 
3834 #ifndef PRODUCT
3835 #ifndef _WIN64
3836 // Helpers to check whether NX protection is enabled
3837 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3838   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3839       pex->ExceptionRecord->NumberParameters > 0 &&
3840       pex->ExceptionRecord->ExceptionInformation[0] ==
3841       EXCEPTION_INFO_EXEC_VIOLATION) {
3842     return EXCEPTION_EXECUTE_HANDLER;
3843   }
3844   return EXCEPTION_CONTINUE_SEARCH;
3845 }
3846 
3847 void nx_check_protection() {
3848   // If NX is enabled we'll get an exception calling into code on the stack
3849   char code[] = { (char)0xC3 }; // ret
3850   void *code_ptr = (void *)code;
3851   __try {
3852     __asm call code_ptr
3853   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3854     tty->print_raw_cr("NX protection detected.");
3855   }
3856 }
3857 #endif // _WIN64
3858 #endif // PRODUCT
3859 
3860 // this is called _before_ the global arguments have been parsed
3861 void os::init(void) {
3862   _initial_pid = _getpid();
3863 
3864   init_random(1234567);
3865 
3866   win32::initialize_system_info();
3867   win32::setmode_streams();
3868   init_page_sizes((size_t) win32::vm_page_size());
3869 
3870   // This may be overridden later when argument processing is done.
3871   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3872     os::win32::is_windows_2003());
3873 
3874   // Initialize main_process and main_thread
3875   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3876  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3877                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3878     fatal("DuplicateHandle failed\n");
3879   }
3880   main_thread_id = (int) GetCurrentThreadId();
3881 }
3882 
3883 // To install functions for atexit processing
3884 extern "C" {
3885   static void perfMemory_exit_helper() {
3886     perfMemory_exit();
3887   }
3888 }
3889 
3890 static jint initSock();
3891 
3892 // this is called _after_ the global arguments have been parsed
3893 jint os::init_2(void) {
3894   // Allocate a single page and mark it as readable for safepoint polling
3895   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3896   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3897 
3898   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3899   guarantee( return_page != NULL, "Commit Failed for polling page");
3900 
3901   os::set_polling_page( polling_page );
3902 
3903 #ifndef PRODUCT
3904   if( Verbose && PrintMiscellaneous )
3905     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3906 #endif
3907 
3908   if (!UseMembar) {
3909     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3910     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3911 
3912     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3913     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3914 
3915     os::set_memory_serialize_page( mem_serialize_page );
3916 
3917 #ifndef PRODUCT
3918     if(Verbose && PrintMiscellaneous)
3919       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3920 #endif
3921   }
3922 
3923   // Setup Windows Exceptions
3924 
3925   // for debugging float code generation bugs
3926   if (ForceFloatExceptions) {
3927 #ifndef  _WIN64
3928     static long fp_control_word = 0;
3929     __asm { fstcw fp_control_word }
3930     // see Intel PPro Manual, Vol. 2, p 7-16
3931     const long precision = 0x20;
3932     const long underflow = 0x10;
3933     const long overflow  = 0x08;
3934     const long zero_div  = 0x04;
3935     const long denorm    = 0x02;
3936     const long invalid   = 0x01;
3937     fp_control_word |= invalid;
3938     __asm { fldcw fp_control_word }
3939 #endif
3940   }
3941 
3942   // If stack_commit_size is 0, windows will reserve the default size,
3943   // but only commit a small portion of it.
3944   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3945   size_t default_reserve_size = os::win32::default_stack_size();
3946   size_t actual_reserve_size = stack_commit_size;
3947   if (stack_commit_size < default_reserve_size) {
3948     // If stack_commit_size == 0, we want this too
3949     actual_reserve_size = default_reserve_size;
3950   }
3951 
3952   // Check minimum allowable stack size for thread creation and to initialize
3953   // the java system classes, including StackOverflowError - depends on page
3954   // size.  Add a page for compiler2 recursion in main thread.
3955   // Add in 2*BytesPerWord times page size to account for VM stack during
3956   // class initialization depending on 32 or 64 bit VM.
3957   size_t min_stack_allowed =
3958             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3959             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3960   if (actual_reserve_size < min_stack_allowed) {
3961     tty->print_cr("\nThe stack size specified is too small, "
3962                   "Specify at least %dk",
3963                   min_stack_allowed / K);
3964     return JNI_ERR;
3965   }
3966 
3967   JavaThread::set_stack_size_at_create(stack_commit_size);
3968 
3969   // Calculate theoretical max. size of Threads to guard gainst artifical
3970   // out-of-memory situations, where all available address-space has been
3971   // reserved by thread stacks.
3972   assert(actual_reserve_size != 0, "Must have a stack");
3973 
3974   // Calculate the thread limit when we should start doing Virtual Memory
3975   // banging. Currently when the threads will have used all but 200Mb of space.
3976   //
3977   // TODO: consider performing a similar calculation for commit size instead
3978   // as reserve size, since on a 64-bit platform we'll run into that more
3979   // often than running out of virtual memory space.  We can use the
3980   // lower value of the two calculations as the os_thread_limit.
3981   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3982   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3983 
3984   // at exit methods are called in the reverse order of their registration.
3985   // there is no limit to the number of functions registered. atexit does
3986   // not set errno.
3987 
3988   if (PerfAllowAtExitRegistration) {
3989     // only register atexit functions if PerfAllowAtExitRegistration is set.
3990     // atexit functions can be delayed until process exit time, which
3991     // can be problematic for embedded VM situations. Embedded VMs should
3992     // call DestroyJavaVM() to assure that VM resources are released.
3993 
3994     // note: perfMemory_exit_helper atexit function may be removed in
3995     // the future if the appropriate cleanup code can be added to the
3996     // VM_Exit VMOperation's doit method.
3997     if (atexit(perfMemory_exit_helper) != 0) {
3998       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3999     }
4000   }
4001 
4002 #ifndef _WIN64
4003   // Print something if NX is enabled (win32 on AMD64)
4004   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4005 #endif
4006 
4007   // initialize thread priority policy
4008   prio_init();
4009 
4010   if (UseNUMA && !ForceNUMA) {
4011     UseNUMA = false; // We don't fully support this yet
4012   }
4013 
4014   if (UseNUMAInterleaving) {
4015     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4016     bool success = numa_interleaving_init();
4017     if (!success) UseNUMAInterleaving = false;
4018   }
4019 
4020   if (initSock() != JNI_OK) {
4021     return JNI_ERR;
4022   }
4023 
4024   return JNI_OK;
4025 }
4026 
4027 void os::init_3(void) {
4028   return;
4029 }
4030 
4031 // Mark the polling page as unreadable
4032 void os::make_polling_page_unreadable(void) {
4033   DWORD old_status;
4034   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4035     fatal("Could not disable polling page");
4036 };
4037 
4038 // Mark the polling page as readable
4039 void os::make_polling_page_readable(void) {
4040   DWORD old_status;
4041   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4042     fatal("Could not enable polling page");
4043 };
4044 
4045 
4046 int os::stat(const char *path, struct stat *sbuf) {
4047   char pathbuf[MAX_PATH];
4048   if (strlen(path) > MAX_PATH - 1) {
4049     errno = ENAMETOOLONG;
4050     return -1;
4051   }
4052   os::native_path(strcpy(pathbuf, path));
4053   int ret = ::stat(pathbuf, sbuf);
4054   if (sbuf != NULL && UseUTCFileTimestamp) {
4055     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4056     // the system timezone and so can return different values for the
4057     // same file if/when daylight savings time changes.  This adjustment
4058     // makes sure the same timestamp is returned regardless of the TZ.
4059     //
4060     // See:
4061     // http://msdn.microsoft.com/library/
4062     //   default.asp?url=/library/en-us/sysinfo/base/
4063     //   time_zone_information_str.asp
4064     // and
4065     // http://msdn.microsoft.com/library/default.asp?url=
4066     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4067     //
4068     // NOTE: there is a insidious bug here:  If the timezone is changed
4069     // after the call to stat() but before 'GetTimeZoneInformation()', then
4070     // the adjustment we do here will be wrong and we'll return the wrong
4071     // value (which will likely end up creating an invalid class data
4072     // archive).  Absent a better API for this, or some time zone locking
4073     // mechanism, we'll have to live with this risk.
4074     TIME_ZONE_INFORMATION tz;
4075     DWORD tzid = GetTimeZoneInformation(&tz);
4076     int daylightBias =
4077       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4078     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4079   }
4080   return ret;
4081 }
4082 
4083 
4084 #define FT2INT64(ft) \
4085   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4086 
4087 
4088 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4089 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4090 // of a thread.
4091 //
4092 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4093 // the fast estimate available on the platform.
4094 
4095 // current_thread_cpu_time() is not optimized for Windows yet
4096 jlong os::current_thread_cpu_time() {
4097   // return user + sys since the cost is the same
4098   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4099 }
4100 
4101 jlong os::thread_cpu_time(Thread* thread) {
4102   // consistent with what current_thread_cpu_time() returns.
4103   return os::thread_cpu_time(thread, true /* user+sys */);
4104 }
4105 
4106 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4107   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4108 }
4109 
4110 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4111   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4112   // If this function changes, os::is_thread_cpu_time_supported() should too
4113   if (os::win32::is_nt()) {
4114     FILETIME CreationTime;
4115     FILETIME ExitTime;
4116     FILETIME KernelTime;
4117     FILETIME UserTime;
4118 
4119     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4120                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4121       return -1;
4122     else
4123       if (user_sys_cpu_time) {
4124         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4125       } else {
4126         return FT2INT64(UserTime) * 100;
4127       }
4128   } else {
4129     return (jlong) timeGetTime() * 1000000;
4130   }
4131 }
4132 
4133 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4134   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4135   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4136   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4137   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4138 }
4139 
4140 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4141   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4142   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4143   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4144   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4145 }
4146 
4147 bool os::is_thread_cpu_time_supported() {
4148   // see os::thread_cpu_time
4149   if (os::win32::is_nt()) {
4150     FILETIME CreationTime;
4151     FILETIME ExitTime;
4152     FILETIME KernelTime;
4153     FILETIME UserTime;
4154 
4155     if ( GetThreadTimes(GetCurrentThread(),
4156                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4157       return false;
4158     else
4159       return true;
4160   } else {
4161     return false;
4162   }
4163 }
4164 
4165 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4166 // It does have primitives (PDH API) to get CPU usage and run queue length.
4167 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4168 // If we wanted to implement loadavg on Windows, we have a few options:
4169 //
4170 // a) Query CPU usage and run queue length and "fake" an answer by
4171 //    returning the CPU usage if it's under 100%, and the run queue
4172 //    length otherwise.  It turns out that querying is pretty slow
4173 //    on Windows, on the order of 200 microseconds on a fast machine.
4174 //    Note that on the Windows the CPU usage value is the % usage
4175 //    since the last time the API was called (and the first call
4176 //    returns 100%), so we'd have to deal with that as well.
4177 //
4178 // b) Sample the "fake" answer using a sampling thread and store
4179 //    the answer in a global variable.  The call to loadavg would
4180 //    just return the value of the global, avoiding the slow query.
4181 //
4182 // c) Sample a better answer using exponential decay to smooth the
4183 //    value.  This is basically the algorithm used by UNIX kernels.
4184 //
4185 // Note that sampling thread starvation could affect both (b) and (c).
4186 int os::loadavg(double loadavg[], int nelem) {
4187   return -1;
4188 }
4189 
4190 
4191 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4192 bool os::dont_yield() {
4193   return DontYieldALot;
4194 }
4195 
4196 // This method is a slightly reworked copy of JDK's sysOpen
4197 // from src/windows/hpi/src/sys_api_md.c
4198 
4199 int os::open(const char *path, int oflag, int mode) {
4200   char pathbuf[MAX_PATH];
4201 
4202   if (strlen(path) > MAX_PATH - 1) {
4203     errno = ENAMETOOLONG;
4204           return -1;
4205   }
4206   os::native_path(strcpy(pathbuf, path));
4207   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4208 }
4209 
4210 FILE* os::open(int fd, const char* mode) {
4211   return ::_fdopen(fd, mode);
4212 }
4213 
4214 // Is a (classpath) directory empty?
4215 bool os::dir_is_empty(const char* path) {
4216   WIN32_FIND_DATA fd;
4217   HANDLE f = FindFirstFile(path, &fd);
4218   if (f == INVALID_HANDLE_VALUE) {
4219     return true;
4220   }
4221   FindClose(f);
4222   return false;
4223 }
4224 
4225 // create binary file, rewriting existing file if required
4226 int os::create_binary_file(const char* path, bool rewrite_existing) {
4227   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4228   if (!rewrite_existing) {
4229     oflags |= _O_EXCL;
4230   }
4231   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4232 }
4233 
4234 // return current position of file pointer
4235 jlong os::current_file_offset(int fd) {
4236   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4237 }
4238 
4239 // move file pointer to the specified offset
4240 jlong os::seek_to_file_offset(int fd, jlong offset) {
4241   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4242 }
4243 
4244 
4245 jlong os::lseek(int fd, jlong offset, int whence) {
4246   return (jlong) ::_lseeki64(fd, offset, whence);
4247 }
4248 
4249 // This method is a slightly reworked copy of JDK's sysNativePath
4250 // from src/windows/hpi/src/path_md.c
4251 
4252 /* Convert a pathname to native format.  On win32, this involves forcing all
4253    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4254    sometimes rejects '/') and removing redundant separators.  The input path is
4255    assumed to have been converted into the character encoding used by the local
4256    system.  Because this might be a double-byte encoding, care is taken to
4257    treat double-byte lead characters correctly.
4258 
4259    This procedure modifies the given path in place, as the result is never
4260    longer than the original.  There is no error return; this operation always
4261    succeeds. */
4262 char * os::native_path(char *path) {
4263   char *src = path, *dst = path, *end = path;
4264   char *colon = NULL;           /* If a drive specifier is found, this will
4265                                         point to the colon following the drive
4266                                         letter */
4267 
4268   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4269   assert(((!::IsDBCSLeadByte('/'))
4270     && (!::IsDBCSLeadByte('\\'))
4271     && (!::IsDBCSLeadByte(':'))),
4272     "Illegal lead byte");
4273 
4274   /* Check for leading separators */
4275 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4276   while (isfilesep(*src)) {
4277     src++;
4278   }
4279 
4280   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4281     /* Remove leading separators if followed by drive specifier.  This
4282       hack is necessary to support file URLs containing drive
4283       specifiers (e.g., "file://c:/path").  As a side effect,
4284       "/c:/path" can be used as an alternative to "c:/path". */
4285     *dst++ = *src++;
4286     colon = dst;
4287     *dst++ = ':';
4288     src++;
4289   } else {
4290     src = path;
4291     if (isfilesep(src[0]) && isfilesep(src[1])) {
4292       /* UNC pathname: Retain first separator; leave src pointed at
4293          second separator so that further separators will be collapsed
4294          into the second separator.  The result will be a pathname
4295          beginning with "\\\\" followed (most likely) by a host name. */
4296       src = dst = path + 1;
4297       path[0] = '\\';     /* Force first separator to '\\' */
4298     }
4299   }
4300 
4301   end = dst;
4302 
4303   /* Remove redundant separators from remainder of path, forcing all
4304       separators to be '\\' rather than '/'. Also, single byte space
4305       characters are removed from the end of the path because those
4306       are not legal ending characters on this operating system.
4307   */
4308   while (*src != '\0') {
4309     if (isfilesep(*src)) {
4310       *dst++ = '\\'; src++;
4311       while (isfilesep(*src)) src++;
4312       if (*src == '\0') {
4313         /* Check for trailing separator */
4314         end = dst;
4315         if (colon == dst - 2) break;                      /* "z:\\" */
4316         if (dst == path + 1) break;                       /* "\\" */
4317         if (dst == path + 2 && isfilesep(path[0])) {
4318           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4319             beginning of a UNC pathname.  Even though it is not, by
4320             itself, a valid UNC pathname, we leave it as is in order
4321             to be consistent with the path canonicalizer as well
4322             as the win32 APIs, which treat this case as an invalid
4323             UNC pathname rather than as an alias for the root
4324             directory of the current drive. */
4325           break;
4326         }
4327         end = --dst;  /* Path does not denote a root directory, so
4328                                     remove trailing separator */
4329         break;
4330       }
4331       end = dst;
4332     } else {
4333       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4334         *dst++ = *src++;
4335         if (*src) *dst++ = *src++;
4336         end = dst;
4337       } else {         /* Copy a single-byte character */
4338         char c = *src++;
4339         *dst++ = c;
4340         /* Space is not a legal ending character */
4341         if (c != ' ') end = dst;
4342       }
4343     }
4344   }
4345 
4346   *end = '\0';
4347 
4348   /* For "z:", add "." to work around a bug in the C runtime library */
4349   if (colon == dst - 1) {
4350           path[2] = '.';
4351           path[3] = '\0';
4352   }
4353 
4354   return path;
4355 }
4356 
4357 // This code is a copy of JDK's sysSetLength
4358 // from src/windows/hpi/src/sys_api_md.c
4359 
4360 int os::ftruncate(int fd, jlong length) {
4361   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4362   long high = (long)(length >> 32);
4363   DWORD ret;
4364 
4365   if (h == (HANDLE)(-1)) {
4366     return -1;
4367   }
4368 
4369   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4370   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4371       return -1;
4372   }
4373 
4374   if (::SetEndOfFile(h) == FALSE) {
4375     return -1;
4376   }
4377 
4378   return 0;
4379 }
4380 
4381 
4382 // This code is a copy of JDK's sysSync
4383 // from src/windows/hpi/src/sys_api_md.c
4384 // except for the legacy workaround for a bug in Win 98
4385 
4386 int os::fsync(int fd) {
4387   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4388 
4389   if ( (!::FlushFileBuffers(handle)) &&
4390          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4391     /* from winerror.h */
4392     return -1;
4393   }
4394   return 0;
4395 }
4396 
4397 static int nonSeekAvailable(int, long *);
4398 static int stdinAvailable(int, long *);
4399 
4400 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4401 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4402 
4403 // This code is a copy of JDK's sysAvailable
4404 // from src/windows/hpi/src/sys_api_md.c
4405 
4406 int os::available(int fd, jlong *bytes) {
4407   jlong cur, end;
4408   struct _stati64 stbuf64;
4409 
4410   if (::_fstati64(fd, &stbuf64) >= 0) {
4411     int mode = stbuf64.st_mode;
4412     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4413       int ret;
4414       long lpbytes;
4415       if (fd == 0) {
4416         ret = stdinAvailable(fd, &lpbytes);
4417       } else {
4418         ret = nonSeekAvailable(fd, &lpbytes);
4419       }
4420       (*bytes) = (jlong)(lpbytes);
4421       return ret;
4422     }
4423     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4424       return FALSE;
4425     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4426       return FALSE;
4427     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4428       return FALSE;
4429     }
4430     *bytes = end - cur;
4431     return TRUE;
4432   } else {
4433     return FALSE;
4434   }
4435 }
4436 
4437 // This code is a copy of JDK's nonSeekAvailable
4438 // from src/windows/hpi/src/sys_api_md.c
4439 
4440 static int nonSeekAvailable(int fd, long *pbytes) {
4441   /* This is used for available on non-seekable devices
4442     * (like both named and anonymous pipes, such as pipes
4443     *  connected to an exec'd process).
4444     * Standard Input is a special case.
4445     *
4446     */
4447   HANDLE han;
4448 
4449   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4450     return FALSE;
4451   }
4452 
4453   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4454         /* PeekNamedPipe fails when at EOF.  In that case we
4455          * simply make *pbytes = 0 which is consistent with the
4456          * behavior we get on Solaris when an fd is at EOF.
4457          * The only alternative is to raise an Exception,
4458          * which isn't really warranted.
4459          */
4460     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4461       return FALSE;
4462     }
4463     *pbytes = 0;
4464   }
4465   return TRUE;
4466 }
4467 
4468 #define MAX_INPUT_EVENTS 2000
4469 
4470 // This code is a copy of JDK's stdinAvailable
4471 // from src/windows/hpi/src/sys_api_md.c
4472 
4473 static int stdinAvailable(int fd, long *pbytes) {
4474   HANDLE han;
4475   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4476   DWORD numEvents = 0;  /* Number of events in buffer */
4477   DWORD i = 0;          /* Loop index */
4478   DWORD curLength = 0;  /* Position marker */
4479   DWORD actualLength = 0;       /* Number of bytes readable */
4480   BOOL error = FALSE;         /* Error holder */
4481   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4482 
4483   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4484         return FALSE;
4485   }
4486 
4487   /* Construct an array of input records in the console buffer */
4488   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4489   if (error == 0) {
4490     return nonSeekAvailable(fd, pbytes);
4491   }
4492 
4493   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4494   if (numEvents > MAX_INPUT_EVENTS) {
4495     numEvents = MAX_INPUT_EVENTS;
4496   }
4497 
4498   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4499   if (lpBuffer == NULL) {
4500     return FALSE;
4501   }
4502 
4503   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4504   if (error == 0) {
4505     os::free(lpBuffer, mtInternal);
4506     return FALSE;
4507   }
4508 
4509   /* Examine input records for the number of bytes available */
4510   for(i=0; i<numEvents; i++) {
4511     if (lpBuffer[i].EventType == KEY_EVENT) {
4512 
4513       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4514                                       &(lpBuffer[i].Event);
4515       if (keyRecord->bKeyDown == TRUE) {
4516         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4517         curLength++;
4518         if (*keyPressed == '\r') {
4519           actualLength = curLength;
4520         }
4521       }
4522     }
4523   }
4524 
4525   if(lpBuffer != NULL) {
4526     os::free(lpBuffer, mtInternal);
4527   }
4528 
4529   *pbytes = (long) actualLength;
4530   return TRUE;
4531 }
4532 
4533 // Map a block of memory.
4534 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4535                      char *addr, size_t bytes, bool read_only,
4536                      bool allow_exec) {
4537   HANDLE hFile;
4538   char* base;
4539 
4540   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4541                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4542   if (hFile == NULL) {
4543     if (PrintMiscellaneous && Verbose) {
4544       DWORD err = GetLastError();
4545       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4546     }
4547     return NULL;
4548   }
4549 
4550   if (allow_exec) {
4551     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4552     // unless it comes from a PE image (which the shared archive is not.)
4553     // Even VirtualProtect refuses to give execute access to mapped memory
4554     // that was not previously executable.
4555     //
4556     // Instead, stick the executable region in anonymous memory.  Yuck.
4557     // Penalty is that ~4 pages will not be shareable - in the future
4558     // we might consider DLLizing the shared archive with a proper PE
4559     // header so that mapping executable + sharing is possible.
4560 
4561     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4562                                 PAGE_READWRITE);
4563     if (base == NULL) {
4564       if (PrintMiscellaneous && Verbose) {
4565         DWORD err = GetLastError();
4566         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4567       }
4568       CloseHandle(hFile);
4569       return NULL;
4570     }
4571 
4572     DWORD bytes_read;
4573     OVERLAPPED overlapped;
4574     overlapped.Offset = (DWORD)file_offset;
4575     overlapped.OffsetHigh = 0;
4576     overlapped.hEvent = NULL;
4577     // ReadFile guarantees that if the return value is true, the requested
4578     // number of bytes were read before returning.
4579     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4580     if (!res) {
4581       if (PrintMiscellaneous && Verbose) {
4582         DWORD err = GetLastError();
4583         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4584       }
4585       release_memory(base, bytes);
4586       CloseHandle(hFile);
4587       return NULL;
4588     }
4589   } else {
4590     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4591                                     NULL /*file_name*/);
4592     if (hMap == NULL) {
4593       if (PrintMiscellaneous && Verbose) {
4594         DWORD err = GetLastError();
4595         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4596       }
4597       CloseHandle(hFile);
4598       return NULL;
4599     }
4600 
4601     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4602     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4603                                   (DWORD)bytes, addr);
4604     if (base == NULL) {
4605       if (PrintMiscellaneous && Verbose) {
4606         DWORD err = GetLastError();
4607         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4608       }
4609       CloseHandle(hMap);
4610       CloseHandle(hFile);
4611       return NULL;
4612     }
4613 
4614     if (CloseHandle(hMap) == 0) {
4615       if (PrintMiscellaneous && Verbose) {
4616         DWORD err = GetLastError();
4617         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4618       }
4619       CloseHandle(hFile);
4620       return base;
4621     }
4622   }
4623 
4624   if (allow_exec) {
4625     DWORD old_protect;
4626     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4627     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4628 
4629     if (!res) {
4630       if (PrintMiscellaneous && Verbose) {
4631         DWORD err = GetLastError();
4632         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4633       }
4634       // Don't consider this a hard error, on IA32 even if the
4635       // VirtualProtect fails, we should still be able to execute
4636       CloseHandle(hFile);
4637       return base;
4638     }
4639   }
4640 
4641   if (CloseHandle(hFile) == 0) {
4642     if (PrintMiscellaneous && Verbose) {
4643       DWORD err = GetLastError();
4644       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4645     }
4646     return base;
4647   }
4648 
4649   return base;
4650 }
4651 
4652 
4653 // Remap a block of memory.
4654 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4655                        char *addr, size_t bytes, bool read_only,
4656                        bool allow_exec) {
4657   // This OS does not allow existing memory maps to be remapped so we
4658   // have to unmap the memory before we remap it.
4659   if (!os::unmap_memory(addr, bytes)) {
4660     return NULL;
4661   }
4662 
4663   // There is a very small theoretical window between the unmap_memory()
4664   // call above and the map_memory() call below where a thread in native
4665   // code may be able to access an address that is no longer mapped.
4666 
4667   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4668            read_only, allow_exec);
4669 }
4670 
4671 
4672 // Unmap a block of memory.
4673 // Returns true=success, otherwise false.
4674 
4675 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4676   BOOL result = UnmapViewOfFile(addr);
4677   if (result == 0) {
4678     if (PrintMiscellaneous && Verbose) {
4679       DWORD err = GetLastError();
4680       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4681     }
4682     return false;
4683   }
4684   return true;
4685 }
4686 
4687 void os::pause() {
4688   char filename[MAX_PATH];
4689   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4690     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4691   } else {
4692     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4693   }
4694 
4695   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4696   if (fd != -1) {
4697     struct stat buf;
4698     ::close(fd);
4699     while (::stat(filename, &buf) == 0) {
4700       Sleep(100);
4701     }
4702   } else {
4703     jio_fprintf(stderr,
4704       "Could not open pause file '%s', continuing immediately.\n", filename);
4705   }
4706 }
4707 
4708 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4709   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4710 }
4711 
4712 /*
4713  * See the caveats for this class in os_windows.hpp
4714  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4715  * into this method and returns false. If no OS EXCEPTION was raised, returns
4716  * true.
4717  * The callback is supposed to provide the method that should be protected.
4718  */
4719 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4720   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4721   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4722       "crash_protection already set?");
4723 
4724   bool success = true;
4725   __try {
4726     WatcherThread::watcher_thread()->set_crash_protection(this);
4727     cb.call();
4728   } __except(EXCEPTION_EXECUTE_HANDLER) {
4729     // only for protection, nothing to do
4730     success = false;
4731   }
4732   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4733   return success;
4734 }
4735 
4736 // An Event wraps a win32 "CreateEvent" kernel handle.
4737 //
4738 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4739 //
4740 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4741 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4742 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4743 //     In addition, an unpark() operation might fetch the handle field, but the
4744 //     event could recycle between the fetch and the SetEvent() operation.
4745 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4746 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4747 //     on an stale but recycled handle would be harmless, but in practice this might
4748 //     confuse other non-Sun code, so it's not a viable approach.
4749 //
4750 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4751 //     with the Event.  The event handle is never closed.  This could be construed
4752 //     as handle leakage, but only up to the maximum # of threads that have been extant
4753 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4754 //     permit a process to have hundreds of thousands of open handles.
4755 //
4756 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4757 //     and release unused handles.
4758 //
4759 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4760 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4761 //
4762 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4763 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4764 //
4765 // We use (2).
4766 //
4767 // TODO-FIXME:
4768 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4769 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4770 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4771 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4772 //     into a single win32 CreateEvent() handle.
4773 //
4774 // _Event transitions in park()
4775 //   -1 => -1 : illegal
4776 //    1 =>  0 : pass - return immediately
4777 //    0 => -1 : block
4778 //
4779 // _Event serves as a restricted-range semaphore :
4780 //    -1 : thread is blocked
4781 //     0 : neutral  - thread is running or ready
4782 //     1 : signaled - thread is running or ready
4783 //
4784 // Another possible encoding of _Event would be
4785 // with explicit "PARKED" and "SIGNALED" bits.
4786 
4787 int os::PlatformEvent::park (jlong Millis) {
4788     guarantee (_ParkHandle != NULL , "Invariant") ;
4789     guarantee (Millis > 0          , "Invariant") ;
4790     int v ;
4791 
4792     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4793     // the initial park() operation.
4794 
4795     for (;;) {
4796         v = _Event ;
4797         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4798     }
4799     guarantee ((v == 0) || (v == 1), "invariant") ;
4800     if (v != 0) return OS_OK ;
4801 
4802     // Do this the hard way by blocking ...
4803     // TODO: consider a brief spin here, gated on the success of recent
4804     // spin attempts by this thread.
4805     //
4806     // We decompose long timeouts into series of shorter timed waits.
4807     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4808     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4809     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4810     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4811     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4812     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4813     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4814     // for the already waited time.  This policy does not admit any new outcomes.
4815     // In the future, however, we might want to track the accumulated wait time and
4816     // adjust Millis accordingly if we encounter a spurious wakeup.
4817 
4818     const int MAXTIMEOUT = 0x10000000 ;
4819     DWORD rv = WAIT_TIMEOUT ;
4820     while (_Event < 0 && Millis > 0) {
4821        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4822        if (Millis > MAXTIMEOUT) {
4823           prd = MAXTIMEOUT ;
4824        }
4825        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4826        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4827        if (rv == WAIT_TIMEOUT) {
4828            Millis -= prd ;
4829        }
4830     }
4831     v = _Event ;
4832     _Event = 0 ;
4833     // see comment at end of os::PlatformEvent::park() below:
4834     OrderAccess::fence() ;
4835     // If we encounter a nearly simultanous timeout expiry and unpark()
4836     // we return OS_OK indicating we awoke via unpark().
4837     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4838     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4839 }
4840 
4841 void os::PlatformEvent::park () {
4842     guarantee (_ParkHandle != NULL, "Invariant") ;
4843     // Invariant: Only the thread associated with the Event/PlatformEvent
4844     // may call park().
4845     int v ;
4846     for (;;) {
4847         v = _Event ;
4848         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4849     }
4850     guarantee ((v == 0) || (v == 1), "invariant") ;
4851     if (v != 0) return ;
4852 
4853     // Do this the hard way by blocking ...
4854     // TODO: consider a brief spin here, gated on the success of recent
4855     // spin attempts by this thread.
4856     while (_Event < 0) {
4857        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4858        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4859     }
4860 
4861     // Usually we'll find _Event == 0 at this point, but as
4862     // an optional optimization we clear it, just in case can
4863     // multiple unpark() operations drove _Event up to 1.
4864     _Event = 0 ;
4865     OrderAccess::fence() ;
4866     guarantee (_Event >= 0, "invariant") ;
4867 }
4868 
4869 void os::PlatformEvent::unpark() {
4870   guarantee (_ParkHandle != NULL, "Invariant") ;
4871 
4872   // Transitions for _Event:
4873   //    0 :=> 1
4874   //    1 :=> 1
4875   //   -1 :=> either 0 or 1; must signal target thread
4876   //          That is, we can safely transition _Event from -1 to either
4877   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4878   //          unpark() calls.
4879   // See also: "Semaphores in Plan 9" by Mullender & Cox
4880   //
4881   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4882   // that it will take two back-to-back park() calls for the owning
4883   // thread to block. This has the benefit of forcing a spurious return
4884   // from the first park() call after an unpark() call which will help
4885   // shake out uses of park() and unpark() without condition variables.
4886 
4887   if (Atomic::xchg(1, &_Event) >= 0) return;
4888 
4889   ::SetEvent(_ParkHandle);
4890 }
4891 
4892 
4893 // JSR166
4894 // -------------------------------------------------------
4895 
4896 /*
4897  * The Windows implementation of Park is very straightforward: Basic
4898  * operations on Win32 Events turn out to have the right semantics to
4899  * use them directly. We opportunistically resuse the event inherited
4900  * from Monitor.
4901  */
4902 
4903 
4904 void Parker::park(bool isAbsolute, jlong time) {
4905   guarantee (_ParkEvent != NULL, "invariant") ;
4906   // First, demultiplex/decode time arguments
4907   if (time < 0) { // don't wait
4908     return;
4909   }
4910   else if (time == 0 && !isAbsolute) {
4911     time = INFINITE;
4912   }
4913   else if  (isAbsolute) {
4914     time -= os::javaTimeMillis(); // convert to relative time
4915     if (time <= 0) // already elapsed
4916       return;
4917   }
4918   else { // relative
4919     time /= 1000000; // Must coarsen from nanos to millis
4920     if (time == 0)   // Wait for the minimal time unit if zero
4921       time = 1;
4922   }
4923 
4924   JavaThread* thread = (JavaThread*)(Thread::current());
4925   assert(thread->is_Java_thread(), "Must be JavaThread");
4926   JavaThread *jt = (JavaThread *)thread;
4927 
4928   // Don't wait if interrupted or already triggered
4929   if (Thread::is_interrupted(thread, false) ||
4930     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4931     ResetEvent(_ParkEvent);
4932     return;
4933   }
4934   else {
4935     ThreadBlockInVM tbivm(jt);
4936     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4937     jt->set_suspend_equivalent();
4938 
4939     WaitForSingleObject(_ParkEvent,  time);
4940     ResetEvent(_ParkEvent);
4941 
4942     // If externally suspended while waiting, re-suspend
4943     if (jt->handle_special_suspend_equivalent_condition()) {
4944       jt->java_suspend_self();
4945     }
4946   }
4947 }
4948 
4949 void Parker::unpark() {
4950   guarantee (_ParkEvent != NULL, "invariant") ;
4951   SetEvent(_ParkEvent);
4952 }
4953 
4954 // Run the specified command in a separate process. Return its exit value,
4955 // or -1 on failure (e.g. can't create a new process).
4956 int os::fork_and_exec(char* cmd) {
4957   STARTUPINFO si;
4958   PROCESS_INFORMATION pi;
4959 
4960   memset(&si, 0, sizeof(si));
4961   si.cb = sizeof(si);
4962   memset(&pi, 0, sizeof(pi));
4963   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4964                             cmd,    // command line
4965                             NULL,   // process security attribute
4966                             NULL,   // thread security attribute
4967                             TRUE,   // inherits system handles
4968                             0,      // no creation flags
4969                             NULL,   // use parent's environment block
4970                             NULL,   // use parent's starting directory
4971                             &si,    // (in) startup information
4972                             &pi);   // (out) process information
4973 
4974   if (rslt) {
4975     // Wait until child process exits.
4976     WaitForSingleObject(pi.hProcess, INFINITE);
4977 
4978     DWORD exit_code;
4979     GetExitCodeProcess(pi.hProcess, &exit_code);
4980 
4981     // Close process and thread handles.
4982     CloseHandle(pi.hProcess);
4983     CloseHandle(pi.hThread);
4984 
4985     return (int)exit_code;
4986   } else {
4987     return -1;
4988   }
4989 }
4990 
4991 //--------------------------------------------------------------------------------------------------
4992 // Non-product code
4993 
4994 static int mallocDebugIntervalCounter = 0;
4995 static int mallocDebugCounter = 0;
4996 bool os::check_heap(bool force) {
4997   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4998   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4999     // Note: HeapValidate executes two hardware breakpoints when it finds something
5000     // wrong; at these points, eax contains the address of the offending block (I think).
5001     // To get to the exlicit error message(s) below, just continue twice.
5002     HANDLE heap = GetProcessHeap();
5003 
5004     // If we fail to lock the heap, then gflags.exe has been used
5005     // or some other special heap flag has been set that prevents
5006     // locking. We don't try to walk a heap we can't lock.
5007     if (HeapLock(heap) != 0) {
5008       PROCESS_HEAP_ENTRY phe;
5009       phe.lpData = NULL;
5010       while (HeapWalk(heap, &phe) != 0) {
5011         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5012             !HeapValidate(heap, 0, phe.lpData)) {
5013           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5014           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5015           fatal("corrupted C heap");
5016         }
5017       }
5018       DWORD err = GetLastError();
5019       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5020         fatal(err_msg("heap walk aborted with error %d", err));
5021       }
5022       HeapUnlock(heap);
5023     }
5024     mallocDebugIntervalCounter = 0;
5025   }
5026   return true;
5027 }
5028 
5029 
5030 bool os::find(address addr, outputStream* st) {
5031   // Nothing yet
5032   return false;
5033 }
5034 
5035 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5036   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5037 
5038   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5039     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5040     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5041     address addr = (address) exceptionRecord->ExceptionInformation[1];
5042 
5043     if (os::is_memory_serialize_page(thread, addr))
5044       return EXCEPTION_CONTINUE_EXECUTION;
5045   }
5046 
5047   return EXCEPTION_CONTINUE_SEARCH;
5048 }
5049 
5050 // We don't build a headless jre for Windows
5051 bool os::is_headless_jre() { return false; }
5052 
5053 static jint initSock() {
5054   WSADATA wsadata;
5055 
5056   if (!os::WinSock2Dll::WinSock2Available()) {
5057     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5058       ::GetLastError());
5059     return JNI_ERR;
5060   }
5061 
5062   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5063     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5064       ::GetLastError());
5065     return JNI_ERR;
5066   }
5067   return JNI_OK;
5068 }
5069 
5070 struct hostent* os::get_host_by_name(char* name) {
5071   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5072 }
5073 
5074 int os::socket_close(int fd) {
5075   return ::closesocket(fd);
5076 }
5077 
5078 int os::socket_available(int fd, jint *pbytes) {
5079   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5080   return (ret < 0) ? 0 : 1;
5081 }
5082 
5083 int os::socket(int domain, int type, int protocol) {
5084   return ::socket(domain, type, protocol);
5085 }
5086 
5087 int os::listen(int fd, int count) {
5088   return ::listen(fd, count);
5089 }
5090 
5091 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5092   return ::connect(fd, him, len);
5093 }
5094 
5095 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5096   return ::accept(fd, him, len);
5097 }
5098 
5099 int os::sendto(int fd, char* buf, size_t len, uint flags,
5100                struct sockaddr* to, socklen_t tolen) {
5101 
5102   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5103 }
5104 
5105 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5106                  sockaddr* from, socklen_t* fromlen) {
5107 
5108   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5109 }
5110 
5111 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5112   return ::recv(fd, buf, (int)nBytes, flags);
5113 }
5114 
5115 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5116   return ::send(fd, buf, (int)nBytes, flags);
5117 }
5118 
5119 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5120   return ::send(fd, buf, (int)nBytes, flags);
5121 }
5122 
5123 int os::timeout(int fd, long timeout) {
5124   fd_set tbl;
5125   struct timeval t;
5126 
5127   t.tv_sec  = timeout / 1000;
5128   t.tv_usec = (timeout % 1000) * 1000;
5129 
5130   tbl.fd_count    = 1;
5131   tbl.fd_array[0] = fd;
5132 
5133   return ::select(1, &tbl, 0, 0, &t);
5134 }
5135 
5136 int os::get_host_name(char* name, int namelen) {
5137   return ::gethostname(name, namelen);
5138 }
5139 
5140 int os::socket_shutdown(int fd, int howto) {
5141   return ::shutdown(fd, howto);
5142 }
5143 
5144 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5145   return ::bind(fd, him, len);
5146 }
5147 
5148 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5149   return ::getsockname(fd, him, len);
5150 }
5151 
5152 int os::get_sock_opt(int fd, int level, int optname,
5153                      char* optval, socklen_t* optlen) {
5154   return ::getsockopt(fd, level, optname, optval, optlen);
5155 }
5156 
5157 int os::set_sock_opt(int fd, int level, int optname,
5158                      const char* optval, socklen_t optlen) {
5159   return ::setsockopt(fd, level, optname, optval, optlen);
5160 }
5161 
5162 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5163 #if defined(IA32)
5164 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5165 #elif defined (AMD64)
5166 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5167 #endif
5168 
5169 // returns true if thread could be suspended,
5170 // false otherwise
5171 static bool do_suspend(HANDLE* h) {
5172   if (h != NULL) {
5173     if (SuspendThread(*h) != ~0) {
5174       return true;
5175     }
5176   }
5177   return false;
5178 }
5179 
5180 // resume the thread
5181 // calling resume on an active thread is a no-op
5182 static void do_resume(HANDLE* h) {
5183   if (h != NULL) {
5184     ResumeThread(*h);
5185   }
5186 }
5187 
5188 // retrieve a suspend/resume context capable handle
5189 // from the tid. Caller validates handle return value.
5190 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5191   if (h != NULL) {
5192     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5193   }
5194 }
5195 
5196 //
5197 // Thread sampling implementation
5198 //
5199 void os::SuspendedThreadTask::internal_do_task() {
5200   CONTEXT    ctxt;
5201   HANDLE     h = NULL;
5202 
5203   // get context capable handle for thread
5204   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5205 
5206   // sanity
5207   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5208     return;
5209   }
5210 
5211   // suspend the thread
5212   if (do_suspend(&h)) {
5213     ctxt.ContextFlags = sampling_context_flags;
5214     // get thread context
5215     GetThreadContext(h, &ctxt);
5216     SuspendedThreadTaskContext context(_thread, &ctxt);
5217     // pass context to Thread Sampling impl
5218     do_task(context);
5219     // resume thread
5220     do_resume(&h);
5221   }
5222 
5223   // close handle
5224   CloseHandle(h);
5225 }
5226 
5227 
5228 // Kernel32 API
5229 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5230 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5231 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5232 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5233 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5234 
5235 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5236 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5237 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5238 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5239 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5240 
5241 
5242 BOOL                        os::Kernel32Dll::initialized = FALSE;
5243 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5244   assert(initialized && _GetLargePageMinimum != NULL,
5245     "GetLargePageMinimumAvailable() not yet called");
5246   return _GetLargePageMinimum();
5247 }
5248 
5249 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5250   if (!initialized) {
5251     initialize();
5252   }
5253   return _GetLargePageMinimum != NULL;
5254 }
5255 
5256 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5257   if (!initialized) {
5258     initialize();
5259   }
5260   return _VirtualAllocExNuma != NULL;
5261 }
5262 
5263 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5264   assert(initialized && _VirtualAllocExNuma != NULL,
5265     "NUMACallsAvailable() not yet called");
5266 
5267   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5268 }
5269 
5270 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5271   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5272     "NUMACallsAvailable() not yet called");
5273 
5274   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5275 }
5276 
5277 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5278   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5279     "NUMACallsAvailable() not yet called");
5280 
5281   return _GetNumaNodeProcessorMask(node, proc_mask);
5282 }
5283 
5284 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5285   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5286     if (!initialized) {
5287       initialize();
5288     }
5289 
5290     if (_RtlCaptureStackBackTrace != NULL) {
5291       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5292         BackTrace, BackTraceHash);
5293     } else {
5294       return 0;
5295     }
5296 }
5297 
5298 void os::Kernel32Dll::initializeCommon() {
5299   if (!initialized) {
5300     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5301     assert(handle != NULL, "Just check");
5302     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5303     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5304     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5305     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5306     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5307     initialized = TRUE;
5308   }
5309 }
5310 
5311 
5312 
5313 #ifndef JDK6_OR_EARLIER
5314 
5315 void os::Kernel32Dll::initialize() {
5316   initializeCommon();
5317 }
5318 
5319 
5320 // Kernel32 API
5321 inline BOOL os::Kernel32Dll::SwitchToThread() {
5322   return ::SwitchToThread();
5323 }
5324 
5325 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5326   return true;
5327 }
5328 
5329   // Help tools
5330 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5331   return true;
5332 }
5333 
5334 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5335   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5336 }
5337 
5338 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5339   return ::Module32First(hSnapshot, lpme);
5340 }
5341 
5342 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5343   return ::Module32Next(hSnapshot, lpme);
5344 }
5345 
5346 
5347 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5348   return true;
5349 }
5350 
5351 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5352   ::GetNativeSystemInfo(lpSystemInfo);
5353 }
5354 
5355 // PSAPI API
5356 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5357   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5358 }
5359 
5360 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5361   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5362 }
5363 
5364 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5365   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5366 }
5367 
5368 inline BOOL os::PSApiDll::PSApiAvailable() {
5369   return true;
5370 }
5371 
5372 
5373 // WinSock2 API
5374 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5375   return ::WSAStartup(wVersionRequested, lpWSAData);
5376 }
5377 
5378 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5379   return ::gethostbyname(name);
5380 }
5381 
5382 inline BOOL os::WinSock2Dll::WinSock2Available() {
5383   return true;
5384 }
5385 
5386 // Advapi API
5387 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5388    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5389    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5390      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5391        BufferLength, PreviousState, ReturnLength);
5392 }
5393 
5394 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5395   PHANDLE TokenHandle) {
5396     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5397 }
5398 
5399 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5400   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5401 }
5402 
5403 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5404   return true;
5405 }
5406 
5407 void* os::get_default_process_handle() {
5408   return (void*)GetModuleHandle(NULL);
5409 }
5410 
5411 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5412 // which is used to find statically linked in agents.
5413 // Additionally for windows, takes into account __stdcall names.
5414 // Parameters:
5415 //            sym_name: Symbol in library we are looking for
5416 //            lib_name: Name of library to look in, NULL for shared libs.
5417 //            is_absolute_path == true if lib_name is absolute path to agent
5418 //                                     such as "C:/a/b/L.dll"
5419 //            == false if only the base name of the library is passed in
5420 //               such as "L"
5421 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5422                                     bool is_absolute_path) {
5423   char *agent_entry_name;
5424   size_t len;
5425   size_t name_len;
5426   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5427   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5428   const char *start;
5429 
5430   if (lib_name != NULL) {
5431     len = name_len = strlen(lib_name);
5432     if (is_absolute_path) {
5433       // Need to strip path, prefix and suffix
5434       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5435         lib_name = ++start;
5436       } else {
5437         // Need to check for drive prefix
5438         if ((start = strchr(lib_name, ':')) != NULL) {
5439           lib_name = ++start;
5440         }
5441       }
5442       if (len <= (prefix_len + suffix_len)) {
5443         return NULL;
5444       }
5445       lib_name += prefix_len;
5446       name_len = strlen(lib_name) - suffix_len;
5447     }
5448   }
5449   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5450   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5451   if (agent_entry_name == NULL) {
5452     return NULL;
5453   }
5454   if (lib_name != NULL) {
5455     const char *p = strrchr(sym_name, '@');
5456     if (p != NULL && p != sym_name) {
5457       // sym_name == _Agent_OnLoad@XX
5458       strncpy(agent_entry_name, sym_name, (p - sym_name));
5459       agent_entry_name[(p-sym_name)] = '\0';
5460       // agent_entry_name == _Agent_OnLoad
5461       strcat(agent_entry_name, "_");
5462       strncat(agent_entry_name, lib_name, name_len);
5463       strcat(agent_entry_name, p);
5464       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5465     } else {
5466       strcpy(agent_entry_name, sym_name);
5467       strcat(agent_entry_name, "_");
5468       strncat(agent_entry_name, lib_name, name_len);
5469     }
5470   } else {
5471     strcpy(agent_entry_name, sym_name);
5472   }
5473   return agent_entry_name;
5474 }
5475 
5476 #else
5477 // Kernel32 API
5478 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5479 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5480 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5481 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5482 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5483 
5484 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5485 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5486 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5487 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5488 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5489 
5490 void os::Kernel32Dll::initialize() {
5491   if (!initialized) {
5492     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5493     assert(handle != NULL, "Just check");
5494 
5495     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5496     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5497       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5498     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5499     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5500     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5501     initializeCommon();  // resolve the functions that always need resolving
5502 
5503     initialized = TRUE;
5504   }
5505 }
5506 
5507 BOOL os::Kernel32Dll::SwitchToThread() {
5508   assert(initialized && _SwitchToThread != NULL,
5509     "SwitchToThreadAvailable() not yet called");
5510   return _SwitchToThread();
5511 }
5512 
5513 
5514 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5515   if (!initialized) {
5516     initialize();
5517   }
5518   return _SwitchToThread != NULL;
5519 }
5520 
5521 // Help tools
5522 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5523   if (!initialized) {
5524     initialize();
5525   }
5526   return _CreateToolhelp32Snapshot != NULL &&
5527          _Module32First != NULL &&
5528          _Module32Next != NULL;
5529 }
5530 
5531 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5532   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5533     "HelpToolsAvailable() not yet called");
5534 
5535   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5536 }
5537 
5538 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5539   assert(initialized && _Module32First != NULL,
5540     "HelpToolsAvailable() not yet called");
5541 
5542   return _Module32First(hSnapshot, lpme);
5543 }
5544 
5545 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5546   assert(initialized && _Module32Next != NULL,
5547     "HelpToolsAvailable() not yet called");
5548 
5549   return _Module32Next(hSnapshot, lpme);
5550 }
5551 
5552 
5553 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5554   if (!initialized) {
5555     initialize();
5556   }
5557   return _GetNativeSystemInfo != NULL;
5558 }
5559 
5560 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5561   assert(initialized && _GetNativeSystemInfo != NULL,
5562     "GetNativeSystemInfoAvailable() not yet called");
5563 
5564   _GetNativeSystemInfo(lpSystemInfo);
5565 }
5566 
5567 // PSAPI API
5568 
5569 
5570 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5571 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5572 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5573 
5574 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5575 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5576 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5577 BOOL                    os::PSApiDll::initialized = FALSE;
5578 
5579 void os::PSApiDll::initialize() {
5580   if (!initialized) {
5581     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5582     if (handle != NULL) {
5583       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5584         "EnumProcessModules");
5585       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5586         "GetModuleFileNameExA");
5587       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5588         "GetModuleInformation");
5589     }
5590     initialized = TRUE;
5591   }
5592 }
5593 
5594 
5595 
5596 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5597   assert(initialized && _EnumProcessModules != NULL,
5598     "PSApiAvailable() not yet called");
5599   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5600 }
5601 
5602 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5603   assert(initialized && _GetModuleFileNameEx != NULL,
5604     "PSApiAvailable() not yet called");
5605   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5606 }
5607 
5608 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5609   assert(initialized && _GetModuleInformation != NULL,
5610     "PSApiAvailable() not yet called");
5611   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5612 }
5613 
5614 BOOL os::PSApiDll::PSApiAvailable() {
5615   if (!initialized) {
5616     initialize();
5617   }
5618   return _EnumProcessModules != NULL &&
5619     _GetModuleFileNameEx != NULL &&
5620     _GetModuleInformation != NULL;
5621 }
5622 
5623 
5624 // WinSock2 API
5625 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5626 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5627 
5628 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5629 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5630 BOOL             os::WinSock2Dll::initialized = FALSE;
5631 
5632 void os::WinSock2Dll::initialize() {
5633   if (!initialized) {
5634     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5635     if (handle != NULL) {
5636       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5637       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5638     }
5639     initialized = TRUE;
5640   }
5641 }
5642 
5643 
5644 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5645   assert(initialized && _WSAStartup != NULL,
5646     "WinSock2Available() not yet called");
5647   return _WSAStartup(wVersionRequested, lpWSAData);
5648 }
5649 
5650 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5651   assert(initialized && _gethostbyname != NULL,
5652     "WinSock2Available() not yet called");
5653   return _gethostbyname(name);
5654 }
5655 
5656 BOOL os::WinSock2Dll::WinSock2Available() {
5657   if (!initialized) {
5658     initialize();
5659   }
5660   return _WSAStartup != NULL &&
5661     _gethostbyname != NULL;
5662 }
5663 
5664 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5665 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5666 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5667 
5668 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5669 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5670 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5671 BOOL                     os::Advapi32Dll::initialized = FALSE;
5672 
5673 void os::Advapi32Dll::initialize() {
5674   if (!initialized) {
5675     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5676     if (handle != NULL) {
5677       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5678         "AdjustTokenPrivileges");
5679       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5680         "OpenProcessToken");
5681       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5682         "LookupPrivilegeValueA");
5683     }
5684     initialized = TRUE;
5685   }
5686 }
5687 
5688 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5689    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5690    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5691    assert(initialized && _AdjustTokenPrivileges != NULL,
5692      "AdvapiAvailable() not yet called");
5693    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5694        BufferLength, PreviousState, ReturnLength);
5695 }
5696 
5697 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5698   PHANDLE TokenHandle) {
5699    assert(initialized && _OpenProcessToken != NULL,
5700      "AdvapiAvailable() not yet called");
5701     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5702 }
5703 
5704 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5705    assert(initialized && _LookupPrivilegeValue != NULL,
5706      "AdvapiAvailable() not yet called");
5707   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5708 }
5709 
5710 BOOL os::Advapi32Dll::AdvapiAvailable() {
5711   if (!initialized) {
5712     initialize();
5713   }
5714   return _AdjustTokenPrivileges != NULL &&
5715     _OpenProcessToken != NULL &&
5716     _LookupPrivilegeValue != NULL;
5717 }
5718 
5719 #endif
5720 
5721 #ifndef PRODUCT
5722 
5723 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5724 // contiguous memory block at a particular address.
5725 // The test first tries to find a good approximate address to allocate at by using the same
5726 // method to allocate some memory at any address. The test then tries to allocate memory in
5727 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5728 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5729 // the previously allocated memory is available for allocation. The only actual failure
5730 // that is reported is when the test tries to allocate at a particular location but gets a
5731 // different valid one. A NULL return value at this point is not considered an error but may
5732 // be legitimate.
5733 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5734 void TestReserveMemorySpecial_test() {
5735   if (!UseLargePages) {
5736     if (VerboseInternalVMTests) {
5737       gclog_or_tty->print("Skipping test because large pages are disabled");
5738     }
5739     return;
5740   }
5741   // save current value of globals
5742   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5743   bool old_use_numa_interleaving = UseNUMAInterleaving;
5744 
5745   // set globals to make sure we hit the correct code path
5746   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5747 
5748   // do an allocation at an address selected by the OS to get a good one.
5749   const size_t large_allocation_size = os::large_page_size() * 4;
5750   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5751   if (result == NULL) {
5752     if (VerboseInternalVMTests) {
5753       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5754         large_allocation_size);
5755     }
5756   } else {
5757     os::release_memory_special(result, large_allocation_size);
5758 
5759     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5760     // we managed to get it once.
5761     const size_t expected_allocation_size = os::large_page_size();
5762     char* expected_location = result + os::large_page_size();
5763     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5764     if (actual_location == NULL) {
5765       if (VerboseInternalVMTests) {
5766         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5767           expected_location, large_allocation_size);
5768       }
5769     } else {
5770       // release memory
5771       os::release_memory_special(actual_location, expected_allocation_size);
5772       // only now check, after releasing any memory to avoid any leaks.
5773       assert(actual_location == expected_location,
5774         err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5775           expected_location, expected_allocation_size, actual_location));
5776     }
5777   }
5778 
5779   // restore globals
5780   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5781   UseNUMAInterleaving = old_use_numa_interleaving;
5782 }
5783 #endif // PRODUCT
5784