1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "memory/universe.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "oops/symbol.hpp"
  39 #include "runtime/compilationPolicy.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/interfaceSupport.hpp"
  43 #include "runtime/mutexLocker.hpp"
  44 #include "runtime/orderAccess.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/safepoint.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubCodeGenerator.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/sweeper.hpp"
  51 #include "runtime/synchronizer.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "services/memTracker.hpp"
  54 #include "services/runtimeService.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/macros.hpp"
  57 #ifdef TARGET_ARCH_x86
  58 # include "nativeInst_x86.hpp"
  59 # include "vmreg_x86.inline.hpp"
  60 #endif
  61 #ifdef TARGET_ARCH_sparc
  62 # include "nativeInst_sparc.hpp"
  63 # include "vmreg_sparc.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_zero
  66 # include "nativeInst_zero.hpp"
  67 # include "vmreg_zero.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_arm
  70 # include "nativeInst_arm.hpp"
  71 # include "vmreg_arm.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_ppc
  74 # include "nativeInst_ppc.hpp"
  75 # include "vmreg_ppc.inline.hpp"
  76 #endif
  77 #if INCLUDE_ALL_GCS
  78 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  79 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
  80 #endif // INCLUDE_ALL_GCS
  81 #ifdef COMPILER1
  82 #include "c1/c1_globals.hpp"
  83 #endif
  84 
  85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  86 
  87 // --------------------------------------------------------------------------------------------------
  88 // Implementation of Safepoint begin/end
  89 
  90 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  91 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  92 volatile int SafepointSynchronize::_safepoint_counter = 0;
  93 int SafepointSynchronize::_current_jni_active_count = 0;
  94 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  95 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  96 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  97 static bool timeout_error_printed = false;
  98 
  99 // Roll all threads forward to a safepoint and suspend them all
 100 void SafepointSynchronize::begin() {
 101 
 102   Thread* myThread = Thread::current();
 103   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 104 
 105   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 106     _safepoint_begin_time = os::javaTimeNanos();
 107     _ts_of_current_safepoint = tty->time_stamp().seconds();
 108   }
 109 
 110 #if INCLUDE_ALL_GCS
 111   if (UseConcMarkSweepGC) {
 112     // In the future we should investigate whether CMS can use the
 113     // more-general mechanism below.  DLD (01/05).
 114     ConcurrentMarkSweepThread::synchronize(false);
 115   } else if (UseG1GC) {
 116     SuspendibleThreadSet::synchronize();
 117   }
 118 #endif // INCLUDE_ALL_GCS
 119 
 120   // By getting the Threads_lock, we assure that no threads are about to start or
 121   // exit. It is released again in SafepointSynchronize::end().
 122   Threads_lock->lock();
 123 
 124   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 125 
 126   int nof_threads = Threads::number_of_threads();
 127 
 128   if (TraceSafepoint) {
 129     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 130   }
 131 
 132   RuntimeService::record_safepoint_begin();
 133 
 134   MutexLocker mu(Safepoint_lock);
 135 
 136   // Reset the count of active JNI critical threads
 137   _current_jni_active_count = 0;
 138 
 139   // Set number of threads to wait for, before we initiate the callbacks
 140   _waiting_to_block = nof_threads;
 141   TryingToBlock     = 0 ;
 142   int still_running = nof_threads;
 143 
 144   // Save the starting time, so that it can be compared to see if this has taken
 145   // too long to complete.
 146   jlong safepoint_limit_time;
 147   timeout_error_printed = false;
 148 
 149   // PrintSafepointStatisticsTimeout can be specified separately. When
 150   // specified, PrintSafepointStatistics will be set to true in
 151   // deferred_initialize_stat method. The initialization has to be done
 152   // early enough to avoid any races. See bug 6880029 for details.
 153   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 154     deferred_initialize_stat();
 155   }
 156 
 157   // Begin the process of bringing the system to a safepoint.
 158   // Java threads can be in several different states and are
 159   // stopped by different mechanisms:
 160   //
 161   //  1. Running interpreted
 162   //     The interpreter dispatch table is changed to force it to
 163   //     check for a safepoint condition between bytecodes.
 164   //  2. Running in native code
 165   //     When returning from the native code, a Java thread must check
 166   //     the safepoint _state to see if we must block.  If the
 167   //     VM thread sees a Java thread in native, it does
 168   //     not wait for this thread to block.  The order of the memory
 169   //     writes and reads of both the safepoint state and the Java
 170   //     threads state is critical.  In order to guarantee that the
 171   //     memory writes are serialized with respect to each other,
 172   //     the VM thread issues a memory barrier instruction
 173   //     (on MP systems).  In order to avoid the overhead of issuing
 174   //     a memory barrier for each Java thread making native calls, each Java
 175   //     thread performs a write to a single memory page after changing
 176   //     the thread state.  The VM thread performs a sequence of
 177   //     mprotect OS calls which forces all previous writes from all
 178   //     Java threads to be serialized.  This is done in the
 179   //     os::serialize_thread_states() call.  This has proven to be
 180   //     much more efficient than executing a membar instruction
 181   //     on every call to native code.
 182   //  3. Running compiled Code
 183   //     Compiled code reads a global (Safepoint Polling) page that
 184   //     is set to fault if we are trying to get to a safepoint.
 185   //  4. Blocked
 186   //     A thread which is blocked will not be allowed to return from the
 187   //     block condition until the safepoint operation is complete.
 188   //  5. In VM or Transitioning between states
 189   //     If a Java thread is currently running in the VM or transitioning
 190   //     between states, the safepointing code will wait for the thread to
 191   //     block itself when it attempts transitions to a new state.
 192   //
 193   _state            = _synchronizing;
 194   OrderAccess::fence();
 195 
 196   // Flush all thread states to memory
 197   if (!UseMembar) {
 198     os::serialize_thread_states();
 199   }
 200 
 201   // Make interpreter safepoint aware
 202   Interpreter::notice_safepoints();
 203 
 204   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 205     // Make polling safepoint aware
 206     guarantee (PageArmed == 0, "invariant") ;
 207     PageArmed = 1 ;
 208     os::make_polling_page_unreadable();
 209   }
 210 
 211   // Consider using active_processor_count() ... but that call is expensive.
 212   int ncpus = os::processor_count() ;
 213 
 214 #ifdef ASSERT
 215   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 216     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 217     // Clear the visited flag to ensure that the critical counts are collected properly.
 218     cur->set_visited_for_critical_count(false);
 219   }
 220 #endif // ASSERT
 221 
 222   if (SafepointTimeout)
 223     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 224 
 225   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 226   unsigned int iterations = 0;
 227   int steps = 0 ;
 228   while(still_running > 0) {
 229     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 230       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 231       ThreadSafepointState *cur_state = cur->safepoint_state();
 232       if (cur_state->is_running()) {
 233         cur_state->examine_state_of_thread();
 234         if (!cur_state->is_running()) {
 235            still_running--;
 236            // consider adjusting steps downward:
 237            //   steps = 0
 238            //   steps -= NNN
 239            //   steps >>= 1
 240            //   steps = MIN(steps, 2000-100)
 241            //   if (iterations != 0) steps -= NNN
 242         }
 243         if (TraceSafepoint && Verbose) cur_state->print();
 244       }
 245     }
 246 
 247     if (PrintSafepointStatistics && iterations == 0) {
 248       begin_statistics(nof_threads, still_running);
 249     }
 250 
 251     if (still_running > 0) {
 252       // Check for if it takes to long
 253       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 254         print_safepoint_timeout(_spinning_timeout);
 255       }
 256 
 257       // Spin to avoid context switching.
 258       // There's a tension between allowing the mutators to run (and rendezvous)
 259       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 260       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 261       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 262       // Blocking or yielding incur their own penalties in the form of context switching
 263       // and the resultant loss of $ residency.
 264       //
 265       // Further complicating matters is that yield() does not work as naively expected
 266       // on many platforms -- yield() does not guarantee that any other ready threads
 267       // will run.   As such we revert yield_all() after some number of iterations.
 268       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 269       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 270       // can actually increase the time it takes the VM thread to detect that a system-wide
 271       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 272       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 273       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 274       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 275       // will eventually wake up and detect that all mutators are safe, at which point
 276       // we'll again make progress.
 277       //
 278       // Beware too that that the VMThread typically runs at elevated priority.
 279       // Its default priority is higher than the default mutator priority.
 280       // Obviously, this complicates spinning.
 281       //
 282       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 283       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 284       //
 285       // See the comments in synchronizer.cpp for additional remarks on spinning.
 286       //
 287       // In the future we might:
 288       // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 289       //    This is tricky as the path used by a thread exiting the JVM (say on
 290       //    on JNI call-out) simply stores into its state field.  The burden
 291       //    is placed on the VM thread, which must poll (spin).
 292       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 293       //    we might aggressively scan the stacks of threads that are already safe.
 294       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 295       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 296       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 297       // 5. Check system saturation.  If the system is not fully saturated then
 298       //    simply spin and avoid sleep/yield.
 299       // 6. As still-running mutators rendezvous they could unpark the sleeping
 300       //    VMthread.  This works well for still-running mutators that become
 301       //    safe.  The VMthread must still poll for mutators that call-out.
 302       // 7. Drive the policy on time-since-begin instead of iterations.
 303       // 8. Consider making the spin duration a function of the # of CPUs:
 304       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 305       //    Alternately, instead of counting iterations of the outer loop
 306       //    we could count the # of threads visited in the inner loop, above.
 307       // 9. On windows consider using the return value from SwitchThreadTo()
 308       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 309 
 310       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 311          guarantee (PageArmed == 0, "invariant") ;
 312          PageArmed = 1 ;
 313          os::make_polling_page_unreadable();
 314       }
 315 
 316       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 317       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 318       ++steps ;
 319       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 320         SpinPause() ;     // MP-Polite spin
 321       } else
 322       if (steps < DeferThrSuspendLoopCount) {
 323         os::NakedYield() ;
 324       } else {
 325         os::yield_all() ;
 326         // Alternately, the VM thread could transiently depress its scheduling priority or
 327         // transiently increase the priority of the tardy mutator(s).
 328       }
 329 
 330       iterations ++ ;
 331     }
 332     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 333   }
 334   assert(still_running == 0, "sanity check");
 335 
 336   if (PrintSafepointStatistics) {
 337     update_statistics_on_spin_end();
 338   }
 339 
 340   // wait until all threads are stopped
 341   while (_waiting_to_block > 0) {
 342     if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 343     if (!SafepointTimeout || timeout_error_printed) {
 344       Safepoint_lock->wait(true);  // true, means with no safepoint checks
 345     } else {
 346       // Compute remaining time
 347       jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 348 
 349       // If there is no remaining time, then there is an error
 350       if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 351         print_safepoint_timeout(_blocking_timeout);
 352       }
 353     }
 354   }
 355   assert(_waiting_to_block == 0, "sanity check");
 356 
 357 #ifndef PRODUCT
 358   if (SafepointTimeout) {
 359     jlong current_time = os::javaTimeNanos();
 360     if (safepoint_limit_time < current_time) {
 361       tty->print_cr("# SafepointSynchronize: Finished after "
 362                     INT64_FORMAT_W(6) " ms",
 363                     ((current_time - safepoint_limit_time) / MICROUNITS +
 364                      SafepointTimeoutDelay));
 365     }
 366   }
 367 #endif
 368 
 369   assert((_safepoint_counter & 0x1) == 0, "must be even");
 370   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 371   _safepoint_counter ++;
 372 
 373   // Record state
 374   _state = _synchronized;
 375 
 376   OrderAccess::fence();
 377 
 378 #ifdef ASSERT
 379   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 380     // make sure all the threads were visited
 381     assert(cur->was_visited_for_critical_count(), "missed a thread");
 382   }
 383 #endif // ASSERT
 384 
 385   // Update the count of active JNI critical regions
 386   GC_locker::set_jni_lock_count(_current_jni_active_count);
 387 
 388   if (TraceSafepoint) {
 389     VM_Operation *op = VMThread::vm_operation();
 390     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 391   }
 392 
 393   RuntimeService::record_safepoint_synchronized();
 394   if (PrintSafepointStatistics) {
 395     update_statistics_on_sync_end(os::javaTimeNanos());
 396   }
 397 
 398   // Call stuff that needs to be run when a safepoint is just about to be completed
 399   do_cleanup_tasks();
 400 
 401   if (PrintSafepointStatistics) {
 402     // Record how much time spend on the above cleanup tasks
 403     update_statistics_on_cleanup_end(os::javaTimeNanos());
 404   }
 405 }
 406 
 407 // Wake up all threads, so they are ready to resume execution after the safepoint
 408 // operation has been carried out
 409 void SafepointSynchronize::end() {
 410 
 411   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 412   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 413   _safepoint_counter ++;
 414   // memory fence isn't required here since an odd _safepoint_counter
 415   // value can do no harm and a fence is issued below anyway.
 416 
 417   DEBUG_ONLY(Thread* myThread = Thread::current();)
 418   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 419 
 420   if (PrintSafepointStatistics) {
 421     end_statistics(os::javaTimeNanos());
 422   }
 423 
 424 #ifdef ASSERT
 425   // A pending_exception cannot be installed during a safepoint.  The threads
 426   // may install an async exception after they come back from a safepoint into
 427   // pending_exception after they unblock.  But that should happen later.
 428   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 429     assert (!(cur->has_pending_exception() &&
 430               cur->safepoint_state()->is_at_poll_safepoint()),
 431             "safepoint installed a pending exception");
 432   }
 433 #endif // ASSERT
 434 
 435   if (PageArmed) {
 436     // Make polling safepoint aware
 437     os::make_polling_page_readable();
 438     PageArmed = 0 ;
 439   }
 440 
 441   // Remove safepoint check from interpreter
 442   Interpreter::ignore_safepoints();
 443 
 444   {
 445     MutexLocker mu(Safepoint_lock);
 446 
 447     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 448 
 449     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 450     // when they get restarted.
 451     _state = _not_synchronized;
 452     OrderAccess::fence();
 453 
 454     if (TraceSafepoint) {
 455        tty->print_cr("Leaving safepoint region");
 456     }
 457 
 458     // Start suspended threads
 459     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 460       // A problem occurring on Solaris is when attempting to restart threads
 461       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 462       // to the next one (since it has been running the longest).  We then have
 463       // to wait for a cpu to become available before we can continue restarting
 464       // threads.
 465       // FIXME: This causes the performance of the VM to degrade when active and with
 466       // large numbers of threads.  Apparently this is due to the synchronous nature
 467       // of suspending threads.
 468       //
 469       // TODO-FIXME: the comments above are vestigial and no longer apply.
 470       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 471       if (VMThreadHintNoPreempt) {
 472         os::hint_no_preempt();
 473       }
 474       ThreadSafepointState* cur_state = current->safepoint_state();
 475       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 476       cur_state->restart();
 477       assert(cur_state->is_running(), "safepoint state has not been reset");
 478     }
 479 
 480     RuntimeService::record_safepoint_end();
 481 
 482     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 483     // blocked in signal_thread_blocked
 484     Threads_lock->unlock();
 485 
 486   }
 487 #if INCLUDE_ALL_GCS
 488   // If there are any concurrent GC threads resume them.
 489   if (UseConcMarkSweepGC) {
 490     ConcurrentMarkSweepThread::desynchronize(false);
 491   } else if (UseG1GC) {
 492     SuspendibleThreadSet::desynchronize();
 493   }
 494 #endif // INCLUDE_ALL_GCS
 495   // record this time so VMThread can keep track how much time has elapsed
 496   // since last safepoint.
 497   _end_of_last_safepoint = os::javaTimeMillis();
 498 }
 499 
 500 bool SafepointSynchronize::is_cleanup_needed() {
 501   // Need a safepoint if some inline cache buffers is non-empty
 502   if (!InlineCacheBuffer::is_empty()) return true;
 503   return false;
 504 }
 505 
 506 
 507 
 508 // Various cleaning tasks that should be done periodically at safepoints
 509 void SafepointSynchronize::do_cleanup_tasks() {
 510   {
 511     TraceTime t1("deflating idle monitors", TraceSafepointCleanupTime);
 512     ObjectSynchronizer::deflate_idle_monitors();
 513   }
 514 
 515   {
 516     TraceTime t2("updating inline caches", TraceSafepointCleanupTime);
 517     InlineCacheBuffer::update_inline_caches();
 518   }
 519   {
 520     TraceTime t3("compilation policy safepoint handler", TraceSafepointCleanupTime);
 521     CompilationPolicy::policy()->do_safepoint_work();
 522   }
 523 
 524   {
 525     TraceTime t4("mark nmethods", TraceSafepointCleanupTime);
 526     NMethodSweeper::mark_active_nmethods();
 527   }
 528 
 529   if (SymbolTable::needs_rehashing()) {
 530     TraceTime t5("rehashing symbol table", TraceSafepointCleanupTime);
 531     SymbolTable::rehash_table();
 532   }
 533 
 534   if (StringTable::needs_rehashing()) {
 535     TraceTime t6("rehashing string table", TraceSafepointCleanupTime);
 536     StringTable::rehash_table();
 537   }
 538 
 539   // rotate log files?
 540   if (UseGCLogFileRotation) {
 541     gclog_or_tty->rotate_log(false);
 542   }
 543 
 544   {
 545     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 546     // make sure concurrent sweep is done
 547     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
 548     ClassLoaderDataGraph::purge_if_needed();
 549   }
 550 
 551   if (MemTracker::is_on()) {
 552     MemTracker::sync();
 553   }
 554 }
 555 
 556 
 557 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 558   switch(state) {
 559   case _thread_in_native:
 560     // native threads are safe if they have no java stack or have walkable stack
 561     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 562 
 563    // blocked threads should have already have walkable stack
 564   case _thread_blocked:
 565     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 566     return true;
 567 
 568   default:
 569     return false;
 570   }
 571 }
 572 
 573 
 574 // See if the thread is running inside a lazy critical native and
 575 // update the thread critical count if so.  Also set a suspend flag to
 576 // cause the native wrapper to return into the JVM to do the unlock
 577 // once the native finishes.
 578 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 579   if (state == _thread_in_native &&
 580       thread->has_last_Java_frame() &&
 581       thread->frame_anchor()->walkable()) {
 582     // This thread might be in a critical native nmethod so look at
 583     // the top of the stack and increment the critical count if it
 584     // is.
 585     frame wrapper_frame = thread->last_frame();
 586     CodeBlob* stub_cb = wrapper_frame.cb();
 587     if (stub_cb != NULL &&
 588         stub_cb->is_nmethod() &&
 589         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 590       // A thread could potentially be in a critical native across
 591       // more than one safepoint, so only update the critical state on
 592       // the first one.  When it returns it will perform the unlock.
 593       if (!thread->do_critical_native_unlock()) {
 594 #ifdef ASSERT
 595         if (!thread->in_critical()) {
 596           GC_locker::increment_debug_jni_lock_count();
 597         }
 598 #endif
 599         thread->enter_critical();
 600         // Make sure the native wrapper calls back on return to
 601         // perform the needed critical unlock.
 602         thread->set_critical_native_unlock();
 603       }
 604     }
 605   }
 606 }
 607 
 608 
 609 
 610 // -------------------------------------------------------------------------------------------------------
 611 // Implementation of Safepoint callback point
 612 
 613 void SafepointSynchronize::block(JavaThread *thread) {
 614   assert(thread != NULL, "thread must be set");
 615   assert(thread->is_Java_thread(), "not a Java thread");
 616 
 617   // Threads shouldn't block if they are in the middle of printing, but...
 618   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 619 
 620   // Only bail from the block() call if the thread is gone from the
 621   // thread list; starting to exit should still block.
 622   if (thread->is_terminated()) {
 623      // block current thread if we come here from native code when VM is gone
 624      thread->block_if_vm_exited();
 625 
 626      // otherwise do nothing
 627      return;
 628   }
 629 
 630   JavaThreadState state = thread->thread_state();
 631   thread->frame_anchor()->make_walkable(thread);
 632 
 633   // Check that we have a valid thread_state at this point
 634   switch(state) {
 635     case _thread_in_vm_trans:
 636     case _thread_in_Java:        // From compiled code
 637 
 638       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 639       // we pretend we are still in the VM.
 640       thread->set_thread_state(_thread_in_vm);
 641 
 642       if (is_synchronizing()) {
 643          Atomic::inc (&TryingToBlock) ;
 644       }
 645 
 646       // We will always be holding the Safepoint_lock when we are examine the state
 647       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 648       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 649       Safepoint_lock->lock_without_safepoint_check();
 650       if (is_synchronizing()) {
 651         // Decrement the number of threads to wait for and signal vm thread
 652         assert(_waiting_to_block > 0, "sanity check");
 653         _waiting_to_block--;
 654         thread->safepoint_state()->set_has_called_back(true);
 655 
 656         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 657         if (thread->in_critical()) {
 658           // Notice that this thread is in a critical section
 659           increment_jni_active_count();
 660         }
 661 
 662         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 663         if (_waiting_to_block == 0) {
 664           Safepoint_lock->notify_all();
 665         }
 666       }
 667 
 668       // We transition the thread to state _thread_blocked here, but
 669       // we can't do our usual check for external suspension and then
 670       // self-suspend after the lock_without_safepoint_check() call
 671       // below because we are often called during transitions while
 672       // we hold different locks. That would leave us suspended while
 673       // holding a resource which results in deadlocks.
 674       thread->set_thread_state(_thread_blocked);
 675       Safepoint_lock->unlock();
 676 
 677       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 678       // the entire safepoint, the threads will all line up here during the safepoint.
 679       Threads_lock->lock_without_safepoint_check();
 680       // restore original state. This is important if the thread comes from compiled code, so it
 681       // will continue to execute with the _thread_in_Java state.
 682       thread->set_thread_state(state);
 683       Threads_lock->unlock();
 684       break;
 685 
 686     case _thread_in_native_trans:
 687     case _thread_blocked_trans:
 688     case _thread_new_trans:
 689       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 690         thread->print_thread_state();
 691         fatal("Deadlock in safepoint code.  "
 692               "Should have called back to the VM before blocking.");
 693       }
 694 
 695       // We transition the thread to state _thread_blocked here, but
 696       // we can't do our usual check for external suspension and then
 697       // self-suspend after the lock_without_safepoint_check() call
 698       // below because we are often called during transitions while
 699       // we hold different locks. That would leave us suspended while
 700       // holding a resource which results in deadlocks.
 701       thread->set_thread_state(_thread_blocked);
 702 
 703       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 704       // the safepoint code might still be waiting for it to block. We need to change the state here,
 705       // so it can see that it is at a safepoint.
 706 
 707       // Block until the safepoint operation is completed.
 708       Threads_lock->lock_without_safepoint_check();
 709 
 710       // Restore state
 711       thread->set_thread_state(state);
 712 
 713       Threads_lock->unlock();
 714       break;
 715 
 716     default:
 717      fatal(err_msg("Illegal threadstate encountered: %d", state));
 718   }
 719 
 720   // Check for pending. async. exceptions or suspends - except if the
 721   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 722   // is called last since it grabs a lock and we only want to do that when
 723   // we must.
 724   //
 725   // Note: we never deliver an async exception at a polling point as the
 726   // compiler may not have an exception handler for it. The polling
 727   // code will notice the async and deoptimize and the exception will
 728   // be delivered. (Polling at a return point is ok though). Sure is
 729   // a lot of bother for a deprecated feature...
 730   //
 731   // We don't deliver an async exception if the thread state is
 732   // _thread_in_native_trans so JNI functions won't be called with
 733   // a surprising pending exception. If the thread state is going back to java,
 734   // async exception is checked in check_special_condition_for_native_trans().
 735 
 736   if (state != _thread_blocked_trans &&
 737       state != _thread_in_vm_trans &&
 738       thread->has_special_runtime_exit_condition()) {
 739     thread->handle_special_runtime_exit_condition(
 740       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 741   }
 742 }
 743 
 744 // ------------------------------------------------------------------------------------------------------
 745 // Exception handlers
 746 
 747 #ifndef PRODUCT
 748 
 749 #ifdef SPARC
 750 
 751 #ifdef _LP64
 752 #define PTR_PAD ""
 753 #else
 754 #define PTR_PAD "        "
 755 #endif
 756 
 757 static void print_ptrs(intptr_t oldptr, intptr_t newptr, bool wasoop) {
 758   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
 759   tty->print_cr(PTR_FORMAT PTR_PAD " %s %c " PTR_FORMAT PTR_PAD " %s %s",
 760                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 761                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 762 }
 763 
 764 static void print_longs(jlong oldptr, jlong newptr, bool wasoop) {
 765   bool is_oop = newptr ? (cast_to_oop(newptr))->is_oop() : false;
 766   tty->print_cr(PTR64_FORMAT " %s %c " PTR64_FORMAT " %s %s",
 767                 oldptr, wasoop?"oop":"   ", oldptr == newptr ? ' ' : '!',
 768                 newptr, is_oop?"oop":"   ", (wasoop && !is_oop) ? "STALE" : ((wasoop==false&&is_oop==false&&oldptr !=newptr)?"STOMP":"     "));
 769 }
 770 
 771 static void print_me(intptr_t *new_sp, intptr_t *old_sp, bool *was_oops) {
 772 #ifdef _LP64
 773   tty->print_cr("--------+------address-----+------before-----------+-------after----------+");
 774   const int incr = 1;           // Increment to skip a long, in units of intptr_t
 775 #else
 776   tty->print_cr("--------+--address-+------before-----------+-------after----------+");
 777   const int incr = 2;           // Increment to skip a long, in units of intptr_t
 778 #endif
 779   tty->print_cr("---SP---|");
 780   for( int i=0; i<16; i++ ) {
 781     tty->print("blob %c%d |"PTR_FORMAT" ","LO"[i>>3],i&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 782   tty->print_cr("--------|");
 783   for( int i1=0; i1<frame::memory_parameter_word_sp_offset-16; i1++ ) {
 784     tty->print("argv pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 785   tty->print("     pad|"PTR_FORMAT" ",new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++);
 786   tty->print_cr("--------|");
 787   tty->print(" G1     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 788   tty->print(" G3     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 789   tty->print(" G4     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 790   tty->print(" G5     |"PTR_FORMAT" ",new_sp); print_longs(*(jlong*)old_sp,*(jlong*)new_sp,was_oops[incr-1]); old_sp += incr; new_sp += incr; was_oops += incr;
 791   tty->print_cr(" FSR    |"PTR_FORMAT" "PTR64_FORMAT"       "PTR64_FORMAT,new_sp,*(jlong*)old_sp,*(jlong*)new_sp);
 792   old_sp += incr; new_sp += incr; was_oops += incr;
 793   // Skip the floats
 794   tty->print_cr("--Float-|"PTR_FORMAT,new_sp);
 795   tty->print_cr("---FP---|");
 796   old_sp += incr*32;  new_sp += incr*32;  was_oops += incr*32;
 797   for( int i2=0; i2<16; i2++ ) {
 798     tty->print("call %c%d |"PTR_FORMAT" ","LI"[i2>>3],i2&7,new_sp); print_ptrs(*old_sp++,*new_sp++,*was_oops++); }
 799   tty->cr();
 800 }
 801 #endif  // SPARC
 802 #endif  // PRODUCT
 803 
 804 
 805 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 806   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 807   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 808   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 809 
 810   // Uncomment this to get some serious before/after printing of the
 811   // Sparc safepoint-blob frame structure.
 812   /*
 813   intptr_t* sp = thread->last_Java_sp();
 814   intptr_t stack_copy[150];
 815   for( int i=0; i<150; i++ ) stack_copy[i] = sp[i];
 816   bool was_oops[150];
 817   for( int i=0; i<150; i++ )
 818     was_oops[i] = stack_copy[i] ? ((oop)stack_copy[i])->is_oop() : false;
 819   */
 820 
 821   if (ShowSafepointMsgs) {
 822     tty->print("handle_polling_page_exception: ");
 823   }
 824 
 825   if (PrintSafepointStatistics) {
 826     inc_page_trap_count();
 827   }
 828 
 829   ThreadSafepointState* state = thread->safepoint_state();
 830 
 831   state->handle_polling_page_exception();
 832   // print_me(sp,stack_copy,was_oops);
 833 }
 834 
 835 
 836 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 837   if (!timeout_error_printed) {
 838     timeout_error_printed = true;
 839     // Print out the thread info which didn't reach the safepoint for debugging
 840     // purposes (useful when there are lots of threads in the debugger).
 841     tty->cr();
 842     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 843     if (reason ==  _spinning_timeout) {
 844       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 845     } else if (reason == _blocking_timeout) {
 846       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 847     }
 848 
 849     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 850     ThreadSafepointState *cur_state;
 851     ResourceMark rm;
 852     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 853         cur_thread = cur_thread->next()) {
 854       cur_state = cur_thread->safepoint_state();
 855 
 856       if (cur_thread->thread_state() != _thread_blocked &&
 857           ((reason == _spinning_timeout && cur_state->is_running()) ||
 858            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 859         tty->print("# ");
 860         cur_thread->print();
 861         tty->cr();
 862       }
 863     }
 864     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 865   }
 866 
 867   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 868   // ShowMessageBoxOnError.
 869   if (DieOnSafepointTimeout) {
 870     char msg[1024];
 871     VM_Operation *op = VMThread::vm_operation();
 872     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 873             SafepointTimeoutDelay,
 874             op != NULL ? op->name() : "no vm operation");
 875     fatal(msg);
 876   }
 877 }
 878 
 879 
 880 // -------------------------------------------------------------------------------------------------------
 881 // Implementation of ThreadSafepointState
 882 
 883 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 884   _thread = thread;
 885   _type   = _running;
 886   _has_called_back = false;
 887   _at_poll_safepoint = false;
 888 }
 889 
 890 void ThreadSafepointState::create(JavaThread *thread) {
 891   ThreadSafepointState *state = new ThreadSafepointState(thread);
 892   thread->set_safepoint_state(state);
 893 }
 894 
 895 void ThreadSafepointState::destroy(JavaThread *thread) {
 896   if (thread->safepoint_state()) {
 897     delete(thread->safepoint_state());
 898     thread->set_safepoint_state(NULL);
 899   }
 900 }
 901 
 902 void ThreadSafepointState::examine_state_of_thread() {
 903   assert(is_running(), "better be running or just have hit safepoint poll");
 904 
 905   JavaThreadState state = _thread->thread_state();
 906 
 907   // Save the state at the start of safepoint processing.
 908   _orig_thread_state = state;
 909 
 910   // Check for a thread that is suspended. Note that thread resume tries
 911   // to grab the Threads_lock which we own here, so a thread cannot be
 912   // resumed during safepoint synchronization.
 913 
 914   // We check to see if this thread is suspended without locking to
 915   // avoid deadlocking with a third thread that is waiting for this
 916   // thread to be suspended. The third thread can notice the safepoint
 917   // that we're trying to start at the beginning of its SR_lock->wait()
 918   // call. If that happens, then the third thread will block on the
 919   // safepoint while still holding the underlying SR_lock. We won't be
 920   // able to get the SR_lock and we'll deadlock.
 921   //
 922   // We don't need to grab the SR_lock here for two reasons:
 923   // 1) The suspend flags are both volatile and are set with an
 924   //    Atomic::cmpxchg() call so we should see the suspended
 925   //    state right away.
 926   // 2) We're being called from the safepoint polling loop; if
 927   //    we don't see the suspended state on this iteration, then
 928   //    we'll come around again.
 929   //
 930   bool is_suspended = _thread->is_ext_suspended();
 931   if (is_suspended) {
 932     roll_forward(_at_safepoint);
 933     return;
 934   }
 935 
 936   // Some JavaThread states have an initial safepoint state of
 937   // running, but are actually at a safepoint. We will happily
 938   // agree and update the safepoint state here.
 939   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 940     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 941     roll_forward(_at_safepoint);
 942     return;
 943   }
 944 
 945   if (state == _thread_in_vm) {
 946     roll_forward(_call_back);
 947     return;
 948   }
 949 
 950   // All other thread states will continue to run until they
 951   // transition and self-block in state _blocked
 952   // Safepoint polling in compiled code causes the Java threads to do the same.
 953   // Note: new threads may require a malloc so they must be allowed to finish
 954 
 955   assert(is_running(), "examine_state_of_thread on non-running thread");
 956   return;
 957 }
 958 
 959 // Returns true is thread could not be rolled forward at present position.
 960 void ThreadSafepointState::roll_forward(suspend_type type) {
 961   _type = type;
 962 
 963   switch(_type) {
 964     case _at_safepoint:
 965       SafepointSynchronize::signal_thread_at_safepoint();
 966       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 967       if (_thread->in_critical()) {
 968         // Notice that this thread is in a critical section
 969         SafepointSynchronize::increment_jni_active_count();
 970       }
 971       break;
 972 
 973     case _call_back:
 974       set_has_called_back(false);
 975       break;
 976 
 977     case _running:
 978     default:
 979       ShouldNotReachHere();
 980   }
 981 }
 982 
 983 void ThreadSafepointState::restart() {
 984   switch(type()) {
 985     case _at_safepoint:
 986     case _call_back:
 987       break;
 988 
 989     case _running:
 990     default:
 991        tty->print_cr("restart thread "INTPTR_FORMAT" with state %d",
 992                       _thread, _type);
 993        _thread->print();
 994       ShouldNotReachHere();
 995   }
 996   _type = _running;
 997   set_has_called_back(false);
 998 }
 999 
1000 
1001 void ThreadSafepointState::print_on(outputStream *st) const {
1002   const char *s;
1003 
1004   switch(_type) {
1005     case _running                : s = "_running";              break;
1006     case _at_safepoint           : s = "_at_safepoint";         break;
1007     case _call_back              : s = "_call_back";            break;
1008     default:
1009       ShouldNotReachHere();
1010   }
1011 
1012   st->print_cr("Thread: " INTPTR_FORMAT
1013               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1014                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
1015                _at_poll_safepoint);
1016 
1017   _thread->print_thread_state_on(st);
1018 }
1019 
1020 
1021 // ---------------------------------------------------------------------------------------------------------------------
1022 
1023 // Block the thread at the safepoint poll or poll return.
1024 void ThreadSafepointState::handle_polling_page_exception() {
1025 
1026   // Check state.  block() will set thread state to thread_in_vm which will
1027   // cause the safepoint state _type to become _call_back.
1028   assert(type() == ThreadSafepointState::_running,
1029          "polling page exception on thread not running state");
1030 
1031   // Step 1: Find the nmethod from the return address
1032   if (ShowSafepointMsgs && Verbose) {
1033     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
1034   }
1035   address real_return_addr = thread()->saved_exception_pc();
1036 
1037   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1038   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
1039   nmethod* nm = (nmethod*)cb;
1040 
1041   // Find frame of caller
1042   frame stub_fr = thread()->last_frame();
1043   CodeBlob* stub_cb = stub_fr.cb();
1044   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1045   RegisterMap map(thread(), true);
1046   frame caller_fr = stub_fr.sender(&map);
1047 
1048   // Should only be poll_return or poll
1049   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1050 
1051   // This is a poll immediately before a return. The exception handling code
1052   // has already had the effect of causing the return to occur, so the execution
1053   // will continue immediately after the call. In addition, the oopmap at the
1054   // return point does not mark the return value as an oop (if it is), so
1055   // it needs a handle here to be updated.
1056   if( nm->is_at_poll_return(real_return_addr) ) {
1057     // See if return type is an oop.
1058     bool return_oop = nm->method()->is_returning_oop();
1059     Handle return_value;
1060     if (return_oop) {
1061       // The oop result has been saved on the stack together with all
1062       // the other registers. In order to preserve it over GCs we need
1063       // to keep it in a handle.
1064       oop result = caller_fr.saved_oop_result(&map);
1065       assert(result == NULL || result->is_oop(), "must be oop");
1066       return_value = Handle(thread(), result);
1067       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1068     }
1069 
1070     // Block the thread
1071     SafepointSynchronize::block(thread());
1072 
1073     // restore oop result, if any
1074     if (return_oop) {
1075       caller_fr.set_saved_oop_result(&map, return_value());
1076     }
1077   }
1078 
1079   // This is a safepoint poll. Verify the return address and block.
1080   else {
1081     set_at_poll_safepoint(true);
1082 
1083     // verify the blob built the "return address" correctly
1084     assert(real_return_addr == caller_fr.pc(), "must match");
1085 
1086     // Block the thread
1087     SafepointSynchronize::block(thread());
1088     set_at_poll_safepoint(false);
1089 
1090     // If we have a pending async exception deoptimize the frame
1091     // as otherwise we may never deliver it.
1092     if (thread()->has_async_condition()) {
1093       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1094       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1095     }
1096 
1097     // If an exception has been installed we must check for a pending deoptimization
1098     // Deoptimize frame if exception has been thrown.
1099 
1100     if (thread()->has_pending_exception() ) {
1101       RegisterMap map(thread(), true);
1102       frame caller_fr = stub_fr.sender(&map);
1103       if (caller_fr.is_deoptimized_frame()) {
1104         // The exception patch will destroy registers that are still
1105         // live and will be needed during deoptimization. Defer the
1106         // Async exception should have deferred the exception until the
1107         // next safepoint which will be detected when we get into
1108         // the interpreter so if we have an exception now things
1109         // are messed up.
1110 
1111         fatal("Exception installed and deoptimization is pending");
1112       }
1113     }
1114   }
1115 }
1116 
1117 
1118 //
1119 //                     Statistics & Instrumentations
1120 //
1121 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1122 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1123 int    SafepointSynchronize::_cur_stat_index = 0;
1124 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1125 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1126 jlong  SafepointSynchronize::_max_sync_time = 0;
1127 jlong  SafepointSynchronize::_max_vmop_time = 0;
1128 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1129 
1130 static jlong  cleanup_end_time = 0;
1131 static bool   need_to_track_page_armed_status = false;
1132 static bool   init_done = false;
1133 
1134 // Helper method to print the header.
1135 static void print_header() {
1136   tty->print("         vmop                    "
1137              "[threads: total initially_running wait_to_block]    ");
1138   tty->print("[time: spin block sync cleanup vmop] ");
1139 
1140   // no page armed status printed out if it is always armed.
1141   if (need_to_track_page_armed_status) {
1142     tty->print("page_armed ");
1143   }
1144 
1145   tty->print_cr("page_trap_count");
1146 }
1147 
1148 void SafepointSynchronize::deferred_initialize_stat() {
1149   if (init_done) return;
1150 
1151   if (PrintSafepointStatisticsCount <= 0) {
1152     fatal("Wrong PrintSafepointStatisticsCount");
1153   }
1154 
1155   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1156   // be printed right away, in which case, _safepoint_stats will regress to
1157   // a single element array. Otherwise, it is a circular ring buffer with default
1158   // size of PrintSafepointStatisticsCount.
1159   int stats_array_size;
1160   if (PrintSafepointStatisticsTimeout > 0) {
1161     stats_array_size = 1;
1162     PrintSafepointStatistics = true;
1163   } else {
1164     stats_array_size = PrintSafepointStatisticsCount;
1165   }
1166   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1167                                                  * sizeof(SafepointStats), mtInternal);
1168   guarantee(_safepoint_stats != NULL,
1169             "not enough memory for safepoint instrumentation data");
1170 
1171   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1172     need_to_track_page_armed_status = true;
1173   }
1174   init_done = true;
1175 }
1176 
1177 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1178   assert(init_done, "safepoint statistics array hasn't been initialized");
1179   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1180 
1181   spstat->_time_stamp = _ts_of_current_safepoint;
1182 
1183   VM_Operation *op = VMThread::vm_operation();
1184   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1185   if (op != NULL) {
1186     _safepoint_reasons[spstat->_vmop_type]++;
1187   }
1188 
1189   spstat->_nof_total_threads = nof_threads;
1190   spstat->_nof_initial_running_threads = nof_running;
1191   spstat->_nof_threads_hit_page_trap = 0;
1192 
1193   // Records the start time of spinning. The real time spent on spinning
1194   // will be adjusted when spin is done. Same trick is applied for time
1195   // spent on waiting for threads to block.
1196   if (nof_running != 0) {
1197     spstat->_time_to_spin = os::javaTimeNanos();
1198   }  else {
1199     spstat->_time_to_spin = 0;
1200   }
1201 }
1202 
1203 void SafepointSynchronize::update_statistics_on_spin_end() {
1204   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1205 
1206   jlong cur_time = os::javaTimeNanos();
1207 
1208   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1209   if (spstat->_nof_initial_running_threads != 0) {
1210     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1211   }
1212 
1213   if (need_to_track_page_armed_status) {
1214     spstat->_page_armed = (PageArmed == 1);
1215   }
1216 
1217   // Records the start time of waiting for to block. Updated when block is done.
1218   if (_waiting_to_block != 0) {
1219     spstat->_time_to_wait_to_block = cur_time;
1220   } else {
1221     spstat->_time_to_wait_to_block = 0;
1222   }
1223 }
1224 
1225 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1226   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1227 
1228   if (spstat->_nof_threads_wait_to_block != 0) {
1229     spstat->_time_to_wait_to_block = end_time -
1230       spstat->_time_to_wait_to_block;
1231   }
1232 
1233   // Records the end time of sync which will be used to calculate the total
1234   // vm operation time. Again, the real time spending in syncing will be deducted
1235   // from the start of the sync time later when end_statistics is called.
1236   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1237   if (spstat->_time_to_sync > _max_sync_time) {
1238     _max_sync_time = spstat->_time_to_sync;
1239   }
1240 
1241   spstat->_time_to_do_cleanups = end_time;
1242 }
1243 
1244 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1245   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1246 
1247   // Record how long spent in cleanup tasks.
1248   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1249 
1250   cleanup_end_time = end_time;
1251 }
1252 
1253 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1254   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1255 
1256   // Update the vm operation time.
1257   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1258   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1259     _max_vmop_time = spstat->_time_to_exec_vmop;
1260   }
1261   // Only the sync time longer than the specified
1262   // PrintSafepointStatisticsTimeout will be printed out right away.
1263   // By default, it is -1 meaning all samples will be put into the list.
1264   if ( PrintSafepointStatisticsTimeout > 0) {
1265     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1266       print_statistics();
1267     }
1268   } else {
1269     // The safepoint statistics will be printed out when the _safepoin_stats
1270     // array fills up.
1271     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1272       print_statistics();
1273       _cur_stat_index = 0;
1274     } else {
1275       _cur_stat_index++;
1276     }
1277   }
1278 }
1279 
1280 void SafepointSynchronize::print_statistics() {
1281   SafepointStats* sstats = _safepoint_stats;
1282 
1283   for (int index = 0; index <= _cur_stat_index; index++) {
1284     if (index % 30 == 0) {
1285       print_header();
1286     }
1287     sstats = &_safepoint_stats[index];
1288     tty->print("%.3f: ", sstats->_time_stamp);
1289     tty->print("%-26s       ["
1290                INT32_FORMAT_W(8)INT32_FORMAT_W(11)INT32_FORMAT_W(15)
1291                "    ]    ",
1292                sstats->_vmop_type == -1 ? "no vm operation" :
1293                VM_Operation::name(sstats->_vmop_type),
1294                sstats->_nof_total_threads,
1295                sstats->_nof_initial_running_threads,
1296                sstats->_nof_threads_wait_to_block);
1297     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1298     tty->print("  ["
1299                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1300                INT64_FORMAT_W(6)INT64_FORMAT_W(6)
1301                INT64_FORMAT_W(6)"    ]  ",
1302                sstats->_time_to_spin / MICROUNITS,
1303                sstats->_time_to_wait_to_block / MICROUNITS,
1304                sstats->_time_to_sync / MICROUNITS,
1305                sstats->_time_to_do_cleanups / MICROUNITS,
1306                sstats->_time_to_exec_vmop / MICROUNITS);
1307 
1308     if (need_to_track_page_armed_status) {
1309       tty->print(INT32_FORMAT"         ", sstats->_page_armed);
1310     }
1311     tty->print_cr(INT32_FORMAT"   ", sstats->_nof_threads_hit_page_trap);
1312   }
1313 }
1314 
1315 // This method will be called when VM exits. It will first call
1316 // print_statistics to print out the rest of the sampling.  Then
1317 // it tries to summarize the sampling.
1318 void SafepointSynchronize::print_stat_on_exit() {
1319   if (_safepoint_stats == NULL) return;
1320 
1321   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1322 
1323   // During VM exit, end_statistics may not get called and in that
1324   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1325   // don't print it out.
1326   // Approximate the vm op time.
1327   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1328     os::javaTimeNanos() - cleanup_end_time;
1329 
1330   if ( PrintSafepointStatisticsTimeout < 0 ||
1331        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1332     print_statistics();
1333   }
1334   tty->cr();
1335 
1336   // Print out polling page sampling status.
1337   if (!need_to_track_page_armed_status) {
1338     if (UseCompilerSafepoints) {
1339       tty->print_cr("Polling page always armed");
1340     }
1341   } else {
1342     tty->print_cr("Defer polling page loop count = %d\n",
1343                  DeferPollingPageLoopCount);
1344   }
1345 
1346   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1347     if (_safepoint_reasons[index] != 0) {
1348       tty->print_cr("%-26s"UINT64_FORMAT_W(10), VM_Operation::name(index),
1349                     _safepoint_reasons[index]);
1350     }
1351   }
1352 
1353   tty->print_cr(UINT64_FORMAT_W(5)" VM operations coalesced during safepoint",
1354                 _coalesced_vmop_count);
1355   tty->print_cr("Maximum sync time  "INT64_FORMAT_W(5)" ms",
1356                 _max_sync_time / MICROUNITS);
1357   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1358                 INT64_FORMAT_W(5)" ms",
1359                 _max_vmop_time / MICROUNITS);
1360 }
1361 
1362 // ------------------------------------------------------------------------------------------------
1363 // Non-product code
1364 
1365 #ifndef PRODUCT
1366 
1367 void SafepointSynchronize::print_state() {
1368   if (_state == _not_synchronized) {
1369     tty->print_cr("not synchronized");
1370   } else if (_state == _synchronizing || _state == _synchronized) {
1371     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1372                   "synchronized");
1373 
1374     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1375        cur->safepoint_state()->print();
1376     }
1377   }
1378 }
1379 
1380 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1381   if (ShowSafepointMsgs) {
1382     va_list ap;
1383     va_start(ap, format);
1384     tty->vprint_cr(format, ap);
1385     va_end(ap);
1386   }
1387 }
1388 
1389 #endif // !PRODUCT