1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 #ifdef _DEBUG
  78 #include <crtdbg.h>
  79 #endif
  80 
  81 
  82 #include <windows.h>
  83 #include <sys/types.h>
  84 #include <sys/stat.h>
  85 #include <sys/timeb.h>
  86 #include <objidl.h>
  87 #include <shlobj.h>
  88 
  89 #include <malloc.h>
  90 #include <signal.h>
  91 #include <direct.h>
  92 #include <errno.h>
  93 #include <fcntl.h>
  94 #include <io.h>
  95 #include <process.h>              // For _beginthreadex(), _endthreadex()
  96 #include <imagehlp.h>             // For os::dll_address_to_function_name
  97 // for enumerating dll libraries
  98 #include <vdmdbg.h>
  99 
 100 // for timer info max values which include all bits
 101 #define ALL_64_BITS CONST64(-1)
 102 
 103 // For DLL loading/load error detection
 104 // Values of PE COFF
 105 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 106 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 107 
 108 static HANDLE main_process;
 109 static HANDLE main_thread;
 110 static int    main_thread_id;
 111 
 112 static FILETIME process_creation_time;
 113 static FILETIME process_exit_time;
 114 static FILETIME process_user_time;
 115 static FILETIME process_kernel_time;
 116 
 117 #ifdef _M_IA64
 118   #define __CPU__ ia64
 119 #else
 120   #ifdef _M_AMD64
 121     #define __CPU__ amd64
 122   #else
 123     #define __CPU__ i486
 124   #endif
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     break;
 139   case DLL_PROCESS_DETACH:
 140     if (ForceTimeHighResolution) {
 141       timeEndPeriod(1L);
 142     }
 143     break;
 144   default:
 145     break;
 146   }
 147   return true;
 148 }
 149 
 150 static inline double fileTimeAsDouble(FILETIME* time) {
 151   const double high  = (double) ((unsigned int) ~0);
 152   const double split = 10000000.0;
 153   double result = (time->dwLowDateTime / split) +
 154                    time->dwHighDateTime * (high/split);
 155   return result;
 156 }
 157 
 158 // Implementation of os
 159 
 160 bool os::unsetenv(const char* name) {
 161   assert(name != NULL, "Null pointer");
 162   return (SetEnvironmentVariable(name, NULL) == TRUE);
 163 }
 164 
 165 // No setuid programs under Windows.
 166 bool os::have_special_privileges() {
 167   return false;
 168 }
 169 
 170 
 171 // This method is  a periodic task to check for misbehaving JNI applications
 172 // under CheckJNI, we can add any periodic checks here.
 173 // For Windows at the moment does nothing
 174 void os::run_periodic_checks() {
 175   return;
 176 }
 177 
 178 // previous UnhandledExceptionFilter, if there is one
 179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 180 
 181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 182 
 183 void os::init_system_properties_values() {
 184   // sysclasspath, java_home, dll_dir
 185   {
 186     char *home_path;
 187     char *dll_path;
 188     char *pslash;
 189     char *bin = "\\bin";
 190     char home_dir[MAX_PATH + 1];
 191     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 192 
 193     if (alt_home_dir != NULL)  {
 194       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 195       home_dir[MAX_PATH] = '\0';
 196     } else {
 197       os::jvm_path(home_dir, sizeof(home_dir));
 198       // Found the full path to jvm.dll.
 199       // Now cut the path to <java_home>/jre if we can.
 200       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 201       pslash = strrchr(home_dir, '\\');
 202       if (pslash != NULL) {
 203         *pslash = '\0';                   // get rid of \{client|server}
 204         pslash = strrchr(home_dir, '\\');
 205         if (pslash != NULL) {
 206           *pslash = '\0';                 // get rid of \bin
 207         }
 208       }
 209     }
 210 
 211     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 212     if (home_path == NULL) {
 213       return;
 214     }
 215     strcpy(home_path, home_dir);
 216     Arguments::set_java_home(home_path);
 217     FREE_C_HEAP_ARRAY(char, home_path);
 218 
 219     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 220                                 mtInternal);
 221     if (dll_path == NULL) {
 222       return;
 223     }
 224     strcpy(dll_path, home_dir);
 225     strcat(dll_path, bin);
 226     Arguments::set_dll_dir(dll_path);
 227     FREE_C_HEAP_ARRAY(char, dll_path);
 228 
 229     if (!set_boot_path('\\', ';')) {
 230       return;
 231     }
 232   }
 233 
 234 // library_path
 235 #define EXT_DIR "\\lib\\ext"
 236 #define BIN_DIR "\\bin"
 237 #define PACKAGE_DIR "\\Sun\\Java"
 238   {
 239     // Win32 library search order (See the documentation for LoadLibrary):
 240     //
 241     // 1. The directory from which application is loaded.
 242     // 2. The system wide Java Extensions directory (Java only)
 243     // 3. System directory (GetSystemDirectory)
 244     // 4. Windows directory (GetWindowsDirectory)
 245     // 5. The PATH environment variable
 246     // 6. The current directory
 247 
 248     char *library_path;
 249     char tmp[MAX_PATH];
 250     char *path_str = ::getenv("PATH");
 251 
 252     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 253                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 254 
 255     library_path[0] = '\0';
 256 
 257     GetModuleFileName(NULL, tmp, sizeof(tmp));
 258     *(strrchr(tmp, '\\')) = '\0';
 259     strcat(library_path, tmp);
 260 
 261     GetWindowsDirectory(tmp, sizeof(tmp));
 262     strcat(library_path, ";");
 263     strcat(library_path, tmp);
 264     strcat(library_path, PACKAGE_DIR BIN_DIR);
 265 
 266     GetSystemDirectory(tmp, sizeof(tmp));
 267     strcat(library_path, ";");
 268     strcat(library_path, tmp);
 269 
 270     GetWindowsDirectory(tmp, sizeof(tmp));
 271     strcat(library_path, ";");
 272     strcat(library_path, tmp);
 273 
 274     if (path_str) {
 275       strcat(library_path, ";");
 276       strcat(library_path, path_str);
 277     }
 278 
 279     strcat(library_path, ";.");
 280 
 281     Arguments::set_library_path(library_path);
 282     FREE_C_HEAP_ARRAY(char, library_path);
 283   }
 284 
 285   // Default extensions directory
 286   {
 287     char path[MAX_PATH];
 288     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 289     GetWindowsDirectory(path, MAX_PATH);
 290     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 291             path, PACKAGE_DIR, EXT_DIR);
 292     Arguments::set_ext_dirs(buf);
 293   }
 294   #undef EXT_DIR
 295   #undef BIN_DIR
 296   #undef PACKAGE_DIR
 297 
 298 #ifndef _WIN64
 299   // set our UnhandledExceptionFilter and save any previous one
 300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 301 #endif
 302 
 303   // Done
 304   return;
 305 }
 306 
 307 void os::breakpoint() {
 308   DebugBreak();
 309 }
 310 
 311 // Invoked from the BREAKPOINT Macro
 312 extern "C" void breakpoint() {
 313   os::breakpoint();
 314 }
 315 
 316 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 317 // So far, this method is only used by Native Memory Tracking, which is
 318 // only supported on Windows XP or later.
 319 //
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 322   for (int index = captured; index < frames; index ++) {
 323     stack[index] = NULL;
 324   }
 325   return captured;
 326 }
 327 
 328 
 329 // os::current_stack_base()
 330 //
 331 //   Returns the base of the stack, which is the stack's
 332 //   starting address.  This function must be called
 333 //   while running on the stack of the thread being queried.
 334 
 335 address os::current_stack_base() {
 336   MEMORY_BASIC_INFORMATION minfo;
 337   address stack_bottom;
 338   size_t stack_size;
 339 
 340   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 341   stack_bottom =  (address)minfo.AllocationBase;
 342   stack_size = minfo.RegionSize;
 343 
 344   // Add up the sizes of all the regions with the same
 345   // AllocationBase.
 346   while (1) {
 347     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 348     if (stack_bottom == (address)minfo.AllocationBase) {
 349       stack_size += minfo.RegionSize;
 350     } else {
 351       break;
 352     }
 353   }
 354 
 355 #ifdef _M_IA64
 356   // IA64 has memory and register stacks
 357   //
 358   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 359   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 360   // growing downwards, 2MB summed up)
 361   //
 362   // ...
 363   // ------- top of stack (high address) -----
 364   // |
 365   // |      1MB
 366   // |      Backing Store (Register Stack)
 367   // |
 368   // |         / \
 369   // |          |
 370   // |          |
 371   // |          |
 372   // ------------------------ stack base -----
 373   // |      1MB
 374   // |      Memory Stack
 375   // |
 376   // |          |
 377   // |          |
 378   // |          |
 379   // |         \ /
 380   // |
 381   // ----- bottom of stack (low address) -----
 382   // ...
 383 
 384   stack_size = stack_size / 2;
 385 #endif
 386   return stack_bottom + stack_size;
 387 }
 388 
 389 size_t os::current_stack_size() {
 390   size_t sz;
 391   MEMORY_BASIC_INFORMATION minfo;
 392   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 393   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 394   return sz;
 395 }
 396 
 397 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 398   const struct tm* time_struct_ptr = localtime(clock);
 399   if (time_struct_ptr != NULL) {
 400     *res = *time_struct_ptr;
 401     return res;
 402   }
 403   return NULL;
 404 }
 405 
 406 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 407 
 408 // Thread start routine for all newly created threads
 409 static unsigned __stdcall thread_native_entry(Thread* thread) {
 410   // Try to randomize the cache line index of hot stack frames.
 411   // This helps when threads of the same stack traces evict each other's
 412   // cache lines. The threads can be either from the same JVM instance, or
 413   // from different JVM instances. The benefit is especially true for
 414   // processors with hyperthreading technology.
 415   static int counter = 0;
 416   int pid = os::current_process_id();
 417   _alloca(((pid ^ counter++) & 7) * 128);
 418 
 419   thread->initialize_thread_current();
 420 
 421   OSThread* osthr = thread->osthread();
 422   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 423 
 424   if (UseNUMA) {
 425     int lgrp_id = os::numa_get_group_id();
 426     if (lgrp_id != -1) {
 427       thread->set_lgrp_id(lgrp_id);
 428     }
 429   }
 430 
 431   // Diagnostic code to investigate JDK-6573254
 432   int res = 30115;  // non-java thread
 433   if (thread->is_Java_thread()) {
 434     res = 20115;    // java thread
 435   }
 436 
 437   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 438 
 439   // Install a win32 structured exception handler around every thread created
 440   // by VM, so VM can generate error dump when an exception occurred in non-
 441   // Java thread (e.g. VM thread).
 442   __try {
 443     thread->run();
 444   } __except(topLevelExceptionFilter(
 445                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 446     // Nothing to do.
 447   }
 448 
 449   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 450 
 451   // One less thread is executing
 452   // When the VMThread gets here, the main thread may have already exited
 453   // which frees the CodeHeap containing the Atomic::add code
 454   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 455     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 456   }
 457 
 458   // If a thread has not deleted itself ("delete this") as part of its
 459   // termination sequence, we have to ensure thread-local-storage is
 460   // cleared before we actually terminate. No threads should ever be
 461   // deleted asynchronously with respect to their termination.
 462   if (Thread::current_or_null_safe() != NULL) {
 463     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 464     thread->clear_thread_current();
 465   }
 466 
 467   // Thread must not return from exit_process_or_thread(), but if it does,
 468   // let it proceed to exit normally
 469   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 470 }
 471 
 472 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 473                                   int thread_id) {
 474   // Allocate the OSThread object
 475   OSThread* osthread = new OSThread(NULL, NULL);
 476   if (osthread == NULL) return NULL;
 477 
 478   // Initialize support for Java interrupts
 479   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 480   if (interrupt_event == NULL) {
 481     delete osthread;
 482     return NULL;
 483   }
 484   osthread->set_interrupt_event(interrupt_event);
 485 
 486   // Store info on the Win32 thread into the OSThread
 487   osthread->set_thread_handle(thread_handle);
 488   osthread->set_thread_id(thread_id);
 489 
 490   if (UseNUMA) {
 491     int lgrp_id = os::numa_get_group_id();
 492     if (lgrp_id != -1) {
 493       thread->set_lgrp_id(lgrp_id);
 494     }
 495   }
 496 
 497   // Initial thread state is INITIALIZED, not SUSPENDED
 498   osthread->set_state(INITIALIZED);
 499 
 500   return osthread;
 501 }
 502 
 503 
 504 bool os::create_attached_thread(JavaThread* thread) {
 505 #ifdef ASSERT
 506   thread->verify_not_published();
 507 #endif
 508   HANDLE thread_h;
 509   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 510                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 511     fatal("DuplicateHandle failed\n");
 512   }
 513   OSThread* osthread = create_os_thread(thread, thread_h,
 514                                         (int)current_thread_id());
 515   if (osthread == NULL) {
 516     return false;
 517   }
 518 
 519   // Initial thread state is RUNNABLE
 520   osthread->set_state(RUNNABLE);
 521 
 522   thread->set_osthread(osthread);
 523 
 524   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 525     os::current_thread_id());
 526 
 527   return true;
 528 }
 529 
 530 bool os::create_main_thread(JavaThread* thread) {
 531 #ifdef ASSERT
 532   thread->verify_not_published();
 533 #endif
 534   if (_starting_thread == NULL) {
 535     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 536     if (_starting_thread == NULL) {
 537       return false;
 538     }
 539   }
 540 
 541   // The primordial thread is runnable from the start)
 542   _starting_thread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(_starting_thread);
 545   return true;
 546 }
 547 
 548 // Helper function to trace _beginthreadex attributes,
 549 //  similar to os::Posix::describe_pthread_attr()
 550 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 551                                                size_t stacksize, unsigned initflag) {
 552   stringStream ss(buf, buflen);
 553   if (stacksize == 0) {
 554     ss.print("stacksize: default, ");
 555   } else {
 556     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 557   }
 558   ss.print("flags: ");
 559   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 560   #define ALL(X) \
 561     X(CREATE_SUSPENDED) \
 562     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 563   ALL(PRINT_FLAG)
 564   #undef ALL
 565   #undef PRINT_FLAG
 566   return buf;
 567 }
 568 
 569 // Allocate and initialize a new OSThread
 570 bool os::create_thread(Thread* thread, ThreadType thr_type,
 571                        size_t stack_size) {
 572   unsigned thread_id;
 573 
 574   // Allocate the OSThread object
 575   OSThread* osthread = new OSThread(NULL, NULL);
 576   if (osthread == NULL) {
 577     return false;
 578   }
 579 
 580   // Initialize support for Java interrupts
 581   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 582   if (interrupt_event == NULL) {
 583     delete osthread;
 584     return NULL;
 585   }
 586   osthread->set_interrupt_event(interrupt_event);
 587   osthread->set_interrupted(false);
 588 
 589   thread->set_osthread(osthread);
 590 
 591   if (stack_size == 0) {
 592     switch (thr_type) {
 593     case os::java_thread:
 594       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 595       if (JavaThread::stack_size_at_create() > 0) {
 596         stack_size = JavaThread::stack_size_at_create();
 597       }
 598       break;
 599     case os::compiler_thread:
 600       if (CompilerThreadStackSize > 0) {
 601         stack_size = (size_t)(CompilerThreadStackSize * K);
 602         break;
 603       } // else fall through:
 604         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 605     case os::vm_thread:
 606     case os::pgc_thread:
 607     case os::cgc_thread:
 608     case os::watcher_thread:
 609       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 610       break;
 611     }
 612   }
 613 
 614   // Create the Win32 thread
 615   //
 616   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 617   // does not specify stack size. Instead, it specifies the size of
 618   // initially committed space. The stack size is determined by
 619   // PE header in the executable. If the committed "stack_size" is larger
 620   // than default value in the PE header, the stack is rounded up to the
 621   // nearest multiple of 1MB. For example if the launcher has default
 622   // stack size of 320k, specifying any size less than 320k does not
 623   // affect the actual stack size at all, it only affects the initial
 624   // commitment. On the other hand, specifying 'stack_size' larger than
 625   // default value may cause significant increase in memory usage, because
 626   // not only the stack space will be rounded up to MB, but also the
 627   // entire space is committed upfront.
 628   //
 629   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 630   // for CreateThread() that can treat 'stack_size' as stack size. However we
 631   // are not supposed to call CreateThread() directly according to MSDN
 632   // document because JVM uses C runtime library. The good news is that the
 633   // flag appears to work with _beginthredex() as well.
 634 
 635   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 636   HANDLE thread_handle =
 637     (HANDLE)_beginthreadex(NULL,
 638                            (unsigned)stack_size,
 639                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 640                            thread,
 641                            initflag,
 642                            &thread_id);
 643 
 644   char buf[64];
 645   if (thread_handle != NULL) {
 646     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 647       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 648   } else {
 649     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 650       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 651   }
 652 
 653   if (thread_handle == NULL) {
 654     // Need to clean up stuff we've allocated so far
 655     CloseHandle(osthread->interrupt_event());
 656     thread->set_osthread(NULL);
 657     delete osthread;
 658     return NULL;
 659   }
 660 
 661   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 662 
 663   // Store info on the Win32 thread into the OSThread
 664   osthread->set_thread_handle(thread_handle);
 665   osthread->set_thread_id(thread_id);
 666 
 667   // Initial thread state is INITIALIZED, not SUSPENDED
 668   osthread->set_state(INITIALIZED);
 669 
 670   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 671   return true;
 672 }
 673 
 674 
 675 // Free Win32 resources related to the OSThread
 676 void os::free_thread(OSThread* osthread) {
 677   assert(osthread != NULL, "osthread not set");
 678 
 679   // We are told to free resources of the argument thread,
 680   // but we can only really operate on the current thread.
 681   assert(Thread::current()->osthread() == osthread,
 682          "os::free_thread but not current thread");
 683 
 684   CloseHandle(osthread->thread_handle());
 685   CloseHandle(osthread->interrupt_event());
 686   delete osthread;
 687 }
 688 
 689 static jlong first_filetime;
 690 static jlong initial_performance_count;
 691 static jlong performance_frequency;
 692 
 693 
 694 jlong as_long(LARGE_INTEGER x) {
 695   jlong result = 0; // initialization to avoid warning
 696   set_high(&result, x.HighPart);
 697   set_low(&result, x.LowPart);
 698   return result;
 699 }
 700 
 701 
 702 jlong os::elapsed_counter() {
 703   LARGE_INTEGER count;
 704   QueryPerformanceCounter(&count);
 705   return as_long(count) - initial_performance_count;
 706 }
 707 
 708 
 709 jlong os::elapsed_frequency() {
 710   return performance_frequency;
 711 }
 712 
 713 
 714 julong os::available_memory() {
 715   return win32::available_memory();
 716 }
 717 
 718 julong os::win32::available_memory() {
 719   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 720   // value if total memory is larger than 4GB
 721   MEMORYSTATUSEX ms;
 722   ms.dwLength = sizeof(ms);
 723   GlobalMemoryStatusEx(&ms);
 724 
 725   return (julong)ms.ullAvailPhys;
 726 }
 727 
 728 julong os::physical_memory() {
 729   return win32::physical_memory();
 730 }
 731 
 732 bool os::has_allocatable_memory_limit(julong* limit) {
 733   MEMORYSTATUSEX ms;
 734   ms.dwLength = sizeof(ms);
 735   GlobalMemoryStatusEx(&ms);
 736 #ifdef _LP64
 737   *limit = (julong)ms.ullAvailVirtual;
 738   return true;
 739 #else
 740   // Limit to 1400m because of the 2gb address space wall
 741   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 742   return true;
 743 #endif
 744 }
 745 
 746 int os::active_processor_count() {
 747   DWORD_PTR lpProcessAffinityMask = 0;
 748   DWORD_PTR lpSystemAffinityMask = 0;
 749   int proc_count = processor_count();
 750   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 751       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 752     // Nof active processors is number of bits in process affinity mask
 753     int bitcount = 0;
 754     while (lpProcessAffinityMask != 0) {
 755       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 756       bitcount++;
 757     }
 758     return bitcount;
 759   } else {
 760     return proc_count;
 761   }
 762 }
 763 
 764 void os::set_native_thread_name(const char *name) {
 765 
 766   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 767   //
 768   // Note that unfortunately this only works if the process
 769   // is already attached to a debugger; debugger must observe
 770   // the exception below to show the correct name.
 771 
 772   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 773   struct {
 774     DWORD dwType;     // must be 0x1000
 775     LPCSTR szName;    // pointer to name (in user addr space)
 776     DWORD dwThreadID; // thread ID (-1=caller thread)
 777     DWORD dwFlags;    // reserved for future use, must be zero
 778   } info;
 779 
 780   info.dwType = 0x1000;
 781   info.szName = name;
 782   info.dwThreadID = -1;
 783   info.dwFlags = 0;
 784 
 785   __try {
 786     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 787   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 788 }
 789 
 790 bool os::distribute_processes(uint length, uint* distribution) {
 791   // Not yet implemented.
 792   return false;
 793 }
 794 
 795 bool os::bind_to_processor(uint processor_id) {
 796   // Not yet implemented.
 797   return false;
 798 }
 799 
 800 void os::win32::initialize_performance_counter() {
 801   LARGE_INTEGER count;
 802   QueryPerformanceFrequency(&count);
 803   performance_frequency = as_long(count);
 804   QueryPerformanceCounter(&count);
 805   initial_performance_count = as_long(count);
 806 }
 807 
 808 
 809 double os::elapsedTime() {
 810   return (double) elapsed_counter() / (double) elapsed_frequency();
 811 }
 812 
 813 
 814 // Windows format:
 815 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 816 // Java format:
 817 //   Java standards require the number of milliseconds since 1/1/1970
 818 
 819 // Constant offset - calculated using offset()
 820 static jlong  _offset   = 116444736000000000;
 821 // Fake time counter for reproducible results when debugging
 822 static jlong  fake_time = 0;
 823 
 824 #ifdef ASSERT
 825 // Just to be safe, recalculate the offset in debug mode
 826 static jlong _calculated_offset = 0;
 827 static int   _has_calculated_offset = 0;
 828 
 829 jlong offset() {
 830   if (_has_calculated_offset) return _calculated_offset;
 831   SYSTEMTIME java_origin;
 832   java_origin.wYear          = 1970;
 833   java_origin.wMonth         = 1;
 834   java_origin.wDayOfWeek     = 0; // ignored
 835   java_origin.wDay           = 1;
 836   java_origin.wHour          = 0;
 837   java_origin.wMinute        = 0;
 838   java_origin.wSecond        = 0;
 839   java_origin.wMilliseconds  = 0;
 840   FILETIME jot;
 841   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 842     fatal("Error = %d\nWindows error", GetLastError());
 843   }
 844   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 845   _has_calculated_offset = 1;
 846   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 847   return _calculated_offset;
 848 }
 849 #else
 850 jlong offset() {
 851   return _offset;
 852 }
 853 #endif
 854 
 855 jlong windows_to_java_time(FILETIME wt) {
 856   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 857   return (a - offset()) / 10000;
 858 }
 859 
 860 // Returns time ticks in (10th of micro seconds)
 861 jlong windows_to_time_ticks(FILETIME wt) {
 862   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 863   return (a - offset());
 864 }
 865 
 866 FILETIME java_to_windows_time(jlong l) {
 867   jlong a = (l * 10000) + offset();
 868   FILETIME result;
 869   result.dwHighDateTime = high(a);
 870   result.dwLowDateTime  = low(a);
 871   return result;
 872 }
 873 
 874 bool os::supports_vtime() { return true; }
 875 bool os::enable_vtime() { return false; }
 876 bool os::vtime_enabled() { return false; }
 877 
 878 double os::elapsedVTime() {
 879   FILETIME created;
 880   FILETIME exited;
 881   FILETIME kernel;
 882   FILETIME user;
 883   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 884     // the resolution of windows_to_java_time() should be sufficient (ms)
 885     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 886   } else {
 887     return elapsedTime();
 888   }
 889 }
 890 
 891 jlong os::javaTimeMillis() {
 892   if (UseFakeTimers) {
 893     return fake_time++;
 894   } else {
 895     FILETIME wt;
 896     GetSystemTimeAsFileTime(&wt);
 897     return windows_to_java_time(wt);
 898   }
 899 }
 900 
 901 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 902   FILETIME wt;
 903   GetSystemTimeAsFileTime(&wt);
 904   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 905   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 906   seconds = secs;
 907   nanos = jlong(ticks - (secs*10000000)) * 100;
 908 }
 909 
 910 jlong os::javaTimeNanos() {
 911     LARGE_INTEGER current_count;
 912     QueryPerformanceCounter(&current_count);
 913     double current = as_long(current_count);
 914     double freq = performance_frequency;
 915     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 916     return time;
 917 }
 918 
 919 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 920   jlong freq = performance_frequency;
 921   if (freq < NANOSECS_PER_SEC) {
 922     // the performance counter is 64 bits and we will
 923     // be multiplying it -- so no wrap in 64 bits
 924     info_ptr->max_value = ALL_64_BITS;
 925   } else if (freq > NANOSECS_PER_SEC) {
 926     // use the max value the counter can reach to
 927     // determine the max value which could be returned
 928     julong max_counter = (julong)ALL_64_BITS;
 929     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 930   } else {
 931     // the performance counter is 64 bits and we will
 932     // be using it directly -- so no wrap in 64 bits
 933     info_ptr->max_value = ALL_64_BITS;
 934   }
 935 
 936   // using a counter, so no skipping
 937   info_ptr->may_skip_backward = false;
 938   info_ptr->may_skip_forward = false;
 939 
 940   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 941 }
 942 
 943 char* os::local_time_string(char *buf, size_t buflen) {
 944   SYSTEMTIME st;
 945   GetLocalTime(&st);
 946   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 947                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 948   return buf;
 949 }
 950 
 951 bool os::getTimesSecs(double* process_real_time,
 952                       double* process_user_time,
 953                       double* process_system_time) {
 954   HANDLE h_process = GetCurrentProcess();
 955   FILETIME create_time, exit_time, kernel_time, user_time;
 956   BOOL result = GetProcessTimes(h_process,
 957                                 &create_time,
 958                                 &exit_time,
 959                                 &kernel_time,
 960                                 &user_time);
 961   if (result != 0) {
 962     FILETIME wt;
 963     GetSystemTimeAsFileTime(&wt);
 964     jlong rtc_millis = windows_to_java_time(wt);
 965     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 966     *process_user_time =
 967       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 968     *process_system_time =
 969       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 970     return true;
 971   } else {
 972     return false;
 973   }
 974 }
 975 
 976 void os::shutdown() {
 977   // allow PerfMemory to attempt cleanup of any persistent resources
 978   perfMemory_exit();
 979 
 980   // flush buffered output, finish log files
 981   ostream_abort();
 982 
 983   // Check for abort hook
 984   abort_hook_t abort_hook = Arguments::abort_hook();
 985   if (abort_hook != NULL) {
 986     abort_hook();
 987   }
 988 }
 989 
 990 
 991 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 992                                          PMINIDUMP_EXCEPTION_INFORMATION,
 993                                          PMINIDUMP_USER_STREAM_INFORMATION,
 994                                          PMINIDUMP_CALLBACK_INFORMATION);
 995 
 996 static HANDLE dumpFile = NULL;
 997 
 998 // Check if dump file can be created.
 999 void os::check_dump_limit(char* buffer, size_t buffsz) {
1000   bool status = true;
1001   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1002     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1003     status = false;
1004   }
1005 
1006 #ifndef ASSERT
1007   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1008     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1009     status = false;
1010   }
1011 #endif
1012 
1013   if (status) {
1014     const char* cwd = get_current_directory(NULL, 0);
1015     int pid = current_process_id();
1016     if (cwd != NULL) {
1017       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1018     } else {
1019       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1020     }
1021 
1022     if (dumpFile == NULL &&
1023        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1024                  == INVALID_HANDLE_VALUE) {
1025       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1026       status = false;
1027     }
1028   }
1029   VMError::record_coredump_status(buffer, status);
1030 }
1031 
1032 void os::abort(bool dump_core, void* siginfo, const void* context) {
1033   HINSTANCE dbghelp;
1034   EXCEPTION_POINTERS ep;
1035   MINIDUMP_EXCEPTION_INFORMATION mei;
1036   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1037 
1038   HANDLE hProcess = GetCurrentProcess();
1039   DWORD processId = GetCurrentProcessId();
1040   MINIDUMP_TYPE dumpType;
1041 
1042   shutdown();
1043   if (!dump_core || dumpFile == NULL) {
1044     if (dumpFile != NULL) {
1045       CloseHandle(dumpFile);
1046     }
1047     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1048   }
1049 
1050   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1051 
1052   if (dbghelp == NULL) {
1053     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1054     CloseHandle(dumpFile);
1055     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1056   }
1057 
1058   _MiniDumpWriteDump =
1059       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1060                                     PMINIDUMP_EXCEPTION_INFORMATION,
1061                                     PMINIDUMP_USER_STREAM_INFORMATION,
1062                                     PMINIDUMP_CALLBACK_INFORMATION),
1063                                     GetProcAddress(dbghelp,
1064                                     "MiniDumpWriteDump"));
1065 
1066   if (_MiniDumpWriteDump == NULL) {
1067     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1068     CloseHandle(dumpFile);
1069     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1070   }
1071 
1072   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1073     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1074 
1075   if (siginfo != NULL && context != NULL) {
1076     ep.ContextRecord = (PCONTEXT) context;
1077     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1078 
1079     mei.ThreadId = GetCurrentThreadId();
1080     mei.ExceptionPointers = &ep;
1081     pmei = &mei;
1082   } else {
1083     pmei = NULL;
1084   }
1085 
1086   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1087   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1088   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1089       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1090     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1091   }
1092   CloseHandle(dumpFile);
1093   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1094 }
1095 
1096 // Die immediately, no exit hook, no abort hook, no cleanup.
1097 void os::die() {
1098   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1099 }
1100 
1101 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1102 //  * dirent_md.c       1.15 00/02/02
1103 //
1104 // The declarations for DIR and struct dirent are in jvm_win32.h.
1105 
1106 // Caller must have already run dirname through JVM_NativePath, which removes
1107 // duplicate slashes and converts all instances of '/' into '\\'.
1108 
1109 DIR * os::opendir(const char *dirname) {
1110   assert(dirname != NULL, "just checking");   // hotspot change
1111   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1112   DWORD fattr;                                // hotspot change
1113   char alt_dirname[4] = { 0, 0, 0, 0 };
1114 
1115   if (dirp == 0) {
1116     errno = ENOMEM;
1117     return 0;
1118   }
1119 
1120   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1121   // as a directory in FindFirstFile().  We detect this case here and
1122   // prepend the current drive name.
1123   //
1124   if (dirname[1] == '\0' && dirname[0] == '\\') {
1125     alt_dirname[0] = _getdrive() + 'A' - 1;
1126     alt_dirname[1] = ':';
1127     alt_dirname[2] = '\\';
1128     alt_dirname[3] = '\0';
1129     dirname = alt_dirname;
1130   }
1131 
1132   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1133   if (dirp->path == 0) {
1134     free(dirp);
1135     errno = ENOMEM;
1136     return 0;
1137   }
1138   strcpy(dirp->path, dirname);
1139 
1140   fattr = GetFileAttributes(dirp->path);
1141   if (fattr == 0xffffffff) {
1142     free(dirp->path);
1143     free(dirp);
1144     errno = ENOENT;
1145     return 0;
1146   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOTDIR;
1150     return 0;
1151   }
1152 
1153   // Append "*.*", or possibly "\\*.*", to path
1154   if (dirp->path[1] == ':' &&
1155       (dirp->path[2] == '\0' ||
1156       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1157     // No '\\' needed for cases like "Z:" or "Z:\"
1158     strcat(dirp->path, "*.*");
1159   } else {
1160     strcat(dirp->path, "\\*.*");
1161   }
1162 
1163   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1164   if (dirp->handle == INVALID_HANDLE_VALUE) {
1165     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1166       free(dirp->path);
1167       free(dirp);
1168       errno = EACCES;
1169       return 0;
1170     }
1171   }
1172   return dirp;
1173 }
1174 
1175 // parameter dbuf unused on Windows
1176 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1177   assert(dirp != NULL, "just checking");      // hotspot change
1178   if (dirp->handle == INVALID_HANDLE_VALUE) {
1179     return 0;
1180   }
1181 
1182   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1183 
1184   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1185     if (GetLastError() == ERROR_INVALID_HANDLE) {
1186       errno = EBADF;
1187       return 0;
1188     }
1189     FindClose(dirp->handle);
1190     dirp->handle = INVALID_HANDLE_VALUE;
1191   }
1192 
1193   return &dirp->dirent;
1194 }
1195 
1196 int os::closedir(DIR *dirp) {
1197   assert(dirp != NULL, "just checking");      // hotspot change
1198   if (dirp->handle != INVALID_HANDLE_VALUE) {
1199     if (!FindClose(dirp->handle)) {
1200       errno = EBADF;
1201       return -1;
1202     }
1203     dirp->handle = INVALID_HANDLE_VALUE;
1204   }
1205   free(dirp->path);
1206   free(dirp);
1207   return 0;
1208 }
1209 
1210 // This must be hard coded because it's the system's temporary
1211 // directory not the java application's temp directory, ala java.io.tmpdir.
1212 const char* os::get_temp_directory() {
1213   static char path_buf[MAX_PATH];
1214   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1215     return path_buf;
1216   } else {
1217     path_buf[0] = '\0';
1218     return path_buf;
1219   }
1220 }
1221 
1222 static bool file_exists(const char* filename) {
1223   if (filename == NULL || strlen(filename) == 0) {
1224     return false;
1225   }
1226   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1227 }
1228 
1229 bool os::dll_build_name(char *buffer, size_t buflen,
1230                         const char* pname, const char* fname) {
1231   bool retval = false;
1232   const size_t pnamelen = pname ? strlen(pname) : 0;
1233   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1234 
1235   // Return error on buffer overflow.
1236   if (pnamelen + strlen(fname) + 10 > buflen) {
1237     return retval;
1238   }
1239 
1240   if (pnamelen == 0) {
1241     jio_snprintf(buffer, buflen, "%s.dll", fname);
1242     retval = true;
1243   } else if (c == ':' || c == '\\') {
1244     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1245     retval = true;
1246   } else if (strchr(pname, *os::path_separator()) != NULL) {
1247     int n;
1248     char** pelements = split_path(pname, &n);
1249     if (pelements == NULL) {
1250       return false;
1251     }
1252     for (int i = 0; i < n; i++) {
1253       char* path = pelements[i];
1254       // Really shouldn't be NULL, but check can't hurt
1255       size_t plen = (path == NULL) ? 0 : strlen(path);
1256       if (plen == 0) {
1257         continue; // skip the empty path values
1258       }
1259       const char lastchar = path[plen - 1];
1260       if (lastchar == ':' || lastchar == '\\') {
1261         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1262       } else {
1263         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1264       }
1265       if (file_exists(buffer)) {
1266         retval = true;
1267         break;
1268       }
1269     }
1270     // release the storage
1271     for (int i = 0; i < n; i++) {
1272       if (pelements[i] != NULL) {
1273         FREE_C_HEAP_ARRAY(char, pelements[i]);
1274       }
1275     }
1276     if (pelements != NULL) {
1277       FREE_C_HEAP_ARRAY(char*, pelements);
1278     }
1279   } else {
1280     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1281     retval = true;
1282   }
1283   return retval;
1284 }
1285 
1286 // Needs to be in os specific directory because windows requires another
1287 // header file <direct.h>
1288 const char* os::get_current_directory(char *buf, size_t buflen) {
1289   int n = static_cast<int>(buflen);
1290   if (buflen > INT_MAX)  n = INT_MAX;
1291   return _getcwd(buf, n);
1292 }
1293 
1294 //-----------------------------------------------------------
1295 // Helper functions for fatal error handler
1296 #ifdef _WIN64
1297 // Helper routine which returns true if address in
1298 // within the NTDLL address space.
1299 //
1300 static bool _addr_in_ntdll(address addr) {
1301   HMODULE hmod;
1302   MODULEINFO minfo;
1303 
1304   hmod = GetModuleHandle("NTDLL.DLL");
1305   if (hmod == NULL) return false;
1306   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1307                                           &minfo, sizeof(MODULEINFO))) {
1308     return false;
1309   }
1310 
1311   if ((addr >= minfo.lpBaseOfDll) &&
1312       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1313     return true;
1314   } else {
1315     return false;
1316   }
1317 }
1318 #endif
1319 
1320 struct _modinfo {
1321   address addr;
1322   char*   full_path;   // point to a char buffer
1323   int     buflen;      // size of the buffer
1324   address base_addr;
1325 };
1326 
1327 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1328                                   address top_address, void * param) {
1329   struct _modinfo *pmod = (struct _modinfo *)param;
1330   if (!pmod) return -1;
1331 
1332   if (base_addr   <= pmod->addr &&
1333       top_address > pmod->addr) {
1334     // if a buffer is provided, copy path name to the buffer
1335     if (pmod->full_path) {
1336       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1337     }
1338     pmod->base_addr = base_addr;
1339     return 1;
1340   }
1341   return 0;
1342 }
1343 
1344 bool os::dll_address_to_library_name(address addr, char* buf,
1345                                      int buflen, int* offset) {
1346   // buf is not optional, but offset is optional
1347   assert(buf != NULL, "sanity check");
1348 
1349 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1350 //       return the full path to the DLL file, sometimes it returns path
1351 //       to the corresponding PDB file (debug info); sometimes it only
1352 //       returns partial path, which makes life painful.
1353 
1354   struct _modinfo mi;
1355   mi.addr      = addr;
1356   mi.full_path = buf;
1357   mi.buflen    = buflen;
1358   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1359     // buf already contains path name
1360     if (offset) *offset = addr - mi.base_addr;
1361     return true;
1362   }
1363 
1364   buf[0] = '\0';
1365   if (offset) *offset = -1;
1366   return false;
1367 }
1368 
1369 bool os::dll_address_to_function_name(address addr, char *buf,
1370                                       int buflen, int *offset,
1371                                       bool demangle) {
1372   // buf is not optional, but offset is optional
1373   assert(buf != NULL, "sanity check");
1374 
1375   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1376     return true;
1377   }
1378   if (offset != NULL)  *offset  = -1;
1379   buf[0] = '\0';
1380   return false;
1381 }
1382 
1383 // save the start and end address of jvm.dll into param[0] and param[1]
1384 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1385                            address top_address, void * param) {
1386   if (!param) return -1;
1387 
1388   if (base_addr   <= (address)_locate_jvm_dll &&
1389       top_address > (address)_locate_jvm_dll) {
1390     ((address*)param)[0] = base_addr;
1391     ((address*)param)[1] = top_address;
1392     return 1;
1393   }
1394   return 0;
1395 }
1396 
1397 address vm_lib_location[2];    // start and end address of jvm.dll
1398 
1399 // check if addr is inside jvm.dll
1400 bool os::address_is_in_vm(address addr) {
1401   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1402     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1403       assert(false, "Can't find jvm module.");
1404       return false;
1405     }
1406   }
1407 
1408   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1409 }
1410 
1411 // print module info; param is outputStream*
1412 static int _print_module(const char* fname, address base_address,
1413                          address top_address, void* param) {
1414   if (!param) return -1;
1415 
1416   outputStream* st = (outputStream*)param;
1417 
1418   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1419   return 0;
1420 }
1421 
1422 // Loads .dll/.so and
1423 // in case of error it checks if .dll/.so was built for the
1424 // same architecture as Hotspot is running on
1425 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1426   void * result = LoadLibrary(name);
1427   if (result != NULL) {
1428     return result;
1429   }
1430 
1431   DWORD errcode = GetLastError();
1432   if (errcode == ERROR_MOD_NOT_FOUND) {
1433     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1434     ebuf[ebuflen - 1] = '\0';
1435     return NULL;
1436   }
1437 
1438   // Parsing dll below
1439   // If we can read dll-info and find that dll was built
1440   // for an architecture other than Hotspot is running in
1441   // - then print to buffer "DLL was built for a different architecture"
1442   // else call os::lasterror to obtain system error message
1443 
1444   // Read system error message into ebuf
1445   // It may or may not be overwritten below (in the for loop and just above)
1446   lasterror(ebuf, (size_t) ebuflen);
1447   ebuf[ebuflen - 1] = '\0';
1448   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1449   if (fd < 0) {
1450     return NULL;
1451   }
1452 
1453   uint32_t signature_offset;
1454   uint16_t lib_arch = 0;
1455   bool failed_to_get_lib_arch =
1456     ( // Go to position 3c in the dll
1457      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1458      ||
1459      // Read location of signature
1460      (sizeof(signature_offset) !=
1461      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1462      ||
1463      // Go to COFF File Header in dll
1464      // that is located after "signature" (4 bytes long)
1465      (os::seek_to_file_offset(fd,
1466      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1467      ||
1468      // Read field that contains code of architecture
1469      // that dll was built for
1470      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1471     );
1472 
1473   ::close(fd);
1474   if (failed_to_get_lib_arch) {
1475     // file i/o error - report os::lasterror(...) msg
1476     return NULL;
1477   }
1478 
1479   typedef struct {
1480     uint16_t arch_code;
1481     char* arch_name;
1482   } arch_t;
1483 
1484   static const arch_t arch_array[] = {
1485     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1486     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1487     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1488   };
1489 #if   (defined _M_IA64)
1490   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1491 #elif (defined _M_AMD64)
1492   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1493 #elif (defined _M_IX86)
1494   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1495 #else
1496   #error Method os::dll_load requires that one of following \
1497          is defined :_M_IA64,_M_AMD64 or _M_IX86
1498 #endif
1499 
1500 
1501   // Obtain a string for printf operation
1502   // lib_arch_str shall contain string what platform this .dll was built for
1503   // running_arch_str shall string contain what platform Hotspot was built for
1504   char *running_arch_str = NULL, *lib_arch_str = NULL;
1505   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1506     if (lib_arch == arch_array[i].arch_code) {
1507       lib_arch_str = arch_array[i].arch_name;
1508     }
1509     if (running_arch == arch_array[i].arch_code) {
1510       running_arch_str = arch_array[i].arch_name;
1511     }
1512   }
1513 
1514   assert(running_arch_str,
1515          "Didn't find running architecture code in arch_array");
1516 
1517   // If the architecture is right
1518   // but some other error took place - report os::lasterror(...) msg
1519   if (lib_arch == running_arch) {
1520     return NULL;
1521   }
1522 
1523   if (lib_arch_str != NULL) {
1524     ::_snprintf(ebuf, ebuflen - 1,
1525                 "Can't load %s-bit .dll on a %s-bit platform",
1526                 lib_arch_str, running_arch_str);
1527   } else {
1528     // don't know what architecture this dll was build for
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1531                 lib_arch, running_arch_str);
1532   }
1533 
1534   return NULL;
1535 }
1536 
1537 void os::print_dll_info(outputStream *st) {
1538   st->print_cr("Dynamic libraries:");
1539   get_loaded_modules_info(_print_module, (void *)st);
1540 }
1541 
1542 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1543   HANDLE   hProcess;
1544 
1545 # define MAX_NUM_MODULES 128
1546   HMODULE     modules[MAX_NUM_MODULES];
1547   static char filename[MAX_PATH];
1548   int         result = 0;
1549 
1550   int pid = os::current_process_id();
1551   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1552                          FALSE, pid);
1553   if (hProcess == NULL) return 0;
1554 
1555   DWORD size_needed;
1556   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1557     CloseHandle(hProcess);
1558     return 0;
1559   }
1560 
1561   // number of modules that are currently loaded
1562   int num_modules = size_needed / sizeof(HMODULE);
1563 
1564   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1565     // Get Full pathname:
1566     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1567       filename[0] = '\0';
1568     }
1569 
1570     MODULEINFO modinfo;
1571     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1572       modinfo.lpBaseOfDll = NULL;
1573       modinfo.SizeOfImage = 0;
1574     }
1575 
1576     // Invoke callback function
1577     result = callback(filename, (address)modinfo.lpBaseOfDll,
1578                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1579     if (result) break;
1580   }
1581 
1582   CloseHandle(hProcess);
1583   return result;
1584 }
1585 
1586 bool os::get_host_name(char* buf, size_t buflen) {
1587   DWORD size = (DWORD)buflen;
1588   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1589 }
1590 
1591 void os::get_summary_os_info(char* buf, size_t buflen) {
1592   stringStream sst(buf, buflen);
1593   os::win32::print_windows_version(&sst);
1594   // chop off newline character
1595   char* nl = strchr(buf, '\n');
1596   if (nl != NULL) *nl = '\0';
1597 }
1598 
1599 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1600   int ret = vsnprintf(buf, len, fmt, args);
1601   // Get the correct buffer size if buf is too small
1602   if (ret < 0) {
1603     return _vscprintf(fmt, args);
1604   }
1605   return ret;
1606 }
1607 
1608 static inline time_t get_mtime(const char* filename) {
1609   struct stat st;
1610   int ret = os::stat(filename, &st);
1611   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1612   return st.st_mtime;
1613 }
1614 
1615 int os::compare_file_modified_times(const char* file1, const char* file2) {
1616   time_t t1 = get_mtime(file1);
1617   time_t t2 = get_mtime(file2);
1618   return t1 - t2;
1619 }
1620 
1621 void os::print_os_info_brief(outputStream* st) {
1622   os::print_os_info(st);
1623 }
1624 
1625 void os::print_os_info(outputStream* st) {
1626 #ifdef ASSERT
1627   char buffer[1024];
1628   st->print("HostName: ");
1629   if (get_host_name(buffer, sizeof(buffer))) {
1630     st->print("%s ", buffer);
1631   } else {
1632     st->print("N/A ");
1633   }
1634 #endif
1635   st->print("OS:");
1636   os::win32::print_windows_version(st);
1637 }
1638 
1639 void os::win32::print_windows_version(outputStream* st) {
1640   OSVERSIONINFOEX osvi;
1641   VS_FIXEDFILEINFO *file_info;
1642   TCHAR kernel32_path[MAX_PATH];
1643   UINT len, ret;
1644 
1645   // Use the GetVersionEx information to see if we're on a server or
1646   // workstation edition of Windows. Starting with Windows 8.1 we can't
1647   // trust the OS version information returned by this API.
1648   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1649   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1650   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1651     st->print_cr("Call to GetVersionEx failed");
1652     return;
1653   }
1654   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1655 
1656   // Get the full path to \Windows\System32\kernel32.dll and use that for
1657   // determining what version of Windows we're running on.
1658   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1659   ret = GetSystemDirectory(kernel32_path, len);
1660   if (ret == 0 || ret > len) {
1661     st->print_cr("Call to GetSystemDirectory failed");
1662     return;
1663   }
1664   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1665 
1666   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1667   if (version_size == 0) {
1668     st->print_cr("Call to GetFileVersionInfoSize failed");
1669     return;
1670   }
1671 
1672   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1673   if (version_info == NULL) {
1674     st->print_cr("Failed to allocate version_info");
1675     return;
1676   }
1677 
1678   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1679     os::free(version_info);
1680     st->print_cr("Call to GetFileVersionInfo failed");
1681     return;
1682   }
1683 
1684   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1685     os::free(version_info);
1686     st->print_cr("Call to VerQueryValue failed");
1687     return;
1688   }
1689 
1690   int major_version = HIWORD(file_info->dwProductVersionMS);
1691   int minor_version = LOWORD(file_info->dwProductVersionMS);
1692   int build_number = HIWORD(file_info->dwProductVersionLS);
1693   int build_minor = LOWORD(file_info->dwProductVersionLS);
1694   int os_vers = major_version * 1000 + minor_version;
1695   os::free(version_info);
1696 
1697   st->print(" Windows ");
1698   switch (os_vers) {
1699 
1700   case 6000:
1701     if (is_workstation) {
1702       st->print("Vista");
1703     } else {
1704       st->print("Server 2008");
1705     }
1706     break;
1707 
1708   case 6001:
1709     if (is_workstation) {
1710       st->print("7");
1711     } else {
1712       st->print("Server 2008 R2");
1713     }
1714     break;
1715 
1716   case 6002:
1717     if (is_workstation) {
1718       st->print("8");
1719     } else {
1720       st->print("Server 2012");
1721     }
1722     break;
1723 
1724   case 6003:
1725     if (is_workstation) {
1726       st->print("8.1");
1727     } else {
1728       st->print("Server 2012 R2");
1729     }
1730     break;
1731 
1732   case 10000:
1733     if (is_workstation) {
1734       st->print("10");
1735     } else {
1736       st->print("Server 2016");
1737     }
1738     break;
1739 
1740   default:
1741     // Unrecognized windows, print out its major and minor versions
1742     st->print("%d.%d", major_version, minor_version);
1743     break;
1744   }
1745 
1746   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1747   // find out whether we are running on 64 bit processor or not
1748   SYSTEM_INFO si;
1749   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1750   GetNativeSystemInfo(&si);
1751   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1752     st->print(" , 64 bit");
1753   }
1754 
1755   st->print(" Build %d", build_number);
1756   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1757   st->cr();
1758 }
1759 
1760 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1761   // Nothing to do for now.
1762 }
1763 
1764 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1765   HKEY key;
1766   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1767                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1768   if (status == ERROR_SUCCESS) {
1769     DWORD size = (DWORD)buflen;
1770     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1771     if (status != ERROR_SUCCESS) {
1772         strncpy(buf, "## __CPU__", buflen);
1773     }
1774     RegCloseKey(key);
1775   } else {
1776     // Put generic cpu info to return
1777     strncpy(buf, "## __CPU__", buflen);
1778   }
1779 }
1780 
1781 void os::print_memory_info(outputStream* st) {
1782   st->print("Memory:");
1783   st->print(" %dk page", os::vm_page_size()>>10);
1784 
1785   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1786   // value if total memory is larger than 4GB
1787   MEMORYSTATUSEX ms;
1788   ms.dwLength = sizeof(ms);
1789   GlobalMemoryStatusEx(&ms);
1790 
1791   st->print(", physical %uk", os::physical_memory() >> 10);
1792   st->print("(%uk free)", os::available_memory() >> 10);
1793 
1794   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1795   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1796   st->cr();
1797 }
1798 
1799 void os::print_siginfo(outputStream *st, const void* siginfo) {
1800   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1801   st->print("siginfo:");
1802 
1803   char tmp[64];
1804   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1805     strcpy(tmp, "EXCEPTION_??");
1806   }
1807   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1808 
1809   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1810        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1811        er->NumberParameters >= 2) {
1812     switch (er->ExceptionInformation[0]) {
1813     case 0: st->print(", reading address"); break;
1814     case 1: st->print(", writing address"); break;
1815     case 8: st->print(", data execution prevention violation at address"); break;
1816     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1817                        er->ExceptionInformation[0]);
1818     }
1819     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1820   } else {
1821     int num = er->NumberParameters;
1822     if (num > 0) {
1823       st->print(", ExceptionInformation=");
1824       for (int i = 0; i < num; i++) {
1825         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1826       }
1827     }
1828   }
1829   st->cr();
1830 }
1831 
1832 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1833   // do nothing
1834 }
1835 
1836 static char saved_jvm_path[MAX_PATH] = {0};
1837 
1838 // Find the full path to the current module, jvm.dll
1839 void os::jvm_path(char *buf, jint buflen) {
1840   // Error checking.
1841   if (buflen < MAX_PATH) {
1842     assert(false, "must use a large-enough buffer");
1843     buf[0] = '\0';
1844     return;
1845   }
1846   // Lazy resolve the path to current module.
1847   if (saved_jvm_path[0] != 0) {
1848     strcpy(buf, saved_jvm_path);
1849     return;
1850   }
1851 
1852   buf[0] = '\0';
1853   if (Arguments::sun_java_launcher_is_altjvm()) {
1854     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1855     // for a JAVA_HOME environment variable and fix up the path so it
1856     // looks like jvm.dll is installed there (append a fake suffix
1857     // hotspot/jvm.dll).
1858     char* java_home_var = ::getenv("JAVA_HOME");
1859     if (java_home_var != NULL && java_home_var[0] != 0 &&
1860         strlen(java_home_var) < (size_t)buflen) {
1861       strncpy(buf, java_home_var, buflen);
1862 
1863       // determine if this is a legacy image or modules image
1864       // modules image doesn't have "jre" subdirectory
1865       size_t len = strlen(buf);
1866       char* jrebin_p = buf + len;
1867       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1868       if (0 != _access(buf, 0)) {
1869         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1870       }
1871       len = strlen(buf);
1872       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1873     }
1874   }
1875 
1876   if (buf[0] == '\0') {
1877     GetModuleFileName(vm_lib_handle, buf, buflen);
1878   }
1879   strncpy(saved_jvm_path, buf, MAX_PATH);
1880   saved_jvm_path[MAX_PATH - 1] = '\0';
1881 }
1882 
1883 
1884 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1885 #ifndef _WIN64
1886   st->print("_");
1887 #endif
1888 }
1889 
1890 
1891 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1892 #ifndef _WIN64
1893   st->print("@%d", args_size  * sizeof(int));
1894 #endif
1895 }
1896 
1897 // This method is a copy of JDK's sysGetLastErrorString
1898 // from src/windows/hpi/src/system_md.c
1899 
1900 size_t os::lasterror(char* buf, size_t len) {
1901   DWORD errval;
1902 
1903   if ((errval = GetLastError()) != 0) {
1904     // DOS error
1905     size_t n = (size_t)FormatMessage(
1906                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1907                                      NULL,
1908                                      errval,
1909                                      0,
1910                                      buf,
1911                                      (DWORD)len,
1912                                      NULL);
1913     if (n > 3) {
1914       // Drop final '.', CR, LF
1915       if (buf[n - 1] == '\n') n--;
1916       if (buf[n - 1] == '\r') n--;
1917       if (buf[n - 1] == '.') n--;
1918       buf[n] = '\0';
1919     }
1920     return n;
1921   }
1922 
1923   if (errno != 0) {
1924     // C runtime error that has no corresponding DOS error code
1925     const char* s = os::strerror(errno);
1926     size_t n = strlen(s);
1927     if (n >= len) n = len - 1;
1928     strncpy(buf, s, n);
1929     buf[n] = '\0';
1930     return n;
1931   }
1932 
1933   return 0;
1934 }
1935 
1936 int os::get_last_error() {
1937   DWORD error = GetLastError();
1938   if (error == 0) {
1939     error = errno;
1940   }
1941   return (int)error;
1942 }
1943 
1944 WindowsSemaphore::WindowsSemaphore(uint value) {
1945   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1946 
1947   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1948 }
1949 
1950 WindowsSemaphore::~WindowsSemaphore() {
1951   ::CloseHandle(_semaphore);
1952 }
1953 
1954 void WindowsSemaphore::signal(uint count) {
1955   if (count > 0) {
1956     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1957 
1958     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1959   }
1960 }
1961 
1962 void WindowsSemaphore::wait() {
1963   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1964   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1965   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1966 }
1967 
1968 // sun.misc.Signal
1969 // NOTE that this is a workaround for an apparent kernel bug where if
1970 // a signal handler for SIGBREAK is installed then that signal handler
1971 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1972 // See bug 4416763.
1973 static void (*sigbreakHandler)(int) = NULL;
1974 
1975 static void UserHandler(int sig, void *siginfo, void *context) {
1976   os::signal_notify(sig);
1977   // We need to reinstate the signal handler each time...
1978   os::signal(sig, (void*)UserHandler);
1979 }
1980 
1981 void* os::user_handler() {
1982   return (void*) UserHandler;
1983 }
1984 
1985 void* os::signal(int signal_number, void* handler) {
1986   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1987     void (*oldHandler)(int) = sigbreakHandler;
1988     sigbreakHandler = (void (*)(int)) handler;
1989     return (void*) oldHandler;
1990   } else {
1991     return (void*)::signal(signal_number, (void (*)(int))handler);
1992   }
1993 }
1994 
1995 void os::signal_raise(int signal_number) {
1996   raise(signal_number);
1997 }
1998 
1999 // The Win32 C runtime library maps all console control events other than ^C
2000 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2001 // logoff, and shutdown events.  We therefore install our own console handler
2002 // that raises SIGTERM for the latter cases.
2003 //
2004 static BOOL WINAPI consoleHandler(DWORD event) {
2005   switch (event) {
2006   case CTRL_C_EVENT:
2007     if (is_error_reported()) {
2008       // Ctrl-C is pressed during error reporting, likely because the error
2009       // handler fails to abort. Let VM die immediately.
2010       os::die();
2011     }
2012 
2013     os::signal_raise(SIGINT);
2014     return TRUE;
2015     break;
2016   case CTRL_BREAK_EVENT:
2017     if (sigbreakHandler != NULL) {
2018       (*sigbreakHandler)(SIGBREAK);
2019     }
2020     return TRUE;
2021     break;
2022   case CTRL_LOGOFF_EVENT: {
2023     // Don't terminate JVM if it is running in a non-interactive session,
2024     // such as a service process.
2025     USEROBJECTFLAGS flags;
2026     HANDLE handle = GetProcessWindowStation();
2027     if (handle != NULL &&
2028         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2029         sizeof(USEROBJECTFLAGS), NULL)) {
2030       // If it is a non-interactive session, let next handler to deal
2031       // with it.
2032       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2033         return FALSE;
2034       }
2035     }
2036   }
2037   case CTRL_CLOSE_EVENT:
2038   case CTRL_SHUTDOWN_EVENT:
2039     os::signal_raise(SIGTERM);
2040     return TRUE;
2041     break;
2042   default:
2043     break;
2044   }
2045   return FALSE;
2046 }
2047 
2048 // The following code is moved from os.cpp for making this
2049 // code platform specific, which it is by its very nature.
2050 
2051 // Return maximum OS signal used + 1 for internal use only
2052 // Used as exit signal for signal_thread
2053 int os::sigexitnum_pd() {
2054   return NSIG;
2055 }
2056 
2057 // a counter for each possible signal value, including signal_thread exit signal
2058 static volatile jint pending_signals[NSIG+1] = { 0 };
2059 static HANDLE sig_sem = NULL;
2060 
2061 void os::signal_init_pd() {
2062   // Initialize signal structures
2063   memset((void*)pending_signals, 0, sizeof(pending_signals));
2064 
2065   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2066 
2067   // Programs embedding the VM do not want it to attempt to receive
2068   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2069   // shutdown hooks mechanism introduced in 1.3.  For example, when
2070   // the VM is run as part of a Windows NT service (i.e., a servlet
2071   // engine in a web server), the correct behavior is for any console
2072   // control handler to return FALSE, not TRUE, because the OS's
2073   // "final" handler for such events allows the process to continue if
2074   // it is a service (while terminating it if it is not a service).
2075   // To make this behavior uniform and the mechanism simpler, we
2076   // completely disable the VM's usage of these console events if -Xrs
2077   // (=ReduceSignalUsage) is specified.  This means, for example, that
2078   // the CTRL-BREAK thread dump mechanism is also disabled in this
2079   // case.  See bugs 4323062, 4345157, and related bugs.
2080 
2081   if (!ReduceSignalUsage) {
2082     // Add a CTRL-C handler
2083     SetConsoleCtrlHandler(consoleHandler, TRUE);
2084   }
2085 }
2086 
2087 void os::signal_notify(int signal_number) {
2088   BOOL ret;
2089   if (sig_sem != NULL) {
2090     Atomic::inc(&pending_signals[signal_number]);
2091     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2092     assert(ret != 0, "ReleaseSemaphore() failed");
2093   }
2094 }
2095 
2096 static int check_pending_signals(bool wait_for_signal) {
2097   DWORD ret;
2098   while (true) {
2099     for (int i = 0; i < NSIG + 1; i++) {
2100       jint n = pending_signals[i];
2101       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2102         return i;
2103       }
2104     }
2105     if (!wait_for_signal) {
2106       return -1;
2107     }
2108 
2109     JavaThread *thread = JavaThread::current();
2110 
2111     ThreadBlockInVM tbivm(thread);
2112 
2113     bool threadIsSuspended;
2114     do {
2115       thread->set_suspend_equivalent();
2116       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2117       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2118       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2119 
2120       // were we externally suspended while we were waiting?
2121       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2122       if (threadIsSuspended) {
2123         // The semaphore has been incremented, but while we were waiting
2124         // another thread suspended us. We don't want to continue running
2125         // while suspended because that would surprise the thread that
2126         // suspended us.
2127         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2128         assert(ret != 0, "ReleaseSemaphore() failed");
2129 
2130         thread->java_suspend_self();
2131       }
2132     } while (threadIsSuspended);
2133   }
2134 }
2135 
2136 int os::signal_lookup() {
2137   return check_pending_signals(false);
2138 }
2139 
2140 int os::signal_wait() {
2141   return check_pending_signals(true);
2142 }
2143 
2144 // Implicit OS exception handling
2145 
2146 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2147                       address handler) {
2148     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2149   // Save pc in thread
2150 #ifdef _M_IA64
2151   // Do not blow up if no thread info available.
2152   if (thread) {
2153     // Saving PRECISE pc (with slot information) in thread.
2154     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2155     // Convert precise PC into "Unix" format
2156     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2157     thread->set_saved_exception_pc((address)precise_pc);
2158   }
2159   // Set pc to handler
2160   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2161   // Clear out psr.ri (= Restart Instruction) in order to continue
2162   // at the beginning of the target bundle.
2163   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2164   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2165 #else
2166   #ifdef _M_AMD64
2167   // Do not blow up if no thread info available.
2168   if (thread) {
2169     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2170   }
2171   // Set pc to handler
2172   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2173   #else
2174   // Do not blow up if no thread info available.
2175   if (thread) {
2176     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2177   }
2178   // Set pc to handler
2179   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2180   #endif
2181 #endif
2182 
2183   // Continue the execution
2184   return EXCEPTION_CONTINUE_EXECUTION;
2185 }
2186 
2187 
2188 // Used for PostMortemDump
2189 extern "C" void safepoints();
2190 extern "C" void find(int x);
2191 extern "C" void events();
2192 
2193 // According to Windows API documentation, an illegal instruction sequence should generate
2194 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2195 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2196 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2197 
2198 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2199 
2200 // From "Execution Protection in the Windows Operating System" draft 0.35
2201 // Once a system header becomes available, the "real" define should be
2202 // included or copied here.
2203 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2204 
2205 // Handle NAT Bit consumption on IA64.
2206 #ifdef _M_IA64
2207   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2208 #endif
2209 
2210 // Windows Vista/2008 heap corruption check
2211 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2212 
2213 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2214 // C++ compiler contain this error code. Because this is a compiler-generated
2215 // error, the code is not listed in the Win32 API header files.
2216 // The code is actually a cryptic mnemonic device, with the initial "E"
2217 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2218 // ASCII values of "msc".
2219 
2220 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2221 
2222 #define def_excpt(val) { #val, (val) }
2223 
2224 static const struct { char* name; uint number; } exceptlabels[] = {
2225     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2226     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2227     def_excpt(EXCEPTION_BREAKPOINT),
2228     def_excpt(EXCEPTION_SINGLE_STEP),
2229     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2230     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2231     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2232     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2233     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2234     def_excpt(EXCEPTION_FLT_OVERFLOW),
2235     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2236     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2237     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2238     def_excpt(EXCEPTION_INT_OVERFLOW),
2239     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2240     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2241     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2242     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2243     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2244     def_excpt(EXCEPTION_STACK_OVERFLOW),
2245     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2246     def_excpt(EXCEPTION_GUARD_PAGE),
2247     def_excpt(EXCEPTION_INVALID_HANDLE),
2248     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2249     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2250 #ifdef _M_IA64
2251     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2252 #endif
2253 };
2254 
2255 #undef def_excpt
2256 
2257 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2258   uint code = static_cast<uint>(exception_code);
2259   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2260     if (exceptlabels[i].number == code) {
2261       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2262       return buf;
2263     }
2264   }
2265 
2266   return NULL;
2267 }
2268 
2269 //-----------------------------------------------------------------------------
2270 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2271   // handle exception caused by idiv; should only happen for -MinInt/-1
2272   // (division by zero is handled explicitly)
2273 #ifdef _M_IA64
2274   assert(0, "Fix Handle_IDiv_Exception");
2275 #else
2276   #ifdef  _M_AMD64
2277   PCONTEXT ctx = exceptionInfo->ContextRecord;
2278   address pc = (address)ctx->Rip;
2279   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2280   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2281   if (pc[0] == 0xF7) {
2282     // set correct result values and continue after idiv instruction
2283     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2284   } else {
2285     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2286   }
2287   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2288   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2289   // idiv opcode (0xF7).
2290   ctx->Rdx = (DWORD)0;             // remainder
2291   // Continue the execution
2292   #else
2293   PCONTEXT ctx = exceptionInfo->ContextRecord;
2294   address pc = (address)ctx->Eip;
2295   assert(pc[0] == 0xF7, "not an idiv opcode");
2296   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2297   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2298   // set correct result values and continue after idiv instruction
2299   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2300   ctx->Eax = (DWORD)min_jint;      // result
2301   ctx->Edx = (DWORD)0;             // remainder
2302   // Continue the execution
2303   #endif
2304 #endif
2305   return EXCEPTION_CONTINUE_EXECUTION;
2306 }
2307 
2308 //-----------------------------------------------------------------------------
2309 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2310   PCONTEXT ctx = exceptionInfo->ContextRecord;
2311 #ifndef  _WIN64
2312   // handle exception caused by native method modifying control word
2313   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2314 
2315   switch (exception_code) {
2316   case EXCEPTION_FLT_DENORMAL_OPERAND:
2317   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2318   case EXCEPTION_FLT_INEXACT_RESULT:
2319   case EXCEPTION_FLT_INVALID_OPERATION:
2320   case EXCEPTION_FLT_OVERFLOW:
2321   case EXCEPTION_FLT_STACK_CHECK:
2322   case EXCEPTION_FLT_UNDERFLOW:
2323     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2324     if (fp_control_word != ctx->FloatSave.ControlWord) {
2325       // Restore FPCW and mask out FLT exceptions
2326       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2327       // Mask out pending FLT exceptions
2328       ctx->FloatSave.StatusWord &=  0xffffff00;
2329       return EXCEPTION_CONTINUE_EXECUTION;
2330     }
2331   }
2332 
2333   if (prev_uef_handler != NULL) {
2334     // We didn't handle this exception so pass it to the previous
2335     // UnhandledExceptionFilter.
2336     return (prev_uef_handler)(exceptionInfo);
2337   }
2338 #else // !_WIN64
2339   // On Windows, the mxcsr control bits are non-volatile across calls
2340   // See also CR 6192333
2341   //
2342   jint MxCsr = INITIAL_MXCSR;
2343   // we can't use StubRoutines::addr_mxcsr_std()
2344   // because in Win64 mxcsr is not saved there
2345   if (MxCsr != ctx->MxCsr) {
2346     ctx->MxCsr = MxCsr;
2347     return EXCEPTION_CONTINUE_EXECUTION;
2348   }
2349 #endif // !_WIN64
2350 
2351   return EXCEPTION_CONTINUE_SEARCH;
2352 }
2353 
2354 static inline void report_error(Thread* t, DWORD exception_code,
2355                                 address addr, void* siginfo, void* context) {
2356   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2357 
2358   // If UseOsErrorReporting, this will return here and save the error file
2359   // somewhere where we can find it in the minidump.
2360 }
2361 
2362 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2363         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2364   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2365   address addr = (address) exceptionRecord->ExceptionInformation[1];
2366   if (Interpreter::contains(pc)) {
2367     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2368     if (!fr->is_first_java_frame()) {
2369       assert(fr->safe_for_sender(thread), "Safety check");
2370       *fr = fr->java_sender();
2371     }
2372   } else {
2373     // more complex code with compiled code
2374     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2375     CodeBlob* cb = CodeCache::find_blob(pc);
2376     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2377       // Not sure where the pc points to, fallback to default
2378       // stack overflow handling
2379       return false;
2380     } else {
2381       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2382       // in compiled code, the stack banging is performed just after the return pc
2383       // has been pushed on the stack
2384       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2385       if (!fr->is_java_frame()) {
2386         assert(fr->safe_for_sender(thread), "Safety check");
2387         *fr = fr->java_sender();
2388       }
2389     }
2390   }
2391   assert(fr->is_java_frame(), "Safety check");
2392   return true;
2393 }
2394 
2395 //-----------------------------------------------------------------------------
2396 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2397   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2398   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2399 #ifdef _M_IA64
2400   // On Itanium, we need the "precise pc", which has the slot number coded
2401   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2402   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2403   // Convert the pc to "Unix format", which has the slot number coded
2404   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2405   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2406   // information is saved in the Unix format.
2407   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2408 #else
2409   #ifdef _M_AMD64
2410   address pc = (address) exceptionInfo->ContextRecord->Rip;
2411   #else
2412   address pc = (address) exceptionInfo->ContextRecord->Eip;
2413   #endif
2414 #endif
2415   Thread* t = Thread::current_or_null_safe();
2416 
2417   // Handle SafeFetch32 and SafeFetchN exceptions.
2418   if (StubRoutines::is_safefetch_fault(pc)) {
2419     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2420   }
2421 
2422 #ifndef _WIN64
2423   // Execution protection violation - win32 running on AMD64 only
2424   // Handled first to avoid misdiagnosis as a "normal" access violation;
2425   // This is safe to do because we have a new/unique ExceptionInformation
2426   // code for this condition.
2427   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2428     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2429     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2430     address addr = (address) exceptionRecord->ExceptionInformation[1];
2431 
2432     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2433       int page_size = os::vm_page_size();
2434 
2435       // Make sure the pc and the faulting address are sane.
2436       //
2437       // If an instruction spans a page boundary, and the page containing
2438       // the beginning of the instruction is executable but the following
2439       // page is not, the pc and the faulting address might be slightly
2440       // different - we still want to unguard the 2nd page in this case.
2441       //
2442       // 15 bytes seems to be a (very) safe value for max instruction size.
2443       bool pc_is_near_addr =
2444         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2445       bool instr_spans_page_boundary =
2446         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2447                          (intptr_t) page_size) > 0);
2448 
2449       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2450         static volatile address last_addr =
2451           (address) os::non_memory_address_word();
2452 
2453         // In conservative mode, don't unguard unless the address is in the VM
2454         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2455             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2456 
2457           // Set memory to RWX and retry
2458           address page_start =
2459             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2460           bool res = os::protect_memory((char*) page_start, page_size,
2461                                         os::MEM_PROT_RWX);
2462 
2463           log_debug(os)("Execution protection violation "
2464                         "at " INTPTR_FORMAT
2465                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2466                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2467 
2468           // Set last_addr so if we fault again at the same address, we don't
2469           // end up in an endless loop.
2470           //
2471           // There are two potential complications here.  Two threads trapping
2472           // at the same address at the same time could cause one of the
2473           // threads to think it already unguarded, and abort the VM.  Likely
2474           // very rare.
2475           //
2476           // The other race involves two threads alternately trapping at
2477           // different addresses and failing to unguard the page, resulting in
2478           // an endless loop.  This condition is probably even more unlikely
2479           // than the first.
2480           //
2481           // Although both cases could be avoided by using locks or thread
2482           // local last_addr, these solutions are unnecessary complication:
2483           // this handler is a best-effort safety net, not a complete solution.
2484           // It is disabled by default and should only be used as a workaround
2485           // in case we missed any no-execute-unsafe VM code.
2486 
2487           last_addr = addr;
2488 
2489           return EXCEPTION_CONTINUE_EXECUTION;
2490         }
2491       }
2492 
2493       // Last unguard failed or not unguarding
2494       tty->print_raw_cr("Execution protection violation");
2495       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2496                    exceptionInfo->ContextRecord);
2497       return EXCEPTION_CONTINUE_SEARCH;
2498     }
2499   }
2500 #endif // _WIN64
2501 
2502   // Check to see if we caught the safepoint code in the
2503   // process of write protecting the memory serialization page.
2504   // It write enables the page immediately after protecting it
2505   // so just return.
2506   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2507     if(t != NULL && t->is_Java_thread()) {
2508       JavaThread* thread = (JavaThread*) t;
2509       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2510       address addr = (address) exceptionRecord->ExceptionInformation[1];
2511       if (os::is_memory_serialize_page(thread, addr)) {
2512         // Block current thread until the memory serialize page permission restored.
2513         os::block_on_serialize_page_trap();
2514         return EXCEPTION_CONTINUE_EXECUTION;
2515       }
2516     }
2517   }
2518 
2519   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2520       VM_Version::is_cpuinfo_segv_addr(pc)) {
2521     // Verify that OS save/restore AVX registers.
2522     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2523   }
2524 
2525   if (t != NULL && t->is_Java_thread()) {
2526     JavaThread* thread = (JavaThread*) t;
2527     bool in_java = thread->thread_state() == _thread_in_Java;
2528 
2529     // Handle potential stack overflows up front.
2530     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2531 #ifdef _M_IA64
2532       // Use guard page for register stack.
2533       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2534       address addr = (address) exceptionRecord->ExceptionInformation[1];
2535       // Check for a register stack overflow on Itanium
2536       if (thread->addr_inside_register_stack_red_zone(addr)) {
2537         // Fatal red zone violation happens if the Java program
2538         // catches a StackOverflow error and does so much processing
2539         // that it runs beyond the unprotected yellow guard zone. As
2540         // a result, we are out of here.
2541         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2542       } else if(thread->addr_inside_register_stack(addr)) {
2543         // Disable the yellow zone which sets the state that
2544         // we've got a stack overflow problem.
2545         if (thread->stack_yellow_reserved_zone_enabled()) {
2546           thread->disable_stack_yellow_reserved_zone();
2547         }
2548         // Give us some room to process the exception.
2549         thread->disable_register_stack_guard();
2550         // Tracing with +Verbose.
2551         if (Verbose) {
2552           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2553           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2554           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2555           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2556                         thread->register_stack_base(),
2557                         thread->register_stack_base() + thread->stack_size());
2558         }
2559 
2560         // Reguard the permanent register stack red zone just to be sure.
2561         // We saw Windows silently disabling this without telling us.
2562         thread->enable_register_stack_red_zone();
2563 
2564         return Handle_Exception(exceptionInfo,
2565                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2566       }
2567 #endif
2568       if (thread->stack_guards_enabled()) {
2569         if (in_java) {
2570           frame fr;
2571           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2572           address addr = (address) exceptionRecord->ExceptionInformation[1];
2573           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2574             assert(fr.is_java_frame(), "Must be a Java frame");
2575             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2576           }
2577         }
2578         // Yellow zone violation.  The o/s has unprotected the first yellow
2579         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2580         // update the enabled status, even if the zone contains only one page.
2581         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2582         thread->disable_stack_yellow_reserved_zone();
2583         // If not in java code, return and hope for the best.
2584         return in_java
2585             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2586             :  EXCEPTION_CONTINUE_EXECUTION;
2587       } else {
2588         // Fatal red zone violation.
2589         thread->disable_stack_red_zone();
2590         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2591         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2592                       exceptionInfo->ContextRecord);
2593         return EXCEPTION_CONTINUE_SEARCH;
2594       }
2595     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2596       // Either stack overflow or null pointer exception.
2597       if (in_java) {
2598         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2599         address addr = (address) exceptionRecord->ExceptionInformation[1];
2600         address stack_end = thread->stack_end();
2601         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2602           // Stack overflow.
2603           assert(!os::uses_stack_guard_pages(),
2604                  "should be caught by red zone code above.");
2605           return Handle_Exception(exceptionInfo,
2606                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2607         }
2608         // Check for safepoint polling and implicit null
2609         // We only expect null pointers in the stubs (vtable)
2610         // the rest are checked explicitly now.
2611         CodeBlob* cb = CodeCache::find_blob(pc);
2612         if (cb != NULL) {
2613           if (os::is_poll_address(addr)) {
2614             address stub = SharedRuntime::get_poll_stub(pc);
2615             return Handle_Exception(exceptionInfo, stub);
2616           }
2617         }
2618         {
2619 #ifdef _WIN64
2620           // If it's a legal stack address map the entire region in
2621           //
2622           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2623           address addr = (address) exceptionRecord->ExceptionInformation[1];
2624           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2625             addr = (address)((uintptr_t)addr &
2626                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2627             os::commit_memory((char *)addr, thread->stack_base() - addr,
2628                               !ExecMem);
2629             return EXCEPTION_CONTINUE_EXECUTION;
2630           } else
2631 #endif
2632           {
2633             // Null pointer exception.
2634 #ifdef _M_IA64
2635             // Process implicit null checks in compiled code. Note: Implicit null checks
2636             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2637             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2638               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2639               // Handle implicit null check in UEP method entry
2640               if (cb && (cb->is_frame_complete_at(pc) ||
2641                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2642                 if (Verbose) {
2643                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2644                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2645                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2646                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2647                                 *(bundle_start + 1), *bundle_start);
2648                 }
2649                 return Handle_Exception(exceptionInfo,
2650                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2651               }
2652             }
2653 
2654             // Implicit null checks were processed above.  Hence, we should not reach
2655             // here in the usual case => die!
2656             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2657             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2658                          exceptionInfo->ContextRecord);
2659             return EXCEPTION_CONTINUE_SEARCH;
2660 
2661 #else // !IA64
2662 
2663             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2664               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2665               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2666             }
2667             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2668                          exceptionInfo->ContextRecord);
2669             return EXCEPTION_CONTINUE_SEARCH;
2670 #endif
2671           }
2672         }
2673       }
2674 
2675 #ifdef _WIN64
2676       // Special care for fast JNI field accessors.
2677       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2678       // in and the heap gets shrunk before the field access.
2679       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2680         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2681         if (addr != (address)-1) {
2682           return Handle_Exception(exceptionInfo, addr);
2683         }
2684       }
2685 #endif
2686 
2687       // Stack overflow or null pointer exception in native code.
2688       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2689                    exceptionInfo->ContextRecord);
2690       return EXCEPTION_CONTINUE_SEARCH;
2691     } // /EXCEPTION_ACCESS_VIOLATION
2692     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2693 #if defined _M_IA64
2694     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2695               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2696       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2697 
2698       // Compiled method patched to be non entrant? Following conditions must apply:
2699       // 1. must be first instruction in bundle
2700       // 2. must be a break instruction with appropriate code
2701       if ((((uint64_t) pc & 0x0F) == 0) &&
2702           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2703         return Handle_Exception(exceptionInfo,
2704                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2705       }
2706     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2707 #endif
2708 
2709 
2710     if (in_java) {
2711       switch (exception_code) {
2712       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2713         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2714 
2715       case EXCEPTION_INT_OVERFLOW:
2716         return Handle_IDiv_Exception(exceptionInfo);
2717 
2718       } // switch
2719     }
2720     if (((thread->thread_state() == _thread_in_Java) ||
2721          (thread->thread_state() == _thread_in_native)) &&
2722          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2723       LONG result=Handle_FLT_Exception(exceptionInfo);
2724       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2725     }
2726   }
2727 
2728   if (exception_code != EXCEPTION_BREAKPOINT) {
2729     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2730                  exceptionInfo->ContextRecord);
2731   }
2732   return EXCEPTION_CONTINUE_SEARCH;
2733 }
2734 
2735 #ifndef _WIN64
2736 // Special care for fast JNI accessors.
2737 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2738 // the heap gets shrunk before the field access.
2739 // Need to install our own structured exception handler since native code may
2740 // install its own.
2741 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2742   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2743   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2744     address pc = (address) exceptionInfo->ContextRecord->Eip;
2745     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2746     if (addr != (address)-1) {
2747       return Handle_Exception(exceptionInfo, addr);
2748     }
2749   }
2750   return EXCEPTION_CONTINUE_SEARCH;
2751 }
2752 
2753 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2754   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2755                                                      jobject obj,           \
2756                                                      jfieldID fieldID) {    \
2757     __try {                                                                 \
2758       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2759                                                                  obj,       \
2760                                                                  fieldID);  \
2761     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2762                                               _exception_info())) {         \
2763     }                                                                       \
2764     return 0;                                                               \
2765   }
2766 
2767 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2768 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2769 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2770 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2771 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2772 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2773 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2774 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2775 
2776 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2777   switch (type) {
2778   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2779   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2780   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2781   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2782   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2783   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2784   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2785   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2786   default:        ShouldNotReachHere();
2787   }
2788   return (address)-1;
2789 }
2790 #endif
2791 
2792 // Virtual Memory
2793 
2794 int os::vm_page_size() { return os::win32::vm_page_size(); }
2795 int os::vm_allocation_granularity() {
2796   return os::win32::vm_allocation_granularity();
2797 }
2798 
2799 // Windows large page support is available on Windows 2003. In order to use
2800 // large page memory, the administrator must first assign additional privilege
2801 // to the user:
2802 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2803 //   + select Local Policies -> User Rights Assignment
2804 //   + double click "Lock pages in memory", add users and/or groups
2805 //   + reboot
2806 // Note the above steps are needed for administrator as well, as administrators
2807 // by default do not have the privilege to lock pages in memory.
2808 //
2809 // Note about Windows 2003: although the API supports committing large page
2810 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2811 // scenario, I found through experiment it only uses large page if the entire
2812 // memory region is reserved and committed in a single VirtualAlloc() call.
2813 // This makes Windows large page support more or less like Solaris ISM, in
2814 // that the entire heap must be committed upfront. This probably will change
2815 // in the future, if so the code below needs to be revisited.
2816 
2817 #ifndef MEM_LARGE_PAGES
2818   #define MEM_LARGE_PAGES 0x20000000
2819 #endif
2820 
2821 static HANDLE    _hProcess;
2822 static HANDLE    _hToken;
2823 
2824 // Container for NUMA node list info
2825 class NUMANodeListHolder {
2826  private:
2827   int *_numa_used_node_list;  // allocated below
2828   int _numa_used_node_count;
2829 
2830   void free_node_list() {
2831     if (_numa_used_node_list != NULL) {
2832       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2833     }
2834   }
2835 
2836  public:
2837   NUMANodeListHolder() {
2838     _numa_used_node_count = 0;
2839     _numa_used_node_list = NULL;
2840     // do rest of initialization in build routine (after function pointers are set up)
2841   }
2842 
2843   ~NUMANodeListHolder() {
2844     free_node_list();
2845   }
2846 
2847   bool build() {
2848     DWORD_PTR proc_aff_mask;
2849     DWORD_PTR sys_aff_mask;
2850     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2851     ULONG highest_node_number;
2852     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2853     free_node_list();
2854     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2855     for (unsigned int i = 0; i <= highest_node_number; i++) {
2856       ULONGLONG proc_mask_numa_node;
2857       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2858       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2859         _numa_used_node_list[_numa_used_node_count++] = i;
2860       }
2861     }
2862     return (_numa_used_node_count > 1);
2863   }
2864 
2865   int get_count() { return _numa_used_node_count; }
2866   int get_node_list_entry(int n) {
2867     // for indexes out of range, returns -1
2868     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2869   }
2870 
2871 } numa_node_list_holder;
2872 
2873 
2874 
2875 static size_t _large_page_size = 0;
2876 
2877 static bool request_lock_memory_privilege() {
2878   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2879                           os::current_process_id());
2880 
2881   LUID luid;
2882   if (_hProcess != NULL &&
2883       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2884       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2885 
2886     TOKEN_PRIVILEGES tp;
2887     tp.PrivilegeCount = 1;
2888     tp.Privileges[0].Luid = luid;
2889     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2890 
2891     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2892     // privilege. Check GetLastError() too. See MSDN document.
2893     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2894         (GetLastError() == ERROR_SUCCESS)) {
2895       return true;
2896     }
2897   }
2898 
2899   return false;
2900 }
2901 
2902 static void cleanup_after_large_page_init() {
2903   if (_hProcess) CloseHandle(_hProcess);
2904   _hProcess = NULL;
2905   if (_hToken) CloseHandle(_hToken);
2906   _hToken = NULL;
2907 }
2908 
2909 static bool numa_interleaving_init() {
2910   bool success = false;
2911   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2912 
2913   // print a warning if UseNUMAInterleaving flag is specified on command line
2914   bool warn_on_failure = use_numa_interleaving_specified;
2915 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2916 
2917   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2918   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2919   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2920 
2921   if (numa_node_list_holder.build()) {
2922     if (log_is_enabled(Debug, os, cpu)) {
2923       Log(os, cpu) log;
2924       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2925       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2926         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2927       }
2928     }
2929     success = true;
2930   } else {
2931     WARN("Process does not cover multiple NUMA nodes.");
2932   }
2933   if (!success) {
2934     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2935   }
2936   return success;
2937 #undef WARN
2938 }
2939 
2940 // this routine is used whenever we need to reserve a contiguous VA range
2941 // but we need to make separate VirtualAlloc calls for each piece of the range
2942 // Reasons for doing this:
2943 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2944 //  * UseNUMAInterleaving requires a separate node for each piece
2945 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2946                                          DWORD prot,
2947                                          bool should_inject_error = false) {
2948   char * p_buf;
2949   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2950   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2951   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2952 
2953   // first reserve enough address space in advance since we want to be
2954   // able to break a single contiguous virtual address range into multiple
2955   // large page commits but WS2003 does not allow reserving large page space
2956   // so we just use 4K pages for reserve, this gives us a legal contiguous
2957   // address space. then we will deallocate that reservation, and re alloc
2958   // using large pages
2959   const size_t size_of_reserve = bytes + chunk_size;
2960   if (bytes > size_of_reserve) {
2961     // Overflowed.
2962     return NULL;
2963   }
2964   p_buf = (char *) VirtualAlloc(addr,
2965                                 size_of_reserve,  // size of Reserve
2966                                 MEM_RESERVE,
2967                                 PAGE_READWRITE);
2968   // If reservation failed, return NULL
2969   if (p_buf == NULL) return NULL;
2970   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2971   os::release_memory(p_buf, bytes + chunk_size);
2972 
2973   // we still need to round up to a page boundary (in case we are using large pages)
2974   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2975   // instead we handle this in the bytes_to_rq computation below
2976   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2977 
2978   // now go through and allocate one chunk at a time until all bytes are
2979   // allocated
2980   size_t  bytes_remaining = bytes;
2981   // An overflow of align_size_up() would have been caught above
2982   // in the calculation of size_of_reserve.
2983   char * next_alloc_addr = p_buf;
2984   HANDLE hProc = GetCurrentProcess();
2985 
2986 #ifdef ASSERT
2987   // Variable for the failure injection
2988   long ran_num = os::random();
2989   size_t fail_after = ran_num % bytes;
2990 #endif
2991 
2992   int count=0;
2993   while (bytes_remaining) {
2994     // select bytes_to_rq to get to the next chunk_size boundary
2995 
2996     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2997     // Note allocate and commit
2998     char * p_new;
2999 
3000 #ifdef ASSERT
3001     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3002 #else
3003     const bool inject_error_now = false;
3004 #endif
3005 
3006     if (inject_error_now) {
3007       p_new = NULL;
3008     } else {
3009       if (!UseNUMAInterleaving) {
3010         p_new = (char *) VirtualAlloc(next_alloc_addr,
3011                                       bytes_to_rq,
3012                                       flags,
3013                                       prot);
3014       } else {
3015         // get the next node to use from the used_node_list
3016         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3017         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3018         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
3019       }
3020     }
3021 
3022     if (p_new == NULL) {
3023       // Free any allocated pages
3024       if (next_alloc_addr > p_buf) {
3025         // Some memory was committed so release it.
3026         size_t bytes_to_release = bytes - bytes_remaining;
3027         // NMT has yet to record any individual blocks, so it
3028         // need to create a dummy 'reserve' record to match
3029         // the release.
3030         MemTracker::record_virtual_memory_reserve((address)p_buf,
3031                                                   bytes_to_release, CALLER_PC);
3032         os::release_memory(p_buf, bytes_to_release);
3033       }
3034 #ifdef ASSERT
3035       if (should_inject_error) {
3036         log_develop_debug(pagesize)("Reserving pages individually failed.");
3037       }
3038 #endif
3039       return NULL;
3040     }
3041 
3042     bytes_remaining -= bytes_to_rq;
3043     next_alloc_addr += bytes_to_rq;
3044     count++;
3045   }
3046   // Although the memory is allocated individually, it is returned as one.
3047   // NMT records it as one block.
3048   if ((flags & MEM_COMMIT) != 0) {
3049     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3050   } else {
3051     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3052   }
3053 
3054   // made it this far, success
3055   return p_buf;
3056 }
3057 
3058 
3059 
3060 void os::large_page_init() {
3061   if (!UseLargePages) return;
3062 
3063   // print a warning if any large page related flag is specified on command line
3064   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3065                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3066   bool success = false;
3067 
3068 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3069   if (request_lock_memory_privilege()) {
3070     size_t s = GetLargePageMinimum();
3071     if (s) {
3072 #if defined(IA32) || defined(AMD64)
3073       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3074         WARN("JVM cannot use large pages bigger than 4mb.");
3075       } else {
3076 #endif
3077         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3078           _large_page_size = LargePageSizeInBytes;
3079         } else {
3080           _large_page_size = s;
3081         }
3082         success = true;
3083 #if defined(IA32) || defined(AMD64)
3084       }
3085 #endif
3086     } else {
3087       WARN("Large page is not supported by the processor.");
3088     }
3089   } else {
3090     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3091   }
3092 #undef WARN
3093 
3094   const size_t default_page_size = (size_t) vm_page_size();
3095   if (success && _large_page_size > default_page_size) {
3096     _page_sizes[0] = _large_page_size;
3097     _page_sizes[1] = default_page_size;
3098     _page_sizes[2] = 0;
3099   }
3100 
3101   cleanup_after_large_page_init();
3102   UseLargePages = success;
3103 }
3104 
3105 // On win32, one cannot release just a part of reserved memory, it's an
3106 // all or nothing deal.  When we split a reservation, we must break the
3107 // reservation into two reservations.
3108 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3109                                   bool realloc) {
3110   if (size > 0) {
3111     release_memory(base, size);
3112     if (realloc) {
3113       reserve_memory(split, base);
3114     }
3115     if (size != split) {
3116       reserve_memory(size - split, base + split);
3117     }
3118   }
3119 }
3120 
3121 // Multiple threads can race in this code but it's not possible to unmap small sections of
3122 // virtual space to get requested alignment, like posix-like os's.
3123 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3124 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3125   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3126          "Alignment must be a multiple of allocation granularity (page size)");
3127   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3128 
3129   size_t extra_size = size + alignment;
3130   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3131 
3132   char* aligned_base = NULL;
3133 
3134   do {
3135     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3136     if (extra_base == NULL) {
3137       return NULL;
3138     }
3139     // Do manual alignment
3140     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3141 
3142     os::release_memory(extra_base, extra_size);
3143 
3144     aligned_base = os::reserve_memory(size, aligned_base);
3145 
3146   } while (aligned_base == NULL);
3147 
3148   return aligned_base;
3149 }
3150 
3151 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3152   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3153          "reserve alignment");
3154   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3155   char* res;
3156   // note that if UseLargePages is on, all the areas that require interleaving
3157   // will go thru reserve_memory_special rather than thru here.
3158   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3159   if (!use_individual) {
3160     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3161   } else {
3162     elapsedTimer reserveTimer;
3163     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3164     // in numa interleaving, we have to allocate pages individually
3165     // (well really chunks of NUMAInterleaveGranularity size)
3166     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3167     if (res == NULL) {
3168       warning("NUMA page allocation failed");
3169     }
3170     if (Verbose && PrintMiscellaneous) {
3171       reserveTimer.stop();
3172       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3173                     reserveTimer.milliseconds(), reserveTimer.ticks());
3174     }
3175   }
3176   assert(res == NULL || addr == NULL || addr == res,
3177          "Unexpected address from reserve.");
3178 
3179   return res;
3180 }
3181 
3182 // Reserve memory at an arbitrary address, only if that area is
3183 // available (and not reserved for something else).
3184 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3185   // Windows os::reserve_memory() fails of the requested address range is
3186   // not avilable.
3187   return reserve_memory(bytes, requested_addr);
3188 }
3189 
3190 size_t os::large_page_size() {
3191   return _large_page_size;
3192 }
3193 
3194 bool os::can_commit_large_page_memory() {
3195   // Windows only uses large page memory when the entire region is reserved
3196   // and committed in a single VirtualAlloc() call. This may change in the
3197   // future, but with Windows 2003 it's not possible to commit on demand.
3198   return false;
3199 }
3200 
3201 bool os::can_execute_large_page_memory() {
3202   return true;
3203 }
3204 
3205 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3206                                  bool exec) {
3207   assert(UseLargePages, "only for large pages");
3208 
3209   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3210     return NULL; // Fallback to small pages.
3211   }
3212 
3213   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3214   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3215 
3216   // with large pages, there are two cases where we need to use Individual Allocation
3217   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3218   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3219   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3220     log_debug(pagesize)("Reserving large pages individually.");
3221 
3222     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3223     if (p_buf == NULL) {
3224       // give an appropriate warning message
3225       if (UseNUMAInterleaving) {
3226         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3227       }
3228       if (UseLargePagesIndividualAllocation) {
3229         warning("Individually allocated large pages failed, "
3230                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3231       }
3232       return NULL;
3233     }
3234 
3235     return p_buf;
3236 
3237   } else {
3238     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3239 
3240     // normal policy just allocate it all at once
3241     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3242     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3243     if (res != NULL) {
3244       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3245     }
3246 
3247     return res;
3248   }
3249 }
3250 
3251 bool os::release_memory_special(char* base, size_t bytes) {
3252   assert(base != NULL, "Sanity check");
3253   return release_memory(base, bytes);
3254 }
3255 
3256 void os::print_statistics() {
3257 }
3258 
3259 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3260   int err = os::get_last_error();
3261   char buf[256];
3262   size_t buf_len = os::lasterror(buf, sizeof(buf));
3263   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3264           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3265           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3266 }
3267 
3268 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3269   if (bytes == 0) {
3270     // Don't bother the OS with noops.
3271     return true;
3272   }
3273   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3274   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3275   // Don't attempt to print anything if the OS call fails. We're
3276   // probably low on resources, so the print itself may cause crashes.
3277 
3278   // unless we have NUMAInterleaving enabled, the range of a commit
3279   // is always within a reserve covered by a single VirtualAlloc
3280   // in that case we can just do a single commit for the requested size
3281   if (!UseNUMAInterleaving) {
3282     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3283       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3284       return false;
3285     }
3286     if (exec) {
3287       DWORD oldprot;
3288       // Windows doc says to use VirtualProtect to get execute permissions
3289       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3290         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3291         return false;
3292       }
3293     }
3294     return true;
3295   } else {
3296 
3297     // when NUMAInterleaving is enabled, the commit might cover a range that
3298     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3299     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3300     // returns represents the number of bytes that can be committed in one step.
3301     size_t bytes_remaining = bytes;
3302     char * next_alloc_addr = addr;
3303     while (bytes_remaining > 0) {
3304       MEMORY_BASIC_INFORMATION alloc_info;
3305       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3306       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3307       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3308                        PAGE_READWRITE) == NULL) {
3309         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3310                                             exec);)
3311         return false;
3312       }
3313       if (exec) {
3314         DWORD oldprot;
3315         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3316                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3317           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3318                                               exec);)
3319           return false;
3320         }
3321       }
3322       bytes_remaining -= bytes_to_rq;
3323       next_alloc_addr += bytes_to_rq;
3324     }
3325   }
3326   // if we made it this far, return true
3327   return true;
3328 }
3329 
3330 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3331                           bool exec) {
3332   // alignment_hint is ignored on this OS
3333   return pd_commit_memory(addr, size, exec);
3334 }
3335 
3336 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3337                                   const char* mesg) {
3338   assert(mesg != NULL, "mesg must be specified");
3339   if (!pd_commit_memory(addr, size, exec)) {
3340     warn_fail_commit_memory(addr, size, exec);
3341     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3342   }
3343 }
3344 
3345 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3346                                   size_t alignment_hint, bool exec,
3347                                   const char* mesg) {
3348   // alignment_hint is ignored on this OS
3349   pd_commit_memory_or_exit(addr, size, exec, mesg);
3350 }
3351 
3352 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3353   if (bytes == 0) {
3354     // Don't bother the OS with noops.
3355     return true;
3356   }
3357   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3358   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3359   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3360 }
3361 
3362 bool os::pd_release_memory(char* addr, size_t bytes) {
3363   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3364 }
3365 
3366 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3367   return os::commit_memory(addr, size, !ExecMem);
3368 }
3369 
3370 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3371   return os::uncommit_memory(addr, size);
3372 }
3373 
3374 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3375   uint count = 0;
3376   bool ret = false;
3377   size_t bytes_remaining = bytes;
3378   char * next_protect_addr = addr;
3379 
3380   // Use VirtualQuery() to get the chunk size.
3381   while (bytes_remaining) {
3382     MEMORY_BASIC_INFORMATION alloc_info;
3383     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3384       return false;
3385     }
3386 
3387     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3388     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3389     // but we don't distinguish here as both cases are protected by same API.
3390     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3391     warning("Failed protecting pages individually for chunk #%u", count);
3392     if (!ret) {
3393       return false;
3394     }
3395 
3396     bytes_remaining -= bytes_to_protect;
3397     next_protect_addr += bytes_to_protect;
3398     count++;
3399   }
3400   return ret;
3401 }
3402 
3403 // Set protections specified
3404 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3405                         bool is_committed) {
3406   unsigned int p = 0;
3407   switch (prot) {
3408   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3409   case MEM_PROT_READ: p = PAGE_READONLY; break;
3410   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3411   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3412   default:
3413     ShouldNotReachHere();
3414   }
3415 
3416   DWORD old_status;
3417 
3418   // Strange enough, but on Win32 one can change protection only for committed
3419   // memory, not a big deal anyway, as bytes less or equal than 64K
3420   if (!is_committed) {
3421     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3422                           "cannot commit protection page");
3423   }
3424   // One cannot use os::guard_memory() here, as on Win32 guard page
3425   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3426   //
3427   // Pages in the region become guard pages. Any attempt to access a guard page
3428   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3429   // the guard page status. Guard pages thus act as a one-time access alarm.
3430   bool ret;
3431   if (UseNUMAInterleaving) {
3432     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3433     // so we must protect the chunks individually.
3434     ret = protect_pages_individually(addr, bytes, p, &old_status);
3435   } else {
3436     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3437   }
3438 #ifdef ASSERT
3439   if (!ret) {
3440     int err = os::get_last_error();
3441     char buf[256];
3442     size_t buf_len = os::lasterror(buf, sizeof(buf));
3443     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3444           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3445           buf_len != 0 ? buf : "<no_error_string>", err);
3446   }
3447 #endif
3448   return ret;
3449 }
3450 
3451 bool os::guard_memory(char* addr, size_t bytes) {
3452   DWORD old_status;
3453   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3454 }
3455 
3456 bool os::unguard_memory(char* addr, size_t bytes) {
3457   DWORD old_status;
3458   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3459 }
3460 
3461 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3462 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3463 void os::numa_make_global(char *addr, size_t bytes)    { }
3464 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3465 bool os::numa_topology_changed()                       { return false; }
3466 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3467 int os::numa_get_group_id()                            { return 0; }
3468 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3469   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3470     // Provide an answer for UMA systems
3471     ids[0] = 0;
3472     return 1;
3473   } else {
3474     // check for size bigger than actual groups_num
3475     size = MIN2(size, numa_get_groups_num());
3476     for (int i = 0; i < (int)size; i++) {
3477       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3478     }
3479     return size;
3480   }
3481 }
3482 
3483 bool os::get_page_info(char *start, page_info* info) {
3484   return false;
3485 }
3486 
3487 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3488                      page_info* page_found) {
3489   return end;
3490 }
3491 
3492 char* os::non_memory_address_word() {
3493   // Must never look like an address returned by reserve_memory,
3494   // even in its subfields (as defined by the CPU immediate fields,
3495   // if the CPU splits constants across multiple instructions).
3496   return (char*)-1;
3497 }
3498 
3499 #define MAX_ERROR_COUNT 100
3500 #define SYS_THREAD_ERROR 0xffffffffUL
3501 
3502 void os::pd_start_thread(Thread* thread) {
3503   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3504   // Returns previous suspend state:
3505   // 0:  Thread was not suspended
3506   // 1:  Thread is running now
3507   // >1: Thread is still suspended.
3508   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3509 }
3510 
3511 class HighResolutionInterval : public CHeapObj<mtThread> {
3512   // The default timer resolution seems to be 10 milliseconds.
3513   // (Where is this written down?)
3514   // If someone wants to sleep for only a fraction of the default,
3515   // then we set the timer resolution down to 1 millisecond for
3516   // the duration of their interval.
3517   // We carefully set the resolution back, since otherwise we
3518   // seem to incur an overhead (3%?) that we don't need.
3519   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3520   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3521   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3522   // timeBeginPeriod() if the relative error exceeded some threshold.
3523   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3524   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3525   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3526   // resolution timers running.
3527  private:
3528   jlong resolution;
3529  public:
3530   HighResolutionInterval(jlong ms) {
3531     resolution = ms % 10L;
3532     if (resolution != 0) {
3533       MMRESULT result = timeBeginPeriod(1L);
3534     }
3535   }
3536   ~HighResolutionInterval() {
3537     if (resolution != 0) {
3538       MMRESULT result = timeEndPeriod(1L);
3539     }
3540     resolution = 0L;
3541   }
3542 };
3543 
3544 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3545   jlong limit = (jlong) MAXDWORD;
3546 
3547   while (ms > limit) {
3548     int res;
3549     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3550       return res;
3551     }
3552     ms -= limit;
3553   }
3554 
3555   assert(thread == Thread::current(), "thread consistency check");
3556   OSThread* osthread = thread->osthread();
3557   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3558   int result;
3559   if (interruptable) {
3560     assert(thread->is_Java_thread(), "must be java thread");
3561     JavaThread *jt = (JavaThread *) thread;
3562     ThreadBlockInVM tbivm(jt);
3563 
3564     jt->set_suspend_equivalent();
3565     // cleared by handle_special_suspend_equivalent_condition() or
3566     // java_suspend_self() via check_and_wait_while_suspended()
3567 
3568     HANDLE events[1];
3569     events[0] = osthread->interrupt_event();
3570     HighResolutionInterval *phri=NULL;
3571     if (!ForceTimeHighResolution) {
3572       phri = new HighResolutionInterval(ms);
3573     }
3574     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3575       result = OS_TIMEOUT;
3576     } else {
3577       ResetEvent(osthread->interrupt_event());
3578       osthread->set_interrupted(false);
3579       result = OS_INTRPT;
3580     }
3581     delete phri; //if it is NULL, harmless
3582 
3583     // were we externally suspended while we were waiting?
3584     jt->check_and_wait_while_suspended();
3585   } else {
3586     assert(!thread->is_Java_thread(), "must not be java thread");
3587     Sleep((long) ms);
3588     result = OS_TIMEOUT;
3589   }
3590   return result;
3591 }
3592 
3593 // Short sleep, direct OS call.
3594 //
3595 // ms = 0, means allow others (if any) to run.
3596 //
3597 void os::naked_short_sleep(jlong ms) {
3598   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3599   Sleep(ms);
3600 }
3601 
3602 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3603 void os::infinite_sleep() {
3604   while (true) {    // sleep forever ...
3605     Sleep(100000);  // ... 100 seconds at a time
3606   }
3607 }
3608 
3609 typedef BOOL (WINAPI * STTSignature)(void);
3610 
3611 void os::naked_yield() {
3612   // Consider passing back the return value from SwitchToThread().
3613   SwitchToThread();
3614 }
3615 
3616 // Win32 only gives you access to seven real priorities at a time,
3617 // so we compress Java's ten down to seven.  It would be better
3618 // if we dynamically adjusted relative priorities.
3619 
3620 int os::java_to_os_priority[CriticalPriority + 1] = {
3621   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3622   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3623   THREAD_PRIORITY_LOWEST,                       // 2
3624   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3625   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3626   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3627   THREAD_PRIORITY_NORMAL,                       // 6
3628   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3629   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3630   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3631   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3632   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3633 };
3634 
3635 int prio_policy1[CriticalPriority + 1] = {
3636   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3637   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3638   THREAD_PRIORITY_LOWEST,                       // 2
3639   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3640   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3641   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3642   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3643   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3644   THREAD_PRIORITY_HIGHEST,                      // 8
3645   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3646   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3647   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3648 };
3649 
3650 static int prio_init() {
3651   // If ThreadPriorityPolicy is 1, switch tables
3652   if (ThreadPriorityPolicy == 1) {
3653     int i;
3654     for (i = 0; i < CriticalPriority + 1; i++) {
3655       os::java_to_os_priority[i] = prio_policy1[i];
3656     }
3657   }
3658   if (UseCriticalJavaThreadPriority) {
3659     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3660   }
3661   return 0;
3662 }
3663 
3664 OSReturn os::set_native_priority(Thread* thread, int priority) {
3665   if (!UseThreadPriorities) return OS_OK;
3666   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3667   return ret ? OS_OK : OS_ERR;
3668 }
3669 
3670 OSReturn os::get_native_priority(const Thread* const thread,
3671                                  int* priority_ptr) {
3672   if (!UseThreadPriorities) {
3673     *priority_ptr = java_to_os_priority[NormPriority];
3674     return OS_OK;
3675   }
3676   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3677   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3678     assert(false, "GetThreadPriority failed");
3679     return OS_ERR;
3680   }
3681   *priority_ptr = os_prio;
3682   return OS_OK;
3683 }
3684 
3685 
3686 // Hint to the underlying OS that a task switch would not be good.
3687 // Void return because it's a hint and can fail.
3688 void os::hint_no_preempt() {}
3689 
3690 void os::interrupt(Thread* thread) {
3691   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3692          Threads_lock->owned_by_self(),
3693          "possibility of dangling Thread pointer");
3694 
3695   OSThread* osthread = thread->osthread();
3696   osthread->set_interrupted(true);
3697   // More than one thread can get here with the same value of osthread,
3698   // resulting in multiple notifications.  We do, however, want the store
3699   // to interrupted() to be visible to other threads before we post
3700   // the interrupt event.
3701   OrderAccess::release();
3702   SetEvent(osthread->interrupt_event());
3703   // For JSR166:  unpark after setting status
3704   if (thread->is_Java_thread()) {
3705     ((JavaThread*)thread)->parker()->unpark();
3706   }
3707 
3708   ParkEvent * ev = thread->_ParkEvent;
3709   if (ev != NULL) ev->unpark();
3710 }
3711 
3712 
3713 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3714   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3715          "possibility of dangling Thread pointer");
3716 
3717   OSThread* osthread = thread->osthread();
3718   // There is no synchronization between the setting of the interrupt
3719   // and it being cleared here. It is critical - see 6535709 - that
3720   // we only clear the interrupt state, and reset the interrupt event,
3721   // if we are going to report that we were indeed interrupted - else
3722   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3723   // depending on the timing. By checking thread interrupt event to see
3724   // if the thread gets real interrupt thus prevent spurious wakeup.
3725   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3726   if (interrupted && clear_interrupted) {
3727     osthread->set_interrupted(false);
3728     ResetEvent(osthread->interrupt_event());
3729   } // Otherwise leave the interrupted state alone
3730 
3731   return interrupted;
3732 }
3733 
3734 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3735 ExtendedPC os::get_thread_pc(Thread* thread) {
3736   CONTEXT context;
3737   context.ContextFlags = CONTEXT_CONTROL;
3738   HANDLE handle = thread->osthread()->thread_handle();
3739 #ifdef _M_IA64
3740   assert(0, "Fix get_thread_pc");
3741   return ExtendedPC(NULL);
3742 #else
3743   if (GetThreadContext(handle, &context)) {
3744 #ifdef _M_AMD64
3745     return ExtendedPC((address) context.Rip);
3746 #else
3747     return ExtendedPC((address) context.Eip);
3748 #endif
3749   } else {
3750     return ExtendedPC(NULL);
3751   }
3752 #endif
3753 }
3754 
3755 // GetCurrentThreadId() returns DWORD
3756 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3757 
3758 static int _initial_pid = 0;
3759 
3760 int os::current_process_id() {
3761   return (_initial_pid ? _initial_pid : _getpid());
3762 }
3763 
3764 int    os::win32::_vm_page_size              = 0;
3765 int    os::win32::_vm_allocation_granularity = 0;
3766 int    os::win32::_processor_type            = 0;
3767 // Processor level is not available on non-NT systems, use vm_version instead
3768 int    os::win32::_processor_level           = 0;
3769 julong os::win32::_physical_memory           = 0;
3770 size_t os::win32::_default_stack_size        = 0;
3771 
3772 intx          os::win32::_os_thread_limit    = 0;
3773 volatile intx os::win32::_os_thread_count    = 0;
3774 
3775 bool   os::win32::_is_windows_server         = false;
3776 
3777 // 6573254
3778 // Currently, the bug is observed across all the supported Windows releases,
3779 // including the latest one (as of this writing - Windows Server 2012 R2)
3780 bool   os::win32::_has_exit_bug              = true;
3781 
3782 void os::win32::initialize_system_info() {
3783   SYSTEM_INFO si;
3784   GetSystemInfo(&si);
3785   _vm_page_size    = si.dwPageSize;
3786   _vm_allocation_granularity = si.dwAllocationGranularity;
3787   _processor_type  = si.dwProcessorType;
3788   _processor_level = si.wProcessorLevel;
3789   set_processor_count(si.dwNumberOfProcessors);
3790 
3791   MEMORYSTATUSEX ms;
3792   ms.dwLength = sizeof(ms);
3793 
3794   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3795   // dwMemoryLoad (% of memory in use)
3796   GlobalMemoryStatusEx(&ms);
3797   _physical_memory = ms.ullTotalPhys;
3798 
3799   OSVERSIONINFOEX oi;
3800   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3801   GetVersionEx((OSVERSIONINFO*)&oi);
3802   switch (oi.dwPlatformId) {
3803   case VER_PLATFORM_WIN32_NT:
3804     {
3805       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3806       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3807           oi.wProductType == VER_NT_SERVER) {
3808         _is_windows_server = true;
3809       }
3810     }
3811     break;
3812   default: fatal("Unknown platform");
3813   }
3814 
3815   _default_stack_size = os::current_stack_size();
3816   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3817   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3818          "stack size not a multiple of page size");
3819 
3820   initialize_performance_counter();
3821 }
3822 
3823 
3824 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3825                                       int ebuflen) {
3826   char path[MAX_PATH];
3827   DWORD size;
3828   DWORD pathLen = (DWORD)sizeof(path);
3829   HINSTANCE result = NULL;
3830 
3831   // only allow library name without path component
3832   assert(strchr(name, '\\') == NULL, "path not allowed");
3833   assert(strchr(name, ':') == NULL, "path not allowed");
3834   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3835     jio_snprintf(ebuf, ebuflen,
3836                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3837     return NULL;
3838   }
3839 
3840   // search system directory
3841   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3842     if (size >= pathLen) {
3843       return NULL; // truncated
3844     }
3845     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3846       return NULL; // truncated
3847     }
3848     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3849       return result;
3850     }
3851   }
3852 
3853   // try Windows directory
3854   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3855     if (size >= pathLen) {
3856       return NULL; // truncated
3857     }
3858     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3859       return NULL; // truncated
3860     }
3861     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3862       return result;
3863     }
3864   }
3865 
3866   jio_snprintf(ebuf, ebuflen,
3867                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3868   return NULL;
3869 }
3870 
3871 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3872 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3873 
3874 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3875   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3876   return TRUE;
3877 }
3878 
3879 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3880   // Basic approach:
3881   //  - Each exiting thread registers its intent to exit and then does so.
3882   //  - A thread trying to terminate the process must wait for all
3883   //    threads currently exiting to complete their exit.
3884 
3885   if (os::win32::has_exit_bug()) {
3886     // The array holds handles of the threads that have started exiting by calling
3887     // _endthreadex().
3888     // Should be large enough to avoid blocking the exiting thread due to lack of
3889     // a free slot.
3890     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3891     static int handle_count = 0;
3892 
3893     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3894     static CRITICAL_SECTION crit_sect;
3895     static volatile jint process_exiting = 0;
3896     int i, j;
3897     DWORD res;
3898     HANDLE hproc, hthr;
3899 
3900     // We only attempt to register threads until a process exiting
3901     // thread manages to set the process_exiting flag. Any threads
3902     // that come through here after the process_exiting flag is set
3903     // are unregistered and will be caught in the SuspendThread()
3904     // infinite loop below.
3905     bool registered = false;
3906 
3907     // The first thread that reached this point, initializes the critical section.
3908     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3909       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3910     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3911       if (what != EPT_THREAD) {
3912         // Atomically set process_exiting before the critical section
3913         // to increase the visibility between racing threads.
3914         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3915       }
3916       EnterCriticalSection(&crit_sect);
3917 
3918       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3919         // Remove from the array those handles of the threads that have completed exiting.
3920         for (i = 0, j = 0; i < handle_count; ++i) {
3921           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3922           if (res == WAIT_TIMEOUT) {
3923             handles[j++] = handles[i];
3924           } else {
3925             if (res == WAIT_FAILED) {
3926               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3927                       GetLastError(), __FILE__, __LINE__);
3928             }
3929             // Don't keep the handle, if we failed waiting for it.
3930             CloseHandle(handles[i]);
3931           }
3932         }
3933 
3934         // If there's no free slot in the array of the kept handles, we'll have to
3935         // wait until at least one thread completes exiting.
3936         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3937           // Raise the priority of the oldest exiting thread to increase its chances
3938           // to complete sooner.
3939           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3940           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3941           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3942             i = (res - WAIT_OBJECT_0);
3943             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3944             for (; i < handle_count; ++i) {
3945               handles[i] = handles[i + 1];
3946             }
3947           } else {
3948             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3949                     (res == WAIT_FAILED ? "failed" : "timed out"),
3950                     GetLastError(), __FILE__, __LINE__);
3951             // Don't keep handles, if we failed waiting for them.
3952             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3953               CloseHandle(handles[i]);
3954             }
3955             handle_count = 0;
3956           }
3957         }
3958 
3959         // Store a duplicate of the current thread handle in the array of handles.
3960         hproc = GetCurrentProcess();
3961         hthr = GetCurrentThread();
3962         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3963                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3964           warning("DuplicateHandle failed (%u) in %s: %d\n",
3965                   GetLastError(), __FILE__, __LINE__);
3966 
3967           // We can't register this thread (no more handles) so this thread
3968           // may be racing with a thread that is calling exit(). If the thread
3969           // that is calling exit() has managed to set the process_exiting
3970           // flag, then this thread will be caught in the SuspendThread()
3971           // infinite loop below which closes that race. A small timing
3972           // window remains before the process_exiting flag is set, but it
3973           // is only exposed when we are out of handles.
3974         } else {
3975           ++handle_count;
3976           registered = true;
3977 
3978           // The current exiting thread has stored its handle in the array, and now
3979           // should leave the critical section before calling _endthreadex().
3980         }
3981 
3982       } else if (what != EPT_THREAD && handle_count > 0) {
3983         jlong start_time, finish_time, timeout_left;
3984         // Before ending the process, make sure all the threads that had called
3985         // _endthreadex() completed.
3986 
3987         // Set the priority level of the current thread to the same value as
3988         // the priority level of exiting threads.
3989         // This is to ensure it will be given a fair chance to execute if
3990         // the timeout expires.
3991         hthr = GetCurrentThread();
3992         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3993         start_time = os::javaTimeNanos();
3994         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3995         for (i = 0; ; ) {
3996           int portion_count = handle_count - i;
3997           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3998             portion_count = MAXIMUM_WAIT_OBJECTS;
3999           }
4000           for (j = 0; j < portion_count; ++j) {
4001             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
4002           }
4003           timeout_left = (finish_time - start_time) / 1000000L;
4004           if (timeout_left < 0) {
4005             timeout_left = 0;
4006           }
4007           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
4008           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
4009             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4010                     (res == WAIT_FAILED ? "failed" : "timed out"),
4011                     GetLastError(), __FILE__, __LINE__);
4012             // Reset portion_count so we close the remaining
4013             // handles due to this error.
4014             portion_count = handle_count - i;
4015           }
4016           for (j = 0; j < portion_count; ++j) {
4017             CloseHandle(handles[i + j]);
4018           }
4019           if ((i += portion_count) >= handle_count) {
4020             break;
4021           }
4022           start_time = os::javaTimeNanos();
4023         }
4024         handle_count = 0;
4025       }
4026 
4027       LeaveCriticalSection(&crit_sect);
4028     }
4029 
4030     if (!registered &&
4031         OrderAccess::load_acquire(&process_exiting) != 0 &&
4032         process_exiting != (jint)GetCurrentThreadId()) {
4033       // Some other thread is about to call exit(), so we don't let
4034       // the current unregistered thread proceed to exit() or _endthreadex()
4035       while (true) {
4036         SuspendThread(GetCurrentThread());
4037         // Avoid busy-wait loop, if SuspendThread() failed.
4038         Sleep(EXIT_TIMEOUT);
4039       }
4040     }
4041   }
4042 
4043   // We are here if either
4044   // - there's no 'race at exit' bug on this OS release;
4045   // - initialization of the critical section failed (unlikely);
4046   // - the current thread has registered itself and left the critical section;
4047   // - the process-exiting thread has raised the flag and left the critical section.
4048   if (what == EPT_THREAD) {
4049     _endthreadex((unsigned)exit_code);
4050   } else if (what == EPT_PROCESS) {
4051     ::exit(exit_code);
4052   } else {
4053     _exit(exit_code);
4054   }
4055 
4056   // Should not reach here
4057   return exit_code;
4058 }
4059 
4060 #undef EXIT_TIMEOUT
4061 
4062 void os::win32::setmode_streams() {
4063   _setmode(_fileno(stdin), _O_BINARY);
4064   _setmode(_fileno(stdout), _O_BINARY);
4065   _setmode(_fileno(stderr), _O_BINARY);
4066 }
4067 
4068 
4069 bool os::is_debugger_attached() {
4070   return IsDebuggerPresent() ? true : false;
4071 }
4072 
4073 
4074 void os::wait_for_keypress_at_exit(void) {
4075   if (PauseAtExit) {
4076     fprintf(stderr, "Press any key to continue...\n");
4077     fgetc(stdin);
4078   }
4079 }
4080 
4081 
4082 bool os::message_box(const char* title, const char* message) {
4083   int result = MessageBox(NULL, message, title,
4084                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4085   return result == IDYES;
4086 }
4087 
4088 #ifndef PRODUCT
4089 #ifndef _WIN64
4090 // Helpers to check whether NX protection is enabled
4091 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4092   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4093       pex->ExceptionRecord->NumberParameters > 0 &&
4094       pex->ExceptionRecord->ExceptionInformation[0] ==
4095       EXCEPTION_INFO_EXEC_VIOLATION) {
4096     return EXCEPTION_EXECUTE_HANDLER;
4097   }
4098   return EXCEPTION_CONTINUE_SEARCH;
4099 }
4100 
4101 void nx_check_protection() {
4102   // If NX is enabled we'll get an exception calling into code on the stack
4103   char code[] = { (char)0xC3 }; // ret
4104   void *code_ptr = (void *)code;
4105   __try {
4106     __asm call code_ptr
4107   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4108     tty->print_raw_cr("NX protection detected.");
4109   }
4110 }
4111 #endif // _WIN64
4112 #endif // PRODUCT
4113 
4114 // This is called _before_ the global arguments have been parsed
4115 void os::init(void) {
4116   _initial_pid = _getpid();
4117 
4118   init_random(1234567);
4119 
4120   win32::initialize_system_info();
4121   win32::setmode_streams();
4122   init_page_sizes((size_t) win32::vm_page_size());
4123 
4124   // This may be overridden later when argument processing is done.
4125   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4126 
4127   // Initialize main_process and main_thread
4128   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4129   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4130                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4131     fatal("DuplicateHandle failed\n");
4132   }
4133   main_thread_id = (int) GetCurrentThreadId();
4134 
4135   // initialize fast thread access - only used for 32-bit
4136   win32::initialize_thread_ptr_offset();
4137 }
4138 
4139 // To install functions for atexit processing
4140 extern "C" {
4141   static void perfMemory_exit_helper() {
4142     perfMemory_exit();
4143   }
4144 }
4145 
4146 static jint initSock();
4147 
4148 // this is called _after_ the global arguments have been parsed
4149 jint os::init_2(void) {
4150   // Allocate a single page and mark it as readable for safepoint polling
4151   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4152   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4153 
4154   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4155   guarantee(return_page != NULL, "Commit Failed for polling page");
4156 
4157   os::set_polling_page(polling_page);
4158   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4159 
4160   if (!UseMembar) {
4161     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4162     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4163 
4164     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4165     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4166 
4167     os::set_memory_serialize_page(mem_serialize_page);
4168     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4169   }
4170 
4171   // Setup Windows Exceptions
4172 
4173   // for debugging float code generation bugs
4174   if (ForceFloatExceptions) {
4175 #ifndef  _WIN64
4176     static long fp_control_word = 0;
4177     __asm { fstcw fp_control_word }
4178     // see Intel PPro Manual, Vol. 2, p 7-16
4179     const long precision = 0x20;
4180     const long underflow = 0x10;
4181     const long overflow  = 0x08;
4182     const long zero_div  = 0x04;
4183     const long denorm    = 0x02;
4184     const long invalid   = 0x01;
4185     fp_control_word |= invalid;
4186     __asm { fldcw fp_control_word }
4187 #endif
4188   }
4189 
4190   // If stack_commit_size is 0, windows will reserve the default size,
4191   // but only commit a small portion of it.
4192   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4193   size_t default_reserve_size = os::win32::default_stack_size();
4194   size_t actual_reserve_size = stack_commit_size;
4195   if (stack_commit_size < default_reserve_size) {
4196     // If stack_commit_size == 0, we want this too
4197     actual_reserve_size = default_reserve_size;
4198   }
4199 
4200   // Check minimum allowable stack size for thread creation and to initialize
4201   // the java system classes, including StackOverflowError - depends on page
4202   // size.  Add two 4K pages for compiler2 recursion in main thread.
4203   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4204   // class initialization depending on 32 or 64 bit VM.
4205   size_t min_stack_allowed =
4206             (size_t)(JavaThread::stack_guard_zone_size() +
4207                      JavaThread::stack_shadow_zone_size() +
4208                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4209 
4210   min_stack_allowed = align_size_up(min_stack_allowed, os::vm_page_size());
4211 
4212   if (actual_reserve_size < min_stack_allowed) {
4213     tty->print_cr("\nThe stack size specified is too small, "
4214                   "Specify at least %dk",
4215                   min_stack_allowed / K);
4216     return JNI_ERR;
4217   }
4218 
4219   JavaThread::set_stack_size_at_create(stack_commit_size);
4220 
4221   // Calculate theoretical max. size of Threads to guard gainst artifical
4222   // out-of-memory situations, where all available address-space has been
4223   // reserved by thread stacks.
4224   assert(actual_reserve_size != 0, "Must have a stack");
4225 
4226   // Calculate the thread limit when we should start doing Virtual Memory
4227   // banging. Currently when the threads will have used all but 200Mb of space.
4228   //
4229   // TODO: consider performing a similar calculation for commit size instead
4230   // as reserve size, since on a 64-bit platform we'll run into that more
4231   // often than running out of virtual memory space.  We can use the
4232   // lower value of the two calculations as the os_thread_limit.
4233   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4234   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4235 
4236   // at exit methods are called in the reverse order of their registration.
4237   // there is no limit to the number of functions registered. atexit does
4238   // not set errno.
4239 
4240   if (PerfAllowAtExitRegistration) {
4241     // only register atexit functions if PerfAllowAtExitRegistration is set.
4242     // atexit functions can be delayed until process exit time, which
4243     // can be problematic for embedded VM situations. Embedded VMs should
4244     // call DestroyJavaVM() to assure that VM resources are released.
4245 
4246     // note: perfMemory_exit_helper atexit function may be removed in
4247     // the future if the appropriate cleanup code can be added to the
4248     // VM_Exit VMOperation's doit method.
4249     if (atexit(perfMemory_exit_helper) != 0) {
4250       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4251     }
4252   }
4253 
4254 #ifndef _WIN64
4255   // Print something if NX is enabled (win32 on AMD64)
4256   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4257 #endif
4258 
4259   // initialize thread priority policy
4260   prio_init();
4261 
4262   if (UseNUMA && !ForceNUMA) {
4263     UseNUMA = false; // We don't fully support this yet
4264   }
4265 
4266   if (UseNUMAInterleaving) {
4267     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4268     bool success = numa_interleaving_init();
4269     if (!success) UseNUMAInterleaving = false;
4270   }
4271 
4272   if (initSock() != JNI_OK) {
4273     return JNI_ERR;
4274   }
4275 
4276   return JNI_OK;
4277 }
4278 
4279 // Mark the polling page as unreadable
4280 void os::make_polling_page_unreadable(void) {
4281   DWORD old_status;
4282   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4283                       PAGE_NOACCESS, &old_status)) {
4284     fatal("Could not disable polling page");
4285   }
4286 }
4287 
4288 // Mark the polling page as readable
4289 void os::make_polling_page_readable(void) {
4290   DWORD old_status;
4291   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4292                       PAGE_READONLY, &old_status)) {
4293     fatal("Could not enable polling page");
4294   }
4295 }
4296 
4297 
4298 int os::stat(const char *path, struct stat *sbuf) {
4299   char pathbuf[MAX_PATH];
4300   if (strlen(path) > MAX_PATH - 1) {
4301     errno = ENAMETOOLONG;
4302     return -1;
4303   }
4304   os::native_path(strcpy(pathbuf, path));
4305   int ret = ::stat(pathbuf, sbuf);
4306   if (sbuf != NULL && UseUTCFileTimestamp) {
4307     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4308     // the system timezone and so can return different values for the
4309     // same file if/when daylight savings time changes.  This adjustment
4310     // makes sure the same timestamp is returned regardless of the TZ.
4311     //
4312     // See:
4313     // http://msdn.microsoft.com/library/
4314     //   default.asp?url=/library/en-us/sysinfo/base/
4315     //   time_zone_information_str.asp
4316     // and
4317     // http://msdn.microsoft.com/library/default.asp?url=
4318     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4319     //
4320     // NOTE: there is a insidious bug here:  If the timezone is changed
4321     // after the call to stat() but before 'GetTimeZoneInformation()', then
4322     // the adjustment we do here will be wrong and we'll return the wrong
4323     // value (which will likely end up creating an invalid class data
4324     // archive).  Absent a better API for this, or some time zone locking
4325     // mechanism, we'll have to live with this risk.
4326     TIME_ZONE_INFORMATION tz;
4327     DWORD tzid = GetTimeZoneInformation(&tz);
4328     int daylightBias =
4329       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4330     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4331   }
4332   return ret;
4333 }
4334 
4335 
4336 #define FT2INT64(ft) \
4337   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4338 
4339 
4340 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4341 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4342 // of a thread.
4343 //
4344 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4345 // the fast estimate available on the platform.
4346 
4347 // current_thread_cpu_time() is not optimized for Windows yet
4348 jlong os::current_thread_cpu_time() {
4349   // return user + sys since the cost is the same
4350   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4351 }
4352 
4353 jlong os::thread_cpu_time(Thread* thread) {
4354   // consistent with what current_thread_cpu_time() returns.
4355   return os::thread_cpu_time(thread, true /* user+sys */);
4356 }
4357 
4358 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4359   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4360 }
4361 
4362 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4363   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4364   // If this function changes, os::is_thread_cpu_time_supported() should too
4365   FILETIME CreationTime;
4366   FILETIME ExitTime;
4367   FILETIME KernelTime;
4368   FILETIME UserTime;
4369 
4370   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4371                       &ExitTime, &KernelTime, &UserTime) == 0) {
4372     return -1;
4373   } else if (user_sys_cpu_time) {
4374     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4375   } else {
4376     return FT2INT64(UserTime) * 100;
4377   }
4378 }
4379 
4380 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4381   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4382   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4383   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4384   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4385 }
4386 
4387 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4388   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4389   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4390   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4391   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4392 }
4393 
4394 bool os::is_thread_cpu_time_supported() {
4395   // see os::thread_cpu_time
4396   FILETIME CreationTime;
4397   FILETIME ExitTime;
4398   FILETIME KernelTime;
4399   FILETIME UserTime;
4400 
4401   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4402                       &KernelTime, &UserTime) == 0) {
4403     return false;
4404   } else {
4405     return true;
4406   }
4407 }
4408 
4409 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4410 // It does have primitives (PDH API) to get CPU usage and run queue length.
4411 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4412 // If we wanted to implement loadavg on Windows, we have a few options:
4413 //
4414 // a) Query CPU usage and run queue length and "fake" an answer by
4415 //    returning the CPU usage if it's under 100%, and the run queue
4416 //    length otherwise.  It turns out that querying is pretty slow
4417 //    on Windows, on the order of 200 microseconds on a fast machine.
4418 //    Note that on the Windows the CPU usage value is the % usage
4419 //    since the last time the API was called (and the first call
4420 //    returns 100%), so we'd have to deal with that as well.
4421 //
4422 // b) Sample the "fake" answer using a sampling thread and store
4423 //    the answer in a global variable.  The call to loadavg would
4424 //    just return the value of the global, avoiding the slow query.
4425 //
4426 // c) Sample a better answer using exponential decay to smooth the
4427 //    value.  This is basically the algorithm used by UNIX kernels.
4428 //
4429 // Note that sampling thread starvation could affect both (b) and (c).
4430 int os::loadavg(double loadavg[], int nelem) {
4431   return -1;
4432 }
4433 
4434 
4435 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4436 bool os::dont_yield() {
4437   return DontYieldALot;
4438 }
4439 
4440 // This method is a slightly reworked copy of JDK's sysOpen
4441 // from src/windows/hpi/src/sys_api_md.c
4442 
4443 int os::open(const char *path, int oflag, int mode) {
4444   char pathbuf[MAX_PATH];
4445 
4446   if (strlen(path) > MAX_PATH - 1) {
4447     errno = ENAMETOOLONG;
4448     return -1;
4449   }
4450   os::native_path(strcpy(pathbuf, path));
4451   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4452 }
4453 
4454 FILE* os::open(int fd, const char* mode) {
4455   return ::_fdopen(fd, mode);
4456 }
4457 
4458 // Is a (classpath) directory empty?
4459 bool os::dir_is_empty(const char* path) {
4460   WIN32_FIND_DATA fd;
4461   HANDLE f = FindFirstFile(path, &fd);
4462   if (f == INVALID_HANDLE_VALUE) {
4463     return true;
4464   }
4465   FindClose(f);
4466   return false;
4467 }
4468 
4469 // create binary file, rewriting existing file if required
4470 int os::create_binary_file(const char* path, bool rewrite_existing) {
4471   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4472   if (!rewrite_existing) {
4473     oflags |= _O_EXCL;
4474   }
4475   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4476 }
4477 
4478 // return current position of file pointer
4479 jlong os::current_file_offset(int fd) {
4480   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4481 }
4482 
4483 // move file pointer to the specified offset
4484 jlong os::seek_to_file_offset(int fd, jlong offset) {
4485   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4486 }
4487 
4488 
4489 jlong os::lseek(int fd, jlong offset, int whence) {
4490   return (jlong) ::_lseeki64(fd, offset, whence);
4491 }
4492 
4493 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4494   OVERLAPPED ov;
4495   DWORD nread;
4496   BOOL result;
4497 
4498   ZeroMemory(&ov, sizeof(ov));
4499   ov.Offset = (DWORD)offset;
4500   ov.OffsetHigh = (DWORD)(offset >> 32);
4501 
4502   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4503 
4504   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4505 
4506   return result ? nread : 0;
4507 }
4508 
4509 
4510 // This method is a slightly reworked copy of JDK's sysNativePath
4511 // from src/windows/hpi/src/path_md.c
4512 
4513 // Convert a pathname to native format.  On win32, this involves forcing all
4514 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4515 // sometimes rejects '/') and removing redundant separators.  The input path is
4516 // assumed to have been converted into the character encoding used by the local
4517 // system.  Because this might be a double-byte encoding, care is taken to
4518 // treat double-byte lead characters correctly.
4519 //
4520 // This procedure modifies the given path in place, as the result is never
4521 // longer than the original.  There is no error return; this operation always
4522 // succeeds.
4523 char * os::native_path(char *path) {
4524   char *src = path, *dst = path, *end = path;
4525   char *colon = NULL;  // If a drive specifier is found, this will
4526                        // point to the colon following the drive letter
4527 
4528   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4529   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4530           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4531 
4532   // Check for leading separators
4533 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4534   while (isfilesep(*src)) {
4535     src++;
4536   }
4537 
4538   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4539     // Remove leading separators if followed by drive specifier.  This
4540     // hack is necessary to support file URLs containing drive
4541     // specifiers (e.g., "file://c:/path").  As a side effect,
4542     // "/c:/path" can be used as an alternative to "c:/path".
4543     *dst++ = *src++;
4544     colon = dst;
4545     *dst++ = ':';
4546     src++;
4547   } else {
4548     src = path;
4549     if (isfilesep(src[0]) && isfilesep(src[1])) {
4550       // UNC pathname: Retain first separator; leave src pointed at
4551       // second separator so that further separators will be collapsed
4552       // into the second separator.  The result will be a pathname
4553       // beginning with "\\\\" followed (most likely) by a host name.
4554       src = dst = path + 1;
4555       path[0] = '\\';     // Force first separator to '\\'
4556     }
4557   }
4558 
4559   end = dst;
4560 
4561   // Remove redundant separators from remainder of path, forcing all
4562   // separators to be '\\' rather than '/'. Also, single byte space
4563   // characters are removed from the end of the path because those
4564   // are not legal ending characters on this operating system.
4565   //
4566   while (*src != '\0') {
4567     if (isfilesep(*src)) {
4568       *dst++ = '\\'; src++;
4569       while (isfilesep(*src)) src++;
4570       if (*src == '\0') {
4571         // Check for trailing separator
4572         end = dst;
4573         if (colon == dst - 2) break;  // "z:\\"
4574         if (dst == path + 1) break;   // "\\"
4575         if (dst == path + 2 && isfilesep(path[0])) {
4576           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4577           // beginning of a UNC pathname.  Even though it is not, by
4578           // itself, a valid UNC pathname, we leave it as is in order
4579           // to be consistent with the path canonicalizer as well
4580           // as the win32 APIs, which treat this case as an invalid
4581           // UNC pathname rather than as an alias for the root
4582           // directory of the current drive.
4583           break;
4584         }
4585         end = --dst;  // Path does not denote a root directory, so
4586                       // remove trailing separator
4587         break;
4588       }
4589       end = dst;
4590     } else {
4591       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4592         *dst++ = *src++;
4593         if (*src) *dst++ = *src++;
4594         end = dst;
4595       } else {  // Copy a single-byte character
4596         char c = *src++;
4597         *dst++ = c;
4598         // Space is not a legal ending character
4599         if (c != ' ') end = dst;
4600       }
4601     }
4602   }
4603 
4604   *end = '\0';
4605 
4606   // For "z:", add "." to work around a bug in the C runtime library
4607   if (colon == dst - 1) {
4608     path[2] = '.';
4609     path[3] = '\0';
4610   }
4611 
4612   return path;
4613 }
4614 
4615 // This code is a copy of JDK's sysSetLength
4616 // from src/windows/hpi/src/sys_api_md.c
4617 
4618 int os::ftruncate(int fd, jlong length) {
4619   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4620   long high = (long)(length >> 32);
4621   DWORD ret;
4622 
4623   if (h == (HANDLE)(-1)) {
4624     return -1;
4625   }
4626 
4627   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4628   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4629     return -1;
4630   }
4631 
4632   if (::SetEndOfFile(h) == FALSE) {
4633     return -1;
4634   }
4635 
4636   return 0;
4637 }
4638 
4639 int os::get_fileno(FILE* fp) {
4640   return _fileno(fp);
4641 }
4642 
4643 // This code is a copy of JDK's sysSync
4644 // from src/windows/hpi/src/sys_api_md.c
4645 // except for the legacy workaround for a bug in Win 98
4646 
4647 int os::fsync(int fd) {
4648   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4649 
4650   if ((!::FlushFileBuffers(handle)) &&
4651       (GetLastError() != ERROR_ACCESS_DENIED)) {
4652     // from winerror.h
4653     return -1;
4654   }
4655   return 0;
4656 }
4657 
4658 static int nonSeekAvailable(int, long *);
4659 static int stdinAvailable(int, long *);
4660 
4661 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4662 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4663 
4664 // This code is a copy of JDK's sysAvailable
4665 // from src/windows/hpi/src/sys_api_md.c
4666 
4667 int os::available(int fd, jlong *bytes) {
4668   jlong cur, end;
4669   struct _stati64 stbuf64;
4670 
4671   if (::_fstati64(fd, &stbuf64) >= 0) {
4672     int mode = stbuf64.st_mode;
4673     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4674       int ret;
4675       long lpbytes;
4676       if (fd == 0) {
4677         ret = stdinAvailable(fd, &lpbytes);
4678       } else {
4679         ret = nonSeekAvailable(fd, &lpbytes);
4680       }
4681       (*bytes) = (jlong)(lpbytes);
4682       return ret;
4683     }
4684     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4685       return FALSE;
4686     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4687       return FALSE;
4688     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4689       return FALSE;
4690     }
4691     *bytes = end - cur;
4692     return TRUE;
4693   } else {
4694     return FALSE;
4695   }
4696 }
4697 
4698 void os::flockfile(FILE* fp) {
4699   _lock_file(fp);
4700 }
4701 
4702 void os::funlockfile(FILE* fp) {
4703   _unlock_file(fp);
4704 }
4705 
4706 // This code is a copy of JDK's nonSeekAvailable
4707 // from src/windows/hpi/src/sys_api_md.c
4708 
4709 static int nonSeekAvailable(int fd, long *pbytes) {
4710   // This is used for available on non-seekable devices
4711   // (like both named and anonymous pipes, such as pipes
4712   //  connected to an exec'd process).
4713   // Standard Input is a special case.
4714   HANDLE han;
4715 
4716   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4717     return FALSE;
4718   }
4719 
4720   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4721     // PeekNamedPipe fails when at EOF.  In that case we
4722     // simply make *pbytes = 0 which is consistent with the
4723     // behavior we get on Solaris when an fd is at EOF.
4724     // The only alternative is to raise an Exception,
4725     // which isn't really warranted.
4726     //
4727     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4728       return FALSE;
4729     }
4730     *pbytes = 0;
4731   }
4732   return TRUE;
4733 }
4734 
4735 #define MAX_INPUT_EVENTS 2000
4736 
4737 // This code is a copy of JDK's stdinAvailable
4738 // from src/windows/hpi/src/sys_api_md.c
4739 
4740 static int stdinAvailable(int fd, long *pbytes) {
4741   HANDLE han;
4742   DWORD numEventsRead = 0;  // Number of events read from buffer
4743   DWORD numEvents = 0;      // Number of events in buffer
4744   DWORD i = 0;              // Loop index
4745   DWORD curLength = 0;      // Position marker
4746   DWORD actualLength = 0;   // Number of bytes readable
4747   BOOL error = FALSE;       // Error holder
4748   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4749 
4750   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4751     return FALSE;
4752   }
4753 
4754   // Construct an array of input records in the console buffer
4755   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4756   if (error == 0) {
4757     return nonSeekAvailable(fd, pbytes);
4758   }
4759 
4760   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4761   if (numEvents > MAX_INPUT_EVENTS) {
4762     numEvents = MAX_INPUT_EVENTS;
4763   }
4764 
4765   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4766   if (lpBuffer == NULL) {
4767     return FALSE;
4768   }
4769 
4770   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4771   if (error == 0) {
4772     os::free(lpBuffer);
4773     return FALSE;
4774   }
4775 
4776   // Examine input records for the number of bytes available
4777   for (i=0; i<numEvents; i++) {
4778     if (lpBuffer[i].EventType == KEY_EVENT) {
4779 
4780       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4781                                       &(lpBuffer[i].Event);
4782       if (keyRecord->bKeyDown == TRUE) {
4783         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4784         curLength++;
4785         if (*keyPressed == '\r') {
4786           actualLength = curLength;
4787         }
4788       }
4789     }
4790   }
4791 
4792   if (lpBuffer != NULL) {
4793     os::free(lpBuffer);
4794   }
4795 
4796   *pbytes = (long) actualLength;
4797   return TRUE;
4798 }
4799 
4800 // Map a block of memory.
4801 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4802                         char *addr, size_t bytes, bool read_only,
4803                         bool allow_exec) {
4804   HANDLE hFile;
4805   char* base;
4806 
4807   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4808                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4809   if (hFile == NULL) {
4810     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4811     return NULL;
4812   }
4813 
4814   if (allow_exec) {
4815     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4816     // unless it comes from a PE image (which the shared archive is not.)
4817     // Even VirtualProtect refuses to give execute access to mapped memory
4818     // that was not previously executable.
4819     //
4820     // Instead, stick the executable region in anonymous memory.  Yuck.
4821     // Penalty is that ~4 pages will not be shareable - in the future
4822     // we might consider DLLizing the shared archive with a proper PE
4823     // header so that mapping executable + sharing is possible.
4824 
4825     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4826                                 PAGE_READWRITE);
4827     if (base == NULL) {
4828       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4829       CloseHandle(hFile);
4830       return NULL;
4831     }
4832 
4833     DWORD bytes_read;
4834     OVERLAPPED overlapped;
4835     overlapped.Offset = (DWORD)file_offset;
4836     overlapped.OffsetHigh = 0;
4837     overlapped.hEvent = NULL;
4838     // ReadFile guarantees that if the return value is true, the requested
4839     // number of bytes were read before returning.
4840     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4841     if (!res) {
4842       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4843       release_memory(base, bytes);
4844       CloseHandle(hFile);
4845       return NULL;
4846     }
4847   } else {
4848     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4849                                     NULL /* file_name */);
4850     if (hMap == NULL) {
4851       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4852       CloseHandle(hFile);
4853       return NULL;
4854     }
4855 
4856     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4857     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4858                                   (DWORD)bytes, addr);
4859     if (base == NULL) {
4860       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4861       CloseHandle(hMap);
4862       CloseHandle(hFile);
4863       return NULL;
4864     }
4865 
4866     if (CloseHandle(hMap) == 0) {
4867       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4868       CloseHandle(hFile);
4869       return base;
4870     }
4871   }
4872 
4873   if (allow_exec) {
4874     DWORD old_protect;
4875     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4876     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4877 
4878     if (!res) {
4879       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4880       // Don't consider this a hard error, on IA32 even if the
4881       // VirtualProtect fails, we should still be able to execute
4882       CloseHandle(hFile);
4883       return base;
4884     }
4885   }
4886 
4887   if (CloseHandle(hFile) == 0) {
4888     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4889     return base;
4890   }
4891 
4892   return base;
4893 }
4894 
4895 
4896 // Remap a block of memory.
4897 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4898                           char *addr, size_t bytes, bool read_only,
4899                           bool allow_exec) {
4900   // This OS does not allow existing memory maps to be remapped so we
4901   // have to unmap the memory before we remap it.
4902   if (!os::unmap_memory(addr, bytes)) {
4903     return NULL;
4904   }
4905 
4906   // There is a very small theoretical window between the unmap_memory()
4907   // call above and the map_memory() call below where a thread in native
4908   // code may be able to access an address that is no longer mapped.
4909 
4910   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4911                         read_only, allow_exec);
4912 }
4913 
4914 
4915 // Unmap a block of memory.
4916 // Returns true=success, otherwise false.
4917 
4918 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4919   MEMORY_BASIC_INFORMATION mem_info;
4920   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4921     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4922     return false;
4923   }
4924 
4925   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4926   // Instead, executable region was allocated using VirtualAlloc(). See
4927   // pd_map_memory() above.
4928   //
4929   // The following flags should match the 'exec_access' flages used for
4930   // VirtualProtect() in pd_map_memory().
4931   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4932       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4933     return pd_release_memory(addr, bytes);
4934   }
4935 
4936   BOOL result = UnmapViewOfFile(addr);
4937   if (result == 0) {
4938     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4939     return false;
4940   }
4941   return true;
4942 }
4943 
4944 void os::pause() {
4945   char filename[MAX_PATH];
4946   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4947     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4948   } else {
4949     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4950   }
4951 
4952   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4953   if (fd != -1) {
4954     struct stat buf;
4955     ::close(fd);
4956     while (::stat(filename, &buf) == 0) {
4957       Sleep(100);
4958     }
4959   } else {
4960     jio_fprintf(stderr,
4961                 "Could not open pause file '%s', continuing immediately.\n", filename);
4962   }
4963 }
4964 
4965 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4966   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4967 }
4968 
4969 // See the caveats for this class in os_windows.hpp
4970 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4971 // into this method and returns false. If no OS EXCEPTION was raised, returns
4972 // true.
4973 // The callback is supposed to provide the method that should be protected.
4974 //
4975 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4976   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4977   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4978          "crash_protection already set?");
4979 
4980   bool success = true;
4981   __try {
4982     WatcherThread::watcher_thread()->set_crash_protection(this);
4983     cb.call();
4984   } __except(EXCEPTION_EXECUTE_HANDLER) {
4985     // only for protection, nothing to do
4986     success = false;
4987   }
4988   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4989   return success;
4990 }
4991 
4992 // An Event wraps a win32 "CreateEvent" kernel handle.
4993 //
4994 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4995 //
4996 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4997 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4998 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4999 //     In addition, an unpark() operation might fetch the handle field, but the
5000 //     event could recycle between the fetch and the SetEvent() operation.
5001 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5002 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5003 //     on an stale but recycled handle would be harmless, but in practice this might
5004 //     confuse other non-Sun code, so it's not a viable approach.
5005 //
5006 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5007 //     with the Event.  The event handle is never closed.  This could be construed
5008 //     as handle leakage, but only up to the maximum # of threads that have been extant
5009 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5010 //     permit a process to have hundreds of thousands of open handles.
5011 //
5012 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5013 //     and release unused handles.
5014 //
5015 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5016 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5017 //
5018 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5019 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5020 //
5021 // We use (2).
5022 //
5023 // TODO-FIXME:
5024 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5025 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5026 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5027 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5028 //     into a single win32 CreateEvent() handle.
5029 //
5030 // Assumption:
5031 //    Only one parker can exist on an event, which is why we allocate
5032 //    them per-thread. Multiple unparkers can coexist.
5033 //
5034 // _Event transitions in park()
5035 //   -1 => -1 : illegal
5036 //    1 =>  0 : pass - return immediately
5037 //    0 => -1 : block; then set _Event to 0 before returning
5038 //
5039 // _Event transitions in unpark()
5040 //    0 => 1 : just return
5041 //    1 => 1 : just return
5042 //   -1 => either 0 or 1; must signal target thread
5043 //         That is, we can safely transition _Event from -1 to either
5044 //         0 or 1.
5045 //
5046 // _Event serves as a restricted-range semaphore.
5047 //   -1 : thread is blocked, i.e. there is a waiter
5048 //    0 : neutral: thread is running or ready,
5049 //        could have been signaled after a wait started
5050 //    1 : signaled - thread is running or ready
5051 //
5052 // Another possible encoding of _Event would be with
5053 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5054 //
5055 
5056 int os::PlatformEvent::park(jlong Millis) {
5057   // Transitions for _Event:
5058   //   -1 => -1 : illegal
5059   //    1 =>  0 : pass - return immediately
5060   //    0 => -1 : block; then set _Event to 0 before returning
5061 
5062   guarantee(_ParkHandle != NULL , "Invariant");
5063   guarantee(Millis > 0          , "Invariant");
5064 
5065   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5066   // the initial park() operation.
5067   // Consider: use atomic decrement instead of CAS-loop
5068 
5069   int v;
5070   for (;;) {
5071     v = _Event;
5072     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5073   }
5074   guarantee((v == 0) || (v == 1), "invariant");
5075   if (v != 0) return OS_OK;
5076 
5077   // Do this the hard way by blocking ...
5078   // TODO: consider a brief spin here, gated on the success of recent
5079   // spin attempts by this thread.
5080   //
5081   // We decompose long timeouts into series of shorter timed waits.
5082   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5083   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5084   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5085   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5086   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5087   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5088   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5089   // for the already waited time.  This policy does not admit any new outcomes.
5090   // In the future, however, we might want to track the accumulated wait time and
5091   // adjust Millis accordingly if we encounter a spurious wakeup.
5092 
5093   const int MAXTIMEOUT = 0x10000000;
5094   DWORD rv = WAIT_TIMEOUT;
5095   while (_Event < 0 && Millis > 0) {
5096     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5097     if (Millis > MAXTIMEOUT) {
5098       prd = MAXTIMEOUT;
5099     }
5100     rv = ::WaitForSingleObject(_ParkHandle, prd);
5101     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5102     if (rv == WAIT_TIMEOUT) {
5103       Millis -= prd;
5104     }
5105   }
5106   v = _Event;
5107   _Event = 0;
5108   // see comment at end of os::PlatformEvent::park() below:
5109   OrderAccess::fence();
5110   // If we encounter a nearly simultanous timeout expiry and unpark()
5111   // we return OS_OK indicating we awoke via unpark().
5112   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5113   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5114 }
5115 
5116 void os::PlatformEvent::park() {
5117   // Transitions for _Event:
5118   //   -1 => -1 : illegal
5119   //    1 =>  0 : pass - return immediately
5120   //    0 => -1 : block; then set _Event to 0 before returning
5121 
5122   guarantee(_ParkHandle != NULL, "Invariant");
5123   // Invariant: Only the thread associated with the Event/PlatformEvent
5124   // may call park().
5125   // Consider: use atomic decrement instead of CAS-loop
5126   int v;
5127   for (;;) {
5128     v = _Event;
5129     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5130   }
5131   guarantee((v == 0) || (v == 1), "invariant");
5132   if (v != 0) return;
5133 
5134   // Do this the hard way by blocking ...
5135   // TODO: consider a brief spin here, gated on the success of recent
5136   // spin attempts by this thread.
5137   while (_Event < 0) {
5138     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5139     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5140   }
5141 
5142   // Usually we'll find _Event == 0 at this point, but as
5143   // an optional optimization we clear it, just in case can
5144   // multiple unpark() operations drove _Event up to 1.
5145   _Event = 0;
5146   OrderAccess::fence();
5147   guarantee(_Event >= 0, "invariant");
5148 }
5149 
5150 void os::PlatformEvent::unpark() {
5151   guarantee(_ParkHandle != NULL, "Invariant");
5152 
5153   // Transitions for _Event:
5154   //    0 => 1 : just return
5155   //    1 => 1 : just return
5156   //   -1 => either 0 or 1; must signal target thread
5157   //         That is, we can safely transition _Event from -1 to either
5158   //         0 or 1.
5159   // See also: "Semaphores in Plan 9" by Mullender & Cox
5160   //
5161   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5162   // that it will take two back-to-back park() calls for the owning
5163   // thread to block. This has the benefit of forcing a spurious return
5164   // from the first park() call after an unpark() call which will help
5165   // shake out uses of park() and unpark() without condition variables.
5166 
5167   if (Atomic::xchg(1, &_Event) >= 0) return;
5168 
5169   ::SetEvent(_ParkHandle);
5170 }
5171 
5172 
5173 // JSR166
5174 // -------------------------------------------------------
5175 
5176 // The Windows implementation of Park is very straightforward: Basic
5177 // operations on Win32 Events turn out to have the right semantics to
5178 // use them directly. We opportunistically resuse the event inherited
5179 // from Monitor.
5180 
5181 void Parker::park(bool isAbsolute, jlong time) {
5182   guarantee(_ParkEvent != NULL, "invariant");
5183   // First, demultiplex/decode time arguments
5184   if (time < 0) { // don't wait
5185     return;
5186   } else if (time == 0 && !isAbsolute) {
5187     time = INFINITE;
5188   } else if (isAbsolute) {
5189     time -= os::javaTimeMillis(); // convert to relative time
5190     if (time <= 0) {  // already elapsed
5191       return;
5192     }
5193   } else { // relative
5194     time /= 1000000;  // Must coarsen from nanos to millis
5195     if (time == 0) {  // Wait for the minimal time unit if zero
5196       time = 1;
5197     }
5198   }
5199 
5200   JavaThread* thread = JavaThread::current();
5201 
5202   // Don't wait if interrupted or already triggered
5203   if (Thread::is_interrupted(thread, false) ||
5204       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5205     ResetEvent(_ParkEvent);
5206     return;
5207   } else {
5208     ThreadBlockInVM tbivm(thread);
5209     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5210     thread->set_suspend_equivalent();
5211 
5212     WaitForSingleObject(_ParkEvent, time);
5213     ResetEvent(_ParkEvent);
5214 
5215     // If externally suspended while waiting, re-suspend
5216     if (thread->handle_special_suspend_equivalent_condition()) {
5217       thread->java_suspend_self();
5218     }
5219   }
5220 }
5221 
5222 void Parker::unpark() {
5223   guarantee(_ParkEvent != NULL, "invariant");
5224   SetEvent(_ParkEvent);
5225 }
5226 
5227 // Run the specified command in a separate process. Return its exit value,
5228 // or -1 on failure (e.g. can't create a new process).
5229 int os::fork_and_exec(char* cmd) {
5230   STARTUPINFO si;
5231   PROCESS_INFORMATION pi;
5232 
5233   memset(&si, 0, sizeof(si));
5234   si.cb = sizeof(si);
5235   memset(&pi, 0, sizeof(pi));
5236   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5237                             cmd,    // command line
5238                             NULL,   // process security attribute
5239                             NULL,   // thread security attribute
5240                             TRUE,   // inherits system handles
5241                             0,      // no creation flags
5242                             NULL,   // use parent's environment block
5243                             NULL,   // use parent's starting directory
5244                             &si,    // (in) startup information
5245                             &pi);   // (out) process information
5246 
5247   if (rslt) {
5248     // Wait until child process exits.
5249     WaitForSingleObject(pi.hProcess, INFINITE);
5250 
5251     DWORD exit_code;
5252     GetExitCodeProcess(pi.hProcess, &exit_code);
5253 
5254     // Close process and thread handles.
5255     CloseHandle(pi.hProcess);
5256     CloseHandle(pi.hThread);
5257 
5258     return (int)exit_code;
5259   } else {
5260     return -1;
5261   }
5262 }
5263 
5264 bool os::find(address addr, outputStream* st) {
5265   int offset = -1;
5266   bool result = false;
5267   char buf[256];
5268   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5269     st->print(PTR_FORMAT " ", addr);
5270     if (strlen(buf) < sizeof(buf) - 1) {
5271       char* p = strrchr(buf, '\\');
5272       if (p) {
5273         st->print("%s", p + 1);
5274       } else {
5275         st->print("%s", buf);
5276       }
5277     } else {
5278         // The library name is probably truncated. Let's omit the library name.
5279         // See also JDK-8147512.
5280     }
5281     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5282       st->print("::%s + 0x%x", buf, offset);
5283     }
5284     st->cr();
5285     result = true;
5286   }
5287   return result;
5288 }
5289 
5290 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5291   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5292 
5293   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5294     JavaThread* thread = JavaThread::current();
5295     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5296     address addr = (address) exceptionRecord->ExceptionInformation[1];
5297 
5298     if (os::is_memory_serialize_page(thread, addr)) {
5299       return EXCEPTION_CONTINUE_EXECUTION;
5300     }
5301   }
5302 
5303   return EXCEPTION_CONTINUE_SEARCH;
5304 }
5305 
5306 // We don't build a headless jre for Windows
5307 bool os::is_headless_jre() { return false; }
5308 
5309 static jint initSock() {
5310   WSADATA wsadata;
5311 
5312   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5313     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5314                 ::GetLastError());
5315     return JNI_ERR;
5316   }
5317   return JNI_OK;
5318 }
5319 
5320 struct hostent* os::get_host_by_name(char* name) {
5321   return (struct hostent*)gethostbyname(name);
5322 }
5323 
5324 int os::socket_close(int fd) {
5325   return ::closesocket(fd);
5326 }
5327 
5328 int os::socket(int domain, int type, int protocol) {
5329   return ::socket(domain, type, protocol);
5330 }
5331 
5332 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5333   return ::connect(fd, him, len);
5334 }
5335 
5336 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5337   return ::recv(fd, buf, (int)nBytes, flags);
5338 }
5339 
5340 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5341   return ::send(fd, buf, (int)nBytes, flags);
5342 }
5343 
5344 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5345   return ::send(fd, buf, (int)nBytes, flags);
5346 }
5347 
5348 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5349 #if defined(IA32)
5350   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5351 #elif defined (AMD64)
5352   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5353 #endif
5354 
5355 // returns true if thread could be suspended,
5356 // false otherwise
5357 static bool do_suspend(HANDLE* h) {
5358   if (h != NULL) {
5359     if (SuspendThread(*h) != ~0) {
5360       return true;
5361     }
5362   }
5363   return false;
5364 }
5365 
5366 // resume the thread
5367 // calling resume on an active thread is a no-op
5368 static void do_resume(HANDLE* h) {
5369   if (h != NULL) {
5370     ResumeThread(*h);
5371   }
5372 }
5373 
5374 // retrieve a suspend/resume context capable handle
5375 // from the tid. Caller validates handle return value.
5376 void get_thread_handle_for_extended_context(HANDLE* h,
5377                                             OSThread::thread_id_t tid) {
5378   if (h != NULL) {
5379     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5380   }
5381 }
5382 
5383 // Thread sampling implementation
5384 //
5385 void os::SuspendedThreadTask::internal_do_task() {
5386   CONTEXT    ctxt;
5387   HANDLE     h = NULL;
5388 
5389   // get context capable handle for thread
5390   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5391 
5392   // sanity
5393   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5394     return;
5395   }
5396 
5397   // suspend the thread
5398   if (do_suspend(&h)) {
5399     ctxt.ContextFlags = sampling_context_flags;
5400     // get thread context
5401     GetThreadContext(h, &ctxt);
5402     SuspendedThreadTaskContext context(_thread, &ctxt);
5403     // pass context to Thread Sampling impl
5404     do_task(context);
5405     // resume thread
5406     do_resume(&h);
5407   }
5408 
5409   // close handle
5410   CloseHandle(h);
5411 }
5412 
5413 bool os::start_debugging(char *buf, int buflen) {
5414   int len = (int)strlen(buf);
5415   char *p = &buf[len];
5416 
5417   jio_snprintf(p, buflen-len,
5418              "\n\n"
5419              "Do you want to debug the problem?\n\n"
5420              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5421              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5422              "Otherwise, select 'No' to abort...",
5423              os::current_process_id(), os::current_thread_id());
5424 
5425   bool yes = os::message_box("Unexpected Error", buf);
5426 
5427   if (yes) {
5428     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5429     // exception. If VM is running inside a debugger, the debugger will
5430     // catch the exception. Otherwise, the breakpoint exception will reach
5431     // the default windows exception handler, which can spawn a debugger and
5432     // automatically attach to the dying VM.
5433     os::breakpoint();
5434     yes = false;
5435   }
5436   return yes;
5437 }
5438 
5439 void* os::get_default_process_handle() {
5440   return (void*)GetModuleHandle(NULL);
5441 }
5442 
5443 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5444 // which is used to find statically linked in agents.
5445 // Additionally for windows, takes into account __stdcall names.
5446 // Parameters:
5447 //            sym_name: Symbol in library we are looking for
5448 //            lib_name: Name of library to look in, NULL for shared libs.
5449 //            is_absolute_path == true if lib_name is absolute path to agent
5450 //                                     such as "C:/a/b/L.dll"
5451 //            == false if only the base name of the library is passed in
5452 //               such as "L"
5453 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5454                                     bool is_absolute_path) {
5455   char *agent_entry_name;
5456   size_t len;
5457   size_t name_len;
5458   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5459   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5460   const char *start;
5461 
5462   if (lib_name != NULL) {
5463     len = name_len = strlen(lib_name);
5464     if (is_absolute_path) {
5465       // Need to strip path, prefix and suffix
5466       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5467         lib_name = ++start;
5468       } else {
5469         // Need to check for drive prefix
5470         if ((start = strchr(lib_name, ':')) != NULL) {
5471           lib_name = ++start;
5472         }
5473       }
5474       if (len <= (prefix_len + suffix_len)) {
5475         return NULL;
5476       }
5477       lib_name += prefix_len;
5478       name_len = strlen(lib_name) - suffix_len;
5479     }
5480   }
5481   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5482   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5483   if (agent_entry_name == NULL) {
5484     return NULL;
5485   }
5486   if (lib_name != NULL) {
5487     const char *p = strrchr(sym_name, '@');
5488     if (p != NULL && p != sym_name) {
5489       // sym_name == _Agent_OnLoad@XX
5490       strncpy(agent_entry_name, sym_name, (p - sym_name));
5491       agent_entry_name[(p-sym_name)] = '\0';
5492       // agent_entry_name == _Agent_OnLoad
5493       strcat(agent_entry_name, "_");
5494       strncat(agent_entry_name, lib_name, name_len);
5495       strcat(agent_entry_name, p);
5496       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5497     } else {
5498       strcpy(agent_entry_name, sym_name);
5499       strcat(agent_entry_name, "_");
5500       strncat(agent_entry_name, lib_name, name_len);
5501     }
5502   } else {
5503     strcpy(agent_entry_name, sym_name);
5504   }
5505   return agent_entry_name;
5506 }
5507 
5508 #ifndef PRODUCT
5509 
5510 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5511 // contiguous memory block at a particular address.
5512 // The test first tries to find a good approximate address to allocate at by using the same
5513 // method to allocate some memory at any address. The test then tries to allocate memory in
5514 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5515 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5516 // the previously allocated memory is available for allocation. The only actual failure
5517 // that is reported is when the test tries to allocate at a particular location but gets a
5518 // different valid one. A NULL return value at this point is not considered an error but may
5519 // be legitimate.
5520 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5521 void TestReserveMemorySpecial_test() {
5522   if (!UseLargePages) {
5523     if (VerboseInternalVMTests) {
5524       tty->print("Skipping test because large pages are disabled");
5525     }
5526     return;
5527   }
5528   // save current value of globals
5529   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5530   bool old_use_numa_interleaving = UseNUMAInterleaving;
5531 
5532   // set globals to make sure we hit the correct code path
5533   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5534 
5535   // do an allocation at an address selected by the OS to get a good one.
5536   const size_t large_allocation_size = os::large_page_size() * 4;
5537   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5538   if (result == NULL) {
5539     if (VerboseInternalVMTests) {
5540       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5541                           large_allocation_size);
5542     }
5543   } else {
5544     os::release_memory_special(result, large_allocation_size);
5545 
5546     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5547     // we managed to get it once.
5548     const size_t expected_allocation_size = os::large_page_size();
5549     char* expected_location = result + os::large_page_size();
5550     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5551     if (actual_location == NULL) {
5552       if (VerboseInternalVMTests) {
5553         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5554                             expected_location, large_allocation_size);
5555       }
5556     } else {
5557       // release memory
5558       os::release_memory_special(actual_location, expected_allocation_size);
5559       // only now check, after releasing any memory to avoid any leaks.
5560       assert(actual_location == expected_location,
5561              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5562              expected_location, expected_allocation_size, actual_location);
5563     }
5564   }
5565 
5566   // restore globals
5567   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5568   UseNUMAInterleaving = old_use_numa_interleaving;
5569 }
5570 #endif // PRODUCT
5571 
5572 /*
5573   All the defined signal names for Windows.
5574 
5575   NOTE that not all of these names are accepted by FindSignal!
5576 
5577   For various reasons some of these may be rejected at runtime.
5578 
5579   Here are the names currently accepted by a user of sun.misc.Signal with
5580   1.4.1 (ignoring potential interaction with use of chaining, etc):
5581 
5582      (LIST TBD)
5583 
5584 */
5585 int os::get_signal_number(const char* name) {
5586   static const struct {
5587     char* name;
5588     int   number;
5589   } siglabels [] =
5590     // derived from version 6.0 VC98/include/signal.h
5591   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5592   "FPE",        SIGFPE,         // floating point exception
5593   "SEGV",       SIGSEGV,        // segment violation
5594   "INT",        SIGINT,         // interrupt
5595   "TERM",       SIGTERM,        // software term signal from kill
5596   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5597   "ILL",        SIGILL};        // illegal instruction
5598   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5599     if (strcmp(name, siglabels[i].name) == 0) {
5600       return siglabels[i].number;
5601     }
5602   }
5603   return -1;
5604 }
5605 
5606 // Fast current thread access
5607 
5608 int os::win32::_thread_ptr_offset = 0;
5609 
5610 static void call_wrapper_dummy() {}
5611 
5612 // We need to call the os_exception_wrapper once so that it sets
5613 // up the offset from FS of the thread pointer.
5614 void os::win32::initialize_thread_ptr_offset() {
5615   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5616                            NULL, NULL, NULL, NULL);
5617 }