1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/cardTableModRefBS.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "nativeInst_aarch64.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "vmreg_aarch64.inline.hpp"
  43 
  44 
  45 
  46 #ifndef PRODUCT
  47 #define COMMENT(x)   do { __ block_comment(x); } while (0)
  48 #else
  49 #define COMMENT(x)
  50 #endif
  51 
  52 NEEDS_CLEANUP // remove this definitions ?
  53 const Register IC_Klass    = rscratch2;   // where the IC klass is cached
  54 const Register SYNC_header = r0;   // synchronization header
  55 const Register SHIFT_count = r0;   // where count for shift operations must be
  56 
  57 #define __ _masm->
  58 
  59 
  60 static void select_different_registers(Register preserve,
  61                                        Register extra,
  62                                        Register &tmp1,
  63                                        Register &tmp2) {
  64   if (tmp1 == preserve) {
  65     assert_different_registers(tmp1, tmp2, extra);
  66     tmp1 = extra;
  67   } else if (tmp2 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp2 = extra;
  70   }
  71   assert_different_registers(preserve, tmp1, tmp2);
  72 }
  73 
  74 
  75 
  76 static void select_different_registers(Register preserve,
  77                                        Register extra,
  78                                        Register &tmp1,
  79                                        Register &tmp2,
  80                                        Register &tmp3) {
  81   if (tmp1 == preserve) {
  82     assert_different_registers(tmp1, tmp2, tmp3, extra);
  83     tmp1 = extra;
  84   } else if (tmp2 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp2 = extra;
  87   } else if (tmp3 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp3 = extra;
  90   }
  91   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  92 }
  93 
  94 
  95 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
  96 
  97 
  98 LIR_Opr LIR_Assembler::receiverOpr() {
  99   return FrameMap::receiver_opr;
 100 }
 101 
 102 LIR_Opr LIR_Assembler::osrBufferPointer() {
 103   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 104 }
 105 
 106 //--------------fpu register translations-----------------------
 107 
 108 
 109 address LIR_Assembler::float_constant(float f) {
 110   address const_addr = __ float_constant(f);
 111   if (const_addr == NULL) {
 112     bailout("const section overflow");
 113     return __ code()->consts()->start();
 114   } else {
 115     return const_addr;
 116   }
 117 }
 118 
 119 
 120 address LIR_Assembler::double_constant(double d) {
 121   address const_addr = __ double_constant(d);
 122   if (const_addr == NULL) {
 123     bailout("const section overflow");
 124     return __ code()->consts()->start();
 125   } else {
 126     return const_addr;
 127   }
 128 }
 129 
 130 address LIR_Assembler::int_constant(jlong n) {
 131   address const_addr = __ long_constant(n);
 132   if (const_addr == NULL) {
 133     bailout("const section overflow");
 134     return __ code()->consts()->start();
 135   } else {
 136     return const_addr;
 137   }
 138 }
 139 
 140 void LIR_Assembler::set_24bit_FPU() { Unimplemented(); }
 141 
 142 void LIR_Assembler::reset_FPU() { Unimplemented(); }
 143 
 144 void LIR_Assembler::fpop() { Unimplemented(); }
 145 
 146 void LIR_Assembler::fxch(int i) { Unimplemented(); }
 147 
 148 void LIR_Assembler::fld(int i) { Unimplemented(); }
 149 
 150 void LIR_Assembler::ffree(int i) { Unimplemented(); }
 151 
 152 void LIR_Assembler::breakpoint() { Unimplemented(); }
 153 
 154 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
 155 
 156 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
 157 
 158 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
 159 //-------------------------------------------
 160 
 161 static Register as_reg(LIR_Opr op) {
 162   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
 163 }
 164 
 165 static jlong as_long(LIR_Opr data) {
 166   jlong result;
 167   switch (data->type()) {
 168   case T_INT:
 169     result = (data->as_jint());
 170     break;
 171   case T_LONG:
 172     result = (data->as_jlong());
 173     break;
 174   default:
 175     ShouldNotReachHere();
 176     result = 0;  // unreachable
 177   }
 178   return result;
 179 }
 180 
 181 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 182   Register base = addr->base()->as_pointer_register();
 183   LIR_Opr opr = addr->index();
 184   if (opr->is_cpu_register()) {
 185     Register index;
 186     if (opr->is_single_cpu())
 187       index = opr->as_register();
 188     else
 189       index = opr->as_register_lo();
 190     assert(addr->disp() == 0, "must be");
 191     switch(opr->type()) {
 192       case T_INT:
 193         return Address(base, index, Address::sxtw(addr->scale()));
 194       case T_LONG:
 195         return Address(base, index, Address::lsl(addr->scale()));
 196       default:
 197         ShouldNotReachHere();
 198       }
 199   } else  {
 200     intptr_t addr_offset = intptr_t(addr->disp());
 201     if (Address::offset_ok_for_immed(addr_offset, addr->scale()))
 202       return Address(base, addr_offset, Address::lsl(addr->scale()));
 203     else {
 204       __ mov(tmp, addr_offset);
 205       return Address(base, tmp, Address::lsl(addr->scale()));
 206     }
 207   }
 208   return Address();
 209 }
 210 
 211 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 212   ShouldNotReachHere();
 213   return Address();
 214 }
 215 
 216 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 217   return as_Address(addr, rscratch1);
 218 }
 219 
 220 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 221   return as_Address(addr, rscratch1);  // Ouch
 222   // FIXME: This needs to be much more clever.  See x86.
 223 }
 224 
 225 
 226 void LIR_Assembler::osr_entry() {
 227   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 228   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 229   ValueStack* entry_state = osr_entry->state();
 230   int number_of_locks = entry_state->locks_size();
 231 
 232   // we jump here if osr happens with the interpreter
 233   // state set up to continue at the beginning of the
 234   // loop that triggered osr - in particular, we have
 235   // the following registers setup:
 236   //
 237   // r2: osr buffer
 238   //
 239 
 240   // build frame
 241   ciMethod* m = compilation()->method();
 242   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 243 
 244   // OSR buffer is
 245   //
 246   // locals[nlocals-1..0]
 247   // monitors[0..number_of_locks]
 248   //
 249   // locals is a direct copy of the interpreter frame so in the osr buffer
 250   // so first slot in the local array is the last local from the interpreter
 251   // and last slot is local[0] (receiver) from the interpreter
 252   //
 253   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 254   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 255   // in the interpreter frame (the method lock if a sync method)
 256 
 257   // Initialize monitors in the compiled activation.
 258   //   r2: pointer to osr buffer
 259   //
 260   // All other registers are dead at this point and the locals will be
 261   // copied into place by code emitted in the IR.
 262 
 263   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 264   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 265     int monitor_offset = BytesPerWord * method()->max_locals() +
 266       (2 * BytesPerWord) * (number_of_locks - 1);
 267     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 268     // the OSR buffer using 2 word entries: first the lock and then
 269     // the oop.
 270     for (int i = 0; i < number_of_locks; i++) {
 271       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 272 #ifdef ASSERT
 273       // verify the interpreter's monitor has a non-null object
 274       {
 275         Label L;
 276         __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 277         __ cbnz(rscratch1, L);
 278         __ stop("locked object is NULL");
 279         __ bind(L);
 280       }
 281 #endif
 282       __ ldr(r19, Address(OSR_buf, slot_offset + 0));
 283       __ str(r19, frame_map()->address_for_monitor_lock(i));
 284       __ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 285       __ str(r19, frame_map()->address_for_monitor_object(i));
 286     }
 287   }
 288 }
 289 
 290 
 291 // inline cache check; done before the frame is built.
 292 int LIR_Assembler::check_icache() {
 293   Register receiver = FrameMap::receiver_opr->as_register();
 294   Register ic_klass = IC_Klass;
 295   int start_offset = __ offset();
 296   __ inline_cache_check(receiver, ic_klass);
 297 
 298   // if icache check fails, then jump to runtime routine
 299   // Note: RECEIVER must still contain the receiver!
 300   Label dont;
 301   __ br(Assembler::EQ, dont);
 302   __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 303 
 304   // We align the verified entry point unless the method body
 305   // (including its inline cache check) will fit in a single 64-byte
 306   // icache line.
 307   if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
 308     // force alignment after the cache check.
 309     __ align(CodeEntryAlignment);
 310   }
 311 
 312   __ bind(dont);
 313   return start_offset;
 314 }
 315 
 316 
 317 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 318   if (o == NULL) {
 319     __ mov(reg, zr);
 320   } else {
 321     __ movoop(reg, o, /*immediate*/true);
 322   }
 323 }
 324 
 325 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
 326   address target = NULL;
 327   relocInfo::relocType reloc_type = relocInfo::none;
 328 
 329   switch (patching_id(info)) {
 330   case PatchingStub::access_field_id:
 331     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 332     reloc_type = relocInfo::section_word_type;
 333     break;
 334   case PatchingStub::load_klass_id:
 335     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 336     reloc_type = relocInfo::metadata_type;
 337     break;
 338   case PatchingStub::load_mirror_id:
 339     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 340     reloc_type = relocInfo::oop_type;
 341     break;
 342   case PatchingStub::load_appendix_id:
 343     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 344     reloc_type = relocInfo::oop_type;
 345     break;
 346   default: ShouldNotReachHere();
 347   }
 348 
 349   __ far_call(RuntimeAddress(target));
 350   add_call_info_here(info);
 351 }
 352 
 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 354   deoptimize_trap(info);
 355 }
 356 
 357 
 358 // This specifies the rsp decrement needed to build the frame
 359 int LIR_Assembler::initial_frame_size_in_bytes() const {
 360   // if rounding, must let FrameMap know!
 361 
 362   // The frame_map records size in slots (32bit word)
 363 
 364   // subtract two words to account for return address and link
 365   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 366 }
 367 
 368 
 369 int LIR_Assembler::emit_exception_handler() {
 370   // if the last instruction is a call (typically to do a throw which
 371   // is coming at the end after block reordering) the return address
 372   // must still point into the code area in order to avoid assertion
 373   // failures when searching for the corresponding bci => add a nop
 374   // (was bug 5/14/1999 - gri)
 375   __ nop();
 376 
 377   // generate code for exception handler
 378   address handler_base = __ start_a_stub(exception_handler_size());
 379   if (handler_base == NULL) {
 380     // not enough space left for the handler
 381     bailout("exception handler overflow");
 382     return -1;
 383   }
 384 
 385   int offset = code_offset();
 386 
 387   // the exception oop and pc are in r0, and r3
 388   // no other registers need to be preserved, so invalidate them
 389   __ invalidate_registers(false, true, true, false, true, true);
 390 
 391   // check that there is really an exception
 392   __ verify_not_null_oop(r0);
 393 
 394   // search an exception handler (r0: exception oop, r3: throwing pc)
 395   __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));  __ should_not_reach_here();
 396   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 397   __ end_a_stub();
 398 
 399   return offset;
 400 }
 401 
 402 
 403 // Emit the code to remove the frame from the stack in the exception
 404 // unwind path.
 405 int LIR_Assembler::emit_unwind_handler() {
 406 #ifndef PRODUCT
 407   if (CommentedAssembly) {
 408     _masm->block_comment("Unwind handler");
 409   }
 410 #endif
 411 
 412   int offset = code_offset();
 413 
 414   // Fetch the exception from TLS and clear out exception related thread state
 415   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
 416   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
 417   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
 418 
 419   __ bind(_unwind_handler_entry);
 420   __ verify_not_null_oop(r0);
 421   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 422     __ mov(r19, r0);  // Preserve the exception
 423   }
 424 
 425   // Preform needed unlocking
 426   MonitorExitStub* stub = NULL;
 427   if (method()->is_synchronized()) {
 428     monitor_address(0, FrameMap::r0_opr);
 429     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
 430     __ unlock_object(r5, r4, r0, *stub->entry());
 431     __ bind(*stub->continuation());
 432   }
 433 
 434   if (compilation()->env()->dtrace_method_probes()) {
 435     __ call_Unimplemented();
 436 #if 0
 437     __ movptr(Address(rsp, 0), rax);
 438     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 439     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 440 #endif
 441   }
 442 
 443   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 444     __ mov(r0, r19);  // Restore the exception
 445   }
 446 
 447   // remove the activation and dispatch to the unwind handler
 448   __ block_comment("remove_frame and dispatch to the unwind handler");
 449   __ remove_frame(initial_frame_size_in_bytes());
 450   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 451 
 452   // Emit the slow path assembly
 453   if (stub != NULL) {
 454     stub->emit_code(this);
 455   }
 456 
 457   return offset;
 458 }
 459 
 460 
 461 int LIR_Assembler::emit_deopt_handler() {
 462   // if the last instruction is a call (typically to do a throw which
 463   // is coming at the end after block reordering) the return address
 464   // must still point into the code area in order to avoid assertion
 465   // failures when searching for the corresponding bci => add a nop
 466   // (was bug 5/14/1999 - gri)
 467   __ nop();
 468 
 469   // generate code for exception handler
 470   address handler_base = __ start_a_stub(deopt_handler_size());
 471   if (handler_base == NULL) {
 472     // not enough space left for the handler
 473     bailout("deopt handler overflow");
 474     return -1;
 475   }
 476 
 477   int offset = code_offset();
 478 
 479   __ adr(lr, pc());
 480   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 481   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 482   __ end_a_stub();
 483 
 484   return offset;
 485 }
 486 
 487 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
 488   _masm->code_section()->relocate(adr, relocInfo::poll_type);
 489   int pc_offset = code_offset();
 490   flush_debug_info(pc_offset);
 491   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
 492   if (info->exception_handlers() != NULL) {
 493     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
 494   }
 495 }
 496 
 497 // Rather than take a segfault when the polling page is protected,
 498 // explicitly check for a safepoint in progress and if there is one,
 499 // fake a call to the handler as if a segfault had been caught.
 500 void LIR_Assembler::poll_for_safepoint(relocInfo::relocType rtype, CodeEmitInfo* info) {
 501   __ mov(rscratch1, SafepointSynchronize::address_of_state());
 502   __ ldrb(rscratch1, Address(rscratch1));
 503   Label nope, poll;
 504   __ cbz(rscratch1, nope);
 505   __ block_comment("safepoint");
 506   __ enter();
 507   __ push(0x3, sp);                // r0 & r1
 508   __ push(0x3ffffffc, sp);         // integer registers except lr & sp & r0 & r1
 509   __ adr(r0, poll);
 510   __ str(r0, Address(rthread, JavaThread::saved_exception_pc_offset()));
 511   __ mov(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::get_poll_stub));
 512   __ blrt(rscratch1, 1, 0, 1);
 513   __ maybe_isb();
 514   __ pop(0x3ffffffc, sp);          // integer registers except lr & sp & r0 & r1
 515   __ mov(rscratch1, r0);
 516   __ pop(0x3, sp);                 // r0 & r1
 517   __ leave();
 518   __ br(rscratch1);
 519   address polling_page(os::get_polling_page());
 520   assert(os::is_poll_address(polling_page), "should be");
 521   unsigned long off;
 522   __ adrp(rscratch1, Address(polling_page, rtype), off);
 523   __ bind(poll);
 524   if (info)
 525     add_debug_info_for_branch(info);  // This isn't just debug info:
 526                                       // it's the oop map
 527   else
 528     __ code_section()->relocate(pc(), rtype);
 529   __ ldrw(zr, Address(rscratch1, off));
 530   __ bind(nope);
 531 }
 532 
 533 void LIR_Assembler::return_op(LIR_Opr result) {
 534   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
 535 
 536   // Pop the stack before the safepoint code
 537   __ remove_frame(initial_frame_size_in_bytes());
 538 
 539   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 540     __ reserved_stack_check();
 541   }
 542 
 543   address polling_page(os::get_polling_page());
 544   __ read_polling_page(rscratch1, polling_page, relocInfo::poll_return_type);
 545   __ ret(lr);
 546 }
 547 
 548 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 549   address polling_page(os::get_polling_page());
 550   guarantee(info != NULL, "Shouldn't be NULL");
 551   assert(os::is_poll_address(polling_page), "should be");
 552   unsigned long off;
 553   __ adrp(rscratch1, Address(polling_page, relocInfo::poll_type), off);
 554   assert(off == 0, "must be");
 555   add_debug_info_for_branch(info);  // This isn't just debug info:
 556   // it's the oop map
 557   __ read_polling_page(rscratch1, relocInfo::poll_type);
 558   return __ offset();
 559 }
 560 
 561 
 562 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 563   if (from_reg == r31_sp)
 564     from_reg = sp;
 565   if (to_reg == r31_sp)
 566     to_reg = sp;
 567   __ mov(to_reg, from_reg);
 568 }
 569 
 570 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
 571 
 572 
 573 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 574   assert(src->is_constant(), "should not call otherwise");
 575   assert(dest->is_register(), "should not call otherwise");
 576   LIR_Const* c = src->as_constant_ptr();
 577 
 578   switch (c->type()) {
 579     case T_INT: {
 580       assert(patch_code == lir_patch_none, "no patching handled here");
 581       __ movw(dest->as_register(), c->as_jint());
 582       break;
 583     }
 584 
 585     case T_ADDRESS: {
 586       assert(patch_code == lir_patch_none, "no patching handled here");
 587       __ mov(dest->as_register(), c->as_jint());
 588       break;
 589     }
 590 
 591     case T_LONG: {
 592       assert(patch_code == lir_patch_none, "no patching handled here");
 593       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
 594       break;
 595     }
 596 
 597     case T_OBJECT: {
 598         if (patch_code == lir_patch_none) {
 599           jobject2reg(c->as_jobject(), dest->as_register());
 600         } else {
 601           jobject2reg_with_patching(dest->as_register(), info);
 602         }
 603       break;
 604     }
 605 
 606     case T_METADATA: {
 607       if (patch_code != lir_patch_none) {
 608         klass2reg_with_patching(dest->as_register(), info);
 609       } else {
 610         __ mov_metadata(dest->as_register(), c->as_metadata());
 611       }
 612       break;
 613     }
 614 
 615     case T_FLOAT: {
 616       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
 617         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
 618       } else {
 619         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
 620         __ ldrs(dest->as_float_reg(), Address(rscratch1));
 621       }
 622       break;
 623     }
 624 
 625     case T_DOUBLE: {
 626       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
 627         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
 628       } else {
 629         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
 630         __ ldrd(dest->as_double_reg(), Address(rscratch1));
 631       }
 632       break;
 633     }
 634 
 635     default:
 636       ShouldNotReachHere();
 637   }
 638 }
 639 
 640 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 641   LIR_Const* c = src->as_constant_ptr();
 642   switch (c->type()) {
 643   case T_OBJECT:
 644     {
 645       if (! c->as_jobject())
 646         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 647       else {
 648         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
 649         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 650       }
 651     }
 652     break;
 653   case T_ADDRESS:
 654     {
 655       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
 656       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
 657     }
 658   case T_INT:
 659   case T_FLOAT:
 660     {
 661       Register reg = zr;
 662       if (c->as_jint_bits() == 0)
 663         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
 664       else {
 665         __ movw(rscratch1, c->as_jint_bits());
 666         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
 667       }
 668     }
 669     break;
 670   case T_LONG:
 671   case T_DOUBLE:
 672     {
 673       Register reg = zr;
 674       if (c->as_jlong_bits() == 0)
 675         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
 676                                                  lo_word_offset_in_bytes));
 677       else {
 678         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
 679         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
 680                                                         lo_word_offset_in_bytes));
 681       }
 682     }
 683     break;
 684   default:
 685     ShouldNotReachHere();
 686   }
 687 }
 688 
 689 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 690   assert(src->is_constant(), "should not call otherwise");
 691   LIR_Const* c = src->as_constant_ptr();
 692   LIR_Address* to_addr = dest->as_address_ptr();
 693 
 694   void (Assembler::* insn)(Register Rt, const Address &adr);
 695 
 696   switch (type) {
 697   case T_ADDRESS:
 698     assert(c->as_jint() == 0, "should be");
 699     insn = &Assembler::str;
 700     break;
 701   case T_LONG:
 702     assert(c->as_jlong() == 0, "should be");
 703     insn = &Assembler::str;
 704     break;
 705   case T_INT:
 706     assert(c->as_jint() == 0, "should be");
 707     insn = &Assembler::strw;
 708     break;
 709   case T_OBJECT:
 710   case T_ARRAY:
 711     assert(c->as_jobject() == 0, "should be");
 712     if (UseCompressedOops && !wide) {
 713       insn = &Assembler::strw;
 714     } else {
 715       insn = &Assembler::str;
 716     }
 717     break;
 718   case T_CHAR:
 719   case T_SHORT:
 720     assert(c->as_jint() == 0, "should be");
 721     insn = &Assembler::strh;
 722     break;
 723   case T_BOOLEAN:
 724   case T_BYTE:
 725     assert(c->as_jint() == 0, "should be");
 726     insn = &Assembler::strb;
 727     break;
 728   default:
 729     ShouldNotReachHere();
 730     insn = &Assembler::str;  // unreachable
 731   }
 732 
 733   if (info) add_debug_info_for_null_check_here(info);
 734   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
 735 }
 736 
 737 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 738   assert(src->is_register(), "should not call otherwise");
 739   assert(dest->is_register(), "should not call otherwise");
 740 
 741   // move between cpu-registers
 742   if (dest->is_single_cpu()) {
 743     if (src->type() == T_LONG) {
 744       // Can do LONG -> OBJECT
 745       move_regs(src->as_register_lo(), dest->as_register());
 746       return;
 747     }
 748     assert(src->is_single_cpu(), "must match");
 749     if (src->type() == T_OBJECT) {
 750       __ verify_oop(src->as_register());
 751     }
 752     move_regs(src->as_register(), dest->as_register());
 753 
 754   } else if (dest->is_double_cpu()) {
 755     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 756       // Surprising to me but we can see move of a long to t_object
 757       __ verify_oop(src->as_register());
 758       move_regs(src->as_register(), dest->as_register_lo());
 759       return;
 760     }
 761     assert(src->is_double_cpu(), "must match");
 762     Register f_lo = src->as_register_lo();
 763     Register f_hi = src->as_register_hi();
 764     Register t_lo = dest->as_register_lo();
 765     Register t_hi = dest->as_register_hi();
 766     assert(f_hi == f_lo, "must be same");
 767     assert(t_hi == t_lo, "must be same");
 768     move_regs(f_lo, t_lo);
 769 
 770   } else if (dest->is_single_fpu()) {
 771     __ fmovs(dest->as_float_reg(), src->as_float_reg());
 772 
 773   } else if (dest->is_double_fpu()) {
 774     __ fmovd(dest->as_double_reg(), src->as_double_reg());
 775 
 776   } else {
 777     ShouldNotReachHere();
 778   }
 779 }
 780 
 781 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 782   if (src->is_single_cpu()) {
 783     if (type == T_ARRAY || type == T_OBJECT) {
 784       __ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
 785       __ verify_oop(src->as_register());
 786     } else if (type == T_METADATA || type == T_DOUBLE) {
 787       __ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
 788     } else {
 789       __ strw(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
 790     }
 791 
 792   } else if (src->is_double_cpu()) {
 793     Address dest_addr_LO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 794     __ str(src->as_register_lo(), dest_addr_LO);
 795 
 796   } else if (src->is_single_fpu()) {
 797     Address dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 798     __ strs(src->as_float_reg(), dest_addr);
 799 
 800   } else if (src->is_double_fpu()) {
 801     Address dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 802     __ strd(src->as_double_reg(), dest_addr);
 803 
 804   } else {
 805     ShouldNotReachHere();
 806   }
 807 
 808 }
 809 
 810 
 811 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 812   LIR_Address* to_addr = dest->as_address_ptr();
 813   PatchingStub* patch = NULL;
 814   Register compressed_src = rscratch1;
 815 
 816   if (patch_code != lir_patch_none) {
 817     deoptimize_trap(info);
 818     return;
 819   }
 820 
 821   if (type == T_ARRAY || type == T_OBJECT) {
 822     __ verify_oop(src->as_register());
 823 
 824     if (UseCompressedOops && !wide) {
 825       __ encode_heap_oop(compressed_src, src->as_register());
 826     } else {
 827       compressed_src = src->as_register();
 828     }
 829   }
 830 
 831   int null_check_here = code_offset();
 832   switch (type) {
 833     case T_FLOAT: {
 834       __ strs(src->as_float_reg(), as_Address(to_addr));
 835       break;
 836     }
 837 
 838     case T_DOUBLE: {
 839       __ strd(src->as_double_reg(), as_Address(to_addr));
 840       break;
 841     }
 842 
 843     case T_ARRAY:   // fall through
 844     case T_OBJECT:  // fall through
 845       if (UseCompressedOops && !wide) {
 846         __ strw(compressed_src, as_Address(to_addr, rscratch2));
 847       } else {
 848          __ str(compressed_src, as_Address(to_addr));
 849       }
 850       break;
 851     case T_METADATA:
 852       // We get here to store a method pointer to the stack to pass to
 853       // a dtrace runtime call. This can't work on 64 bit with
 854       // compressed klass ptrs: T_METADATA can be a compressed klass
 855       // ptr or a 64 bit method pointer.
 856       ShouldNotReachHere();
 857       __ str(src->as_register(), as_Address(to_addr));
 858       break;
 859     case T_ADDRESS:
 860       __ str(src->as_register(), as_Address(to_addr));
 861       break;
 862     case T_INT:
 863       __ strw(src->as_register(), as_Address(to_addr));
 864       break;
 865 
 866     case T_LONG: {
 867       __ str(src->as_register_lo(), as_Address_lo(to_addr));
 868       break;
 869     }
 870 
 871     case T_BYTE:    // fall through
 872     case T_BOOLEAN: {
 873       __ strb(src->as_register(), as_Address(to_addr));
 874       break;
 875     }
 876 
 877     case T_CHAR:    // fall through
 878     case T_SHORT:
 879       __ strh(src->as_register(), as_Address(to_addr));
 880       break;
 881 
 882     default:
 883       ShouldNotReachHere();
 884   }
 885   if (info != NULL) {
 886     add_debug_info_for_null_check(null_check_here, info);
 887   }
 888 }
 889 
 890 
 891 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 892   assert(src->is_stack(), "should not call otherwise");
 893   assert(dest->is_register(), "should not call otherwise");
 894 
 895   if (dest->is_single_cpu()) {
 896     if (type == T_ARRAY || type == T_OBJECT) {
 897       __ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
 898       __ verify_oop(dest->as_register());
 899     } else if (type == T_METADATA) {
 900       __ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
 901     } else {
 902       __ ldrw(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
 903     }
 904 
 905   } else if (dest->is_double_cpu()) {
 906     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
 907     __ ldr(dest->as_register_lo(), src_addr_LO);
 908 
 909   } else if (dest->is_single_fpu()) {
 910     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
 911     __ ldrs(dest->as_float_reg(), src_addr);
 912 
 913   } else if (dest->is_double_fpu()) {
 914     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
 915     __ ldrd(dest->as_double_reg(), src_addr);
 916 
 917   } else {
 918     ShouldNotReachHere();
 919   }
 920 }
 921 
 922 
 923 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 924   address target = NULL;
 925   relocInfo::relocType reloc_type = relocInfo::none;
 926 
 927   switch (patching_id(info)) {
 928   case PatchingStub::access_field_id:
 929     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
 930     reloc_type = relocInfo::section_word_type;
 931     break;
 932   case PatchingStub::load_klass_id:
 933     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
 934     reloc_type = relocInfo::metadata_type;
 935     break;
 936   case PatchingStub::load_mirror_id:
 937     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
 938     reloc_type = relocInfo::oop_type;
 939     break;
 940   case PatchingStub::load_appendix_id:
 941     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
 942     reloc_type = relocInfo::oop_type;
 943     break;
 944   default: ShouldNotReachHere();
 945   }
 946 
 947   __ far_call(RuntimeAddress(target));
 948   add_call_info_here(info);
 949 }
 950 
 951 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 952 
 953   LIR_Opr temp;
 954   if (type == T_LONG || type == T_DOUBLE)
 955     temp = FrameMap::rscratch1_long_opr;
 956   else
 957     temp = FrameMap::rscratch1_opr;
 958 
 959   stack2reg(src, temp, src->type());
 960   reg2stack(temp, dest, dest->type(), false);
 961 }
 962 
 963 
 964 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
 965   LIR_Address* addr = src->as_address_ptr();
 966   LIR_Address* from_addr = src->as_address_ptr();
 967 
 968   if (addr->base()->type() == T_OBJECT) {
 969     __ verify_oop(addr->base()->as_pointer_register());
 970   }
 971 
 972   if (patch_code != lir_patch_none) {
 973     deoptimize_trap(info);
 974     return;
 975   }
 976 
 977   if (info != NULL) {
 978     add_debug_info_for_null_check_here(info);
 979   }
 980   int null_check_here = code_offset();
 981   switch (type) {
 982     case T_FLOAT: {
 983       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
 984       break;
 985     }
 986 
 987     case T_DOUBLE: {
 988       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
 989       break;
 990     }
 991 
 992     case T_ARRAY:   // fall through
 993     case T_OBJECT:  // fall through
 994       if (UseCompressedOops && !wide) {
 995         __ ldrw(dest->as_register(), as_Address(from_addr));
 996       } else {
 997          __ ldr(dest->as_register(), as_Address(from_addr));
 998       }
 999       break;
1000     case T_METADATA:
1001       // We get here to store a method pointer to the stack to pass to
1002       // a dtrace runtime call. This can't work on 64 bit with
1003       // compressed klass ptrs: T_METADATA can be a compressed klass
1004       // ptr or a 64 bit method pointer.
1005       ShouldNotReachHere();
1006       __ ldr(dest->as_register(), as_Address(from_addr));
1007       break;
1008     case T_ADDRESS:
1009       // FIXME: OMG this is a horrible kludge.  Any offset from an
1010       // address that matches klass_offset_in_bytes() will be loaded
1011       // as a word, not a long.
1012       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1013         __ ldrw(dest->as_register(), as_Address(from_addr));
1014       } else {
1015         __ ldr(dest->as_register(), as_Address(from_addr));
1016       }
1017       break;
1018     case T_INT:
1019       __ ldrw(dest->as_register(), as_Address(from_addr));
1020       break;
1021 
1022     case T_LONG: {
1023       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
1024       break;
1025     }
1026 
1027     case T_BYTE:
1028       __ ldrsb(dest->as_register(), as_Address(from_addr));
1029       break;
1030     case T_BOOLEAN: {
1031       __ ldrb(dest->as_register(), as_Address(from_addr));
1032       break;
1033     }
1034 
1035     case T_CHAR:
1036       __ ldrh(dest->as_register(), as_Address(from_addr));
1037       break;
1038     case T_SHORT:
1039       __ ldrsh(dest->as_register(), as_Address(from_addr));
1040       break;
1041 
1042     default:
1043       ShouldNotReachHere();
1044   }
1045 
1046   if (type == T_ARRAY || type == T_OBJECT) {
1047     if (UseCompressedOops && !wide) {
1048       __ decode_heap_oop(dest->as_register());
1049     }
1050     __ verify_oop(dest->as_register());
1051   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1052     if (UseCompressedClassPointers) {
1053       __ decode_klass_not_null(dest->as_register());
1054     }
1055   }
1056 }
1057 
1058 
1059 int LIR_Assembler::array_element_size(BasicType type) const {
1060   int elem_size = type2aelembytes(type);
1061   return exact_log2(elem_size);
1062 }
1063 
1064 void LIR_Assembler::arithmetic_idiv(LIR_Op3* op, bool is_irem) {
1065   Register Rdividend = op->in_opr1()->as_register();
1066   Register Rdivisor  = op->in_opr2()->as_register();
1067   Register Rscratch  = op->in_opr3()->as_register();
1068   Register Rresult   = op->result_opr()->as_register();
1069   int divisor = -1;
1070 
1071   /*
1072   TODO: For some reason, using the Rscratch that gets passed in is
1073   not possible because the register allocator does not see the tmp reg
1074   as used, and assignes it the same register as Rdividend. We use rscratch1
1075    instead.
1076 
1077   assert(Rdividend != Rscratch, "");
1078   assert(Rdivisor  != Rscratch, "");
1079   */
1080 
1081   if (Rdivisor == noreg && is_power_of_2(divisor)) {
1082     // convert division by a power of two into some shifts and logical operations
1083   }
1084 
1085   __ corrected_idivl(Rresult, Rdividend, Rdivisor, is_irem, rscratch1);
1086 }
1087 
1088 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1089   switch (op->code()) {
1090   case lir_idiv:
1091     arithmetic_idiv(op, false);
1092     break;
1093   case lir_irem:
1094     arithmetic_idiv(op, true);
1095     break;
1096   case lir_fmad:
1097     __ fmaddd(op->result_opr()->as_double_reg(),
1098               op->in_opr1()->as_double_reg(),
1099               op->in_opr2()->as_double_reg(),
1100               op->in_opr3()->as_double_reg());
1101     break;
1102   case lir_fmaf:
1103     __ fmadds(op->result_opr()->as_float_reg(),
1104               op->in_opr1()->as_float_reg(),
1105               op->in_opr2()->as_float_reg(),
1106               op->in_opr3()->as_float_reg());
1107     break;
1108   default:      ShouldNotReachHere(); break;
1109   }
1110 }
1111 
1112 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1113 #ifdef ASSERT
1114   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1115   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1116   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1117 #endif
1118 
1119   if (op->cond() == lir_cond_always) {
1120     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1121     __ b(*(op->label()));
1122   } else {
1123     Assembler::Condition acond;
1124     if (op->code() == lir_cond_float_branch) {
1125       bool is_unordered = (op->ublock() == op->block());
1126       // Assembler::EQ does not permit unordered branches, so we add
1127       // another branch here.  Likewise, Assembler::NE does not permit
1128       // ordered branches.
1129       if (is_unordered && op->cond() == lir_cond_equal
1130           || !is_unordered && op->cond() == lir_cond_notEqual)
1131         __ br(Assembler::VS, *(op->ublock()->label()));
1132       switch(op->cond()) {
1133       case lir_cond_equal:        acond = Assembler::EQ; break;
1134       case lir_cond_notEqual:     acond = Assembler::NE; break;
1135       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1136       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1137       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1138       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1139       default:                    ShouldNotReachHere();
1140         acond = Assembler::EQ;  // unreachable
1141       }
1142     } else {
1143       switch (op->cond()) {
1144         case lir_cond_equal:        acond = Assembler::EQ; break;
1145         case lir_cond_notEqual:     acond = Assembler::NE; break;
1146         case lir_cond_less:         acond = Assembler::LT; break;
1147         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1148         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1149         case lir_cond_greater:      acond = Assembler::GT; break;
1150         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1151         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1152         default:                    ShouldNotReachHere();
1153           acond = Assembler::EQ;  // unreachable
1154       }
1155     }
1156     __ br(acond,*(op->label()));
1157   }
1158 }
1159 
1160 
1161 
1162 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1163   LIR_Opr src  = op->in_opr();
1164   LIR_Opr dest = op->result_opr();
1165 
1166   switch (op->bytecode()) {
1167     case Bytecodes::_i2f:
1168       {
1169         __ scvtfws(dest->as_float_reg(), src->as_register());
1170         break;
1171       }
1172     case Bytecodes::_i2d:
1173       {
1174         __ scvtfwd(dest->as_double_reg(), src->as_register());
1175         break;
1176       }
1177     case Bytecodes::_l2d:
1178       {
1179         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1180         break;
1181       }
1182     case Bytecodes::_l2f:
1183       {
1184         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1185         break;
1186       }
1187     case Bytecodes::_f2d:
1188       {
1189         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1190         break;
1191       }
1192     case Bytecodes::_d2f:
1193       {
1194         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1195         break;
1196       }
1197     case Bytecodes::_i2c:
1198       {
1199         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1200         break;
1201       }
1202     case Bytecodes::_i2l:
1203       {
1204         __ sxtw(dest->as_register_lo(), src->as_register());
1205         break;
1206       }
1207     case Bytecodes::_i2s:
1208       {
1209         __ sxth(dest->as_register(), src->as_register());
1210         break;
1211       }
1212     case Bytecodes::_i2b:
1213       {
1214         __ sxtb(dest->as_register(), src->as_register());
1215         break;
1216       }
1217     case Bytecodes::_l2i:
1218       {
1219         _masm->block_comment("FIXME: This could be a no-op");
1220         __ uxtw(dest->as_register(), src->as_register_lo());
1221         break;
1222       }
1223     case Bytecodes::_d2l:
1224       {
1225         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1226         break;
1227       }
1228     case Bytecodes::_f2i:
1229       {
1230         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1231         break;
1232       }
1233     case Bytecodes::_f2l:
1234       {
1235         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1236         break;
1237       }
1238     case Bytecodes::_d2i:
1239       {
1240         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1241         break;
1242       }
1243     default: ShouldNotReachHere();
1244   }
1245 }
1246 
1247 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1248   if (op->init_check()) {
1249     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1250                                InstanceKlass::init_state_offset()));
1251     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1252     add_debug_info_for_null_check_here(op->stub()->info());
1253     __ br(Assembler::NE, *op->stub()->entry());
1254   }
1255   __ allocate_object(op->obj()->as_register(),
1256                      op->tmp1()->as_register(),
1257                      op->tmp2()->as_register(),
1258                      op->header_size(),
1259                      op->object_size(),
1260                      op->klass()->as_register(),
1261                      *op->stub()->entry());
1262   __ bind(*op->stub()->continuation());
1263 }
1264 
1265 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1266   Register len =  op->len()->as_register();
1267   __ uxtw(len, len);
1268 
1269   if (UseSlowPath ||
1270       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1271       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1272     __ b(*op->stub()->entry());
1273   } else {
1274     Register tmp1 = op->tmp1()->as_register();
1275     Register tmp2 = op->tmp2()->as_register();
1276     Register tmp3 = op->tmp3()->as_register();
1277     if (len == tmp1) {
1278       tmp1 = tmp3;
1279     } else if (len == tmp2) {
1280       tmp2 = tmp3;
1281     } else if (len == tmp3) {
1282       // everything is ok
1283     } else {
1284       __ mov(tmp3, len);
1285     }
1286     __ allocate_array(op->obj()->as_register(),
1287                       len,
1288                       tmp1,
1289                       tmp2,
1290                       arrayOopDesc::header_size(op->type()),
1291                       array_element_size(op->type()),
1292                       op->klass()->as_register(),
1293                       *op->stub()->entry());
1294   }
1295   __ bind(*op->stub()->continuation());
1296 }
1297 
1298 void LIR_Assembler::type_profile_helper(Register mdo,
1299                                         ciMethodData *md, ciProfileData *data,
1300                                         Register recv, Label* update_done) {
1301   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1302     Label next_test;
1303     // See if the receiver is receiver[n].
1304     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1305     __ ldr(rscratch1, Address(rscratch2));
1306     __ cmp(recv, rscratch1);
1307     __ br(Assembler::NE, next_test);
1308     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1309     __ addptr(data_addr, DataLayout::counter_increment);
1310     __ b(*update_done);
1311     __ bind(next_test);
1312   }
1313 
1314   // Didn't find receiver; find next empty slot and fill it in
1315   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1316     Label next_test;
1317     __ lea(rscratch2,
1318            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1319     Address recv_addr(rscratch2);
1320     __ ldr(rscratch1, recv_addr);
1321     __ cbnz(rscratch1, next_test);
1322     __ str(recv, recv_addr);
1323     __ mov(rscratch1, DataLayout::counter_increment);
1324     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1325     __ str(rscratch1, Address(rscratch2));
1326     __ b(*update_done);
1327     __ bind(next_test);
1328   }
1329 }
1330 
1331 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1332   // we always need a stub for the failure case.
1333   CodeStub* stub = op->stub();
1334   Register obj = op->object()->as_register();
1335   Register k_RInfo = op->tmp1()->as_register();
1336   Register klass_RInfo = op->tmp2()->as_register();
1337   Register dst = op->result_opr()->as_register();
1338   ciKlass* k = op->klass();
1339   Register Rtmp1 = noreg;
1340 
1341   // check if it needs to be profiled
1342   ciMethodData* md;
1343   ciProfileData* data;
1344 
1345   const bool should_profile = op->should_profile();
1346 
1347   if (should_profile) {
1348     ciMethod* method = op->profiled_method();
1349     assert(method != NULL, "Should have method");
1350     int bci = op->profiled_bci();
1351     md = method->method_data_or_null();
1352     assert(md != NULL, "Sanity");
1353     data = md->bci_to_data(bci);
1354     assert(data != NULL,                "need data for type check");
1355     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1356   }
1357   Label profile_cast_success, profile_cast_failure;
1358   Label *success_target = should_profile ? &profile_cast_success : success;
1359   Label *failure_target = should_profile ? &profile_cast_failure : failure;
1360 
1361   if (obj == k_RInfo) {
1362     k_RInfo = dst;
1363   } else if (obj == klass_RInfo) {
1364     klass_RInfo = dst;
1365   }
1366   if (k->is_loaded() && !UseCompressedClassPointers) {
1367     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1368   } else {
1369     Rtmp1 = op->tmp3()->as_register();
1370     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1371   }
1372 
1373   assert_different_registers(obj, k_RInfo, klass_RInfo);
1374 
1375     if (should_profile) {
1376       Label not_null;
1377       __ cbnz(obj, not_null);
1378       // Object is null; update MDO and exit
1379       Register mdo  = klass_RInfo;
1380       __ mov_metadata(mdo, md->constant_encoding());
1381       Address data_addr
1382         = __ form_address(rscratch2, mdo,
1383                           md->byte_offset_of_slot(data, DataLayout::DataLayout::header_offset()),
1384                           LogBytesPerWord);
1385       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1386       __ ldr(rscratch1, data_addr);
1387       __ orr(rscratch1, rscratch1, header_bits);
1388       __ str(rscratch1, data_addr);
1389       __ b(*obj_is_null);
1390       __ bind(not_null);
1391     } else {
1392       __ cbz(obj, *obj_is_null);
1393     }
1394 
1395   if (!k->is_loaded()) {
1396     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1397   } else {
1398     __ mov_metadata(k_RInfo, k->constant_encoding());
1399   }
1400   __ verify_oop(obj);
1401 
1402   if (op->fast_check()) {
1403     // get object class
1404     // not a safepoint as obj null check happens earlier
1405     __ load_klass(rscratch1, obj);
1406     __ cmp( rscratch1, k_RInfo);
1407 
1408     __ br(Assembler::NE, *failure_target);
1409     // successful cast, fall through to profile or jump
1410   } else {
1411     // get object class
1412     // not a safepoint as obj null check happens earlier
1413     __ load_klass(klass_RInfo, obj);
1414     if (k->is_loaded()) {
1415       // See if we get an immediate positive hit
1416       __ ldr(rscratch1, Address(klass_RInfo, long(k->super_check_offset())));
1417       __ cmp(k_RInfo, rscratch1);
1418       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1419         __ br(Assembler::NE, *failure_target);
1420         // successful cast, fall through to profile or jump
1421       } else {
1422         // See if we get an immediate positive hit
1423         __ br(Assembler::EQ, *success_target);
1424         // check for self
1425         __ cmp(klass_RInfo, k_RInfo);
1426         __ br(Assembler::EQ, *success_target);
1427 
1428         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1429         __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1430         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1431         // result is a boolean
1432         __ cbzw(klass_RInfo, *failure_target);
1433         // successful cast, fall through to profile or jump
1434       }
1435     } else {
1436       // perform the fast part of the checking logic
1437       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1438       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1439       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1440       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1441       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1442       // result is a boolean
1443       __ cbz(k_RInfo, *failure_target);
1444       // successful cast, fall through to profile or jump
1445     }
1446   }
1447   if (should_profile) {
1448     Register mdo  = klass_RInfo, recv = k_RInfo;
1449     __ bind(profile_cast_success);
1450     __ mov_metadata(mdo, md->constant_encoding());
1451     __ load_klass(recv, obj);
1452     Label update_done;
1453     type_profile_helper(mdo, md, data, recv, success);
1454     __ b(*success);
1455 
1456     __ bind(profile_cast_failure);
1457     __ mov_metadata(mdo, md->constant_encoding());
1458     Address counter_addr
1459       = __ form_address(rscratch2, mdo,
1460                         md->byte_offset_of_slot(data, CounterData::count_offset()),
1461                         LogBytesPerWord);
1462     __ ldr(rscratch1, counter_addr);
1463     __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1464     __ str(rscratch1, counter_addr);
1465     __ b(*failure);
1466   }
1467   __ b(*success);
1468 }
1469 
1470 
1471 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1472   const bool should_profile = op->should_profile();
1473 
1474   LIR_Code code = op->code();
1475   if (code == lir_store_check) {
1476     Register value = op->object()->as_register();
1477     Register array = op->array()->as_register();
1478     Register k_RInfo = op->tmp1()->as_register();
1479     Register klass_RInfo = op->tmp2()->as_register();
1480     Register Rtmp1 = op->tmp3()->as_register();
1481 
1482     CodeStub* stub = op->stub();
1483 
1484     // check if it needs to be profiled
1485     ciMethodData* md;
1486     ciProfileData* data;
1487 
1488     if (should_profile) {
1489       ciMethod* method = op->profiled_method();
1490       assert(method != NULL, "Should have method");
1491       int bci = op->profiled_bci();
1492       md = method->method_data_or_null();
1493       assert(md != NULL, "Sanity");
1494       data = md->bci_to_data(bci);
1495       assert(data != NULL,                "need data for type check");
1496       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1497     }
1498     Label profile_cast_success, profile_cast_failure, done;
1499     Label *success_target = should_profile ? &profile_cast_success : &done;
1500     Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
1501 
1502     if (should_profile) {
1503       Label not_null;
1504       __ cbnz(value, not_null);
1505       // Object is null; update MDO and exit
1506       Register mdo  = klass_RInfo;
1507       __ mov_metadata(mdo, md->constant_encoding());
1508       Address data_addr
1509         = __ form_address(rscratch2, mdo,
1510                           md->byte_offset_of_slot(data, DataLayout::header_offset()),
1511                           LogBytesPerInt);
1512       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1513       __ ldrw(rscratch1, data_addr);
1514       __ orrw(rscratch1, rscratch1, header_bits);
1515       __ strw(rscratch1, data_addr);
1516       __ b(done);
1517       __ bind(not_null);
1518     } else {
1519       __ cbz(value, done);
1520     }
1521 
1522     add_debug_info_for_null_check_here(op->info_for_exception());
1523     __ load_klass(k_RInfo, array);
1524     __ load_klass(klass_RInfo, value);
1525 
1526     // get instance klass (it's already uncompressed)
1527     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1528     // perform the fast part of the checking logic
1529     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1530     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1531     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1532     __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1533     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1534     // result is a boolean
1535     __ cbzw(k_RInfo, *failure_target);
1536     // fall through to the success case
1537 
1538     if (should_profile) {
1539       Register mdo  = klass_RInfo, recv = k_RInfo;
1540       __ bind(profile_cast_success);
1541       __ mov_metadata(mdo, md->constant_encoding());
1542       __ load_klass(recv, value);
1543       Label update_done;
1544       type_profile_helper(mdo, md, data, recv, &done);
1545       __ b(done);
1546 
1547       __ bind(profile_cast_failure);
1548       __ mov_metadata(mdo, md->constant_encoding());
1549       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1550       __ lea(rscratch2, counter_addr);
1551       __ ldr(rscratch1, Address(rscratch2));
1552       __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1553       __ str(rscratch1, Address(rscratch2));
1554       __ b(*stub->entry());
1555     }
1556 
1557     __ bind(done);
1558   } else if (code == lir_checkcast) {
1559     Register obj = op->object()->as_register();
1560     Register dst = op->result_opr()->as_register();
1561     Label success;
1562     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1563     __ bind(success);
1564     if (dst != obj) {
1565       __ mov(dst, obj);
1566     }
1567   } else if (code == lir_instanceof) {
1568     Register obj = op->object()->as_register();
1569     Register dst = op->result_opr()->as_register();
1570     Label success, failure, done;
1571     emit_typecheck_helper(op, &success, &failure, &failure);
1572     __ bind(failure);
1573     __ mov(dst, zr);
1574     __ b(done);
1575     __ bind(success);
1576     __ mov(dst, 1);
1577     __ bind(done);
1578   } else {
1579     ShouldNotReachHere();
1580   }
1581 }
1582 
1583 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1584   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1585   __ cset(rscratch1, Assembler::NE);
1586   __ membar(__ AnyAny);
1587 }
1588 
1589 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1590   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1591   __ cset(rscratch1, Assembler::NE);
1592   __ membar(__ AnyAny);
1593 }
1594 
1595 
1596 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1597   assert(VM_Version::supports_cx8(), "wrong machine");
1598   Register addr = as_reg(op->addr());
1599   Register newval = as_reg(op->new_value());
1600   Register cmpval = as_reg(op->cmp_value());
1601   Label succeed, fail, around;
1602 
1603   if (op->code() == lir_cas_obj) {
1604     if (UseCompressedOops) {
1605       Register t1 = op->tmp1()->as_register();
1606       assert(op->tmp1()->is_valid(), "must be");
1607       __ encode_heap_oop(t1, cmpval);
1608       cmpval = t1;
1609       __ encode_heap_oop(rscratch2, newval);
1610       newval = rscratch2;
1611       casw(addr, newval, cmpval);
1612     } else {
1613       casl(addr, newval, cmpval);
1614     }
1615   } else if (op->code() == lir_cas_int) {
1616     casw(addr, newval, cmpval);
1617   } else {
1618     casl(addr, newval, cmpval);
1619   }
1620 }
1621 
1622 
1623 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1624 
1625   Assembler::Condition acond, ncond;
1626   switch (condition) {
1627   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1628   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1629   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1630   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1631   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1632   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1633   case lir_cond_belowEqual:
1634   case lir_cond_aboveEqual:
1635   default:                    ShouldNotReachHere();
1636     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1637   }
1638 
1639   assert(result->is_single_cpu() || result->is_double_cpu(),
1640          "expect single register for result");
1641   if (opr1->is_constant() && opr2->is_constant()
1642       && opr1->type() == T_INT && opr2->type() == T_INT) {
1643     jint val1 = opr1->as_jint();
1644     jint val2 = opr2->as_jint();
1645     if (val1 == 0 && val2 == 1) {
1646       __ cset(result->as_register(), ncond);
1647       return;
1648     } else if (val1 == 1 && val2 == 0) {
1649       __ cset(result->as_register(), acond);
1650       return;
1651     }
1652   }
1653 
1654   if (opr1->is_constant() && opr2->is_constant()
1655       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1656     jlong val1 = opr1->as_jlong();
1657     jlong val2 = opr2->as_jlong();
1658     if (val1 == 0 && val2 == 1) {
1659       __ cset(result->as_register_lo(), ncond);
1660       return;
1661     } else if (val1 == 1 && val2 == 0) {
1662       __ cset(result->as_register_lo(), acond);
1663       return;
1664     }
1665   }
1666 
1667   if (opr1->is_stack()) {
1668     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1669     opr1 = FrameMap::rscratch1_opr;
1670   } else if (opr1->is_constant()) {
1671     LIR_Opr tmp
1672       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1673     const2reg(opr1, tmp, lir_patch_none, NULL);
1674     opr1 = tmp;
1675   }
1676 
1677   if (opr2->is_stack()) {
1678     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1679     opr2 = FrameMap::rscratch2_opr;
1680   } else if (opr2->is_constant()) {
1681     LIR_Opr tmp
1682       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1683     const2reg(opr2, tmp, lir_patch_none, NULL);
1684     opr2 = tmp;
1685   }
1686 
1687   if (result->type() == T_LONG)
1688     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1689   else
1690     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1691 }
1692 
1693 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1694   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1695 
1696   if (left->is_single_cpu()) {
1697     Register lreg = left->as_register();
1698     Register dreg = as_reg(dest);
1699 
1700     if (right->is_single_cpu()) {
1701       // cpu register - cpu register
1702 
1703       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1704              "should be");
1705       Register rreg = right->as_register();
1706       switch (code) {
1707       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1708       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1709       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1710       default:      ShouldNotReachHere();
1711       }
1712 
1713     } else if (right->is_double_cpu()) {
1714       Register rreg = right->as_register_lo();
1715       // single_cpu + double_cpu: can happen with obj+long
1716       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1717       switch (code) {
1718       case lir_add: __ add(dreg, lreg, rreg); break;
1719       case lir_sub: __ sub(dreg, lreg, rreg); break;
1720       default: ShouldNotReachHere();
1721       }
1722     } else if (right->is_constant()) {
1723       // cpu register - constant
1724       jlong c;
1725 
1726       // FIXME.  This is fugly: we really need to factor all this logic.
1727       switch(right->type()) {
1728       case T_LONG:
1729         c = right->as_constant_ptr()->as_jlong();
1730         break;
1731       case T_INT:
1732       case T_ADDRESS:
1733         c = right->as_constant_ptr()->as_jint();
1734         break;
1735       default:
1736         ShouldNotReachHere();
1737         c = 0;  // unreachable
1738         break;
1739       }
1740 
1741       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1742       if (c == 0 && dreg == lreg) {
1743         COMMENT("effective nop elided");
1744         return;
1745       }
1746       switch(left->type()) {
1747       case T_INT:
1748         switch (code) {
1749         case lir_add: __ addw(dreg, lreg, c); break;
1750         case lir_sub: __ subw(dreg, lreg, c); break;
1751         default: ShouldNotReachHere();
1752         }
1753         break;
1754       case T_OBJECT:
1755       case T_ADDRESS:
1756         switch (code) {
1757         case lir_add: __ add(dreg, lreg, c); break;
1758         case lir_sub: __ sub(dreg, lreg, c); break;
1759         default: ShouldNotReachHere();
1760         }
1761         break;
1762         ShouldNotReachHere();
1763       }
1764     } else {
1765       ShouldNotReachHere();
1766     }
1767 
1768   } else if (left->is_double_cpu()) {
1769     Register lreg_lo = left->as_register_lo();
1770 
1771     if (right->is_double_cpu()) {
1772       // cpu register - cpu register
1773       Register rreg_lo = right->as_register_lo();
1774       switch (code) {
1775       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1776       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1777       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1778       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1779       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1780       default:
1781         ShouldNotReachHere();
1782       }
1783 
1784     } else if (right->is_constant()) {
1785       jlong c = right->as_constant_ptr()->as_jlong_bits();
1786       Register dreg = as_reg(dest);
1787       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1788       if (c == 0 && dreg == lreg_lo) {
1789         COMMENT("effective nop elided");
1790         return;
1791       }
1792       switch (code) {
1793         case lir_add: __ add(dreg, lreg_lo, c); break;
1794         case lir_sub: __ sub(dreg, lreg_lo, c); break;
1795         default:
1796           ShouldNotReachHere();
1797       }
1798     } else {
1799       ShouldNotReachHere();
1800     }
1801   } else if (left->is_single_fpu()) {
1802     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1803     switch (code) {
1804     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1805     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1806     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1807     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1808     default:
1809       ShouldNotReachHere();
1810     }
1811   } else if (left->is_double_fpu()) {
1812     if (right->is_double_fpu()) {
1813       // cpu register - cpu register
1814       switch (code) {
1815       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1816       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1817       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1818       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1819       default:
1820         ShouldNotReachHere();
1821       }
1822     } else {
1823       if (right->is_constant()) {
1824         ShouldNotReachHere();
1825       }
1826       ShouldNotReachHere();
1827     }
1828   } else if (left->is_single_stack() || left->is_address()) {
1829     assert(left == dest, "left and dest must be equal");
1830     ShouldNotReachHere();
1831   } else {
1832     ShouldNotReachHere();
1833   }
1834 }
1835 
1836 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1837 
1838 
1839 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
1840   switch(code) {
1841   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1842   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1843   default      : ShouldNotReachHere();
1844   }
1845 }
1846 
1847 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1848 
1849   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1850   Register Rleft = left->is_single_cpu() ? left->as_register() :
1851                                            left->as_register_lo();
1852    if (dst->is_single_cpu()) {
1853      Register Rdst = dst->as_register();
1854      if (right->is_constant()) {
1855        switch (code) {
1856          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1857          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1858          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1859          default: ShouldNotReachHere(); break;
1860        }
1861      } else {
1862        Register Rright = right->is_single_cpu() ? right->as_register() :
1863                                                   right->as_register_lo();
1864        switch (code) {
1865          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1866          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1867          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1868          default: ShouldNotReachHere(); break;
1869        }
1870      }
1871    } else {
1872      Register Rdst = dst->as_register_lo();
1873      if (right->is_constant()) {
1874        switch (code) {
1875          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1876          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1877          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1878          default: ShouldNotReachHere(); break;
1879        }
1880      } else {
1881        Register Rright = right->is_single_cpu() ? right->as_register() :
1882                                                   right->as_register_lo();
1883        switch (code) {
1884          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1885          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1886          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1887          default: ShouldNotReachHere(); break;
1888        }
1889      }
1890    }
1891 }
1892 
1893 
1894 
1895 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { Unimplemented(); }
1896 
1897 
1898 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1899   if (opr1->is_constant() && opr2->is_single_cpu()) {
1900     // tableswitch
1901     Register reg = as_reg(opr2);
1902     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1903     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1904   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1905     Register reg1 = as_reg(opr1);
1906     if (opr2->is_single_cpu()) {
1907       // cpu register - cpu register
1908       Register reg2 = opr2->as_register();
1909       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1910         __ cmp(reg1, reg2);
1911       } else {
1912         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
1913         __ cmpw(reg1, reg2);
1914       }
1915       return;
1916     }
1917     if (opr2->is_double_cpu()) {
1918       // cpu register - cpu register
1919       Register reg2 = opr2->as_register_lo();
1920       __ cmp(reg1, reg2);
1921       return;
1922     }
1923 
1924     if (opr2->is_constant()) {
1925       bool is_32bit = false; // width of register operand
1926       jlong imm;
1927 
1928       switch(opr2->type()) {
1929       case T_INT:
1930         imm = opr2->as_constant_ptr()->as_jint();
1931         is_32bit = true;
1932         break;
1933       case T_LONG:
1934         imm = opr2->as_constant_ptr()->as_jlong();
1935         break;
1936       case T_ADDRESS:
1937         imm = opr2->as_constant_ptr()->as_jint();
1938         break;
1939       case T_OBJECT:
1940       case T_ARRAY:
1941         imm = jlong(opr2->as_constant_ptr()->as_jobject());
1942         break;
1943       default:
1944         ShouldNotReachHere();
1945         imm = 0;  // unreachable
1946         break;
1947       }
1948 
1949       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1950         if (is_32bit)
1951           __ cmpw(reg1, imm);
1952         else
1953           __ cmp(reg1, imm);
1954         return;
1955       } else {
1956         __ mov(rscratch1, imm);
1957         if (is_32bit)
1958           __ cmpw(reg1, rscratch1);
1959         else
1960           __ cmp(reg1, rscratch1);
1961         return;
1962       }
1963     } else
1964       ShouldNotReachHere();
1965   } else if (opr1->is_single_fpu()) {
1966     FloatRegister reg1 = opr1->as_float_reg();
1967     assert(opr2->is_single_fpu(), "expect single float register");
1968     FloatRegister reg2 = opr2->as_float_reg();
1969     __ fcmps(reg1, reg2);
1970   } else if (opr1->is_double_fpu()) {
1971     FloatRegister reg1 = opr1->as_double_reg();
1972     assert(opr2->is_double_fpu(), "expect double float register");
1973     FloatRegister reg2 = opr2->as_double_reg();
1974     __ fcmpd(reg1, reg2);
1975   } else {
1976     ShouldNotReachHere();
1977   }
1978 }
1979 
1980 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1981   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1982     bool is_unordered_less = (code == lir_ucmp_fd2i);
1983     if (left->is_single_fpu()) {
1984       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1985     } else if (left->is_double_fpu()) {
1986       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1987     } else {
1988       ShouldNotReachHere();
1989     }
1990   } else if (code == lir_cmp_l2i) {
1991     Label done;
1992     __ cmp(left->as_register_lo(), right->as_register_lo());
1993     __ mov(dst->as_register(), (u_int64_t)-1L);
1994     __ br(Assembler::LT, done);
1995     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
1996     __ bind(done);
1997   } else {
1998     ShouldNotReachHere();
1999   }
2000 }
2001 
2002 
2003 void LIR_Assembler::align_call(LIR_Code code) {  }
2004 
2005 
2006 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2007   address call = __ trampoline_call(Address(op->addr(), rtype));
2008   if (call == NULL) {
2009     bailout("trampoline stub overflow");
2010     return;
2011   }
2012   add_call_info(code_offset(), op->info());
2013 }
2014 
2015 
2016 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2017   address call = __ ic_call(op->addr());
2018   if (call == NULL) {
2019     bailout("trampoline stub overflow");
2020     return;
2021   }
2022   add_call_info(code_offset(), op->info());
2023 }
2024 
2025 
2026 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2027 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2028   ShouldNotReachHere();
2029 }
2030 
2031 
2032 void LIR_Assembler::emit_static_call_stub() {
2033   address call_pc = __ pc();
2034   address stub = __ start_a_stub(call_stub_size());
2035   if (stub == NULL) {
2036     bailout("static call stub overflow");
2037     return;
2038   }
2039 
2040   int start = __ offset();
2041 
2042   __ relocate(static_stub_Relocation::spec(call_pc));
2043   __ mov_metadata(rmethod, (Metadata*)NULL);
2044   __ movptr(rscratch1, 0);
2045   __ br(rscratch1);
2046 
2047   assert(__ offset() - start <= call_stub_size(), "stub too big");
2048   __ end_a_stub();
2049 }
2050 
2051 
2052 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2053   assert(exceptionOop->as_register() == r0, "must match");
2054   assert(exceptionPC->as_register() == r3, "must match");
2055 
2056   // exception object is not added to oop map by LinearScan
2057   // (LinearScan assumes that no oops are in fixed registers)
2058   info->add_register_oop(exceptionOop);
2059   Runtime1::StubID unwind_id;
2060 
2061   // get current pc information
2062   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2063   int pc_for_athrow_offset = __ offset();
2064   InternalAddress pc_for_athrow(__ pc());
2065   __ adr(exceptionPC->as_register(), pc_for_athrow);
2066   add_call_info(pc_for_athrow_offset, info); // for exception handler
2067 
2068   __ verify_not_null_oop(r0);
2069   // search an exception handler (r0: exception oop, r3: throwing pc)
2070   if (compilation()->has_fpu_code()) {
2071     unwind_id = Runtime1::handle_exception_id;
2072   } else {
2073     unwind_id = Runtime1::handle_exception_nofpu_id;
2074   }
2075   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2076 
2077   // FIXME: enough room for two byte trap   ????
2078   __ nop();
2079 }
2080 
2081 
2082 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2083   assert(exceptionOop->as_register() == r0, "must match");
2084 
2085   __ b(_unwind_handler_entry);
2086 }
2087 
2088 
2089 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2090   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2091   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2092 
2093   switch (left->type()) {
2094     case T_INT: {
2095       switch (code) {
2096       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2097       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2098       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2099       default:
2100         ShouldNotReachHere();
2101         break;
2102       }
2103       break;
2104     case T_LONG:
2105     case T_ADDRESS:
2106     case T_OBJECT:
2107       switch (code) {
2108       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2109       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2110       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2111       default:
2112         ShouldNotReachHere();
2113         break;
2114       }
2115       break;
2116     default:
2117       ShouldNotReachHere();
2118       break;
2119     }
2120   }
2121 }
2122 
2123 
2124 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2125   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2126   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2127 
2128   switch (left->type()) {
2129     case T_INT: {
2130       switch (code) {
2131       case lir_shl:  __ lslw (dreg, lreg, count); break;
2132       case lir_shr:  __ asrw (dreg, lreg, count); break;
2133       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2134       default:
2135         ShouldNotReachHere();
2136         break;
2137       }
2138       break;
2139     case T_LONG:
2140     case T_ADDRESS:
2141     case T_OBJECT:
2142       switch (code) {
2143       case lir_shl:  __ lsl (dreg, lreg, count); break;
2144       case lir_shr:  __ asr (dreg, lreg, count); break;
2145       case lir_ushr: __ lsr (dreg, lreg, count); break;
2146       default:
2147         ShouldNotReachHere();
2148         break;
2149       }
2150       break;
2151     default:
2152       ShouldNotReachHere();
2153       break;
2154     }
2155   }
2156 }
2157 
2158 
2159 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2160   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2161   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2162   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2163   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2164 }
2165 
2166 
2167 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2168   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2169   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2170   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2171   __ mov (rscratch1, c);
2172   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2173 }
2174 
2175 
2176 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2177   ShouldNotReachHere();
2178   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2179   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2180   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2181   __ lea(rscratch1, __ constant_oop_address(o));
2182   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2183 }
2184 
2185 
2186 // This code replaces a call to arraycopy; no exception may
2187 // be thrown in this code, they must be thrown in the System.arraycopy
2188 // activation frame; we could save some checks if this would not be the case
2189 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2190   ciArrayKlass* default_type = op->expected_type();
2191   Register src = op->src()->as_register();
2192   Register dst = op->dst()->as_register();
2193   Register src_pos = op->src_pos()->as_register();
2194   Register dst_pos = op->dst_pos()->as_register();
2195   Register length  = op->length()->as_register();
2196   Register tmp = op->tmp()->as_register();
2197 
2198   CodeStub* stub = op->stub();
2199   int flags = op->flags();
2200   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2201   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2202 
2203   // if we don't know anything, just go through the generic arraycopy
2204   if (default_type == NULL // || basic_type == T_OBJECT
2205       ) {
2206     Label done;
2207     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2208 
2209     // Save the arguments in case the generic arraycopy fails and we
2210     // have to fall back to the JNI stub
2211     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2212     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2213     __ str(src,              Address(sp, 4*BytesPerWord));
2214 
2215     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
2216     address copyfunc_addr = StubRoutines::generic_arraycopy();
2217 
2218     // The arguments are in java calling convention so we shift them
2219     // to C convention
2220     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2221     __ mov(c_rarg0, j_rarg0);
2222     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2223     __ mov(c_rarg1, j_rarg1);
2224     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2225     __ mov(c_rarg2, j_rarg2);
2226     assert_different_registers(c_rarg3, j_rarg4);
2227     __ mov(c_rarg3, j_rarg3);
2228     __ mov(c_rarg4, j_rarg4);
2229     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2230       __ mov(rscratch1, RuntimeAddress(C_entry));
2231       __ blrt(rscratch1, 5, 0, 1);
2232     } else {
2233 #ifndef PRODUCT
2234       if (PrintC1Statistics) {
2235         __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2236       }
2237 #endif
2238       __ far_call(RuntimeAddress(copyfunc_addr));
2239     }
2240 
2241     __ cbz(r0, *stub->continuation());
2242 
2243     // Reload values from the stack so they are where the stub
2244     // expects them.
2245     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2246     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2247     __ ldr(src,              Address(sp, 4*BytesPerWord));
2248 
2249     if (copyfunc_addr != NULL) {
2250       // r0 is -1^K where K == partial copied count
2251       __ eonw(rscratch1, r0, 0);
2252       // adjust length down and src/end pos up by partial copied count
2253       __ subw(length, length, rscratch1);
2254       __ addw(src_pos, src_pos, rscratch1);
2255       __ addw(dst_pos, dst_pos, rscratch1);
2256     }
2257     __ b(*stub->entry());
2258 
2259     __ bind(*stub->continuation());
2260     return;
2261   }
2262 
2263   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2264 
2265   int elem_size = type2aelembytes(basic_type);
2266   int shift_amount;
2267   int scale = exact_log2(elem_size);
2268 
2269   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2270   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2271   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2272   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2273 
2274   // test for NULL
2275   if (flags & LIR_OpArrayCopy::src_null_check) {
2276     __ cbz(src, *stub->entry());
2277   }
2278   if (flags & LIR_OpArrayCopy::dst_null_check) {
2279     __ cbz(dst, *stub->entry());
2280   }
2281 
2282   // If the compiler was not able to prove that exact type of the source or the destination
2283   // of the arraycopy is an array type, check at runtime if the source or the destination is
2284   // an instance type.
2285   if (flags & LIR_OpArrayCopy::type_check) {
2286     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2287       __ load_klass(tmp, dst);
2288       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2289       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2290       __ br(Assembler::GE, *stub->entry());
2291     }
2292 
2293     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2294       __ load_klass(tmp, src);
2295       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2296       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2297       __ br(Assembler::GE, *stub->entry());
2298     }
2299   }
2300 
2301   // check if negative
2302   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2303     __ cmpw(src_pos, 0);
2304     __ br(Assembler::LT, *stub->entry());
2305   }
2306   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2307     __ cmpw(dst_pos, 0);
2308     __ br(Assembler::LT, *stub->entry());
2309   }
2310 
2311   if (flags & LIR_OpArrayCopy::length_positive_check) {
2312     __ cmpw(length, 0);
2313     __ br(Assembler::LT, *stub->entry());
2314   }
2315 
2316   if (flags & LIR_OpArrayCopy::src_range_check) {
2317     __ addw(tmp, src_pos, length);
2318     __ ldrw(rscratch1, src_length_addr);
2319     __ cmpw(tmp, rscratch1);
2320     __ br(Assembler::HI, *stub->entry());
2321   }
2322   if (flags & LIR_OpArrayCopy::dst_range_check) {
2323     __ addw(tmp, dst_pos, length);
2324     __ ldrw(rscratch1, dst_length_addr);
2325     __ cmpw(tmp, rscratch1);
2326     __ br(Assembler::HI, *stub->entry());
2327   }
2328 
2329   if (flags & LIR_OpArrayCopy::type_check) {
2330     // We don't know the array types are compatible
2331     if (basic_type != T_OBJECT) {
2332       // Simple test for basic type arrays
2333       if (UseCompressedClassPointers) {
2334         __ ldrw(tmp, src_klass_addr);
2335         __ ldrw(rscratch1, dst_klass_addr);
2336         __ cmpw(tmp, rscratch1);
2337       } else {
2338         __ ldr(tmp, src_klass_addr);
2339         __ ldr(rscratch1, dst_klass_addr);
2340         __ cmp(tmp, rscratch1);
2341       }
2342       __ br(Assembler::NE, *stub->entry());
2343     } else {
2344       // For object arrays, if src is a sub class of dst then we can
2345       // safely do the copy.
2346       Label cont, slow;
2347 
2348 #define PUSH(r1, r2)                                    \
2349       stp(r1, r2, __ pre(sp, -2 * wordSize));
2350 
2351 #define POP(r1, r2)                                     \
2352       ldp(r1, r2, __ post(sp, 2 * wordSize));
2353 
2354       __ PUSH(src, dst);
2355 
2356       __ load_klass(src, src);
2357       __ load_klass(dst, dst);
2358 
2359       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
2360 
2361       __ PUSH(src, dst);
2362       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2363       __ POP(src, dst);
2364 
2365       __ cbnz(src, cont);
2366 
2367       __ bind(slow);
2368       __ POP(src, dst);
2369 
2370       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2371       if (copyfunc_addr != NULL) { // use stub if available
2372         // src is not a sub class of dst so we have to do a
2373         // per-element check.
2374 
2375         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2376         if ((flags & mask) != mask) {
2377           // Check that at least both of them object arrays.
2378           assert(flags & mask, "one of the two should be known to be an object array");
2379 
2380           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2381             __ load_klass(tmp, src);
2382           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2383             __ load_klass(tmp, dst);
2384           }
2385           int lh_offset = in_bytes(Klass::layout_helper_offset());
2386           Address klass_lh_addr(tmp, lh_offset);
2387           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2388           __ ldrw(rscratch1, klass_lh_addr);
2389           __ mov(rscratch2, objArray_lh);
2390           __ eorw(rscratch1, rscratch1, rscratch2);
2391           __ cbnzw(rscratch1, *stub->entry());
2392         }
2393 
2394        // Spill because stubs can use any register they like and it's
2395        // easier to restore just those that we care about.
2396         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2397         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2398         __ str(src,              Address(sp, 4*BytesPerWord));
2399 
2400         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2401         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2402         assert_different_registers(c_rarg0, dst, dst_pos, length);
2403         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2404         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2405         assert_different_registers(c_rarg1, dst, length);
2406         __ uxtw(c_rarg2, length);
2407         assert_different_registers(c_rarg2, dst);
2408 
2409         __ load_klass(c_rarg4, dst);
2410         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2411         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2412         __ far_call(RuntimeAddress(copyfunc_addr));
2413 
2414 #ifndef PRODUCT
2415         if (PrintC1Statistics) {
2416           Label failed;
2417           __ cbnz(r0, failed);
2418           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2419           __ bind(failed);
2420         }
2421 #endif
2422 
2423         __ cbz(r0, *stub->continuation());
2424 
2425 #ifndef PRODUCT
2426         if (PrintC1Statistics) {
2427           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2428         }
2429 #endif
2430         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2431 
2432         // Restore previously spilled arguments
2433         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2434         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2435         __ ldr(src,              Address(sp, 4*BytesPerWord));
2436 
2437         // return value is -1^K where K is partial copied count
2438         __ eonw(rscratch1, r0, zr);
2439         // adjust length down and src/end pos up by partial copied count
2440         __ subw(length, length, rscratch1);
2441         __ addw(src_pos, src_pos, rscratch1);
2442         __ addw(dst_pos, dst_pos, rscratch1);
2443       }
2444 
2445       __ b(*stub->entry());
2446 
2447       __ bind(cont);
2448       __ POP(src, dst);
2449     }
2450   }
2451 
2452 #ifdef ASSERT
2453   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2454     // Sanity check the known type with the incoming class.  For the
2455     // primitive case the types must match exactly with src.klass and
2456     // dst.klass each exactly matching the default type.  For the
2457     // object array case, if no type check is needed then either the
2458     // dst type is exactly the expected type and the src type is a
2459     // subtype which we can't check or src is the same array as dst
2460     // but not necessarily exactly of type default_type.
2461     Label known_ok, halt;
2462     __ mov_metadata(tmp, default_type->constant_encoding());
2463     if (UseCompressedClassPointers) {
2464       __ encode_klass_not_null(tmp);
2465     }
2466 
2467     if (basic_type != T_OBJECT) {
2468 
2469       if (UseCompressedClassPointers) {
2470         __ ldrw(rscratch1, dst_klass_addr);
2471         __ cmpw(tmp, rscratch1);
2472       } else {
2473         __ ldr(rscratch1, dst_klass_addr);
2474         __ cmp(tmp, rscratch1);
2475       }
2476       __ br(Assembler::NE, halt);
2477       if (UseCompressedClassPointers) {
2478         __ ldrw(rscratch1, src_klass_addr);
2479         __ cmpw(tmp, rscratch1);
2480       } else {
2481         __ ldr(rscratch1, src_klass_addr);
2482         __ cmp(tmp, rscratch1);
2483       }
2484       __ br(Assembler::EQ, known_ok);
2485     } else {
2486       if (UseCompressedClassPointers) {
2487         __ ldrw(rscratch1, dst_klass_addr);
2488         __ cmpw(tmp, rscratch1);
2489       } else {
2490         __ ldr(rscratch1, dst_klass_addr);
2491         __ cmp(tmp, rscratch1);
2492       }
2493       __ br(Assembler::EQ, known_ok);
2494       __ cmp(src, dst);
2495       __ br(Assembler::EQ, known_ok);
2496     }
2497     __ bind(halt);
2498     __ stop("incorrect type information in arraycopy");
2499     __ bind(known_ok);
2500   }
2501 #endif
2502 
2503 #ifndef PRODUCT
2504   if (PrintC1Statistics) {
2505     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2506   }
2507 #endif
2508 
2509   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2510   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2511   assert_different_registers(c_rarg0, dst, dst_pos, length);
2512   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2513   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2514   assert_different_registers(c_rarg1, dst, length);
2515   __ uxtw(c_rarg2, length);
2516   assert_different_registers(c_rarg2, dst);
2517 
2518   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2519   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2520   const char *name;
2521   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2522 
2523  CodeBlob *cb = CodeCache::find_blob(entry);
2524  if (cb) {
2525    __ far_call(RuntimeAddress(entry));
2526  } else {
2527    __ call_VM_leaf(entry, 3);
2528  }
2529 
2530   __ bind(*stub->continuation());
2531 }
2532 
2533 
2534 
2535 
2536 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2537   Register obj = op->obj_opr()->as_register();  // may not be an oop
2538   Register hdr = op->hdr_opr()->as_register();
2539   Register lock = op->lock_opr()->as_register();
2540   if (!UseFastLocking) {
2541     __ b(*op->stub()->entry());
2542   } else if (op->code() == lir_lock) {
2543     Register scratch = noreg;
2544     if (UseBiasedLocking) {
2545       scratch = op->scratch_opr()->as_register();
2546     }
2547     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2548     // add debug info for NullPointerException only if one is possible
2549     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
2550     if (op->info() != NULL) {
2551       add_debug_info_for_null_check(null_check_offset, op->info());
2552     }
2553     // done
2554   } else if (op->code() == lir_unlock) {
2555     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2556     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2557   } else {
2558     Unimplemented();
2559   }
2560   __ bind(*op->stub()->continuation());
2561 }
2562 
2563 
2564 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2565   ciMethod* method = op->profiled_method();
2566   int bci          = op->profiled_bci();
2567   ciMethod* callee = op->profiled_callee();
2568 
2569   // Update counter for all call types
2570   ciMethodData* md = method->method_data_or_null();
2571   assert(md != NULL, "Sanity");
2572   ciProfileData* data = md->bci_to_data(bci);
2573   assert(data->is_CounterData(), "need CounterData for calls");
2574   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2575   Register mdo  = op->mdo()->as_register();
2576   __ mov_metadata(mdo, md->constant_encoding());
2577   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2578   Bytecodes::Code bc = method->java_code_at_bci(bci);
2579   const bool callee_is_static = callee->is_loaded() && callee->is_static();
2580   // Perform additional virtual call profiling for invokevirtual and
2581   // invokeinterface bytecodes
2582   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2583       !callee_is_static &&  // required for optimized MH invokes
2584       C1ProfileVirtualCalls) {
2585     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2586     Register recv = op->recv()->as_register();
2587     assert_different_registers(mdo, recv);
2588     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2589     ciKlass* known_klass = op->known_holder();
2590     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2591       // We know the type that will be seen at this call site; we can
2592       // statically update the MethodData* rather than needing to do
2593       // dynamic tests on the receiver type
2594 
2595       // NOTE: we should probably put a lock around this search to
2596       // avoid collisions by concurrent compilations
2597       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2598       uint i;
2599       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2600         ciKlass* receiver = vc_data->receiver(i);
2601         if (known_klass->equals(receiver)) {
2602           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2603           __ addptr(data_addr, DataLayout::counter_increment);
2604           return;
2605         }
2606       }
2607 
2608       // Receiver type not found in profile data; select an empty slot
2609 
2610       // Note that this is less efficient than it should be because it
2611       // always does a write to the receiver part of the
2612       // VirtualCallData rather than just the first time
2613       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2614         ciKlass* receiver = vc_data->receiver(i);
2615         if (receiver == NULL) {
2616           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2617           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2618           __ lea(rscratch2, recv_addr);
2619           __ str(rscratch1, Address(rscratch2));
2620           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2621           __ addptr(data_addr, DataLayout::counter_increment);
2622           return;
2623         }
2624       }
2625     } else {
2626       __ load_klass(recv, recv);
2627       Label update_done;
2628       type_profile_helper(mdo, md, data, recv, &update_done);
2629       // Receiver did not match any saved receiver and there is no empty row for it.
2630       // Increment total counter to indicate polymorphic case.
2631       __ addptr(counter_addr, DataLayout::counter_increment);
2632 
2633       __ bind(update_done);
2634     }
2635   } else {
2636     // Static call
2637     __ addptr(counter_addr, DataLayout::counter_increment);
2638   }
2639 }
2640 
2641 
2642 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2643   Unimplemented();
2644 }
2645 
2646 
2647 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2648   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2649 }
2650 
2651 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2652   assert(op->crc()->is_single_cpu(),  "crc must be register");
2653   assert(op->val()->is_single_cpu(),  "byte value must be register");
2654   assert(op->result_opr()->is_single_cpu(), "result must be register");
2655   Register crc = op->crc()->as_register();
2656   Register val = op->val()->as_register();
2657   Register res = op->result_opr()->as_register();
2658 
2659   assert_different_registers(val, crc, res);
2660   unsigned long offset;
2661   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2662   if (offset) __ add(res, res, offset);
2663 
2664   __ ornw(crc, zr, crc); // ~crc
2665   __ update_byte_crc32(crc, val, res);
2666   __ ornw(res, zr, crc); // ~crc
2667 }
2668 
2669 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2670   COMMENT("emit_profile_type {");
2671   Register obj = op->obj()->as_register();
2672   Register tmp = op->tmp()->as_pointer_register();
2673   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2674   ciKlass* exact_klass = op->exact_klass();
2675   intptr_t current_klass = op->current_klass();
2676   bool not_null = op->not_null();
2677   bool no_conflict = op->no_conflict();
2678 
2679   Label update, next, none;
2680 
2681   bool do_null = !not_null;
2682   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2683   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2684 
2685   assert(do_null || do_update, "why are we here?");
2686   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2687   assert(mdo_addr.base() != rscratch1, "wrong register");
2688 
2689   __ verify_oop(obj);
2690 
2691   if (tmp != obj) {
2692     __ mov(tmp, obj);
2693   }
2694   if (do_null) {
2695     __ cbnz(tmp, update);
2696     if (!TypeEntries::was_null_seen(current_klass)) {
2697       __ ldr(rscratch2, mdo_addr);
2698       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2699       __ str(rscratch2, mdo_addr);
2700     }
2701     if (do_update) {
2702 #ifndef ASSERT
2703       __ b(next);
2704     }
2705 #else
2706       __ b(next);
2707     }
2708   } else {
2709     __ cbnz(tmp, update);
2710     __ stop("unexpected null obj");
2711 #endif
2712   }
2713 
2714   __ bind(update);
2715 
2716   if (do_update) {
2717 #ifdef ASSERT
2718     if (exact_klass != NULL) {
2719       Label ok;
2720       __ load_klass(tmp, tmp);
2721       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2722       __ eor(rscratch1, tmp, rscratch1);
2723       __ cbz(rscratch1, ok);
2724       __ stop("exact klass and actual klass differ");
2725       __ bind(ok);
2726     }
2727 #endif
2728     if (!no_conflict) {
2729       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2730         if (exact_klass != NULL) {
2731           __ mov_metadata(tmp, exact_klass->constant_encoding());
2732         } else {
2733           __ load_klass(tmp, tmp);
2734         }
2735 
2736         __ ldr(rscratch2, mdo_addr);
2737         __ eor(tmp, tmp, rscratch2);
2738         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2739         // klass seen before, nothing to do. The unknown bit may have been
2740         // set already but no need to check.
2741         __ cbz(rscratch1, next);
2742 
2743         __ andr(rscratch1, tmp, TypeEntries::type_unknown);
2744         __ cbnz(rscratch1, next); // already unknown. Nothing to do anymore.
2745 
2746         if (TypeEntries::is_type_none(current_klass)) {
2747           __ cbz(rscratch2, none);
2748           __ cmp(rscratch2, TypeEntries::null_seen);
2749           __ br(Assembler::EQ, none);
2750           // There is a chance that the checks above (re-reading profiling
2751           // data from memory) fail if another thread has just set the
2752           // profiling to this obj's klass
2753           __ dmb(Assembler::ISHLD);
2754           __ ldr(rscratch2, mdo_addr);
2755           __ eor(tmp, tmp, rscratch2);
2756           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2757           __ cbz(rscratch1, next);
2758         }
2759       } else {
2760         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2761                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2762 
2763         __ ldr(tmp, mdo_addr);
2764         __ andr(rscratch1, tmp, TypeEntries::type_unknown);
2765         __ cbnz(rscratch1, next); // already unknown. Nothing to do anymore.
2766       }
2767 
2768       // different than before. Cannot keep accurate profile.
2769       __ ldr(rscratch2, mdo_addr);
2770       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2771       __ str(rscratch2, mdo_addr);
2772 
2773       if (TypeEntries::is_type_none(current_klass)) {
2774         __ b(next);
2775 
2776         __ bind(none);
2777         // first time here. Set profile type.
2778         __ str(tmp, mdo_addr);
2779       }
2780     } else {
2781       // There's a single possible klass at this profile point
2782       assert(exact_klass != NULL, "should be");
2783       if (TypeEntries::is_type_none(current_klass)) {
2784         __ mov_metadata(tmp, exact_klass->constant_encoding());
2785         __ ldr(rscratch2, mdo_addr);
2786         __ eor(tmp, tmp, rscratch2);
2787         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2788         __ cbz(rscratch1, next);
2789 #ifdef ASSERT
2790         {
2791           Label ok;
2792           __ ldr(rscratch1, mdo_addr);
2793           __ cbz(rscratch1, ok);
2794           __ cmp(rscratch1, TypeEntries::null_seen);
2795           __ br(Assembler::EQ, ok);
2796           // may have been set by another thread
2797           __ dmb(Assembler::ISHLD);
2798           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2799           __ ldr(rscratch2, mdo_addr);
2800           __ eor(rscratch2, rscratch1, rscratch2);
2801           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2802           __ cbz(rscratch2, ok);
2803 
2804           __ stop("unexpected profiling mismatch");
2805           __ bind(ok);
2806         }
2807 #endif
2808         // first time here. Set profile type.
2809         __ ldr(tmp, mdo_addr);
2810       } else {
2811         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2812                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2813 
2814         __ ldr(tmp, mdo_addr);
2815         __ andr(rscratch1, tmp, TypeEntries::type_unknown);
2816         __ cbnz(rscratch1, next); // already unknown. Nothing to do anymore.
2817 
2818         __ orr(tmp, tmp, TypeEntries::type_unknown);
2819         __ str(tmp, mdo_addr);
2820         // FIXME: Write barrier needed here?
2821       }
2822     }
2823 
2824     __ bind(next);
2825   }
2826   COMMENT("} emit_profile_type");
2827 }
2828 
2829 
2830 void LIR_Assembler::align_backward_branch_target() {
2831 }
2832 
2833 
2834 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2835   if (left->is_single_cpu()) {
2836     assert(dest->is_single_cpu(), "expect single result reg");
2837     __ negw(dest->as_register(), left->as_register());
2838   } else if (left->is_double_cpu()) {
2839     assert(dest->is_double_cpu(), "expect double result reg");
2840     __ neg(dest->as_register_lo(), left->as_register_lo());
2841   } else if (left->is_single_fpu()) {
2842     assert(dest->is_single_fpu(), "expect single float result reg");
2843     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2844   } else {
2845     assert(left->is_double_fpu(), "expect double float operand reg");
2846     assert(dest->is_double_fpu(), "expect double float result reg");
2847     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2848   }
2849 }
2850 
2851 
2852 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
2853   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2854 }
2855 
2856 
2857 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2858   assert(!tmp->is_valid(), "don't need temporary");
2859 
2860   CodeBlob *cb = CodeCache::find_blob(dest);
2861   if (cb) {
2862     __ far_call(RuntimeAddress(dest));
2863   } else {
2864     __ mov(rscratch1, RuntimeAddress(dest));
2865     int len = args->length();
2866     int type = 0;
2867     if (! result->is_illegal()) {
2868       switch (result->type()) {
2869       case T_VOID:
2870         type = 0;
2871         break;
2872       case T_INT:
2873       case T_LONG:
2874       case T_OBJECT:
2875         type = 1;
2876         break;
2877       case T_FLOAT:
2878         type = 2;
2879         break;
2880       case T_DOUBLE:
2881         type = 3;
2882         break;
2883       default:
2884         ShouldNotReachHere();
2885         break;
2886       }
2887     }
2888     int num_gpargs = 0;
2889     int num_fpargs = 0;
2890     for (int i = 0; i < args->length(); i++) {
2891       LIR_Opr arg = args->at(i);
2892       if (arg->type() == T_FLOAT || arg->type() == T_DOUBLE) {
2893         num_fpargs++;
2894       } else {
2895         num_gpargs++;
2896       }
2897     }
2898     __ blrt(rscratch1, num_gpargs, num_fpargs, type);
2899   }
2900 
2901   if (info != NULL) {
2902     add_call_info_here(info);
2903   }
2904   __ maybe_isb();
2905 }
2906 
2907 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2908   if (dest->is_address() || src->is_address()) {
2909     move_op(src, dest, type, lir_patch_none, info,
2910             /*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false);
2911   } else {
2912     ShouldNotReachHere();
2913   }
2914 }
2915 
2916 #ifdef ASSERT
2917 // emit run-time assertion
2918 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2919   assert(op->code() == lir_assert, "must be");
2920 
2921   if (op->in_opr1()->is_valid()) {
2922     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2923     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2924   } else {
2925     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2926     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2927   }
2928 
2929   Label ok;
2930   if (op->condition() != lir_cond_always) {
2931     Assembler::Condition acond = Assembler::AL;
2932     switch (op->condition()) {
2933       case lir_cond_equal:        acond = Assembler::EQ;  break;
2934       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2935       case lir_cond_less:         acond = Assembler::LT;  break;
2936       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2937       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2938       case lir_cond_greater:      acond = Assembler::GT;  break;
2939       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2940       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2941       default:                    ShouldNotReachHere();
2942     }
2943     __ br(acond, ok);
2944   }
2945   if (op->halt()) {
2946     const char* str = __ code_string(op->msg());
2947     __ stop(str);
2948   } else {
2949     breakpoint();
2950   }
2951   __ bind(ok);
2952 }
2953 #endif
2954 
2955 #ifndef PRODUCT
2956 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2957 #else
2958 #define COMMENT(x)
2959 #endif
2960 
2961 void LIR_Assembler::membar() {
2962   COMMENT("membar");
2963   __ membar(MacroAssembler::AnyAny);
2964 }
2965 
2966 void LIR_Assembler::membar_acquire() {
2967   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2968 }
2969 
2970 void LIR_Assembler::membar_release() {
2971   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2972 }
2973 
2974 void LIR_Assembler::membar_loadload() {
2975   __ membar(Assembler::LoadLoad);
2976 }
2977 
2978 void LIR_Assembler::membar_storestore() {
2979   __ membar(MacroAssembler::StoreStore);
2980 }
2981 
2982 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2983 
2984 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2985 
2986 void LIR_Assembler::on_spin_wait() {
2987   Unimplemented();
2988 }
2989 
2990 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2991   __ mov(result_reg->as_register(), rthread);
2992 }
2993 
2994 
2995 void LIR_Assembler::peephole(LIR_List *lir) {
2996 #if 0
2997   if (tableswitch_count >= max_tableswitches)
2998     return;
2999 
3000   /*
3001     This finite-state automaton recognizes sequences of compare-and-
3002     branch instructions.  We will turn them into a tableswitch.  You
3003     could argue that C1 really shouldn't be doing this sort of
3004     optimization, but without it the code is really horrible.
3005   */
3006 
3007   enum { start_s, cmp1_s, beq_s, cmp_s } state;
3008   int first_key, last_key = -2147483648;
3009   int next_key = 0;
3010   int start_insn = -1;
3011   int last_insn = -1;
3012   Register reg = noreg;
3013   LIR_Opr reg_opr;
3014   state = start_s;
3015 
3016   LIR_OpList* inst = lir->instructions_list();
3017   for (int i = 0; i < inst->length(); i++) {
3018     LIR_Op* op = inst->at(i);
3019     switch (state) {
3020     case start_s:
3021       first_key = -1;
3022       start_insn = i;
3023       switch (op->code()) {
3024       case lir_cmp:
3025         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3026         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3027         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3028             && opr2->is_constant()
3029             && opr2->type() == T_INT) {
3030           reg_opr = opr1;
3031           reg = opr1->as_register();
3032           first_key = opr2->as_constant_ptr()->as_jint();
3033           next_key = first_key + 1;
3034           state = cmp_s;
3035           goto next_state;
3036         }
3037         break;
3038       }
3039       break;
3040     case cmp_s:
3041       switch (op->code()) {
3042       case lir_branch:
3043         if (op->as_OpBranch()->cond() == lir_cond_equal) {
3044           state = beq_s;
3045           last_insn = i;
3046           goto next_state;
3047         }
3048       }
3049       state = start_s;
3050       break;
3051     case beq_s:
3052       switch (op->code()) {
3053       case lir_cmp: {
3054         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3055         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3056         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3057             && opr1->as_register() == reg
3058             && opr2->is_constant()
3059             && opr2->type() == T_INT
3060             && opr2->as_constant_ptr()->as_jint() == next_key) {
3061           last_key = next_key;
3062           next_key++;
3063           state = cmp_s;
3064           goto next_state;
3065         }
3066       }
3067       }
3068       last_key = next_key;
3069       state = start_s;
3070       break;
3071     default:
3072       assert(false, "impossible state");
3073     }
3074     if (state == start_s) {
3075       if (first_key < last_key - 5L && reg != noreg) {
3076         {
3077           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3078           //        reg->encoding(),
3079           //        start_insn, first_key, last_key);
3080           //   for (int i = 0; i < inst->length(); i++) {
3081           //     inst->at(i)->print();
3082           //     tty->print("\n");
3083           //   }
3084           //   tty->print("\n");
3085         }
3086 
3087         struct tableswitch *sw = &switches[tableswitch_count];
3088         sw->_insn_index = start_insn, sw->_first_key = first_key,
3089           sw->_last_key = last_key, sw->_reg = reg;
3090         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3091         {
3092           // Insert the new table of branches
3093           int offset = last_insn;
3094           for (int n = first_key; n < last_key; n++) {
3095             inst->insert_before
3096               (last_insn + 1,
3097                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3098                                 inst->at(offset)->as_OpBranch()->label()));
3099             offset -= 2, i++;
3100           }
3101         }
3102         // Delete all the old compare-and-branch instructions
3103         for (int n = first_key; n < last_key; n++) {
3104           inst->remove_at(start_insn);
3105           inst->remove_at(start_insn);
3106         }
3107         // Insert the tableswitch instruction
3108         inst->insert_before(start_insn,
3109                             new LIR_Op2(lir_cmp, lir_cond_always,
3110                                         LIR_OprFact::intConst(tableswitch_count),
3111                                         reg_opr));
3112         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3113         tableswitch_count++;
3114       }
3115       reg = noreg;
3116       last_key = -2147483648;
3117     }
3118   next_state:
3119     ;
3120   }
3121 #endif
3122 }
3123 
3124 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3125   Address addr = as_Address(src->as_address_ptr());
3126   BasicType type = src->type();
3127   bool is_oop = type == T_OBJECT || type == T_ARRAY;
3128 
3129   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3130   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3131 
3132   switch(type) {
3133   case T_INT:
3134     xchg = &MacroAssembler::atomic_xchgalw;
3135     add = &MacroAssembler::atomic_addalw;
3136     break;
3137   case T_LONG:
3138     xchg = &MacroAssembler::atomic_xchgal;
3139     add = &MacroAssembler::atomic_addal;
3140     break;
3141   case T_OBJECT:
3142   case T_ARRAY:
3143     if (UseCompressedOops) {
3144       xchg = &MacroAssembler::atomic_xchgalw;
3145       add = &MacroAssembler::atomic_addalw;
3146     } else {
3147       xchg = &MacroAssembler::atomic_xchgal;
3148       add = &MacroAssembler::atomic_addal;
3149     }
3150     break;
3151   default:
3152     ShouldNotReachHere();
3153     xchg = &MacroAssembler::atomic_xchgal;
3154     add = &MacroAssembler::atomic_addal; // unreachable
3155   }
3156 
3157   switch (code) {
3158   case lir_xadd:
3159     {
3160       RegisterOrConstant inc;
3161       Register tmp = as_reg(tmp_op);
3162       Register dst = as_reg(dest);
3163       if (data->is_constant()) {
3164         inc = RegisterOrConstant(as_long(data));
3165         assert_different_registers(dst, addr.base(), tmp,
3166                                    rscratch1, rscratch2);
3167       } else {
3168         inc = RegisterOrConstant(as_reg(data));
3169         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3170                                    rscratch1, rscratch2);
3171       }
3172       __ lea(tmp, addr);
3173       (_masm->*add)(dst, inc, tmp);
3174       break;
3175     }
3176   case lir_xchg:
3177     {
3178       Register tmp = tmp_op->as_register();
3179       Register obj = as_reg(data);
3180       Register dst = as_reg(dest);
3181       if (is_oop && UseCompressedOops) {
3182         __ encode_heap_oop(rscratch2, obj);
3183         obj = rscratch2;
3184       }
3185       assert_different_registers(obj, addr.base(), tmp, rscratch1, dst);
3186       __ lea(tmp, addr);
3187       (_masm->*xchg)(dst, obj, tmp);
3188       if (is_oop && UseCompressedOops) {
3189         __ decode_heap_oop(dst);
3190       }
3191     }
3192     break;
3193   default:
3194     ShouldNotReachHere();
3195   }
3196   __ membar(__ AnyAny);
3197 }
3198 
3199 #undef __