1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "interp_masm_aarch64.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "logging/log.hpp"
  31 #include "oops/arrayOop.hpp"
  32 #include "oops/markOop.hpp"
  33 #include "oops/methodData.hpp"
  34 #include "oops/method.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 
  42 
  43 void InterpreterMacroAssembler::narrow(Register result) {
  44 
  45   // Get method->_constMethod->_result_type
  46   ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
  47   ldr(rscratch1, Address(rscratch1, Method::const_offset()));
  48   ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
  49 
  50   Label done, notBool, notByte, notChar;
  51 
  52   // common case first
  53   cmpw(rscratch1, T_INT);
  54   br(Assembler::EQ, done);
  55 
  56   // mask integer result to narrower return type.
  57   cmpw(rscratch1, T_BOOLEAN);
  58   br(Assembler::NE, notBool);
  59   andw(result, result, 0x1);
  60   b(done);
  61 
  62   bind(notBool);
  63   cmpw(rscratch1, T_BYTE);
  64   br(Assembler::NE, notByte);
  65   sbfx(result, result, 0, 8);
  66   b(done);
  67 
  68   bind(notByte);
  69   cmpw(rscratch1, T_CHAR);
  70   br(Assembler::NE, notChar);
  71   ubfx(result, result, 0, 16);  // truncate upper 16 bits
  72   b(done);
  73 
  74   bind(notChar);
  75   sbfx(result, result, 0, 16);     // sign-extend short
  76 
  77   // Nothing to do for T_INT
  78   bind(done);
  79 }
  80 
  81 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  82   assert(entry, "Entry must have been generated by now");
  83   b(entry);
  84 }
  85 
  86 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
  87   if (JvmtiExport::can_pop_frame()) {
  88     Label L;
  89     // Initiate popframe handling only if it is not already being
  90     // processed.  If the flag has the popframe_processing bit set, it
  91     // means that this code is called *during* popframe handling - we
  92     // don't want to reenter.
  93     // This method is only called just after the call into the vm in
  94     // call_VM_base, so the arg registers are available.
  95     ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
  96     tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
  97     tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
  98     // Call Interpreter::remove_activation_preserving_args_entry() to get the
  99     // address of the same-named entrypoint in the generated interpreter code.
 100     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 101     br(r0);
 102     bind(L);
 103   }
 104 }
 105 
 106 
 107 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 108   ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 109   const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
 110   const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
 111   const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
 112   switch (state) {
 113     case atos: ldr(r0, oop_addr);
 114                str(zr, oop_addr);
 115                verify_oop(r0, state);               break;
 116     case ltos: ldr(r0, val_addr);                   break;
 117     case btos:                                   // fall through
 118     case ztos:                                   // fall through
 119     case ctos:                                   // fall through
 120     case stos:                                   // fall through
 121     case itos: ldrw(r0, val_addr);                  break;
 122     case ftos: ldrs(v0, val_addr);                  break;
 123     case dtos: ldrd(v0, val_addr);                  break;
 124     case vtos: /* nothing to do */                  break;
 125     default  : ShouldNotReachHere();
 126   }
 127   // Clean up tos value in the thread object
 128   movw(rscratch1, (int) ilgl);
 129   strw(rscratch1, tos_addr);
 130   strw(zr, val_addr);
 131 }
 132 
 133 
 134 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 135   if (JvmtiExport::can_force_early_return()) {
 136     Label L;
 137     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 138     cbz(rscratch1, L); // if (thread->jvmti_thread_state() == NULL) exit;
 139 
 140     // Initiate earlyret handling only if it is not already being processed.
 141     // If the flag has the earlyret_processing bit set, it means that this code
 142     // is called *during* earlyret handling - we don't want to reenter.
 143     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
 144     cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
 145     br(Assembler::NE, L);
 146 
 147     // Call Interpreter::remove_activation_early_entry() to get the address of the
 148     // same-named entrypoint in the generated interpreter code.
 149     ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
 150     ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
 151     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
 152     br(r0);
 153     bind(L);
 154   }
 155 }
 156 
 157 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 158   Register reg,
 159   int bcp_offset) {
 160   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 161   ldrh(reg, Address(rbcp, bcp_offset));
 162   rev16(reg, reg);
 163 }
 164 
 165 void InterpreterMacroAssembler::get_dispatch() {
 166   unsigned long offset;
 167   adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
 168   lea(rdispatch, Address(rdispatch, offset));
 169 }
 170 
 171 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 172                                                        int bcp_offset,
 173                                                        size_t index_size) {
 174   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 175   if (index_size == sizeof(u2)) {
 176     load_unsigned_short(index, Address(rbcp, bcp_offset));
 177   } else if (index_size == sizeof(u4)) {
 178     // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 179     ldrw(index, Address(rbcp, bcp_offset));
 180     // Check if the secondary index definition is still ~x, otherwise
 181     // we have to change the following assembler code to calculate the
 182     // plain index.
 183     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 184     eonw(index, index, zr);  // convert to plain index
 185   } else if (index_size == sizeof(u1)) {
 186     load_unsigned_byte(index, Address(rbcp, bcp_offset));
 187   } else {
 188     ShouldNotReachHere();
 189   }
 190 }
 191 
 192 // Return
 193 // Rindex: index into constant pool
 194 // Rcache: address of cache entry - ConstantPoolCache::base_offset()
 195 //
 196 // A caller must add ConstantPoolCache::base_offset() to Rcache to get
 197 // the true address of the cache entry.
 198 //
 199 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 200                                                            Register index,
 201                                                            int bcp_offset,
 202                                                            size_t index_size) {
 203   assert_different_registers(cache, index);
 204   assert_different_registers(cache, rcpool);
 205   get_cache_index_at_bcp(index, bcp_offset, index_size);
 206   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 207   // convert from field index to ConstantPoolCacheEntry
 208   // aarch64 already has the cache in rcpool so there is no need to
 209   // install it in cache. instead we pre-add the indexed offset to
 210   // rcpool and return it in cache. All clients of this method need to
 211   // be modified accordingly.
 212   add(cache, rcpool, index, Assembler::LSL, 5);
 213 }
 214 
 215 
 216 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 217                                                                         Register index,
 218                                                                         Register bytecode,
 219                                                                         int byte_no,
 220                                                                         int bcp_offset,
 221                                                                         size_t index_size) {
 222   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 223   // We use a 32-bit load here since the layout of 64-bit words on
 224   // little-endian machines allow us that.
 225   // n.b. unlike x86 cache already includes the index offset
 226   lea(bytecode, Address(cache,
 227                          ConstantPoolCache::base_offset()
 228                          + ConstantPoolCacheEntry::indices_offset()));
 229   ldarw(bytecode, bytecode);
 230   const int shift_count = (1 + byte_no) * BitsPerByte;
 231   ubfx(bytecode, bytecode, shift_count, BitsPerByte);
 232 }
 233 
 234 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 235                                                                Register tmp,
 236                                                                int bcp_offset,
 237                                                                size_t index_size) {
 238   assert(cache != tmp, "must use different register");
 239   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 240   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 241   // convert from field index to ConstantPoolCacheEntry index
 242   // and from word offset to byte offset
 243   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 244   ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize));
 245   // skip past the header
 246   add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
 247   add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord);  // construct pointer to cache entry
 248 }
 249 
 250 void InterpreterMacroAssembler::get_method_counters(Register method,
 251                                                     Register mcs, Label& skip) {
 252   Label has_counters;
 253   ldr(mcs, Address(method, Method::method_counters_offset()));
 254   cbnz(mcs, has_counters);
 255   call_VM(noreg, CAST_FROM_FN_PTR(address,
 256           InterpreterRuntime::build_method_counters), method);
 257   ldr(mcs, Address(method, Method::method_counters_offset()));
 258   cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
 259   bind(has_counters);
 260 }
 261 
 262 // Load object from cpool->resolved_references(index)
 263 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 264                                            Register result, Register index) {
 265   assert_different_registers(result, index);
 266   // convert from field index to resolved_references() index and from
 267   // word index to byte offset. Since this is a java object, it can be compressed
 268   Register tmp = index;  // reuse
 269   lslw(tmp, tmp, LogBytesPerHeapOop);
 270 
 271   get_constant_pool(result);
 272   // load pointer for resolved_references[] objArray
 273   ldr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
 274   ldr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
 275   // JNIHandles::resolve(obj);
 276   ldr(result, Address(result, 0));
 277   // Add in the index
 278   add(result, result, tmp);
 279   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 280 }
 281 
 282 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
 283                              Register cpool, Register index, Register klass, Register temp) {
 284   add(temp, cpool, index, LSL, LogBytesPerWord);
 285   ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
 286   ldr(klass, Address(cpool,  ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
 287   add(klass, klass, temp, LSL, LogBytesPerWord);
 288   ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
 289 }
 290 
 291 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 292 // subtype of super_klass.
 293 //
 294 // Args:
 295 //      r0: superklass
 296 //      Rsub_klass: subklass
 297 //
 298 // Kills:
 299 //      r2, r5
 300 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 301                                                   Label& ok_is_subtype) {
 302   assert(Rsub_klass != r0, "r0 holds superklass");
 303   assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
 304   assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
 305 
 306   // Profile the not-null value's klass.
 307   profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
 308 
 309   // Do the check.
 310   check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
 311 
 312   // Profile the failure of the check.
 313   profile_typecheck_failed(r2); // blows r2
 314 }
 315 
 316 // Java Expression Stack
 317 
 318 void InterpreterMacroAssembler::pop_ptr(Register r) {
 319   ldr(r, post(esp, wordSize));
 320 }
 321 
 322 void InterpreterMacroAssembler::pop_i(Register r) {
 323   ldrw(r, post(esp, wordSize));
 324 }
 325 
 326 void InterpreterMacroAssembler::pop_l(Register r) {
 327   ldr(r, post(esp, 2 * Interpreter::stackElementSize));
 328 }
 329 
 330 void InterpreterMacroAssembler::push_ptr(Register r) {
 331   str(r, pre(esp, -wordSize));
 332  }
 333 
 334 void InterpreterMacroAssembler::push_i(Register r) {
 335   str(r, pre(esp, -wordSize));
 336 }
 337 
 338 void InterpreterMacroAssembler::push_l(Register r) {
 339   str(zr, pre(esp, -wordSize));
 340   str(r, pre(esp, - wordSize));
 341 }
 342 
 343 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
 344   ldrs(r, post(esp, wordSize));
 345 }
 346 
 347 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
 348   ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
 349 }
 350 
 351 void InterpreterMacroAssembler::push_f(FloatRegister r) {
 352   strs(r, pre(esp, -wordSize));
 353 }
 354 
 355 void InterpreterMacroAssembler::push_d(FloatRegister r) {
 356   strd(r, pre(esp, 2* -wordSize));
 357 }
 358 
 359 void InterpreterMacroAssembler::pop(TosState state) {
 360   switch (state) {
 361   case atos: pop_ptr();                 break;
 362   case btos:
 363   case ztos:
 364   case ctos:
 365   case stos:
 366   case itos: pop_i();                   break;
 367   case ltos: pop_l();                   break;
 368   case ftos: pop_f();                   break;
 369   case dtos: pop_d();                   break;
 370   case vtos: /* nothing to do */        break;
 371   default:   ShouldNotReachHere();
 372   }
 373   verify_oop(r0, state);
 374 }
 375 
 376 void InterpreterMacroAssembler::push(TosState state) {
 377   verify_oop(r0, state);
 378   switch (state) {
 379   case atos: push_ptr();                break;
 380   case btos:
 381   case ztos:
 382   case ctos:
 383   case stos:
 384   case itos: push_i();                  break;
 385   case ltos: push_l();                  break;
 386   case ftos: push_f();                  break;
 387   case dtos: push_d();                  break;
 388   case vtos: /* nothing to do */        break;
 389   default  : ShouldNotReachHere();
 390   }
 391 }
 392 
 393 // Helpers for swap and dup
 394 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 395   ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 396 }
 397 
 398 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 399   str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
 400 }
 401 
 402 
 403 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 404   // set sender sp
 405   mov(r13, sp);
 406   // record last_sp
 407   str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
 408 }
 409 
 410 // Jump to from_interpreted entry of a call unless single stepping is possible
 411 // in this thread in which case we must call the i2i entry
 412 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 413   prepare_to_jump_from_interpreted();
 414 
 415   if (JvmtiExport::can_post_interpreter_events()) {
 416     Label run_compiled_code;
 417     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 418     // compiled code in threads for which the event is enabled.  Check here for
 419     // interp_only_mode if these events CAN be enabled.
 420     ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
 421     cbzw(rscratch1, run_compiled_code);
 422     ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
 423     br(rscratch1);
 424     bind(run_compiled_code);
 425   }
 426 
 427   ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
 428   br(rscratch1);
 429 }
 430 
 431 // The following two routines provide a hook so that an implementation
 432 // can schedule the dispatch in two parts.  amd64 does not do this.
 433 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 434 }
 435 
 436 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 437     dispatch_next(state, step);
 438 }
 439 
 440 void InterpreterMacroAssembler::dispatch_base(TosState state,
 441                                               address* table,
 442                                               bool verifyoop) {
 443   if (VerifyActivationFrameSize) {
 444     Unimplemented();
 445   }
 446   if (verifyoop) {
 447     verify_oop(r0, state);
 448   }
 449   if (table == Interpreter::dispatch_table(state)) {
 450     addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
 451     ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
 452   } else {
 453     mov(rscratch2, (address)table);
 454     ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
 455   }
 456   br(rscratch2);
 457 }
 458 
 459 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 460   dispatch_base(state, Interpreter::dispatch_table(state));
 461 }
 462 
 463 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 464   dispatch_base(state, Interpreter::normal_table(state));
 465 }
 466 
 467 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 468   dispatch_base(state, Interpreter::normal_table(state), false);
 469 }
 470 
 471 
 472 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 473   // load next bytecode
 474   ldrb(rscratch1, Address(pre(rbcp, step)));
 475   dispatch_base(state, Interpreter::dispatch_table(state));
 476 }
 477 
 478 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 479   // load current bytecode
 480   ldrb(rscratch1, Address(rbcp, 0));
 481   dispatch_base(state, table);
 482 }
 483 
 484 // remove activation
 485 //
 486 // Unlock the receiver if this is a synchronized method.
 487 // Unlock any Java monitors from syncronized blocks.
 488 // Remove the activation from the stack.
 489 //
 490 // If there are locked Java monitors
 491 //    If throw_monitor_exception
 492 //       throws IllegalMonitorStateException
 493 //    Else if install_monitor_exception
 494 //       installs IllegalMonitorStateException
 495 //    Else
 496 //       no error processing
 497 void InterpreterMacroAssembler::remove_activation(
 498         TosState state,
 499         bool throw_monitor_exception,
 500         bool install_monitor_exception,
 501         bool notify_jvmdi) {
 502   // Note: Registers r3 xmm0 may be in use for the
 503   // result check if synchronized method
 504   Label unlocked, unlock, no_unlock;
 505 
 506   // get the value of _do_not_unlock_if_synchronized into r3
 507   const Address do_not_unlock_if_synchronized(rthread,
 508     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 509   ldrb(r3, do_not_unlock_if_synchronized);
 510   strb(zr, do_not_unlock_if_synchronized); // reset the flag
 511 
 512  // get method access flags
 513   ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
 514   ldr(r2, Address(r1, Method::access_flags_offset()));
 515   tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
 516 
 517   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 518   // is set.
 519   cbnz(r3, no_unlock);
 520 
 521   // unlock monitor
 522   push(state); // save result
 523 
 524   // BasicObjectLock will be first in list, since this is a
 525   // synchronized method. However, need to check that the object has
 526   // not been unlocked by an explicit monitorexit bytecode.
 527   const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
 528                         wordSize - (int) sizeof(BasicObjectLock));
 529   // We use c_rarg1 so that if we go slow path it will be the correct
 530   // register for unlock_object to pass to VM directly
 531   lea(c_rarg1, monitor); // address of first monitor
 532 
 533   ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 534   cbnz(r0, unlock);
 535 
 536   pop(state);
 537   if (throw_monitor_exception) {
 538     // Entry already unlocked, need to throw exception
 539     call_VM(noreg, CAST_FROM_FN_PTR(address,
 540                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 541     should_not_reach_here();
 542   } else {
 543     // Monitor already unlocked during a stack unroll. If requested,
 544     // install an illegal_monitor_state_exception.  Continue with
 545     // stack unrolling.
 546     if (install_monitor_exception) {
 547       call_VM(noreg, CAST_FROM_FN_PTR(address,
 548                      InterpreterRuntime::new_illegal_monitor_state_exception));
 549     }
 550     b(unlocked);
 551   }
 552 
 553   bind(unlock);
 554   unlock_object(c_rarg1);
 555   pop(state);
 556 
 557   // Check that for block-structured locking (i.e., that all locked
 558   // objects has been unlocked)
 559   bind(unlocked);
 560 
 561   // r0: Might contain return value
 562 
 563   // Check that all monitors are unlocked
 564   {
 565     Label loop, exception, entry, restart;
 566     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 567     const Address monitor_block_top(
 568         rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 569     const Address monitor_block_bot(
 570         rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
 571 
 572     bind(restart);
 573     // We use c_rarg1 so that if we go slow path it will be the correct
 574     // register for unlock_object to pass to VM directly
 575     ldr(c_rarg1, monitor_block_top); // points to current entry, starting
 576                                      // with top-most entry
 577     lea(r19, monitor_block_bot);  // points to word before bottom of
 578                                   // monitor block
 579     b(entry);
 580 
 581     // Entry already locked, need to throw exception
 582     bind(exception);
 583 
 584     if (throw_monitor_exception) {
 585       // Throw exception
 586       MacroAssembler::call_VM(noreg,
 587                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 588                                    throw_illegal_monitor_state_exception));
 589       should_not_reach_here();
 590     } else {
 591       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 592       // Unlock does not block, so don't have to worry about the frame.
 593       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 594 
 595       push(state);
 596       unlock_object(c_rarg1);
 597       pop(state);
 598 
 599       if (install_monitor_exception) {
 600         call_VM(noreg, CAST_FROM_FN_PTR(address,
 601                                         InterpreterRuntime::
 602                                         new_illegal_monitor_state_exception));
 603       }
 604 
 605       b(restart);
 606     }
 607 
 608     bind(loop);
 609     // check if current entry is used
 610     ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 611     cbnz(rscratch1, exception);
 612 
 613     add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
 614     bind(entry);
 615     cmp(c_rarg1, r19); // check if bottom reached
 616     br(Assembler::NE, loop); // if not at bottom then check this entry
 617   }
 618 
 619   bind(no_unlock);
 620 
 621   // jvmti support
 622   if (notify_jvmdi) {
 623     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 624   } else {
 625     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 626   }
 627 
 628   // remove activation
 629   // get sender esp
 630   ldr(esp,
 631       Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
 632   if (StackReservedPages > 0) {
 633     // testing if reserved zone needs to be re-enabled
 634     Label no_reserved_zone_enabling;
 635 
 636     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 637     cmp(esp, rscratch1);
 638     br(Assembler::LS, no_reserved_zone_enabling);
 639 
 640     call_VM_leaf(
 641       CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
 642     call_VM(noreg, CAST_FROM_FN_PTR(address,
 643                    InterpreterRuntime::throw_delayed_StackOverflowError));
 644     should_not_reach_here();
 645 
 646     bind(no_reserved_zone_enabling);
 647   }
 648   // remove frame anchor
 649   leave();
 650   // If we're returning to interpreted code we will shortly be
 651   // adjusting SP to allow some space for ESP.  If we're returning to
 652   // compiled code the saved sender SP was saved in sender_sp, so this
 653   // restores it.
 654   andr(sp, esp, -16);
 655 }
 656 
 657 // Lock object
 658 //
 659 // Args:
 660 //      c_rarg1: BasicObjectLock to be used for locking
 661 //
 662 // Kills:
 663 //      r0
 664 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 665 //      rscratch1, rscratch2 (scratch regs)
 666 void InterpreterMacroAssembler::lock_object(Register lock_reg)
 667 {
 668   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 669   if (UseHeavyMonitors) {
 670     call_VM(noreg,
 671             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 672             lock_reg);
 673   } else {
 674     Label done;
 675 
 676     const Register swap_reg = r0;
 677     const Register tmp = c_rarg2;
 678     const Register obj_reg = c_rarg3; // Will contain the oop
 679 
 680     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 681     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 682     const int mark_offset = lock_offset +
 683                             BasicLock::displaced_header_offset_in_bytes();
 684 
 685     Label slow_case;
 686 
 687     // Load object pointer into obj_reg %c_rarg3
 688     ldr(obj_reg, Address(lock_reg, obj_offset));
 689 
 690     if (UseBiasedLocking) {
 691       biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
 692     }
 693 
 694     // Load (object->mark() | 1) into swap_reg
 695     ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
 696     orr(swap_reg, rscratch1, 1);
 697 
 698     // Save (object->mark() | 1) into BasicLock's displaced header
 699     str(swap_reg, Address(lock_reg, mark_offset));
 700 
 701     assert(lock_offset == 0,
 702            "displached header must be first word in BasicObjectLock");
 703 
 704     Label fail;
 705     if (PrintBiasedLockingStatistics) {
 706       Label fast;
 707       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, fast, &fail);
 708       bind(fast);
 709       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 710                   rscratch2, rscratch1, tmp);
 711       b(done);
 712       bind(fail);
 713     } else {
 714       cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 715     }
 716 
 717     // Test if the oopMark is an obvious stack pointer, i.e.,
 718     //  1) (mark & 7) == 0, and
 719     //  2) rsp <= mark < mark + os::pagesize()
 720     //
 721     // These 3 tests can be done by evaluating the following
 722     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 723     // assuming both stack pointer and pagesize have their
 724     // least significant 3 bits clear.
 725     // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
 726     // NOTE2: aarch64 does not like to subtract sp from rn so take a
 727     // copy
 728     mov(rscratch1, sp);
 729     sub(swap_reg, swap_reg, rscratch1);
 730     ands(swap_reg, swap_reg, (unsigned long)(7 - os::vm_page_size()));
 731 
 732     // Save the test result, for recursive case, the result is zero
 733     str(swap_reg, Address(lock_reg, mark_offset));
 734 
 735     if (PrintBiasedLockingStatistics) {
 736       br(Assembler::NE, slow_case);
 737       atomic_incw(Address((address)BiasedLocking::fast_path_entry_count_addr()),
 738                   rscratch2, rscratch1, tmp);
 739     }
 740     br(Assembler::EQ, done);
 741 
 742     bind(slow_case);
 743 
 744     // Call the runtime routine for slow case
 745     call_VM(noreg,
 746             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 747             lock_reg);
 748 
 749     bind(done);
 750   }
 751 }
 752 
 753 
 754 // Unlocks an object. Used in monitorexit bytecode and
 755 // remove_activation.  Throws an IllegalMonitorException if object is
 756 // not locked by current thread.
 757 //
 758 // Args:
 759 //      c_rarg1: BasicObjectLock for lock
 760 //
 761 // Kills:
 762 //      r0
 763 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 764 //      rscratch1, rscratch2 (scratch regs)
 765 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
 766 {
 767   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 768 
 769   if (UseHeavyMonitors) {
 770     call_VM(noreg,
 771             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 772             lock_reg);
 773   } else {
 774     Label done;
 775 
 776     const Register swap_reg   = r0;
 777     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 778     const Register obj_reg    = c_rarg3;  // Will contain the oop
 779 
 780     save_bcp(); // Save in case of exception
 781 
 782     // Convert from BasicObjectLock structure to object and BasicLock
 783     // structure Store the BasicLock address into %r0
 784     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 785 
 786     // Load oop into obj_reg(%c_rarg3)
 787     ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 788 
 789     // Free entry
 790     str(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 791 
 792     if (UseBiasedLocking) {
 793       biased_locking_exit(obj_reg, header_reg, done);
 794     }
 795 
 796     // Load the old header from BasicLock structure
 797     ldr(header_reg, Address(swap_reg,
 798                             BasicLock::displaced_header_offset_in_bytes()));
 799 
 800     // Test for recursion
 801     cbz(header_reg, done);
 802 
 803     // Atomic swap back the old header
 804     cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, done, /*fallthrough*/NULL);
 805 
 806     // Call the runtime routine for slow case.
 807     str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
 808     call_VM(noreg,
 809             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 810             lock_reg);
 811 
 812     bind(done);
 813 
 814     restore_bcp();
 815   }
 816 }
 817 
 818 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 819                                                          Label& zero_continue) {
 820   assert(ProfileInterpreter, "must be profiling interpreter");
 821   ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 822   cbz(mdp, zero_continue);
 823 }
 824 
 825 // Set the method data pointer for the current bcp.
 826 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 827   assert(ProfileInterpreter, "must be profiling interpreter");
 828   Label set_mdp;
 829   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 830 
 831   // Test MDO to avoid the call if it is NULL.
 832   ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
 833   cbz(r0, set_mdp);
 834   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
 835   // r0: mdi
 836   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 837   ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
 838   lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
 839   add(r0, r1, r0);
 840   str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 841   bind(set_mdp);
 842   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 843 }
 844 
 845 void InterpreterMacroAssembler::verify_method_data_pointer() {
 846   assert(ProfileInterpreter, "must be profiling interpreter");
 847 #ifdef ASSERT
 848   Label verify_continue;
 849   stp(r0, r1, Address(pre(sp, -2 * wordSize)));
 850   stp(r2, r3, Address(pre(sp, -2 * wordSize)));
 851   test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
 852   get_method(r1);
 853 
 854   // If the mdp is valid, it will point to a DataLayout header which is
 855   // consistent with the bcp.  The converse is highly probable also.
 856   ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
 857   ldr(rscratch1, Address(r1, Method::const_offset()));
 858   add(r2, r2, rscratch1, Assembler::LSL);
 859   lea(r2, Address(r2, ConstMethod::codes_offset()));
 860   cmp(r2, rbcp);
 861   br(Assembler::EQ, verify_continue);
 862   // r1: method
 863   // rbcp: bcp // rbcp == 22
 864   // r3: mdp
 865   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 866                r1, rbcp, r3);
 867   bind(verify_continue);
 868   ldp(r2, r3, Address(post(sp, 2 * wordSize)));
 869   ldp(r0, r1, Address(post(sp, 2 * wordSize)));
 870 #endif // ASSERT
 871 }
 872 
 873 
 874 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 875                                                 int constant,
 876                                                 Register value) {
 877   assert(ProfileInterpreter, "must be profiling interpreter");
 878   Address data(mdp_in, constant);
 879   str(value, data);
 880 }
 881 
 882 
 883 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 884                                                       int constant,
 885                                                       bool decrement) {
 886   increment_mdp_data_at(mdp_in, noreg, constant, decrement);
 887 }
 888 
 889 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 890                                                       Register reg,
 891                                                       int constant,
 892                                                       bool decrement) {
 893   assert(ProfileInterpreter, "must be profiling interpreter");
 894   // %%% this does 64bit counters at best it is wasting space
 895   // at worst it is a rare bug when counters overflow
 896 
 897   assert_different_registers(rscratch2, rscratch1, mdp_in, reg);
 898 
 899   Address addr1(mdp_in, constant);
 900   Address addr2(rscratch2, reg, Address::lsl(0));
 901   Address &addr = addr1;
 902   if (reg != noreg) {
 903     lea(rscratch2, addr1);
 904     addr = addr2;
 905   }
 906 
 907   if (decrement) {
 908     // Decrement the register.  Set condition codes.
 909     // Intel does this
 910     // addptr(data, (int32_t) -DataLayout::counter_increment);
 911     // If the decrement causes the counter to overflow, stay negative
 912     // Label L;
 913     // jcc(Assembler::negative, L);
 914     // addptr(data, (int32_t) DataLayout::counter_increment);
 915     // so we do this
 916     ldr(rscratch1, addr);
 917     subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment);
 918     Label L;
 919     br(Assembler::LO, L);       // skip store if counter underflow
 920     str(rscratch1, addr);
 921     bind(L);
 922   } else {
 923     assert(DataLayout::counter_increment == 1,
 924            "flow-free idiom only works with 1");
 925     // Intel does this
 926     // Increment the register.  Set carry flag.
 927     // addptr(data, DataLayout::counter_increment);
 928     // If the increment causes the counter to overflow, pull back by 1.
 929     // sbbptr(data, (int32_t)0);
 930     // so we do this
 931     ldr(rscratch1, addr);
 932     adds(rscratch1, rscratch1, DataLayout::counter_increment);
 933     Label L;
 934     br(Assembler::CS, L);       // skip store if counter overflow
 935     str(rscratch1, addr);
 936     bind(L);
 937   }
 938 }
 939 
 940 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 941                                                 int flag_byte_constant) {
 942   assert(ProfileInterpreter, "must be profiling interpreter");
 943   int header_offset = in_bytes(DataLayout::header_offset());
 944   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 945   // Set the flag
 946   ldr(rscratch1, Address(mdp_in, header_offset));
 947   orr(rscratch1, rscratch1, header_bits);
 948   str(rscratch1, Address(mdp_in, header_offset));
 949 }
 950 
 951 
 952 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 953                                                  int offset,
 954                                                  Register value,
 955                                                  Register test_value_out,
 956                                                  Label& not_equal_continue) {
 957   assert(ProfileInterpreter, "must be profiling interpreter");
 958   if (test_value_out == noreg) {
 959     ldr(rscratch1, Address(mdp_in, offset));
 960     cmp(value, rscratch1);
 961   } else {
 962     // Put the test value into a register, so caller can use it:
 963     ldr(test_value_out, Address(mdp_in, offset));
 964     cmp(value, test_value_out);
 965   }
 966   br(Assembler::NE, not_equal_continue);
 967 }
 968 
 969 
 970 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 971                                                      int offset_of_disp) {
 972   assert(ProfileInterpreter, "must be profiling interpreter");
 973   ldr(rscratch1, Address(mdp_in, offset_of_disp));
 974   add(mdp_in, mdp_in, rscratch1, LSL);
 975   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 976 }
 977 
 978 
 979 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 980                                                      Register reg,
 981                                                      int offset_of_disp) {
 982   assert(ProfileInterpreter, "must be profiling interpreter");
 983   lea(rscratch1, Address(mdp_in, offset_of_disp));
 984   ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
 985   add(mdp_in, mdp_in, rscratch1, LSL);
 986   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 987 }
 988 
 989 
 990 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
 991                                                        int constant) {
 992   assert(ProfileInterpreter, "must be profiling interpreter");
 993   add(mdp_in, mdp_in, (unsigned)constant);
 994   str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
 995 }
 996 
 997 
 998 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 999   assert(ProfileInterpreter, "must be profiling interpreter");
1000   // save/restore across call_VM
1001   stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
1002   call_VM(noreg,
1003           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1004           return_bci);
1005   ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
1006 }
1007 
1008 
1009 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1010                                                      Register bumped_count) {
1011   if (ProfileInterpreter) {
1012     Label profile_continue;
1013 
1014     // If no method data exists, go to profile_continue.
1015     // Otherwise, assign to mdp
1016     test_method_data_pointer(mdp, profile_continue);
1017 
1018     // We are taking a branch.  Increment the taken count.
1019     // We inline increment_mdp_data_at to return bumped_count in a register
1020     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1021     Address data(mdp, in_bytes(JumpData::taken_offset()));
1022     ldr(bumped_count, data);
1023     assert(DataLayout::counter_increment == 1,
1024             "flow-free idiom only works with 1");
1025     // Intel does this to catch overflow
1026     // addptr(bumped_count, DataLayout::counter_increment);
1027     // sbbptr(bumped_count, 0);
1028     // so we do this
1029     adds(bumped_count, bumped_count, DataLayout::counter_increment);
1030     Label L;
1031     br(Assembler::CS, L);       // skip store if counter overflow
1032     str(bumped_count, data);
1033     bind(L);
1034     // The method data pointer needs to be updated to reflect the new target.
1035     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1036     bind(profile_continue);
1037   }
1038 }
1039 
1040 
1041 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1042   if (ProfileInterpreter) {
1043     Label profile_continue;
1044 
1045     // If no method data exists, go to profile_continue.
1046     test_method_data_pointer(mdp, profile_continue);
1047 
1048     // We are taking a branch.  Increment the not taken count.
1049     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1050 
1051     // The method data pointer needs to be updated to correspond to
1052     // the next bytecode
1053     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1054     bind(profile_continue);
1055   }
1056 }
1057 
1058 
1059 void InterpreterMacroAssembler::profile_call(Register mdp) {
1060   if (ProfileInterpreter) {
1061     Label profile_continue;
1062 
1063     // If no method data exists, go to profile_continue.
1064     test_method_data_pointer(mdp, profile_continue);
1065 
1066     // We are making a call.  Increment the count.
1067     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1068 
1069     // The method data pointer needs to be updated to reflect the new target.
1070     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1071     bind(profile_continue);
1072   }
1073 }
1074 
1075 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1076   if (ProfileInterpreter) {
1077     Label profile_continue;
1078 
1079     // If no method data exists, go to profile_continue.
1080     test_method_data_pointer(mdp, profile_continue);
1081 
1082     // We are making a call.  Increment the count.
1083     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1084 
1085     // The method data pointer needs to be updated to reflect the new target.
1086     update_mdp_by_constant(mdp,
1087                            in_bytes(VirtualCallData::
1088                                     virtual_call_data_size()));
1089     bind(profile_continue);
1090   }
1091 }
1092 
1093 
1094 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1095                                                      Register mdp,
1096                                                      Register reg2,
1097                                                      bool receiver_can_be_null) {
1098   if (ProfileInterpreter) {
1099     Label profile_continue;
1100 
1101     // If no method data exists, go to profile_continue.
1102     test_method_data_pointer(mdp, profile_continue);
1103 
1104     Label skip_receiver_profile;
1105     if (receiver_can_be_null) {
1106       Label not_null;
1107       // We are making a call.  Increment the count for null receiver.
1108       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1109       b(skip_receiver_profile);
1110       bind(not_null);
1111     }
1112 
1113     // Record the receiver type.
1114     record_klass_in_profile(receiver, mdp, reg2, true);
1115     bind(skip_receiver_profile);
1116 
1117     // The method data pointer needs to be updated to reflect the new target.
1118 #if INCLUDE_JVMCI
1119     if (MethodProfileWidth == 0) {
1120       update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1121     }
1122 #else // INCLUDE_JVMCI
1123     update_mdp_by_constant(mdp,
1124                            in_bytes(VirtualCallData::
1125                                     virtual_call_data_size()));
1126 #endif // INCLUDE_JVMCI
1127     bind(profile_continue);
1128   }
1129 }
1130 
1131 #if INCLUDE_JVMCI
1132 void InterpreterMacroAssembler::profile_called_method(Register method, Register mdp, Register reg2) {
1133   assert_different_registers(method, mdp, reg2);
1134   if (ProfileInterpreter && MethodProfileWidth > 0) {
1135     Label profile_continue;
1136 
1137     // If no method data exists, go to profile_continue.
1138     test_method_data_pointer(mdp, profile_continue);
1139 
1140     Label done;
1141     record_item_in_profile_helper(method, mdp, reg2, 0, done, MethodProfileWidth,
1142       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1143     bind(done);
1144 
1145     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1146     bind(profile_continue);
1147   }
1148 }
1149 #endif // INCLUDE_JVMCI
1150 
1151 // This routine creates a state machine for updating the multi-row
1152 // type profile at a virtual call site (or other type-sensitive bytecode).
1153 // The machine visits each row (of receiver/count) until the receiver type
1154 // is found, or until it runs out of rows.  At the same time, it remembers
1155 // the location of the first empty row.  (An empty row records null for its
1156 // receiver, and can be allocated for a newly-observed receiver type.)
1157 // Because there are two degrees of freedom in the state, a simple linear
1158 // search will not work; it must be a decision tree.  Hence this helper
1159 // function is recursive, to generate the required tree structured code.
1160 // It's the interpreter, so we are trading off code space for speed.
1161 // See below for example code.
1162 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1163                                         Register receiver, Register mdp,
1164                                         Register reg2, int start_row,
1165                                         Label& done, bool is_virtual_call) {
1166   if (TypeProfileWidth == 0) {
1167     if (is_virtual_call) {
1168       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1169     }
1170 #if INCLUDE_JVMCI
1171     else if (EnableJVMCI) {
1172       increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1173     }
1174 #endif // INCLUDE_JVMCI
1175   } else {
1176     int non_profiled_offset = -1;
1177     if (is_virtual_call) {
1178       non_profiled_offset = in_bytes(CounterData::count_offset());
1179     }
1180 #if INCLUDE_JVMCI
1181     else if (EnableJVMCI) {
1182       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1183     }
1184 #endif // INCLUDE_JVMCI
1185 
1186     record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1187         &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1188   }
1189 }
1190 
1191 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1192                                         Register reg2, int start_row, Label& done, int total_rows,
1193                                         OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1194                                         int non_profiled_offset) {
1195   int last_row = total_rows - 1;
1196   assert(start_row <= last_row, "must be work left to do");
1197   // Test this row for both the item and for null.
1198   // Take any of three different outcomes:
1199   //   1. found item => increment count and goto done
1200   //   2. found null => keep looking for case 1, maybe allocate this cell
1201   //   3. found something else => keep looking for cases 1 and 2
1202   // Case 3 is handled by a recursive call.
1203   for (int row = start_row; row <= last_row; row++) {
1204     Label next_test;
1205     bool test_for_null_also = (row == start_row);
1206 
1207     // See if the item is item[n].
1208     int item_offset = in_bytes(item_offset_fn(row));
1209     test_mdp_data_at(mdp, item_offset, item,
1210                      (test_for_null_also ? reg2 : noreg),
1211                      next_test);
1212     // (Reg2 now contains the item from the CallData.)
1213 
1214     // The item is item[n].  Increment count[n].
1215     int count_offset = in_bytes(item_count_offset_fn(row));
1216     increment_mdp_data_at(mdp, count_offset);
1217     b(done);
1218     bind(next_test);
1219 
1220     if (test_for_null_also) {
1221       Label found_null;
1222       // Failed the equality check on item[n]...  Test for null.
1223       if (start_row == last_row) {
1224         // The only thing left to do is handle the null case.
1225         if (non_profiled_offset >= 0) {
1226           cbz(reg2, found_null);
1227           // Item did not match any saved item and there is no empty row for it.
1228           // Increment total counter to indicate polymorphic case.
1229           increment_mdp_data_at(mdp, non_profiled_offset);
1230           b(done);
1231           bind(found_null);
1232         } else {
1233           cbnz(reg2, done);
1234         }
1235         break;
1236       }
1237       // Since null is rare, make it be the branch-taken case.
1238       cbz(reg2, found_null);
1239 
1240       // Put all the "Case 3" tests here.
1241       record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1242         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1243 
1244       // Found a null.  Keep searching for a matching item,
1245       // but remember that this is an empty (unused) slot.
1246       bind(found_null);
1247     }
1248   }
1249 
1250   // In the fall-through case, we found no matching item, but we
1251   // observed the item[start_row] is NULL.
1252 
1253   // Fill in the item field and increment the count.
1254   int item_offset = in_bytes(item_offset_fn(start_row));
1255   set_mdp_data_at(mdp, item_offset, item);
1256   int count_offset = in_bytes(item_count_offset_fn(start_row));
1257   mov(reg2, DataLayout::counter_increment);
1258   set_mdp_data_at(mdp, count_offset, reg2);
1259   if (start_row > 0) {
1260     b(done);
1261   }
1262 }
1263 
1264 // Example state machine code for three profile rows:
1265 //   // main copy of decision tree, rooted at row[1]
1266 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1267 //   if (row[0].rec != NULL) {
1268 //     // inner copy of decision tree, rooted at row[1]
1269 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1270 //     if (row[1].rec != NULL) {
1271 //       // degenerate decision tree, rooted at row[2]
1272 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1273 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1274 //       row[2].init(rec); goto done;
1275 //     } else {
1276 //       // remember row[1] is empty
1277 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1278 //       row[1].init(rec); goto done;
1279 //     }
1280 //   } else {
1281 //     // remember row[0] is empty
1282 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1283 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1284 //     row[0].init(rec); goto done;
1285 //   }
1286 //   done:
1287 
1288 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1289                                                         Register mdp, Register reg2,
1290                                                         bool is_virtual_call) {
1291   assert(ProfileInterpreter, "must be profiling");
1292   Label done;
1293 
1294   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1295 
1296   bind (done);
1297 }
1298 
1299 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1300                                             Register mdp) {
1301   if (ProfileInterpreter) {
1302     Label profile_continue;
1303     uint row;
1304 
1305     // If no method data exists, go to profile_continue.
1306     test_method_data_pointer(mdp, profile_continue);
1307 
1308     // Update the total ret count.
1309     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1310 
1311     for (row = 0; row < RetData::row_limit(); row++) {
1312       Label next_test;
1313 
1314       // See if return_bci is equal to bci[n]:
1315       test_mdp_data_at(mdp,
1316                        in_bytes(RetData::bci_offset(row)),
1317                        return_bci, noreg,
1318                        next_test);
1319 
1320       // return_bci is equal to bci[n].  Increment the count.
1321       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1322 
1323       // The method data pointer needs to be updated to reflect the new target.
1324       update_mdp_by_offset(mdp,
1325                            in_bytes(RetData::bci_displacement_offset(row)));
1326       b(profile_continue);
1327       bind(next_test);
1328     }
1329 
1330     update_mdp_for_ret(return_bci);
1331 
1332     bind(profile_continue);
1333   }
1334 }
1335 
1336 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1337   if (ProfileInterpreter) {
1338     Label profile_continue;
1339 
1340     // If no method data exists, go to profile_continue.
1341     test_method_data_pointer(mdp, profile_continue);
1342 
1343     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1344 
1345     // The method data pointer needs to be updated.
1346     int mdp_delta = in_bytes(BitData::bit_data_size());
1347     if (TypeProfileCasts) {
1348       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1349     }
1350     update_mdp_by_constant(mdp, mdp_delta);
1351 
1352     bind(profile_continue);
1353   }
1354 }
1355 
1356 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1357   if (ProfileInterpreter && TypeProfileCasts) {
1358     Label profile_continue;
1359 
1360     // If no method data exists, go to profile_continue.
1361     test_method_data_pointer(mdp, profile_continue);
1362 
1363     int count_offset = in_bytes(CounterData::count_offset());
1364     // Back up the address, since we have already bumped the mdp.
1365     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1366 
1367     // *Decrement* the counter.  We expect to see zero or small negatives.
1368     increment_mdp_data_at(mdp, count_offset, true);
1369 
1370     bind (profile_continue);
1371   }
1372 }
1373 
1374 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1375   if (ProfileInterpreter) {
1376     Label profile_continue;
1377 
1378     // If no method data exists, go to profile_continue.
1379     test_method_data_pointer(mdp, profile_continue);
1380 
1381     // The method data pointer needs to be updated.
1382     int mdp_delta = in_bytes(BitData::bit_data_size());
1383     if (TypeProfileCasts) {
1384       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1385 
1386       // Record the object type.
1387       record_klass_in_profile(klass, mdp, reg2, false);
1388     }
1389     update_mdp_by_constant(mdp, mdp_delta);
1390 
1391     bind(profile_continue);
1392   }
1393 }
1394 
1395 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1396   if (ProfileInterpreter) {
1397     Label profile_continue;
1398 
1399     // If no method data exists, go to profile_continue.
1400     test_method_data_pointer(mdp, profile_continue);
1401 
1402     // Update the default case count
1403     increment_mdp_data_at(mdp,
1404                           in_bytes(MultiBranchData::default_count_offset()));
1405 
1406     // The method data pointer needs to be updated.
1407     update_mdp_by_offset(mdp,
1408                          in_bytes(MultiBranchData::
1409                                   default_displacement_offset()));
1410 
1411     bind(profile_continue);
1412   }
1413 }
1414 
1415 void InterpreterMacroAssembler::profile_switch_case(Register index,
1416                                                     Register mdp,
1417                                                     Register reg2) {
1418   if (ProfileInterpreter) {
1419     Label profile_continue;
1420 
1421     // If no method data exists, go to profile_continue.
1422     test_method_data_pointer(mdp, profile_continue);
1423 
1424     // Build the base (index * per_case_size_in_bytes()) +
1425     // case_array_offset_in_bytes()
1426     movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1427     movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1428     Assembler::maddw(index, index, reg2, rscratch1);
1429 
1430     // Update the case count
1431     increment_mdp_data_at(mdp,
1432                           index,
1433                           in_bytes(MultiBranchData::relative_count_offset()));
1434 
1435     // The method data pointer needs to be updated.
1436     update_mdp_by_offset(mdp,
1437                          index,
1438                          in_bytes(MultiBranchData::
1439                                   relative_displacement_offset()));
1440 
1441     bind(profile_continue);
1442   }
1443 }
1444 
1445 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1446   if (state == atos) {
1447     MacroAssembler::verify_oop(reg);
1448   }
1449 }
1450 
1451 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
1452 
1453 
1454 void InterpreterMacroAssembler::notify_method_entry() {
1455   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1456   // track stack depth.  If it is possible to enter interp_only_mode we add
1457   // the code to check if the event should be sent.
1458   if (JvmtiExport::can_post_interpreter_events()) {
1459     Label L;
1460     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1461     cbzw(r3, L);
1462     call_VM(noreg, CAST_FROM_FN_PTR(address,
1463                                     InterpreterRuntime::post_method_entry));
1464     bind(L);
1465   }
1466 
1467   {
1468     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1469     get_method(c_rarg1);
1470     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1471                  rthread, c_rarg1);
1472   }
1473 
1474   // RedefineClasses() tracing support for obsolete method entry
1475   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1476     get_method(c_rarg1);
1477     call_VM_leaf(
1478       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1479       rthread, c_rarg1);
1480   }
1481 
1482  }
1483 
1484 
1485 void InterpreterMacroAssembler::notify_method_exit(
1486     TosState state, NotifyMethodExitMode mode) {
1487   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1488   // track stack depth.  If it is possible to enter interp_only_mode we add
1489   // the code to check if the event should be sent.
1490   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1491     Label L;
1492     // Note: frame::interpreter_frame_result has a dependency on how the
1493     // method result is saved across the call to post_method_exit. If this
1494     // is changed then the interpreter_frame_result implementation will
1495     // need to be updated too.
1496 
1497     // template interpreter will leave the result on the top of the stack.
1498     push(state);
1499     ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1500     cbz(r3, L);
1501     call_VM(noreg,
1502             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1503     bind(L);
1504     pop(state);
1505   }
1506 
1507   {
1508     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1509     push(state);
1510     get_method(c_rarg1);
1511     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1512                  rthread, c_rarg1);
1513     pop(state);
1514   }
1515 }
1516 
1517 
1518 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1519 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1520                                                         int increment, Address mask,
1521                                                         Register scratch, Register scratch2,
1522                                                         bool preloaded, Condition cond,
1523                                                         Label* where) {
1524   if (!preloaded) {
1525     ldrw(scratch, counter_addr);
1526   }
1527   add(scratch, scratch, increment);
1528   strw(scratch, counter_addr);
1529   ldrw(scratch2, mask);
1530   ands(scratch, scratch, scratch2);
1531   br(cond, *where);
1532 }
1533 
1534 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1535                                                   int number_of_arguments) {
1536   // interpreter specific
1537   //
1538   // Note: No need to save/restore rbcp & rlocals pointer since these
1539   //       are callee saved registers and no blocking/ GC can happen
1540   //       in leaf calls.
1541 #ifdef ASSERT
1542   {
1543     Label L;
1544     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1545     cbz(rscratch1, L);
1546     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1547          " last_sp != NULL");
1548     bind(L);
1549   }
1550 #endif /* ASSERT */
1551   // super call
1552   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1553 }
1554 
1555 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1556                                              Register java_thread,
1557                                              Register last_java_sp,
1558                                              address  entry_point,
1559                                              int      number_of_arguments,
1560                                              bool     check_exceptions) {
1561   // interpreter specific
1562   //
1563   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1564   //       really make a difference for these runtime calls, since they are
1565   //       slow anyway. Btw., bcp must be saved/restored since it may change
1566   //       due to GC.
1567   // assert(java_thread == noreg , "not expecting a precomputed java thread");
1568   save_bcp();
1569 #ifdef ASSERT
1570   {
1571     Label L;
1572     ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1573     cbz(rscratch1, L);
1574     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1575          " last_sp != NULL");
1576     bind(L);
1577   }
1578 #endif /* ASSERT */
1579   // super call
1580   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1581                                entry_point, number_of_arguments,
1582                      check_exceptions);
1583 // interpreter specific
1584   restore_bcp();
1585   restore_locals();
1586 }
1587 
1588 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1589   Label update, next, none;
1590 
1591   verify_oop(obj);
1592 
1593   cbnz(obj, update);
1594   orptr(mdo_addr, TypeEntries::null_seen);
1595   b(next);
1596 
1597   bind(update);
1598   load_klass(obj, obj);
1599 
1600   ldr(rscratch1, mdo_addr);
1601   eor(obj, obj, rscratch1);
1602   tst(obj, TypeEntries::type_klass_mask);
1603   br(Assembler::EQ, next); // klass seen before, nothing to
1604                            // do. The unknown bit may have been
1605                            // set already but no need to check.
1606 
1607   tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1608   // already unknown. Nothing to do anymore.
1609 
1610   ldr(rscratch1, mdo_addr);
1611   cbz(rscratch1, none);
1612   cmp(rscratch1, TypeEntries::null_seen);
1613   br(Assembler::EQ, none);
1614   // There is a chance that the checks above (re-reading profiling
1615   // data from memory) fail if another thread has just set the
1616   // profiling to this obj's klass
1617   ldr(rscratch1, mdo_addr);
1618   eor(obj, obj, rscratch1);
1619   tst(obj, TypeEntries::type_klass_mask);
1620   br(Assembler::EQ, next);
1621 
1622   // different than before. Cannot keep accurate profile.
1623   orptr(mdo_addr, TypeEntries::type_unknown);
1624   b(next);
1625 
1626   bind(none);
1627   // first time here. Set profile type.
1628   str(obj, mdo_addr);
1629 
1630   bind(next);
1631 }
1632 
1633 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1634   if (!ProfileInterpreter) {
1635     return;
1636   }
1637 
1638   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1639     Label profile_continue;
1640 
1641     test_method_data_pointer(mdp, profile_continue);
1642 
1643     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1644 
1645     ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1646     cmp(rscratch1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1647     br(Assembler::NE, profile_continue);
1648 
1649     if (MethodData::profile_arguments()) {
1650       Label done;
1651       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1652 
1653       for (int i = 0; i < TypeProfileArgsLimit; i++) {
1654         if (i > 0 || MethodData::profile_return()) {
1655           // If return value type is profiled we may have no argument to profile
1656           ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1657           sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1658           cmp(tmp, TypeStackSlotEntries::per_arg_count());
1659           add(rscratch1, mdp, off_to_args);
1660           br(Assembler::LT, done);
1661         }
1662         ldr(tmp, Address(callee, Method::const_offset()));
1663         load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1664         // stack offset o (zero based) from the start of the argument
1665         // list, for n arguments translates into offset n - o - 1 from
1666         // the end of the argument list
1667         ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1668         sub(tmp, tmp, rscratch1);
1669         sub(tmp, tmp, 1);
1670         Address arg_addr = argument_address(tmp);
1671         ldr(tmp, arg_addr);
1672 
1673         Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1674         profile_obj_type(tmp, mdo_arg_addr);
1675 
1676         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1677         off_to_args += to_add;
1678       }
1679 
1680       if (MethodData::profile_return()) {
1681         ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1682         sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1683       }
1684 
1685       add(rscratch1, mdp, off_to_args);
1686       bind(done);
1687       mov(mdp, rscratch1);
1688 
1689       if (MethodData::profile_return()) {
1690         // We're right after the type profile for the last
1691         // argument. tmp is the number of cells left in the
1692         // CallTypeData/VirtualCallTypeData to reach its end. Non null
1693         // if there's a return to profile.
1694         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1695         add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1696       }
1697       str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1698     } else {
1699       assert(MethodData::profile_return(), "either profile call args or call ret");
1700       update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1701     }
1702 
1703     // mdp points right after the end of the
1704     // CallTypeData/VirtualCallTypeData, right after the cells for the
1705     // return value type if there's one
1706 
1707     bind(profile_continue);
1708   }
1709 }
1710 
1711 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1712   assert_different_registers(mdp, ret, tmp, rbcp);
1713   if (ProfileInterpreter && MethodData::profile_return()) {
1714     Label profile_continue, done;
1715 
1716     test_method_data_pointer(mdp, profile_continue);
1717 
1718     if (MethodData::profile_return_jsr292_only()) {
1719       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1720 
1721       // If we don't profile all invoke bytecodes we must make sure
1722       // it's a bytecode we indeed profile. We can't go back to the
1723       // begining of the ProfileData we intend to update to check its
1724       // type because we're right after it and we don't known its
1725       // length
1726       Label do_profile;
1727       ldrb(rscratch1, Address(rbcp, 0));
1728       cmp(rscratch1, Bytecodes::_invokedynamic);
1729       br(Assembler::EQ, do_profile);
1730       cmp(rscratch1, Bytecodes::_invokehandle);
1731       br(Assembler::EQ, do_profile);
1732       get_method(tmp);
1733       ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
1734       cmp(rscratch1, vmIntrinsics::_compiledLambdaForm);
1735       br(Assembler::NE, profile_continue);
1736 
1737       bind(do_profile);
1738     }
1739 
1740     Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1741     mov(tmp, ret);
1742     profile_obj_type(tmp, mdo_ret_addr);
1743 
1744     bind(profile_continue);
1745   }
1746 }
1747 
1748 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1749   if (ProfileInterpreter && MethodData::profile_parameters()) {
1750     Label profile_continue, done;
1751 
1752     test_method_data_pointer(mdp, profile_continue);
1753 
1754     // Load the offset of the area within the MDO used for
1755     // parameters. If it's negative we're not profiling any parameters
1756     ldr(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1757     cmp(tmp1, 0u);
1758     br(Assembler::LT, profile_continue);
1759 
1760     // Compute a pointer to the area for parameters from the offset
1761     // and move the pointer to the slot for the last
1762     // parameters. Collect profiling from last parameter down.
1763     // mdo start + parameters offset + array length - 1
1764     add(mdp, mdp, tmp1);
1765     ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1766     sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1767 
1768     Label loop;
1769     bind(loop);
1770 
1771     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1772     int type_base = in_bytes(ParametersTypeData::type_offset(0));
1773     int per_arg_scale = exact_log2(DataLayout::cell_size);
1774     add(rscratch1, mdp, off_base);
1775     add(rscratch2, mdp, type_base);
1776 
1777     Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1778     Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1779 
1780     // load offset on the stack from the slot for this parameter
1781     ldr(tmp2, arg_off);
1782     neg(tmp2, tmp2);
1783     // read the parameter from the local area
1784     ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1785 
1786     // profile the parameter
1787     profile_obj_type(tmp2, arg_type);
1788 
1789     // go to next parameter
1790     subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1791     br(Assembler::GE, loop);
1792 
1793     bind(profile_continue);
1794   }
1795 }