1 /*
   2  * Copyright (c) 2017, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.module;
  27 
  28 import java.io.PrintStream;
  29 import java.lang.module.Configuration;
  30 import java.lang.module.ResolvedModule;
  31 import java.net.URI;
  32 import java.nio.file.Path;
  33 import java.util.ArrayDeque;
  34 import java.util.Collections;
  35 import java.util.Deque;
  36 import java.util.HashMap;
  37 import java.util.TreeMap;
  38 import java.util.HashSet;
  39 import java.util.Map;
  40 import java.util.Set;
  41 import java.util.function.Consumer;
  42 import java.util.function.Function;
  43 import java.util.stream.Stream;
  44 import static java.util.stream.Collectors.*;
  45 
  46 /**
  47  * A Builder to compute ModuleHashes from a given configuration
  48  */
  49 public class ModuleHashesBuilder {
  50     private final Configuration configuration;
  51     private final Set<String> hashModuleCandidates;
  52 
  53     /**
  54      * Constructs a ModuleHashesBuilder that finds the packaged modules
  55      * from the location of ModuleReference found from the given Configuration.
  56      *
  57      * @param config Configuration for building module hashes
  58      * @param modules the candidate modules to be hashed
  59      */
  60     public ModuleHashesBuilder(Configuration config, Set<String> modules) {
  61         this.configuration = config;
  62         this.hashModuleCandidates = modules;
  63     }
  64 
  65     /**
  66      * Returns a map of a module M to ModuleHashes for the modules
  67      * that depend upon M directly or indirectly.
  68      *
  69      * The key for each entry in the returned map is a module M that has
  70      * no outgoing edges to any of the candidate modules to be hashed
  71      * i.e. M is a leaf node in a connected subgraph containing M and
  72      * other candidate modules from the module graph filtering
  73      * the outgoing edges from M to non-candidate modules.
  74      */
  75     public Map<String, ModuleHashes> computeHashes(Set<String> roots) {
  76         // build a graph containing the packaged modules and
  77         // its transitive dependences matching --hash-modules
  78         Graph.Builder<String> builder = new Graph.Builder<>();
  79         Deque<ResolvedModule> todo = new ArrayDeque<>(configuration.modules());
  80         Set<ResolvedModule> visited = new HashSet<>();
  81         ResolvedModule rm;
  82         while ((rm = todo.poll()) != null) {
  83             if (visited.add(rm)) {
  84                 builder.addNode(rm.name());
  85                 for (ResolvedModule dm : rm.reads()) {
  86                     if (!visited.contains(dm)) {
  87                         todo.push(dm);
  88                     }
  89                     builder.addEdge(rm.name(), dm.name());
  90                 }
  91             }
  92         }
  93 
  94         // each node in a transposed graph is a matching packaged module
  95         // in which the hash of the modules that depend upon it is recorded
  96         Graph<String> transposedGraph = builder.build().transpose();
  97 
  98         // traverse the modules in topological order that will identify
  99         // the modules to record the hashes - it is the first matching
 100         // module and has not been hashed during the traversal.
 101         Set<String> mods = new HashSet<>();
 102         Map<String, ModuleHashes> hashes = new TreeMap<>();
 103         builder.build()
 104                .orderedNodes()
 105                .filter(mn -> roots.contains(mn) && !mods.contains(mn))
 106                .forEach(mn -> {
 107                    // Compute hashes of the modules that depend on mn directly and
 108                    // indirectly excluding itself.
 109                    Set<String> ns = transposedGraph.dfs(mn)
 110                        .stream()
 111                        .filter(n -> !n.equals(mn) && hashModuleCandidates.contains(n))
 112                        .collect(toSet());
 113                    mods.add(mn);
 114                    mods.addAll(ns);
 115 
 116                    if (!ns.isEmpty()) {
 117                        Map<String, Path> moduleToPath = ns.stream()
 118                            .collect(toMap(Function.identity(), this::moduleToPath));
 119                        hashes.put(mn, ModuleHashes.generate(moduleToPath, "SHA-256"));
 120                    }
 121                });
 122         return hashes;
 123     }
 124 
 125     private Path moduleToPath(String name) {
 126         ResolvedModule rm = configuration.findModule(name).orElseThrow(
 127             () -> new InternalError("Selected module " + name + " not on module path"));
 128 
 129         URI uri = rm.reference().location().get();
 130         Path path = Path.of(uri);
 131         String fn = path.getFileName().toString();
 132         if (!fn.endsWith(".jar") && !fn.endsWith(".jmod")) {
 133             throw new UnsupportedOperationException(path + " is not a modular JAR or jmod file");
 134         }
 135         return path;
 136     }
 137 
 138     /*
 139      * Utility class
 140      */
 141     static class Graph<T> {
 142         private final Set<T> nodes;
 143         private final Map<T, Set<T>> edges;
 144 
 145         public Graph(Set<T> nodes, Map<T, Set<T>> edges) {
 146             this.nodes = Collections.unmodifiableSet(nodes);
 147             this.edges = Collections.unmodifiableMap(edges);
 148         }
 149 
 150         public Set<T> nodes() {
 151             return nodes;
 152         }
 153 
 154         public Map<T, Set<T>> edges() {
 155             return edges;
 156         }
 157 
 158         public Set<T> adjacentNodes(T u) {
 159             return edges.get(u);
 160         }
 161 
 162         public boolean contains(T u) {
 163             return nodes.contains(u);
 164         }
 165 
 166         /**
 167          * Returns nodes sorted in topological order.
 168          */
 169         public Stream<T> orderedNodes() {
 170             TopoSorter<T> sorter = new TopoSorter<>(this);
 171             return sorter.result.stream();
 172         }
 173 
 174         /**
 175          * Traverses this graph and performs the given action in topological order.
 176          */
 177         public void ordered(Consumer<T> action) {
 178             TopoSorter<T> sorter = new TopoSorter<>(this);
 179             sorter.ordered(action);
 180         }
 181 
 182         /**
 183          * Traverses this graph and performs the given action in reverse topological order.
 184          */
 185         public void reverse(Consumer<T> action) {
 186             TopoSorter<T> sorter = new TopoSorter<>(this);
 187             sorter.reverse(action);
 188         }
 189 
 190         /**
 191          * Returns a transposed graph from this graph.
 192          */
 193         public Graph<T> transpose() {
 194             Builder<T> builder = new Builder<>();
 195             nodes.forEach(builder::addNode);
 196             // reverse edges
 197             edges.keySet().forEach(u -> {
 198                 edges.get(u).forEach(v -> builder.addEdge(v, u));
 199             });
 200             return builder.build();
 201         }
 202 
 203         /**
 204          * Returns all nodes reachable from the given root.
 205          */
 206         public Set<T> dfs(T root) {
 207             return dfs(Set.of(root));
 208         }
 209 
 210         /**
 211          * Returns all nodes reachable from the given set of roots.
 212          */
 213         public Set<T> dfs(Set<T> roots) {
 214             ArrayDeque<T> todo = new ArrayDeque<>(roots);
 215             Set<T> visited = new HashSet<>();
 216             T u;
 217             while ((u = todo.poll()) != null) {
 218                 if (visited.add(u) && contains(u)) {
 219                     adjacentNodes(u).stream()
 220                         .filter(v -> !visited.contains(v))
 221                         .forEach(todo::push);
 222                 }
 223             }
 224             return visited;
 225         }
 226 
 227         public void printGraph(PrintStream out) {
 228             out.println("graph for " + nodes);
 229             nodes
 230                 .forEach(u -> adjacentNodes(u)
 231                     .forEach(v -> out.format("  %s -> %s%n", u, v)));
 232         }
 233 
 234         static class Builder<T> {
 235             final Set<T> nodes = new HashSet<>();
 236             final Map<T, Set<T>> edges = new HashMap<>();
 237 
 238             public void addNode(T node) {
 239                 if (nodes.add(node)) {
 240                     edges.computeIfAbsent(node, _e -> new HashSet<>());
 241                 }
 242             }
 243 
 244             public void addEdge(T u, T v) {
 245                 addNode(u);
 246                 addNode(v);
 247                 edges.get(u).add(v);
 248             }
 249 
 250             public Graph<T> build() {
 251                 return new Graph<T>(nodes, edges);
 252             }
 253         }
 254     }
 255 
 256     /**
 257      * Topological sort
 258      */
 259     private static class TopoSorter<T> {
 260         final Deque<T> result = new ArrayDeque<>();
 261         final Graph<T> graph;
 262 
 263         TopoSorter(Graph<T> graph) {
 264             this.graph = graph;
 265             sort();
 266         }
 267 
 268         public void ordered(Consumer<T> action) {
 269             result.forEach(action);
 270         }
 271 
 272         public void reverse(Consumer<T> action) {
 273             result.descendingIterator().forEachRemaining(action);
 274         }
 275 
 276         private void sort() {
 277             Set<T> visited = new HashSet<>();
 278             Deque<T> stack = new ArrayDeque<>();
 279             graph.nodes.forEach(node -> visit(node, visited, stack));
 280         }
 281 
 282         private Set<T> children(T node) {
 283             return graph.edges().get(node);
 284         }
 285 
 286         private void visit(T node, Set<T> visited, Deque<T> stack) {
 287             if (visited.add(node)) {
 288                 stack.push(node);
 289                 children(node).forEach(child -> visit(child, visited, stack));
 290                 stack.pop();
 291                 result.addLast(node);
 292             }
 293             else if (stack.contains(node)) {
 294                 throw new IllegalArgumentException(
 295                     "Cycle detected: " + node + " -> " + children(node));
 296             }
 297         }
 298     }
 299 }