1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "libadt/vectset.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/c2compiler.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/cfgnode.hpp"
  37 #include "opto/compile.hpp"
  38 #include "opto/escape.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/rootnode.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  45   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  46   _in_worklist(C->comp_arena()),
  47   _next_pidx(0),
  48   _collecting(true),
  49   _verify(false),
  50   _compile(C),
  51   _igvn(igvn),
  52   _node_map(C->comp_arena()) {
  53   // Add unknown java object.
  54   add_java_object(C->top(), PointsToNode::GlobalEscape);
  55   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  56   // Add ConP(#NULL) and ConN(#NULL) nodes.
  57   Node* oop_null = igvn->zerocon(T_OBJECT);
  58   assert(oop_null->_idx < nodes_size(), "should be created already");
  59   add_java_object(oop_null, PointsToNode::NoEscape);
  60   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  61   if (UseCompressedOops) {
  62     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  63     assert(noop_null->_idx < nodes_size(), "should be created already");
  64     map_ideal_node(noop_null, null_obj);
  65   }
  66   _pcmp_neq = NULL; // Should be initialized
  67   _pcmp_eq  = NULL;
  68 }
  69 
  70 bool ConnectionGraph::has_candidates(Compile *C) {
  71   // EA brings benefits only when the code has allocations and/or locks which
  72   // are represented by ideal Macro nodes.
  73   int cnt = C->macro_count();
  74   for (int i = 0; i < cnt; i++) {
  75     Node *n = C->macro_node(i);
  76     if (n->is_Allocate())
  77       return true;
  78     if (n->is_Lock()) {
  79       Node* obj = n->as_Lock()->obj_node()->uncast();
  80       if (!(obj->is_Parm() || obj->is_Con()))
  81         return true;
  82     }
  83     if (n->is_CallStaticJava() &&
  84         n->as_CallStaticJava()->is_boxing_method()) {
  85       return true;
  86     }
  87   }
  88   return false;
  89 }
  90 
  91 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  92   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  93   ResourceMark rm;
  94 
  95   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  96   // to create space for them in ConnectionGraph::_nodes[].
  97   Node* oop_null = igvn->zerocon(T_OBJECT);
  98   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  99   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 100   // Perform escape analysis
 101   if (congraph->compute_escape()) {
 102     // There are non escaping objects.
 103     C->set_congraph(congraph);
 104   }
 105   // Cleanup.
 106   if (oop_null->outcnt() == 0)
 107     igvn->hash_delete(oop_null);
 108   if (noop_null->outcnt() == 0)
 109     igvn->hash_delete(noop_null);
 110 }
 111 
 112 bool ConnectionGraph::compute_escape() {
 113   Compile* C = _compile;
 114   PhaseGVN* igvn = _igvn;
 115 
 116   // Worklists used by EA.
 117   Unique_Node_List delayed_worklist;
 118   GrowableArray<Node*> alloc_worklist;
 119   GrowableArray<Node*> ptr_cmp_worklist;
 120   GrowableArray<Node*> storestore_worklist;
 121   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 122   GrowableArray<PointsToNode*>   ptnodes_worklist;
 123   GrowableArray<JavaObjectNode*> java_objects_worklist;
 124   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 125   GrowableArray<FieldNode*>      oop_fields_worklist;
 126   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 127 
 128   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 129 
 130   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 131   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 132   // Initialize worklist
 133   if (C->root() != NULL) {
 134     ideal_nodes.push(C->root());
 135   }
 136   // Processed ideal nodes are unique on ideal_nodes list
 137   // but several ideal nodes are mapped to the phantom_obj.
 138   // To avoid duplicated entries on the following worklists
 139   // add the phantom_obj only once to them.
 140   ptnodes_worklist.append(phantom_obj);
 141   java_objects_worklist.append(phantom_obj);
 142   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 143     Node* n = ideal_nodes.at(next);
 144     // Create PointsTo nodes and add them to Connection Graph. Called
 145     // only once per ideal node since ideal_nodes is Unique_Node list.
 146     add_node_to_connection_graph(n, &delayed_worklist);
 147     PointsToNode* ptn = ptnode_adr(n->_idx);
 148     if (ptn != NULL && ptn != phantom_obj) {
 149       ptnodes_worklist.append(ptn);
 150       if (ptn->is_JavaObject()) {
 151         java_objects_worklist.append(ptn->as_JavaObject());
 152         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 153             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 154           // Only allocations and java static calls results are interesting.
 155           non_escaped_worklist.append(ptn->as_JavaObject());
 156         }
 157       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 158         oop_fields_worklist.append(ptn->as_Field());
 159       }
 160     }
 161     if (n->is_MergeMem()) {
 162       // Collect all MergeMem nodes to add memory slices for
 163       // scalar replaceable objects in split_unique_types().
 164       _mergemem_worklist.append(n->as_MergeMem());
 165     } else if (OptimizePtrCompare && n->is_Cmp() &&
 166                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 167       // Collect compare pointers nodes.
 168       ptr_cmp_worklist.append(n);
 169     } else if (n->is_MemBarStoreStore()) {
 170       // Collect all MemBarStoreStore nodes so that depending on the
 171       // escape status of the associated Allocate node some of them
 172       // may be eliminated.
 173       storestore_worklist.append(n);
 174     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 175                (n->req() > MemBarNode::Precedent)) {
 176       record_for_optimizer(n);
 177 #ifdef ASSERT
 178     } else if (n->is_AddP()) {
 179       // Collect address nodes for graph verification.
 180       addp_worklist.append(n);
 181 #endif
 182     } else if (n->is_ArrayCopy()) {
 183       // Keep a list of ArrayCopy nodes so if one of its input is non
 184       // escaping, we can record a unique type
 185       arraycopy_worklist.append(n->as_ArrayCopy());
 186     }
 187     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 188       Node* m = n->fast_out(i);   // Get user
 189       ideal_nodes.push(m);
 190     }
 191   }
 192   if (non_escaped_worklist.length() == 0) {
 193     _collecting = false;
 194     return false; // Nothing to do.
 195   }
 196   // Add final simple edges to graph.
 197   while(delayed_worklist.size() > 0) {
 198     Node* n = delayed_worklist.pop();
 199     add_final_edges(n);
 200   }
 201   int ptnodes_length = ptnodes_worklist.length();
 202 
 203 #ifdef ASSERT
 204   if (VerifyConnectionGraph) {
 205     // Verify that no new simple edges could be created and all
 206     // local vars has edges.
 207     _verify = true;
 208     for (int next = 0; next < ptnodes_length; ++next) {
 209       PointsToNode* ptn = ptnodes_worklist.at(next);
 210       add_final_edges(ptn->ideal_node());
 211       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 212         ptn->dump();
 213         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 214       }
 215     }
 216     _verify = false;
 217   }
 218 #endif
 219   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 220   // processing, calls to CI to resolve symbols (types, fields, methods)
 221   // referenced in bytecode. During symbol resolution VM may throw
 222   // an exception which CI cleans and converts to compilation failure.
 223   if (C->failing())  return false;
 224 
 225   // 2. Finish Graph construction by propagating references to all
 226   //    java objects through graph.
 227   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 228                                  java_objects_worklist, oop_fields_worklist)) {
 229     // All objects escaped or hit time or iterations limits.
 230     _collecting = false;
 231     return false;
 232   }
 233 
 234   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 235   //    scalar replaceable allocations on alloc_worklist for processing
 236   //    in split_unique_types().
 237   int non_escaped_length = non_escaped_worklist.length();
 238   for (int next = 0; next < non_escaped_length; next++) {
 239     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 240     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 241     Node* n = ptn->ideal_node();
 242     if (n->is_Allocate()) {
 243       n->as_Allocate()->_is_non_escaping = noescape;
 244     }
 245     if (n->is_CallStaticJava()) {
 246       n->as_CallStaticJava()->_is_non_escaping = noescape;
 247     }
 248     if (noescape && ptn->scalar_replaceable()) {
 249       adjust_scalar_replaceable_state(ptn);
 250       if (ptn->scalar_replaceable()) {
 251         alloc_worklist.append(ptn->ideal_node());
 252       }
 253     }
 254   }
 255 
 256 #ifdef ASSERT
 257   if (VerifyConnectionGraph) {
 258     // Verify that graph is complete - no new edges could be added or needed.
 259     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 260                             java_objects_worklist, addp_worklist);
 261   }
 262   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 263   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 264          null_obj->edge_count() == 0 &&
 265          !null_obj->arraycopy_src() &&
 266          !null_obj->arraycopy_dst(), "sanity");
 267 #endif
 268 
 269   _collecting = false;
 270 
 271   } // TracePhase t3("connectionGraph")
 272 
 273   // 4. Optimize ideal graph based on EA information.
 274   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 275   if (has_non_escaping_obj) {
 276     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 277   }
 278 
 279 #ifndef PRODUCT
 280   if (PrintEscapeAnalysis) {
 281     dump(ptnodes_worklist); // Dump ConnectionGraph
 282   }
 283 #endif
 284 
 285   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 286 #ifdef ASSERT
 287   if (VerifyConnectionGraph) {
 288     int alloc_length = alloc_worklist.length();
 289     for (int next = 0; next < alloc_length; ++next) {
 290       Node* n = alloc_worklist.at(next);
 291       PointsToNode* ptn = ptnode_adr(n->_idx);
 292       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 293     }
 294   }
 295 #endif
 296 
 297   // 5. Separate memory graph for scalar replaceable allcations.
 298   if (has_scalar_replaceable_candidates &&
 299       C->AliasLevel() >= 3 && EliminateAllocations) {
 300     // Now use the escape information to create unique types for
 301     // scalar replaceable objects.
 302     split_unique_types(alloc_worklist, arraycopy_worklist);
 303     if (C->failing())  return false;
 304     C->print_method(PHASE_AFTER_EA, 2);
 305 
 306 #ifdef ASSERT
 307   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 308     tty->print("=== No allocations eliminated for ");
 309     C->method()->print_short_name();
 310     if(!EliminateAllocations) {
 311       tty->print(" since EliminateAllocations is off ===");
 312     } else if(!has_scalar_replaceable_candidates) {
 313       tty->print(" since there are no scalar replaceable candidates ===");
 314     } else if(C->AliasLevel() < 3) {
 315       tty->print(" since AliasLevel < 3 ===");
 316     }
 317     tty->cr();
 318 #endif
 319   }
 320   return has_non_escaping_obj;
 321 }
 322 
 323 // Utility function for nodes that load an object
 324 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 325   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 326   // ThreadLocal has RawPtr type.
 327   const Type* t = _igvn->type(n);
 328   if (t->make_ptr() != NULL) {
 329     Node* adr = n->in(MemNode::Address);
 330 #ifdef ASSERT
 331     if (!adr->is_AddP()) {
 332       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 333     } else {
 334       assert((ptnode_adr(adr->_idx) == NULL ||
 335               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 336     }
 337 #endif
 338     add_local_var_and_edge(n, PointsToNode::NoEscape,
 339                            adr, delayed_worklist);
 340   }
 341 }
 342 
 343 // Populate Connection Graph with PointsTo nodes and create simple
 344 // connection graph edges.
 345 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 346   assert(!_verify, "this method should not be called for verification");
 347   PhaseGVN* igvn = _igvn;
 348   uint n_idx = n->_idx;
 349   PointsToNode* n_ptn = ptnode_adr(n_idx);
 350   if (n_ptn != NULL)
 351     return; // No need to redefine PointsTo node during first iteration.
 352 
 353   int opcode = n->Opcode();
 354   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_to_con_graph(this, igvn, delayed_worklist, n, opcode);
 355   if (gc_handled) {
 356     return; // Ignore node if already handled by GC.
 357   }
 358 
 359   if (n->is_Call()) {
 360     // Arguments to allocation and locking don't escape.
 361     if (n->is_AbstractLock()) {
 362       // Put Lock and Unlock nodes on IGVN worklist to process them during
 363       // first IGVN optimization when escape information is still available.
 364       record_for_optimizer(n);
 365     } else if (n->is_Allocate()) {
 366       add_call_node(n->as_Call());
 367       record_for_optimizer(n);
 368     } else {
 369       if (n->is_CallStaticJava()) {
 370         const char* name = n->as_CallStaticJava()->_name;
 371         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 372           return; // Skip uncommon traps
 373       }
 374       // Don't mark as processed since call's arguments have to be processed.
 375       delayed_worklist->push(n);
 376       // Check if a call returns an object.
 377       if ((n->as_Call()->returns_pointer() &&
 378            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 379           (n->is_CallStaticJava() &&
 380            n->as_CallStaticJava()->is_boxing_method())) {
 381         add_call_node(n->as_Call());
 382       }
 383     }
 384     return;
 385   }
 386   // Put this check here to process call arguments since some call nodes
 387   // point to phantom_obj.
 388   if (n_ptn == phantom_obj || n_ptn == null_obj)
 389     return; // Skip predefined nodes.
 390 
 391   switch (opcode) {
 392     case Op_AddP: {
 393       Node* base = get_addp_base(n);
 394       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 395       // Field nodes are created for all field types. They are used in
 396       // adjust_scalar_replaceable_state() and split_unique_types().
 397       // Note, non-oop fields will have only base edges in Connection
 398       // Graph because such fields are not used for oop loads and stores.
 399       int offset = address_offset(n, igvn);
 400       add_field(n, PointsToNode::NoEscape, offset);
 401       if (ptn_base == NULL) {
 402         delayed_worklist->push(n); // Process it later.
 403       } else {
 404         n_ptn = ptnode_adr(n_idx);
 405         add_base(n_ptn->as_Field(), ptn_base);
 406       }
 407       break;
 408     }
 409     case Op_CastX2P: {
 410       map_ideal_node(n, phantom_obj);
 411       break;
 412     }
 413     case Op_CastPP:
 414     case Op_CheckCastPP:
 415     case Op_EncodeP:
 416     case Op_DecodeN:
 417     case Op_EncodePKlass:
 418     case Op_DecodeNKlass: {
 419       add_local_var_and_edge(n, PointsToNode::NoEscape,
 420                              n->in(1), delayed_worklist);
 421       break;
 422     }
 423     case Op_CMoveP: {
 424       add_local_var(n, PointsToNode::NoEscape);
 425       // Do not add edges during first iteration because some could be
 426       // not defined yet.
 427       delayed_worklist->push(n);
 428       break;
 429     }
 430     case Op_ConP:
 431     case Op_ConN:
 432     case Op_ConNKlass: {
 433       // assume all oop constants globally escape except for null
 434       PointsToNode::EscapeState es;
 435       const Type* t = igvn->type(n);
 436       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 437         es = PointsToNode::NoEscape;
 438       } else {
 439         es = PointsToNode::GlobalEscape;
 440       }
 441       add_java_object(n, es);
 442       break;
 443     }
 444     case Op_CreateEx: {
 445       // assume that all exception objects globally escape
 446       map_ideal_node(n, phantom_obj);
 447       break;
 448     }
 449     case Op_LoadKlass:
 450     case Op_LoadNKlass: {
 451       // Unknown class is loaded
 452       map_ideal_node(n, phantom_obj);
 453       break;
 454     }
 455     case Op_LoadP:
 456     case Op_LoadN:
 457     case Op_LoadPLocked: {
 458       add_objload_to_connection_graph(n, delayed_worklist);
 459       break;
 460     }
 461     case Op_Parm: {
 462       map_ideal_node(n, phantom_obj);
 463       break;
 464     }
 465     case Op_PartialSubtypeCheck: {
 466       // Produces Null or notNull and is used in only in CmpP so
 467       // phantom_obj could be used.
 468       map_ideal_node(n, phantom_obj); // Result is unknown
 469       break;
 470     }
 471     case Op_Phi: {
 472       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 473       // ThreadLocal has RawPtr type.
 474       const Type* t = n->as_Phi()->type();
 475       if (t->make_ptr() != NULL) {
 476         add_local_var(n, PointsToNode::NoEscape);
 477         // Do not add edges during first iteration because some could be
 478         // not defined yet.
 479         delayed_worklist->push(n);
 480       }
 481       break;
 482     }
 483     case Op_Proj: {
 484       // we are only interested in the oop result projection from a call
 485       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 486           n->in(0)->as_Call()->returns_pointer()) {
 487         add_local_var_and_edge(n, PointsToNode::NoEscape,
 488                                n->in(0), delayed_worklist);
 489       }
 490       break;
 491     }
 492     case Op_Rethrow: // Exception object escapes
 493     case Op_Return: {
 494       if (n->req() > TypeFunc::Parms &&
 495           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 496         // Treat Return value as LocalVar with GlobalEscape escape state.
 497         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 498                                n->in(TypeFunc::Parms), delayed_worklist);
 499       }
 500       break;
 501     }
 502     case Op_CompareAndExchangeP:
 503     case Op_CompareAndExchangeN:
 504     case Op_GetAndSetP:
 505     case Op_GetAndSetN: {
 506       add_objload_to_connection_graph(n, delayed_worklist);
 507       // fallthrough
 508     }
 509     case Op_StoreP:
 510     case Op_StoreN:
 511     case Op_StoreNKlass:
 512     case Op_StorePConditional:
 513     case Op_WeakCompareAndSwapP:
 514     case Op_WeakCompareAndSwapN:
 515     case Op_CompareAndSwapP:
 516     case Op_CompareAndSwapN: {
 517       add_to_congraph_unsafe_access(n, opcode, delayed_worklist);
 518       break;
 519     }
 520     case Op_AryEq:
 521     case Op_HasNegatives:
 522     case Op_StrComp:
 523     case Op_StrEquals:
 524     case Op_StrIndexOf:
 525     case Op_StrIndexOfChar:
 526     case Op_StrInflatedCopy:
 527     case Op_StrCompressedCopy:
 528     case Op_EncodeISOArray: {
 529       add_local_var(n, PointsToNode::ArgEscape);
 530       delayed_worklist->push(n); // Process it later.
 531       break;
 532     }
 533     case Op_ThreadLocal: {
 534       add_java_object(n, PointsToNode::ArgEscape);
 535       break;
 536     }
 537     default:
 538       ; // Do nothing for nodes not related to EA.
 539   }
 540   return;
 541 }
 542 
 543 #ifdef ASSERT
 544 #define ELSE_FAIL(name)                               \
 545       /* Should not be called for not pointer type. */  \
 546       n->dump(1);                                       \
 547       assert(false, name);                              \
 548       break;
 549 #else
 550 #define ELSE_FAIL(name) \
 551       break;
 552 #endif
 553 
 554 // Add final simple edges to graph.
 555 void ConnectionGraph::add_final_edges(Node *n) {
 556   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 557 #ifdef ASSERT
 558   if (_verify && n_ptn->is_JavaObject())
 559     return; // This method does not change graph for JavaObject.
 560 #endif
 561 
 562   if (n->is_Call()) {
 563     process_call_arguments(n->as_Call());
 564     return;
 565   }
 566   assert(n->is_Store() || n->is_LoadStore() ||
 567          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 568          "node should be registered already");
 569   int opcode = n->Opcode();
 570   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->escape_add_final_edges(this, _igvn, n, opcode);
 571   if (gc_handled) {
 572     return; // Ignore node if already handled by GC.
 573   }
 574   switch (opcode) {
 575     case Op_AddP: {
 576       Node* base = get_addp_base(n);
 577       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 578       assert(ptn_base != NULL, "field's base should be registered");
 579       add_base(n_ptn->as_Field(), ptn_base);
 580       break;
 581     }
 582     case Op_CastPP:
 583     case Op_CheckCastPP:
 584     case Op_EncodeP:
 585     case Op_DecodeN:
 586     case Op_EncodePKlass:
 587     case Op_DecodeNKlass: {
 588       add_local_var_and_edge(n, PointsToNode::NoEscape,
 589                              n->in(1), NULL);
 590       break;
 591     }
 592     case Op_CMoveP: {
 593       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 594         Node* in = n->in(i);
 595         if (in == NULL)
 596           continue;  // ignore NULL
 597         Node* uncast_in = in->uncast();
 598         if (uncast_in->is_top() || uncast_in == n)
 599           continue;  // ignore top or inputs which go back this node
 600         PointsToNode* ptn = ptnode_adr(in->_idx);
 601         assert(ptn != NULL, "node should be registered");
 602         add_edge(n_ptn, ptn);
 603       }
 604       break;
 605     }
 606     case Op_LoadP:
 607     case Op_LoadN:
 608     case Op_LoadPLocked: {
 609       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 610       // ThreadLocal has RawPtr type.
 611       const Type* t = _igvn->type(n);
 612       if (t->make_ptr() != NULL) {
 613         Node* adr = n->in(MemNode::Address);
 614         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 615         break;
 616       }
 617       ELSE_FAIL("Op_LoadP");
 618     }
 619     case Op_Phi: {
 620       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 621       // ThreadLocal has RawPtr type.
 622       const Type* t = n->as_Phi()->type();
 623       if (t->make_ptr() != NULL) {
 624         for (uint i = 1; i < n->req(); i++) {
 625           Node* in = n->in(i);
 626           if (in == NULL)
 627             continue;  // ignore NULL
 628           Node* uncast_in = in->uncast();
 629           if (uncast_in->is_top() || uncast_in == n)
 630             continue;  // ignore top or inputs which go back this node
 631           PointsToNode* ptn = ptnode_adr(in->_idx);
 632           assert(ptn != NULL, "node should be registered");
 633           add_edge(n_ptn, ptn);
 634         }
 635         break;
 636       }
 637       ELSE_FAIL("Op_Phi");
 638     }
 639     case Op_Proj: {
 640       // we are only interested in the oop result projection from a call
 641       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 642           n->in(0)->as_Call()->returns_pointer()) {
 643         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 644         break;
 645       }
 646       ELSE_FAIL("Op_Proj");
 647     }
 648     case Op_Rethrow: // Exception object escapes
 649     case Op_Return: {
 650       if (n->req() > TypeFunc::Parms &&
 651           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 652         // Treat Return value as LocalVar with GlobalEscape escape state.
 653         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 654                                n->in(TypeFunc::Parms), NULL);
 655         break;
 656       }
 657       ELSE_FAIL("Op_Return");
 658     }
 659     case Op_StoreP:
 660     case Op_StoreN:
 661     case Op_StoreNKlass:
 662     case Op_StorePConditional:
 663     case Op_CompareAndExchangeP:
 664     case Op_CompareAndExchangeN:
 665     case Op_CompareAndSwapP:
 666     case Op_CompareAndSwapN:
 667     case Op_WeakCompareAndSwapP:
 668     case Op_WeakCompareAndSwapN:
 669     case Op_GetAndSetP:
 670     case Op_GetAndSetN: {
 671       if (add_final_edges_unsafe_access(n, opcode)) {
 672         break;
 673       }
 674       ELSE_FAIL("Op_StoreP");
 675     }
 676     case Op_AryEq:
 677     case Op_HasNegatives:
 678     case Op_StrComp:
 679     case Op_StrEquals:
 680     case Op_StrIndexOf:
 681     case Op_StrIndexOfChar:
 682     case Op_StrInflatedCopy:
 683     case Op_StrCompressedCopy:
 684     case Op_EncodeISOArray: {
 685       // char[]/byte[] arrays passed to string intrinsic do not escape but
 686       // they are not scalar replaceable. Adjust escape state for them.
 687       // Start from in(2) edge since in(1) is memory edge.
 688       for (uint i = 2; i < n->req(); i++) {
 689         Node* adr = n->in(i);
 690         const Type* at = _igvn->type(adr);
 691         if (!adr->is_top() && at->isa_ptr()) {
 692           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 693                  at->isa_ptr() != NULL, "expecting a pointer");
 694           if (adr->is_AddP()) {
 695             adr = get_addp_base(adr);
 696           }
 697           PointsToNode* ptn = ptnode_adr(adr->_idx);
 698           assert(ptn != NULL, "node should be registered");
 699           add_edge(n_ptn, ptn);
 700         }
 701       }
 702       break;
 703     }
 704     default: {
 705       // This method should be called only for EA specific nodes which may
 706       // miss some edges when they were created.
 707 #ifdef ASSERT
 708       n->dump(1);
 709 #endif
 710       guarantee(false, "unknown node");
 711     }
 712   }
 713   return;
 714 }
 715 
 716 void ConnectionGraph::add_to_congraph_unsafe_access(Node* n, uint opcode, Unique_Node_List* delayed_worklist) {
 717   Node* adr = n->in(MemNode::Address);
 718   const Type* adr_type = _igvn->type(adr);
 719   adr_type = adr_type->make_ptr();
 720   if (adr_type == NULL) {
 721     return; // skip dead nodes
 722   }
 723   if (adr_type->isa_oopptr()
 724       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 725           && adr_type == TypeRawPtr::NOTNULL
 726           && is_captured_store_address(adr))) {
 727     delayed_worklist->push(n); // Process it later.
 728 #ifdef ASSERT
 729     assert (adr->is_AddP(), "expecting an AddP");
 730     if (adr_type == TypeRawPtr::NOTNULL) {
 731       // Verify a raw address for a store captured by Initialize node.
 732       int offs = (int) _igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 733       assert(offs != Type::OffsetBot, "offset must be a constant");
 734     }
 735 #endif
 736   } else {
 737     // Ignore copy the displaced header to the BoxNode (OSR compilation).
 738     if (adr->is_BoxLock()) {
 739       return;
 740     }
 741     // Stored value escapes in unsafe access.
 742     if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 743       delayed_worklist->push(n); // Process unsafe access later.
 744       return;
 745     }
 746 #ifdef ASSERT
 747     n->dump(1);
 748     assert(false, "not unsafe");
 749 #endif
 750   }
 751 }
 752 
 753 bool ConnectionGraph::add_final_edges_unsafe_access(Node* n, uint opcode) {
 754   Node* adr = n->in(MemNode::Address);
 755   const Type *adr_type = _igvn->type(adr);
 756   adr_type = adr_type->make_ptr();
 757 #ifdef ASSERT
 758   if (adr_type == NULL) {
 759     n->dump(1);
 760     assert(adr_type != NULL, "dead node should not be on list");
 761     return true;
 762   }
 763 #endif
 764 
 765   if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 766       opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 767     add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 768   }
 769 
 770   if (adr_type->isa_oopptr()
 771       || ((opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 772            && adr_type == TypeRawPtr::NOTNULL
 773            && is_captured_store_address(adr))) {
 774     // Point Address to Value
 775     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 776     assert(adr_ptn != NULL &&
 777            adr_ptn->as_Field()->is_oop(), "node should be registered");
 778     Node* val = n->in(MemNode::ValueIn);
 779     PointsToNode* ptn = ptnode_adr(val->_idx);
 780     assert(ptn != NULL, "node should be registered");
 781     add_edge(adr_ptn, ptn);
 782     return true;
 783   } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 784     // Stored value escapes in unsafe access.
 785     Node* val = n->in(MemNode::ValueIn);
 786     PointsToNode* ptn = ptnode_adr(val->_idx);
 787     assert(ptn != NULL, "node should be registered");
 788     set_escape_state(ptn, PointsToNode::GlobalEscape);
 789     // Add edge to object for unsafe access with offset.
 790     PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 791     assert(adr_ptn != NULL, "node should be registered");
 792     if (adr_ptn->is_Field()) {
 793       assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 794       add_edge(adr_ptn, ptn);
 795     }
 796     return true;
 797   }
 798   return false;
 799 }
 800 
 801 void ConnectionGraph::add_call_node(CallNode* call) {
 802   assert(call->returns_pointer(), "only for call which returns pointer");
 803   uint call_idx = call->_idx;
 804   if (call->is_Allocate()) {
 805     Node* k = call->in(AllocateNode::KlassNode);
 806     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 807     assert(kt != NULL, "TypeKlassPtr  required.");
 808     ciKlass* cik = kt->klass();
 809     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 810     bool scalar_replaceable = true;
 811     if (call->is_AllocateArray()) {
 812       if (!cik->is_array_klass()) { // StressReflectiveCode
 813         es = PointsToNode::GlobalEscape;
 814       } else {
 815         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 816         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 817           // Not scalar replaceable if the length is not constant or too big.
 818           scalar_replaceable = false;
 819         }
 820       }
 821     } else {  // Allocate instance
 822       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 823           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 824          !cik->is_instance_klass() || // StressReflectiveCode
 825          !cik->as_instance_klass()->can_be_instantiated() ||
 826           cik->as_instance_klass()->has_finalizer()) {
 827         es = PointsToNode::GlobalEscape;
 828       }
 829     }
 830     add_java_object(call, es);
 831     PointsToNode* ptn = ptnode_adr(call_idx);
 832     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 833       ptn->set_scalar_replaceable(false);
 834     }
 835   } else if (call->is_CallStaticJava()) {
 836     // Call nodes could be different types:
 837     //
 838     // 1. CallDynamicJavaNode (what happened during call is unknown):
 839     //
 840     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 841     //
 842     //    - all oop arguments are escaping globally;
 843     //
 844     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 845     //
 846     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 847     //
 848     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 849     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 850     //      during call is returned;
 851     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 852     //      which are returned and does not escape during call;
 853     //
 854     //    - oop arguments escaping status is defined by bytecode analysis;
 855     //
 856     // For a static call, we know exactly what method is being called.
 857     // Use bytecode estimator to record whether the call's return value escapes.
 858     ciMethod* meth = call->as_CallJava()->method();
 859     if (meth == NULL) {
 860       const char* name = call->as_CallStaticJava()->_name;
 861       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 862       // Returns a newly allocated unescaped object.
 863       add_java_object(call, PointsToNode::NoEscape);
 864       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 865     } else if (meth->is_boxing_method()) {
 866       // Returns boxing object
 867       PointsToNode::EscapeState es;
 868       vmIntrinsics::ID intr = meth->intrinsic_id();
 869       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 870         // It does not escape if object is always allocated.
 871         es = PointsToNode::NoEscape;
 872       } else {
 873         // It escapes globally if object could be loaded from cache.
 874         es = PointsToNode::GlobalEscape;
 875       }
 876       add_java_object(call, es);
 877     } else {
 878       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 879       call_analyzer->copy_dependencies(_compile->dependencies());
 880       if (call_analyzer->is_return_allocated()) {
 881         // Returns a newly allocated unescaped object, simply
 882         // update dependency information.
 883         // Mark it as NoEscape so that objects referenced by
 884         // it's fields will be marked as NoEscape at least.
 885         add_java_object(call, PointsToNode::NoEscape);
 886         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 887       } else {
 888         // Determine whether any arguments are returned.
 889         const TypeTuple* d = call->tf()->domain();
 890         bool ret_arg = false;
 891         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 892           if (d->field_at(i)->isa_ptr() != NULL &&
 893               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 894             ret_arg = true;
 895             break;
 896           }
 897         }
 898         if (ret_arg) {
 899           add_local_var(call, PointsToNode::ArgEscape);
 900         } else {
 901           // Returns unknown object.
 902           map_ideal_node(call, phantom_obj);
 903         }
 904       }
 905     }
 906   } else {
 907     // An other type of call, assume the worst case:
 908     // returned value is unknown and globally escapes.
 909     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 910     map_ideal_node(call, phantom_obj);
 911   }
 912 }
 913 
 914 void ConnectionGraph::process_call_arguments(CallNode *call) {
 915     bool is_arraycopy = false;
 916     switch (call->Opcode()) {
 917 #ifdef ASSERT
 918     case Op_Allocate:
 919     case Op_AllocateArray:
 920     case Op_Lock:
 921     case Op_Unlock:
 922       assert(false, "should be done already");
 923       break;
 924 #endif
 925     case Op_ArrayCopy:
 926     case Op_CallLeafNoFP:
 927       // Most array copies are ArrayCopy nodes at this point but there
 928       // are still a few direct calls to the copy subroutines (See
 929       // PhaseStringOpts::copy_string())
 930       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 931         call->as_CallLeaf()->is_call_to_arraycopystub();
 932       // fall through
 933     case Op_CallLeaf: {
 934       // Stub calls, objects do not escape but they are not scale replaceable.
 935       // Adjust escape state for outgoing arguments.
 936       const TypeTuple * d = call->tf()->domain();
 937       bool src_has_oops = false;
 938       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 939         const Type* at = d->field_at(i);
 940         Node *arg = call->in(i);
 941         if (arg == NULL) {
 942           continue;
 943         }
 944         const Type *aat = _igvn->type(arg);
 945         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 946           continue;
 947         if (arg->is_AddP()) {
 948           //
 949           // The inline_native_clone() case when the arraycopy stub is called
 950           // after the allocation before Initialize and CheckCastPP nodes.
 951           // Or normal arraycopy for object arrays case.
 952           //
 953           // Set AddP's base (Allocate) as not scalar replaceable since
 954           // pointer to the base (with offset) is passed as argument.
 955           //
 956           arg = get_addp_base(arg);
 957         }
 958         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 959         assert(arg_ptn != NULL, "should be registered");
 960         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 961         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 962           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 963                  aat->isa_ptr() != NULL, "expecting an Ptr");
 964           bool arg_has_oops = aat->isa_oopptr() &&
 965                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 966                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 967           if (i == TypeFunc::Parms) {
 968             src_has_oops = arg_has_oops;
 969           }
 970           //
 971           // src or dst could be j.l.Object when other is basic type array:
 972           //
 973           //   arraycopy(char[],0,Object*,0,size);
 974           //   arraycopy(Object*,0,char[],0,size);
 975           //
 976           // Don't add edges in such cases.
 977           //
 978           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 979                                        arg_has_oops && (i > TypeFunc::Parms);
 980 #ifdef ASSERT
 981           if (!(is_arraycopy ||
 982                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 983                 (call->as_CallLeaf()->_name != NULL &&
 984                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_encryptAESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "electronicCodeBook_decryptAESCrypt") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "encodeBlock") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "md5_implCompress") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "md5_implCompressMB") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompress") == 0 ||
1005                   strcmp(call->as_CallLeaf()->_name, "sha3_implCompressMB") == 0 ||
1006                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1007                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1008                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1009                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1010                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1011                   strcmp(call->as_CallLeaf()->_name, "bigIntegerRightShiftWorker") == 0 ||
1012                   strcmp(call->as_CallLeaf()->_name, "bigIntegerLeftShiftWorker") == 0 ||
1013                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1014                  ))) {
1015             call->dump();
1016             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1017           }
1018 #endif
1019           // Always process arraycopy's destination object since
1020           // we need to add all possible edges to references in
1021           // source object.
1022           if (arg_esc >= PointsToNode::ArgEscape &&
1023               !arg_is_arraycopy_dest) {
1024             continue;
1025           }
1026           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1027           if (call->is_ArrayCopy()) {
1028             ArrayCopyNode* ac = call->as_ArrayCopy();
1029             if (ac->is_clonebasic() ||
1030                 ac->is_arraycopy_validated() ||
1031                 ac->is_copyof_validated() ||
1032                 ac->is_copyofrange_validated()) {
1033               es = PointsToNode::NoEscape;
1034             }
1035           }
1036           set_escape_state(arg_ptn, es);
1037           if (arg_is_arraycopy_dest) {
1038             Node* src = call->in(TypeFunc::Parms);
1039             if (src->is_AddP()) {
1040               src = get_addp_base(src);
1041             }
1042             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1043             assert(src_ptn != NULL, "should be registered");
1044             if (arg_ptn != src_ptn) {
1045               // Special arraycopy edge:
1046               // A destination object's field can't have the source object
1047               // as base since objects escape states are not related.
1048               // Only escape state of destination object's fields affects
1049               // escape state of fields in source object.
1050               add_arraycopy(call, es, src_ptn, arg_ptn);
1051             }
1052           }
1053         }
1054       }
1055       break;
1056     }
1057     case Op_CallStaticJava: {
1058       // For a static call, we know exactly what method is being called.
1059       // Use bytecode estimator to record the call's escape affects
1060 #ifdef ASSERT
1061       const char* name = call->as_CallStaticJava()->_name;
1062       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1063 #endif
1064       ciMethod* meth = call->as_CallJava()->method();
1065       if ((meth != NULL) && meth->is_boxing_method()) {
1066         break; // Boxing methods do not modify any oops.
1067       }
1068       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1069       // fall-through if not a Java method or no analyzer information
1070       if (call_analyzer != NULL) {
1071         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1072         const TypeTuple* d = call->tf()->domain();
1073         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1074           const Type* at = d->field_at(i);
1075           int k = i - TypeFunc::Parms;
1076           Node* arg = call->in(i);
1077           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1078           if (at->isa_ptr() != NULL &&
1079               call_analyzer->is_arg_returned(k)) {
1080             // The call returns arguments.
1081             if (call_ptn != NULL) { // Is call's result used?
1082               assert(call_ptn->is_LocalVar(), "node should be registered");
1083               assert(arg_ptn != NULL, "node should be registered");
1084               add_edge(call_ptn, arg_ptn);
1085             }
1086           }
1087           if (at->isa_oopptr() != NULL &&
1088               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1089             if (!call_analyzer->is_arg_stack(k)) {
1090               // The argument global escapes
1091               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1092             } else {
1093               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1094               if (!call_analyzer->is_arg_local(k)) {
1095                 // The argument itself doesn't escape, but any fields might
1096                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1097               }
1098             }
1099           }
1100         }
1101         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1102           // The call returns arguments.
1103           assert(call_ptn->edge_count() > 0, "sanity");
1104           if (!call_analyzer->is_return_local()) {
1105             // Returns also unknown object.
1106             add_edge(call_ptn, phantom_obj);
1107           }
1108         }
1109         break;
1110       }
1111     }
1112     default: {
1113       // Fall-through here if not a Java method or no analyzer information
1114       // or some other type of call, assume the worst case: all arguments
1115       // globally escape.
1116       const TypeTuple* d = call->tf()->domain();
1117       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1118         const Type* at = d->field_at(i);
1119         if (at->isa_oopptr() != NULL) {
1120           Node* arg = call->in(i);
1121           if (arg->is_AddP()) {
1122             arg = get_addp_base(arg);
1123           }
1124           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1125           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1126         }
1127       }
1128     }
1129   }
1130 }
1131 
1132 
1133 // Finish Graph construction.
1134 bool ConnectionGraph::complete_connection_graph(
1135                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1136                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1137                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1138                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1139   // Normally only 1-3 passes needed to build Connection Graph depending
1140   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1141   // Set limit to 20 to catch situation when something did go wrong and
1142   // bailout Escape Analysis.
1143   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1144 #define CG_BUILD_ITER_LIMIT 20
1145 
1146   // Propagate GlobalEscape and ArgEscape escape states and check that
1147   // we still have non-escaping objects. The method pushs on _worklist
1148   // Field nodes which reference phantom_object.
1149   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1150     return false; // Nothing to do.
1151   }
1152   // Now propagate references to all JavaObject nodes.
1153   int java_objects_length = java_objects_worklist.length();
1154   elapsedTimer time;
1155   bool timeout = false;
1156   int new_edges = 1;
1157   int iterations = 0;
1158   do {
1159     while ((new_edges > 0) &&
1160            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1161       double start_time = time.seconds();
1162       time.start();
1163       new_edges = 0;
1164       // Propagate references to phantom_object for nodes pushed on _worklist
1165       // by find_non_escaped_objects() and find_field_value().
1166       new_edges += add_java_object_edges(phantom_obj, false);
1167       for (int next = 0; next < java_objects_length; ++next) {
1168         JavaObjectNode* ptn = java_objects_worklist.at(next);
1169         new_edges += add_java_object_edges(ptn, true);
1170 
1171 #define SAMPLE_SIZE 4
1172         if ((next % SAMPLE_SIZE) == 0) {
1173           // Each 4 iterations calculate how much time it will take
1174           // to complete graph construction.
1175           time.stop();
1176           // Poll for requests from shutdown mechanism to quiesce compiler
1177           // because Connection graph construction may take long time.
1178           CompileBroker::maybe_block();
1179           double stop_time = time.seconds();
1180           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1181           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1182           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1183             timeout = true;
1184             break; // Timeout
1185           }
1186           start_time = stop_time;
1187           time.start();
1188         }
1189 #undef SAMPLE_SIZE
1190 
1191       }
1192       if (timeout) break;
1193       if (new_edges > 0) {
1194         // Update escape states on each iteration if graph was updated.
1195         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1196           return false; // Nothing to do.
1197         }
1198       }
1199       time.stop();
1200       if (time.seconds() >= EscapeAnalysisTimeout) {
1201         timeout = true;
1202         break;
1203       }
1204     }
1205     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1206       time.start();
1207       // Find fields which have unknown value.
1208       int fields_length = oop_fields_worklist.length();
1209       for (int next = 0; next < fields_length; next++) {
1210         FieldNode* field = oop_fields_worklist.at(next);
1211         if (field->edge_count() == 0) {
1212           new_edges += find_field_value(field);
1213           // This code may added new edges to phantom_object.
1214           // Need an other cycle to propagate references to phantom_object.
1215         }
1216       }
1217       time.stop();
1218       if (time.seconds() >= EscapeAnalysisTimeout) {
1219         timeout = true;
1220         break;
1221       }
1222     } else {
1223       new_edges = 0; // Bailout
1224     }
1225   } while (new_edges > 0);
1226 
1227   // Bailout if passed limits.
1228   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1229     Compile* C = _compile;
1230     if (C->log() != NULL) {
1231       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1232       C->log()->text("%s", timeout ? "time" : "iterations");
1233       C->log()->end_elem(" limit'");
1234     }
1235     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1236            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1237     // Possible infinite build_connection_graph loop,
1238     // bailout (no changes to ideal graph were made).
1239     return false;
1240   }
1241 #ifdef ASSERT
1242   if (Verbose && PrintEscapeAnalysis) {
1243     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1244                   iterations, nodes_size(), ptnodes_worklist.length());
1245   }
1246 #endif
1247 
1248 #undef CG_BUILD_ITER_LIMIT
1249 
1250   // Find fields initialized by NULL for non-escaping Allocations.
1251   int non_escaped_length = non_escaped_worklist.length();
1252   for (int next = 0; next < non_escaped_length; next++) {
1253     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1254     PointsToNode::EscapeState es = ptn->escape_state();
1255     assert(es <= PointsToNode::ArgEscape, "sanity");
1256     if (es == PointsToNode::NoEscape) {
1257       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1258         // Adding references to NULL object does not change escape states
1259         // since it does not escape. Also no fields are added to NULL object.
1260         add_java_object_edges(null_obj, false);
1261       }
1262     }
1263     Node* n = ptn->ideal_node();
1264     if (n->is_Allocate()) {
1265       // The object allocated by this Allocate node will never be
1266       // seen by an other thread. Mark it so that when it is
1267       // expanded no MemBarStoreStore is added.
1268       InitializeNode* ini = n->as_Allocate()->initialization();
1269       if (ini != NULL)
1270         ini->set_does_not_escape();
1271     }
1272   }
1273   return true; // Finished graph construction.
1274 }
1275 
1276 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1277 // and check that we still have non-escaping java objects.
1278 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1279                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1280   GrowableArray<PointsToNode*> escape_worklist;
1281   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1282   int ptnodes_length = ptnodes_worklist.length();
1283   for (int next = 0; next < ptnodes_length; ++next) {
1284     PointsToNode* ptn = ptnodes_worklist.at(next);
1285     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1286         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1287       escape_worklist.push(ptn);
1288     }
1289   }
1290   // Set escape states to referenced nodes (edges list).
1291   while (escape_worklist.length() > 0) {
1292     PointsToNode* ptn = escape_worklist.pop();
1293     PointsToNode::EscapeState es  = ptn->escape_state();
1294     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1295     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1296         es >= PointsToNode::ArgEscape) {
1297       // GlobalEscape or ArgEscape state of field means it has unknown value.
1298       if (add_edge(ptn, phantom_obj)) {
1299         // New edge was added
1300         add_field_uses_to_worklist(ptn->as_Field());
1301       }
1302     }
1303     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1304       PointsToNode* e = i.get();
1305       if (e->is_Arraycopy()) {
1306         assert(ptn->arraycopy_dst(), "sanity");
1307         // Propagate only fields escape state through arraycopy edge.
1308         if (e->fields_escape_state() < field_es) {
1309           set_fields_escape_state(e, field_es);
1310           escape_worklist.push(e);
1311         }
1312       } else if (es >= field_es) {
1313         // fields_escape_state is also set to 'es' if it is less than 'es'.
1314         if (e->escape_state() < es) {
1315           set_escape_state(e, es);
1316           escape_worklist.push(e);
1317         }
1318       } else {
1319         // Propagate field escape state.
1320         bool es_changed = false;
1321         if (e->fields_escape_state() < field_es) {
1322           set_fields_escape_state(e, field_es);
1323           es_changed = true;
1324         }
1325         if ((e->escape_state() < field_es) &&
1326             e->is_Field() && ptn->is_JavaObject() &&
1327             e->as_Field()->is_oop()) {
1328           // Change escape state of referenced fields.
1329           set_escape_state(e, field_es);
1330           es_changed = true;
1331         } else if (e->escape_state() < es) {
1332           set_escape_state(e, es);
1333           es_changed = true;
1334         }
1335         if (es_changed) {
1336           escape_worklist.push(e);
1337         }
1338       }
1339     }
1340   }
1341   // Remove escaped objects from non_escaped list.
1342   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1343     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1344     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1345       non_escaped_worklist.delete_at(next);
1346     }
1347     if (ptn->escape_state() == PointsToNode::NoEscape) {
1348       // Find fields in non-escaped allocations which have unknown value.
1349       find_init_values(ptn, phantom_obj, NULL);
1350     }
1351   }
1352   return (non_escaped_worklist.length() > 0);
1353 }
1354 
1355 // Add all references to JavaObject node by walking over all uses.
1356 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1357   int new_edges = 0;
1358   if (populate_worklist) {
1359     // Populate _worklist by uses of jobj's uses.
1360     for (UseIterator i(jobj); i.has_next(); i.next()) {
1361       PointsToNode* use = i.get();
1362       if (use->is_Arraycopy())
1363         continue;
1364       add_uses_to_worklist(use);
1365       if (use->is_Field() && use->as_Field()->is_oop()) {
1366         // Put on worklist all field's uses (loads) and
1367         // related field nodes (same base and offset).
1368         add_field_uses_to_worklist(use->as_Field());
1369       }
1370     }
1371   }
1372   for (int l = 0; l < _worklist.length(); l++) {
1373     PointsToNode* use = _worklist.at(l);
1374     if (PointsToNode::is_base_use(use)) {
1375       // Add reference from jobj to field and from field to jobj (field's base).
1376       use = PointsToNode::get_use_node(use)->as_Field();
1377       if (add_base(use->as_Field(), jobj)) {
1378         new_edges++;
1379       }
1380       continue;
1381     }
1382     assert(!use->is_JavaObject(), "sanity");
1383     if (use->is_Arraycopy()) {
1384       if (jobj == null_obj) // NULL object does not have field edges
1385         continue;
1386       // Added edge from Arraycopy node to arraycopy's source java object
1387       if (add_edge(use, jobj)) {
1388         jobj->set_arraycopy_src();
1389         new_edges++;
1390       }
1391       // and stop here.
1392       continue;
1393     }
1394     if (!add_edge(use, jobj))
1395       continue; // No new edge added, there was such edge already.
1396     new_edges++;
1397     if (use->is_LocalVar()) {
1398       add_uses_to_worklist(use);
1399       if (use->arraycopy_dst()) {
1400         for (EdgeIterator i(use); i.has_next(); i.next()) {
1401           PointsToNode* e = i.get();
1402           if (e->is_Arraycopy()) {
1403             if (jobj == null_obj) // NULL object does not have field edges
1404               continue;
1405             // Add edge from arraycopy's destination java object to Arraycopy node.
1406             if (add_edge(jobj, e)) {
1407               new_edges++;
1408               jobj->set_arraycopy_dst();
1409             }
1410           }
1411         }
1412       }
1413     } else {
1414       // Added new edge to stored in field values.
1415       // Put on worklist all field's uses (loads) and
1416       // related field nodes (same base and offset).
1417       add_field_uses_to_worklist(use->as_Field());
1418     }
1419   }
1420   _worklist.clear();
1421   _in_worklist.reset();
1422   return new_edges;
1423 }
1424 
1425 // Put on worklist all related field nodes.
1426 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1427   assert(field->is_oop(), "sanity");
1428   int offset = field->offset();
1429   add_uses_to_worklist(field);
1430   // Loop over all bases of this field and push on worklist Field nodes
1431   // with the same offset and base (since they may reference the same field).
1432   for (BaseIterator i(field); i.has_next(); i.next()) {
1433     PointsToNode* base = i.get();
1434     add_fields_to_worklist(field, base);
1435     // Check if the base was source object of arraycopy and go over arraycopy's
1436     // destination objects since values stored to a field of source object are
1437     // accessable by uses (loads) of fields of destination objects.
1438     if (base->arraycopy_src()) {
1439       for (UseIterator j(base); j.has_next(); j.next()) {
1440         PointsToNode* arycp = j.get();
1441         if (arycp->is_Arraycopy()) {
1442           for (UseIterator k(arycp); k.has_next(); k.next()) {
1443             PointsToNode* abase = k.get();
1444             if (abase->arraycopy_dst() && abase != base) {
1445               // Look for the same arraycopy reference.
1446               add_fields_to_worklist(field, abase);
1447             }
1448           }
1449         }
1450       }
1451     }
1452   }
1453 }
1454 
1455 // Put on worklist all related field nodes.
1456 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1457   int offset = field->offset();
1458   if (base->is_LocalVar()) {
1459     for (UseIterator j(base); j.has_next(); j.next()) {
1460       PointsToNode* f = j.get();
1461       if (PointsToNode::is_base_use(f)) { // Field
1462         f = PointsToNode::get_use_node(f);
1463         if (f == field || !f->as_Field()->is_oop())
1464           continue;
1465         int offs = f->as_Field()->offset();
1466         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1467           add_to_worklist(f);
1468         }
1469       }
1470     }
1471   } else {
1472     assert(base->is_JavaObject(), "sanity");
1473     if (// Skip phantom_object since it is only used to indicate that
1474         // this field's content globally escapes.
1475         (base != phantom_obj) &&
1476         // NULL object node does not have fields.
1477         (base != null_obj)) {
1478       for (EdgeIterator i(base); i.has_next(); i.next()) {
1479         PointsToNode* f = i.get();
1480         // Skip arraycopy edge since store to destination object field
1481         // does not update value in source object field.
1482         if (f->is_Arraycopy()) {
1483           assert(base->arraycopy_dst(), "sanity");
1484           continue;
1485         }
1486         if (f == field || !f->as_Field()->is_oop())
1487           continue;
1488         int offs = f->as_Field()->offset();
1489         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1490           add_to_worklist(f);
1491         }
1492       }
1493     }
1494   }
1495 }
1496 
1497 // Find fields which have unknown value.
1498 int ConnectionGraph::find_field_value(FieldNode* field) {
1499   // Escaped fields should have init value already.
1500   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1501   int new_edges = 0;
1502   for (BaseIterator i(field); i.has_next(); i.next()) {
1503     PointsToNode* base = i.get();
1504     if (base->is_JavaObject()) {
1505       // Skip Allocate's fields which will be processed later.
1506       if (base->ideal_node()->is_Allocate())
1507         return 0;
1508       assert(base == null_obj, "only NULL ptr base expected here");
1509     }
1510   }
1511   if (add_edge(field, phantom_obj)) {
1512     // New edge was added
1513     new_edges++;
1514     add_field_uses_to_worklist(field);
1515   }
1516   return new_edges;
1517 }
1518 
1519 // Find fields initializing values for allocations.
1520 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1521   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1522   int new_edges = 0;
1523   Node* alloc = pta->ideal_node();
1524   if (init_val == phantom_obj) {
1525     // Do nothing for Allocate nodes since its fields values are
1526     // "known" unless they are initialized by arraycopy/clone.
1527     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1528       return 0;
1529     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1530 #ifdef ASSERT
1531     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1532       const char* name = alloc->as_CallStaticJava()->_name;
1533       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1534     }
1535 #endif
1536     // Non-escaped allocation returned from Java or runtime call have
1537     // unknown values in fields.
1538     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1539       PointsToNode* field = i.get();
1540       if (field->is_Field() && field->as_Field()->is_oop()) {
1541         if (add_edge(field, phantom_obj)) {
1542           // New edge was added
1543           new_edges++;
1544           add_field_uses_to_worklist(field->as_Field());
1545         }
1546       }
1547     }
1548     return new_edges;
1549   }
1550   assert(init_val == null_obj, "sanity");
1551   // Do nothing for Call nodes since its fields values are unknown.
1552   if (!alloc->is_Allocate())
1553     return 0;
1554 
1555   InitializeNode* ini = alloc->as_Allocate()->initialization();
1556   bool visited_bottom_offset = false;
1557   GrowableArray<int> offsets_worklist;
1558 
1559   // Check if an oop field's initializing value is recorded and add
1560   // a corresponding NULL if field's value if it is not recorded.
1561   // Connection Graph does not record a default initialization by NULL
1562   // captured by Initialize node.
1563   //
1564   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1565     PointsToNode* field = i.get(); // Field (AddP)
1566     if (!field->is_Field() || !field->as_Field()->is_oop())
1567       continue; // Not oop field
1568     int offset = field->as_Field()->offset();
1569     if (offset == Type::OffsetBot) {
1570       if (!visited_bottom_offset) {
1571         // OffsetBot is used to reference array's element,
1572         // always add reference to NULL to all Field nodes since we don't
1573         // known which element is referenced.
1574         if (add_edge(field, null_obj)) {
1575           // New edge was added
1576           new_edges++;
1577           add_field_uses_to_worklist(field->as_Field());
1578           visited_bottom_offset = true;
1579         }
1580       }
1581     } else {
1582       // Check only oop fields.
1583       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1584       if (adr_type->isa_rawptr()) {
1585 #ifdef ASSERT
1586         // Raw pointers are used for initializing stores so skip it
1587         // since it should be recorded already
1588         Node* base = get_addp_base(field->ideal_node());
1589         assert(adr_type->isa_rawptr() && is_captured_store_address(field->ideal_node()), "unexpected pointer type");
1590 #endif
1591         continue;
1592       }
1593       if (!offsets_worklist.contains(offset)) {
1594         offsets_worklist.append(offset);
1595         Node* value = NULL;
1596         if (ini != NULL) {
1597           // StoreP::memory_type() == T_ADDRESS
1598           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1599           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1600           // Make sure initializing store has the same type as this AddP.
1601           // This AddP may reference non existing field because it is on a
1602           // dead branch of bimorphic call which is not eliminated yet.
1603           if (store != NULL && store->is_Store() &&
1604               store->as_Store()->memory_type() == ft) {
1605             value = store->in(MemNode::ValueIn);
1606 #ifdef ASSERT
1607             if (VerifyConnectionGraph) {
1608               // Verify that AddP already points to all objects the value points to.
1609               PointsToNode* val = ptnode_adr(value->_idx);
1610               assert((val != NULL), "should be processed already");
1611               PointsToNode* missed_obj = NULL;
1612               if (val->is_JavaObject()) {
1613                 if (!field->points_to(val->as_JavaObject())) {
1614                   missed_obj = val;
1615                 }
1616               } else {
1617                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1618                   tty->print_cr("----------init store has invalid value -----");
1619                   store->dump();
1620                   val->dump();
1621                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1622                 }
1623                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1624                   PointsToNode* obj = j.get();
1625                   if (obj->is_JavaObject()) {
1626                     if (!field->points_to(obj->as_JavaObject())) {
1627                       missed_obj = obj;
1628                       break;
1629                     }
1630                   }
1631                 }
1632               }
1633               if (missed_obj != NULL) {
1634                 tty->print_cr("----------field---------------------------------");
1635                 field->dump();
1636                 tty->print_cr("----------missed referernce to object-----------");
1637                 missed_obj->dump();
1638                 tty->print_cr("----------object referernced by init store -----");
1639                 store->dump();
1640                 val->dump();
1641                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1642               }
1643             }
1644 #endif
1645           } else {
1646             // There could be initializing stores which follow allocation.
1647             // For example, a volatile field store is not collected
1648             // by Initialize node.
1649             //
1650             // Need to check for dependent loads to separate such stores from
1651             // stores which follow loads. For now, add initial value NULL so
1652             // that compare pointers optimization works correctly.
1653           }
1654         }
1655         if (value == NULL) {
1656           // A field's initializing value was not recorded. Add NULL.
1657           if (add_edge(field, null_obj)) {
1658             // New edge was added
1659             new_edges++;
1660             add_field_uses_to_worklist(field->as_Field());
1661           }
1662         }
1663       }
1664     }
1665   }
1666   return new_edges;
1667 }
1668 
1669 // Adjust scalar_replaceable state after Connection Graph is built.
1670 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1671   // Search for non-escaping objects which are not scalar replaceable
1672   // and mark them to propagate the state to referenced objects.
1673 
1674   // 1. An object is not scalar replaceable if the field into which it is
1675   // stored has unknown offset (stored into unknown element of an array).
1676   //
1677   for (UseIterator i(jobj); i.has_next(); i.next()) {
1678     PointsToNode* use = i.get();
1679     if (use->is_Arraycopy()) {
1680       continue;
1681     }
1682     if (use->is_Field()) {
1683       FieldNode* field = use->as_Field();
1684       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1685       if (field->offset() == Type::OffsetBot) {
1686         jobj->set_scalar_replaceable(false);
1687         return;
1688       }
1689       // 2. An object is not scalar replaceable if the field into which it is
1690       // stored has multiple bases one of which is null.
1691       if (field->base_count() > 1) {
1692         for (BaseIterator i(field); i.has_next(); i.next()) {
1693           PointsToNode* base = i.get();
1694           if (base == null_obj) {
1695             jobj->set_scalar_replaceable(false);
1696             return;
1697           }
1698         }
1699       }
1700     }
1701     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1702     // 3. An object is not scalar replaceable if it is merged with other objects.
1703     for (EdgeIterator j(use); j.has_next(); j.next()) {
1704       PointsToNode* ptn = j.get();
1705       if (ptn->is_JavaObject() && ptn != jobj) {
1706         // Mark all objects.
1707         jobj->set_scalar_replaceable(false);
1708          ptn->set_scalar_replaceable(false);
1709       }
1710     }
1711     if (!jobj->scalar_replaceable()) {
1712       return;
1713     }
1714   }
1715 
1716   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1717     if (j.get()->is_Arraycopy()) {
1718       continue;
1719     }
1720 
1721     // Non-escaping object node should point only to field nodes.
1722     FieldNode* field = j.get()->as_Field();
1723     int offset = field->as_Field()->offset();
1724 
1725     // 4. An object is not scalar replaceable if it has a field with unknown
1726     // offset (array's element is accessed in loop).
1727     if (offset == Type::OffsetBot) {
1728       jobj->set_scalar_replaceable(false);
1729       return;
1730     }
1731     // 5. Currently an object is not scalar replaceable if a LoadStore node
1732     // access its field since the field value is unknown after it.
1733     //
1734     Node* n = field->ideal_node();
1735 
1736     // Test for an unsafe access that was parsed as maybe off heap
1737     // (with a CheckCastPP to raw memory).
1738     assert(n->is_AddP(), "expect an address computation");
1739     if (n->in(AddPNode::Base)->is_top() &&
1740         n->in(AddPNode::Address)->Opcode() == Op_CheckCastPP) {
1741       assert(n->in(AddPNode::Address)->bottom_type()->isa_rawptr(), "raw address so raw cast expected");
1742       assert(_igvn->type(n->in(AddPNode::Address)->in(1))->isa_oopptr(), "cast pattern at unsafe access expected");
1743       jobj->set_scalar_replaceable(false);
1744       return;
1745     }
1746 
1747     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1748       Node* u = n->fast_out(i);
1749       if (u->is_LoadStore() || (u->is_Mem() && u->as_Mem()->is_mismatched_access())) {
1750         jobj->set_scalar_replaceable(false);
1751         return;
1752       }
1753     }
1754 
1755     // 6. Or the address may point to more then one object. This may produce
1756     // the false positive result (set not scalar replaceable)
1757     // since the flow-insensitive escape analysis can't separate
1758     // the case when stores overwrite the field's value from the case
1759     // when stores happened on different control branches.
1760     //
1761     // Note: it will disable scalar replacement in some cases:
1762     //
1763     //    Point p[] = new Point[1];
1764     //    p[0] = new Point(); // Will be not scalar replaced
1765     //
1766     // but it will save us from incorrect optimizations in next cases:
1767     //
1768     //    Point p[] = new Point[1];
1769     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1770     //
1771     if (field->base_count() > 1) {
1772       for (BaseIterator i(field); i.has_next(); i.next()) {
1773         PointsToNode* base = i.get();
1774         // Don't take into account LocalVar nodes which
1775         // may point to only one object which should be also
1776         // this field's base by now.
1777         if (base->is_JavaObject() && base != jobj) {
1778           // Mark all bases.
1779           jobj->set_scalar_replaceable(false);
1780           base->set_scalar_replaceable(false);
1781         }
1782       }
1783     }
1784   }
1785 }
1786 
1787 #ifdef ASSERT
1788 void ConnectionGraph::verify_connection_graph(
1789                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1790                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1791                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1792                          GrowableArray<Node*>& addp_worklist) {
1793   // Verify that graph is complete - no new edges could be added.
1794   int java_objects_length = java_objects_worklist.length();
1795   int non_escaped_length  = non_escaped_worklist.length();
1796   int new_edges = 0;
1797   for (int next = 0; next < java_objects_length; ++next) {
1798     JavaObjectNode* ptn = java_objects_worklist.at(next);
1799     new_edges += add_java_object_edges(ptn, true);
1800   }
1801   assert(new_edges == 0, "graph was not complete");
1802   // Verify that escape state is final.
1803   int length = non_escaped_worklist.length();
1804   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1805   assert((non_escaped_length == non_escaped_worklist.length()) &&
1806          (non_escaped_length == length) &&
1807          (_worklist.length() == 0), "escape state was not final");
1808 
1809   // Verify fields information.
1810   int addp_length = addp_worklist.length();
1811   for (int next = 0; next < addp_length; ++next ) {
1812     Node* n = addp_worklist.at(next);
1813     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1814     if (field->is_oop()) {
1815       // Verify that field has all bases
1816       Node* base = get_addp_base(n);
1817       PointsToNode* ptn = ptnode_adr(base->_idx);
1818       if (ptn->is_JavaObject()) {
1819         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1820       } else {
1821         assert(ptn->is_LocalVar(), "sanity");
1822         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1823           PointsToNode* e = i.get();
1824           if (e->is_JavaObject()) {
1825             assert(field->has_base(e->as_JavaObject()), "sanity");
1826           }
1827         }
1828       }
1829       // Verify that all fields have initializing values.
1830       if (field->edge_count() == 0) {
1831         tty->print_cr("----------field does not have references----------");
1832         field->dump();
1833         for (BaseIterator i(field); i.has_next(); i.next()) {
1834           PointsToNode* base = i.get();
1835           tty->print_cr("----------field has next base---------------------");
1836           base->dump();
1837           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1838             tty->print_cr("----------base has fields-------------------------");
1839             for (EdgeIterator j(base); j.has_next(); j.next()) {
1840               j.get()->dump();
1841             }
1842             tty->print_cr("----------base has references---------------------");
1843             for (UseIterator j(base); j.has_next(); j.next()) {
1844               j.get()->dump();
1845             }
1846           }
1847         }
1848         for (UseIterator i(field); i.has_next(); i.next()) {
1849           i.get()->dump();
1850         }
1851         assert(field->edge_count() > 0, "sanity");
1852       }
1853     }
1854   }
1855 }
1856 #endif
1857 
1858 // Optimize ideal graph.
1859 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1860                                            GrowableArray<Node*>& storestore_worklist) {
1861   Compile* C = _compile;
1862   PhaseIterGVN* igvn = _igvn;
1863   if (EliminateLocks) {
1864     // Mark locks before changing ideal graph.
1865     int cnt = C->macro_count();
1866     for( int i=0; i < cnt; i++ ) {
1867       Node *n = C->macro_node(i);
1868       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1869         AbstractLockNode* alock = n->as_AbstractLock();
1870         if (!alock->is_non_esc_obj()) {
1871           if (not_global_escape(alock->obj_node())) {
1872             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1873             // The lock could be marked eliminated by lock coarsening
1874             // code during first IGVN before EA. Replace coarsened flag
1875             // to eliminate all associated locks/unlocks.
1876 #ifdef ASSERT
1877             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1878 #endif
1879             alock->set_non_esc_obj();
1880           }
1881         }
1882       }
1883     }
1884   }
1885 
1886   if (OptimizePtrCompare) {
1887     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1888     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1889     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1890     // Optimize objects compare.
1891     while (ptr_cmp_worklist.length() != 0) {
1892       Node *n = ptr_cmp_worklist.pop();
1893       Node *res = optimize_ptr_compare(n);
1894       if (res != NULL) {
1895 #ifndef PRODUCT
1896         if (PrintOptimizePtrCompare) {
1897           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1898           if (Verbose) {
1899             n->dump(1);
1900           }
1901         }
1902 #endif
1903         igvn->replace_node(n, res);
1904       }
1905     }
1906     // cleanup
1907     if (_pcmp_neq->outcnt() == 0)
1908       igvn->hash_delete(_pcmp_neq);
1909     if (_pcmp_eq->outcnt()  == 0)
1910       igvn->hash_delete(_pcmp_eq);
1911   }
1912 
1913   // For MemBarStoreStore nodes added in library_call.cpp, check
1914   // escape status of associated AllocateNode and optimize out
1915   // MemBarStoreStore node if the allocated object never escapes.
1916   while (storestore_worklist.length() != 0) {
1917     Node *n = storestore_worklist.pop();
1918     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1919     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1920     if (alloc->is_Allocate() && not_global_escape(alloc)) {
1921       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1922       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1923       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1924       igvn->register_new_node_with_optimizer(mb);
1925       igvn->replace_node(storestore, mb);
1926     }
1927   }
1928 }
1929 
1930 // Optimize objects compare.
1931 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1932   assert(OptimizePtrCompare, "sanity");
1933   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1934   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1935   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1936   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1937   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1938   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1939 
1940   // Check simple cases first.
1941   if (jobj1 != NULL) {
1942     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1943       if (jobj1 == jobj2) {
1944         // Comparing the same not escaping object.
1945         return _pcmp_eq;
1946       }
1947       Node* obj = jobj1->ideal_node();
1948       // Comparing not escaping allocation.
1949       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1950           !ptn2->points_to(jobj1)) {
1951         return _pcmp_neq; // This includes nullness check.
1952       }
1953     }
1954   }
1955   if (jobj2 != NULL) {
1956     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1957       Node* obj = jobj2->ideal_node();
1958       // Comparing not escaping allocation.
1959       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1960           !ptn1->points_to(jobj2)) {
1961         return _pcmp_neq; // This includes nullness check.
1962       }
1963     }
1964   }
1965   if (jobj1 != NULL && jobj1 != phantom_obj &&
1966       jobj2 != NULL && jobj2 != phantom_obj &&
1967       jobj1->ideal_node()->is_Con() &&
1968       jobj2->ideal_node()->is_Con()) {
1969     // Klass or String constants compare. Need to be careful with
1970     // compressed pointers - compare types of ConN and ConP instead of nodes.
1971     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1972     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1973     if (t1->make_ptr() == t2->make_ptr()) {
1974       return _pcmp_eq;
1975     } else {
1976       return _pcmp_neq;
1977     }
1978   }
1979   if (ptn1->meet(ptn2)) {
1980     return NULL; // Sets are not disjoint
1981   }
1982 
1983   // Sets are disjoint.
1984   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1985   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1986   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1987   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1988   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1989       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1990     // Check nullness of unknown object.
1991     return NULL;
1992   }
1993 
1994   // Disjointness by itself is not sufficient since
1995   // alias analysis is not complete for escaped objects.
1996   // Disjoint sets are definitely unrelated only when
1997   // at least one set has only not escaping allocations.
1998   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1999     if (ptn1->non_escaping_allocation()) {
2000       return _pcmp_neq;
2001     }
2002   }
2003   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
2004     if (ptn2->non_escaping_allocation()) {
2005       return _pcmp_neq;
2006     }
2007   }
2008   return NULL;
2009 }
2010 
2011 // Connection Graph constuction functions.
2012 
2013 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
2014   PointsToNode* ptadr = _nodes.at(n->_idx);
2015   if (ptadr != NULL) {
2016     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
2017     return;
2018   }
2019   Compile* C = _compile;
2020   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2021   _nodes.at_put(n->_idx, ptadr);
2022 }
2023 
2024 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2025   PointsToNode* ptadr = _nodes.at(n->_idx);
2026   if (ptadr != NULL) {
2027     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2028     return;
2029   }
2030   Compile* C = _compile;
2031   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2032   _nodes.at_put(n->_idx, ptadr);
2033 }
2034 
2035 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2036   PointsToNode* ptadr = _nodes.at(n->_idx);
2037   if (ptadr != NULL) {
2038     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2039     return;
2040   }
2041   bool unsafe = false;
2042   bool is_oop = is_oop_field(n, offset, &unsafe);
2043   if (unsafe) {
2044     es = PointsToNode::GlobalEscape;
2045   }
2046   Compile* C = _compile;
2047   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2048   _nodes.at_put(n->_idx, field);
2049 }
2050 
2051 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2052                                     PointsToNode* src, PointsToNode* dst) {
2053   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2054   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2055   PointsToNode* ptadr = _nodes.at(n->_idx);
2056   if (ptadr != NULL) {
2057     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2058     return;
2059   }
2060   Compile* C = _compile;
2061   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2062   _nodes.at_put(n->_idx, ptadr);
2063   // Add edge from arraycopy node to source object.
2064   (void)add_edge(ptadr, src);
2065   src->set_arraycopy_src();
2066   // Add edge from destination object to arraycopy node.
2067   (void)add_edge(dst, ptadr);
2068   dst->set_arraycopy_dst();
2069 }
2070 
2071 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2072   const Type* adr_type = n->as_AddP()->bottom_type();
2073   BasicType bt = T_INT;
2074   if (offset == Type::OffsetBot) {
2075     // Check only oop fields.
2076     if (!adr_type->isa_aryptr() ||
2077         (adr_type->isa_aryptr()->klass() == NULL) ||
2078          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2079       // OffsetBot is used to reference array's element. Ignore first AddP.
2080       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2081         bt = T_OBJECT;
2082       }
2083     }
2084   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2085     if (adr_type->isa_instptr()) {
2086       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2087       if (field != NULL) {
2088         bt = field->layout_type();
2089       } else {
2090         // Check for unsafe oop field access
2091         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2092             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2093             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2094             BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2095           bt = T_OBJECT;
2096           (*unsafe) = true;
2097         }
2098       }
2099     } else if (adr_type->isa_aryptr()) {
2100       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2101         // Ignore array length load.
2102       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2103         // Ignore first AddP.
2104       } else {
2105         const Type* elemtype = adr_type->isa_aryptr()->elem();
2106         bt = elemtype->array_element_basic_type();
2107       }
2108     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2109       // Allocation initialization, ThreadLocal field access, unsafe access
2110       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2111           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2112           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN) ||
2113           BarrierSet::barrier_set()->barrier_set_c2()->escape_has_out_with_unsafe_object(n)) {
2114         bt = T_OBJECT;
2115       }
2116     }
2117   }
2118   // Note: T_NARROWOOP is not classed as a real reference type
2119   return (is_reference_type(bt) || bt == T_NARROWOOP);
2120 }
2121 
2122 // Returns unique pointed java object or NULL.
2123 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2124   assert(!_collecting, "should not call when contructed graph");
2125   // If the node was created after the escape computation we can't answer.
2126   uint idx = n->_idx;
2127   if (idx >= nodes_size()) {
2128     return NULL;
2129   }
2130   PointsToNode* ptn = ptnode_adr(idx);
2131   if (ptn == NULL) {
2132     return NULL;
2133   }
2134   if (ptn->is_JavaObject()) {
2135     return ptn->as_JavaObject();
2136   }
2137   assert(ptn->is_LocalVar(), "sanity");
2138   // Check all java objects it points to.
2139   JavaObjectNode* jobj = NULL;
2140   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2141     PointsToNode* e = i.get();
2142     if (e->is_JavaObject()) {
2143       if (jobj == NULL) {
2144         jobj = e->as_JavaObject();
2145       } else if (jobj != e) {
2146         return NULL;
2147       }
2148     }
2149   }
2150   return jobj;
2151 }
2152 
2153 // Return true if this node points only to non-escaping allocations.
2154 bool PointsToNode::non_escaping_allocation() {
2155   if (is_JavaObject()) {
2156     Node* n = ideal_node();
2157     if (n->is_Allocate() || n->is_CallStaticJava()) {
2158       return (escape_state() == PointsToNode::NoEscape);
2159     } else {
2160       return false;
2161     }
2162   }
2163   assert(is_LocalVar(), "sanity");
2164   // Check all java objects it points to.
2165   for (EdgeIterator i(this); i.has_next(); i.next()) {
2166     PointsToNode* e = i.get();
2167     if (e->is_JavaObject()) {
2168       Node* n = e->ideal_node();
2169       if ((e->escape_state() != PointsToNode::NoEscape) ||
2170           !(n->is_Allocate() || n->is_CallStaticJava())) {
2171         return false;
2172       }
2173     }
2174   }
2175   return true;
2176 }
2177 
2178 // Return true if we know the node does not escape globally.
2179 bool ConnectionGraph::not_global_escape(Node *n) {
2180   assert(!_collecting, "should not call during graph construction");
2181   // If the node was created after the escape computation we can't answer.
2182   uint idx = n->_idx;
2183   if (idx >= nodes_size()) {
2184     return false;
2185   }
2186   PointsToNode* ptn = ptnode_adr(idx);
2187   if (ptn == NULL) {
2188     return false; // not in congraph (e.g. ConI)
2189   }
2190   PointsToNode::EscapeState es = ptn->escape_state();
2191   // If we have already computed a value, return it.
2192   if (es >= PointsToNode::GlobalEscape)
2193     return false;
2194   if (ptn->is_JavaObject()) {
2195     return true; // (es < PointsToNode::GlobalEscape);
2196   }
2197   assert(ptn->is_LocalVar(), "sanity");
2198   // Check all java objects it points to.
2199   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2200     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2201       return false;
2202   }
2203   return true;
2204 }
2205 
2206 
2207 // Helper functions
2208 
2209 // Return true if this node points to specified node or nodes it points to.
2210 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2211   if (is_JavaObject()) {
2212     return (this == ptn);
2213   }
2214   assert(is_LocalVar() || is_Field(), "sanity");
2215   for (EdgeIterator i(this); i.has_next(); i.next()) {
2216     if (i.get() == ptn)
2217       return true;
2218   }
2219   return false;
2220 }
2221 
2222 // Return true if one node points to an other.
2223 bool PointsToNode::meet(PointsToNode* ptn) {
2224   if (this == ptn) {
2225     return true;
2226   } else if (ptn->is_JavaObject()) {
2227     return this->points_to(ptn->as_JavaObject());
2228   } else if (this->is_JavaObject()) {
2229     return ptn->points_to(this->as_JavaObject());
2230   }
2231   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2232   int ptn_count =  ptn->edge_count();
2233   for (EdgeIterator i(this); i.has_next(); i.next()) {
2234     PointsToNode* this_e = i.get();
2235     for (int j = 0; j < ptn_count; j++) {
2236       if (this_e == ptn->edge(j))
2237         return true;
2238     }
2239   }
2240   return false;
2241 }
2242 
2243 #ifdef ASSERT
2244 // Return true if bases point to this java object.
2245 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2246   for (BaseIterator i(this); i.has_next(); i.next()) {
2247     if (i.get() == jobj)
2248       return true;
2249   }
2250   return false;
2251 }
2252 #endif
2253 
2254 bool ConnectionGraph::is_captured_store_address(Node* addp) {
2255   // Handle simple case first.
2256   assert(_igvn->type(addp)->isa_oopptr() == NULL, "should be raw access");
2257   if (addp->in(AddPNode::Address)->is_Proj() && addp->in(AddPNode::Address)->in(0)->is_Allocate()) {
2258     return true;
2259   } else if (addp->in(AddPNode::Address)->is_Phi()) {
2260     for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
2261       Node* addp_use = addp->fast_out(i);
2262       if (addp_use->is_Store()) {
2263         for (DUIterator_Fast jmax, j = addp_use->fast_outs(jmax); j < jmax; j++) {
2264           if (addp_use->fast_out(j)->is_Initialize()) {
2265             return true;
2266           }
2267         }
2268       }
2269     }
2270   }
2271   return false;
2272 }
2273 
2274 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2275   const Type *adr_type = phase->type(adr);
2276   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL && is_captured_store_address(adr)) {
2277     // We are computing a raw address for a store captured by an Initialize
2278     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2279     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2280     assert(offs != Type::OffsetBot ||
2281            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2282            "offset must be a constant or it is initialization of array");
2283     return offs;
2284   }
2285   const TypePtr *t_ptr = adr_type->isa_ptr();
2286   assert(t_ptr != NULL, "must be a pointer type");
2287   return t_ptr->offset();
2288 }
2289 
2290 Node* ConnectionGraph::get_addp_base(Node *addp) {
2291   assert(addp->is_AddP(), "must be AddP");
2292   //
2293   // AddP cases for Base and Address inputs:
2294   // case #1. Direct object's field reference:
2295   //     Allocate
2296   //       |
2297   //     Proj #5 ( oop result )
2298   //       |
2299   //     CheckCastPP (cast to instance type)
2300   //      | |
2301   //     AddP  ( base == address )
2302   //
2303   // case #2. Indirect object's field reference:
2304   //      Phi
2305   //       |
2306   //     CastPP (cast to instance type)
2307   //      | |
2308   //     AddP  ( base == address )
2309   //
2310   // case #3. Raw object's field reference for Initialize node:
2311   //      Allocate
2312   //        |
2313   //      Proj #5 ( oop result )
2314   //  top   |
2315   //     \  |
2316   //     AddP  ( base == top )
2317   //
2318   // case #4. Array's element reference:
2319   //   {CheckCastPP | CastPP}
2320   //     |  | |
2321   //     |  AddP ( array's element offset )
2322   //     |  |
2323   //     AddP ( array's offset )
2324   //
2325   // case #5. Raw object's field reference for arraycopy stub call:
2326   //          The inline_native_clone() case when the arraycopy stub is called
2327   //          after the allocation before Initialize and CheckCastPP nodes.
2328   //      Allocate
2329   //        |
2330   //      Proj #5 ( oop result )
2331   //       | |
2332   //       AddP  ( base == address )
2333   //
2334   // case #6. Constant Pool, ThreadLocal, CastX2P or
2335   //          Raw object's field reference:
2336   //      {ConP, ThreadLocal, CastX2P, raw Load}
2337   //  top   |
2338   //     \  |
2339   //     AddP  ( base == top )
2340   //
2341   // case #7. Klass's field reference.
2342   //      LoadKlass
2343   //       | |
2344   //       AddP  ( base == address )
2345   //
2346   // case #8. narrow Klass's field reference.
2347   //      LoadNKlass
2348   //       |
2349   //      DecodeN
2350   //       | |
2351   //       AddP  ( base == address )
2352   //
2353   // case #9. Mixed unsafe access
2354   //    {instance}
2355   //        |
2356   //      CheckCastPP (raw)
2357   //  top   |
2358   //     \  |
2359   //     AddP  ( base == top )
2360   //
2361   Node *base = addp->in(AddPNode::Base);
2362   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2363     base = addp->in(AddPNode::Address);
2364     while (base->is_AddP()) {
2365       // Case #6 (unsafe access) may have several chained AddP nodes.
2366       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2367       base = base->in(AddPNode::Address);
2368     }
2369     if (base->Opcode() == Op_CheckCastPP &&
2370         base->bottom_type()->isa_rawptr() &&
2371         _igvn->type(base->in(1))->isa_oopptr()) {
2372       base = base->in(1); // Case #9
2373     } else {
2374       Node* uncast_base = base->uncast();
2375       int opcode = uncast_base->Opcode();
2376       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2377              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2378              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2379              is_captured_store_address(addp), "sanity");
2380     }
2381   }
2382   return base;
2383 }
2384 
2385 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2386   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2387   Node* addp2 = addp->raw_out(0);
2388   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2389       addp2->in(AddPNode::Base) == n &&
2390       addp2->in(AddPNode::Address) == addp) {
2391     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2392     //
2393     // Find array's offset to push it on worklist first and
2394     // as result process an array's element offset first (pushed second)
2395     // to avoid CastPP for the array's offset.
2396     // Otherwise the inserted CastPP (LocalVar) will point to what
2397     // the AddP (Field) points to. Which would be wrong since
2398     // the algorithm expects the CastPP has the same point as
2399     // as AddP's base CheckCastPP (LocalVar).
2400     //
2401     //    ArrayAllocation
2402     //     |
2403     //    CheckCastPP
2404     //     |
2405     //    memProj (from ArrayAllocation CheckCastPP)
2406     //     |  ||
2407     //     |  ||   Int (element index)
2408     //     |  ||    |   ConI (log(element size))
2409     //     |  ||    |   /
2410     //     |  ||   LShift
2411     //     |  ||  /
2412     //     |  AddP (array's element offset)
2413     //     |  |
2414     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2415     //     | / /
2416     //     AddP (array's offset)
2417     //      |
2418     //     Load/Store (memory operation on array's element)
2419     //
2420     return addp2;
2421   }
2422   return NULL;
2423 }
2424 
2425 //
2426 // Adjust the type and inputs of an AddP which computes the
2427 // address of a field of an instance
2428 //
2429 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2430   PhaseGVN* igvn = _igvn;
2431   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2432   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2433   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2434   if (t == NULL) {
2435     // We are computing a raw address for a store captured by an Initialize
2436     // compute an appropriate address type (cases #3 and #5).
2437     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2438     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2439     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2440     assert(offs != Type::OffsetBot, "offset must be a constant");
2441     t = base_t->add_offset(offs)->is_oopptr();
2442   }
2443   int inst_id =  base_t->instance_id();
2444   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2445                              "old type must be non-instance or match new type");
2446 
2447   // The type 't' could be subclass of 'base_t'.
2448   // As result t->offset() could be large then base_t's size and it will
2449   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2450   // constructor verifies correctness of the offset.
2451   //
2452   // It could happened on subclass's branch (from the type profiling
2453   // inlining) which was not eliminated during parsing since the exactness
2454   // of the allocation type was not propagated to the subclass type check.
2455   //
2456   // Or the type 't' could be not related to 'base_t' at all.
2457   // It could happened when CHA type is different from MDO type on a dead path
2458   // (for example, from instanceof check) which is not collapsed during parsing.
2459   //
2460   // Do nothing for such AddP node and don't process its users since
2461   // this code branch will go away.
2462   //
2463   if (!t->is_known_instance() &&
2464       !base_t->klass()->is_subtype_of(t->klass())) {
2465      return false; // bail out
2466   }
2467   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2468   // Do NOT remove the next line: ensure a new alias index is allocated
2469   // for the instance type. Note: C++ will not remove it since the call
2470   // has side effect.
2471   int alias_idx = _compile->get_alias_index(tinst);
2472   igvn->set_type(addp, tinst);
2473   // record the allocation in the node map
2474   set_map(addp, get_map(base->_idx));
2475   // Set addp's Base and Address to 'base'.
2476   Node *abase = addp->in(AddPNode::Base);
2477   Node *adr   = addp->in(AddPNode::Address);
2478   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2479       adr->in(0)->_idx == (uint)inst_id) {
2480     // Skip AddP cases #3 and #5.
2481   } else {
2482     assert(!abase->is_top(), "sanity"); // AddP case #3
2483     if (abase != base) {
2484       igvn->hash_delete(addp);
2485       addp->set_req(AddPNode::Base, base);
2486       if (abase == adr) {
2487         addp->set_req(AddPNode::Address, base);
2488       } else {
2489         // AddP case #4 (adr is array's element offset AddP node)
2490 #ifdef ASSERT
2491         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2492         assert(adr->is_AddP() && atype != NULL &&
2493                atype->instance_id() == inst_id, "array's element offset should be processed first");
2494 #endif
2495       }
2496       igvn->hash_insert(addp);
2497     }
2498   }
2499   // Put on IGVN worklist since at least addp's type was changed above.
2500   record_for_optimizer(addp);
2501   return true;
2502 }
2503 
2504 //
2505 // Create a new version of orig_phi if necessary. Returns either the newly
2506 // created phi or an existing phi.  Sets create_new to indicate whether a new
2507 // phi was created.  Cache the last newly created phi in the node map.
2508 //
2509 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2510   Compile *C = _compile;
2511   PhaseGVN* igvn = _igvn;
2512   new_created = false;
2513   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2514   // nothing to do if orig_phi is bottom memory or matches alias_idx
2515   if (phi_alias_idx == alias_idx) {
2516     return orig_phi;
2517   }
2518   // Have we recently created a Phi for this alias index?
2519   PhiNode *result = get_map_phi(orig_phi->_idx);
2520   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2521     return result;
2522   }
2523   // Previous check may fail when the same wide memory Phi was split into Phis
2524   // for different memory slices. Search all Phis for this region.
2525   if (result != NULL) {
2526     Node* region = orig_phi->in(0);
2527     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2528       Node* phi = region->fast_out(i);
2529       if (phi->is_Phi() &&
2530           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2531         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2532         return phi->as_Phi();
2533       }
2534     }
2535   }
2536   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2537     if (C->do_escape_analysis() == true && !C->failing()) {
2538       // Retry compilation without escape analysis.
2539       // If this is the first failure, the sentinel string will "stick"
2540       // to the Compile object, and the C2Compiler will see it and retry.
2541       C->record_failure(C2Compiler::retry_no_escape_analysis());
2542     }
2543     return NULL;
2544   }
2545   orig_phi_worklist.append_if_missing(orig_phi);
2546   const TypePtr *atype = C->get_adr_type(alias_idx);
2547   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2548   C->copy_node_notes_to(result, orig_phi);
2549   igvn->set_type(result, result->bottom_type());
2550   record_for_optimizer(result);
2551   set_map(orig_phi, result);
2552   new_created = true;
2553   return result;
2554 }
2555 
2556 //
2557 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2558 // specified alias index.
2559 //
2560 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2561   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2562   Compile *C = _compile;
2563   PhaseGVN* igvn = _igvn;
2564   bool new_phi_created;
2565   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2566   if (!new_phi_created) {
2567     return result;
2568   }
2569   GrowableArray<PhiNode *>  phi_list;
2570   GrowableArray<uint>  cur_input;
2571   PhiNode *phi = orig_phi;
2572   uint idx = 1;
2573   bool finished = false;
2574   while(!finished) {
2575     while (idx < phi->req()) {
2576       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2577       if (mem != NULL && mem->is_Phi()) {
2578         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2579         if (new_phi_created) {
2580           // found an phi for which we created a new split, push current one on worklist and begin
2581           // processing new one
2582           phi_list.push(phi);
2583           cur_input.push(idx);
2584           phi = mem->as_Phi();
2585           result = newphi;
2586           idx = 1;
2587           continue;
2588         } else {
2589           mem = newphi;
2590         }
2591       }
2592       if (C->failing()) {
2593         return NULL;
2594       }
2595       result->set_req(idx++, mem);
2596     }
2597 #ifdef ASSERT
2598     // verify that the new Phi has an input for each input of the original
2599     assert( phi->req() == result->req(), "must have same number of inputs.");
2600     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2601 #endif
2602     // Check if all new phi's inputs have specified alias index.
2603     // Otherwise use old phi.
2604     for (uint i = 1; i < phi->req(); i++) {
2605       Node* in = result->in(i);
2606       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2607     }
2608     // we have finished processing a Phi, see if there are any more to do
2609     finished = (phi_list.length() == 0 );
2610     if (!finished) {
2611       phi = phi_list.pop();
2612       idx = cur_input.pop();
2613       PhiNode *prev_result = get_map_phi(phi->_idx);
2614       prev_result->set_req(idx++, result);
2615       result = prev_result;
2616     }
2617   }
2618   return result;
2619 }
2620 
2621 //
2622 // The next methods are derived from methods in MemNode.
2623 //
2624 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2625   Node *mem = mmem;
2626   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2627   // means an array I have not precisely typed yet.  Do not do any
2628   // alias stuff with it any time soon.
2629   if (toop->base() != Type::AnyPtr &&
2630       !(toop->klass() != NULL &&
2631         toop->klass()->is_java_lang_Object() &&
2632         toop->offset() == Type::OffsetBot)) {
2633     mem = mmem->memory_at(alias_idx);
2634     // Update input if it is progress over what we have now
2635   }
2636   return mem;
2637 }
2638 
2639 //
2640 // Move memory users to their memory slices.
2641 //
2642 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2643   Compile* C = _compile;
2644   PhaseGVN* igvn = _igvn;
2645   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2646   assert(tp != NULL, "ptr type");
2647   int alias_idx = C->get_alias_index(tp);
2648   int general_idx = C->get_general_index(alias_idx);
2649 
2650   // Move users first
2651   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2652     Node* use = n->fast_out(i);
2653     if (use->is_MergeMem()) {
2654       MergeMemNode* mmem = use->as_MergeMem();
2655       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2656       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2657         continue; // Nothing to do
2658       }
2659       // Replace previous general reference to mem node.
2660       uint orig_uniq = C->unique();
2661       Node* m = find_inst_mem(n, general_idx, orig_phis);
2662       assert(orig_uniq == C->unique(), "no new nodes");
2663       mmem->set_memory_at(general_idx, m);
2664       --imax;
2665       --i;
2666     } else if (use->is_MemBar()) {
2667       assert(!use->is_Initialize(), "initializing stores should not be moved");
2668       if (use->req() > MemBarNode::Precedent &&
2669           use->in(MemBarNode::Precedent) == n) {
2670         // Don't move related membars.
2671         record_for_optimizer(use);
2672         continue;
2673       }
2674       tp = use->as_MemBar()->adr_type()->isa_ptr();
2675       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2676           alias_idx == general_idx) {
2677         continue; // Nothing to do
2678       }
2679       // Move to general memory slice.
2680       uint orig_uniq = C->unique();
2681       Node* m = find_inst_mem(n, general_idx, orig_phis);
2682       assert(orig_uniq == C->unique(), "no new nodes");
2683       igvn->hash_delete(use);
2684       imax -= use->replace_edge(n, m);
2685       igvn->hash_insert(use);
2686       record_for_optimizer(use);
2687       --i;
2688 #ifdef ASSERT
2689     } else if (use->is_Mem()) {
2690       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2691         // Don't move related cardmark.
2692         continue;
2693       }
2694       // Memory nodes should have new memory input.
2695       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2696       assert(tp != NULL, "ptr type");
2697       int idx = C->get_alias_index(tp);
2698       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2699              "Following memory nodes should have new memory input or be on the same memory slice");
2700     } else if (use->is_Phi()) {
2701       // Phi nodes should be split and moved already.
2702       tp = use->as_Phi()->adr_type()->isa_ptr();
2703       assert(tp != NULL, "ptr type");
2704       int idx = C->get_alias_index(tp);
2705       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2706     } else {
2707       use->dump();
2708       assert(false, "should not be here");
2709 #endif
2710     }
2711   }
2712 }
2713 
2714 //
2715 // Search memory chain of "mem" to find a MemNode whose address
2716 // is the specified alias index.
2717 //
2718 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2719   if (orig_mem == NULL)
2720     return orig_mem;
2721   Compile* C = _compile;
2722   PhaseGVN* igvn = _igvn;
2723   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2724   bool is_instance = (toop != NULL) && toop->is_known_instance();
2725   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2726   Node *prev = NULL;
2727   Node *result = orig_mem;
2728   while (prev != result) {
2729     prev = result;
2730     if (result == start_mem)
2731       break;  // hit one of our sentinels
2732     if (result->is_Mem()) {
2733       const Type *at = igvn->type(result->in(MemNode::Address));
2734       if (at == Type::TOP)
2735         break; // Dead
2736       assert (at->isa_ptr() != NULL, "pointer type required.");
2737       int idx = C->get_alias_index(at->is_ptr());
2738       if (idx == alias_idx)
2739         break; // Found
2740       if (!is_instance && (at->isa_oopptr() == NULL ||
2741                            !at->is_oopptr()->is_known_instance())) {
2742         break; // Do not skip store to general memory slice.
2743       }
2744       result = result->in(MemNode::Memory);
2745     }
2746     if (!is_instance)
2747       continue;  // don't search further for non-instance types
2748     // skip over a call which does not affect this memory slice
2749     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2750       Node *proj_in = result->in(0);
2751       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2752         break;  // hit one of our sentinels
2753       } else if (proj_in->is_Call()) {
2754         // ArrayCopy node processed here as well
2755         CallNode *call = proj_in->as_Call();
2756         if (!call->may_modify(toop, igvn)) {
2757           result = call->in(TypeFunc::Memory);
2758         }
2759       } else if (proj_in->is_Initialize()) {
2760         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2761         // Stop if this is the initialization for the object instance which
2762         // which contains this memory slice, otherwise skip over it.
2763         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2764           result = proj_in->in(TypeFunc::Memory);
2765         }
2766       } else if (proj_in->is_MemBar()) {
2767         // Check if there is an array copy for a clone
2768         // Step over GC barrier when ReduceInitialCardMarks is disabled
2769         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2770         Node* control_proj_ac = bs->step_over_gc_barrier(proj_in->in(0));
2771 
2772         if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) {
2773           // Stop if it is a clone
2774           ArrayCopyNode* ac = control_proj_ac->in(0)->as_ArrayCopy();
2775           if (ac->may_modify(toop, igvn)) {
2776             break;
2777           }
2778         }
2779         result = proj_in->in(TypeFunc::Memory);
2780       }
2781     } else if (result->is_MergeMem()) {
2782       MergeMemNode *mmem = result->as_MergeMem();
2783       result = step_through_mergemem(mmem, alias_idx, toop);
2784       if (result == mmem->base_memory()) {
2785         // Didn't find instance memory, search through general slice recursively.
2786         result = mmem->memory_at(C->get_general_index(alias_idx));
2787         result = find_inst_mem(result, alias_idx, orig_phis);
2788         if (C->failing()) {
2789           return NULL;
2790         }
2791         mmem->set_memory_at(alias_idx, result);
2792       }
2793     } else if (result->is_Phi() &&
2794                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2795       Node *un = result->as_Phi()->unique_input(igvn);
2796       if (un != NULL) {
2797         orig_phis.append_if_missing(result->as_Phi());
2798         result = un;
2799       } else {
2800         break;
2801       }
2802     } else if (result->is_ClearArray()) {
2803       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2804         // Can not bypass initialization of the instance
2805         // we are looking for.
2806         break;
2807       }
2808       // Otherwise skip it (the call updated 'result' value).
2809     } else if (result->Opcode() == Op_SCMemProj) {
2810       Node* mem = result->in(0);
2811       Node* adr = NULL;
2812       if (mem->is_LoadStore()) {
2813         adr = mem->in(MemNode::Address);
2814       } else {
2815         assert(mem->Opcode() == Op_EncodeISOArray ||
2816                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2817         adr = mem->in(3); // Memory edge corresponds to destination array
2818       }
2819       const Type *at = igvn->type(adr);
2820       if (at != Type::TOP) {
2821         assert(at->isa_ptr() != NULL, "pointer type required.");
2822         int idx = C->get_alias_index(at->is_ptr());
2823         if (idx == alias_idx) {
2824           // Assert in debug mode
2825           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2826           break; // In product mode return SCMemProj node
2827         }
2828       }
2829       result = mem->in(MemNode::Memory);
2830     } else if (result->Opcode() == Op_StrInflatedCopy) {
2831       Node* adr = result->in(3); // Memory edge corresponds to destination array
2832       const Type *at = igvn->type(adr);
2833       if (at != Type::TOP) {
2834         assert(at->isa_ptr() != NULL, "pointer type required.");
2835         int idx = C->get_alias_index(at->is_ptr());
2836         if (idx == alias_idx) {
2837           // Assert in debug mode
2838           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2839           break; // In product mode return SCMemProj node
2840         }
2841       }
2842       result = result->in(MemNode::Memory);
2843     }
2844   }
2845   if (result->is_Phi()) {
2846     PhiNode *mphi = result->as_Phi();
2847     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2848     const TypePtr *t = mphi->adr_type();
2849     if (!is_instance) {
2850       // Push all non-instance Phis on the orig_phis worklist to update inputs
2851       // during Phase 4 if needed.
2852       orig_phis.append_if_missing(mphi);
2853     } else if (C->get_alias_index(t) != alias_idx) {
2854       // Create a new Phi with the specified alias index type.
2855       result = split_memory_phi(mphi, alias_idx, orig_phis);
2856     }
2857   }
2858   // the result is either MemNode, PhiNode, InitializeNode.
2859   return result;
2860 }
2861 
2862 //
2863 //  Convert the types of unescaped object to instance types where possible,
2864 //  propagate the new type information through the graph, and update memory
2865 //  edges and MergeMem inputs to reflect the new type.
2866 //
2867 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2868 //  The processing is done in 4 phases:
2869 //
2870 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2871 //            types for the CheckCastPP for allocations where possible.
2872 //            Propagate the new types through users as follows:
2873 //               casts and Phi:  push users on alloc_worklist
2874 //               AddP:  cast Base and Address inputs to the instance type
2875 //                      push any AddP users on alloc_worklist and push any memnode
2876 //                      users onto memnode_worklist.
2877 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2878 //            search the Memory chain for a store with the appropriate type
2879 //            address type.  If a Phi is found, create a new version with
2880 //            the appropriate memory slices from each of the Phi inputs.
2881 //            For stores, process the users as follows:
2882 //               MemNode:  push on memnode_worklist
2883 //               MergeMem: push on mergemem_worklist
2884 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2885 //            moving the first node encountered of each  instance type to the
2886 //            the input corresponding to its alias index.
2887 //            appropriate memory slice.
2888 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2889 //
2890 // In the following example, the CheckCastPP nodes are the cast of allocation
2891 // results and the allocation of node 29 is unescaped and eligible to be an
2892 // instance type.
2893 //
2894 // We start with:
2895 //
2896 //     7 Parm #memory
2897 //    10  ConI  "12"
2898 //    19  CheckCastPP   "Foo"
2899 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2900 //    29  CheckCastPP   "Foo"
2901 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2902 //
2903 //    40  StoreP  25   7  20   ... alias_index=4
2904 //    50  StoreP  35  40  30   ... alias_index=4
2905 //    60  StoreP  45  50  20   ... alias_index=4
2906 //    70  LoadP    _  60  30   ... alias_index=4
2907 //    80  Phi     75  50  60   Memory alias_index=4
2908 //    90  LoadP    _  80  30   ... alias_index=4
2909 //   100  LoadP    _  80  20   ... alias_index=4
2910 //
2911 //
2912 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2913 // and creating a new alias index for node 30.  This gives:
2914 //
2915 //     7 Parm #memory
2916 //    10  ConI  "12"
2917 //    19  CheckCastPP   "Foo"
2918 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2919 //    29  CheckCastPP   "Foo"  iid=24
2920 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2921 //
2922 //    40  StoreP  25   7  20   ... alias_index=4
2923 //    50  StoreP  35  40  30   ... alias_index=6
2924 //    60  StoreP  45  50  20   ... alias_index=4
2925 //    70  LoadP    _  60  30   ... alias_index=6
2926 //    80  Phi     75  50  60   Memory alias_index=4
2927 //    90  LoadP    _  80  30   ... alias_index=6
2928 //   100  LoadP    _  80  20   ... alias_index=4
2929 //
2930 // In phase 2, new memory inputs are computed for the loads and stores,
2931 // And a new version of the phi is created.  In phase 4, the inputs to
2932 // node 80 are updated and then the memory nodes are updated with the
2933 // values computed in phase 2.  This results in:
2934 //
2935 //     7 Parm #memory
2936 //    10  ConI  "12"
2937 //    19  CheckCastPP   "Foo"
2938 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2939 //    29  CheckCastPP   "Foo"  iid=24
2940 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2941 //
2942 //    40  StoreP  25  7   20   ... alias_index=4
2943 //    50  StoreP  35  7   30   ... alias_index=6
2944 //    60  StoreP  45  40  20   ... alias_index=4
2945 //    70  LoadP    _  50  30   ... alias_index=6
2946 //    80  Phi     75  40  60   Memory alias_index=4
2947 //   120  Phi     75  50  50   Memory alias_index=6
2948 //    90  LoadP    _ 120  30   ... alias_index=6
2949 //   100  LoadP    _  80  20   ... alias_index=4
2950 //
2951 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2952   GrowableArray<Node *>  memnode_worklist;
2953   GrowableArray<PhiNode *>  orig_phis;
2954   PhaseIterGVN  *igvn = _igvn;
2955   uint new_index_start = (uint) _compile->num_alias_types();
2956   VectorSet visited;
2957   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2958   uint unique_old = _compile->unique();
2959 
2960   //  Phase 1:  Process possible allocations from alloc_worklist.
2961   //  Create instance types for the CheckCastPP for allocations where possible.
2962   //
2963   // (Note: don't forget to change the order of the second AddP node on
2964   //  the alloc_worklist if the order of the worklist processing is changed,
2965   //  see the comment in find_second_addp().)
2966   //
2967   while (alloc_worklist.length() != 0) {
2968     Node *n = alloc_worklist.pop();
2969     uint ni = n->_idx;
2970     if (n->is_Call()) {
2971       CallNode *alloc = n->as_Call();
2972       // copy escape information to call node
2973       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2974       PointsToNode::EscapeState es = ptn->escape_state();
2975       // We have an allocation or call which returns a Java object,
2976       // see if it is unescaped.
2977       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2978         continue;
2979       // Find CheckCastPP for the allocate or for the return value of a call
2980       n = alloc->result_cast();
2981       if (n == NULL) {            // No uses except Initialize node
2982         if (alloc->is_Allocate()) {
2983           // Set the scalar_replaceable flag for allocation
2984           // so it could be eliminated if it has no uses.
2985           alloc->as_Allocate()->_is_scalar_replaceable = true;
2986         }
2987         if (alloc->is_CallStaticJava()) {
2988           // Set the scalar_replaceable flag for boxing method
2989           // so it could be eliminated if it has no uses.
2990           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2991         }
2992         continue;
2993       }
2994       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2995         // we could reach here for allocate case if one init is associated with many allocs.
2996         if (alloc->is_Allocate()) {
2997           alloc->as_Allocate()->_is_scalar_replaceable = false;
2998         }
2999         continue;
3000       }
3001 
3002       // The inline code for Object.clone() casts the allocation result to
3003       // java.lang.Object and then to the actual type of the allocated
3004       // object. Detect this case and use the second cast.
3005       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
3006       // the allocation result is cast to java.lang.Object and then
3007       // to the actual Array type.
3008       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
3009           && (alloc->is_AllocateArray() ||
3010               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
3011         Node *cast2 = NULL;
3012         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3013           Node *use = n->fast_out(i);
3014           if (use->is_CheckCastPP()) {
3015             cast2 = use;
3016             break;
3017           }
3018         }
3019         if (cast2 != NULL) {
3020           n = cast2;
3021         } else {
3022           // Non-scalar replaceable if the allocation type is unknown statically
3023           // (reflection allocation), the object can't be restored during
3024           // deoptimization without precise type.
3025           continue;
3026         }
3027       }
3028 
3029       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
3030       if (t == NULL)
3031         continue;  // not a TypeOopPtr
3032       if (!t->klass_is_exact())
3033         continue; // not an unique type
3034 
3035       if (alloc->is_Allocate()) {
3036         // Set the scalar_replaceable flag for allocation
3037         // so it could be eliminated.
3038         alloc->as_Allocate()->_is_scalar_replaceable = true;
3039       }
3040       if (alloc->is_CallStaticJava()) {
3041         // Set the scalar_replaceable flag for boxing method
3042         // so it could be eliminated.
3043         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
3044       }
3045       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
3046       // in order for an object to be scalar-replaceable, it must be:
3047       //   - a direct allocation (not a call returning an object)
3048       //   - non-escaping
3049       //   - eligible to be a unique type
3050       //   - not determined to be ineligible by escape analysis
3051       set_map(alloc, n);
3052       set_map(n, alloc);
3053       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3054       igvn->hash_delete(n);
3055       igvn->set_type(n,  tinst);
3056       n->raise_bottom_type(tinst);
3057       igvn->hash_insert(n);
3058       record_for_optimizer(n);
3059       // Allocate an alias index for the header fields. Accesses to
3060       // the header emitted during macro expansion wouldn't have
3061       // correct memory state otherwise.
3062       _compile->get_alias_index(tinst->add_offset(oopDesc::mark_offset_in_bytes()));
3063       _compile->get_alias_index(tinst->add_offset(oopDesc::klass_offset_in_bytes()));
3064       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3065 
3066         // First, put on the worklist all Field edges from Connection Graph
3067         // which is more accurate than putting immediate users from Ideal Graph.
3068         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3069           PointsToNode* tgt = e.get();
3070           if (tgt->is_Arraycopy()) {
3071             continue;
3072           }
3073           Node* use = tgt->ideal_node();
3074           assert(tgt->is_Field() && use->is_AddP(),
3075                  "only AddP nodes are Field edges in CG");
3076           if (use->outcnt() > 0) { // Don't process dead nodes
3077             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3078             if (addp2 != NULL) {
3079               assert(alloc->is_AllocateArray(),"array allocation was expected");
3080               alloc_worklist.append_if_missing(addp2);
3081             }
3082             alloc_worklist.append_if_missing(use);
3083           }
3084         }
3085 
3086         // An allocation may have an Initialize which has raw stores. Scan
3087         // the users of the raw allocation result and push AddP users
3088         // on alloc_worklist.
3089         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3090         assert (raw_result != NULL, "must have an allocation result");
3091         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3092           Node *use = raw_result->fast_out(i);
3093           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3094             Node* addp2 = find_second_addp(use, raw_result);
3095             if (addp2 != NULL) {
3096               assert(alloc->is_AllocateArray(),"array allocation was expected");
3097               alloc_worklist.append_if_missing(addp2);
3098             }
3099             alloc_worklist.append_if_missing(use);
3100           } else if (use->is_MemBar()) {
3101             memnode_worklist.append_if_missing(use);
3102           }
3103         }
3104       }
3105     } else if (n->is_AddP()) {
3106       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3107       if (jobj == NULL || jobj == phantom_obj) {
3108 #ifdef ASSERT
3109         ptnode_adr(get_addp_base(n)->_idx)->dump();
3110         ptnode_adr(n->_idx)->dump();
3111         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3112 #endif
3113         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3114         return;
3115       }
3116       Node *base = get_map(jobj->idx());  // CheckCastPP node
3117       if (!split_AddP(n, base)) continue; // wrong type from dead path
3118     } else if (n->is_Phi() ||
3119                n->is_CheckCastPP() ||
3120                n->is_EncodeP() ||
3121                n->is_DecodeN() ||
3122                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3123       if (visited.test_set(n->_idx)) {
3124         assert(n->is_Phi(), "loops only through Phi's");
3125         continue;  // already processed
3126       }
3127       JavaObjectNode* jobj = unique_java_object(n);
3128       if (jobj == NULL || jobj == phantom_obj) {
3129 #ifdef ASSERT
3130         ptnode_adr(n->_idx)->dump();
3131         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3132 #endif
3133         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3134         return;
3135       } else {
3136         Node *val = get_map(jobj->idx());   // CheckCastPP node
3137         TypeNode *tn = n->as_Type();
3138         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3139         assert(tinst != NULL && tinst->is_known_instance() &&
3140                tinst->instance_id() == jobj->idx() , "instance type expected.");
3141 
3142         const Type *tn_type = igvn->type(tn);
3143         const TypeOopPtr *tn_t;
3144         if (tn_type->isa_narrowoop()) {
3145           tn_t = tn_type->make_ptr()->isa_oopptr();
3146         } else {
3147           tn_t = tn_type->isa_oopptr();
3148         }
3149         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3150           if (tn_type->isa_narrowoop()) {
3151             tn_type = tinst->make_narrowoop();
3152           } else {
3153             tn_type = tinst;
3154           }
3155           igvn->hash_delete(tn);
3156           igvn->set_type(tn, tn_type);
3157           tn->set_type(tn_type);
3158           igvn->hash_insert(tn);
3159           record_for_optimizer(n);
3160         } else {
3161           assert(tn_type == TypePtr::NULL_PTR ||
3162                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3163                  "unexpected type");
3164           continue; // Skip dead path with different type
3165         }
3166       }
3167     } else {
3168       debug_only(n->dump();)
3169       assert(false, "EA: unexpected node");
3170       continue;
3171     }
3172     // push allocation's users on appropriate worklist
3173     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3174       Node *use = n->fast_out(i);
3175       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3176         // Load/store to instance's field
3177         memnode_worklist.append_if_missing(use);
3178       } else if (use->is_MemBar()) {
3179         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3180           memnode_worklist.append_if_missing(use);
3181         }
3182       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3183         Node* addp2 = find_second_addp(use, n);
3184         if (addp2 != NULL) {
3185           alloc_worklist.append_if_missing(addp2);
3186         }
3187         alloc_worklist.append_if_missing(use);
3188       } else if (use->is_Phi() ||
3189                  use->is_CheckCastPP() ||
3190                  use->is_EncodeNarrowPtr() ||
3191                  use->is_DecodeNarrowPtr() ||
3192                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3193         alloc_worklist.append_if_missing(use);
3194 #ifdef ASSERT
3195       } else if (use->is_Mem()) {
3196         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3197       } else if (use->is_MergeMem()) {
3198         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3199       } else if (use->is_SafePoint()) {
3200         // Look for MergeMem nodes for calls which reference unique allocation
3201         // (through CheckCastPP nodes) even for debug info.
3202         Node* m = use->in(TypeFunc::Memory);
3203         if (m->is_MergeMem()) {
3204           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3205         }
3206       } else if (use->Opcode() == Op_EncodeISOArray) {
3207         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3208           // EncodeISOArray overwrites destination array
3209           memnode_worklist.append_if_missing(use);
3210         }
3211       } else {
3212         uint op = use->Opcode();
3213         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3214             (use->in(MemNode::Memory) == n)) {
3215           // They overwrite memory edge corresponding to destination array,
3216           memnode_worklist.append_if_missing(use);
3217         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3218               op == Op_CastP2X || op == Op_StoreCM ||
3219               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3220               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3221               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar ||
3222               op == Op_SubTypeCheck ||
3223               BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use))) {
3224           n->dump();
3225           use->dump();
3226           assert(false, "EA: missing allocation reference path");
3227         }
3228 #endif
3229       }
3230     }
3231 
3232   }
3233 
3234   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3235   // type, record it in the ArrayCopy node so we know what memory this
3236   // node uses/modified.
3237   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3238     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3239     Node* dest = ac->in(ArrayCopyNode::Dest);
3240     if (dest->is_AddP()) {
3241       dest = get_addp_base(dest);
3242     }
3243     JavaObjectNode* jobj = unique_java_object(dest);
3244     if (jobj != NULL) {
3245       Node *base = get_map(jobj->idx());
3246       if (base != NULL) {
3247         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3248         ac->_dest_type = base_t;
3249       }
3250     }
3251     Node* src = ac->in(ArrayCopyNode::Src);
3252     if (src->is_AddP()) {
3253       src = get_addp_base(src);
3254     }
3255     jobj = unique_java_object(src);
3256     if (jobj != NULL) {
3257       Node* base = get_map(jobj->idx());
3258       if (base != NULL) {
3259         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3260         ac->_src_type = base_t;
3261       }
3262     }
3263   }
3264 
3265   // New alias types were created in split_AddP().
3266   uint new_index_end = (uint) _compile->num_alias_types();
3267   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3268 
3269   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3270   //            compute new values for Memory inputs  (the Memory inputs are not
3271   //            actually updated until phase 4.)
3272   if (memnode_worklist.length() == 0)
3273     return;  // nothing to do
3274   while (memnode_worklist.length() != 0) {
3275     Node *n = memnode_worklist.pop();
3276     if (visited.test_set(n->_idx))
3277       continue;
3278     if (n->is_Phi() || n->is_ClearArray()) {
3279       // we don't need to do anything, but the users must be pushed
3280     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3281       // we don't need to do anything, but the users must be pushed
3282       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3283       if (n == NULL)
3284         continue;
3285     } else if (n->Opcode() == Op_StrCompressedCopy ||
3286                n->Opcode() == Op_EncodeISOArray) {
3287       // get the memory projection
3288       n = n->find_out_with(Op_SCMemProj);
3289       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3290     } else {
3291       assert(n->is_Mem(), "memory node required.");
3292       Node *addr = n->in(MemNode::Address);
3293       const Type *addr_t = igvn->type(addr);
3294       if (addr_t == Type::TOP)
3295         continue;
3296       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3297       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3298       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3299       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3300       if (_compile->failing()) {
3301         return;
3302       }
3303       if (mem != n->in(MemNode::Memory)) {
3304         // We delay the memory edge update since we need old one in
3305         // MergeMem code below when instances memory slices are separated.
3306         set_map(n, mem);
3307       }
3308       if (n->is_Load()) {
3309         continue;  // don't push users
3310       } else if (n->is_LoadStore()) {
3311         // get the memory projection
3312         n = n->find_out_with(Op_SCMemProj);
3313         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3314       }
3315     }
3316     // push user on appropriate worklist
3317     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3318       Node *use = n->fast_out(i);
3319       if (use->is_Phi() || use->is_ClearArray()) {
3320         memnode_worklist.append_if_missing(use);
3321       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3322         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3323           continue;
3324         memnode_worklist.append_if_missing(use);
3325       } else if (use->is_MemBar()) {
3326         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3327           memnode_worklist.append_if_missing(use);
3328         }
3329 #ifdef ASSERT
3330       } else if(use->is_Mem()) {
3331         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3332       } else if (use->is_MergeMem()) {
3333         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3334       } else if (use->Opcode() == Op_EncodeISOArray) {
3335         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3336           // EncodeISOArray overwrites destination array
3337           memnode_worklist.append_if_missing(use);
3338         }
3339       } else {
3340         uint op = use->Opcode();
3341         if ((use->in(MemNode::Memory) == n) &&
3342             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3343           // They overwrite memory edge corresponding to destination array,
3344           memnode_worklist.append_if_missing(use);
3345         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3346               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3347               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3348               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3349           n->dump();
3350           use->dump();
3351           assert(false, "EA: missing memory path");
3352         }
3353 #endif
3354       }
3355     }
3356   }
3357 
3358   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3359   //            Walk each memory slice moving the first node encountered of each
3360   //            instance type to the the input corresponding to its alias index.
3361   uint length = _mergemem_worklist.length();
3362   for( uint next = 0; next < length; ++next ) {
3363     MergeMemNode* nmm = _mergemem_worklist.at(next);
3364     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3365     // Note: we don't want to use MergeMemStream here because we only want to
3366     // scan inputs which exist at the start, not ones we add during processing.
3367     // Note 2: MergeMem may already contains instance memory slices added
3368     // during find_inst_mem() call when memory nodes were processed above.
3369     igvn->hash_delete(nmm);
3370     uint nslices = MIN2(nmm->req(), new_index_start);
3371     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3372       Node* mem = nmm->in(i);
3373       Node* cur = NULL;
3374       if (mem == NULL || mem->is_top())
3375         continue;
3376       // First, update mergemem by moving memory nodes to corresponding slices
3377       // if their type became more precise since this mergemem was created.
3378       while (mem->is_Mem()) {
3379         const Type *at = igvn->type(mem->in(MemNode::Address));
3380         if (at != Type::TOP) {
3381           assert (at->isa_ptr() != NULL, "pointer type required.");
3382           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3383           if (idx == i) {
3384             if (cur == NULL)
3385               cur = mem;
3386           } else {
3387             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3388               nmm->set_memory_at(idx, mem);
3389             }
3390           }
3391         }
3392         mem = mem->in(MemNode::Memory);
3393       }
3394       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3395       // Find any instance of the current type if we haven't encountered
3396       // already a memory slice of the instance along the memory chain.
3397       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3398         if((uint)_compile->get_general_index(ni) == i) {
3399           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3400           if (nmm->is_empty_memory(m)) {
3401             Node* result = find_inst_mem(mem, ni, orig_phis);
3402             if (_compile->failing()) {
3403               return;
3404             }
3405             nmm->set_memory_at(ni, result);
3406           }
3407         }
3408       }
3409     }
3410     // Find the rest of instances values
3411     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3412       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3413       Node* result = step_through_mergemem(nmm, ni, tinst);
3414       if (result == nmm->base_memory()) {
3415         // Didn't find instance memory, search through general slice recursively.
3416         result = nmm->memory_at(_compile->get_general_index(ni));
3417         result = find_inst_mem(result, ni, orig_phis);
3418         if (_compile->failing()) {
3419           return;
3420         }
3421         nmm->set_memory_at(ni, result);
3422       }
3423     }
3424     igvn->hash_insert(nmm);
3425     record_for_optimizer(nmm);
3426   }
3427 
3428   //  Phase 4:  Update the inputs of non-instance memory Phis and
3429   //            the Memory input of memnodes
3430   // First update the inputs of any non-instance Phi's from
3431   // which we split out an instance Phi.  Note we don't have
3432   // to recursively process Phi's encounted on the input memory
3433   // chains as is done in split_memory_phi() since they  will
3434   // also be processed here.
3435   for (int j = 0; j < orig_phis.length(); j++) {
3436     PhiNode *phi = orig_phis.at(j);
3437     int alias_idx = _compile->get_alias_index(phi->adr_type());
3438     igvn->hash_delete(phi);
3439     for (uint i = 1; i < phi->req(); i++) {
3440       Node *mem = phi->in(i);
3441       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3442       if (_compile->failing()) {
3443         return;
3444       }
3445       if (mem != new_mem) {
3446         phi->set_req(i, new_mem);
3447       }
3448     }
3449     igvn->hash_insert(phi);
3450     record_for_optimizer(phi);
3451   }
3452 
3453   // Update the memory inputs of MemNodes with the value we computed
3454   // in Phase 2 and move stores memory users to corresponding memory slices.
3455   // Disable memory split verification code until the fix for 6984348.
3456   // Currently it produces false negative results since it does not cover all cases.
3457 #if 0 // ifdef ASSERT
3458   visited.Reset();
3459   Node_Stack old_mems(arena, _compile->unique() >> 2);
3460 #endif
3461   for (uint i = 0; i < ideal_nodes.size(); i++) {
3462     Node*    n = ideal_nodes.at(i);
3463     Node* nmem = get_map(n->_idx);
3464     assert(nmem != NULL, "sanity");
3465     if (n->is_Mem()) {
3466 #if 0 // ifdef ASSERT
3467       Node* old_mem = n->in(MemNode::Memory);
3468       if (!visited.test_set(old_mem->_idx)) {
3469         old_mems.push(old_mem, old_mem->outcnt());
3470       }
3471 #endif
3472       assert(n->in(MemNode::Memory) != nmem, "sanity");
3473       if (!n->is_Load()) {
3474         // Move memory users of a store first.
3475         move_inst_mem(n, orig_phis);
3476       }
3477       // Now update memory input
3478       igvn->hash_delete(n);
3479       n->set_req(MemNode::Memory, nmem);
3480       igvn->hash_insert(n);
3481       record_for_optimizer(n);
3482     } else {
3483       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3484              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3485     }
3486   }
3487 #if 0 // ifdef ASSERT
3488   // Verify that memory was split correctly
3489   while (old_mems.is_nonempty()) {
3490     Node* old_mem = old_mems.node();
3491     uint  old_cnt = old_mems.index();
3492     old_mems.pop();
3493     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3494   }
3495 #endif
3496 }
3497 
3498 #ifndef PRODUCT
3499 static const char *node_type_names[] = {
3500   "UnknownType",
3501   "JavaObject",
3502   "LocalVar",
3503   "Field",
3504   "Arraycopy"
3505 };
3506 
3507 static const char *esc_names[] = {
3508   "UnknownEscape",
3509   "NoEscape",
3510   "ArgEscape",
3511   "GlobalEscape"
3512 };
3513 
3514 void PointsToNode::dump(bool print_state) const {
3515   NodeType nt = node_type();
3516   tty->print("%s ", node_type_names[(int) nt]);
3517   if (print_state) {
3518     EscapeState es = escape_state();
3519     EscapeState fields_es = fields_escape_state();
3520     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3521     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3522       tty->print("NSR ");
3523   }
3524   if (is_Field()) {
3525     FieldNode* f = (FieldNode*)this;
3526     if (f->is_oop())
3527       tty->print("oop ");
3528     if (f->offset() > 0)
3529       tty->print("+%d ", f->offset());
3530     tty->print("(");
3531     for (BaseIterator i(f); i.has_next(); i.next()) {
3532       PointsToNode* b = i.get();
3533       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3534     }
3535     tty->print(" )");
3536   }
3537   tty->print("[");
3538   for (EdgeIterator i(this); i.has_next(); i.next()) {
3539     PointsToNode* e = i.get();
3540     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3541   }
3542   tty->print(" [");
3543   for (UseIterator i(this); i.has_next(); i.next()) {
3544     PointsToNode* u = i.get();
3545     bool is_base = false;
3546     if (PointsToNode::is_base_use(u)) {
3547       is_base = true;
3548       u = PointsToNode::get_use_node(u)->as_Field();
3549     }
3550     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3551   }
3552   tty->print(" ]]  ");
3553   if (_node == NULL)
3554     tty->print_cr("<null>");
3555   else
3556     _node->dump();
3557 }
3558 
3559 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3560   bool first = true;
3561   int ptnodes_length = ptnodes_worklist.length();
3562   for (int i = 0; i < ptnodes_length; i++) {
3563     PointsToNode *ptn = ptnodes_worklist.at(i);
3564     if (ptn == NULL || !ptn->is_JavaObject())
3565       continue;
3566     PointsToNode::EscapeState es = ptn->escape_state();
3567     if ((es != PointsToNode::NoEscape) && !Verbose) {
3568       continue;
3569     }
3570     Node* n = ptn->ideal_node();
3571     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3572                              n->as_CallStaticJava()->is_boxing_method())) {
3573       if (first) {
3574         tty->cr();
3575         tty->print("======== Connection graph for ");
3576         _compile->method()->print_short_name();
3577         tty->cr();
3578         first = false;
3579       }
3580       ptn->dump();
3581       // Print all locals and fields which reference this allocation
3582       for (UseIterator j(ptn); j.has_next(); j.next()) {
3583         PointsToNode* use = j.get();
3584         if (use->is_LocalVar()) {
3585           use->dump(Verbose);
3586         } else if (Verbose) {
3587           use->dump();
3588         }
3589       }
3590       tty->cr();
3591     }
3592   }
3593 }
3594 #endif
3595 
3596 void ConnectionGraph::record_for_optimizer(Node *n) {
3597   _igvn->_worklist.push(n);
3598   _igvn->add_users_to_worklist(n);
3599 }