1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 #include "gc_implementation/g1/heapRegionTracer.hpp"
  41 
  42 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  43 
  44 int    HeapRegion::LogOfHRGrainBytes = 0;
  45 int    HeapRegion::LogOfHRGrainWords = 0;
  46 size_t HeapRegion::GrainBytes        = 0;
  47 size_t HeapRegion::GrainWords        = 0;
  48 size_t HeapRegion::CardsPerRegion    = 0;
  49 
  50 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  51                                  HeapRegion* hr,
  52                                  G1ParPushHeapRSClosure* cl,
  53                                  CardTableModRefBS::PrecisionStyle precision) :
  54   DirtyCardToOopClosure(hr, cl, precision, NULL),
  55   _hr(hr), _rs_scan(cl), _g1(g1) { }
  56 
  57 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  58                                                    OopClosure* oc) :
  59   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  60 
  61 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  62                                       HeapWord* bottom,
  63                                       HeapWord* top) {
  64   G1CollectedHeap* g1h = _g1;
  65   size_t oop_size;
  66   HeapWord* cur = bottom;
  67 
  68   // Start filtering what we add to the remembered set. If the object is
  69   // not considered dead, either because it is marked (in the mark bitmap)
  70   // or it was allocated after marking finished, then we add it. Otherwise
  71   // we can safely ignore the object.
  72   if (!g1h->is_obj_dead(oop(cur), _hr)) {
  73     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
  74   } else {
  75     oop_size = _hr->block_size(cur);
  76   }
  77 
  78   cur += oop_size;
  79 
  80   if (cur < top) {
  81     oop cur_oop = oop(cur);
  82     oop_size = _hr->block_size(cur);
  83     HeapWord* next_obj = cur + oop_size;
  84     while (next_obj < top) {
  85       // Keep filtering the remembered set.
  86       if (!g1h->is_obj_dead(cur_oop, _hr)) {
  87         // Bottom lies entirely below top, so we can call the
  88         // non-memRegion version of oop_iterate below.
  89         cur_oop->oop_iterate(_rs_scan);
  90       }
  91       cur = next_obj;
  92       cur_oop = oop(cur);
  93       oop_size = _hr->block_size(cur);
  94       next_obj = cur + oop_size;
  95     }
  96 
  97     // Last object. Need to do dead-obj filtering here too.
  98     if (!g1h->is_obj_dead(oop(cur), _hr)) {
  99       oop(cur)->oop_iterate(_rs_scan, mr);
 100     }
 101   }
 102 }
 103 
 104 size_t HeapRegion::max_region_size() {
 105   return HeapRegionBounds::max_size();
 106 }
 107 
 108 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 109   uintx region_size = G1HeapRegionSize;
 110   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 111     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 112     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 113                        (uintx) HeapRegionBounds::min_size());
 114   }
 115 
 116   int region_size_log = log2_long((jlong) region_size);
 117   // Recalculate the region size to make sure it's a power of
 118   // 2. This means that region_size is the largest power of 2 that's
 119   // <= what we've calculated so far.
 120   region_size = ((uintx)1 << region_size_log);
 121 
 122   // Now make sure that we don't go over or under our limits.
 123   if (region_size < HeapRegionBounds::min_size()) {
 124     region_size = HeapRegionBounds::min_size();
 125   } else if (region_size > HeapRegionBounds::max_size()) {
 126     region_size = HeapRegionBounds::max_size();
 127   }
 128 
 129   // And recalculate the log.
 130   region_size_log = log2_long((jlong) region_size);
 131 
 132   // Now, set up the globals.
 133   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 134   LogOfHRGrainBytes = region_size_log;
 135 
 136   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 137   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 138 
 139   guarantee(GrainBytes == 0, "we should only set it once");
 140   // The cast to int is safe, given that we've bounded region_size by
 141   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 142   GrainBytes = (size_t)region_size;
 143 
 144   guarantee(GrainWords == 0, "we should only set it once");
 145   GrainWords = GrainBytes >> LogHeapWordSize;
 146   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 147 
 148   guarantee(CardsPerRegion == 0, "we should only set it once");
 149   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 150 }
 151 
 152 void HeapRegion::reset_after_compaction() {
 153   G1OffsetTableContigSpace::reset_after_compaction();
 154   // After a compaction the mark bitmap is invalid, so we must
 155   // treat all objects as being inside the unmarked area.
 156   zero_marked_bytes();
 157   init_top_at_mark_start();
 158 }
 159 
 160 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 161   assert(_humongous_start_region == NULL,
 162          "we should have already filtered out humongous regions");
 163   assert(_end == _orig_end,
 164          "we should have already filtered out humongous regions");
 165 
 166   _in_collection_set = false;
 167 
 168   set_allocation_context(AllocationContext::system());
 169   set_young_index_in_cset(-1);
 170   uninstall_surv_rate_group();
 171   set_free();
 172   reset_pre_dummy_top();
 173 
 174   if (!par) {
 175     // If this is parallel, this will be done later.
 176     HeapRegionRemSet* hrrs = rem_set();
 177     if (locked) {
 178       hrrs->clear_locked();
 179     } else {
 180       hrrs->clear();
 181     }
 182     _claimed = InitialClaimValue;
 183   }
 184   zero_marked_bytes();
 185 
 186   _offsets.resize(HeapRegion::GrainWords);
 187   init_top_at_mark_start();
 188   if (clear_space) clear(SpaceDecorator::Mangle);
 189 }
 190 
 191 void HeapRegion::par_clear() {
 192   assert(used() == 0, "the region should have been already cleared");
 193   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 194   HeapRegionRemSet* hrrs = rem_set();
 195   hrrs->clear();
 196   CardTableModRefBS* ct_bs =
 197                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 198   ct_bs->clear(MemRegion(bottom(), end()));
 199 }
 200 
 201 void HeapRegion::calc_gc_efficiency() {
 202   // GC efficiency is the ratio of how much space would be
 203   // reclaimed over how long we predict it would take to reclaim it.
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   G1CollectorPolicy* g1p = g1h->g1_policy();
 206 
 207   // Retrieve a prediction of the elapsed time for this region for
 208   // a mixed gc because the region will only be evacuated during a
 209   // mixed gc.
 210   double region_elapsed_time_ms =
 211     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 212   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 213 }
 214 
 215 void HeapRegion::set_free() {
 216   report_region_type_change(G1HeapRegionTraceType::Free);
 217   _type.set_free();
 218 }
 219 
 220 void HeapRegion::set_eden() {
 221   report_region_type_change(G1HeapRegionTraceType::Eden);
 222   _type.set_eden();
 223 }
 224 
 225 void HeapRegion::set_eden_pre_gc() {
 226   report_region_type_change(G1HeapRegionTraceType::Eden);
 227   _type.set_eden_pre_gc();
 228 }
 229 
 230 void HeapRegion::set_survivor() {
 231   report_region_type_change(G1HeapRegionTraceType::Survivor);
 232   _type.set_survivor();
 233 }
 234 
 235 void HeapRegion::set_old() {
 236   report_region_type_change(G1HeapRegionTraceType::Old);
 237   _type.set_old();
 238 }
 239 
 240 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 241   assert(!isHumongous(), "sanity / pre-condition");
 242   assert(end() == _orig_end,
 243          "Should be normal before the humongous object allocation");
 244   assert(top() == bottom(), "should be empty");
 245   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 246 
 247   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 248   _type.set_starts_humongous();
 249   _humongous_start_region = this;
 250 
 251   set_end(new_end);
 252   _offsets.set_for_starts_humongous(new_top);
 253 }
 254 
 255 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 256   assert(!isHumongous(), "sanity / pre-condition");
 257   assert(end() == _orig_end,
 258          "Should be normal before the humongous object allocation");
 259   assert(top() == bottom(), "should be empty");
 260   assert(first_hr->startsHumongous(), "pre-condition");
 261 
 262   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 263   _type.set_continues_humongous();
 264   _humongous_start_region = first_hr;
 265 }
 266 
 267 void HeapRegion::clear_humongous() {
 268   assert(isHumongous(), "pre-condition");
 269 
 270   if (startsHumongous()) {
 271     assert(top() <= end(), "pre-condition");
 272     set_end(_orig_end);
 273     if (top() > end()) {
 274       // at least one "continues humongous" region after it
 275       set_top(end());
 276     }
 277   } else {
 278     // continues humongous
 279     assert(end() == _orig_end, "sanity");
 280   }
 281 
 282   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 283   _humongous_start_region = NULL;
 284 }
 285 
 286 bool HeapRegion::claimHeapRegion(jint claimValue) {
 287   jint current = _claimed;
 288   if (current != claimValue) {
 289     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 290     if (res == current) {
 291       return true;
 292     }
 293   }
 294   return false;
 295 }
 296 
 297 HeapRegion::HeapRegion(uint hrm_index,
 298                        G1BlockOffsetSharedArray* sharedOffsetArray,
 299                        MemRegion mr) :
 300     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 301     _hrm_index(hrm_index),
 302     _allocation_context(AllocationContext::system()),
 303     _humongous_start_region(NULL),
 304     _in_collection_set(false),
 305     _next_in_special_set(NULL), _orig_end(NULL),
 306     _claimed(InitialClaimValue), _evacuation_failed(false),
 307     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 308     _next_young_region(NULL),
 309     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 310 #ifdef ASSERT
 311     _containing_set(NULL),
 312 #endif // ASSERT
 313      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 314     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 315     _predicted_bytes_to_copy(0)
 316 {
 317   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 318   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 319 
 320   initialize(mr);
 321 }
 322 
 323 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 324   assert(_rem_set->is_empty(), "Remembered set must be empty");
 325 
 326   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 327 
 328   _orig_end = mr.end();
 329   hr_clear(false /*par*/, false /*clear_space*/);
 330   set_top(bottom());
 331   record_timestamp();
 332 }
 333 
 334 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 335   HeapRegionTracer::send_region_type_change(_hrm_index,
 336                                             get_trace_type(),
 337                                             to,
 338                                             (uintptr_t)bottom(),
 339                                             used());
 340 }
 341 
 342 CompactibleSpace* HeapRegion::next_compaction_space() const {
 343   return G1CollectedHeap::heap()->next_compaction_region(this);
 344 }
 345 
 346 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 347                                                     bool during_conc_mark) {
 348   // We always recreate the prev marking info and we'll explicitly
 349   // mark all objects we find to be self-forwarded on the prev
 350   // bitmap. So all objects need to be below PTAMS.
 351   _prev_marked_bytes = 0;
 352 
 353   if (during_initial_mark) {
 354     // During initial-mark, we'll also explicitly mark all objects
 355     // we find to be self-forwarded on the next bitmap. So all
 356     // objects need to be below NTAMS.
 357     _next_top_at_mark_start = top();
 358     _next_marked_bytes = 0;
 359   } else if (during_conc_mark) {
 360     // During concurrent mark, all objects in the CSet (including
 361     // the ones we find to be self-forwarded) are implicitly live.
 362     // So all objects need to be above NTAMS.
 363     _next_top_at_mark_start = bottom();
 364     _next_marked_bytes = 0;
 365   }
 366 }
 367 
 368 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 369                                                   bool during_conc_mark,
 370                                                   size_t marked_bytes) {
 371   assert(0 <= marked_bytes && marked_bytes <= used(),
 372          err_msg("marked: " SIZE_FORMAT " used: " SIZE_FORMAT,
 373                  marked_bytes, used()));
 374   _prev_top_at_mark_start = top();
 375   _prev_marked_bytes = marked_bytes;
 376 }
 377 
 378 HeapWord*
 379 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 380                                                  ObjectClosure* cl) {
 381   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 382   // We used to use "block_start_careful" here.  But we're actually happy
 383   // to update the BOT while we do this...
 384   HeapWord* cur = block_start(mr.start());
 385   mr = mr.intersection(used_region());
 386   if (mr.is_empty()) return NULL;
 387   // Otherwise, find the obj that extends onto mr.start().
 388 
 389   assert(cur <= mr.start()
 390          && (oop(cur)->klass_or_null() == NULL ||
 391              cur + oop(cur)->size() > mr.start()),
 392          "postcondition of block_start");
 393   oop obj;
 394   while (cur < mr.end()) {
 395     obj = oop(cur);
 396     if (obj->klass_or_null() == NULL) {
 397       // Ran into an unparseable point.
 398       return cur;
 399     } else if (!g1h->is_obj_dead(obj)) {
 400       cl->do_object(obj);
 401     }
 402     if (cl->abort()) return cur;
 403     // The check above must occur before the operation below, since an
 404     // abort might invalidate the "size" operation.
 405     cur += block_size(cur);
 406   }
 407   return NULL;
 408 }
 409 
 410 // Humongous objects are allocated directly in the old-gen.  Need
 411 // special handling for concurrent processing encountering an
 412 // in-progress allocation.
 413 static bool do_oops_on_card_in_humongous(MemRegion mr,
 414                                          FilterOutOfRegionClosure* cl,
 415                                          HeapRegion* hr,
 416                                          G1CollectedHeap* g1h) {
 417   assert(hr->isHumongous(), "precondition");
 418   HeapRegion* sr = hr->humongous_start_region();
 419   oop obj = oop(sr->bottom());
 420 
 421   // If concurrent and klass_or_null is NULL, then space has been
 422   // allocated but the object has not yet been published by setting
 423   // the klass.  That can only happen if the card is stale.  However,
 424   // we've already set the card clean, so we must return failure,
 425   // since the allocating thread could have performed a write to the
 426   // card that might be missed otherwise.
 427   if (!g1h->is_gc_active() && (obj->klass_or_null_acquire() == NULL)) {
 428     return false;
 429   }
 430 
 431   // Only filler objects follow a humongous object in the containing
 432   // regions, and we can ignore those.  So only process the one
 433   // humongous object.
 434   if (!g1h->is_obj_dead(obj, sr)) {
 435     if (obj->is_objArray() || (sr->bottom() < mr.start())) {
 436       // objArrays are always marked precisely, so limit processing
 437       // with mr.  Non-objArrays might be precisely marked, and since
 438       // it's humongous it's worthwhile avoiding full processing.
 439       // However, the card could be stale and only cover filler
 440       // objects.  That should be rare, so not worth checking for;
 441       // instead let it fall out from the bounded iteration.
 442       obj->oop_iterate(cl, mr);
 443     } else {
 444       // If obj is not an objArray and mr contains the start of the
 445       // obj, then this could be an imprecise mark, and we need to
 446       // process the entire object.
 447       obj->oop_iterate(cl);
 448     }
 449   }
 450   return true;
 451 }
 452 
 453 bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
 454                                                   FilterOutOfRegionClosure* cl,
 455                                                   jbyte* card_ptr) {
 456   assert(card_ptr != NULL, "pre-condition");
 457   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 458 
 459   // If we're within a stop-world GC, then we might look at a card in a
 460   // GC alloc region that extends onto a GC LAB, which may not be
 461   // parseable.  Stop such at the "scan_top" of the region.
 462   if (g1h->is_gc_active()) {
 463     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 464   } else {
 465     mr = mr.intersection(used_region());
 466   }
 467   if (mr.is_empty()) {
 468     return true;
 469   }
 470 
 471   // The intersection of the incoming mr (for the card) and the
 472   // allocated part of the region is non-empty. This implies that
 473   // we have actually allocated into this region. The code in
 474   // G1CollectedHeap.cpp that allocates a new region sets the
 475   // is_young tag on the region before allocating. Thus we
 476   // safely know if this region is young.
 477   if (is_young()) {
 478     return true;
 479   }
 480 
 481   // We can only clean the card here, after we make the decision that
 482   // the card is not young.
 483   *card_ptr = CardTableModRefBS::clean_card_val();
 484   // We must complete this write before we do any of the reads below.
 485   OrderAccess::storeload();
 486 
 487   // Special handling for humongous regions.
 488   if (isHumongous()) {
 489     return do_oops_on_card_in_humongous(mr, cl, this, g1h);
 490   }
 491 
 492   // During GC we limit mr by scan_top. So we never get here with an
 493   // mr covering objects allocated during GC.  Non-humongous objects
 494   // are only allocated in the old-gen during GC.  So the parts of the
 495   // heap that may be examined here are always parsable; there's no
 496   // need to use klass_or_null here to detect in-progress allocations.
 497 
 498   // Cache the boundaries of the memory region in some const locals
 499   HeapWord* const start = mr.start();
 500   HeapWord* const end = mr.end();
 501 
 502   // Find the obj that extends onto mr.start().
 503   // Update BOT as needed while finding start of (possibly dead)
 504   // object containing the start of the region.
 505   HeapWord* cur = block_start(start);
 506 
 507 #ifdef ASSERT
 508   {
 509     assert(cur <= start,
 510            err_msg("cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start)));
 511     HeapWord* next = cur + block_size(cur);
 512     assert(start < next,
 513            err_msg("start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next)));
 514   }
 515 #endif
 516 
 517   do {
 518     oop obj = oop(cur);
 519     assert(obj->is_oop(true), err_msg("Not an oop at " PTR_FORMAT, p2i(cur)));
 520     assert(obj->klass_or_null() != NULL,
 521            err_msg("Unparsable heap at " PTR_FORMAT, p2i(cur)));
 522 
 523     if (g1h->is_obj_dead(obj, this)) {
 524       // Carefully step over dead object.
 525       cur += block_size(cur);
 526     } else {
 527       // Step over live object, and process its references.
 528       cur += obj->size();
 529       // Non-objArrays are usually marked imprecise at the object
 530       // start, in which case we need to iterate over them in full.
 531       // objArrays are precisely marked, but can still be iterated
 532       // over in full if completely covered.
 533       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 534         obj->oop_iterate(cl);
 535       } else {
 536         obj->oop_iterate(cl, mr);
 537       }
 538     }
 539   } while (cur < end);
 540 
 541   return true;
 542 }
 543 
 544 // Code roots support
 545 
 546 void HeapRegion::add_strong_code_root(nmethod* nm) {
 547   HeapRegionRemSet* hrrs = rem_set();
 548   hrrs->add_strong_code_root(nm);
 549 }
 550 
 551 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 552   assert_locked_or_safepoint(CodeCache_lock);
 553   HeapRegionRemSet* hrrs = rem_set();
 554   hrrs->add_strong_code_root_locked(nm);
 555 }
 556 
 557 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 558   HeapRegionRemSet* hrrs = rem_set();
 559   hrrs->remove_strong_code_root(nm);
 560 }
 561 
 562 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 563   HeapRegionRemSet* hrrs = rem_set();
 564   hrrs->strong_code_roots_do(blk);
 565 }
 566 
 567 class VerifyStrongCodeRootOopClosure: public OopClosure {
 568   const HeapRegion* _hr;
 569   nmethod* _nm;
 570   bool _failures;
 571   bool _has_oops_in_region;
 572 
 573   template <class T> void do_oop_work(T* p) {
 574     T heap_oop = oopDesc::load_heap_oop(p);
 575     if (!oopDesc::is_null(heap_oop)) {
 576       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 577 
 578       // Note: not all the oops embedded in the nmethod are in the
 579       // current region. We only look at those which are.
 580       if (_hr->is_in(obj)) {
 581         // Object is in the region. Check that its less than top
 582         if (_hr->top() <= (HeapWord*)obj) {
 583           // Object is above top
 584           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
 585                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
 586                                  "top " PTR_FORMAT,
 587                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 588           _failures = true;
 589           return;
 590         }
 591         // Nmethod has at least one oop in the current region
 592         _has_oops_in_region = true;
 593       }
 594     }
 595   }
 596 
 597 public:
 598   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 599     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 600 
 601   void do_oop(narrowOop* p) { do_oop_work(p); }
 602   void do_oop(oop* p)       { do_oop_work(p); }
 603 
 604   bool failures()           { return _failures; }
 605   bool has_oops_in_region() { return _has_oops_in_region; }
 606 };
 607 
 608 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 609   const HeapRegion* _hr;
 610   bool _failures;
 611 public:
 612   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 613     _hr(hr), _failures(false) {}
 614 
 615   void do_code_blob(CodeBlob* cb) {
 616     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 617     if (nm != NULL) {
 618       // Verify that the nemthod is live
 619       if (!nm->is_alive()) {
 620         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
 621                                PTR_FORMAT " in its strong code roots",
 622                                _hr->bottom(), _hr->end(), nm);
 623         _failures = true;
 624       } else {
 625         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 626         nm->oops_do(&oop_cl);
 627         if (!oop_cl.has_oops_in_region()) {
 628           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
 629                                  PTR_FORMAT " in its strong code roots "
 630                                  "with no pointers into region",
 631                                  _hr->bottom(), _hr->end(), nm);
 632           _failures = true;
 633         } else if (oop_cl.failures()) {
 634           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
 635                                  "failures for nmethod " PTR_FORMAT,
 636                                  _hr->bottom(), _hr->end(), nm);
 637           _failures = true;
 638         }
 639       }
 640     }
 641   }
 642 
 643   bool failures()       { return _failures; }
 644 };
 645 
 646 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 647   if (!G1VerifyHeapRegionCodeRoots) {
 648     // We're not verifying code roots.
 649     return;
 650   }
 651   if (vo == VerifyOption_G1UseMarkWord) {
 652     // Marking verification during a full GC is performed after class
 653     // unloading, code cache unloading, etc so the strong code roots
 654     // attached to each heap region are in an inconsistent state. They won't
 655     // be consistent until the strong code roots are rebuilt after the
 656     // actual GC. Skip verifying the strong code roots in this particular
 657     // time.
 658     assert(VerifyDuringGC, "only way to get here");
 659     return;
 660   }
 661 
 662   HeapRegionRemSet* hrrs = rem_set();
 663   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 664 
 665   // if this region is empty then there should be no entries
 666   // on its strong code root list
 667   if (is_empty()) {
 668     if (strong_code_roots_length > 0) {
 669       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
 670                              "but has " SIZE_FORMAT " code root entries",
 671                              bottom(), end(), strong_code_roots_length);
 672       *failures = true;
 673     }
 674     return;
 675   }
 676 
 677   if (continuesHumongous()) {
 678     if (strong_code_roots_length > 0) {
 679       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
 680                              "region but has " SIZE_FORMAT " code root entries",
 681                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 682       *failures = true;
 683     }
 684     return;
 685   }
 686 
 687   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 688   strong_code_roots_do(&cb_cl);
 689 
 690   if (cb_cl.failures()) {
 691     *failures = true;
 692   }
 693 }
 694 
 695 void HeapRegion::print() const { print_on(gclog_or_tty); }
 696 void HeapRegion::print_on(outputStream* st) const {
 697   st->print("AC%4u", allocation_context());
 698   st->print(" %2s", get_short_type_str());
 699   if (in_collection_set())
 700     st->print(" CS");
 701   else
 702     st->print("   ");
 703   st->print(" TS %5d", _gc_time_stamp);
 704   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
 705             prev_top_at_mark_start(), next_top_at_mark_start());
 706   G1OffsetTableContigSpace::print_on(st);
 707 }
 708 
 709 class G1VerificationClosure : public OopClosure {
 710 protected:
 711   G1CollectedHeap* _g1h;
 712   CardTableModRefBS* _bs;
 713   oop _containing_obj;
 714   bool _failures;
 715   int _n_failures;
 716   VerifyOption _vo;
 717 public:
 718   // _vo == UsePrevMarking -> use "prev" marking information,
 719   // _vo == UseNextMarking -> use "next" marking information,
 720   // _vo == UseMarkWord    -> use mark word from object header.
 721   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 722     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 723     _failures(false), _n_failures(0), _vo(vo)
 724   {
 725     BarrierSet* bs = _g1h->barrier_set();
 726     if (bs->is_a(BarrierSet::CardTableModRef))
 727       _bs = (CardTableModRefBS*)bs;
 728   }
 729 
 730   void set_containing_obj(oop obj) {
 731     _containing_obj = obj;
 732   }
 733 
 734   bool failures() { return _failures; }
 735   int n_failures() { return _n_failures; }
 736 
 737   void print_object(outputStream* out, oop obj) {
 738 #ifdef PRODUCT
 739     Klass* k = obj->klass();
 740     const char* class_name = InstanceKlass::cast(k)->external_name();
 741     out->print_cr("class name %s", class_name);
 742 #else // PRODUCT
 743     obj->print_on(out);
 744 #endif // PRODUCT
 745   }
 746 };
 747 
 748 class VerifyLiveClosure : public G1VerificationClosure {
 749 public:
 750   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 751   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 752   virtual void do_oop(oop* p) { do_oop_work(p); }
 753 
 754   template <class T>
 755   void do_oop_work(T* p) {
 756     assert(_containing_obj != NULL, "Precondition");
 757     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 758       "Precondition");
 759     verify_liveness(p);
 760   }
 761 
 762   template <class T>
 763   void verify_liveness(T* p) {
 764     T heap_oop = oopDesc::load_heap_oop(p);
 765     if (!oopDesc::is_null(heap_oop)) {
 766       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 767       bool failed = false;
 768       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 769         MutexLockerEx x(ParGCRareEvent_lock,
 770           Mutex::_no_safepoint_check_flag);
 771 
 772         if (!_failures) {
 773           gclog_or_tty->cr();
 774           gclog_or_tty->print_cr("----------");
 775         }
 776         if (!_g1h->is_in_closed_subset(obj)) {
 777           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 778           gclog_or_tty->print_cr("Field " PTR_FORMAT
 779                                  " of live obj " PTR_FORMAT " in region "
 780                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 781                                  p, (void*) _containing_obj,
 782                                  from->bottom(), from->end());
 783           print_object(gclog_or_tty, _containing_obj);
 784           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
 785                                  (void*) obj);
 786         } else {
 787           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 788           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 789           gclog_or_tty->print_cr("Field " PTR_FORMAT
 790                                  " of live obj " PTR_FORMAT " in region "
 791                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 792                                  p, (void*) _containing_obj,
 793                                  from->bottom(), from->end());
 794           print_object(gclog_or_tty, _containing_obj);
 795           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
 796                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 797                                  (void*) obj, to->bottom(), to->end());
 798           print_object(gclog_or_tty, obj);
 799         }
 800         gclog_or_tty->print_cr("----------");
 801         gclog_or_tty->flush();
 802         _failures = true;
 803         failed = true;
 804         _n_failures++;
 805       }
 806     }
 807   }
 808 };
 809 
 810 class VerifyRemSetClosure : public G1VerificationClosure {
 811 public:
 812   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 813   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 814   virtual void do_oop(oop* p) { do_oop_work(p); }
 815 
 816   template <class T>
 817   void do_oop_work(T* p) {
 818     assert(_containing_obj != NULL, "Precondition");
 819     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 820       "Precondition");
 821     verify_remembered_set(p);
 822   }
 823 
 824   template <class T>
 825   void verify_remembered_set(T* p) {
 826     T heap_oop = oopDesc::load_heap_oop(p);
 827     if (!oopDesc::is_null(heap_oop)) {
 828       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 829       bool failed = false;
 830       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 831       HeapRegion* to   = _g1h->heap_region_containing(obj);
 832       if (from != NULL && to != NULL &&
 833           from != to &&
 834           !to->isHumongous()) {
 835         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 836         jbyte cv_field = *_bs->byte_for_const(p);
 837         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 838 
 839         bool is_bad = !(from->is_young()
 840                         || to->rem_set()->contains_reference(p)
 841                         || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 842                             (_containing_obj->is_objArray() ?
 843                                 cv_field == dirty
 844                              : cv_obj == dirty || cv_field == dirty));
 845         if (is_bad) {
 846           MutexLockerEx x(ParGCRareEvent_lock,
 847                           Mutex::_no_safepoint_check_flag);
 848 
 849           if (!_failures) {
 850             gclog_or_tty->cr();
 851             gclog_or_tty->print_cr("----------");
 852           }
 853           gclog_or_tty->print_cr("Missing rem set entry:");
 854           gclog_or_tty->print_cr("Field " PTR_FORMAT " "
 855                                  "of obj " PTR_FORMAT ", "
 856                                  "in region " HR_FORMAT,
 857                                  p, (void*) _containing_obj,
 858                                  HR_FORMAT_PARAMS(from));
 859           _containing_obj->print_on(gclog_or_tty);
 860           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
 861                                  "in region " HR_FORMAT,
 862                                  (void*) obj,
 863                                  HR_FORMAT_PARAMS(to));
 864           if (obj->is_oop()) {
 865             obj->print_on(gclog_or_tty);
 866           }
 867           gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 868                         cv_obj, cv_field);
 869           gclog_or_tty->print_cr("----------");
 870           gclog_or_tty->flush();
 871           _failures = true;
 872           if (!failed) _n_failures++;
 873         }
 874       }
 875     }
 876   }
 877 };
 878 
 879 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 880 // We would need a mechanism to make that code skip dead objects.
 881 
 882 void HeapRegion::verify(VerifyOption vo,
 883                         bool* failures) const {
 884   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 885   *failures = false;
 886   HeapWord* p = bottom();
 887   HeapWord* prev_p = NULL;
 888   VerifyLiveClosure vl_cl(g1, vo);
 889   VerifyRemSetClosure vr_cl(g1, vo);
 890   bool is_humongous = isHumongous();
 891   bool do_bot_verify = !is_young();
 892   size_t object_num = 0;
 893   while (p < top()) {
 894     oop obj = oop(p);
 895     size_t obj_size = block_size(p);
 896     object_num += 1;
 897 
 898     if (is_humongous != g1->isHumongous(obj_size) &&
 899         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 900       gclog_or_tty->print_cr("obj " PTR_FORMAT " is of %shumongous size ("
 901                              SIZE_FORMAT " words) in a %shumongous region",
 902                              p, g1->isHumongous(obj_size) ? "" : "non-",
 903                              obj_size, is_humongous ? "" : "non-");
 904        *failures = true;
 905        return;
 906     }
 907 
 908     // If it returns false, verify_for_object() will output the
 909     // appropriate message.
 910     if (do_bot_verify &&
 911         !g1->is_obj_dead(obj, this) &&
 912         !_offsets.verify_for_object(p, obj_size)) {
 913       *failures = true;
 914       return;
 915     }
 916 
 917     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 918       if (obj->is_oop()) {
 919         Klass* klass = obj->klass();
 920         bool is_metaspace_object = Metaspace::contains(klass) ||
 921                                    (vo == VerifyOption_G1UsePrevMarking &&
 922                                    ClassLoaderDataGraph::unload_list_contains(klass));
 923         if (!is_metaspace_object) {
 924           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 925                                  "not metadata", klass, (void *)obj);
 926           *failures = true;
 927           return;
 928         } else if (!klass->is_klass()) {
 929           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 930                                  "not a klass", klass, (void *)obj);
 931           *failures = true;
 932           return;
 933         } else {
 934           vl_cl.set_containing_obj(obj);
 935           if (!g1->full_collection() || G1VerifyRSetsDuringFullGC) {
 936             // verify liveness and rem_set
 937             vr_cl.set_containing_obj(obj);
 938             G1Mux2Closure mux(&vl_cl, &vr_cl);
 939             obj->oop_iterate_no_header(&mux);
 940 
 941             if (vr_cl.failures()) {
 942               *failures = true;
 943             }
 944             if (G1MaxVerifyFailures >= 0 &&
 945               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 946               return;
 947             }
 948           } else {
 949             // verify only liveness
 950             obj->oop_iterate_no_header(&vl_cl);
 951           }
 952           if (vl_cl.failures()) {
 953             *failures = true;
 954           }
 955           if (G1MaxVerifyFailures >= 0 &&
 956               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 957             return;
 958           }
 959         }
 960       } else {
 961         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", (void *)obj);
 962         *failures = true;
 963         return;
 964       }
 965     }
 966     prev_p = p;
 967     p += obj_size;
 968   }
 969 
 970   if (p != top()) {
 971     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
 972                            "does not match top " PTR_FORMAT, p, top());
 973     *failures = true;
 974     return;
 975   }
 976 
 977   HeapWord* the_end = end();
 978   assert(p == top(), "it should still hold");
 979   // Do some extra BOT consistency checking for addresses in the
 980   // range [top, end). BOT look-ups in this range should yield
 981   // top. No point in doing that if top == end (there's nothing there).
 982   if (p < the_end) {
 983     // Look up top
 984     HeapWord* addr_1 = p;
 985     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 986     if (b_start_1 != p) {
 987       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
 988                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 989                              addr_1, b_start_1, p);
 990       *failures = true;
 991       return;
 992     }
 993 
 994     // Look up top + 1
 995     HeapWord* addr_2 = p + 1;
 996     if (addr_2 < the_end) {
 997       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 998       if (b_start_2 != p) {
 999         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
1000                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
1001                                addr_2, b_start_2, p);
1002         *failures = true;
1003         return;
1004       }
1005     }
1006 
1007     // Look up an address between top and end
1008     size_t diff = pointer_delta(the_end, p) / 2;
1009     HeapWord* addr_3 = p + diff;
1010     if (addr_3 < the_end) {
1011       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
1012       if (b_start_3 != p) {
1013         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
1014                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
1015                                addr_3, b_start_3, p);
1016         *failures = true;
1017         return;
1018       }
1019     }
1020 
1021     // Loook up end - 1
1022     HeapWord* addr_4 = the_end - 1;
1023     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1024     if (b_start_4 != p) {
1025       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
1026                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
1027                              addr_4, b_start_4, p);
1028       *failures = true;
1029       return;
1030     }
1031   }
1032 
1033   if (is_humongous && object_num > 1) {
1034     gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is humongous "
1035                            "but has " SIZE_FORMAT ", objects",
1036                            bottom(), end(), object_num);
1037     *failures = true;
1038     return;
1039   }
1040 
1041   verify_strong_code_roots(vo, failures);
1042 }
1043 
1044 void HeapRegion::verify() const {
1045   bool dummy = false;
1046   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1047 }
1048 
1049 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
1050   G1CollectedHeap* g1 = G1CollectedHeap::heap();
1051   *failures = false;
1052   HeapWord* p = bottom();
1053   HeapWord* prev_p = NULL;
1054   VerifyRemSetClosure vr_cl(g1, vo);
1055   while (p < top()) {
1056     oop obj = oop(p);
1057     size_t obj_size = block_size(p);
1058 
1059     if (!g1->is_obj_dead_cond(obj, this, vo)) {
1060       if (obj->is_oop()) {
1061         vr_cl.set_containing_obj(obj);
1062         obj->oop_iterate_no_header(&vr_cl);
1063 
1064         if (vr_cl.failures()) {
1065           *failures = true;
1066         }
1067         if (G1MaxVerifyFailures >= 0 &&
1068           vr_cl.n_failures() >= G1MaxVerifyFailures) {
1069           return;
1070         }
1071       } else {
1072         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", p2i(obj));
1073         *failures = true;
1074         return;
1075       }
1076     }
1077 
1078     prev_p = p;
1079     p += obj_size;
1080   }
1081 }
1082 
1083 void HeapRegion::verify_rem_set() const {
1084   bool failures = false;
1085   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
1086   guarantee(!failures, "HeapRegion RemSet verification failed");
1087 }
1088 
1089 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1090 // away eventually.
1091 
1092 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1093   set_top(bottom());
1094   _scan_top = bottom();
1095   CompactibleSpace::clear(mangle_space);
1096   reset_bot();
1097 }
1098 
1099 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1100   Space::set_bottom(new_bottom);
1101   _offsets.set_bottom(new_bottom);
1102 }
1103 
1104 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1105   Space::set_end(new_end);
1106   _offsets.resize(new_end - bottom());
1107 }
1108 
1109 void G1OffsetTableContigSpace::print() const {
1110   print_short();
1111   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1112                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1113                 bottom(), top(), _offsets.threshold(), end());
1114 }
1115 
1116 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1117   return _offsets.initialize_threshold();
1118 }
1119 
1120 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1121                                                     HeapWord* end) {
1122   _offsets.alloc_block(start, end);
1123   return _offsets.threshold();
1124 }
1125 
1126 HeapWord* G1OffsetTableContigSpace::scan_top() const {
1127   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1128   HeapWord* local_top = top();
1129   OrderAccess::loadload();
1130   const unsigned local_time_stamp = _gc_time_stamp;
1131   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1132   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1133     return local_top;
1134   } else {
1135     return _scan_top;
1136   }
1137 }
1138 
1139 void G1OffsetTableContigSpace::record_timestamp() {
1140   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1141   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1142 
1143   if (_gc_time_stamp < curr_gc_time_stamp) {
1144     // Setting the time stamp here tells concurrent readers to look at
1145     // scan_top to know the maximum allowed address to look at.
1146 
1147     // scan_top should be bottom for all regions except for the
1148     // retained old alloc region which should have scan_top == top
1149     HeapWord* st = _scan_top;
1150     guarantee(st == _bottom || st == _top, "invariant");
1151 
1152     _gc_time_stamp = curr_gc_time_stamp;
1153   }
1154 }
1155 
1156 void G1OffsetTableContigSpace::record_retained_region() {
1157   // scan_top is the maximum address where it's safe for the next gc to
1158   // scan this region.
1159   _scan_top = top();
1160 }
1161 
1162 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1163   object_iterate(blk);
1164 }
1165 
1166 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1167   HeapWord* p = bottom();
1168   while (p < top()) {
1169     if (block_is_obj(p)) {
1170       blk->do_object(oop(p));
1171     }
1172     p += block_size(p);
1173   }
1174 }
1175 
1176 #define block_is_always_obj(q) true
1177 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1178   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1179 }
1180 #undef block_is_always_obj
1181 
1182 G1OffsetTableContigSpace::
1183 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1184                          MemRegion mr) :
1185   _offsets(sharedOffsetArray, mr),
1186   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1187   _gc_time_stamp(0)
1188 {
1189   _offsets.set_space(this);
1190 }
1191 
1192 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1193   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1194   _top = bottom();
1195   _scan_top = bottom();
1196   set_saved_mark_word(NULL);
1197   reset_bot();
1198 }
1199