1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "gc_implementation/shared/vmGCOperations.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #ifdef ASSERT
  37 #include "memory/guardedMemory.hpp"
  38 #endif
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvm.h"
  41 #include "prims/jvm_misc.hpp"
  42 #include "prims/privilegedStack.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/vm_version.hpp"
  54 #include "services/attachListener.hpp"
  55 #include "services/nmtCommon.hpp"
  56 #include "services/mallocTracker.hpp"
  57 #include "services/memTracker.hpp"
  58 #include "services/threadService.hpp"
  59 #include "utilities/defaultStream.hpp"
  60 #include "utilities/events.hpp"
  61 
  62 # include <signal.h>
  63 
  64 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  65 
  66 OSThread*         os::_starting_thread    = NULL;
  67 address           os::_polling_page       = NULL;
  68 volatile int32_t* os::_mem_serialize_page = NULL;
  69 uintptr_t         os::_serialize_page_mask = 0;
  70 long              os::_rand_seed          = 1;
  71 int               os::_processor_count    = 0;
  72 size_t            os::_page_sizes[os::page_sizes_max];
  73 
  74 #ifndef PRODUCT
  75 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  76 julong os::alloc_bytes = 0;         // # of bytes allocated
  77 julong os::num_frees = 0;           // # of calls to free
  78 julong os::free_bytes = 0;          // # of bytes freed
  79 #endif
  80 
  81 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  82 
  83 void os_init_globals() {
  84   // Called from init_globals().
  85   // See Threads::create_vm() in thread.cpp, and init.cpp.
  86   os::init_globals();
  87 }
  88 
  89 // Fill in buffer with current local time as an ISO-8601 string.
  90 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  91 // Returns buffer, or NULL if it failed.
  92 // This would mostly be a call to
  93 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  94 // except that on Windows the %z behaves badly, so we do it ourselves.
  95 // Also, people wanted milliseconds on there,
  96 // and strftime doesn't do milliseconds.
  97 char* os::iso8601_time(char* buffer, size_t buffer_length) {
  98   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
  99   //                                      1         2
 100   //                             12345678901234567890123456789
 101   static const char* iso8601_format =
 102     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
 103   static const size_t needed_buffer = 29;
 104 
 105   // Sanity check the arguments
 106   if (buffer == NULL) {
 107     assert(false, "NULL buffer");
 108     return NULL;
 109   }
 110   if (buffer_length < needed_buffer) {
 111     assert(false, "buffer_length too small");
 112     return NULL;
 113   }
 114   // Get the current time
 115   jlong milliseconds_since_19700101 = javaTimeMillis();
 116   const int milliseconds_per_microsecond = 1000;
 117   const time_t seconds_since_19700101 =
 118     milliseconds_since_19700101 / milliseconds_per_microsecond;
 119   const int milliseconds_after_second =
 120     milliseconds_since_19700101 % milliseconds_per_microsecond;
 121   // Convert the time value to a tm and timezone variable
 122   struct tm time_struct;
 123   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 124     assert(false, "Failed localtime_pd");
 125     return NULL;
 126   }
 127 #if defined(_ALLBSD_SOURCE)
 128   const time_t zone = (time_t) time_struct.tm_gmtoff;
 129 #else
 130   const time_t zone = timezone;
 131 #endif
 132 
 133   // If daylight savings time is in effect,
 134   // we are 1 hour East of our time zone
 135   const time_t seconds_per_minute = 60;
 136   const time_t minutes_per_hour = 60;
 137   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 138   time_t UTC_to_local = zone;
 139   if (time_struct.tm_isdst > 0) {
 140     UTC_to_local = UTC_to_local - seconds_per_hour;
 141   }
 142   // Compute the time zone offset.
 143   //    localtime_pd() sets timezone to the difference (in seconds)
 144   //    between UTC and and local time.
 145   //    ISO 8601 says we need the difference between local time and UTC,
 146   //    we change the sign of the localtime_pd() result.
 147   const time_t local_to_UTC = -(UTC_to_local);
 148   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 149   char sign_local_to_UTC = '+';
 150   time_t abs_local_to_UTC = local_to_UTC;
 151   if (local_to_UTC < 0) {
 152     sign_local_to_UTC = '-';
 153     abs_local_to_UTC = -(abs_local_to_UTC);
 154   }
 155   // Convert time zone offset seconds to hours and minutes.
 156   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 157   const time_t zone_min =
 158     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 159 
 160   // Print an ISO 8601 date and time stamp into the buffer
 161   const int year = 1900 + time_struct.tm_year;
 162   const int month = 1 + time_struct.tm_mon;
 163   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 164                                    year,
 165                                    month,
 166                                    time_struct.tm_mday,
 167                                    time_struct.tm_hour,
 168                                    time_struct.tm_min,
 169                                    time_struct.tm_sec,
 170                                    milliseconds_after_second,
 171                                    sign_local_to_UTC,
 172                                    zone_hours,
 173                                    zone_min);
 174   if (printed == 0) {
 175     assert(false, "Failed jio_printf");
 176     return NULL;
 177   }
 178   return buffer;
 179 }
 180 
 181 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 182 #ifdef ASSERT
 183   if (!(!thread->is_Java_thread() ||
 184          Thread::current() == thread  ||
 185          Threads_lock->owned_by_self()
 186          || thread->is_Compiler_thread()
 187         )) {
 188     assert(false, "possibility of dangling Thread pointer");
 189   }
 190 #endif
 191 
 192   if (p >= MinPriority && p <= MaxPriority) {
 193     int priority = java_to_os_priority[p];
 194     return set_native_priority(thread, priority);
 195   } else {
 196     assert(false, "Should not happen");
 197     return OS_ERR;
 198   }
 199 }
 200 
 201 // The mapping from OS priority back to Java priority may be inexact because
 202 // Java priorities can map M:1 with native priorities. If you want the definite
 203 // Java priority then use JavaThread::java_priority()
 204 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 205   int p;
 206   int os_prio;
 207   OSReturn ret = get_native_priority(thread, &os_prio);
 208   if (ret != OS_OK) return ret;
 209 
 210   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 211     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 212   } else {
 213     // niceness values are in reverse order
 214     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 215   }
 216   priority = (ThreadPriority)p;
 217   return OS_OK;
 218 }
 219 
 220 
 221 // --------------------- sun.misc.Signal (optional) ---------------------
 222 
 223 
 224 // SIGBREAK is sent by the keyboard to query the VM state
 225 #ifndef SIGBREAK
 226 #define SIGBREAK SIGQUIT
 227 #endif
 228 
 229 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 230 
 231 
 232 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 233   os::set_priority(thread, NearMaxPriority);
 234   while (true) {
 235     int sig;
 236     {
 237       // FIXME : Currently we have not decided what should be the status
 238       //         for this java thread blocked here. Once we decide about
 239       //         that we should fix this.
 240       sig = os::signal_wait();
 241     }
 242     if (sig == os::sigexitnum_pd()) {
 243        // Terminate the signal thread
 244        return;
 245     }
 246 
 247     switch (sig) {
 248       case SIGBREAK: {
 249         // Check if the signal is a trigger to start the Attach Listener - in that
 250         // case don't print stack traces.
 251         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 252           continue;
 253         }
 254         // Print stack traces
 255         // Any SIGBREAK operations added here should make sure to flush
 256         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 257         // Each module also prints an extra carriage return after its output.
 258         VM_PrintThreads op;
 259         VMThread::execute(&op);
 260         VM_PrintJNI jni_op;
 261         VMThread::execute(&jni_op);
 262         VM_FindDeadlocks op1(tty);
 263         VMThread::execute(&op1);
 264         Universe::print_heap_at_SIGBREAK();
 265         if (PrintClassHistogram) {
 266           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
 267           VMThread::execute(&op1);
 268         }
 269         if (JvmtiExport::should_post_data_dump()) {
 270           JvmtiExport::post_data_dump();
 271         }
 272         break;
 273       }
 274       default: {
 275         // Dispatch the signal to java
 276         HandleMark hm(THREAD);
 277         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 278         KlassHandle klass (THREAD, k);
 279         if (klass.not_null()) {
 280           JavaValue result(T_VOID);
 281           JavaCallArguments args;
 282           args.push_int(sig);
 283           JavaCalls::call_static(
 284             &result,
 285             klass,
 286             vmSymbols::dispatch_name(),
 287             vmSymbols::int_void_signature(),
 288             &args,
 289             THREAD
 290           );
 291         }
 292         if (HAS_PENDING_EXCEPTION) {
 293           // tty is initialized early so we don't expect it to be null, but
 294           // if it is we can't risk doing an initialization that might
 295           // trigger additional out-of-memory conditions
 296           if (tty != NULL) {
 297             char klass_name[256];
 298             char tmp_sig_name[16];
 299             const char* sig_name = "UNKNOWN";
 300             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 301               name()->as_klass_external_name(klass_name, 256);
 302             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 303               sig_name = tmp_sig_name;
 304             warning("Exception %s occurred dispatching signal %s to handler"
 305                     "- the VM may need to be forcibly terminated",
 306                     klass_name, sig_name );
 307           }
 308           CLEAR_PENDING_EXCEPTION;
 309         }
 310       }
 311     }
 312   }
 313 }
 314 
 315 void os::init_before_ergo() {
 316   // We need to initialize large page support here because ergonomics takes some
 317   // decisions depending on large page support and the calculated large page size.
 318   large_page_init();
 319 }
 320 
 321 void os::signal_init() {
 322   if (!ReduceSignalUsage) {
 323     // Setup JavaThread for processing signals
 324     EXCEPTION_MARK;
 325     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 326     instanceKlassHandle klass (THREAD, k);
 327     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 328 
 329     const char thread_name[] = "Signal Dispatcher";
 330     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 331 
 332     // Initialize thread_oop to put it into the system threadGroup
 333     Handle thread_group (THREAD, Universe::system_thread_group());
 334     JavaValue result(T_VOID);
 335     JavaCalls::call_special(&result, thread_oop,
 336                            klass,
 337                            vmSymbols::object_initializer_name(),
 338                            vmSymbols::threadgroup_string_void_signature(),
 339                            thread_group,
 340                            string,
 341                            CHECK);
 342 
 343     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 344     JavaCalls::call_special(&result,
 345                             thread_group,
 346                             group,
 347                             vmSymbols::add_method_name(),
 348                             vmSymbols::thread_void_signature(),
 349                             thread_oop,         // ARG 1
 350                             CHECK);
 351 
 352     os::signal_init_pd();
 353 
 354     { MutexLocker mu(Threads_lock);
 355       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 356 
 357       // At this point it may be possible that no osthread was created for the
 358       // JavaThread due to lack of memory. We would have to throw an exception
 359       // in that case. However, since this must work and we do not allow
 360       // exceptions anyway, check and abort if this fails.
 361       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 362         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 363                                       os::native_thread_creation_failed_msg());
 364       }
 365 
 366       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 367       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 368       java_lang_Thread::set_daemon(thread_oop());
 369 
 370       signal_thread->set_threadObj(thread_oop());
 371       Threads::add(signal_thread);
 372       Thread::start(signal_thread);
 373     }
 374     // Handle ^BREAK
 375     os::signal(SIGBREAK, os::user_handler());
 376   }
 377 }
 378 
 379 
 380 void os::terminate_signal_thread() {
 381   if (!ReduceSignalUsage)
 382     signal_notify(sigexitnum_pd());
 383 }
 384 
 385 
 386 // --------------------- loading libraries ---------------------
 387 
 388 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 389 extern struct JavaVM_ main_vm;
 390 
 391 static void* _native_java_library = NULL;
 392 
 393 void* os::native_java_library() {
 394   if (_native_java_library == NULL) {
 395     char buffer[JVM_MAXPATHLEN];
 396     char ebuf[1024];
 397 
 398     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 399     // always able to find it when the loading executable is outside the JDK.
 400     // In order to keep working with 1.2 we ignore any loading errors.
 401     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 402                        "verify")) {
 403       dll_load(buffer, ebuf, sizeof(ebuf));
 404     }
 405 
 406     // Load java dll
 407     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 408                        "java")) {
 409       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 410     }
 411     if (_native_java_library == NULL) {
 412       vm_exit_during_initialization("Unable to load native library", ebuf);
 413     }
 414 
 415 #if defined(__OpenBSD__)
 416     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 417     // ignore errors
 418     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 419                        "net")) {
 420       dll_load(buffer, ebuf, sizeof(ebuf));
 421     }
 422 #endif
 423   }
 424   static jboolean onLoaded = JNI_FALSE;
 425   if (onLoaded) {
 426     // We may have to wait to fire OnLoad until TLS is initialized.
 427     if (ThreadLocalStorage::is_initialized()) {
 428       // The JNI_OnLoad handling is normally done by method load in
 429       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 430       // explicitly so we have to check for JNI_OnLoad as well
 431       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 432       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 433           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 434       if (JNI_OnLoad != NULL) {
 435         JavaThread* thread = JavaThread::current();
 436         ThreadToNativeFromVM ttn(thread);
 437         HandleMark hm(thread);
 438         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 439         onLoaded = JNI_TRUE;
 440         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 441           vm_exit_during_initialization("Unsupported JNI version");
 442         }
 443       }
 444     }
 445   }
 446   return _native_java_library;
 447 }
 448 
 449 /*
 450  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 451  * If check_lib == true then we are looking for an
 452  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 453  * this library is statically linked into the image.
 454  * If check_lib == false then we will look for the appropriate symbol in the
 455  * executable if agent_lib->is_static_lib() == true or in the shared library
 456  * referenced by 'handle'.
 457  */
 458 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 459                               const char *syms[], size_t syms_len) {
 460   assert(agent_lib != NULL, "sanity check");
 461   const char *lib_name;
 462   void *handle = agent_lib->os_lib();
 463   void *entryName = NULL;
 464   char *agent_function_name;
 465   size_t i;
 466 
 467   // If checking then use the agent name otherwise test is_static_lib() to
 468   // see how to process this lookup
 469   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 470   for (i = 0; i < syms_len; i++) {
 471     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 472     if (agent_function_name == NULL) {
 473       break;
 474     }
 475     entryName = dll_lookup(handle, agent_function_name);
 476     FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
 477     if (entryName != NULL) {
 478       break;
 479     }
 480   }
 481   return entryName;
 482 }
 483 
 484 // See if the passed in agent is statically linked into the VM image.
 485 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 486                             size_t syms_len) {
 487   void *ret;
 488   void *proc_handle;
 489   void *save_handle;
 490 
 491   assert(agent_lib != NULL, "sanity check");
 492   if (agent_lib->name() == NULL) {
 493     return false;
 494   }
 495   proc_handle = get_default_process_handle();
 496   // Check for Agent_OnLoad/Attach_lib_name function
 497   save_handle = agent_lib->os_lib();
 498   // We want to look in this process' symbol table.
 499   agent_lib->set_os_lib(proc_handle);
 500   ret = find_agent_function(agent_lib, true, syms, syms_len);
 501   if (ret != NULL) {
 502     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 503     agent_lib->set_valid();
 504     agent_lib->set_static_lib(true);
 505     return true;
 506   }
 507   agent_lib->set_os_lib(save_handle);
 508   return false;
 509 }
 510 
 511 // --------------------- heap allocation utilities ---------------------
 512 
 513 char *os::strdup(const char *str, MEMFLAGS flags) {
 514   size_t size = strlen(str);
 515   char *dup_str = (char *)malloc(size + 1, flags);
 516   if (dup_str == NULL) return NULL;
 517   strcpy(dup_str, str);
 518   return dup_str;
 519 }
 520 
 521 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
 522   char* p = os::strdup(str, flags);
 523   if (p == NULL) {
 524     vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
 525   }
 526   return p;
 527 }
 528 
 529 
 530 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 531 
 532 #ifdef ASSERT
 533 
 534 static void verify_memory(void* ptr) {
 535   GuardedMemory guarded(ptr);
 536   if (!guarded.verify_guards()) {
 537     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 538     tty->print_cr("## memory stomp:");
 539     guarded.print_on(tty);
 540     fatal("memory stomping error");
 541   }
 542 }
 543 
 544 #endif
 545 
 546 //
 547 // This function supports testing of the malloc out of memory
 548 // condition without really running the system out of memory.
 549 //
 550 static u_char* testMalloc(size_t alloc_size) {
 551   assert(MallocMaxTestWords > 0, "sanity check");
 552 
 553   if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
 554     return NULL;
 555   }
 556 
 557   u_char* ptr = (u_char*)::malloc(alloc_size);
 558 
 559   if (ptr != NULL) {
 560     Atomic::add(((jint) (alloc_size / BytesPerWord)),
 561                 (volatile jint *) &cur_malloc_words);
 562   }
 563   return ptr;
 564 }
 565 
 566 void* os::malloc(size_t size, MEMFLAGS flags) {
 567   return os::malloc(size, flags, CALLER_PC);
 568 }
 569 
 570 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 571   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 572   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 573 
 574 #if INCLUDE_NMT
 575   // NMT can not track malloc allocation size > MAX_MALLOC_SIZE, which is
 576   // (1GB - 1) on 32-bit system. It is not an issue on 64-bit system, where
 577   // MAX_MALLOC_SIZE = ((1 << 62) - 1).
 578   // VM code does not have such large malloc allocation. However, it can come
 579   // Unsafe call.
 580   if (MemTracker::tracking_level() >= NMT_summary && size > MAX_MALLOC_SIZE) {
 581     return NULL;
 582   }
 583 #endif
 584 
 585 #ifdef ASSERT
 586   // checking for the WatcherThread and crash_protection first
 587   // since os::malloc can be called when the libjvm.{dll,so} is
 588   // first loaded and we don't have a thread yet.
 589   // try to find the thread after we see that the watcher thread
 590   // exists and has crash protection.
 591   WatcherThread *wt = WatcherThread::watcher_thread();
 592   if (wt != NULL && wt->has_crash_protection()) {
 593     Thread* thread = ThreadLocalStorage::get_thread_slow();
 594     if (thread == wt) {
 595       assert(!wt->has_crash_protection(),
 596           "Can't malloc with crash protection from WatcherThread");
 597     }
 598   }
 599 #endif
 600 
 601   if (size == 0) {
 602     // return a valid pointer if size is zero
 603     // if NULL is returned the calling functions assume out of memory.
 604     size = 1;
 605   }
 606 
 607   // NMT support
 608   NMT_TrackingLevel level = MemTracker::tracking_level();
 609   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 610 
 611 #ifndef ASSERT
 612   const size_t alloc_size = size + nmt_header_size;
 613 #else
 614   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 615   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 616     return NULL;
 617   }
 618 #endif
 619 
 620   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 621 
 622   u_char* ptr;
 623   if (MallocMaxTestWords > 0) {
 624     ptr = testMalloc(alloc_size);
 625   } else {
 626     ptr = (u_char*)::malloc(alloc_size);
 627   }
 628 
 629 #ifdef ASSERT
 630   if (ptr == NULL) {
 631     return NULL;
 632   }
 633   // Wrap memory with guard
 634   GuardedMemory guarded(ptr, size + nmt_header_size);
 635   ptr = guarded.get_user_ptr();
 636 #endif
 637   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 638     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 639     breakpoint();
 640   }
 641   debug_only(if (paranoid) verify_memory(ptr));
 642   if (PrintMalloc && tty != NULL) {
 643     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 644   }
 645 
 646   // we do not track guard memory
 647   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 648 }
 649 
 650 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 651   return os::realloc(memblock, size, flags, CALLER_PC);
 652 }
 653 
 654 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 655 #if INCLUDE_NMT
 656   // See comments in os::malloc() above
 657   if (MemTracker::tracking_level() >= NMT_summary && size > MAX_MALLOC_SIZE) {
 658     return NULL;
 659   }
 660 #endif
 661 
 662 #ifndef ASSERT
 663   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 664   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 665    // NMT support
 666   void* membase = MemTracker::record_free(memblock);
 667   NMT_TrackingLevel level = MemTracker::tracking_level();
 668   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 669   void* ptr = ::realloc(membase, size + nmt_header_size);
 670   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 671 #else
 672   if (memblock == NULL) {
 673     return os::malloc(size, memflags, stack);
 674   }
 675   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 676     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 677     breakpoint();
 678   }
 679   // NMT support
 680   void* membase = MemTracker::malloc_base(memblock);
 681   verify_memory(membase);
 682   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 683   if (size == 0) {
 684     return NULL;
 685   }
 686   // always move the block
 687   void* ptr = os::malloc(size, memflags, stack);
 688   if (PrintMalloc) {
 689     tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 690   }
 691   // Copy to new memory if malloc didn't fail
 692   if ( ptr != NULL ) {
 693     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 694     // Guard's user data contains NMT header
 695     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 696     memcpy(ptr, memblock, MIN2(size, memblock_size));
 697     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
 698     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 699       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 700       breakpoint();
 701     }
 702     os::free(memblock);
 703   }
 704   return ptr;
 705 #endif
 706 }
 707 
 708 
 709 void  os::free(void *memblock, MEMFLAGS memflags) {
 710   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 711 #ifdef ASSERT
 712   if (memblock == NULL) return;
 713   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 714     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 715     breakpoint();
 716   }
 717   void* membase = MemTracker::record_free(memblock);
 718   verify_memory(membase);
 719   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 720 
 721   GuardedMemory guarded(membase);
 722   size_t size = guarded.get_user_size();
 723   inc_stat_counter(&free_bytes, size);
 724   membase = guarded.release_for_freeing();
 725   if (PrintMalloc && tty != NULL) {
 726       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
 727   }
 728   ::free(membase);
 729 #else
 730   void* membase = MemTracker::record_free(memblock);
 731   ::free(membase);
 732 #endif
 733 }
 734 
 735 void os::init_random(long initval) {
 736   _rand_seed = initval;
 737 }
 738 
 739 
 740 long os::random() {
 741   /* standard, well-known linear congruential random generator with
 742    * next_rand = (16807*seed) mod (2**31-1)
 743    * see
 744    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 745    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 746    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 747    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 748   */
 749   const long a = 16807;
 750   const unsigned long m = 2147483647;
 751   const long q = m / a;        assert(q == 127773, "weird math");
 752   const long r = m % a;        assert(r == 2836, "weird math");
 753 
 754   // compute az=2^31p+q
 755   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 756   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 757   lo += (hi & 0x7FFF) << 16;
 758 
 759   // if q overflowed, ignore the overflow and increment q
 760   if (lo > m) {
 761     lo &= m;
 762     ++lo;
 763   }
 764   lo += hi >> 15;
 765 
 766   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 767   if (lo > m) {
 768     lo &= m;
 769     ++lo;
 770   }
 771   return (_rand_seed = lo);
 772 }
 773 
 774 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 775 // conditions in which a thread is first started are different from those in which
 776 // a suspension is resumed.  These differences make it hard for us to apply the
 777 // tougher checks when starting threads that we want to do when resuming them.
 778 // However, when start_thread is called as a result of Thread.start, on a Java
 779 // thread, the operation is synchronized on the Java Thread object.  So there
 780 // cannot be a race to start the thread and hence for the thread to exit while
 781 // we are working on it.  Non-Java threads that start Java threads either have
 782 // to do so in a context in which races are impossible, or should do appropriate
 783 // locking.
 784 
 785 void os::start_thread(Thread* thread) {
 786   // guard suspend/resume
 787   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 788   OSThread* osthread = thread->osthread();
 789   osthread->set_state(RUNNABLE);
 790   pd_start_thread(thread);
 791 }
 792 
 793 //---------------------------------------------------------------------------
 794 // Helper functions for fatal error handler
 795 
 796 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 797   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 798 
 799   int cols = 0;
 800   int cols_per_line = 0;
 801   switch (unitsize) {
 802     case 1: cols_per_line = 16; break;
 803     case 2: cols_per_line = 8;  break;
 804     case 4: cols_per_line = 4;  break;
 805     case 8: cols_per_line = 2;  break;
 806     default: return;
 807   }
 808 
 809   address p = start;
 810   st->print(PTR_FORMAT ":   ", start);
 811   while (p < end) {
 812     switch (unitsize) {
 813       case 1: st->print("%02x", *(u1*)p); break;
 814       case 2: st->print("%04x", *(u2*)p); break;
 815       case 4: st->print("%08x", *(u4*)p); break;
 816       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 817     }
 818     p += unitsize;
 819     cols++;
 820     if (cols >= cols_per_line && p < end) {
 821        cols = 0;
 822        st->cr();
 823        st->print(PTR_FORMAT ":   ", p);
 824     } else {
 825        st->print(" ");
 826     }
 827   }
 828   st->cr();
 829 }
 830 
 831 void os::print_environment_variables(outputStream* st, const char** env_list,
 832                                      char* buffer, int len) {
 833   if (env_list) {
 834     st->print_cr("Environment Variables:");
 835 
 836     for (int i = 0; env_list[i] != NULL; i++) {
 837       if (getenv(env_list[i], buffer, len)) {
 838         st->print("%s", env_list[i]);
 839         st->print("=");
 840         st->print_cr("%s", buffer);
 841       }
 842     }
 843   }
 844 }
 845 
 846 void os::print_cpu_info(outputStream* st) {
 847   // cpu
 848   st->print("CPU:");
 849   st->print("total %d", os::processor_count());
 850   // It's not safe to query number of active processors after crash
 851   // st->print("(active %d)", os::active_processor_count());
 852   st->print(" %s", VM_Version::cpu_features());
 853   st->cr();
 854   pd_print_cpu_info(st);
 855 }
 856 
 857 void os::print_date_and_time(outputStream *st) {
 858   const int secs_per_day  = 86400;
 859   const int secs_per_hour = 3600;
 860   const int secs_per_min  = 60;
 861 
 862   time_t tloc;
 863   (void)time(&tloc);
 864   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 865 
 866   double t = os::elapsedTime();
 867   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 868   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 869   //       before printf. We lost some precision, but who cares?
 870   int eltime = (int)t;  // elapsed time in seconds
 871 
 872   // print elapsed time in a human-readable format:
 873   int eldays = eltime / secs_per_day;
 874   int day_secs = eldays * secs_per_day;
 875   int elhours = (eltime - day_secs) / secs_per_hour;
 876   int hour_secs = elhours * secs_per_hour;
 877   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 878   int minute_secs = elmins * secs_per_min;
 879   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 880   st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 881 }
 882 
 883 // moved from debug.cpp (used to be find()) but still called from there
 884 // The verbose parameter is only set by the debug code in one case
 885 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 886   address addr = (address)x;
 887   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 888   if (b != NULL) {
 889     if (b->is_buffer_blob()) {
 890       // the interpreter is generated into a buffer blob
 891       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 892       if (i != NULL) {
 893         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 894         i->print_on(st);
 895         return;
 896       }
 897       if (Interpreter::contains(addr)) {
 898         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 899                      " (not bytecode specific)", addr);
 900         return;
 901       }
 902       //
 903       if (AdapterHandlerLibrary::contains(b)) {
 904         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 905         AdapterHandlerLibrary::print_handler_on(st, b);
 906       }
 907       // the stubroutines are generated into a buffer blob
 908       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 909       if (d != NULL) {
 910         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 911         d->print_on(st);
 912         st->cr();
 913         return;
 914       }
 915       if (StubRoutines::contains(addr)) {
 916         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 917                      "stub routine", addr);
 918         return;
 919       }
 920       // the InlineCacheBuffer is using stubs generated into a buffer blob
 921       if (InlineCacheBuffer::contains(addr)) {
 922         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
 923         return;
 924       }
 925       VtableStub* v = VtableStubs::stub_containing(addr);
 926       if (v != NULL) {
 927         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
 928         v->print_on(st);
 929         st->cr();
 930         return;
 931       }
 932     }
 933     nmethod* nm = b->as_nmethod_or_null();
 934     if (nm != NULL) {
 935       ResourceMark rm;
 936       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 937                 addr, (int)(addr - nm->entry_point()), nm);
 938       if (verbose) {
 939         st->print(" for ");
 940         nm->method()->print_value_on(st);
 941       }
 942       st->cr();
 943       nm->print_nmethod(verbose);
 944       return;
 945     }
 946     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
 947     b->print_on(st);
 948     return;
 949   }
 950 
 951   if (Universe::heap()->is_in(addr)) {
 952     HeapWord* p = Universe::heap()->block_start(addr);
 953     bool print = false;
 954     // If we couldn't find it it just may mean that heap wasn't parsable
 955     // See if we were just given an oop directly
 956     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 957       print = true;
 958     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 959       p = (HeapWord*) addr;
 960       print = true;
 961     }
 962     if (print) {
 963       if (p == (HeapWord*) addr) {
 964         st->print_cr(INTPTR_FORMAT " is an oop", addr);
 965       } else {
 966         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
 967       }
 968       oop(p)->print_on(st);
 969       return;
 970     }
 971   } else {
 972     if (Universe::heap()->is_in_reserved(addr)) {
 973       st->print_cr(INTPTR_FORMAT " is an unallocated location "
 974                    "in the heap", addr);
 975       return;
 976     }
 977   }
 978   if (JNIHandles::is_global_handle((jobject) addr)) {
 979     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
 980     return;
 981   }
 982   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
 983     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
 984     return;
 985   }
 986 #ifndef PRODUCT
 987   // we don't keep the block list in product mode
 988   if (JNIHandleBlock::any_contains((jobject) addr)) {
 989     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
 990     return;
 991   }
 992 #endif
 993 
 994   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 995     // Check for privilege stack
 996     if (thread->privileged_stack_top() != NULL &&
 997         thread->privileged_stack_top()->contains(addr)) {
 998       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
 999                    "for thread: " INTPTR_FORMAT, addr, thread);
1000       if (verbose) thread->print_on(st);
1001       return;
1002     }
1003     // If the addr is a java thread print information about that.
1004     if (addr == (address)thread) {
1005       if (verbose) {
1006         thread->print_on(st);
1007       } else {
1008         st->print_cr(INTPTR_FORMAT " is a thread", addr);
1009       }
1010       return;
1011     }
1012     // If the addr is in the stack region for this thread then report that
1013     // and print thread info
1014     if (thread->stack_base() >= addr &&
1015         addr > (thread->stack_base() - thread->stack_size())) {
1016       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1017                    INTPTR_FORMAT, addr, thread);
1018       if (verbose) thread->print_on(st);
1019       return;
1020     }
1021 
1022   }
1023 
1024   // Check if in metaspace and print types that have vptrs (only method now)
1025   if (Metaspace::contains(addr)) {
1026     if (Method::has_method_vptr((const void*)addr)) {
1027       ((Method*)addr)->print_value_on(st);
1028       st->cr();
1029     } else {
1030       // Use addr->print() from the debugger instead (not here)
1031       st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
1032     }
1033     return;
1034   }
1035 
1036   // Try an OS specific find
1037   if (os::find(addr, st)) {
1038     return;
1039   }
1040 
1041   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1042 }
1043 
1044 // Looks like all platforms except IA64 can use the same function to check
1045 // if C stack is walkable beyond current frame. The check for fp() is not
1046 // necessary on Sparc, but it's harmless.
1047 bool os::is_first_C_frame(frame* fr) {
1048 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1049   // On IA64 we have to check if the callers bsp is still valid
1050   // (i.e. within the register stack bounds).
1051   // Notice: this only works for threads created by the VM and only if
1052   // we walk the current stack!!! If we want to be able to walk
1053   // arbitrary other threads, we'll have to somehow store the thread
1054   // object in the frame.
1055   Thread *thread = Thread::current();
1056   if ((address)fr->fp() <=
1057       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1058     // This check is a little hacky, because on Linux the first C
1059     // frame's ('start_thread') register stack frame starts at
1060     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1061     // ('__pthread_bound_body') register stack frame seems to really
1062     // start at "register_stack_base".
1063     return true;
1064   } else {
1065     return false;
1066   }
1067 #elif defined(IA64) && defined(_WIN32)
1068   return true;
1069 #else
1070   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1071   // Check usp first, because if that's bad the other accessors may fault
1072   // on some architectures.  Ditto ufp second, etc.
1073   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1074   // sp on amd can be 32 bit aligned.
1075   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1076 
1077   uintptr_t usp    = (uintptr_t)fr->sp();
1078   if ((usp & sp_align_mask) != 0) return true;
1079 
1080   uintptr_t ufp    = (uintptr_t)fr->fp();
1081   if ((ufp & fp_align_mask) != 0) return true;
1082 
1083   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1084   if ((old_sp & sp_align_mask) != 0) return true;
1085   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1086 
1087   uintptr_t old_fp = (uintptr_t)fr->link();
1088   if ((old_fp & fp_align_mask) != 0) return true;
1089   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1090 
1091   // stack grows downwards; if old_fp is below current fp or if the stack
1092   // frame is too large, either the stack is corrupted or fp is not saved
1093   // on stack (i.e. on x86, ebp may be used as general register). The stack
1094   // is not walkable beyond current frame.
1095   if (old_fp < ufp) return true;
1096   if (old_fp - ufp > 64 * K) return true;
1097 
1098   return false;
1099 #endif
1100 }
1101 
1102 #ifdef ASSERT
1103 extern "C" void test_random() {
1104   const double m = 2147483647;
1105   double mean = 0.0, variance = 0.0, t;
1106   long reps = 10000;
1107   unsigned long seed = 1;
1108 
1109   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1110   os::init_random(seed);
1111   long num;
1112   for (int k = 0; k < reps; k++) {
1113     num = os::random();
1114     double u = (double)num / m;
1115     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1116 
1117     // calculate mean and variance of the random sequence
1118     mean += u;
1119     variance += (u*u);
1120   }
1121   mean /= reps;
1122   variance /= (reps - 1);
1123 
1124   assert(num == 1043618065, "bad seed");
1125   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1126   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1127   const double eps = 0.0001;
1128   t = fabsd(mean - 0.5018);
1129   assert(t < eps, "bad mean");
1130   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1131   assert(t < eps, "bad variance");
1132 }
1133 #endif
1134 
1135 
1136 // Set up the boot classpath.
1137 
1138 char* os::format_boot_path(const char* format_string,
1139                            const char* home,
1140                            int home_len,
1141                            char fileSep,
1142                            char pathSep) {
1143     assert((fileSep == '/' && pathSep == ':') ||
1144            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1145 
1146     // Scan the format string to determine the length of the actual
1147     // boot classpath, and handle platform dependencies as well.
1148     int formatted_path_len = 0;
1149     const char* p;
1150     for (p = format_string; *p != 0; ++p) {
1151         if (*p == '%') formatted_path_len += home_len - 1;
1152         ++formatted_path_len;
1153     }
1154 
1155     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1156     if (formatted_path == NULL) {
1157         return NULL;
1158     }
1159 
1160     // Create boot classpath from format, substituting separator chars and
1161     // java home directory.
1162     char* q = formatted_path;
1163     for (p = format_string; *p != 0; ++p) {
1164         switch (*p) {
1165         case '%':
1166             strcpy(q, home);
1167             q += home_len;
1168             break;
1169         case '/':
1170             *q++ = fileSep;
1171             break;
1172         case ':':
1173             *q++ = pathSep;
1174             break;
1175         default:
1176             *q++ = *p;
1177         }
1178     }
1179     *q = '\0';
1180 
1181     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1182     return formatted_path;
1183 }
1184 
1185 // returns a PATH of all entries in the given directory that do not start with a '.'
1186 static char* expand_entries_to_path(char* directory, char fileSep, char pathSep) {
1187   DIR* dir = os::opendir(directory);
1188   if (dir == NULL) return NULL;
1189 
1190   char* path = NULL;
1191   size_t path_len = 0;  // path length including \0 terminator
1192 
1193   size_t directory_len = strlen(directory);
1194   struct dirent *entry;
1195   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal);
1196   while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) {
1197     const char* name = entry->d_name;
1198     if (name[0] == '.') continue;
1199 
1200     size_t name_len = strlen(name);
1201     size_t needed = directory_len + name_len + 2;
1202     size_t new_len = path_len + needed;
1203     if (path == NULL) {
1204       path = NEW_C_HEAP_ARRAY(char, new_len, mtInternal);
1205     } else {
1206       path = REALLOC_C_HEAP_ARRAY(char, path, new_len, mtInternal);
1207     }
1208     if (path == NULL)
1209       break;
1210 
1211     // append <pathSep>directory<fileSep>name
1212     char* p = path;
1213     if (path_len > 0) {
1214       p += (path_len -1);
1215       *p = pathSep;
1216       p++;
1217     }
1218 
1219     strcpy(p, directory);
1220     p += directory_len;
1221 
1222     *p = fileSep;
1223     p++;
1224 
1225     strcpy(p, name);
1226     p += name_len;
1227 
1228     path_len = new_len;
1229   }
1230 
1231   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
1232   os::closedir(dir);
1233 
1234   return path;
1235 }
1236 
1237 bool os::set_boot_path(char fileSep, char pathSep) {
1238   const char* home = Arguments::get_java_home();
1239   int home_len = (int)strlen(home);
1240 
1241   static const char* meta_index_dir_format = "%/lib/";
1242   static const char* meta_index_format = "%/lib/meta-index";
1243   char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1244   if (meta_index == NULL) return false;
1245   char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1246   if (meta_index_dir == NULL) return false;
1247   Arguments::set_meta_index_path(meta_index, meta_index_dir);
1248 
1249   char* sysclasspath = NULL;
1250 
1251   // images build if rt.jar exists
1252   char* rt_jar = format_boot_path("%/lib/rt.jar", home, home_len, fileSep, pathSep);
1253   if (rt_jar == NULL) return false;
1254   struct stat st;
1255   bool has_rt_jar = (os::stat(rt_jar, &st) == 0);
1256   FREE_C_HEAP_ARRAY(char, rt_jar, mtInternal);
1257 
1258   if (has_rt_jar) {
1259     // Any modification to the JAR-file list, for the boot classpath must be
1260     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1261     // path class JARs, are stripped for StackMapTable to reduce download size.
1262     static const char classpath_format[] =
1263       "%/lib/resources.jar:"
1264       "%/lib/rt.jar:"
1265       "%/lib/jsse.jar:"
1266       "%/lib/jce.jar:"
1267       "%/lib/charsets.jar:"
1268       "%/lib/jfr.jar:"
1269       "%/classes";
1270     sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1271   } else {
1272     // no rt.jar, check if developer build with exploded modules
1273     char* modules_dir = format_boot_path("%/modules", home, home_len, fileSep, pathSep);
1274     if (os::stat(modules_dir, &st) == 0) {
1275       if ((st.st_mode & S_IFDIR) == S_IFDIR) {
1276         sysclasspath = expand_entries_to_path(modules_dir, fileSep, pathSep);
1277       }
1278     }
1279 
1280     // fallback to classes
1281     if (sysclasspath == NULL)
1282       sysclasspath = format_boot_path("%/classes", home, home_len, fileSep, pathSep);
1283   }
1284 
1285   if (sysclasspath == NULL) return false;
1286   Arguments::set_sysclasspath(sysclasspath);
1287 
1288   return true;
1289 }
1290 
1291 /*
1292  * Splits a path, based on its separator, the number of
1293  * elements is returned back in n.
1294  * It is the callers responsibility to:
1295  *   a> check the value of n, and n may be 0.
1296  *   b> ignore any empty path elements
1297  *   c> free up the data.
1298  */
1299 char** os::split_path(const char* path, int* n) {
1300   *n = 0;
1301   if (path == NULL || strlen(path) == 0) {
1302     return NULL;
1303   }
1304   const char psepchar = *os::path_separator();
1305   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1306   if (inpath == NULL) {
1307     return NULL;
1308   }
1309   strcpy(inpath, path);
1310   int count = 1;
1311   char* p = strchr(inpath, psepchar);
1312   // Get a count of elements to allocate memory
1313   while (p != NULL) {
1314     count++;
1315     p++;
1316     p = strchr(p, psepchar);
1317   }
1318   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1319   if (opath == NULL) {
1320     return NULL;
1321   }
1322 
1323   // do the actual splitting
1324   p = inpath;
1325   for (int i = 0 ; i < count ; i++) {
1326     size_t len = strcspn(p, os::path_separator());
1327     if (len > JVM_MAXPATHLEN) {
1328       return NULL;
1329     }
1330     // allocate the string and add terminator storage
1331     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1332     if (s == NULL) {
1333       return NULL;
1334     }
1335     strncpy(s, p, len);
1336     s[len] = '\0';
1337     opath[i] = s;
1338     p += len + 1;
1339   }
1340   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1341   *n = count;
1342   return opath;
1343 }
1344 
1345 void os::set_memory_serialize_page(address page) {
1346   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1347   _mem_serialize_page = (volatile int32_t *)page;
1348   // We initialize the serialization page shift count here
1349   // We assume a cache line size of 64 bytes
1350   assert(SerializePageShiftCount == count,
1351          "thread size changed, fix SerializePageShiftCount constant");
1352   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1353 }
1354 
1355 static volatile intptr_t SerializePageLock = 0;
1356 
1357 // This method is called from signal handler when SIGSEGV occurs while the current
1358 // thread tries to store to the "read-only" memory serialize page during state
1359 // transition.
1360 void os::block_on_serialize_page_trap() {
1361   if (TraceSafepoint) {
1362     tty->print_cr("Block until the serialize page permission restored");
1363   }
1364   // When VMThread is holding the SerializePageLock during modifying the
1365   // access permission of the memory serialize page, the following call
1366   // will block until the permission of that page is restored to rw.
1367   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1368   // this case, it's OK as the signal is synchronous and we know precisely when
1369   // it can occur.
1370   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1371   Thread::muxRelease(&SerializePageLock);
1372 }
1373 
1374 // Serialize all thread state variables
1375 void os::serialize_thread_states() {
1376   // On some platforms such as Solaris & Linux, the time duration of the page
1377   // permission restoration is observed to be much longer than expected  due to
1378   // scheduler starvation problem etc. To avoid the long synchronization
1379   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1380   // the mutator thread if such case is encountered. See bug 6546278 for details.
1381   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1382   os::protect_memory((char *)os::get_memory_serialize_page(),
1383                      os::vm_page_size(), MEM_PROT_READ);
1384   os::protect_memory((char *)os::get_memory_serialize_page(),
1385                      os::vm_page_size(), MEM_PROT_RW);
1386   Thread::muxRelease(&SerializePageLock);
1387 }
1388 
1389 // Returns true if the current stack pointer is above the stack shadow
1390 // pages, false otherwise.
1391 
1392 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1393   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1394   address sp = current_stack_pointer();
1395   // Check if we have StackShadowPages above the yellow zone.  This parameter
1396   // is dependent on the depth of the maximum VM call stack possible from
1397   // the handler for stack overflow.  'instanceof' in the stack overflow
1398   // handler or a println uses at least 8k stack of VM and native code
1399   // respectively.
1400   const int framesize_in_bytes =
1401     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1402   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1403                       * vm_page_size()) + framesize_in_bytes;
1404   // The very lower end of the stack
1405   address stack_limit = thread->stack_base() - thread->stack_size();
1406   return (sp > (stack_limit + reserved_area));
1407 }
1408 
1409 size_t os::page_size_for_region(size_t region_size, size_t min_pages) {
1410   assert(min_pages > 0, "sanity");
1411   if (UseLargePages) {
1412     const size_t max_page_size = region_size / min_pages;
1413 
1414     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1415       const size_t page_size = _page_sizes[i];
1416       if (page_size <= max_page_size && is_size_aligned(region_size, page_size)) {
1417         return page_size;
1418       }
1419     }
1420   }
1421 
1422   return vm_page_size();
1423 }
1424 
1425 #ifndef PRODUCT
1426 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1427 {
1428   if (TracePageSizes) {
1429     tty->print("%s: ", str);
1430     for (int i = 0; i < count; ++i) {
1431       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1432     }
1433     tty->cr();
1434   }
1435 }
1436 
1437 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1438                           const size_t region_max_size, const size_t page_size,
1439                           const char* base, const size_t size)
1440 {
1441   if (TracePageSizes) {
1442     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1443                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1444                   " size=" SIZE_FORMAT,
1445                   str, region_min_size, region_max_size,
1446                   page_size, base, size);
1447   }
1448 }
1449 #endif  // #ifndef PRODUCT
1450 
1451 // This is the working definition of a server class machine:
1452 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1453 // because the graphics memory (?) sometimes masks physical memory.
1454 // If you want to change the definition of a server class machine
1455 // on some OS or platform, e.g., >=4GB on Windows platforms,
1456 // then you'll have to parameterize this method based on that state,
1457 // as was done for logical processors here, or replicate and
1458 // specialize this method for each platform.  (Or fix os to have
1459 // some inheritance structure and use subclassing.  Sigh.)
1460 // If you want some platform to always or never behave as a server
1461 // class machine, change the setting of AlwaysActAsServerClassMachine
1462 // and NeverActAsServerClassMachine in globals*.hpp.
1463 bool os::is_server_class_machine() {
1464   // First check for the early returns
1465   if (NeverActAsServerClassMachine) {
1466     return false;
1467   }
1468   if (AlwaysActAsServerClassMachine) {
1469     return true;
1470   }
1471   // Then actually look at the machine
1472   bool         result            = false;
1473   const unsigned int    server_processors = 2;
1474   const julong server_memory     = 2UL * G;
1475   // We seem not to get our full complement of memory.
1476   //     We allow some part (1/8?) of the memory to be "missing",
1477   //     based on the sizes of DIMMs, and maybe graphics cards.
1478   const julong missing_memory   = 256UL * M;
1479 
1480   /* Is this a server class machine? */
1481   if ((os::active_processor_count() >= (int)server_processors) &&
1482       (os::physical_memory() >= (server_memory - missing_memory))) {
1483     const unsigned int logical_processors =
1484       VM_Version::logical_processors_per_package();
1485     if (logical_processors > 1) {
1486       const unsigned int physical_packages =
1487         os::active_processor_count() / logical_processors;
1488       if (physical_packages > server_processors) {
1489         result = true;
1490       }
1491     } else {
1492       result = true;
1493     }
1494   }
1495   return result;
1496 }
1497 
1498 void os::SuspendedThreadTask::run() {
1499   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1500   internal_do_task();
1501   _done = true;
1502 }
1503 
1504 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1505   return os::pd_create_stack_guard_pages(addr, bytes);
1506 }
1507 
1508 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1509   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1510   if (result != NULL) {
1511     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1512   }
1513 
1514   return result;
1515 }
1516 
1517 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1518    MEMFLAGS flags) {
1519   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1520   if (result != NULL) {
1521     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1522     MemTracker::record_virtual_memory_type((address)result, flags);
1523   }
1524 
1525   return result;
1526 }
1527 
1528 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1529   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1530   if (result != NULL) {
1531     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1532   }
1533   return result;
1534 }
1535 
1536 // A convenience function which attempts to reserve memory at a number
1537 // of given addresses. An address array is given and first the first,
1538 // then the second is tried and so on.
1539 // Function returns NULL if memory could not be obtained at any of the
1540 // given addresses.
1541 //
1542 // parameters
1543 // bytes - size of block
1544 // addr  - array of addresses, NULL terminated
1545 //
1546 char* os::attempt_reserve_memory_at_multiple(size_t bytes, char* addr[]) {
1547   for (int i = 0; addr[i]; i ++) {
1548     char* const attach_point = addr[i];
1549     assert(attach_point >= (char *)HeapBaseMinAddress, "Flag support broken");
1550     char* const addr = os::attempt_reserve_memory_at(bytes, attach_point);
1551     if (addr) {
1552       // Note: depending on platform and OS, it is not guaranteed that
1553       //  os::attempt_reserve_memory_at only returns requested addr or nothing :/
1554       if (addr != attach_point) {
1555         os::release_memory(addr, bytes);
1556       } else {
1557         return addr;
1558       }
1559     }
1560   }
1561 
1562   return NULL;
1563 }
1564 
1565 // A convenience function which attempts to reserve memory
1566 // in a given memory range.
1567 char* os::attempt_reserve_memory_in_range(size_t size, size_t alignment,
1568                                           char* range_from, char* range_to, int num_attempts) {
1569   // sanity checks
1570   if (range_from == 0) {
1571     range_from = (char*) 1;
1572   }
1573 
1574   if (size == 0) {
1575     return NULL;
1576   }
1577 
1578   if (range_to <= range_from) {
1579     return NULL;
1580   } else {
1581     size_t d = range_to - range_from;
1582     if (d < size) {
1583       return NULL;
1584     }
1585   }
1586 
1587   // The necessary attach point alignment (for mmap or shmat to have a
1588   // chance of attaching).
1589   const size_t os_attach_point_alignment =
1590     AIX_ONLY(SIZE_256M)  // Known shm boundary alignment.
1591     NOT_AIX(os::vm_allocation_granularity());
1592 
1593   const size_t attach_point_alignment =
1594     alignment > 0 ?
1595     lcm(alignment, os_attach_point_alignment) : os_attach_point_alignment;
1596 
1597   // Calc address range within we try to attach (range of possible start addresses).
1598   char* const highest_start = (char *)align_ptr_down(range_to - size, attach_point_alignment);
1599   char* const lowest_start  = (char *)align_ptr_up(range_from, attach_point_alignment);
1600   const size_t attach_range = highest_start - lowest_start;
1601 
1602   // Default is 20  ...
1603   if (num_attempts <= 0) {
1604     num_attempts = 20;
1605   }
1606 
1607   // ... but cap at possible
1608   const uint64_t num_attempts_possible =
1609     (attach_range / attach_point_alignment) + 1; // at least one is possible even for 0 sized attach range
1610 
1611   if (num_attempts_possible < (uint64_t)num_attempts) {
1612     num_attempts = num_attempts_possible;
1613   }
1614 
1615   const size_t stepsize =
1616     align_size_up(attach_range / num_attempts, attach_point_alignment);
1617 
1618   // Build up attach point array.
1619   char** attach_points = (char**) os::malloc((num_attempts + 1) * sizeof(char*), mtInternal);
1620   assert(attach_points, "OOM");
1621 
1622   // Fill attach points array.
1623   char* attach_point = highest_start;
1624   int i = 0;
1625   while (i < num_attempts && attach_point >= lowest_start) {
1626     attach_points[i] = attach_point;
1627     i++;
1628     // Handle overflow correctly!
1629     if ((uintptr_t)attach_point > stepsize) {
1630       attach_point -= stepsize;
1631     } else {
1632       attach_point = 0;
1633     }
1634   }
1635 
1636   attach_points[i] = NULL;
1637 
1638   char* addr = os::attempt_reserve_memory_at_multiple(size, attach_points);
1639 
1640   os::free(attach_points);
1641 
1642   return addr;
1643 }
1644 
1645 void os::split_reserved_memory(char *base, size_t size,
1646                                  size_t split, bool realloc) {
1647   pd_split_reserved_memory(base, size, split, realloc);
1648 }
1649 
1650 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1651   bool res = pd_commit_memory(addr, bytes, executable);
1652   if (res) {
1653     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1654   }
1655   return res;
1656 }
1657 
1658 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1659                               bool executable) {
1660   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1661   if (res) {
1662     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1663   }
1664   return res;
1665 }
1666 
1667 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1668                                const char* mesg) {
1669   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1670   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1671 }
1672 
1673 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1674                                bool executable, const char* mesg) {
1675   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1676   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1677 }
1678 
1679 bool os::uncommit_memory(char* addr, size_t bytes) {
1680   bool res;
1681   if (MemTracker::tracking_level() > NMT_minimal) {
1682     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1683     res = pd_uncommit_memory(addr, bytes);
1684     if (res) {
1685       tkr.record((address)addr, bytes);
1686     }
1687   } else {
1688     res = pd_uncommit_memory(addr, bytes);
1689   }
1690   return res;
1691 }
1692 
1693 bool os::release_memory(char* addr, size_t bytes) {
1694   bool res;
1695   if (MemTracker::tracking_level() > NMT_minimal) {
1696     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1697     res = pd_release_memory(addr, bytes);
1698     if (res) {
1699       tkr.record((address)addr, bytes);
1700     }
1701   } else {
1702     res = pd_release_memory(addr, bytes);
1703   }
1704   return res;
1705 }
1706 
1707 
1708 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1709                            char *addr, size_t bytes, bool read_only,
1710                            bool allow_exec) {
1711   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1712   if (result != NULL) {
1713     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1714   }
1715   return result;
1716 }
1717 
1718 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1719                              char *addr, size_t bytes, bool read_only,
1720                              bool allow_exec) {
1721   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1722                     read_only, allow_exec);
1723 }
1724 
1725 bool os::unmap_memory(char *addr, size_t bytes) {
1726   bool result;
1727   if (MemTracker::tracking_level() > NMT_minimal) {
1728     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1729     result = pd_unmap_memory(addr, bytes);
1730     if (result) {
1731       tkr.record((address)addr, bytes);
1732     }
1733   } else {
1734     result = pd_unmap_memory(addr, bytes);
1735   }
1736   return result;
1737 }
1738 
1739 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1740   pd_free_memory(addr, bytes, alignment_hint);
1741 }
1742 
1743 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1744   pd_realign_memory(addr, bytes, alignment_hint);
1745 }
1746 
1747 #ifndef TARGET_OS_FAMILY_windows
1748 /* try to switch state from state "from" to state "to"
1749  * returns the state set after the method is complete
1750  */
1751 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1752                                                          os::SuspendResume::State to)
1753 {
1754   os::SuspendResume::State result =
1755     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1756   if (result == from) {
1757     // success
1758     return to;
1759   }
1760   return result;
1761 }
1762 #endif
1763 
1764 /////////////// Unit tests ///////////////
1765 
1766 #ifndef PRODUCT
1767 
1768 #define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
1769 
1770 class TestOS : AllStatic {
1771   static size_t small_page_size() {
1772     return os::vm_page_size();
1773   }
1774 
1775   static size_t large_page_size() {
1776     const size_t large_page_size_example = 4 * M;
1777     return os::page_size_for_region(large_page_size_example, 1);
1778   }
1779 
1780   static void test_page_size_for_region() {
1781     if (UseLargePages) {
1782       const size_t small_page = small_page_size();
1783       const size_t large_page = large_page_size();
1784 
1785       if (large_page > small_page) {
1786         size_t num_small_pages_in_large = large_page / small_page;
1787         size_t page = os::page_size_for_region(large_page, num_small_pages_in_large);
1788 
1789         assert_eq(page, small_page);
1790       }
1791     }
1792   }
1793 
1794   static void test_page_size_for_region_alignment() {
1795     if (UseLargePages) {
1796       const size_t small_page = small_page_size();
1797       const size_t large_page = large_page_size();
1798       if (large_page > small_page) {
1799         const size_t unaligned_region = large_page + 17;
1800         size_t page = os::page_size_for_region(unaligned_region, 1);
1801         assert_eq(page, small_page);
1802 
1803         const size_t num_pages = 5;
1804         const size_t aligned_region = large_page * num_pages;
1805         page = os::page_size_for_region(aligned_region, num_pages);
1806         assert_eq(page, large_page);
1807       }
1808     }
1809   }
1810 
1811  public:
1812   static void run_tests() {
1813     test_page_size_for_region();
1814     test_page_size_for_region_alignment();
1815   }
1816 };
1817 
1818 void TestOS_test() {
1819   TestOS::run_tests();
1820 }
1821 
1822 #endif // PRODUCT