1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsOopClosures.inline.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/vmCMSOperations.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/collectorPolicy.hpp"
  46 #include "gc/shared/gcLocker.inline.hpp"
  47 #include "gc/shared/gcPolicyCounters.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/genCollectedHeap.hpp"
  52 #include "gc/shared/genOopClosures.inline.hpp"
  53 #include "gc/shared/isGCActiveMark.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/strongRootsScope.hpp"
  56 #include "gc/shared/taskqueue.inline.hpp"
  57 #include "logging/log.hpp"
  58 #include "memory/allocation.hpp"
  59 #include "memory/iterator.inline.hpp"
  60 #include "memory/padded.hpp"
  61 #include "memory/resourceArea.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.inline.hpp"
  65 #include "runtime/globals_extension.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/java.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "runtime/vmThread.hpp"
  71 #include "services/memoryService.hpp"
  72 #include "services/runtimeService.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 // statics
  76 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  77 bool CMSCollector::_full_gc_requested = false;
  78 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  79 
  80 //////////////////////////////////////////////////////////////////
  81 // In support of CMS/VM thread synchronization
  82 //////////////////////////////////////////////////////////////////
  83 // We split use of the CGC_lock into 2 "levels".
  84 // The low-level locking is of the usual CGC_lock monitor. We introduce
  85 // a higher level "token" (hereafter "CMS token") built on top of the
  86 // low level monitor (hereafter "CGC lock").
  87 // The token-passing protocol gives priority to the VM thread. The
  88 // CMS-lock doesn't provide any fairness guarantees, but clients
  89 // should ensure that it is only held for very short, bounded
  90 // durations.
  91 //
  92 // When either of the CMS thread or the VM thread is involved in
  93 // collection operations during which it does not want the other
  94 // thread to interfere, it obtains the CMS token.
  95 //
  96 // If either thread tries to get the token while the other has
  97 // it, that thread waits. However, if the VM thread and CMS thread
  98 // both want the token, then the VM thread gets priority while the
  99 // CMS thread waits. This ensures, for instance, that the "concurrent"
 100 // phases of the CMS thread's work do not block out the VM thread
 101 // for long periods of time as the CMS thread continues to hog
 102 // the token. (See bug 4616232).
 103 //
 104 // The baton-passing functions are, however, controlled by the
 105 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 106 // and here the low-level CMS lock, not the high level token,
 107 // ensures mutual exclusion.
 108 //
 109 // Two important conditions that we have to satisfy:
 110 // 1. if a thread does a low-level wait on the CMS lock, then it
 111 //    relinquishes the CMS token if it were holding that token
 112 //    when it acquired the low-level CMS lock.
 113 // 2. any low-level notifications on the low-level lock
 114 //    should only be sent when a thread has relinquished the token.
 115 //
 116 // In the absence of either property, we'd have potential deadlock.
 117 //
 118 // We protect each of the CMS (concurrent and sequential) phases
 119 // with the CMS _token_, not the CMS _lock_.
 120 //
 121 // The only code protected by CMS lock is the token acquisition code
 122 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 123 // baton-passing code.
 124 //
 125 // Unfortunately, i couldn't come up with a good abstraction to factor and
 126 // hide the naked CGC_lock manipulation in the baton-passing code
 127 // further below. That's something we should try to do. Also, the proof
 128 // of correctness of this 2-level locking scheme is far from obvious,
 129 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 130 // that there may be a theoretical possibility of delay/starvation in the
 131 // low-level lock/wait/notify scheme used for the baton-passing because of
 132 // potential interference with the priority scheme embodied in the
 133 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 134 // invocation further below and marked with "XXX 20011219YSR".
 135 // Indeed, as we note elsewhere, this may become yet more slippery
 136 // in the presence of multiple CMS and/or multiple VM threads. XXX
 137 
 138 class CMSTokenSync: public StackObj {
 139  private:
 140   bool _is_cms_thread;
 141  public:
 142   CMSTokenSync(bool is_cms_thread):
 143     _is_cms_thread(is_cms_thread) {
 144     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 145            "Incorrect argument to constructor");
 146     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 147   }
 148 
 149   ~CMSTokenSync() {
 150     assert(_is_cms_thread ?
 151              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 152              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 153           "Incorrect state");
 154     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 155   }
 156 };
 157 
 158 // Convenience class that does a CMSTokenSync, and then acquires
 159 // upto three locks.
 160 class CMSTokenSyncWithLocks: public CMSTokenSync {
 161  private:
 162   // Note: locks are acquired in textual declaration order
 163   // and released in the opposite order
 164   MutexLockerEx _locker1, _locker2, _locker3;
 165  public:
 166   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 167                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 168     CMSTokenSync(is_cms_thread),
 169     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 170     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 171     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 172   { }
 173 };
 174 
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CFLS_LAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 197   CardGeneration(rs, initial_byte_size, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _did_compact(false)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 213   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 214   _cmsSpace->_old_gen = this;
 215 
 216   _gc_stats = new CMSGCStats();
 217 
 218   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 219   // offsets match. The ability to tell free chunks from objects
 220   // depends on this property.
 221   debug_only(
 222     FreeChunk* junk = NULL;
 223     assert(UseCompressedClassPointers ||
 224            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 225            "Offset of FreeChunk::_prev within FreeChunk must match"
 226            "  that of OopDesc::_klass within OopDesc");
 227   )
 228 
 229   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 230   for (uint i = 0; i < ParallelGCThreads; i++) {
 231     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232   }
 233 
 234   _incremental_collection_failed = false;
 235   // The "dilatation_factor" is the expansion that can occur on
 236   // account of the fact that the minimum object size in the CMS
 237   // generation may be larger than that in, say, a contiguous young
 238   //  generation.
 239   // Ideally, in the calculation below, we'd compute the dilatation
 240   // factor as: MinChunkSize/(promoting_gen's min object size)
 241   // Since we do not have such a general query interface for the
 242   // promoting generation, we'll instead just use the minimum
 243   // object size (which today is a header's worth of space);
 244   // note that all arithmetic is in units of HeapWords.
 245   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 246   assert(_dilatation_factor >= 1.0, "from previous assert");
 247 }
 248 
 249 
 250 // The field "_initiating_occupancy" represents the occupancy percentage
 251 // at which we trigger a new collection cycle.  Unless explicitly specified
 252 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 253 // is calculated by:
 254 //
 255 //   Let "f" be MinHeapFreeRatio in
 256 //
 257 //    _initiating_occupancy = 100-f +
 258 //                           f * (CMSTriggerRatio/100)
 259 //   where CMSTriggerRatio is the argument "tr" below.
 260 //
 261 // That is, if we assume the heap is at its desired maximum occupancy at the
 262 // end of a collection, we let CMSTriggerRatio of the (purported) free
 263 // space be allocated before initiating a new collection cycle.
 264 //
 265 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 266   assert(io <= 100 && tr <= 100, "Check the arguments");
 267   if (io >= 0) {
 268     _initiating_occupancy = (double)io / 100.0;
 269   } else {
 270     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 271                              (double)(tr * MinHeapFreeRatio) / 100.0)
 272                             / 100.0;
 273   }
 274 }
 275 
 276 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 277   assert(collector() != NULL, "no collector");
 278   collector()->ref_processor_init();
 279 }
 280 
 281 void CMSCollector::ref_processor_init() {
 282   if (_ref_processor == NULL) {
 283     // Allocate and initialize a reference processor
 284     _ref_processor =
 285       new ReferenceProcessor(_span,                               // span
 286                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 287                              ParallelGCThreads,                   // mt processing degree
 288                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 289                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 290                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 291                              &_is_alive_closure);                 // closure for liveness info
 292     // Initialize the _ref_processor field of CMSGen
 293     _cmsGen->set_ref_processor(_ref_processor);
 294 
 295   }
 296 }
 297 
 298 AdaptiveSizePolicy* CMSCollector::size_policy() {
 299   GenCollectedHeap* gch = GenCollectedHeap::heap();
 300   return gch->gen_policy()->size_policy();
 301 }
 302 
 303 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 304 
 305   const char* gen_name = "old";
 306   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 307   // Generation Counters - generation 1, 1 subspace
 308   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 309       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 310 
 311   _space_counters = new GSpaceCounters(gen_name, 0,
 312                                        _virtual_space.reserved_size(),
 313                                        this, _gen_counters);
 314 }
 315 
 316 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 317   _cms_gen(cms_gen)
 318 {
 319   assert(alpha <= 100, "bad value");
 320   _saved_alpha = alpha;
 321 
 322   // Initialize the alphas to the bootstrap value of 100.
 323   _gc0_alpha = _cms_alpha = 100;
 324 
 325   _cms_begin_time.update();
 326   _cms_end_time.update();
 327 
 328   _gc0_duration = 0.0;
 329   _gc0_period = 0.0;
 330   _gc0_promoted = 0;
 331 
 332   _cms_duration = 0.0;
 333   _cms_period = 0.0;
 334   _cms_allocated = 0;
 335 
 336   _cms_used_at_gc0_begin = 0;
 337   _cms_used_at_gc0_end = 0;
 338   _allow_duty_cycle_reduction = false;
 339   _valid_bits = 0;
 340 }
 341 
 342 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 343   // TBD: CR 6909490
 344   return 1.0;
 345 }
 346 
 347 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 348 }
 349 
 350 // If promotion failure handling is on use
 351 // the padded average size of the promotion for each
 352 // young generation collection.
 353 double CMSStats::time_until_cms_gen_full() const {
 354   size_t cms_free = _cms_gen->cmsSpace()->free();
 355   GenCollectedHeap* gch = GenCollectedHeap::heap();
 356   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 357                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 358   if (cms_free > expected_promotion) {
 359     // Start a cms collection if there isn't enough space to promote
 360     // for the next young collection.  Use the padded average as
 361     // a safety factor.
 362     cms_free -= expected_promotion;
 363 
 364     // Adjust by the safety factor.
 365     double cms_free_dbl = (double)cms_free;
 366     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 367     // Apply a further correction factor which tries to adjust
 368     // for recent occurance of concurrent mode failures.
 369     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 370     cms_free_dbl = cms_free_dbl * cms_adjustment;
 371 
 372     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 373                   cms_free, expected_promotion);
 374     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 375     // Add 1 in case the consumption rate goes to zero.
 376     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 377   }
 378   return 0.0;
 379 }
 380 
 381 // Compare the duration of the cms collection to the
 382 // time remaining before the cms generation is empty.
 383 // Note that the time from the start of the cms collection
 384 // to the start of the cms sweep (less than the total
 385 // duration of the cms collection) can be used.  This
 386 // has been tried and some applications experienced
 387 // promotion failures early in execution.  This was
 388 // possibly because the averages were not accurate
 389 // enough at the beginning.
 390 double CMSStats::time_until_cms_start() const {
 391   // We add "gc0_period" to the "work" calculation
 392   // below because this query is done (mostly) at the
 393   // end of a scavenge, so we need to conservatively
 394   // account for that much possible delay
 395   // in the query so as to avoid concurrent mode failures
 396   // due to starting the collection just a wee bit too
 397   // late.
 398   double work = cms_duration() + gc0_period();
 399   double deadline = time_until_cms_gen_full();
 400   // If a concurrent mode failure occurred recently, we want to be
 401   // more conservative and halve our expected time_until_cms_gen_full()
 402   if (work > deadline) {
 403     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 404                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 405     return 0.0;
 406   }
 407   return work - deadline;
 408 }
 409 
 410 #ifndef PRODUCT
 411 void CMSStats::print_on(outputStream *st) const {
 412   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 413   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 414                gc0_duration(), gc0_period(), gc0_promoted());
 415   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 416             cms_duration(), cms_period(), cms_allocated());
 417   st->print(",cms_since_beg=%g,cms_since_end=%g",
 418             cms_time_since_begin(), cms_time_since_end());
 419   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 420             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 421 
 422   if (valid()) {
 423     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 424               promotion_rate(), cms_allocation_rate());
 425     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 426               cms_consumption_rate(), time_until_cms_gen_full());
 427   }
 428   st->print(" ");
 429 }
 430 #endif // #ifndef PRODUCT
 431 
 432 CMSCollector::CollectorState CMSCollector::_collectorState =
 433                              CMSCollector::Idling;
 434 bool CMSCollector::_foregroundGCIsActive = false;
 435 bool CMSCollector::_foregroundGCShouldWait = false;
 436 
 437 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 438                            CardTableRS*                   ct,
 439                            ConcurrentMarkSweepPolicy*     cp):
 440   _cmsGen(cmsGen),
 441   _ct(ct),
 442   _ref_processor(NULL),    // will be set later
 443   _conc_workers(NULL),     // may be set later
 444   _abort_preclean(false),
 445   _start_sampling(false),
 446   _between_prologue_and_epilogue(false),
 447   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 448   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 449                  -1 /* lock-free */, "No_lock" /* dummy */),
 450   _modUnionClosurePar(&_modUnionTable),
 451   // Adjust my span to cover old (cms) gen
 452   _span(cmsGen->reserved()),
 453   // Construct the is_alive_closure with _span & markBitMap
 454   _is_alive_closure(_span, &_markBitMap),
 455   _restart_addr(NULL),
 456   _overflow_list(NULL),
 457   _stats(cmsGen),
 458   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 459                              //verify that this lock should be acquired with safepoint check.
 460                              Monitor::_safepoint_check_sometimes)),
 461   _eden_chunk_array(NULL),     // may be set in ctor body
 462   _eden_chunk_capacity(0),     // -- ditto --
 463   _eden_chunk_index(0),        // -- ditto --
 464   _survivor_plab_array(NULL),  // -- ditto --
 465   _survivor_chunk_array(NULL), // -- ditto --
 466   _survivor_chunk_capacity(0), // -- ditto --
 467   _survivor_chunk_index(0),    // -- ditto --
 468   _ser_pmc_preclean_ovflw(0),
 469   _ser_kac_preclean_ovflw(0),
 470   _ser_pmc_remark_ovflw(0),
 471   _par_pmc_remark_ovflw(0),
 472   _ser_kac_ovflw(0),
 473   _par_kac_ovflw(0),
 474 #ifndef PRODUCT
 475   _num_par_pushes(0),
 476 #endif
 477   _collection_count_start(0),
 478   _verifying(false),
 479   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 480   _completed_initialization(false),
 481   _collector_policy(cp),
 482   _should_unload_classes(CMSClassUnloadingEnabled),
 483   _concurrent_cycles_since_last_unload(0),
 484   _roots_scanning_options(GenCollectedHeap::SO_None),
 485   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 487   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 488   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 489   _cms_start_registered(false)
 490 {
 491   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 492     ExplicitGCInvokesConcurrent = true;
 493   }
 494   // Now expand the span and allocate the collection support structures
 495   // (MUT, marking bit map etc.) to cover both generations subject to
 496   // collection.
 497 
 498   // For use by dirty card to oop closures.
 499   _cmsGen->cmsSpace()->set_collector(this);
 500 
 501   // Allocate MUT and marking bit map
 502   {
 503     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 504     if (!_markBitMap.allocate(_span)) {
 505       warning("Failed to allocate CMS Bit Map");
 506       return;
 507     }
 508     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 509   }
 510   {
 511     _modUnionTable.allocate(_span);
 512     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 513   }
 514 
 515   if (!_markStack.allocate(MarkStackSize)) {
 516     warning("Failed to allocate CMS Marking Stack");
 517     return;
 518   }
 519 
 520   // Support for multi-threaded concurrent phases
 521   if (CMSConcurrentMTEnabled) {
 522     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 523       // just for now
 524       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 525     }
 526     if (ConcGCThreads > 1) {
 527       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 528                                  ConcGCThreads, true);
 529       if (_conc_workers == NULL) {
 530         warning("GC/CMS: _conc_workers allocation failure: "
 531               "forcing -CMSConcurrentMTEnabled");
 532         CMSConcurrentMTEnabled = false;
 533       } else {
 534         _conc_workers->initialize_workers();
 535       }
 536     } else {
 537       CMSConcurrentMTEnabled = false;
 538     }
 539   }
 540   if (!CMSConcurrentMTEnabled) {
 541     ConcGCThreads = 0;
 542   } else {
 543     // Turn off CMSCleanOnEnter optimization temporarily for
 544     // the MT case where it's not fixed yet; see 6178663.
 545     CMSCleanOnEnter = false;
 546   }
 547   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 548          "Inconsistency");
 549 
 550   // Parallel task queues; these are shared for the
 551   // concurrent and stop-world phases of CMS, but
 552   // are not shared with parallel scavenge (ParNew).
 553   {
 554     uint i;
 555     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 556 
 557     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 558          || ParallelRefProcEnabled)
 559         && num_queues > 0) {
 560       _task_queues = new OopTaskQueueSet(num_queues);
 561       if (_task_queues == NULL) {
 562         warning("task_queues allocation failure.");
 563         return;
 564       }
 565       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 566       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 567       for (i = 0; i < num_queues; i++) {
 568         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 569         if (q == NULL) {
 570           warning("work_queue allocation failure.");
 571           return;
 572         }
 573         _task_queues->register_queue(i, q);
 574       }
 575       for (i = 0; i < num_queues; i++) {
 576         _task_queues->queue(i)->initialize();
 577         _hash_seed[i] = 17;  // copied from ParNew
 578       }
 579     }
 580   }
 581 
 582   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 583 
 584   // Clip CMSBootstrapOccupancy between 0 and 100.
 585   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 586 
 587   // Now tell CMS generations the identity of their collector
 588   ConcurrentMarkSweepGeneration::set_collector(this);
 589 
 590   // Create & start a CMS thread for this CMS collector
 591   _cmsThread = ConcurrentMarkSweepThread::start(this);
 592   assert(cmsThread() != NULL, "CMS Thread should have been created");
 593   assert(cmsThread()->collector() == this,
 594          "CMS Thread should refer to this gen");
 595   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 596 
 597   // Support for parallelizing young gen rescan
 598   GenCollectedHeap* gch = GenCollectedHeap::heap();
 599   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 600   _young_gen = (ParNewGeneration*)gch->young_gen();
 601   if (gch->supports_inline_contig_alloc()) {
 602     _top_addr = gch->top_addr();
 603     _end_addr = gch->end_addr();
 604     assert(_young_gen != NULL, "no _young_gen");
 605     _eden_chunk_index = 0;
 606     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 607     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 608   }
 609 
 610   // Support for parallelizing survivor space rescan
 611   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 612     const size_t max_plab_samples =
 613       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 614 
 615     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 616     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 617     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 618     _survivor_chunk_capacity = max_plab_samples;
 619     for (uint i = 0; i < ParallelGCThreads; i++) {
 620       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 621       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 622       assert(cur->end() == 0, "Should be 0");
 623       assert(cur->array() == vec, "Should be vec");
 624       assert(cur->capacity() == max_plab_samples, "Error");
 625     }
 626   }
 627 
 628   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 629   _gc_counters = new CollectorCounters("CMS", 1);
 630   _completed_initialization = true;
 631   _inter_sweep_timer.start();  // start of time
 632 }
 633 
 634 const char* ConcurrentMarkSweepGeneration::name() const {
 635   return "concurrent mark-sweep generation";
 636 }
 637 void ConcurrentMarkSweepGeneration::update_counters() {
 638   if (UsePerfData) {
 639     _space_counters->update_all();
 640     _gen_counters->update_all();
 641   }
 642 }
 643 
 644 // this is an optimized version of update_counters(). it takes the
 645 // used value as a parameter rather than computing it.
 646 //
 647 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 648   if (UsePerfData) {
 649     _space_counters->update_used(used);
 650     _space_counters->update_capacity();
 651     _gen_counters->update_all();
 652   }
 653 }
 654 
 655 void ConcurrentMarkSweepGeneration::print() const {
 656   Generation::print();
 657   cmsSpace()->print();
 658 }
 659 
 660 #ifndef PRODUCT
 661 void ConcurrentMarkSweepGeneration::print_statistics() {
 662   cmsSpace()->printFLCensus(0);
 663 }
 664 #endif
 665 
 666 size_t
 667 ConcurrentMarkSweepGeneration::contiguous_available() const {
 668   // dld proposes an improvement in precision here. If the committed
 669   // part of the space ends in a free block we should add that to
 670   // uncommitted size in the calculation below. Will make this
 671   // change later, staying with the approximation below for the
 672   // time being. -- ysr.
 673   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 674 }
 675 
 676 size_t
 677 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 678   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 679 }
 680 
 681 size_t ConcurrentMarkSweepGeneration::max_available() const {
 682   return free() + _virtual_space.uncommitted_size();
 683 }
 684 
 685 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 686   size_t available = max_available();
 687   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 688   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 689   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 690                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 691   return res;
 692 }
 693 
 694 // At a promotion failure dump information on block layout in heap
 695 // (cms old generation).
 696 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 697   LogHandle(gc, promotion) log;
 698   if (log.is_trace()) {
 699     ResourceMark rm;
 700     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 701   }
 702 }
 703 
 704 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 705   // Clear the promotion information.  These pointers can be adjusted
 706   // along with all the other pointers into the heap but
 707   // compaction is expected to be a rare event with
 708   // a heap using cms so don't do it without seeing the need.
 709   for (uint i = 0; i < ParallelGCThreads; i++) {
 710     _par_gc_thread_states[i]->promo.reset();
 711   }
 712 }
 713 
 714 void ConcurrentMarkSweepGeneration::compute_new_size() {
 715   assert_locked_or_safepoint(Heap_lock);
 716 
 717   // If incremental collection failed, we just want to expand
 718   // to the limit.
 719   if (incremental_collection_failed()) {
 720     clear_incremental_collection_failed();
 721     grow_to_reserved();
 722     return;
 723   }
 724 
 725   // The heap has been compacted but not reset yet.
 726   // Any metric such as free() or used() will be incorrect.
 727 
 728   CardGeneration::compute_new_size();
 729 
 730   // Reset again after a possible resizing
 731   if (did_compact()) {
 732     cmsSpace()->reset_after_compaction();
 733   }
 734 }
 735 
 736 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 737   assert_locked_or_safepoint(Heap_lock);
 738 
 739   // If incremental collection failed, we just want to expand
 740   // to the limit.
 741   if (incremental_collection_failed()) {
 742     clear_incremental_collection_failed();
 743     grow_to_reserved();
 744     return;
 745   }
 746 
 747   double free_percentage = ((double) free()) / capacity();
 748   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 749   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 750 
 751   // compute expansion delta needed for reaching desired free percentage
 752   if (free_percentage < desired_free_percentage) {
 753     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 754     assert(desired_capacity >= capacity(), "invalid expansion size");
 755     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 756     LogHandle(gc) log;
 757     if (log.is_trace()) {
 758       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 759       log.trace("From compute_new_size: ");
 760       log.trace("  Free fraction %f", free_percentage);
 761       log.trace("  Desired free fraction %f", desired_free_percentage);
 762       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 763       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 764       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 765       GenCollectedHeap* gch = GenCollectedHeap::heap();
 766       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 767       size_t young_size = gch->young_gen()->capacity();
 768       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 769       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 770       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 771       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 772     }
 773     // safe if expansion fails
 774     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 775     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 776   } else {
 777     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 778     assert(desired_capacity <= capacity(), "invalid expansion size");
 779     size_t shrink_bytes = capacity() - desired_capacity;
 780     // Don't shrink unless the delta is greater than the minimum shrink we want
 781     if (shrink_bytes >= MinHeapDeltaBytes) {
 782       shrink_free_list_by(shrink_bytes);
 783     }
 784   }
 785 }
 786 
 787 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 788   return cmsSpace()->freelistLock();
 789 }
 790 
 791 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 792   CMSSynchronousYieldRequest yr;
 793   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 794   return have_lock_and_allocate(size, tlab);
 795 }
 796 
 797 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 798                                                                 bool   tlab /* ignored */) {
 799   assert_lock_strong(freelistLock());
 800   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 801   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 802   // Allocate the object live (grey) if the background collector has
 803   // started marking. This is necessary because the marker may
 804   // have passed this address and consequently this object will
 805   // not otherwise be greyed and would be incorrectly swept up.
 806   // Note that if this object contains references, the writing
 807   // of those references will dirty the card containing this object
 808   // allowing the object to be blackened (and its references scanned)
 809   // either during a preclean phase or at the final checkpoint.
 810   if (res != NULL) {
 811     // We may block here with an uninitialized object with
 812     // its mark-bit or P-bits not yet set. Such objects need
 813     // to be safely navigable by block_start().
 814     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 815     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 816     collector()->direct_allocated(res, adjustedSize);
 817     _direct_allocated_words += adjustedSize;
 818     // allocation counters
 819     NOT_PRODUCT(
 820       _numObjectsAllocated++;
 821       _numWordsAllocated += (int)adjustedSize;
 822     )
 823   }
 824   return res;
 825 }
 826 
 827 // In the case of direct allocation by mutators in a generation that
 828 // is being concurrently collected, the object must be allocated
 829 // live (grey) if the background collector has started marking.
 830 // This is necessary because the marker may
 831 // have passed this address and consequently this object will
 832 // not otherwise be greyed and would be incorrectly swept up.
 833 // Note that if this object contains references, the writing
 834 // of those references will dirty the card containing this object
 835 // allowing the object to be blackened (and its references scanned)
 836 // either during a preclean phase or at the final checkpoint.
 837 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 838   assert(_markBitMap.covers(start, size), "Out of bounds");
 839   if (_collectorState >= Marking) {
 840     MutexLockerEx y(_markBitMap.lock(),
 841                     Mutex::_no_safepoint_check_flag);
 842     // [see comments preceding SweepClosure::do_blk() below for details]
 843     //
 844     // Can the P-bits be deleted now?  JJJ
 845     //
 846     // 1. need to mark the object as live so it isn't collected
 847     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 848     // 3. need to mark the end of the object so marking, precleaning or sweeping
 849     //    can skip over uninitialized or unparsable objects. An allocated
 850     //    object is considered uninitialized for our purposes as long as
 851     //    its klass word is NULL.  All old gen objects are parsable
 852     //    as soon as they are initialized.)
 853     _markBitMap.mark(start);          // object is live
 854     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 855     _markBitMap.mark(start + size - 1);
 856                                       // mark end of object
 857   }
 858   // check that oop looks uninitialized
 859   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 860 }
 861 
 862 void CMSCollector::promoted(bool par, HeapWord* start,
 863                             bool is_obj_array, size_t obj_size) {
 864   assert(_markBitMap.covers(start), "Out of bounds");
 865   // See comment in direct_allocated() about when objects should
 866   // be allocated live.
 867   if (_collectorState >= Marking) {
 868     // we already hold the marking bit map lock, taken in
 869     // the prologue
 870     if (par) {
 871       _markBitMap.par_mark(start);
 872     } else {
 873       _markBitMap.mark(start);
 874     }
 875     // We don't need to mark the object as uninitialized (as
 876     // in direct_allocated above) because this is being done with the
 877     // world stopped and the object will be initialized by the
 878     // time the marking, precleaning or sweeping get to look at it.
 879     // But see the code for copying objects into the CMS generation,
 880     // where we need to ensure that concurrent readers of the
 881     // block offset table are able to safely navigate a block that
 882     // is in flux from being free to being allocated (and in
 883     // transition while being copied into) and subsequently
 884     // becoming a bona-fide object when the copy/promotion is complete.
 885     assert(SafepointSynchronize::is_at_safepoint(),
 886            "expect promotion only at safepoints");
 887 
 888     if (_collectorState < Sweeping) {
 889       // Mark the appropriate cards in the modUnionTable, so that
 890       // this object gets scanned before the sweep. If this is
 891       // not done, CMS generation references in the object might
 892       // not get marked.
 893       // For the case of arrays, which are otherwise precisely
 894       // marked, we need to dirty the entire array, not just its head.
 895       if (is_obj_array) {
 896         // The [par_]mark_range() method expects mr.end() below to
 897         // be aligned to the granularity of a bit's representation
 898         // in the heap. In the case of the MUT below, that's a
 899         // card size.
 900         MemRegion mr(start,
 901                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 902                         CardTableModRefBS::card_size /* bytes */));
 903         if (par) {
 904           _modUnionTable.par_mark_range(mr);
 905         } else {
 906           _modUnionTable.mark_range(mr);
 907         }
 908       } else {  // not an obj array; we can just mark the head
 909         if (par) {
 910           _modUnionTable.par_mark(start);
 911         } else {
 912           _modUnionTable.mark(start);
 913         }
 914       }
 915     }
 916   }
 917 }
 918 
 919 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 920   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 921   // allocate, copy and if necessary update promoinfo --
 922   // delegate to underlying space.
 923   assert_lock_strong(freelistLock());
 924 
 925 #ifndef PRODUCT
 926   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 927     return NULL;
 928   }
 929 #endif  // #ifndef PRODUCT
 930 
 931   oop res = _cmsSpace->promote(obj, obj_size);
 932   if (res == NULL) {
 933     // expand and retry
 934     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 935     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 936     // Since this is the old generation, we don't try to promote
 937     // into a more senior generation.
 938     res = _cmsSpace->promote(obj, obj_size);
 939   }
 940   if (res != NULL) {
 941     // See comment in allocate() about when objects should
 942     // be allocated live.
 943     assert(obj->is_oop(), "Will dereference klass pointer below");
 944     collector()->promoted(false,           // Not parallel
 945                           (HeapWord*)res, obj->is_objArray(), obj_size);
 946     // promotion counters
 947     NOT_PRODUCT(
 948       _numObjectsPromoted++;
 949       _numWordsPromoted +=
 950         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 951     )
 952   }
 953   return res;
 954 }
 955 
 956 
 957 // IMPORTANT: Notes on object size recognition in CMS.
 958 // ---------------------------------------------------
 959 // A block of storage in the CMS generation is always in
 960 // one of three states. A free block (FREE), an allocated
 961 // object (OBJECT) whose size() method reports the correct size,
 962 // and an intermediate state (TRANSIENT) in which its size cannot
 963 // be accurately determined.
 964 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 965 // -----------------------------------------------------
 966 // FREE:      klass_word & 1 == 1; mark_word holds block size
 967 //
 968 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 969 //            obj->size() computes correct size
 970 //
 971 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 972 //
 973 // STATE IDENTIFICATION: (64 bit+COOPS)
 974 // ------------------------------------
 975 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 976 //
 977 // OBJECT:    klass_word installed; klass_word != 0;
 978 //            obj->size() computes correct size
 979 //
 980 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 981 //
 982 //
 983 // STATE TRANSITION DIAGRAM
 984 //
 985 //        mut / parnew                     mut  /  parnew
 986 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 987 //  ^                                                                   |
 988 //  |------------------------ DEAD <------------------------------------|
 989 //         sweep                            mut
 990 //
 991 // While a block is in TRANSIENT state its size cannot be determined
 992 // so readers will either need to come back later or stall until
 993 // the size can be determined. Note that for the case of direct
 994 // allocation, P-bits, when available, may be used to determine the
 995 // size of an object that may not yet have been initialized.
 996 
 997 // Things to support parallel young-gen collection.
 998 oop
 999 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1000                                            oop old, markOop m,
1001                                            size_t word_sz) {
1002 #ifndef PRODUCT
1003   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1004     return NULL;
1005   }
1006 #endif  // #ifndef PRODUCT
1007 
1008   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1009   PromotionInfo* promoInfo = &ps->promo;
1010   // if we are tracking promotions, then first ensure space for
1011   // promotion (including spooling space for saving header if necessary).
1012   // then allocate and copy, then track promoted info if needed.
1013   // When tracking (see PromotionInfo::track()), the mark word may
1014   // be displaced and in this case restoration of the mark word
1015   // occurs in the (oop_since_save_marks_)iterate phase.
1016   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1017     // Out of space for allocating spooling buffers;
1018     // try expanding and allocating spooling buffers.
1019     if (!expand_and_ensure_spooling_space(promoInfo)) {
1020       return NULL;
1021     }
1022   }
1023   assert(promoInfo->has_spooling_space(), "Control point invariant");
1024   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1025   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1026   if (obj_ptr == NULL) {
1027      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1028      if (obj_ptr == NULL) {
1029        return NULL;
1030      }
1031   }
1032   oop obj = oop(obj_ptr);
1033   OrderAccess::storestore();
1034   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1035   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1036   // IMPORTANT: See note on object initialization for CMS above.
1037   // Otherwise, copy the object.  Here we must be careful to insert the
1038   // klass pointer last, since this marks the block as an allocated object.
1039   // Except with compressed oops it's the mark word.
1040   HeapWord* old_ptr = (HeapWord*)old;
1041   // Restore the mark word copied above.
1042   obj->set_mark(m);
1043   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1044   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1045   OrderAccess::storestore();
1046 
1047   if (UseCompressedClassPointers) {
1048     // Copy gap missed by (aligned) header size calculation below
1049     obj->set_klass_gap(old->klass_gap());
1050   }
1051   if (word_sz > (size_t)oopDesc::header_size()) {
1052     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1053                                  obj_ptr + oopDesc::header_size(),
1054                                  word_sz - oopDesc::header_size());
1055   }
1056 
1057   // Now we can track the promoted object, if necessary.  We take care
1058   // to delay the transition from uninitialized to full object
1059   // (i.e., insertion of klass pointer) until after, so that it
1060   // atomically becomes a promoted object.
1061   if (promoInfo->tracking()) {
1062     promoInfo->track((PromotedObject*)obj, old->klass());
1063   }
1064   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1065   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1066   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1067 
1068   // Finally, install the klass pointer (this should be volatile).
1069   OrderAccess::storestore();
1070   obj->set_klass(old->klass());
1071   // We should now be able to calculate the right size for this object
1072   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1073 
1074   collector()->promoted(true,          // parallel
1075                         obj_ptr, old->is_objArray(), word_sz);
1076 
1077   NOT_PRODUCT(
1078     Atomic::inc_ptr(&_numObjectsPromoted);
1079     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1080   )
1081 
1082   return obj;
1083 }
1084 
1085 void
1086 ConcurrentMarkSweepGeneration::
1087 par_promote_alloc_done(int thread_num) {
1088   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1089   ps->lab.retire(thread_num);
1090 }
1091 
1092 void
1093 ConcurrentMarkSweepGeneration::
1094 par_oop_since_save_marks_iterate_done(int thread_num) {
1095   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1096   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1097   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1098 }
1099 
1100 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1101                                                    size_t size,
1102                                                    bool   tlab)
1103 {
1104   // We allow a STW collection only if a full
1105   // collection was requested.
1106   return full || should_allocate(size, tlab); // FIX ME !!!
1107   // This and promotion failure handling are connected at the
1108   // hip and should be fixed by untying them.
1109 }
1110 
1111 bool CMSCollector::shouldConcurrentCollect() {
1112   if (_full_gc_requested) {
1113     log_trace(gc)("CMSCollector: collect because of explicit  gc request (or gc_locker)");
1114     return true;
1115   }
1116 
1117   FreelistLocker x(this);
1118   // ------------------------------------------------------------------
1119   // Print out lots of information which affects the initiation of
1120   // a collection.
1121   LogHandle(gc) log;
1122   if (log.is_trace() && stats().valid()) {
1123     log.trace("CMSCollector shouldConcurrentCollect: ");
1124     ResourceMark rm;
1125     stats().print_on(log.debug_stream());
1126     log.trace("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1127     log.trace("free=" SIZE_FORMAT, _cmsGen->free());
1128     log.trace("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1129     log.trace("promotion_rate=%g", stats().promotion_rate());
1130     log.trace("cms_allocation_rate=%g", stats().cms_allocation_rate());
1131     log.trace("occupancy=%3.7f", _cmsGen->occupancy());
1132     log.trace("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1133     log.trace("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1134     log.trace("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1135     log.trace("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1136   }
1137   // ------------------------------------------------------------------
1138 
1139   // If the estimated time to complete a cms collection (cms_duration())
1140   // is less than the estimated time remaining until the cms generation
1141   // is full, start a collection.
1142   if (!UseCMSInitiatingOccupancyOnly) {
1143     if (stats().valid()) {
1144       if (stats().time_until_cms_start() == 0.0) {
1145         return true;
1146       }
1147     } else {
1148       // We want to conservatively collect somewhat early in order
1149       // to try and "bootstrap" our CMS/promotion statistics;
1150       // this branch will not fire after the first successful CMS
1151       // collection because the stats should then be valid.
1152       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1153         log_trace(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1154                       _cmsGen->occupancy(), _bootstrap_occupancy);
1155         return true;
1156       }
1157     }
1158   }
1159 
1160   // Otherwise, we start a collection cycle if
1161   // old gen want a collection cycle started. Each may use
1162   // an appropriate criterion for making this decision.
1163   // XXX We need to make sure that the gen expansion
1164   // criterion dovetails well with this. XXX NEED TO FIX THIS
1165   if (_cmsGen->should_concurrent_collect()) {
1166     log_trace(gc)("CMS old gen initiated");
1167     return true;
1168   }
1169 
1170   // We start a collection if we believe an incremental collection may fail;
1171   // this is not likely to be productive in practice because it's probably too
1172   // late anyway.
1173   GenCollectedHeap* gch = GenCollectedHeap::heap();
1174   assert(gch->collector_policy()->is_generation_policy(),
1175          "You may want to check the correctness of the following");
1176   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1177     log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1178     return true;
1179   }
1180 
1181   if (MetaspaceGC::should_concurrent_collect()) {
1182     log_trace(gc)("CMSCollector: collect for metadata allocation ");
1183     return true;
1184   }
1185 
1186   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1187   if (CMSTriggerInterval >= 0) {
1188     if (CMSTriggerInterval == 0) {
1189       // Trigger always
1190       return true;
1191     }
1192 
1193     // Check the CMS time since begin (we do not check the stats validity
1194     // as we want to be able to trigger the first CMS cycle as well)
1195     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1196       if (stats().valid()) {
1197         log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1198                       stats().cms_time_since_begin());
1199       } else {
1200         log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1201       }
1202       return true;
1203     }
1204   }
1205 
1206   return false;
1207 }
1208 
1209 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1210 
1211 // Clear _expansion_cause fields of constituent generations
1212 void CMSCollector::clear_expansion_cause() {
1213   _cmsGen->clear_expansion_cause();
1214 }
1215 
1216 // We should be conservative in starting a collection cycle.  To
1217 // start too eagerly runs the risk of collecting too often in the
1218 // extreme.  To collect too rarely falls back on full collections,
1219 // which works, even if not optimum in terms of concurrent work.
1220 // As a work around for too eagerly collecting, use the flag
1221 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1222 // giving the user an easily understandable way of controlling the
1223 // collections.
1224 // We want to start a new collection cycle if any of the following
1225 // conditions hold:
1226 // . our current occupancy exceeds the configured initiating occupancy
1227 //   for this generation, or
1228 // . we recently needed to expand this space and have not, since that
1229 //   expansion, done a collection of this generation, or
1230 // . the underlying space believes that it may be a good idea to initiate
1231 //   a concurrent collection (this may be based on criteria such as the
1232 //   following: the space uses linear allocation and linear allocation is
1233 //   going to fail, or there is believed to be excessive fragmentation in
1234 //   the generation, etc... or ...
1235 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1236 //   the case of the old generation; see CR 6543076):
1237 //   we may be approaching a point at which allocation requests may fail because
1238 //   we will be out of sufficient free space given allocation rate estimates.]
1239 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1240 
1241   assert_lock_strong(freelistLock());
1242   if (occupancy() > initiating_occupancy()) {
1243     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1244                   short_name(), occupancy(), initiating_occupancy());
1245     return true;
1246   }
1247   if (UseCMSInitiatingOccupancyOnly) {
1248     return false;
1249   }
1250   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1251     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1252     return true;
1253   }
1254   return false;
1255 }
1256 
1257 void ConcurrentMarkSweepGeneration::collect(bool   full,
1258                                             bool   clear_all_soft_refs,
1259                                             size_t size,
1260                                             bool   tlab)
1261 {
1262   collector()->collect(full, clear_all_soft_refs, size, tlab);
1263 }
1264 
1265 void CMSCollector::collect(bool   full,
1266                            bool   clear_all_soft_refs,
1267                            size_t size,
1268                            bool   tlab)
1269 {
1270   // The following "if" branch is present for defensive reasons.
1271   // In the current uses of this interface, it can be replaced with:
1272   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1273   // But I am not placing that assert here to allow future
1274   // generality in invoking this interface.
1275   if (GC_locker::is_active()) {
1276     // A consistency test for GC_locker
1277     assert(GC_locker::needs_gc(), "Should have been set already");
1278     // Skip this foreground collection, instead
1279     // expanding the heap if necessary.
1280     // Need the free list locks for the call to free() in compute_new_size()
1281     compute_new_size();
1282     return;
1283   }
1284   acquire_control_and_collect(full, clear_all_soft_refs);
1285 }
1286 
1287 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1288   GenCollectedHeap* gch = GenCollectedHeap::heap();
1289   unsigned int gc_count = gch->total_full_collections();
1290   if (gc_count == full_gc_count) {
1291     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1292     _full_gc_requested = true;
1293     _full_gc_cause = cause;
1294     CGC_lock->notify();   // nudge CMS thread
1295   } else {
1296     assert(gc_count > full_gc_count, "Error: causal loop");
1297   }
1298 }
1299 
1300 bool CMSCollector::is_external_interruption() {
1301   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1302   return GCCause::is_user_requested_gc(cause) ||
1303          GCCause::is_serviceability_requested_gc(cause);
1304 }
1305 
1306 void CMSCollector::report_concurrent_mode_interruption() {
1307   if (is_external_interruption()) {
1308     log_debug(gc)("Concurrent mode interrupted");
1309   } else {
1310     log_debug(gc)("Concurrent mode failure");
1311     _gc_tracer_cm->report_concurrent_mode_failure();
1312   }
1313 }
1314 
1315 
1316 // The foreground and background collectors need to coordinate in order
1317 // to make sure that they do not mutually interfere with CMS collections.
1318 // When a background collection is active,
1319 // the foreground collector may need to take over (preempt) and
1320 // synchronously complete an ongoing collection. Depending on the
1321 // frequency of the background collections and the heap usage
1322 // of the application, this preemption can be seldom or frequent.
1323 // There are only certain
1324 // points in the background collection that the "collection-baton"
1325 // can be passed to the foreground collector.
1326 //
1327 // The foreground collector will wait for the baton before
1328 // starting any part of the collection.  The foreground collector
1329 // will only wait at one location.
1330 //
1331 // The background collector will yield the baton before starting a new
1332 // phase of the collection (e.g., before initial marking, marking from roots,
1333 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1334 // of the loop which switches the phases. The background collector does some
1335 // of the phases (initial mark, final re-mark) with the world stopped.
1336 // Because of locking involved in stopping the world,
1337 // the foreground collector should not block waiting for the background
1338 // collector when it is doing a stop-the-world phase.  The background
1339 // collector will yield the baton at an additional point just before
1340 // it enters a stop-the-world phase.  Once the world is stopped, the
1341 // background collector checks the phase of the collection.  If the
1342 // phase has not changed, it proceeds with the collection.  If the
1343 // phase has changed, it skips that phase of the collection.  See
1344 // the comments on the use of the Heap_lock in collect_in_background().
1345 //
1346 // Variable used in baton passing.
1347 //   _foregroundGCIsActive - Set to true by the foreground collector when
1348 //      it wants the baton.  The foreground clears it when it has finished
1349 //      the collection.
1350 //   _foregroundGCShouldWait - Set to true by the background collector
1351 //        when it is running.  The foreground collector waits while
1352 //      _foregroundGCShouldWait is true.
1353 //  CGC_lock - monitor used to protect access to the above variables
1354 //      and to notify the foreground and background collectors.
1355 //  _collectorState - current state of the CMS collection.
1356 //
1357 // The foreground collector
1358 //   acquires the CGC_lock
1359 //   sets _foregroundGCIsActive
1360 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1361 //     various locks acquired in preparation for the collection
1362 //     are released so as not to block the background collector
1363 //     that is in the midst of a collection
1364 //   proceeds with the collection
1365 //   clears _foregroundGCIsActive
1366 //   returns
1367 //
1368 // The background collector in a loop iterating on the phases of the
1369 //      collection
1370 //   acquires the CGC_lock
1371 //   sets _foregroundGCShouldWait
1372 //   if _foregroundGCIsActive is set
1373 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1374 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1375 //     and exits the loop.
1376 //   otherwise
1377 //     proceed with that phase of the collection
1378 //     if the phase is a stop-the-world phase,
1379 //       yield the baton once more just before enqueueing
1380 //       the stop-world CMS operation (executed by the VM thread).
1381 //   returns after all phases of the collection are done
1382 //
1383 
1384 void CMSCollector::acquire_control_and_collect(bool full,
1385         bool clear_all_soft_refs) {
1386   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1387   assert(!Thread::current()->is_ConcurrentGC_thread(),
1388          "shouldn't try to acquire control from self!");
1389 
1390   // Start the protocol for acquiring control of the
1391   // collection from the background collector (aka CMS thread).
1392   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1393          "VM thread should have CMS token");
1394   // Remember the possibly interrupted state of an ongoing
1395   // concurrent collection
1396   CollectorState first_state = _collectorState;
1397 
1398   // Signal to a possibly ongoing concurrent collection that
1399   // we want to do a foreground collection.
1400   _foregroundGCIsActive = true;
1401 
1402   // release locks and wait for a notify from the background collector
1403   // releasing the locks in only necessary for phases which
1404   // do yields to improve the granularity of the collection.
1405   assert_lock_strong(bitMapLock());
1406   // We need to lock the Free list lock for the space that we are
1407   // currently collecting.
1408   assert(haveFreelistLocks(), "Must be holding free list locks");
1409   bitMapLock()->unlock();
1410   releaseFreelistLocks();
1411   {
1412     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1413     if (_foregroundGCShouldWait) {
1414       // We are going to be waiting for action for the CMS thread;
1415       // it had better not be gone (for instance at shutdown)!
1416       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1417              "CMS thread must be running");
1418       // Wait here until the background collector gives us the go-ahead
1419       ConcurrentMarkSweepThread::clear_CMS_flag(
1420         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1421       // Get a possibly blocked CMS thread going:
1422       //   Note that we set _foregroundGCIsActive true above,
1423       //   without protection of the CGC_lock.
1424       CGC_lock->notify();
1425       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1426              "Possible deadlock");
1427       while (_foregroundGCShouldWait) {
1428         // wait for notification
1429         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1430         // Possibility of delay/starvation here, since CMS token does
1431         // not know to give priority to VM thread? Actually, i think
1432         // there wouldn't be any delay/starvation, but the proof of
1433         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1434       }
1435       ConcurrentMarkSweepThread::set_CMS_flag(
1436         ConcurrentMarkSweepThread::CMS_vm_has_token);
1437     }
1438   }
1439   // The CMS_token is already held.  Get back the other locks.
1440   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1441          "VM thread should have CMS token");
1442   getFreelistLocks();
1443   bitMapLock()->lock_without_safepoint_check();
1444   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1445                        p2i(Thread::current()), first_state);
1446   log_debug(gc, state)("    gets control with state %d", _collectorState);
1447 
1448   // Inform cms gen if this was due to partial collection failing.
1449   // The CMS gen may use this fact to determine its expansion policy.
1450   GenCollectedHeap* gch = GenCollectedHeap::heap();
1451   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1452     assert(!_cmsGen->incremental_collection_failed(),
1453            "Should have been noticed, reacted to and cleared");
1454     _cmsGen->set_incremental_collection_failed();
1455   }
1456 
1457   if (first_state > Idling) {
1458     report_concurrent_mode_interruption();
1459   }
1460 
1461   set_did_compact(true);
1462 
1463   // If the collection is being acquired from the background
1464   // collector, there may be references on the discovered
1465   // references lists.  Abandon those references, since some
1466   // of them may have become unreachable after concurrent
1467   // discovery; the STW compacting collector will redo discovery
1468   // more precisely, without being subject to floating garbage.
1469   // Leaving otherwise unreachable references in the discovered
1470   // lists would require special handling.
1471   ref_processor()->disable_discovery();
1472   ref_processor()->abandon_partial_discovery();
1473   ref_processor()->verify_no_references_recorded();
1474 
1475   if (first_state > Idling) {
1476     save_heap_summary();
1477   }
1478 
1479   do_compaction_work(clear_all_soft_refs);
1480 
1481   // Has the GC time limit been exceeded?
1482   size_t max_eden_size = _young_gen->max_eden_size();
1483   GCCause::Cause gc_cause = gch->gc_cause();
1484   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1485                                          _young_gen->eden()->used(),
1486                                          _cmsGen->max_capacity(),
1487                                          max_eden_size,
1488                                          full,
1489                                          gc_cause,
1490                                          gch->collector_policy());
1491 
1492   // Reset the expansion cause, now that we just completed
1493   // a collection cycle.
1494   clear_expansion_cause();
1495   _foregroundGCIsActive = false;
1496   return;
1497 }
1498 
1499 // Resize the tenured generation
1500 // after obtaining the free list locks for the
1501 // two generations.
1502 void CMSCollector::compute_new_size() {
1503   assert_locked_or_safepoint(Heap_lock);
1504   FreelistLocker z(this);
1505   MetaspaceGC::compute_new_size();
1506   _cmsGen->compute_new_size_free_list();
1507 }
1508 
1509 // A work method used by the foreground collector to do
1510 // a mark-sweep-compact.
1511 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1512   GenCollectedHeap* gch = GenCollectedHeap::heap();
1513 
1514   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1515   gc_timer->register_gc_start();
1516 
1517   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1518   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1519 
1520   GCTraceTime(Trace, gc) t("CMS:MSC");
1521 
1522   // Temporarily widen the span of the weak reference processing to
1523   // the entire heap.
1524   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1525   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1526   // Temporarily, clear the "is_alive_non_header" field of the
1527   // reference processor.
1528   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1529   // Temporarily make reference _processing_ single threaded (non-MT).
1530   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1531   // Temporarily make refs discovery atomic
1532   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1533   // Temporarily make reference _discovery_ single threaded (non-MT)
1534   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1535 
1536   ref_processor()->set_enqueuing_is_done(false);
1537   ref_processor()->enable_discovery();
1538   ref_processor()->setup_policy(clear_all_soft_refs);
1539   // If an asynchronous collection finishes, the _modUnionTable is
1540   // all clear.  If we are assuming the collection from an asynchronous
1541   // collection, clear the _modUnionTable.
1542   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1543     "_modUnionTable should be clear if the baton was not passed");
1544   _modUnionTable.clear_all();
1545   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1546     "mod union for klasses should be clear if the baton was passed");
1547   _ct->klass_rem_set()->clear_mod_union();
1548 
1549   // We must adjust the allocation statistics being maintained
1550   // in the free list space. We do so by reading and clearing
1551   // the sweep timer and updating the block flux rate estimates below.
1552   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1553   if (_inter_sweep_timer.is_active()) {
1554     _inter_sweep_timer.stop();
1555     // Note that we do not use this sample to update the _inter_sweep_estimate.
1556     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1557                                             _inter_sweep_estimate.padded_average(),
1558                                             _intra_sweep_estimate.padded_average());
1559   }
1560 
1561   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1562   #ifdef ASSERT
1563     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1564     size_t free_size = cms_space->free();
1565     assert(free_size ==
1566            pointer_delta(cms_space->end(), cms_space->compaction_top())
1567            * HeapWordSize,
1568       "All the free space should be compacted into one chunk at top");
1569     assert(cms_space->dictionary()->total_chunk_size(
1570                                       debug_only(cms_space->freelistLock())) == 0 ||
1571            cms_space->totalSizeInIndexedFreeLists() == 0,
1572       "All the free space should be in a single chunk");
1573     size_t num = cms_space->totalCount();
1574     assert((free_size == 0 && num == 0) ||
1575            (free_size > 0  && (num == 1 || num == 2)),
1576          "There should be at most 2 free chunks after compaction");
1577   #endif // ASSERT
1578   _collectorState = Resetting;
1579   assert(_restart_addr == NULL,
1580          "Should have been NULL'd before baton was passed");
1581   reset_stw();
1582   _cmsGen->reset_after_compaction();
1583   _concurrent_cycles_since_last_unload = 0;
1584 
1585   // Clear any data recorded in the PLAB chunk arrays.
1586   if (_survivor_plab_array != NULL) {
1587     reset_survivor_plab_arrays();
1588   }
1589 
1590   // Adjust the per-size allocation stats for the next epoch.
1591   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1592   // Restart the "inter sweep timer" for the next epoch.
1593   _inter_sweep_timer.reset();
1594   _inter_sweep_timer.start();
1595 
1596   gc_timer->register_gc_end();
1597 
1598   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1599 
1600   // For a mark-sweep-compact, compute_new_size() will be called
1601   // in the heap's do_collection() method.
1602 }
1603 
1604 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1605   LogHandle(gc, heap) log;
1606   if (!log.is_trace()) {
1607     return;
1608   }
1609 
1610   ContiguousSpace* eden_space = _young_gen->eden();
1611   ContiguousSpace* from_space = _young_gen->from();
1612   ContiguousSpace* to_space   = _young_gen->to();
1613   // Eden
1614   if (_eden_chunk_array != NULL) {
1615     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1616               p2i(eden_space->bottom()), p2i(eden_space->top()),
1617               p2i(eden_space->end()), eden_space->capacity());
1618     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1619               _eden_chunk_index, _eden_chunk_capacity);
1620     for (size_t i = 0; i < _eden_chunk_index; i++) {
1621       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1622     }
1623   }
1624   // Survivor
1625   if (_survivor_chunk_array != NULL) {
1626     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1627               p2i(from_space->bottom()), p2i(from_space->top()),
1628               p2i(from_space->end()), from_space->capacity());
1629     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1630               _survivor_chunk_index, _survivor_chunk_capacity);
1631     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1632       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1633     }
1634   }
1635 }
1636 
1637 void CMSCollector::getFreelistLocks() const {
1638   // Get locks for all free lists in all generations that this
1639   // collector is responsible for
1640   _cmsGen->freelistLock()->lock_without_safepoint_check();
1641 }
1642 
1643 void CMSCollector::releaseFreelistLocks() const {
1644   // Release locks for all free lists in all generations that this
1645   // collector is responsible for
1646   _cmsGen->freelistLock()->unlock();
1647 }
1648 
1649 bool CMSCollector::haveFreelistLocks() const {
1650   // Check locks for all free lists in all generations that this
1651   // collector is responsible for
1652   assert_lock_strong(_cmsGen->freelistLock());
1653   PRODUCT_ONLY(ShouldNotReachHere());
1654   return true;
1655 }
1656 
1657 // A utility class that is used by the CMS collector to
1658 // temporarily "release" the foreground collector from its
1659 // usual obligation to wait for the background collector to
1660 // complete an ongoing phase before proceeding.
1661 class ReleaseForegroundGC: public StackObj {
1662  private:
1663   CMSCollector* _c;
1664  public:
1665   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1666     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1667     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1668     // allow a potentially blocked foreground collector to proceed
1669     _c->_foregroundGCShouldWait = false;
1670     if (_c->_foregroundGCIsActive) {
1671       CGC_lock->notify();
1672     }
1673     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1674            "Possible deadlock");
1675   }
1676 
1677   ~ReleaseForegroundGC() {
1678     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1679     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1680     _c->_foregroundGCShouldWait = true;
1681   }
1682 };
1683 
1684 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1685   assert(Thread::current()->is_ConcurrentGC_thread(),
1686     "A CMS asynchronous collection is only allowed on a CMS thread.");
1687 
1688   GenCollectedHeap* gch = GenCollectedHeap::heap();
1689   {
1690     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1691     MutexLockerEx hl(Heap_lock, safepoint_check);
1692     FreelistLocker fll(this);
1693     MutexLockerEx x(CGC_lock, safepoint_check);
1694     if (_foregroundGCIsActive) {
1695       // The foreground collector is. Skip this
1696       // background collection.
1697       assert(!_foregroundGCShouldWait, "Should be clear");
1698       return;
1699     } else {
1700       assert(_collectorState == Idling, "Should be idling before start.");
1701       _collectorState = InitialMarking;
1702       register_gc_start(cause);
1703       // Reset the expansion cause, now that we are about to begin
1704       // a new cycle.
1705       clear_expansion_cause();
1706 
1707       // Clear the MetaspaceGC flag since a concurrent collection
1708       // is starting but also clear it after the collection.
1709       MetaspaceGC::set_should_concurrent_collect(false);
1710     }
1711     // Decide if we want to enable class unloading as part of the
1712     // ensuing concurrent GC cycle.
1713     update_should_unload_classes();
1714     _full_gc_requested = false;           // acks all outstanding full gc requests
1715     _full_gc_cause = GCCause::_no_gc;
1716     // Signal that we are about to start a collection
1717     gch->increment_total_full_collections();  // ... starting a collection cycle
1718     _collection_count_start = gch->total_full_collections();
1719   }
1720 
1721   size_t prev_used = _cmsGen->used();
1722 
1723   // The change of the collection state is normally done at this level;
1724   // the exceptions are phases that are executed while the world is
1725   // stopped.  For those phases the change of state is done while the
1726   // world is stopped.  For baton passing purposes this allows the
1727   // background collector to finish the phase and change state atomically.
1728   // The foreground collector cannot wait on a phase that is done
1729   // while the world is stopped because the foreground collector already
1730   // has the world stopped and would deadlock.
1731   while (_collectorState != Idling) {
1732     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1733                          p2i(Thread::current()), _collectorState);
1734     // The foreground collector
1735     //   holds the Heap_lock throughout its collection.
1736     //   holds the CMS token (but not the lock)
1737     //     except while it is waiting for the background collector to yield.
1738     //
1739     // The foreground collector should be blocked (not for long)
1740     //   if the background collector is about to start a phase
1741     //   executed with world stopped.  If the background
1742     //   collector has already started such a phase, the
1743     //   foreground collector is blocked waiting for the
1744     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1745     //   are executed in the VM thread.
1746     //
1747     // The locking order is
1748     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1749     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1750     //   CMS token  (claimed in
1751     //                stop_world_and_do() -->
1752     //                  safepoint_synchronize() -->
1753     //                    CMSThread::synchronize())
1754 
1755     {
1756       // Check if the FG collector wants us to yield.
1757       CMSTokenSync x(true); // is cms thread
1758       if (waitForForegroundGC()) {
1759         // We yielded to a foreground GC, nothing more to be
1760         // done this round.
1761         assert(_foregroundGCShouldWait == false, "We set it to false in "
1762                "waitForForegroundGC()");
1763         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1764                              p2i(Thread::current()), _collectorState);
1765         return;
1766       } else {
1767         // The background collector can run but check to see if the
1768         // foreground collector has done a collection while the
1769         // background collector was waiting to get the CGC_lock
1770         // above.  If yes, break so that _foregroundGCShouldWait
1771         // is cleared before returning.
1772         if (_collectorState == Idling) {
1773           break;
1774         }
1775       }
1776     }
1777 
1778     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1779       "should be waiting");
1780 
1781     switch (_collectorState) {
1782       case InitialMarking:
1783         {
1784           ReleaseForegroundGC x(this);
1785           stats().record_cms_begin();
1786           VM_CMS_Initial_Mark initial_mark_op(this);
1787           VMThread::execute(&initial_mark_op);
1788         }
1789         // The collector state may be any legal state at this point
1790         // since the background collector may have yielded to the
1791         // foreground collector.
1792         break;
1793       case Marking:
1794         // initial marking in checkpointRootsInitialWork has been completed
1795         if (markFromRoots()) { // we were successful
1796           assert(_collectorState == Precleaning, "Collector state should "
1797             "have changed");
1798         } else {
1799           assert(_foregroundGCIsActive, "Internal state inconsistency");
1800         }
1801         break;
1802       case Precleaning:
1803         // marking from roots in markFromRoots has been completed
1804         preclean();
1805         assert(_collectorState == AbortablePreclean ||
1806                _collectorState == FinalMarking,
1807                "Collector state should have changed");
1808         break;
1809       case AbortablePreclean:
1810         abortable_preclean();
1811         assert(_collectorState == FinalMarking, "Collector state should "
1812           "have changed");
1813         break;
1814       case FinalMarking:
1815         {
1816           ReleaseForegroundGC x(this);
1817 
1818           VM_CMS_Final_Remark final_remark_op(this);
1819           VMThread::execute(&final_remark_op);
1820         }
1821         assert(_foregroundGCShouldWait, "block post-condition");
1822         break;
1823       case Sweeping:
1824         // final marking in checkpointRootsFinal has been completed
1825         sweep();
1826         assert(_collectorState == Resizing, "Collector state change "
1827           "to Resizing must be done under the free_list_lock");
1828 
1829       case Resizing: {
1830         // Sweeping has been completed...
1831         // At this point the background collection has completed.
1832         // Don't move the call to compute_new_size() down
1833         // into code that might be executed if the background
1834         // collection was preempted.
1835         {
1836           ReleaseForegroundGC x(this);   // unblock FG collection
1837           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1838           CMSTokenSync        z(true);   // not strictly needed.
1839           if (_collectorState == Resizing) {
1840             compute_new_size();
1841             save_heap_summary();
1842             _collectorState = Resetting;
1843           } else {
1844             assert(_collectorState == Idling, "The state should only change"
1845                    " because the foreground collector has finished the collection");
1846           }
1847         }
1848         break;
1849       }
1850       case Resetting:
1851         // CMS heap resizing has been completed
1852         reset_concurrent();
1853         assert(_collectorState == Idling, "Collector state should "
1854           "have changed");
1855 
1856         MetaspaceGC::set_should_concurrent_collect(false);
1857 
1858         stats().record_cms_end();
1859         // Don't move the concurrent_phases_end() and compute_new_size()
1860         // calls to here because a preempted background collection
1861         // has it's state set to "Resetting".
1862         break;
1863       case Idling:
1864       default:
1865         ShouldNotReachHere();
1866         break;
1867     }
1868     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1869                          p2i(Thread::current()), _collectorState);
1870     assert(_foregroundGCShouldWait, "block post-condition");
1871   }
1872 
1873   // Should this be in gc_epilogue?
1874   collector_policy()->counters()->update_counters();
1875 
1876   {
1877     // Clear _foregroundGCShouldWait and, in the event that the
1878     // foreground collector is waiting, notify it, before
1879     // returning.
1880     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1881     _foregroundGCShouldWait = false;
1882     if (_foregroundGCIsActive) {
1883       CGC_lock->notify();
1884     }
1885     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1886            "Possible deadlock");
1887   }
1888   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1889                        p2i(Thread::current()), _collectorState);
1890   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1891                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1892 }
1893 
1894 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1895   _cms_start_registered = true;
1896   _gc_timer_cm->register_gc_start();
1897   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1898 }
1899 
1900 void CMSCollector::register_gc_end() {
1901   if (_cms_start_registered) {
1902     report_heap_summary(GCWhen::AfterGC);
1903 
1904     _gc_timer_cm->register_gc_end();
1905     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1906     _cms_start_registered = false;
1907   }
1908 }
1909 
1910 void CMSCollector::save_heap_summary() {
1911   GenCollectedHeap* gch = GenCollectedHeap::heap();
1912   _last_heap_summary = gch->create_heap_summary();
1913   _last_metaspace_summary = gch->create_metaspace_summary();
1914 }
1915 
1916 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1917   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1918   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1919 }
1920 
1921 bool CMSCollector::waitForForegroundGC() {
1922   bool res = false;
1923   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1924          "CMS thread should have CMS token");
1925   // Block the foreground collector until the
1926   // background collectors decides whether to
1927   // yield.
1928   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1929   _foregroundGCShouldWait = true;
1930   if (_foregroundGCIsActive) {
1931     // The background collector yields to the
1932     // foreground collector and returns a value
1933     // indicating that it has yielded.  The foreground
1934     // collector can proceed.
1935     res = true;
1936     _foregroundGCShouldWait = false;
1937     ConcurrentMarkSweepThread::clear_CMS_flag(
1938       ConcurrentMarkSweepThread::CMS_cms_has_token);
1939     ConcurrentMarkSweepThread::set_CMS_flag(
1940       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1941     // Get a possibly blocked foreground thread going
1942     CGC_lock->notify();
1943     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1944                          p2i(Thread::current()), _collectorState);
1945     while (_foregroundGCIsActive) {
1946       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1947     }
1948     ConcurrentMarkSweepThread::set_CMS_flag(
1949       ConcurrentMarkSweepThread::CMS_cms_has_token);
1950     ConcurrentMarkSweepThread::clear_CMS_flag(
1951       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1952   }
1953   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1954                        p2i(Thread::current()), _collectorState);
1955   return res;
1956 }
1957 
1958 // Because of the need to lock the free lists and other structures in
1959 // the collector, common to all the generations that the collector is
1960 // collecting, we need the gc_prologues of individual CMS generations
1961 // delegate to their collector. It may have been simpler had the
1962 // current infrastructure allowed one to call a prologue on a
1963 // collector. In the absence of that we have the generation's
1964 // prologue delegate to the collector, which delegates back
1965 // some "local" work to a worker method in the individual generations
1966 // that it's responsible for collecting, while itself doing any
1967 // work common to all generations it's responsible for. A similar
1968 // comment applies to the  gc_epilogue()'s.
1969 // The role of the variable _between_prologue_and_epilogue is to
1970 // enforce the invocation protocol.
1971 void CMSCollector::gc_prologue(bool full) {
1972   // Call gc_prologue_work() for the CMSGen
1973   // we are responsible for.
1974 
1975   // The following locking discipline assumes that we are only called
1976   // when the world is stopped.
1977   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1978 
1979   // The CMSCollector prologue must call the gc_prologues for the
1980   // "generations" that it's responsible
1981   // for.
1982 
1983   assert(   Thread::current()->is_VM_thread()
1984          || (   CMSScavengeBeforeRemark
1985              && Thread::current()->is_ConcurrentGC_thread()),
1986          "Incorrect thread type for prologue execution");
1987 
1988   if (_between_prologue_and_epilogue) {
1989     // We have already been invoked; this is a gc_prologue delegation
1990     // from yet another CMS generation that we are responsible for, just
1991     // ignore it since all relevant work has already been done.
1992     return;
1993   }
1994 
1995   // set a bit saying prologue has been called; cleared in epilogue
1996   _between_prologue_and_epilogue = true;
1997   // Claim locks for common data structures, then call gc_prologue_work()
1998   // for each CMSGen.
1999 
2000   getFreelistLocks();   // gets free list locks on constituent spaces
2001   bitMapLock()->lock_without_safepoint_check();
2002 
2003   // Should call gc_prologue_work() for all cms gens we are responsible for
2004   bool duringMarking =    _collectorState >= Marking
2005                          && _collectorState < Sweeping;
2006 
2007   // The young collections clear the modified oops state, which tells if
2008   // there are any modified oops in the class. The remark phase also needs
2009   // that information. Tell the young collection to save the union of all
2010   // modified klasses.
2011   if (duringMarking) {
2012     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2013   }
2014 
2015   bool registerClosure = duringMarking;
2016 
2017   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2018 
2019   if (!full) {
2020     stats().record_gc0_begin();
2021   }
2022 }
2023 
2024 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2025 
2026   _capacity_at_prologue = capacity();
2027   _used_at_prologue = used();
2028 
2029   // Delegate to CMScollector which knows how to coordinate between
2030   // this and any other CMS generations that it is responsible for
2031   // collecting.
2032   collector()->gc_prologue(full);
2033 }
2034 
2035 // This is a "private" interface for use by this generation's CMSCollector.
2036 // Not to be called directly by any other entity (for instance,
2037 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2038 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2039   bool registerClosure, ModUnionClosure* modUnionClosure) {
2040   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2041   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2042     "Should be NULL");
2043   if (registerClosure) {
2044     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2045   }
2046   cmsSpace()->gc_prologue();
2047   // Clear stat counters
2048   NOT_PRODUCT(
2049     assert(_numObjectsPromoted == 0, "check");
2050     assert(_numWordsPromoted   == 0, "check");
2051     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2052                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2053     _numObjectsAllocated = 0;
2054     _numWordsAllocated   = 0;
2055   )
2056 }
2057 
2058 void CMSCollector::gc_epilogue(bool full) {
2059   // The following locking discipline assumes that we are only called
2060   // when the world is stopped.
2061   assert(SafepointSynchronize::is_at_safepoint(),
2062          "world is stopped assumption");
2063 
2064   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2065   // if linear allocation blocks need to be appropriately marked to allow the
2066   // the blocks to be parsable. We also check here whether we need to nudge the
2067   // CMS collector thread to start a new cycle (if it's not already active).
2068   assert(   Thread::current()->is_VM_thread()
2069          || (   CMSScavengeBeforeRemark
2070              && Thread::current()->is_ConcurrentGC_thread()),
2071          "Incorrect thread type for epilogue execution");
2072 
2073   if (!_between_prologue_and_epilogue) {
2074     // We have already been invoked; this is a gc_epilogue delegation
2075     // from yet another CMS generation that we are responsible for, just
2076     // ignore it since all relevant work has already been done.
2077     return;
2078   }
2079   assert(haveFreelistLocks(), "must have freelist locks");
2080   assert_lock_strong(bitMapLock());
2081 
2082   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2083 
2084   _cmsGen->gc_epilogue_work(full);
2085 
2086   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2087     // in case sampling was not already enabled, enable it
2088     _start_sampling = true;
2089   }
2090   // reset _eden_chunk_array so sampling starts afresh
2091   _eden_chunk_index = 0;
2092 
2093   size_t cms_used   = _cmsGen->cmsSpace()->used();
2094 
2095   // update performance counters - this uses a special version of
2096   // update_counters() that allows the utilization to be passed as a
2097   // parameter, avoiding multiple calls to used().
2098   //
2099   _cmsGen->update_counters(cms_used);
2100 
2101   bitMapLock()->unlock();
2102   releaseFreelistLocks();
2103 
2104   if (!CleanChunkPoolAsync) {
2105     Chunk::clean_chunk_pool();
2106   }
2107 
2108   set_did_compact(false);
2109   _between_prologue_and_epilogue = false;  // ready for next cycle
2110 }
2111 
2112 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2113   collector()->gc_epilogue(full);
2114 
2115   // Also reset promotion tracking in par gc thread states.
2116   for (uint i = 0; i < ParallelGCThreads; i++) {
2117     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2118   }
2119 }
2120 
2121 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2122   assert(!incremental_collection_failed(), "Should have been cleared");
2123   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2124   cmsSpace()->gc_epilogue();
2125     // Print stat counters
2126   NOT_PRODUCT(
2127     assert(_numObjectsAllocated == 0, "check");
2128     assert(_numWordsAllocated == 0, "check");
2129     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2130                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2131     _numObjectsPromoted = 0;
2132     _numWordsPromoted   = 0;
2133   )
2134 
2135   // Call down the chain in contiguous_available needs the freelistLock
2136   // so print this out before releasing the freeListLock.
2137   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2138 }
2139 
2140 #ifndef PRODUCT
2141 bool CMSCollector::have_cms_token() {
2142   Thread* thr = Thread::current();
2143   if (thr->is_VM_thread()) {
2144     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2145   } else if (thr->is_ConcurrentGC_thread()) {
2146     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2147   } else if (thr->is_GC_task_thread()) {
2148     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2149            ParGCRareEvent_lock->owned_by_self();
2150   }
2151   return false;
2152 }
2153 
2154 // Check reachability of the given heap address in CMS generation,
2155 // treating all other generations as roots.
2156 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2157   // We could "guarantee" below, rather than assert, but I'll
2158   // leave these as "asserts" so that an adventurous debugger
2159   // could try this in the product build provided some subset of
2160   // the conditions were met, provided they were interested in the
2161   // results and knew that the computation below wouldn't interfere
2162   // with other concurrent computations mutating the structures
2163   // being read or written.
2164   assert(SafepointSynchronize::is_at_safepoint(),
2165          "Else mutations in object graph will make answer suspect");
2166   assert(have_cms_token(), "Should hold cms token");
2167   assert(haveFreelistLocks(), "must hold free list locks");
2168   assert_lock_strong(bitMapLock());
2169 
2170   // Clear the marking bit map array before starting, but, just
2171   // for kicks, first report if the given address is already marked
2172   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2173                 _markBitMap.isMarked(addr) ? "" : " not");
2174 
2175   if (verify_after_remark()) {
2176     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2177     bool result = verification_mark_bm()->isMarked(addr);
2178     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2179                   result ? "IS" : "is NOT");
2180     return result;
2181   } else {
2182     tty->print_cr("Could not compute result");
2183     return false;
2184   }
2185 }
2186 #endif
2187 
2188 void
2189 CMSCollector::print_on_error(outputStream* st) {
2190   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2191   if (collector != NULL) {
2192     CMSBitMap* bitmap = &collector->_markBitMap;
2193     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2194     bitmap->print_on_error(st, " Bits: ");
2195 
2196     st->cr();
2197 
2198     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2199     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2200     mut_bitmap->print_on_error(st, " Bits: ");
2201   }
2202 }
2203 
2204 ////////////////////////////////////////////////////////
2205 // CMS Verification Support
2206 ////////////////////////////////////////////////////////
2207 // Following the remark phase, the following invariant
2208 // should hold -- each object in the CMS heap which is
2209 // marked in markBitMap() should be marked in the verification_mark_bm().
2210 
2211 class VerifyMarkedClosure: public BitMapClosure {
2212   CMSBitMap* _marks;
2213   bool       _failed;
2214 
2215  public:
2216   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2217 
2218   bool do_bit(size_t offset) {
2219     HeapWord* addr = _marks->offsetToHeapWord(offset);
2220     if (!_marks->isMarked(addr)) {
2221       LogHandle(gc, verify) log;
2222       ResourceMark rm;
2223       oop(addr)->print_on(log.info_stream());
2224       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2225       _failed = true;
2226     }
2227     return true;
2228   }
2229 
2230   bool failed() { return _failed; }
2231 };
2232 
2233 bool CMSCollector::verify_after_remark() {
2234   GCTraceTime(Info, gc, verify) tm("Verifying CMS Marking.");
2235   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2236   static bool init = false;
2237 
2238   assert(SafepointSynchronize::is_at_safepoint(),
2239          "Else mutations in object graph will make answer suspect");
2240   assert(have_cms_token(),
2241          "Else there may be mutual interference in use of "
2242          " verification data structures");
2243   assert(_collectorState > Marking && _collectorState <= Sweeping,
2244          "Else marking info checked here may be obsolete");
2245   assert(haveFreelistLocks(), "must hold free list locks");
2246   assert_lock_strong(bitMapLock());
2247 
2248 
2249   // Allocate marking bit map if not already allocated
2250   if (!init) { // first time
2251     if (!verification_mark_bm()->allocate(_span)) {
2252       return false;
2253     }
2254     init = true;
2255   }
2256 
2257   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2258 
2259   // Turn off refs discovery -- so we will be tracing through refs.
2260   // This is as intended, because by this time
2261   // GC must already have cleared any refs that need to be cleared,
2262   // and traced those that need to be marked; moreover,
2263   // the marking done here is not going to interfere in any
2264   // way with the marking information used by GC.
2265   NoRefDiscovery no_discovery(ref_processor());
2266 
2267 #if defined(COMPILER2) || INCLUDE_JVMCI
2268   DerivedPointerTableDeactivate dpt_deact;
2269 #endif
2270 
2271   // Clear any marks from a previous round
2272   verification_mark_bm()->clear_all();
2273   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2274   verify_work_stacks_empty();
2275 
2276   GenCollectedHeap* gch = GenCollectedHeap::heap();
2277   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2278   // Update the saved marks which may affect the root scans.
2279   gch->save_marks();
2280 
2281   if (CMSRemarkVerifyVariant == 1) {
2282     // In this first variant of verification, we complete
2283     // all marking, then check if the new marks-vector is
2284     // a subset of the CMS marks-vector.
2285     verify_after_remark_work_1();
2286   } else if (CMSRemarkVerifyVariant == 2) {
2287     // In this second variant of verification, we flag an error
2288     // (i.e. an object reachable in the new marks-vector not reachable
2289     // in the CMS marks-vector) immediately, also indicating the
2290     // identify of an object (A) that references the unmarked object (B) --
2291     // presumably, a mutation to A failed to be picked up by preclean/remark?
2292     verify_after_remark_work_2();
2293   } else {
2294     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2295             CMSRemarkVerifyVariant);
2296   }
2297   return true;
2298 }
2299 
2300 void CMSCollector::verify_after_remark_work_1() {
2301   ResourceMark rm;
2302   HandleMark  hm;
2303   GenCollectedHeap* gch = GenCollectedHeap::heap();
2304 
2305   // Get a clear set of claim bits for the roots processing to work with.
2306   ClassLoaderDataGraph::clear_claimed_marks();
2307 
2308   // Mark from roots one level into CMS
2309   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2310   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2311 
2312   {
2313     StrongRootsScope srs(1);
2314 
2315     gch->gen_process_roots(&srs,
2316                            GenCollectedHeap::OldGen,
2317                            true,   // young gen as roots
2318                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2319                            should_unload_classes(),
2320                            &notOlder,
2321                            NULL,
2322                            NULL);
2323   }
2324 
2325   // Now mark from the roots
2326   MarkFromRootsClosure markFromRootsClosure(this, _span,
2327     verification_mark_bm(), verification_mark_stack(),
2328     false /* don't yield */, true /* verifying */);
2329   assert(_restart_addr == NULL, "Expected pre-condition");
2330   verification_mark_bm()->iterate(&markFromRootsClosure);
2331   while (_restart_addr != NULL) {
2332     // Deal with stack overflow: by restarting at the indicated
2333     // address.
2334     HeapWord* ra = _restart_addr;
2335     markFromRootsClosure.reset(ra);
2336     _restart_addr = NULL;
2337     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2338   }
2339   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2340   verify_work_stacks_empty();
2341 
2342   // Marking completed -- now verify that each bit marked in
2343   // verification_mark_bm() is also marked in markBitMap(); flag all
2344   // errors by printing corresponding objects.
2345   VerifyMarkedClosure vcl(markBitMap());
2346   verification_mark_bm()->iterate(&vcl);
2347   if (vcl.failed()) {
2348     LogHandle(gc, verify) log;
2349     log.info("Verification failed");
2350     ResourceMark rm;
2351     gch->print_on(log.info_stream());
2352     fatal("CMS: failed marking verification after remark");
2353   }
2354 }
2355 
2356 class VerifyKlassOopsKlassClosure : public KlassClosure {
2357   class VerifyKlassOopsClosure : public OopClosure {
2358     CMSBitMap* _bitmap;
2359    public:
2360     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2361     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2362     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2363   } _oop_closure;
2364  public:
2365   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2366   void do_klass(Klass* k) {
2367     k->oops_do(&_oop_closure);
2368   }
2369 };
2370 
2371 void CMSCollector::verify_after_remark_work_2() {
2372   ResourceMark rm;
2373   HandleMark  hm;
2374   GenCollectedHeap* gch = GenCollectedHeap::heap();
2375 
2376   // Get a clear set of claim bits for the roots processing to work with.
2377   ClassLoaderDataGraph::clear_claimed_marks();
2378 
2379   // Mark from roots one level into CMS
2380   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2381                                      markBitMap());
2382   CLDToOopClosure cld_closure(&notOlder, true);
2383 
2384   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2385 
2386   {
2387     StrongRootsScope srs(1);
2388 
2389     gch->gen_process_roots(&srs,
2390                            GenCollectedHeap::OldGen,
2391                            true,   // young gen as roots
2392                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2393                            should_unload_classes(),
2394                            &notOlder,
2395                            NULL,
2396                            &cld_closure);
2397   }
2398 
2399   // Now mark from the roots
2400   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2401     verification_mark_bm(), markBitMap(), verification_mark_stack());
2402   assert(_restart_addr == NULL, "Expected pre-condition");
2403   verification_mark_bm()->iterate(&markFromRootsClosure);
2404   while (_restart_addr != NULL) {
2405     // Deal with stack overflow: by restarting at the indicated
2406     // address.
2407     HeapWord* ra = _restart_addr;
2408     markFromRootsClosure.reset(ra);
2409     _restart_addr = NULL;
2410     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2411   }
2412   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2413   verify_work_stacks_empty();
2414 
2415   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2416   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2417 
2418   // Marking completed -- now verify that each bit marked in
2419   // verification_mark_bm() is also marked in markBitMap(); flag all
2420   // errors by printing corresponding objects.
2421   VerifyMarkedClosure vcl(markBitMap());
2422   verification_mark_bm()->iterate(&vcl);
2423   assert(!vcl.failed(), "Else verification above should not have succeeded");
2424 }
2425 
2426 void ConcurrentMarkSweepGeneration::save_marks() {
2427   // delegate to CMS space
2428   cmsSpace()->save_marks();
2429   for (uint i = 0; i < ParallelGCThreads; i++) {
2430     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2431   }
2432 }
2433 
2434 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2435   return cmsSpace()->no_allocs_since_save_marks();
2436 }
2437 
2438 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2439                                                                 \
2440 void ConcurrentMarkSweepGeneration::                            \
2441 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2442   cl->set_generation(this);                                     \
2443   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2444   cl->reset_generation();                                       \
2445   save_marks();                                                 \
2446 }
2447 
2448 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2449 
2450 void
2451 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2452   if (freelistLock()->owned_by_self()) {
2453     Generation::oop_iterate(cl);
2454   } else {
2455     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2456     Generation::oop_iterate(cl);
2457   }
2458 }
2459 
2460 void
2461 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2462   if (freelistLock()->owned_by_self()) {
2463     Generation::object_iterate(cl);
2464   } else {
2465     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2466     Generation::object_iterate(cl);
2467   }
2468 }
2469 
2470 void
2471 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2472   if (freelistLock()->owned_by_self()) {
2473     Generation::safe_object_iterate(cl);
2474   } else {
2475     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2476     Generation::safe_object_iterate(cl);
2477   }
2478 }
2479 
2480 void
2481 ConcurrentMarkSweepGeneration::post_compact() {
2482 }
2483 
2484 void
2485 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2486   // Fix the linear allocation blocks to look like free blocks.
2487 
2488   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2489   // are not called when the heap is verified during universe initialization and
2490   // at vm shutdown.
2491   if (freelistLock()->owned_by_self()) {
2492     cmsSpace()->prepare_for_verify();
2493   } else {
2494     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2495     cmsSpace()->prepare_for_verify();
2496   }
2497 }
2498 
2499 void
2500 ConcurrentMarkSweepGeneration::verify() {
2501   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2502   // are not called when the heap is verified during universe initialization and
2503   // at vm shutdown.
2504   if (freelistLock()->owned_by_self()) {
2505     cmsSpace()->verify();
2506   } else {
2507     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2508     cmsSpace()->verify();
2509   }
2510 }
2511 
2512 void CMSCollector::verify() {
2513   _cmsGen->verify();
2514 }
2515 
2516 #ifndef PRODUCT
2517 bool CMSCollector::overflow_list_is_empty() const {
2518   assert(_num_par_pushes >= 0, "Inconsistency");
2519   if (_overflow_list == NULL) {
2520     assert(_num_par_pushes == 0, "Inconsistency");
2521   }
2522   return _overflow_list == NULL;
2523 }
2524 
2525 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2526 // merely consolidate assertion checks that appear to occur together frequently.
2527 void CMSCollector::verify_work_stacks_empty() const {
2528   assert(_markStack.isEmpty(), "Marking stack should be empty");
2529   assert(overflow_list_is_empty(), "Overflow list should be empty");
2530 }
2531 
2532 void CMSCollector::verify_overflow_empty() const {
2533   assert(overflow_list_is_empty(), "Overflow list should be empty");
2534   assert(no_preserved_marks(), "No preserved marks");
2535 }
2536 #endif // PRODUCT
2537 
2538 // Decide if we want to enable class unloading as part of the
2539 // ensuing concurrent GC cycle. We will collect and
2540 // unload classes if it's the case that:
2541 // (1) an explicit gc request has been made and the flag
2542 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2543 // (2) (a) class unloading is enabled at the command line, and
2544 //     (b) old gen is getting really full
2545 // NOTE: Provided there is no change in the state of the heap between
2546 // calls to this method, it should have idempotent results. Moreover,
2547 // its results should be monotonically increasing (i.e. going from 0 to 1,
2548 // but not 1 to 0) between successive calls between which the heap was
2549 // not collected. For the implementation below, it must thus rely on
2550 // the property that concurrent_cycles_since_last_unload()
2551 // will not decrease unless a collection cycle happened and that
2552 // _cmsGen->is_too_full() are
2553 // themselves also monotonic in that sense. See check_monotonicity()
2554 // below.
2555 void CMSCollector::update_should_unload_classes() {
2556   _should_unload_classes = false;
2557   // Condition 1 above
2558   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2559     _should_unload_classes = true;
2560   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2561     // Disjuncts 2.b.(i,ii,iii) above
2562     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2563                               CMSClassUnloadingMaxInterval)
2564                            || _cmsGen->is_too_full();
2565   }
2566 }
2567 
2568 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2569   bool res = should_concurrent_collect();
2570   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2571   return res;
2572 }
2573 
2574 void CMSCollector::setup_cms_unloading_and_verification_state() {
2575   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2576                              || VerifyBeforeExit;
2577   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2578 
2579   // We set the proper root for this CMS cycle here.
2580   if (should_unload_classes()) {   // Should unload classes this cycle
2581     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2582     set_verifying(should_verify);    // Set verification state for this cycle
2583     return;                            // Nothing else needs to be done at this time
2584   }
2585 
2586   // Not unloading classes this cycle
2587   assert(!should_unload_classes(), "Inconsistency!");
2588 
2589   // If we are not unloading classes then add SO_AllCodeCache to root
2590   // scanning options.
2591   add_root_scanning_option(rso);
2592 
2593   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2594     set_verifying(true);
2595   } else if (verifying() && !should_verify) {
2596     // We were verifying, but some verification flags got disabled.
2597     set_verifying(false);
2598     // Exclude symbols, strings and code cache elements from root scanning to
2599     // reduce IM and RM pauses.
2600     remove_root_scanning_option(rso);
2601   }
2602 }
2603 
2604 
2605 #ifndef PRODUCT
2606 HeapWord* CMSCollector::block_start(const void* p) const {
2607   const HeapWord* addr = (HeapWord*)p;
2608   if (_span.contains(p)) {
2609     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2610       return _cmsGen->cmsSpace()->block_start(p);
2611     }
2612   }
2613   return NULL;
2614 }
2615 #endif
2616 
2617 HeapWord*
2618 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2619                                                    bool   tlab,
2620                                                    bool   parallel) {
2621   CMSSynchronousYieldRequest yr;
2622   assert(!tlab, "Can't deal with TLAB allocation");
2623   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2624   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2625   if (GCExpandToAllocateDelayMillis > 0) {
2626     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2627   }
2628   return have_lock_and_allocate(word_size, tlab);
2629 }
2630 
2631 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2632     size_t bytes,
2633     size_t expand_bytes,
2634     CMSExpansionCause::Cause cause)
2635 {
2636 
2637   bool success = expand(bytes, expand_bytes);
2638 
2639   // remember why we expanded; this information is used
2640   // by shouldConcurrentCollect() when making decisions on whether to start
2641   // a new CMS cycle.
2642   if (success) {
2643     set_expansion_cause(cause);
2644     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2645   }
2646 }
2647 
2648 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2649   HeapWord* res = NULL;
2650   MutexLocker x(ParGCRareEvent_lock);
2651   while (true) {
2652     // Expansion by some other thread might make alloc OK now:
2653     res = ps->lab.alloc(word_sz);
2654     if (res != NULL) return res;
2655     // If there's not enough expansion space available, give up.
2656     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2657       return NULL;
2658     }
2659     // Otherwise, we try expansion.
2660     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2661     // Now go around the loop and try alloc again;
2662     // A competing par_promote might beat us to the expansion space,
2663     // so we may go around the loop again if promotion fails again.
2664     if (GCExpandToAllocateDelayMillis > 0) {
2665       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2666     }
2667   }
2668 }
2669 
2670 
2671 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2672   PromotionInfo* promo) {
2673   MutexLocker x(ParGCRareEvent_lock);
2674   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2675   while (true) {
2676     // Expansion by some other thread might make alloc OK now:
2677     if (promo->ensure_spooling_space()) {
2678       assert(promo->has_spooling_space(),
2679              "Post-condition of successful ensure_spooling_space()");
2680       return true;
2681     }
2682     // If there's not enough expansion space available, give up.
2683     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2684       return false;
2685     }
2686     // Otherwise, we try expansion.
2687     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2688     // Now go around the loop and try alloc again;
2689     // A competing allocation might beat us to the expansion space,
2690     // so we may go around the loop again if allocation fails again.
2691     if (GCExpandToAllocateDelayMillis > 0) {
2692       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2693     }
2694   }
2695 }
2696 
2697 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2698   // Only shrink if a compaction was done so that all the free space
2699   // in the generation is in a contiguous block at the end.
2700   if (did_compact()) {
2701     CardGeneration::shrink(bytes);
2702   }
2703 }
2704 
2705 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2706   assert_locked_or_safepoint(Heap_lock);
2707 }
2708 
2709 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2710   assert_locked_or_safepoint(Heap_lock);
2711   assert_lock_strong(freelistLock());
2712   log_trace(gc)("Shrinking of CMS not yet implemented");
2713   return;
2714 }
2715 
2716 
2717 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2718 // phases.
2719 class CMSPhaseAccounting: public StackObj {
2720  public:
2721   CMSPhaseAccounting(CMSCollector *collector,
2722                      const char *title);
2723   ~CMSPhaseAccounting();
2724 
2725  private:
2726   CMSCollector *_collector;
2727   const char *_title;
2728   GCTraceConcTime(Info, gc) _trace_time;
2729 
2730  public:
2731   // Not MT-safe; so do not pass around these StackObj's
2732   // where they may be accessed by other threads.
2733   jlong wallclock_millis() {
2734     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2735   }
2736 };
2737 
2738 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2739                                        const char *title) :
2740   _collector(collector), _title(title), _trace_time(title) {
2741 
2742   _collector->resetYields();
2743   _collector->resetTimer();
2744   _collector->startTimer();
2745 }
2746 
2747 CMSPhaseAccounting::~CMSPhaseAccounting() {
2748   _collector->stopTimer();
2749   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2750   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2751 }
2752 
2753 // CMS work
2754 
2755 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2756 class CMSParMarkTask : public AbstractGangTask {
2757  protected:
2758   CMSCollector*     _collector;
2759   uint              _n_workers;
2760   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2761       AbstractGangTask(name),
2762       _collector(collector),
2763       _n_workers(n_workers) {}
2764   // Work method in support of parallel rescan ... of young gen spaces
2765   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2766                              ContiguousSpace* space,
2767                              HeapWord** chunk_array, size_t chunk_top);
2768   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2769 };
2770 
2771 // Parallel initial mark task
2772 class CMSParInitialMarkTask: public CMSParMarkTask {
2773   StrongRootsScope* _strong_roots_scope;
2774  public:
2775   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2776       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2777       _strong_roots_scope(strong_roots_scope) {}
2778   void work(uint worker_id);
2779 };
2780 
2781 // Checkpoint the roots into this generation from outside
2782 // this generation. [Note this initial checkpoint need only
2783 // be approximate -- we'll do a catch up phase subsequently.]
2784 void CMSCollector::checkpointRootsInitial() {
2785   assert(_collectorState == InitialMarking, "Wrong collector state");
2786   check_correct_thread_executing();
2787   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2788 
2789   save_heap_summary();
2790   report_heap_summary(GCWhen::BeforeGC);
2791 
2792   ReferenceProcessor* rp = ref_processor();
2793   assert(_restart_addr == NULL, "Control point invariant");
2794   {
2795     // acquire locks for subsequent manipulations
2796     MutexLockerEx x(bitMapLock(),
2797                     Mutex::_no_safepoint_check_flag);
2798     checkpointRootsInitialWork();
2799     // enable ("weak") refs discovery
2800     rp->enable_discovery();
2801     _collectorState = Marking;
2802   }
2803 }
2804 
2805 void CMSCollector::checkpointRootsInitialWork() {
2806   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2807   assert(_collectorState == InitialMarking, "just checking");
2808 
2809   // Already have locks.
2810   assert_lock_strong(bitMapLock());
2811   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2812 
2813   // Setup the verification and class unloading state for this
2814   // CMS collection cycle.
2815   setup_cms_unloading_and_verification_state();
2816 
2817   GCTraceTime(Trace, gc) ts("checkpointRootsInitialWork", _gc_timer_cm);
2818 
2819   // Reset all the PLAB chunk arrays if necessary.
2820   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2821     reset_survivor_plab_arrays();
2822   }
2823 
2824   ResourceMark rm;
2825   HandleMark  hm;
2826 
2827   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2828   GenCollectedHeap* gch = GenCollectedHeap::heap();
2829 
2830   verify_work_stacks_empty();
2831   verify_overflow_empty();
2832 
2833   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2834   // Update the saved marks which may affect the root scans.
2835   gch->save_marks();
2836 
2837   // weak reference processing has not started yet.
2838   ref_processor()->set_enqueuing_is_done(false);
2839 
2840   // Need to remember all newly created CLDs,
2841   // so that we can guarantee that the remark finds them.
2842   ClassLoaderDataGraph::remember_new_clds(true);
2843 
2844   // Whenever a CLD is found, it will be claimed before proceeding to mark
2845   // the klasses. The claimed marks need to be cleared before marking starts.
2846   ClassLoaderDataGraph::clear_claimed_marks();
2847 
2848   print_eden_and_survivor_chunk_arrays();
2849 
2850   {
2851 #if defined(COMPILER2) || INCLUDE_JVMCI
2852     DerivedPointerTableDeactivate dpt_deact;
2853 #endif
2854     if (CMSParallelInitialMarkEnabled) {
2855       // The parallel version.
2856       WorkGang* workers = gch->workers();
2857       assert(workers != NULL, "Need parallel worker threads.");
2858       uint n_workers = workers->active_workers();
2859 
2860       StrongRootsScope srs(n_workers);
2861 
2862       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2863       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2864       if (n_workers > 1) {
2865         workers->run_task(&tsk);
2866       } else {
2867         tsk.work(0);
2868       }
2869     } else {
2870       // The serial version.
2871       CLDToOopClosure cld_closure(&notOlder, true);
2872       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2873 
2874       StrongRootsScope srs(1);
2875 
2876       gch->gen_process_roots(&srs,
2877                              GenCollectedHeap::OldGen,
2878                              true,   // young gen as roots
2879                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2880                              should_unload_classes(),
2881                              &notOlder,
2882                              NULL,
2883                              &cld_closure);
2884     }
2885   }
2886 
2887   // Clear mod-union table; it will be dirtied in the prologue of
2888   // CMS generation per each young generation collection.
2889 
2890   assert(_modUnionTable.isAllClear(),
2891        "Was cleared in most recent final checkpoint phase"
2892        " or no bits are set in the gc_prologue before the start of the next "
2893        "subsequent marking phase.");
2894 
2895   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2896 
2897   // Save the end of the used_region of the constituent generations
2898   // to be used to limit the extent of sweep in each generation.
2899   save_sweep_limits();
2900   verify_overflow_empty();
2901 }
2902 
2903 bool CMSCollector::markFromRoots() {
2904   // we might be tempted to assert that:
2905   // assert(!SafepointSynchronize::is_at_safepoint(),
2906   //        "inconsistent argument?");
2907   // However that wouldn't be right, because it's possible that
2908   // a safepoint is indeed in progress as a young generation
2909   // stop-the-world GC happens even as we mark in this generation.
2910   assert(_collectorState == Marking, "inconsistent state?");
2911   check_correct_thread_executing();
2912   verify_overflow_empty();
2913 
2914   // Weak ref discovery note: We may be discovering weak
2915   // refs in this generation concurrent (but interleaved) with
2916   // weak ref discovery by the young generation collector.
2917 
2918   CMSTokenSyncWithLocks ts(true, bitMapLock());
2919   GCTraceCPUTime tcpu;
2920   CMSPhaseAccounting pa(this, "Concrurrent Mark");
2921   bool res = markFromRootsWork();
2922   if (res) {
2923     _collectorState = Precleaning;
2924   } else { // We failed and a foreground collection wants to take over
2925     assert(_foregroundGCIsActive, "internal state inconsistency");
2926     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2927     log_debug(gc)("bailing out to foreground collection");
2928   }
2929   verify_overflow_empty();
2930   return res;
2931 }
2932 
2933 bool CMSCollector::markFromRootsWork() {
2934   // iterate over marked bits in bit map, doing a full scan and mark
2935   // from these roots using the following algorithm:
2936   // . if oop is to the right of the current scan pointer,
2937   //   mark corresponding bit (we'll process it later)
2938   // . else (oop is to left of current scan pointer)
2939   //   push oop on marking stack
2940   // . drain the marking stack
2941 
2942   // Note that when we do a marking step we need to hold the
2943   // bit map lock -- recall that direct allocation (by mutators)
2944   // and promotion (by the young generation collector) is also
2945   // marking the bit map. [the so-called allocate live policy.]
2946   // Because the implementation of bit map marking is not
2947   // robust wrt simultaneous marking of bits in the same word,
2948   // we need to make sure that there is no such interference
2949   // between concurrent such updates.
2950 
2951   // already have locks
2952   assert_lock_strong(bitMapLock());
2953 
2954   verify_work_stacks_empty();
2955   verify_overflow_empty();
2956   bool result = false;
2957   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2958     result = do_marking_mt();
2959   } else {
2960     result = do_marking_st();
2961   }
2962   return result;
2963 }
2964 
2965 // Forward decl
2966 class CMSConcMarkingTask;
2967 
2968 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2969   CMSCollector*       _collector;
2970   CMSConcMarkingTask* _task;
2971  public:
2972   virtual void yield();
2973 
2974   // "n_threads" is the number of threads to be terminated.
2975   // "queue_set" is a set of work queues of other threads.
2976   // "collector" is the CMS collector associated with this task terminator.
2977   // "yield" indicates whether we need the gang as a whole to yield.
2978   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2979     ParallelTaskTerminator(n_threads, queue_set),
2980     _collector(collector) { }
2981 
2982   void set_task(CMSConcMarkingTask* task) {
2983     _task = task;
2984   }
2985 };
2986 
2987 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2988   CMSConcMarkingTask* _task;
2989  public:
2990   bool should_exit_termination();
2991   void set_task(CMSConcMarkingTask* task) {
2992     _task = task;
2993   }
2994 };
2995 
2996 // MT Concurrent Marking Task
2997 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
2998   CMSCollector* _collector;
2999   uint          _n_workers;       // requested/desired # workers
3000   bool          _result;
3001   CompactibleFreeListSpace*  _cms_space;
3002   char          _pad_front[64];   // padding to ...
3003   HeapWord*     _global_finger;   // ... avoid sharing cache line
3004   char          _pad_back[64];
3005   HeapWord*     _restart_addr;
3006 
3007   //  Exposed here for yielding support
3008   Mutex* const _bit_map_lock;
3009 
3010   // The per thread work queues, available here for stealing
3011   OopTaskQueueSet*  _task_queues;
3012 
3013   // Termination (and yielding) support
3014   CMSConcMarkingTerminator _term;
3015   CMSConcMarkingTerminatorTerminator _term_term;
3016 
3017  public:
3018   CMSConcMarkingTask(CMSCollector* collector,
3019                  CompactibleFreeListSpace* cms_space,
3020                  YieldingFlexibleWorkGang* workers,
3021                  OopTaskQueueSet* task_queues):
3022     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3023     _collector(collector),
3024     _cms_space(cms_space),
3025     _n_workers(0), _result(true),
3026     _task_queues(task_queues),
3027     _term(_n_workers, task_queues, _collector),
3028     _bit_map_lock(collector->bitMapLock())
3029   {
3030     _requested_size = _n_workers;
3031     _term.set_task(this);
3032     _term_term.set_task(this);
3033     _restart_addr = _global_finger = _cms_space->bottom();
3034   }
3035 
3036 
3037   OopTaskQueueSet* task_queues()  { return _task_queues; }
3038 
3039   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3040 
3041   HeapWord** global_finger_addr() { return &_global_finger; }
3042 
3043   CMSConcMarkingTerminator* terminator() { return &_term; }
3044 
3045   virtual void set_for_termination(uint active_workers) {
3046     terminator()->reset_for_reuse(active_workers);
3047   }
3048 
3049   void work(uint worker_id);
3050   bool should_yield() {
3051     return    ConcurrentMarkSweepThread::should_yield()
3052            && !_collector->foregroundGCIsActive();
3053   }
3054 
3055   virtual void coordinator_yield();  // stuff done by coordinator
3056   bool result() { return _result; }
3057 
3058   void reset(HeapWord* ra) {
3059     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3060     _restart_addr = _global_finger = ra;
3061     _term.reset_for_reuse();
3062   }
3063 
3064   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3065                                            OopTaskQueue* work_q);
3066 
3067  private:
3068   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3069   void do_work_steal(int i);
3070   void bump_global_finger(HeapWord* f);
3071 };
3072 
3073 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3074   assert(_task != NULL, "Error");
3075   return _task->yielding();
3076   // Note that we do not need the disjunct || _task->should_yield() above
3077   // because we want terminating threads to yield only if the task
3078   // is already in the midst of yielding, which happens only after at least one
3079   // thread has yielded.
3080 }
3081 
3082 void CMSConcMarkingTerminator::yield() {
3083   if (_task->should_yield()) {
3084     _task->yield();
3085   } else {
3086     ParallelTaskTerminator::yield();
3087   }
3088 }
3089 
3090 ////////////////////////////////////////////////////////////////
3091 // Concurrent Marking Algorithm Sketch
3092 ////////////////////////////////////////////////////////////////
3093 // Until all tasks exhausted (both spaces):
3094 // -- claim next available chunk
3095 // -- bump global finger via CAS
3096 // -- find first object that starts in this chunk
3097 //    and start scanning bitmap from that position
3098 // -- scan marked objects for oops
3099 // -- CAS-mark target, and if successful:
3100 //    . if target oop is above global finger (volatile read)
3101 //      nothing to do
3102 //    . if target oop is in chunk and above local finger
3103 //        then nothing to do
3104 //    . else push on work-queue
3105 // -- Deal with possible overflow issues:
3106 //    . local work-queue overflow causes stuff to be pushed on
3107 //      global (common) overflow queue
3108 //    . always first empty local work queue
3109 //    . then get a batch of oops from global work queue if any
3110 //    . then do work stealing
3111 // -- When all tasks claimed (both spaces)
3112 //    and local work queue empty,
3113 //    then in a loop do:
3114 //    . check global overflow stack; steal a batch of oops and trace
3115 //    . try to steal from other threads oif GOS is empty
3116 //    . if neither is available, offer termination
3117 // -- Terminate and return result
3118 //
3119 void CMSConcMarkingTask::work(uint worker_id) {
3120   elapsedTimer _timer;
3121   ResourceMark rm;
3122   HandleMark hm;
3123 
3124   DEBUG_ONLY(_collector->verify_overflow_empty();)
3125 
3126   // Before we begin work, our work queue should be empty
3127   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3128   // Scan the bitmap covering _cms_space, tracing through grey objects.
3129   _timer.start();
3130   do_scan_and_mark(worker_id, _cms_space);
3131   _timer.stop();
3132   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3133 
3134   // ... do work stealing
3135   _timer.reset();
3136   _timer.start();
3137   do_work_steal(worker_id);
3138   _timer.stop();
3139   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3140   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3141   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3142   // Note that under the current task protocol, the
3143   // following assertion is true even of the spaces
3144   // expanded since the completion of the concurrent
3145   // marking. XXX This will likely change under a strict
3146   // ABORT semantics.
3147   // After perm removal the comparison was changed to
3148   // greater than or equal to from strictly greater than.
3149   // Before perm removal the highest address sweep would
3150   // have been at the end of perm gen but now is at the
3151   // end of the tenured gen.
3152   assert(_global_finger >=  _cms_space->end(),
3153          "All tasks have been completed");
3154   DEBUG_ONLY(_collector->verify_overflow_empty();)
3155 }
3156 
3157 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3158   HeapWord* read = _global_finger;
3159   HeapWord* cur  = read;
3160   while (f > read) {
3161     cur = read;
3162     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3163     if (cur == read) {
3164       // our cas succeeded
3165       assert(_global_finger >= f, "protocol consistency");
3166       break;
3167     }
3168   }
3169 }
3170 
3171 // This is really inefficient, and should be redone by
3172 // using (not yet available) block-read and -write interfaces to the
3173 // stack and the work_queue. XXX FIX ME !!!
3174 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3175                                                       OopTaskQueue* work_q) {
3176   // Fast lock-free check
3177   if (ovflw_stk->length() == 0) {
3178     return false;
3179   }
3180   assert(work_q->size() == 0, "Shouldn't steal");
3181   MutexLockerEx ml(ovflw_stk->par_lock(),
3182                    Mutex::_no_safepoint_check_flag);
3183   // Grab up to 1/4 the size of the work queue
3184   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3185                     (size_t)ParGCDesiredObjsFromOverflowList);
3186   num = MIN2(num, ovflw_stk->length());
3187   for (int i = (int) num; i > 0; i--) {
3188     oop cur = ovflw_stk->pop();
3189     assert(cur != NULL, "Counted wrong?");
3190     work_q->push(cur);
3191   }
3192   return num > 0;
3193 }
3194 
3195 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3196   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3197   int n_tasks = pst->n_tasks();
3198   // We allow that there may be no tasks to do here because
3199   // we are restarting after a stack overflow.
3200   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3201   uint nth_task = 0;
3202 
3203   HeapWord* aligned_start = sp->bottom();
3204   if (sp->used_region().contains(_restart_addr)) {
3205     // Align down to a card boundary for the start of 0th task
3206     // for this space.
3207     aligned_start =
3208       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3209                                  CardTableModRefBS::card_size);
3210   }
3211 
3212   size_t chunk_size = sp->marking_task_size();
3213   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3214     // Having claimed the nth task in this space,
3215     // compute the chunk that it corresponds to:
3216     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3217                                aligned_start + (nth_task+1)*chunk_size);
3218     // Try and bump the global finger via a CAS;
3219     // note that we need to do the global finger bump
3220     // _before_ taking the intersection below, because
3221     // the task corresponding to that region will be
3222     // deemed done even if the used_region() expands
3223     // because of allocation -- as it almost certainly will
3224     // during start-up while the threads yield in the
3225     // closure below.
3226     HeapWord* finger = span.end();
3227     bump_global_finger(finger);   // atomically
3228     // There are null tasks here corresponding to chunks
3229     // beyond the "top" address of the space.
3230     span = span.intersection(sp->used_region());
3231     if (!span.is_empty()) {  // Non-null task
3232       HeapWord* prev_obj;
3233       assert(!span.contains(_restart_addr) || nth_task == 0,
3234              "Inconsistency");
3235       if (nth_task == 0) {
3236         // For the 0th task, we'll not need to compute a block_start.
3237         if (span.contains(_restart_addr)) {
3238           // In the case of a restart because of stack overflow,
3239           // we might additionally skip a chunk prefix.
3240           prev_obj = _restart_addr;
3241         } else {
3242           prev_obj = span.start();
3243         }
3244       } else {
3245         // We want to skip the first object because
3246         // the protocol is to scan any object in its entirety
3247         // that _starts_ in this span; a fortiori, any
3248         // object starting in an earlier span is scanned
3249         // as part of an earlier claimed task.
3250         // Below we use the "careful" version of block_start
3251         // so we do not try to navigate uninitialized objects.
3252         prev_obj = sp->block_start_careful(span.start());
3253         // Below we use a variant of block_size that uses the
3254         // Printezis bits to avoid waiting for allocated
3255         // objects to become initialized/parsable.
3256         while (prev_obj < span.start()) {
3257           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3258           if (sz > 0) {
3259             prev_obj += sz;
3260           } else {
3261             // In this case we may end up doing a bit of redundant
3262             // scanning, but that appears unavoidable, short of
3263             // locking the free list locks; see bug 6324141.
3264             break;
3265           }
3266         }
3267       }
3268       if (prev_obj < span.end()) {
3269         MemRegion my_span = MemRegion(prev_obj, span.end());
3270         // Do the marking work within a non-empty span --
3271         // the last argument to the constructor indicates whether the
3272         // iteration should be incremental with periodic yields.
3273         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3274                                     &_collector->_markBitMap,
3275                                     work_queue(i),
3276                                     &_collector->_markStack);
3277         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3278       } // else nothing to do for this task
3279     }   // else nothing to do for this task
3280   }
3281   // We'd be tempted to assert here that since there are no
3282   // more tasks left to claim in this space, the global_finger
3283   // must exceed space->top() and a fortiori space->end(). However,
3284   // that would not quite be correct because the bumping of
3285   // global_finger occurs strictly after the claiming of a task,
3286   // so by the time we reach here the global finger may not yet
3287   // have been bumped up by the thread that claimed the last
3288   // task.
3289   pst->all_tasks_completed();
3290 }
3291 
3292 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3293  private:
3294   CMSCollector* _collector;
3295   CMSConcMarkingTask* _task;
3296   MemRegion     _span;
3297   CMSBitMap*    _bit_map;
3298   CMSMarkStack* _overflow_stack;
3299   OopTaskQueue* _work_queue;
3300  protected:
3301   DO_OOP_WORK_DEFN
3302  public:
3303   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3304                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3305     MetadataAwareOopClosure(collector->ref_processor()),
3306     _collector(collector),
3307     _task(task),
3308     _span(collector->_span),
3309     _work_queue(work_queue),
3310     _bit_map(bit_map),
3311     _overflow_stack(overflow_stack)
3312   { }
3313   virtual void do_oop(oop* p);
3314   virtual void do_oop(narrowOop* p);
3315 
3316   void trim_queue(size_t max);
3317   void handle_stack_overflow(HeapWord* lost);
3318   void do_yield_check() {
3319     if (_task->should_yield()) {
3320       _task->yield();
3321     }
3322   }
3323 };
3324 
3325 // Grey object scanning during work stealing phase --
3326 // the salient assumption here is that any references
3327 // that are in these stolen objects being scanned must
3328 // already have been initialized (else they would not have
3329 // been published), so we do not need to check for
3330 // uninitialized objects before pushing here.
3331 void Par_ConcMarkingClosure::do_oop(oop obj) {
3332   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3333   HeapWord* addr = (HeapWord*)obj;
3334   // Check if oop points into the CMS generation
3335   // and is not marked
3336   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3337     // a white object ...
3338     // If we manage to "claim" the object, by being the
3339     // first thread to mark it, then we push it on our
3340     // marking stack
3341     if (_bit_map->par_mark(addr)) {     // ... now grey
3342       // push on work queue (grey set)
3343       bool simulate_overflow = false;
3344       NOT_PRODUCT(
3345         if (CMSMarkStackOverflowALot &&
3346             _collector->simulate_overflow()) {
3347           // simulate a stack overflow
3348           simulate_overflow = true;
3349         }
3350       )
3351       if (simulate_overflow ||
3352           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3353         // stack overflow
3354         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3355         // We cannot assert that the overflow stack is full because
3356         // it may have been emptied since.
3357         assert(simulate_overflow ||
3358                _work_queue->size() == _work_queue->max_elems(),
3359               "Else push should have succeeded");
3360         handle_stack_overflow(addr);
3361       }
3362     } // Else, some other thread got there first
3363     do_yield_check();
3364   }
3365 }
3366 
3367 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3368 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3369 
3370 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3371   while (_work_queue->size() > max) {
3372     oop new_oop;
3373     if (_work_queue->pop_local(new_oop)) {
3374       assert(new_oop->is_oop(), "Should be an oop");
3375       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3376       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3377       new_oop->oop_iterate(this);  // do_oop() above
3378       do_yield_check();
3379     }
3380   }
3381 }
3382 
3383 // Upon stack overflow, we discard (part of) the stack,
3384 // remembering the least address amongst those discarded
3385 // in CMSCollector's _restart_address.
3386 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3387   // We need to do this under a mutex to prevent other
3388   // workers from interfering with the work done below.
3389   MutexLockerEx ml(_overflow_stack->par_lock(),
3390                    Mutex::_no_safepoint_check_flag);
3391   // Remember the least grey address discarded
3392   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3393   _collector->lower_restart_addr(ra);
3394   _overflow_stack->reset();  // discard stack contents
3395   _overflow_stack->expand(); // expand the stack if possible
3396 }
3397 
3398 
3399 void CMSConcMarkingTask::do_work_steal(int i) {
3400   OopTaskQueue* work_q = work_queue(i);
3401   oop obj_to_scan;
3402   CMSBitMap* bm = &(_collector->_markBitMap);
3403   CMSMarkStack* ovflw = &(_collector->_markStack);
3404   int* seed = _collector->hash_seed(i);
3405   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3406   while (true) {
3407     cl.trim_queue(0);
3408     assert(work_q->size() == 0, "Should have been emptied above");
3409     if (get_work_from_overflow_stack(ovflw, work_q)) {
3410       // Can't assert below because the work obtained from the
3411       // overflow stack may already have been stolen from us.
3412       // assert(work_q->size() > 0, "Work from overflow stack");
3413       continue;
3414     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3415       assert(obj_to_scan->is_oop(), "Should be an oop");
3416       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3417       obj_to_scan->oop_iterate(&cl);
3418     } else if (terminator()->offer_termination(&_term_term)) {
3419       assert(work_q->size() == 0, "Impossible!");
3420       break;
3421     } else if (yielding() || should_yield()) {
3422       yield();
3423     }
3424   }
3425 }
3426 
3427 // This is run by the CMS (coordinator) thread.
3428 void CMSConcMarkingTask::coordinator_yield() {
3429   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3430          "CMS thread should hold CMS token");
3431   // First give up the locks, then yield, then re-lock
3432   // We should probably use a constructor/destructor idiom to
3433   // do this unlock/lock or modify the MutexUnlocker class to
3434   // serve our purpose. XXX
3435   assert_lock_strong(_bit_map_lock);
3436   _bit_map_lock->unlock();
3437   ConcurrentMarkSweepThread::desynchronize(true);
3438   _collector->stopTimer();
3439   _collector->incrementYields();
3440 
3441   // It is possible for whichever thread initiated the yield request
3442   // not to get a chance to wake up and take the bitmap lock between
3443   // this thread releasing it and reacquiring it. So, while the
3444   // should_yield() flag is on, let's sleep for a bit to give the
3445   // other thread a chance to wake up. The limit imposed on the number
3446   // of iterations is defensive, to avoid any unforseen circumstances
3447   // putting us into an infinite loop. Since it's always been this
3448   // (coordinator_yield()) method that was observed to cause the
3449   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3450   // which is by default non-zero. For the other seven methods that
3451   // also perform the yield operation, as are using a different
3452   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3453   // can enable the sleeping for those methods too, if necessary.
3454   // See 6442774.
3455   //
3456   // We really need to reconsider the synchronization between the GC
3457   // thread and the yield-requesting threads in the future and we
3458   // should really use wait/notify, which is the recommended
3459   // way of doing this type of interaction. Additionally, we should
3460   // consolidate the eight methods that do the yield operation and they
3461   // are almost identical into one for better maintainability and
3462   // readability. See 6445193.
3463   //
3464   // Tony 2006.06.29
3465   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3466                    ConcurrentMarkSweepThread::should_yield() &&
3467                    !CMSCollector::foregroundGCIsActive(); ++i) {
3468     os::sleep(Thread::current(), 1, false);
3469   }
3470 
3471   ConcurrentMarkSweepThread::synchronize(true);
3472   _bit_map_lock->lock_without_safepoint_check();
3473   _collector->startTimer();
3474 }
3475 
3476 bool CMSCollector::do_marking_mt() {
3477   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3478   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3479                                                                   conc_workers()->active_workers(),
3480                                                                   Threads::number_of_non_daemon_threads());
3481   conc_workers()->set_active_workers(num_workers);
3482 
3483   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3484 
3485   CMSConcMarkingTask tsk(this,
3486                          cms_space,
3487                          conc_workers(),
3488                          task_queues());
3489 
3490   // Since the actual number of workers we get may be different
3491   // from the number we requested above, do we need to do anything different
3492   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3493   // class?? XXX
3494   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3495 
3496   // Refs discovery is already non-atomic.
3497   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3498   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3499   conc_workers()->start_task(&tsk);
3500   while (tsk.yielded()) {
3501     tsk.coordinator_yield();
3502     conc_workers()->continue_task(&tsk);
3503   }
3504   // If the task was aborted, _restart_addr will be non-NULL
3505   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3506   while (_restart_addr != NULL) {
3507     // XXX For now we do not make use of ABORTED state and have not
3508     // yet implemented the right abort semantics (even in the original
3509     // single-threaded CMS case). That needs some more investigation
3510     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3511     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3512     // If _restart_addr is non-NULL, a marking stack overflow
3513     // occurred; we need to do a fresh marking iteration from the
3514     // indicated restart address.
3515     if (_foregroundGCIsActive) {
3516       // We may be running into repeated stack overflows, having
3517       // reached the limit of the stack size, while making very
3518       // slow forward progress. It may be best to bail out and
3519       // let the foreground collector do its job.
3520       // Clear _restart_addr, so that foreground GC
3521       // works from scratch. This avoids the headache of
3522       // a "rescan" which would otherwise be needed because
3523       // of the dirty mod union table & card table.
3524       _restart_addr = NULL;
3525       return false;
3526     }
3527     // Adjust the task to restart from _restart_addr
3528     tsk.reset(_restart_addr);
3529     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3530                   _restart_addr);
3531     _restart_addr = NULL;
3532     // Get the workers going again
3533     conc_workers()->start_task(&tsk);
3534     while (tsk.yielded()) {
3535       tsk.coordinator_yield();
3536       conc_workers()->continue_task(&tsk);
3537     }
3538   }
3539   assert(tsk.completed(), "Inconsistency");
3540   assert(tsk.result() == true, "Inconsistency");
3541   return true;
3542 }
3543 
3544 bool CMSCollector::do_marking_st() {
3545   ResourceMark rm;
3546   HandleMark   hm;
3547 
3548   // Temporarily make refs discovery single threaded (non-MT)
3549   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3550   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3551     &_markStack, CMSYield);
3552   // the last argument to iterate indicates whether the iteration
3553   // should be incremental with periodic yields.
3554   _markBitMap.iterate(&markFromRootsClosure);
3555   // If _restart_addr is non-NULL, a marking stack overflow
3556   // occurred; we need to do a fresh iteration from the
3557   // indicated restart address.
3558   while (_restart_addr != NULL) {
3559     if (_foregroundGCIsActive) {
3560       // We may be running into repeated stack overflows, having
3561       // reached the limit of the stack size, while making very
3562       // slow forward progress. It may be best to bail out and
3563       // let the foreground collector do its job.
3564       // Clear _restart_addr, so that foreground GC
3565       // works from scratch. This avoids the headache of
3566       // a "rescan" which would otherwise be needed because
3567       // of the dirty mod union table & card table.
3568       _restart_addr = NULL;
3569       return false;  // indicating failure to complete marking
3570     }
3571     // Deal with stack overflow:
3572     // we restart marking from _restart_addr
3573     HeapWord* ra = _restart_addr;
3574     markFromRootsClosure.reset(ra);
3575     _restart_addr = NULL;
3576     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3577   }
3578   return true;
3579 }
3580 
3581 void CMSCollector::preclean() {
3582   check_correct_thread_executing();
3583   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3584   verify_work_stacks_empty();
3585   verify_overflow_empty();
3586   _abort_preclean = false;
3587   if (CMSPrecleaningEnabled) {
3588     if (!CMSEdenChunksRecordAlways) {
3589       _eden_chunk_index = 0;
3590     }
3591     size_t used = get_eden_used();
3592     size_t capacity = get_eden_capacity();
3593     // Don't start sampling unless we will get sufficiently
3594     // many samples.
3595     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3596                 * CMSScheduleRemarkEdenPenetration)) {
3597       _start_sampling = true;
3598     } else {
3599       _start_sampling = false;
3600     }
3601     GCTraceCPUTime tcpu;
3602     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3603     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3604   }
3605   CMSTokenSync x(true); // is cms thread
3606   if (CMSPrecleaningEnabled) {
3607     sample_eden();
3608     _collectorState = AbortablePreclean;
3609   } else {
3610     _collectorState = FinalMarking;
3611   }
3612   verify_work_stacks_empty();
3613   verify_overflow_empty();
3614 }
3615 
3616 // Try and schedule the remark such that young gen
3617 // occupancy is CMSScheduleRemarkEdenPenetration %.
3618 void CMSCollector::abortable_preclean() {
3619   check_correct_thread_executing();
3620   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3621   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3622 
3623   // If Eden's current occupancy is below this threshold,
3624   // immediately schedule the remark; else preclean
3625   // past the next scavenge in an effort to
3626   // schedule the pause as described above. By choosing
3627   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3628   // we will never do an actual abortable preclean cycle.
3629   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3630     GCTraceCPUTime tcpu;
3631     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3632     // We need more smarts in the abortable preclean
3633     // loop below to deal with cases where allocation
3634     // in young gen is very very slow, and our precleaning
3635     // is running a losing race against a horde of
3636     // mutators intent on flooding us with CMS updates
3637     // (dirty cards).
3638     // One, admittedly dumb, strategy is to give up
3639     // after a certain number of abortable precleaning loops
3640     // or after a certain maximum time. We want to make
3641     // this smarter in the next iteration.
3642     // XXX FIX ME!!! YSR
3643     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3644     while (!(should_abort_preclean() ||
3645              ConcurrentMarkSweepThread::should_terminate())) {
3646       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3647       cumworkdone += workdone;
3648       loops++;
3649       // Voluntarily terminate abortable preclean phase if we have
3650       // been at it for too long.
3651       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3652           loops >= CMSMaxAbortablePrecleanLoops) {
3653         log_debug(gc)(" CMS: abort preclean due to loops ");
3654         break;
3655       }
3656       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3657         log_debug(gc)(" CMS: abort preclean due to time ");
3658         break;
3659       }
3660       // If we are doing little work each iteration, we should
3661       // take a short break.
3662       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3663         // Sleep for some time, waiting for work to accumulate
3664         stopTimer();
3665         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3666         startTimer();
3667         waited++;
3668       }
3669     }
3670     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3671                                loops, waited, cumworkdone);
3672   }
3673   CMSTokenSync x(true); // is cms thread
3674   if (_collectorState != Idling) {
3675     assert(_collectorState == AbortablePreclean,
3676            "Spontaneous state transition?");
3677     _collectorState = FinalMarking;
3678   } // Else, a foreground collection completed this CMS cycle.
3679   return;
3680 }
3681 
3682 // Respond to an Eden sampling opportunity
3683 void CMSCollector::sample_eden() {
3684   // Make sure a young gc cannot sneak in between our
3685   // reading and recording of a sample.
3686   assert(Thread::current()->is_ConcurrentGC_thread(),
3687          "Only the cms thread may collect Eden samples");
3688   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3689          "Should collect samples while holding CMS token");
3690   if (!_start_sampling) {
3691     return;
3692   }
3693   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3694   // is populated by the young generation.
3695   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3696     if (_eden_chunk_index < _eden_chunk_capacity) {
3697       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3698       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3699              "Unexpected state of Eden");
3700       // We'd like to check that what we just sampled is an oop-start address;
3701       // however, we cannot do that here since the object may not yet have been
3702       // initialized. So we'll instead do the check when we _use_ this sample
3703       // later.
3704       if (_eden_chunk_index == 0 ||
3705           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3706                          _eden_chunk_array[_eden_chunk_index-1])
3707            >= CMSSamplingGrain)) {
3708         _eden_chunk_index++;  // commit sample
3709       }
3710     }
3711   }
3712   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3713     size_t used = get_eden_used();
3714     size_t capacity = get_eden_capacity();
3715     assert(used <= capacity, "Unexpected state of Eden");
3716     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3717       _abort_preclean = true;
3718     }
3719   }
3720 }
3721 
3722 
3723 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3724   assert(_collectorState == Precleaning ||
3725          _collectorState == AbortablePreclean, "incorrect state");
3726   ResourceMark rm;
3727   HandleMark   hm;
3728 
3729   // Precleaning is currently not MT but the reference processor
3730   // may be set for MT.  Disable it temporarily here.
3731   ReferenceProcessor* rp = ref_processor();
3732   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3733 
3734   // Do one pass of scrubbing the discovered reference lists
3735   // to remove any reference objects with strongly-reachable
3736   // referents.
3737   if (clean_refs) {
3738     CMSPrecleanRefsYieldClosure yield_cl(this);
3739     assert(rp->span().equals(_span), "Spans should be equal");
3740     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3741                                    &_markStack, true /* preclean */);
3742     CMSDrainMarkingStackClosure complete_trace(this,
3743                                    _span, &_markBitMap, &_markStack,
3744                                    &keep_alive, true /* preclean */);
3745 
3746     // We don't want this step to interfere with a young
3747     // collection because we don't want to take CPU
3748     // or memory bandwidth away from the young GC threads
3749     // (which may be as many as there are CPUs).
3750     // Note that we don't need to protect ourselves from
3751     // interference with mutators because they can't
3752     // manipulate the discovered reference lists nor affect
3753     // the computed reachability of the referents, the
3754     // only properties manipulated by the precleaning
3755     // of these reference lists.
3756     stopTimer();
3757     CMSTokenSyncWithLocks x(true /* is cms thread */,
3758                             bitMapLock());
3759     startTimer();
3760     sample_eden();
3761 
3762     // The following will yield to allow foreground
3763     // collection to proceed promptly. XXX YSR:
3764     // The code in this method may need further
3765     // tweaking for better performance and some restructuring
3766     // for cleaner interfaces.
3767     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3768     rp->preclean_discovered_references(
3769           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3770           gc_timer);
3771   }
3772 
3773   if (clean_survivor) {  // preclean the active survivor space(s)
3774     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3775                              &_markBitMap, &_modUnionTable,
3776                              &_markStack, true /* precleaning phase */);
3777     stopTimer();
3778     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3779                              bitMapLock());
3780     startTimer();
3781     unsigned int before_count =
3782       GenCollectedHeap::heap()->total_collections();
3783     SurvivorSpacePrecleanClosure
3784       sss_cl(this, _span, &_markBitMap, &_markStack,
3785              &pam_cl, before_count, CMSYield);
3786     _young_gen->from()->object_iterate_careful(&sss_cl);
3787     _young_gen->to()->object_iterate_careful(&sss_cl);
3788   }
3789   MarkRefsIntoAndScanClosure
3790     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3791              &_markStack, this, CMSYield,
3792              true /* precleaning phase */);
3793   // CAUTION: The following closure has persistent state that may need to
3794   // be reset upon a decrease in the sequence of addresses it
3795   // processes.
3796   ScanMarkedObjectsAgainCarefullyClosure
3797     smoac_cl(this, _span,
3798       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3799 
3800   // Preclean dirty cards in ModUnionTable and CardTable using
3801   // appropriate convergence criterion;
3802   // repeat CMSPrecleanIter times unless we find that
3803   // we are losing.
3804   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3805   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3806          "Bad convergence multiplier");
3807   assert(CMSPrecleanThreshold >= 100,
3808          "Unreasonably low CMSPrecleanThreshold");
3809 
3810   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3811   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3812        numIter < CMSPrecleanIter;
3813        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3814     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3815     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3816     // Either there are very few dirty cards, so re-mark
3817     // pause will be small anyway, or our pre-cleaning isn't
3818     // that much faster than the rate at which cards are being
3819     // dirtied, so we might as well stop and re-mark since
3820     // precleaning won't improve our re-mark time by much.
3821     if (curNumCards <= CMSPrecleanThreshold ||
3822         (numIter > 0 &&
3823          (curNumCards * CMSPrecleanDenominator >
3824          lastNumCards * CMSPrecleanNumerator))) {
3825       numIter++;
3826       cumNumCards += curNumCards;
3827       break;
3828     }
3829   }
3830 
3831   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3832 
3833   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3834   cumNumCards += curNumCards;
3835   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3836                              curNumCards, cumNumCards, numIter);
3837   return cumNumCards;   // as a measure of useful work done
3838 }
3839 
3840 // PRECLEANING NOTES:
3841 // Precleaning involves:
3842 // . reading the bits of the modUnionTable and clearing the set bits.
3843 // . For the cards corresponding to the set bits, we scan the
3844 //   objects on those cards. This means we need the free_list_lock
3845 //   so that we can safely iterate over the CMS space when scanning
3846 //   for oops.
3847 // . When we scan the objects, we'll be both reading and setting
3848 //   marks in the marking bit map, so we'll need the marking bit map.
3849 // . For protecting _collector_state transitions, we take the CGC_lock.
3850 //   Note that any races in the reading of of card table entries by the
3851 //   CMS thread on the one hand and the clearing of those entries by the
3852 //   VM thread or the setting of those entries by the mutator threads on the
3853 //   other are quite benign. However, for efficiency it makes sense to keep
3854 //   the VM thread from racing with the CMS thread while the latter is
3855 //   dirty card info to the modUnionTable. We therefore also use the
3856 //   CGC_lock to protect the reading of the card table and the mod union
3857 //   table by the CM thread.
3858 // . We run concurrently with mutator updates, so scanning
3859 //   needs to be done carefully  -- we should not try to scan
3860 //   potentially uninitialized objects.
3861 //
3862 // Locking strategy: While holding the CGC_lock, we scan over and
3863 // reset a maximal dirty range of the mod union / card tables, then lock
3864 // the free_list_lock and bitmap lock to do a full marking, then
3865 // release these locks; and repeat the cycle. This allows for a
3866 // certain amount of fairness in the sharing of these locks between
3867 // the CMS collector on the one hand, and the VM thread and the
3868 // mutators on the other.
3869 
3870 // NOTE: preclean_mod_union_table() and preclean_card_table()
3871 // further below are largely identical; if you need to modify
3872 // one of these methods, please check the other method too.
3873 
3874 size_t CMSCollector::preclean_mod_union_table(
3875   ConcurrentMarkSweepGeneration* old_gen,
3876   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3877   verify_work_stacks_empty();
3878   verify_overflow_empty();
3879 
3880   // strategy: starting with the first card, accumulate contiguous
3881   // ranges of dirty cards; clear these cards, then scan the region
3882   // covered by these cards.
3883 
3884   // Since all of the MUT is committed ahead, we can just use
3885   // that, in case the generations expand while we are precleaning.
3886   // It might also be fine to just use the committed part of the
3887   // generation, but we might potentially miss cards when the
3888   // generation is rapidly expanding while we are in the midst
3889   // of precleaning.
3890   HeapWord* startAddr = old_gen->reserved().start();
3891   HeapWord* endAddr   = old_gen->reserved().end();
3892 
3893   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3894 
3895   size_t numDirtyCards, cumNumDirtyCards;
3896   HeapWord *nextAddr, *lastAddr;
3897   for (cumNumDirtyCards = numDirtyCards = 0,
3898        nextAddr = lastAddr = startAddr;
3899        nextAddr < endAddr;
3900        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3901 
3902     ResourceMark rm;
3903     HandleMark   hm;
3904 
3905     MemRegion dirtyRegion;
3906     {
3907       stopTimer();
3908       // Potential yield point
3909       CMSTokenSync ts(true);
3910       startTimer();
3911       sample_eden();
3912       // Get dirty region starting at nextOffset (inclusive),
3913       // simultaneously clearing it.
3914       dirtyRegion =
3915         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3916       assert(dirtyRegion.start() >= nextAddr,
3917              "returned region inconsistent?");
3918     }
3919     // Remember where the next search should begin.
3920     // The returned region (if non-empty) is a right open interval,
3921     // so lastOffset is obtained from the right end of that
3922     // interval.
3923     lastAddr = dirtyRegion.end();
3924     // Should do something more transparent and less hacky XXX
3925     numDirtyCards =
3926       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3927 
3928     // We'll scan the cards in the dirty region (with periodic
3929     // yields for foreground GC as needed).
3930     if (!dirtyRegion.is_empty()) {
3931       assert(numDirtyCards > 0, "consistency check");
3932       HeapWord* stop_point = NULL;
3933       stopTimer();
3934       // Potential yield point
3935       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3936                                bitMapLock());
3937       startTimer();
3938       {
3939         verify_work_stacks_empty();
3940         verify_overflow_empty();
3941         sample_eden();
3942         stop_point =
3943           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3944       }
3945       if (stop_point != NULL) {
3946         // The careful iteration stopped early either because it found an
3947         // uninitialized object, or because we were in the midst of an
3948         // "abortable preclean", which should now be aborted. Redirty
3949         // the bits corresponding to the partially-scanned or unscanned
3950         // cards. We'll either restart at the next block boundary or
3951         // abort the preclean.
3952         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3953                "Should only be AbortablePreclean.");
3954         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3955         if (should_abort_preclean()) {
3956           break; // out of preclean loop
3957         } else {
3958           // Compute the next address at which preclean should pick up;
3959           // might need bitMapLock in order to read P-bits.
3960           lastAddr = next_card_start_after_block(stop_point);
3961         }
3962       }
3963     } else {
3964       assert(lastAddr == endAddr, "consistency check");
3965       assert(numDirtyCards == 0, "consistency check");
3966       break;
3967     }
3968   }
3969   verify_work_stacks_empty();
3970   verify_overflow_empty();
3971   return cumNumDirtyCards;
3972 }
3973 
3974 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3975 // below are largely identical; if you need to modify
3976 // one of these methods, please check the other method too.
3977 
3978 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3979   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3980   // strategy: it's similar to precleamModUnionTable above, in that
3981   // we accumulate contiguous ranges of dirty cards, mark these cards
3982   // precleaned, then scan the region covered by these cards.
3983   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3984   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3985 
3986   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3987 
3988   size_t numDirtyCards, cumNumDirtyCards;
3989   HeapWord *lastAddr, *nextAddr;
3990 
3991   for (cumNumDirtyCards = numDirtyCards = 0,
3992        nextAddr = lastAddr = startAddr;
3993        nextAddr < endAddr;
3994        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3995 
3996     ResourceMark rm;
3997     HandleMark   hm;
3998 
3999     MemRegion dirtyRegion;
4000     {
4001       // See comments in "Precleaning notes" above on why we
4002       // do this locking. XXX Could the locking overheads be
4003       // too high when dirty cards are sparse? [I don't think so.]
4004       stopTimer();
4005       CMSTokenSync x(true); // is cms thread
4006       startTimer();
4007       sample_eden();
4008       // Get and clear dirty region from card table
4009       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4010                                     MemRegion(nextAddr, endAddr),
4011                                     true,
4012                                     CardTableModRefBS::precleaned_card_val());
4013 
4014       assert(dirtyRegion.start() >= nextAddr,
4015              "returned region inconsistent?");
4016     }
4017     lastAddr = dirtyRegion.end();
4018     numDirtyCards =
4019       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4020 
4021     if (!dirtyRegion.is_empty()) {
4022       stopTimer();
4023       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4024       startTimer();
4025       sample_eden();
4026       verify_work_stacks_empty();
4027       verify_overflow_empty();
4028       HeapWord* stop_point =
4029         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4030       if (stop_point != NULL) {
4031         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4032                "Should only be AbortablePreclean.");
4033         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4034         if (should_abort_preclean()) {
4035           break; // out of preclean loop
4036         } else {
4037           // Compute the next address at which preclean should pick up.
4038           lastAddr = next_card_start_after_block(stop_point);
4039         }
4040       }
4041     } else {
4042       break;
4043     }
4044   }
4045   verify_work_stacks_empty();
4046   verify_overflow_empty();
4047   return cumNumDirtyCards;
4048 }
4049 
4050 class PrecleanKlassClosure : public KlassClosure {
4051   KlassToOopClosure _cm_klass_closure;
4052  public:
4053   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4054   void do_klass(Klass* k) {
4055     if (k->has_accumulated_modified_oops()) {
4056       k->clear_accumulated_modified_oops();
4057 
4058       _cm_klass_closure.do_klass(k);
4059     }
4060   }
4061 };
4062 
4063 // The freelist lock is needed to prevent asserts, is it really needed?
4064 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4065 
4066   cl->set_freelistLock(freelistLock);
4067 
4068   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4069 
4070   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4071   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4072   PrecleanKlassClosure preclean_klass_closure(cl);
4073   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4074 
4075   verify_work_stacks_empty();
4076   verify_overflow_empty();
4077 }
4078 
4079 void CMSCollector::checkpointRootsFinal() {
4080   assert(_collectorState == FinalMarking, "incorrect state transition?");
4081   check_correct_thread_executing();
4082   // world is stopped at this checkpoint
4083   assert(SafepointSynchronize::is_at_safepoint(),
4084          "world should be stopped");
4085   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4086 
4087   verify_work_stacks_empty();
4088   verify_overflow_empty();
4089 
4090   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4091                 _young_gen->used() / K, _young_gen->capacity() / K);
4092   {
4093     if (CMSScavengeBeforeRemark) {
4094       GenCollectedHeap* gch = GenCollectedHeap::heap();
4095       // Temporarily set flag to false, GCH->do_collection will
4096       // expect it to be false and set to true
4097       FlagSetting fl(gch->_is_gc_active, false);
4098 
4099       GCTraceTime(Trace, gc) tm("Pause Scavenge Before Remark", _gc_timer_cm);
4100 
4101       gch->do_collection(true,                      // full (i.e. force, see below)
4102                          false,                     // !clear_all_soft_refs
4103                          0,                         // size
4104                          false,                     // is_tlab
4105                          GenCollectedHeap::YoungGen // type
4106         );
4107     }
4108     FreelistLocker x(this);
4109     MutexLockerEx y(bitMapLock(),
4110                     Mutex::_no_safepoint_check_flag);
4111     checkpointRootsFinalWork();
4112   }
4113   verify_work_stacks_empty();
4114   verify_overflow_empty();
4115 }
4116 
4117 void CMSCollector::checkpointRootsFinalWork() {
4118   GCTraceTime(Trace, gc) tm("checkpointRootsFinalWork", _gc_timer_cm);
4119 
4120   assert(haveFreelistLocks(), "must have free list locks");
4121   assert_lock_strong(bitMapLock());
4122 
4123   ResourceMark rm;
4124   HandleMark   hm;
4125 
4126   GenCollectedHeap* gch = GenCollectedHeap::heap();
4127 
4128   if (should_unload_classes()) {
4129     CodeCache::gc_prologue();
4130   }
4131   assert(haveFreelistLocks(), "must have free list locks");
4132   assert_lock_strong(bitMapLock());
4133 
4134   // We might assume that we need not fill TLAB's when
4135   // CMSScavengeBeforeRemark is set, because we may have just done
4136   // a scavenge which would have filled all TLAB's -- and besides
4137   // Eden would be empty. This however may not always be the case --
4138   // for instance although we asked for a scavenge, it may not have
4139   // happened because of a JNI critical section. We probably need
4140   // a policy for deciding whether we can in that case wait until
4141   // the critical section releases and then do the remark following
4142   // the scavenge, and skip it here. In the absence of that policy,
4143   // or of an indication of whether the scavenge did indeed occur,
4144   // we cannot rely on TLAB's having been filled and must do
4145   // so here just in case a scavenge did not happen.
4146   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4147   // Update the saved marks which may affect the root scans.
4148   gch->save_marks();
4149 
4150   print_eden_and_survivor_chunk_arrays();
4151 
4152   {
4153 #if defined(COMPILER2) || INCLUDE_JVMCI
4154     DerivedPointerTableDeactivate dpt_deact;
4155 #endif
4156 
4157     // Note on the role of the mod union table:
4158     // Since the marker in "markFromRoots" marks concurrently with
4159     // mutators, it is possible for some reachable objects not to have been
4160     // scanned. For instance, an only reference to an object A was
4161     // placed in object B after the marker scanned B. Unless B is rescanned,
4162     // A would be collected. Such updates to references in marked objects
4163     // are detected via the mod union table which is the set of all cards
4164     // dirtied since the first checkpoint in this GC cycle and prior to
4165     // the most recent young generation GC, minus those cleaned up by the
4166     // concurrent precleaning.
4167     if (CMSParallelRemarkEnabled) {
4168       GCTraceTime(Debug, gc) t("Rescan (parallel)", _gc_timer_cm);
4169       do_remark_parallel();
4170     } else {
4171       GCTraceTime(Debug, gc) t("Rescan (non-parallel)", _gc_timer_cm);
4172       do_remark_non_parallel();
4173     }
4174   }
4175   verify_work_stacks_empty();
4176   verify_overflow_empty();
4177 
4178   {
4179     GCTraceTime(Trace, gc) ts("refProcessingWork", _gc_timer_cm);
4180     refProcessingWork();
4181   }
4182   verify_work_stacks_empty();
4183   verify_overflow_empty();
4184 
4185   if (should_unload_classes()) {
4186     CodeCache::gc_epilogue();
4187   }
4188   JvmtiExport::gc_epilogue();
4189 
4190   // If we encountered any (marking stack / work queue) overflow
4191   // events during the current CMS cycle, take appropriate
4192   // remedial measures, where possible, so as to try and avoid
4193   // recurrence of that condition.
4194   assert(_markStack.isEmpty(), "No grey objects");
4195   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4196                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4197   if (ser_ovflw > 0) {
4198     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4199                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4200     _markStack.expand();
4201     _ser_pmc_remark_ovflw = 0;
4202     _ser_pmc_preclean_ovflw = 0;
4203     _ser_kac_preclean_ovflw = 0;
4204     _ser_kac_ovflw = 0;
4205   }
4206   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4207      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4208                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4209      _par_pmc_remark_ovflw = 0;
4210     _par_kac_ovflw = 0;
4211   }
4212    if (_markStack._hit_limit > 0) {
4213      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4214                           _markStack._hit_limit);
4215    }
4216    if (_markStack._failed_double > 0) {
4217      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4218                           _markStack._failed_double, _markStack.capacity());
4219    }
4220   _markStack._hit_limit = 0;
4221   _markStack._failed_double = 0;
4222 
4223   if ((VerifyAfterGC || VerifyDuringGC) &&
4224       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4225     verify_after_remark();
4226   }
4227 
4228   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4229 
4230   // Change under the freelistLocks.
4231   _collectorState = Sweeping;
4232   // Call isAllClear() under bitMapLock
4233   assert(_modUnionTable.isAllClear(),
4234       "Should be clear by end of the final marking");
4235   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4236       "Should be clear by end of the final marking");
4237 }
4238 
4239 void CMSParInitialMarkTask::work(uint worker_id) {
4240   elapsedTimer _timer;
4241   ResourceMark rm;
4242   HandleMark   hm;
4243 
4244   // ---------- scan from roots --------------
4245   _timer.start();
4246   GenCollectedHeap* gch = GenCollectedHeap::heap();
4247   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4248 
4249   // ---------- young gen roots --------------
4250   {
4251     work_on_young_gen_roots(worker_id, &par_mri_cl);
4252     _timer.stop();
4253     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4254   }
4255 
4256   // ---------- remaining roots --------------
4257   _timer.reset();
4258   _timer.start();
4259 
4260   CLDToOopClosure cld_closure(&par_mri_cl, true);
4261 
4262   gch->gen_process_roots(_strong_roots_scope,
4263                          GenCollectedHeap::OldGen,
4264                          false,     // yg was scanned above
4265                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4266                          _collector->should_unload_classes(),
4267                          &par_mri_cl,
4268                          NULL,
4269                          &cld_closure);
4270   assert(_collector->should_unload_classes()
4271          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4272          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4273   _timer.stop();
4274   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4275 }
4276 
4277 // Parallel remark task
4278 class CMSParRemarkTask: public CMSParMarkTask {
4279   CompactibleFreeListSpace* _cms_space;
4280 
4281   // The per-thread work queues, available here for stealing.
4282   OopTaskQueueSet*       _task_queues;
4283   ParallelTaskTerminator _term;
4284   StrongRootsScope*      _strong_roots_scope;
4285 
4286  public:
4287   // A value of 0 passed to n_workers will cause the number of
4288   // workers to be taken from the active workers in the work gang.
4289   CMSParRemarkTask(CMSCollector* collector,
4290                    CompactibleFreeListSpace* cms_space,
4291                    uint n_workers, WorkGang* workers,
4292                    OopTaskQueueSet* task_queues,
4293                    StrongRootsScope* strong_roots_scope):
4294     CMSParMarkTask("Rescan roots and grey objects in parallel",
4295                    collector, n_workers),
4296     _cms_space(cms_space),
4297     _task_queues(task_queues),
4298     _term(n_workers, task_queues),
4299     _strong_roots_scope(strong_roots_scope) { }
4300 
4301   OopTaskQueueSet* task_queues() { return _task_queues; }
4302 
4303   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4304 
4305   ParallelTaskTerminator* terminator() { return &_term; }
4306   uint n_workers() { return _n_workers; }
4307 
4308   void work(uint worker_id);
4309 
4310  private:
4311   // ... of  dirty cards in old space
4312   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4313                                   Par_MarkRefsIntoAndScanClosure* cl);
4314 
4315   // ... work stealing for the above
4316   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4317 };
4318 
4319 class RemarkKlassClosure : public KlassClosure {
4320   KlassToOopClosure _cm_klass_closure;
4321  public:
4322   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4323   void do_klass(Klass* k) {
4324     // Check if we have modified any oops in the Klass during the concurrent marking.
4325     if (k->has_accumulated_modified_oops()) {
4326       k->clear_accumulated_modified_oops();
4327 
4328       // We could have transfered the current modified marks to the accumulated marks,
4329       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4330     } else if (k->has_modified_oops()) {
4331       // Don't clear anything, this info is needed by the next young collection.
4332     } else {
4333       // No modified oops in the Klass.
4334       return;
4335     }
4336 
4337     // The klass has modified fields, need to scan the klass.
4338     _cm_klass_closure.do_klass(k);
4339   }
4340 };
4341 
4342 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4343   ParNewGeneration* young_gen = _collector->_young_gen;
4344   ContiguousSpace* eden_space = young_gen->eden();
4345   ContiguousSpace* from_space = young_gen->from();
4346   ContiguousSpace* to_space   = young_gen->to();
4347 
4348   HeapWord** eca = _collector->_eden_chunk_array;
4349   size_t     ect = _collector->_eden_chunk_index;
4350   HeapWord** sca = _collector->_survivor_chunk_array;
4351   size_t     sct = _collector->_survivor_chunk_index;
4352 
4353   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4354   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4355 
4356   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4357   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4358   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4359 }
4360 
4361 // work_queue(i) is passed to the closure
4362 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4363 // also is passed to do_dirty_card_rescan_tasks() and to
4364 // do_work_steal() to select the i-th task_queue.
4365 
4366 void CMSParRemarkTask::work(uint worker_id) {
4367   elapsedTimer _timer;
4368   ResourceMark rm;
4369   HandleMark   hm;
4370 
4371   // ---------- rescan from roots --------------
4372   _timer.start();
4373   GenCollectedHeap* gch = GenCollectedHeap::heap();
4374   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4375     _collector->_span, _collector->ref_processor(),
4376     &(_collector->_markBitMap),
4377     work_queue(worker_id));
4378 
4379   // Rescan young gen roots first since these are likely
4380   // coarsely partitioned and may, on that account, constitute
4381   // the critical path; thus, it's best to start off that
4382   // work first.
4383   // ---------- young gen roots --------------
4384   {
4385     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4386     _timer.stop();
4387     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4388   }
4389 
4390   // ---------- remaining roots --------------
4391   _timer.reset();
4392   _timer.start();
4393   gch->gen_process_roots(_strong_roots_scope,
4394                          GenCollectedHeap::OldGen,
4395                          false,     // yg was scanned above
4396                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4397                          _collector->should_unload_classes(),
4398                          &par_mrias_cl,
4399                          NULL,
4400                          NULL);     // The dirty klasses will be handled below
4401 
4402   assert(_collector->should_unload_classes()
4403          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4404          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4405   _timer.stop();
4406   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4407 
4408   // ---------- unhandled CLD scanning ----------
4409   if (worker_id == 0) { // Single threaded at the moment.
4410     _timer.reset();
4411     _timer.start();
4412 
4413     // Scan all new class loader data objects and new dependencies that were
4414     // introduced during concurrent marking.
4415     ResourceMark rm;
4416     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4417     for (int i = 0; i < array->length(); i++) {
4418       par_mrias_cl.do_cld_nv(array->at(i));
4419     }
4420 
4421     // We don't need to keep track of new CLDs anymore.
4422     ClassLoaderDataGraph::remember_new_clds(false);
4423 
4424     _timer.stop();
4425     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4426   }
4427 
4428   // ---------- dirty klass scanning ----------
4429   if (worker_id == 0) { // Single threaded at the moment.
4430     _timer.reset();
4431     _timer.start();
4432 
4433     // Scan all classes that was dirtied during the concurrent marking phase.
4434     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4435     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4436 
4437     _timer.stop();
4438     log_trace(gc, task)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4439   }
4440 
4441   // We might have added oops to ClassLoaderData::_handles during the
4442   // concurrent marking phase. These oops point to newly allocated objects
4443   // that are guaranteed to be kept alive. Either by the direct allocation
4444   // code, or when the young collector processes the roots. Hence,
4445   // we don't have to revisit the _handles block during the remark phase.
4446 
4447   // ---------- rescan dirty cards ------------
4448   _timer.reset();
4449   _timer.start();
4450 
4451   // Do the rescan tasks for each of the two spaces
4452   // (cms_space) in turn.
4453   // "worker_id" is passed to select the task_queue for "worker_id"
4454   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4455   _timer.stop();
4456   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4457 
4458   // ---------- steal work from other threads ...
4459   // ---------- ... and drain overflow list.
4460   _timer.reset();
4461   _timer.start();
4462   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4463   _timer.stop();
4464   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4465 }
4466 
4467 // Note that parameter "i" is not used.
4468 void
4469 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4470   OopsInGenClosure* cl, ContiguousSpace* space,
4471   HeapWord** chunk_array, size_t chunk_top) {
4472   // Until all tasks completed:
4473   // . claim an unclaimed task
4474   // . compute region boundaries corresponding to task claimed
4475   //   using chunk_array
4476   // . par_oop_iterate(cl) over that region
4477 
4478   ResourceMark rm;
4479   HandleMark   hm;
4480 
4481   SequentialSubTasksDone* pst = space->par_seq_tasks();
4482 
4483   uint nth_task = 0;
4484   uint n_tasks  = pst->n_tasks();
4485 
4486   if (n_tasks > 0) {
4487     assert(pst->valid(), "Uninitialized use?");
4488     HeapWord *start, *end;
4489     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4490       // We claimed task # nth_task; compute its boundaries.
4491       if (chunk_top == 0) {  // no samples were taken
4492         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4493         start = space->bottom();
4494         end   = space->top();
4495       } else if (nth_task == 0) {
4496         start = space->bottom();
4497         end   = chunk_array[nth_task];
4498       } else if (nth_task < (uint)chunk_top) {
4499         assert(nth_task >= 1, "Control point invariant");
4500         start = chunk_array[nth_task - 1];
4501         end   = chunk_array[nth_task];
4502       } else {
4503         assert(nth_task == (uint)chunk_top, "Control point invariant");
4504         start = chunk_array[chunk_top - 1];
4505         end   = space->top();
4506       }
4507       MemRegion mr(start, end);
4508       // Verify that mr is in space
4509       assert(mr.is_empty() || space->used_region().contains(mr),
4510              "Should be in space");
4511       // Verify that "start" is an object boundary
4512       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4513              "Should be an oop");
4514       space->par_oop_iterate(mr, cl);
4515     }
4516     pst->all_tasks_completed();
4517   }
4518 }
4519 
4520 void
4521 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4522   CompactibleFreeListSpace* sp, int i,
4523   Par_MarkRefsIntoAndScanClosure* cl) {
4524   // Until all tasks completed:
4525   // . claim an unclaimed task
4526   // . compute region boundaries corresponding to task claimed
4527   // . transfer dirty bits ct->mut for that region
4528   // . apply rescanclosure to dirty mut bits for that region
4529 
4530   ResourceMark rm;
4531   HandleMark   hm;
4532 
4533   OopTaskQueue* work_q = work_queue(i);
4534   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4535   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4536   // CAUTION: This closure has state that persists across calls to
4537   // the work method dirty_range_iterate_clear() in that it has
4538   // embedded in it a (subtype of) UpwardsObjectClosure. The
4539   // use of that state in the embedded UpwardsObjectClosure instance
4540   // assumes that the cards are always iterated (even if in parallel
4541   // by several threads) in monotonically increasing order per each
4542   // thread. This is true of the implementation below which picks
4543   // card ranges (chunks) in monotonically increasing order globally
4544   // and, a-fortiori, in monotonically increasing order per thread
4545   // (the latter order being a subsequence of the former).
4546   // If the work code below is ever reorganized into a more chaotic
4547   // work-partitioning form than the current "sequential tasks"
4548   // paradigm, the use of that persistent state will have to be
4549   // revisited and modified appropriately. See also related
4550   // bug 4756801 work on which should examine this code to make
4551   // sure that the changes there do not run counter to the
4552   // assumptions made here and necessary for correctness and
4553   // efficiency. Note also that this code might yield inefficient
4554   // behavior in the case of very large objects that span one or
4555   // more work chunks. Such objects would potentially be scanned
4556   // several times redundantly. Work on 4756801 should try and
4557   // address that performance anomaly if at all possible. XXX
4558   MemRegion  full_span  = _collector->_span;
4559   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4560   MarkFromDirtyCardsClosure
4561     greyRescanClosure(_collector, full_span, // entire span of interest
4562                       sp, bm, work_q, cl);
4563 
4564   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4565   assert(pst->valid(), "Uninitialized use?");
4566   uint nth_task = 0;
4567   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4568   MemRegion span = sp->used_region();
4569   HeapWord* start_addr = span.start();
4570   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4571                                            alignment);
4572   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4573   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4574          start_addr, "Check alignment");
4575   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4576          chunk_size, "Check alignment");
4577 
4578   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4579     // Having claimed the nth_task, compute corresponding mem-region,
4580     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4581     // The alignment restriction ensures that we do not need any
4582     // synchronization with other gang-workers while setting or
4583     // clearing bits in thus chunk of the MUT.
4584     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4585                                     start_addr + (nth_task+1)*chunk_size);
4586     // The last chunk's end might be way beyond end of the
4587     // used region. In that case pull back appropriately.
4588     if (this_span.end() > end_addr) {
4589       this_span.set_end(end_addr);
4590       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4591     }
4592     // Iterate over the dirty cards covering this chunk, marking them
4593     // precleaned, and setting the corresponding bits in the mod union
4594     // table. Since we have been careful to partition at Card and MUT-word
4595     // boundaries no synchronization is needed between parallel threads.
4596     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4597                                                  &modUnionClosure);
4598 
4599     // Having transferred these marks into the modUnionTable,
4600     // rescan the marked objects on the dirty cards in the modUnionTable.
4601     // Even if this is at a synchronous collection, the initial marking
4602     // may have been done during an asynchronous collection so there
4603     // may be dirty bits in the mod-union table.
4604     _collector->_modUnionTable.dirty_range_iterate_clear(
4605                   this_span, &greyRescanClosure);
4606     _collector->_modUnionTable.verifyNoOneBitsInRange(
4607                                  this_span.start(),
4608                                  this_span.end());
4609   }
4610   pst->all_tasks_completed();  // declare that i am done
4611 }
4612 
4613 // . see if we can share work_queues with ParNew? XXX
4614 void
4615 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4616                                 int* seed) {
4617   OopTaskQueue* work_q = work_queue(i);
4618   NOT_PRODUCT(int num_steals = 0;)
4619   oop obj_to_scan;
4620   CMSBitMap* bm = &(_collector->_markBitMap);
4621 
4622   while (true) {
4623     // Completely finish any left over work from (an) earlier round(s)
4624     cl->trim_queue(0);
4625     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4626                                          (size_t)ParGCDesiredObjsFromOverflowList);
4627     // Now check if there's any work in the overflow list
4628     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4629     // only affects the number of attempts made to get work from the
4630     // overflow list and does not affect the number of workers.  Just
4631     // pass ParallelGCThreads so this behavior is unchanged.
4632     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4633                                                 work_q,
4634                                                 ParallelGCThreads)) {
4635       // found something in global overflow list;
4636       // not yet ready to go stealing work from others.
4637       // We'd like to assert(work_q->size() != 0, ...)
4638       // because we just took work from the overflow list,
4639       // but of course we can't since all of that could have
4640       // been already stolen from us.
4641       // "He giveth and He taketh away."
4642       continue;
4643     }
4644     // Verify that we have no work before we resort to stealing
4645     assert(work_q->size() == 0, "Have work, shouldn't steal");
4646     // Try to steal from other queues that have work
4647     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4648       NOT_PRODUCT(num_steals++;)
4649       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4650       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4651       // Do scanning work
4652       obj_to_scan->oop_iterate(cl);
4653       // Loop around, finish this work, and try to steal some more
4654     } else if (terminator()->offer_termination()) {
4655         break;  // nirvana from the infinite cycle
4656     }
4657   }
4658   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4659   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4660          "Else our work is not yet done");
4661 }
4662 
4663 // Record object boundaries in _eden_chunk_array by sampling the eden
4664 // top in the slow-path eden object allocation code path and record
4665 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4666 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4667 // sampling in sample_eden() that activates during the part of the
4668 // preclean phase.
4669 void CMSCollector::sample_eden_chunk() {
4670   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4671     if (_eden_chunk_lock->try_lock()) {
4672       // Record a sample. This is the critical section. The contents
4673       // of the _eden_chunk_array have to be non-decreasing in the
4674       // address order.
4675       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4676       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4677              "Unexpected state of Eden");
4678       if (_eden_chunk_index == 0 ||
4679           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4680            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4681                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4682         _eden_chunk_index++;  // commit sample
4683       }
4684       _eden_chunk_lock->unlock();
4685     }
4686   }
4687 }
4688 
4689 // Return a thread-local PLAB recording array, as appropriate.
4690 void* CMSCollector::get_data_recorder(int thr_num) {
4691   if (_survivor_plab_array != NULL &&
4692       (CMSPLABRecordAlways ||
4693        (_collectorState > Marking && _collectorState < FinalMarking))) {
4694     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4695     ChunkArray* ca = &_survivor_plab_array[thr_num];
4696     ca->reset();   // clear it so that fresh data is recorded
4697     return (void*) ca;
4698   } else {
4699     return NULL;
4700   }
4701 }
4702 
4703 // Reset all the thread-local PLAB recording arrays
4704 void CMSCollector::reset_survivor_plab_arrays() {
4705   for (uint i = 0; i < ParallelGCThreads; i++) {
4706     _survivor_plab_array[i].reset();
4707   }
4708 }
4709 
4710 // Merge the per-thread plab arrays into the global survivor chunk
4711 // array which will provide the partitioning of the survivor space
4712 // for CMS initial scan and rescan.
4713 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4714                                               int no_of_gc_threads) {
4715   assert(_survivor_plab_array  != NULL, "Error");
4716   assert(_survivor_chunk_array != NULL, "Error");
4717   assert(_collectorState == FinalMarking ||
4718          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4719   for (int j = 0; j < no_of_gc_threads; j++) {
4720     _cursor[j] = 0;
4721   }
4722   HeapWord* top = surv->top();
4723   size_t i;
4724   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4725     HeapWord* min_val = top;          // Higher than any PLAB address
4726     uint      min_tid = 0;            // position of min_val this round
4727     for (int j = 0; j < no_of_gc_threads; j++) {
4728       ChunkArray* cur_sca = &_survivor_plab_array[j];
4729       if (_cursor[j] == cur_sca->end()) {
4730         continue;
4731       }
4732       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4733       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4734       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4735       if (cur_val < min_val) {
4736         min_tid = j;
4737         min_val = cur_val;
4738       } else {
4739         assert(cur_val < top, "All recorded addresses should be less");
4740       }
4741     }
4742     // At this point min_val and min_tid are respectively
4743     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4744     // and the thread (j) that witnesses that address.
4745     // We record this address in the _survivor_chunk_array[i]
4746     // and increment _cursor[min_tid] prior to the next round i.
4747     if (min_val == top) {
4748       break;
4749     }
4750     _survivor_chunk_array[i] = min_val;
4751     _cursor[min_tid]++;
4752   }
4753   // We are all done; record the size of the _survivor_chunk_array
4754   _survivor_chunk_index = i; // exclusive: [0, i)
4755   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4756   // Verify that we used up all the recorded entries
4757   #ifdef ASSERT
4758     size_t total = 0;
4759     for (int j = 0; j < no_of_gc_threads; j++) {
4760       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4761       total += _cursor[j];
4762     }
4763     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4764     // Check that the merged array is in sorted order
4765     if (total > 0) {
4766       for (size_t i = 0; i < total - 1; i++) {
4767         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4768                                      i, p2i(_survivor_chunk_array[i]));
4769         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4770                "Not sorted");
4771       }
4772     }
4773   #endif // ASSERT
4774 }
4775 
4776 // Set up the space's par_seq_tasks structure for work claiming
4777 // for parallel initial scan and rescan of young gen.
4778 // See ParRescanTask where this is currently used.
4779 void
4780 CMSCollector::
4781 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4782   assert(n_threads > 0, "Unexpected n_threads argument");
4783 
4784   // Eden space
4785   if (!_young_gen->eden()->is_empty()) {
4786     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4787     assert(!pst->valid(), "Clobbering existing data?");
4788     // Each valid entry in [0, _eden_chunk_index) represents a task.
4789     size_t n_tasks = _eden_chunk_index + 1;
4790     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4791     // Sets the condition for completion of the subtask (how many threads
4792     // need to finish in order to be done).
4793     pst->set_n_threads(n_threads);
4794     pst->set_n_tasks((int)n_tasks);
4795   }
4796 
4797   // Merge the survivor plab arrays into _survivor_chunk_array
4798   if (_survivor_plab_array != NULL) {
4799     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4800   } else {
4801     assert(_survivor_chunk_index == 0, "Error");
4802   }
4803 
4804   // To space
4805   {
4806     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4807     assert(!pst->valid(), "Clobbering existing data?");
4808     // Sets the condition for completion of the subtask (how many threads
4809     // need to finish in order to be done).
4810     pst->set_n_threads(n_threads);
4811     pst->set_n_tasks(1);
4812     assert(pst->valid(), "Error");
4813   }
4814 
4815   // From space
4816   {
4817     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4818     assert(!pst->valid(), "Clobbering existing data?");
4819     size_t n_tasks = _survivor_chunk_index + 1;
4820     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4821     // Sets the condition for completion of the subtask (how many threads
4822     // need to finish in order to be done).
4823     pst->set_n_threads(n_threads);
4824     pst->set_n_tasks((int)n_tasks);
4825     assert(pst->valid(), "Error");
4826   }
4827 }
4828 
4829 // Parallel version of remark
4830 void CMSCollector::do_remark_parallel() {
4831   GenCollectedHeap* gch = GenCollectedHeap::heap();
4832   WorkGang* workers = gch->workers();
4833   assert(workers != NULL, "Need parallel worker threads.");
4834   // Choose to use the number of GC workers most recently set
4835   // into "active_workers".
4836   uint n_workers = workers->active_workers();
4837 
4838   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4839 
4840   StrongRootsScope srs(n_workers);
4841 
4842   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4843 
4844   // We won't be iterating over the cards in the card table updating
4845   // the younger_gen cards, so we shouldn't call the following else
4846   // the verification code as well as subsequent younger_refs_iterate
4847   // code would get confused. XXX
4848   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4849 
4850   // The young gen rescan work will not be done as part of
4851   // process_roots (which currently doesn't know how to
4852   // parallelize such a scan), but rather will be broken up into
4853   // a set of parallel tasks (via the sampling that the [abortable]
4854   // preclean phase did of eden, plus the [two] tasks of
4855   // scanning the [two] survivor spaces. Further fine-grain
4856   // parallelization of the scanning of the survivor spaces
4857   // themselves, and of precleaning of the young gen itself
4858   // is deferred to the future.
4859   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4860 
4861   // The dirty card rescan work is broken up into a "sequence"
4862   // of parallel tasks (per constituent space) that are dynamically
4863   // claimed by the parallel threads.
4864   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4865 
4866   // It turns out that even when we're using 1 thread, doing the work in a
4867   // separate thread causes wide variance in run times.  We can't help this
4868   // in the multi-threaded case, but we special-case n=1 here to get
4869   // repeatable measurements of the 1-thread overhead of the parallel code.
4870   if (n_workers > 1) {
4871     // Make refs discovery MT-safe, if it isn't already: it may not
4872     // necessarily be so, since it's possible that we are doing
4873     // ST marking.
4874     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4875     workers->run_task(&tsk);
4876   } else {
4877     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4878     tsk.work(0);
4879   }
4880 
4881   // restore, single-threaded for now, any preserved marks
4882   // as a result of work_q overflow
4883   restore_preserved_marks_if_any();
4884 }
4885 
4886 // Non-parallel version of remark
4887 void CMSCollector::do_remark_non_parallel() {
4888   ResourceMark rm;
4889   HandleMark   hm;
4890   GenCollectedHeap* gch = GenCollectedHeap::heap();
4891   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4892 
4893   MarkRefsIntoAndScanClosure
4894     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4895              &_markStack, this,
4896              false /* should_yield */, false /* not precleaning */);
4897   MarkFromDirtyCardsClosure
4898     markFromDirtyCardsClosure(this, _span,
4899                               NULL,  // space is set further below
4900                               &_markBitMap, &_markStack, &mrias_cl);
4901   {
4902     GCTraceTime(Trace, gc) t("Grey Object Rescan", _gc_timer_cm);
4903     // Iterate over the dirty cards, setting the corresponding bits in the
4904     // mod union table.
4905     {
4906       ModUnionClosure modUnionClosure(&_modUnionTable);
4907       _ct->ct_bs()->dirty_card_iterate(
4908                       _cmsGen->used_region(),
4909                       &modUnionClosure);
4910     }
4911     // Having transferred these marks into the modUnionTable, we just need
4912     // to rescan the marked objects on the dirty cards in the modUnionTable.
4913     // The initial marking may have been done during an asynchronous
4914     // collection so there may be dirty bits in the mod-union table.
4915     const int alignment =
4916       CardTableModRefBS::card_size * BitsPerWord;
4917     {
4918       // ... First handle dirty cards in CMS gen
4919       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4920       MemRegion ur = _cmsGen->used_region();
4921       HeapWord* lb = ur.start();
4922       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4923       MemRegion cms_span(lb, ub);
4924       _modUnionTable.dirty_range_iterate_clear(cms_span,
4925                                                &markFromDirtyCardsClosure);
4926       verify_work_stacks_empty();
4927       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4928     }
4929   }
4930   if (VerifyDuringGC &&
4931       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4932     HandleMark hm;  // Discard invalid handles created during verification
4933     Universe::verify();
4934   }
4935   {
4936     GCTraceTime(Trace, gc) t("Root Rescan", _gc_timer_cm);
4937 
4938     verify_work_stacks_empty();
4939 
4940     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4941     StrongRootsScope srs(1);
4942 
4943     gch->gen_process_roots(&srs,
4944                            GenCollectedHeap::OldGen,
4945                            true,  // young gen as roots
4946                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4947                            should_unload_classes(),
4948                            &mrias_cl,
4949                            NULL,
4950                            NULL); // The dirty klasses will be handled below
4951 
4952     assert(should_unload_classes()
4953            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4954            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4955   }
4956 
4957   {
4958     GCTraceTime(Trace, gc) t("Visit Unhandled CLDs", _gc_timer_cm);
4959 
4960     verify_work_stacks_empty();
4961 
4962     // Scan all class loader data objects that might have been introduced
4963     // during concurrent marking.
4964     ResourceMark rm;
4965     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4966     for (int i = 0; i < array->length(); i++) {
4967       mrias_cl.do_cld_nv(array->at(i));
4968     }
4969 
4970     // We don't need to keep track of new CLDs anymore.
4971     ClassLoaderDataGraph::remember_new_clds(false);
4972 
4973     verify_work_stacks_empty();
4974   }
4975 
4976   {
4977     GCTraceTime(Trace, gc) t("Dirty Klass Scan", _gc_timer_cm);
4978 
4979     verify_work_stacks_empty();
4980 
4981     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4982     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4983 
4984     verify_work_stacks_empty();
4985   }
4986 
4987   // We might have added oops to ClassLoaderData::_handles during the
4988   // concurrent marking phase. These oops point to newly allocated objects
4989   // that are guaranteed to be kept alive. Either by the direct allocation
4990   // code, or when the young collector processes the roots. Hence,
4991   // we don't have to revisit the _handles block during the remark phase.
4992 
4993   verify_work_stacks_empty();
4994   // Restore evacuated mark words, if any, used for overflow list links
4995   restore_preserved_marks_if_any();
4996 
4997   verify_overflow_empty();
4998 }
4999 
5000 ////////////////////////////////////////////////////////
5001 // Parallel Reference Processing Task Proxy Class
5002 ////////////////////////////////////////////////////////
5003 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5004   OopTaskQueueSet*       _queues;
5005   ParallelTaskTerminator _terminator;
5006  public:
5007   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5008     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5009   ParallelTaskTerminator* terminator() { return &_terminator; }
5010   OopTaskQueueSet* queues() { return _queues; }
5011 };
5012 
5013 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5014   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5015   CMSCollector*          _collector;
5016   CMSBitMap*             _mark_bit_map;
5017   const MemRegion        _span;
5018   ProcessTask&           _task;
5019 
5020 public:
5021   CMSRefProcTaskProxy(ProcessTask&     task,
5022                       CMSCollector*    collector,
5023                       const MemRegion& span,
5024                       CMSBitMap*       mark_bit_map,
5025                       AbstractWorkGang* workers,
5026                       OopTaskQueueSet* task_queues):
5027     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5028       task_queues,
5029       workers->active_workers()),
5030     _task(task),
5031     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5032   {
5033     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5034            "Inconsistency in _span");
5035   }
5036 
5037   OopTaskQueueSet* task_queues() { return queues(); }
5038 
5039   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5040 
5041   void do_work_steal(int i,
5042                      CMSParDrainMarkingStackClosure* drain,
5043                      CMSParKeepAliveClosure* keep_alive,
5044                      int* seed);
5045 
5046   virtual void work(uint worker_id);
5047 };
5048 
5049 void CMSRefProcTaskProxy::work(uint worker_id) {
5050   ResourceMark rm;
5051   HandleMark hm;
5052   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5053   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5054                                         _mark_bit_map,
5055                                         work_queue(worker_id));
5056   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5057                                                  _mark_bit_map,
5058                                                  work_queue(worker_id));
5059   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5060   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5061   if (_task.marks_oops_alive()) {
5062     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5063                   _collector->hash_seed(worker_id));
5064   }
5065   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5066   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5067 }
5068 
5069 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5070   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5071   EnqueueTask& _task;
5072 
5073 public:
5074   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5075     : AbstractGangTask("Enqueue reference objects in parallel"),
5076       _task(task)
5077   { }
5078 
5079   virtual void work(uint worker_id)
5080   {
5081     _task.work(worker_id);
5082   }
5083 };
5084 
5085 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5086   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5087    _span(span),
5088    _bit_map(bit_map),
5089    _work_queue(work_queue),
5090    _mark_and_push(collector, span, bit_map, work_queue),
5091    _low_water_mark(MIN2((work_queue->max_elems()/4),
5092                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5093 { }
5094 
5095 // . see if we can share work_queues with ParNew? XXX
5096 void CMSRefProcTaskProxy::do_work_steal(int i,
5097   CMSParDrainMarkingStackClosure* drain,
5098   CMSParKeepAliveClosure* keep_alive,
5099   int* seed) {
5100   OopTaskQueue* work_q = work_queue(i);
5101   NOT_PRODUCT(int num_steals = 0;)
5102   oop obj_to_scan;
5103 
5104   while (true) {
5105     // Completely finish any left over work from (an) earlier round(s)
5106     drain->trim_queue(0);
5107     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5108                                          (size_t)ParGCDesiredObjsFromOverflowList);
5109     // Now check if there's any work in the overflow list
5110     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5111     // only affects the number of attempts made to get work from the
5112     // overflow list and does not affect the number of workers.  Just
5113     // pass ParallelGCThreads so this behavior is unchanged.
5114     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5115                                                 work_q,
5116                                                 ParallelGCThreads)) {
5117       // Found something in global overflow list;
5118       // not yet ready to go stealing work from others.
5119       // We'd like to assert(work_q->size() != 0, ...)
5120       // because we just took work from the overflow list,
5121       // but of course we can't, since all of that might have
5122       // been already stolen from us.
5123       continue;
5124     }
5125     // Verify that we have no work before we resort to stealing
5126     assert(work_q->size() == 0, "Have work, shouldn't steal");
5127     // Try to steal from other queues that have work
5128     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5129       NOT_PRODUCT(num_steals++;)
5130       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5131       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5132       // Do scanning work
5133       obj_to_scan->oop_iterate(keep_alive);
5134       // Loop around, finish this work, and try to steal some more
5135     } else if (terminator()->offer_termination()) {
5136       break;  // nirvana from the infinite cycle
5137     }
5138   }
5139   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5140 }
5141 
5142 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5143 {
5144   GenCollectedHeap* gch = GenCollectedHeap::heap();
5145   WorkGang* workers = gch->workers();
5146   assert(workers != NULL, "Need parallel worker threads.");
5147   CMSRefProcTaskProxy rp_task(task, &_collector,
5148                               _collector.ref_processor()->span(),
5149                               _collector.markBitMap(),
5150                               workers, _collector.task_queues());
5151   workers->run_task(&rp_task);
5152 }
5153 
5154 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5155 {
5156 
5157   GenCollectedHeap* gch = GenCollectedHeap::heap();
5158   WorkGang* workers = gch->workers();
5159   assert(workers != NULL, "Need parallel worker threads.");
5160   CMSRefEnqueueTaskProxy enq_task(task);
5161   workers->run_task(&enq_task);
5162 }
5163 
5164 void CMSCollector::refProcessingWork() {
5165   ResourceMark rm;
5166   HandleMark   hm;
5167 
5168   ReferenceProcessor* rp = ref_processor();
5169   assert(rp->span().equals(_span), "Spans should be equal");
5170   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5171   // Process weak references.
5172   rp->setup_policy(false);
5173   verify_work_stacks_empty();
5174 
5175   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5176                                           &_markStack, false /* !preclean */);
5177   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5178                                 _span, &_markBitMap, &_markStack,
5179                                 &cmsKeepAliveClosure, false /* !preclean */);
5180   {
5181     GCTraceTime(Debug, gc) t("Weak Refs Processing", _gc_timer_cm);
5182 
5183     ReferenceProcessorStats stats;
5184     if (rp->processing_is_mt()) {
5185       // Set the degree of MT here.  If the discovery is done MT, there
5186       // may have been a different number of threads doing the discovery
5187       // and a different number of discovered lists may have Ref objects.
5188       // That is OK as long as the Reference lists are balanced (see
5189       // balance_all_queues() and balance_queues()).
5190       GenCollectedHeap* gch = GenCollectedHeap::heap();
5191       uint active_workers = ParallelGCThreads;
5192       WorkGang* workers = gch->workers();
5193       if (workers != NULL) {
5194         active_workers = workers->active_workers();
5195         // The expectation is that active_workers will have already
5196         // been set to a reasonable value.  If it has not been set,
5197         // investigate.
5198         assert(active_workers > 0, "Should have been set during scavenge");
5199       }
5200       rp->set_active_mt_degree(active_workers);
5201       CMSRefProcTaskExecutor task_executor(*this);
5202       stats = rp->process_discovered_references(&_is_alive_closure,
5203                                         &cmsKeepAliveClosure,
5204                                         &cmsDrainMarkingStackClosure,
5205                                         &task_executor,
5206                                         _gc_timer_cm);
5207     } else {
5208       stats = rp->process_discovered_references(&_is_alive_closure,
5209                                         &cmsKeepAliveClosure,
5210                                         &cmsDrainMarkingStackClosure,
5211                                         NULL,
5212                                         _gc_timer_cm);
5213     }
5214     _gc_tracer_cm->report_gc_reference_stats(stats);
5215 
5216   }
5217 
5218   // This is the point where the entire marking should have completed.
5219   verify_work_stacks_empty();
5220 
5221   if (should_unload_classes()) {
5222     {
5223       GCTraceTime(Debug, gc) t("Class Unloading", _gc_timer_cm);
5224 
5225       // Unload classes and purge the SystemDictionary.
5226       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5227 
5228       // Unload nmethods.
5229       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5230 
5231       // Prune dead klasses from subklass/sibling/implementor lists.
5232       Klass::clean_weak_klass_links(&_is_alive_closure);
5233     }
5234 
5235     {
5236       GCTraceTime(Debug, gc) t("Scrub Symbol Table", _gc_timer_cm);
5237       // Clean up unreferenced symbols in symbol table.
5238       SymbolTable::unlink();
5239     }
5240 
5241     {
5242       GCTraceTime(Debug, gc) t("Scrub String Table", _gc_timer_cm);
5243       // Delete entries for dead interned strings.
5244       StringTable::unlink(&_is_alive_closure);
5245     }
5246   }
5247 
5248 
5249   // Restore any preserved marks as a result of mark stack or
5250   // work queue overflow
5251   restore_preserved_marks_if_any();  // done single-threaded for now
5252 
5253   rp->set_enqueuing_is_done(true);
5254   if (rp->processing_is_mt()) {
5255     rp->balance_all_queues();
5256     CMSRefProcTaskExecutor task_executor(*this);
5257     rp->enqueue_discovered_references(&task_executor);
5258   } else {
5259     rp->enqueue_discovered_references(NULL);
5260   }
5261   rp->verify_no_references_recorded();
5262   assert(!rp->discovery_enabled(), "should have been disabled");
5263 }
5264 
5265 #ifndef PRODUCT
5266 void CMSCollector::check_correct_thread_executing() {
5267   Thread* t = Thread::current();
5268   // Only the VM thread or the CMS thread should be here.
5269   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5270          "Unexpected thread type");
5271   // If this is the vm thread, the foreground process
5272   // should not be waiting.  Note that _foregroundGCIsActive is
5273   // true while the foreground collector is waiting.
5274   if (_foregroundGCShouldWait) {
5275     // We cannot be the VM thread
5276     assert(t->is_ConcurrentGC_thread(),
5277            "Should be CMS thread");
5278   } else {
5279     // We can be the CMS thread only if we are in a stop-world
5280     // phase of CMS collection.
5281     if (t->is_ConcurrentGC_thread()) {
5282       assert(_collectorState == InitialMarking ||
5283              _collectorState == FinalMarking,
5284              "Should be a stop-world phase");
5285       // The CMS thread should be holding the CMS_token.
5286       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5287              "Potential interference with concurrently "
5288              "executing VM thread");
5289     }
5290   }
5291 }
5292 #endif
5293 
5294 void CMSCollector::sweep() {
5295   assert(_collectorState == Sweeping, "just checking");
5296   check_correct_thread_executing();
5297   verify_work_stacks_empty();
5298   verify_overflow_empty();
5299   increment_sweep_count();
5300   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5301 
5302   _inter_sweep_timer.stop();
5303   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5304 
5305   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5306   _intra_sweep_timer.reset();
5307   _intra_sweep_timer.start();
5308   {
5309     GCTraceCPUTime tcpu;
5310     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5311     // First sweep the old gen
5312     {
5313       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5314                                bitMapLock());
5315       sweepWork(_cmsGen);
5316     }
5317 
5318     // Update Universe::_heap_*_at_gc figures.
5319     // We need all the free list locks to make the abstract state
5320     // transition from Sweeping to Resetting. See detailed note
5321     // further below.
5322     {
5323       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5324       // Update heap occupancy information which is used as
5325       // input to soft ref clearing policy at the next gc.
5326       Universe::update_heap_info_at_gc();
5327       _collectorState = Resizing;
5328     }
5329   }
5330   verify_work_stacks_empty();
5331   verify_overflow_empty();
5332 
5333   if (should_unload_classes()) {
5334     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5335     // requires that the virtual spaces are stable and not deleted.
5336     ClassLoaderDataGraph::set_should_purge(true);
5337   }
5338 
5339   _intra_sweep_timer.stop();
5340   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5341 
5342   _inter_sweep_timer.reset();
5343   _inter_sweep_timer.start();
5344 
5345   // We need to use a monotonically non-decreasing time in ms
5346   // or we will see time-warp warnings and os::javaTimeMillis()
5347   // does not guarantee monotonicity.
5348   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5349   update_time_of_last_gc(now);
5350 
5351   // NOTE on abstract state transitions:
5352   // Mutators allocate-live and/or mark the mod-union table dirty
5353   // based on the state of the collection.  The former is done in
5354   // the interval [Marking, Sweeping] and the latter in the interval
5355   // [Marking, Sweeping).  Thus the transitions into the Marking state
5356   // and out of the Sweeping state must be synchronously visible
5357   // globally to the mutators.
5358   // The transition into the Marking state happens with the world
5359   // stopped so the mutators will globally see it.  Sweeping is
5360   // done asynchronously by the background collector so the transition
5361   // from the Sweeping state to the Resizing state must be done
5362   // under the freelistLock (as is the check for whether to
5363   // allocate-live and whether to dirty the mod-union table).
5364   assert(_collectorState == Resizing, "Change of collector state to"
5365     " Resizing must be done under the freelistLocks (plural)");
5366 
5367   // Now that sweeping has been completed, we clear
5368   // the incremental_collection_failed flag,
5369   // thus inviting a younger gen collection to promote into
5370   // this generation. If such a promotion may still fail,
5371   // the flag will be set again when a young collection is
5372   // attempted.
5373   GenCollectedHeap* gch = GenCollectedHeap::heap();
5374   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5375   gch->update_full_collections_completed(_collection_count_start);
5376 }
5377 
5378 // FIX ME!!! Looks like this belongs in CFLSpace, with
5379 // CMSGen merely delegating to it.
5380 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5381   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5382   HeapWord*  minAddr        = _cmsSpace->bottom();
5383   HeapWord*  largestAddr    =
5384     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5385   if (largestAddr == NULL) {
5386     // The dictionary appears to be empty.  In this case
5387     // try to coalesce at the end of the heap.
5388     largestAddr = _cmsSpace->end();
5389   }
5390   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5391   size_t nearLargestOffset =
5392     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5393   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5394                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5395   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5396 }
5397 
5398 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5399   return addr >= _cmsSpace->nearLargestChunk();
5400 }
5401 
5402 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5403   return _cmsSpace->find_chunk_at_end();
5404 }
5405 
5406 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5407                                                     bool full) {
5408   // If the young generation has been collected, gather any statistics
5409   // that are of interest at this point.
5410   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5411   if (!full && current_is_young) {
5412     // Gather statistics on the young generation collection.
5413     collector()->stats().record_gc0_end(used());
5414   }
5415 }
5416 
5417 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5418   // We iterate over the space(s) underlying this generation,
5419   // checking the mark bit map to see if the bits corresponding
5420   // to specific blocks are marked or not. Blocks that are
5421   // marked are live and are not swept up. All remaining blocks
5422   // are swept up, with coalescing on-the-fly as we sweep up
5423   // contiguous free and/or garbage blocks:
5424   // We need to ensure that the sweeper synchronizes with allocators
5425   // and stop-the-world collectors. In particular, the following
5426   // locks are used:
5427   // . CMS token: if this is held, a stop the world collection cannot occur
5428   // . freelistLock: if this is held no allocation can occur from this
5429   //                 generation by another thread
5430   // . bitMapLock: if this is held, no other thread can access or update
5431   //
5432 
5433   // Note that we need to hold the freelistLock if we use
5434   // block iterate below; else the iterator might go awry if
5435   // a mutator (or promotion) causes block contents to change
5436   // (for instance if the allocator divvies up a block).
5437   // If we hold the free list lock, for all practical purposes
5438   // young generation GC's can't occur (they'll usually need to
5439   // promote), so we might as well prevent all young generation
5440   // GC's while we do a sweeping step. For the same reason, we might
5441   // as well take the bit map lock for the entire duration
5442 
5443   // check that we hold the requisite locks
5444   assert(have_cms_token(), "Should hold cms token");
5445   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5446   assert_lock_strong(old_gen->freelistLock());
5447   assert_lock_strong(bitMapLock());
5448 
5449   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5450   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5451   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5452                                           _inter_sweep_estimate.padded_average(),
5453                                           _intra_sweep_estimate.padded_average());
5454   old_gen->setNearLargestChunk();
5455 
5456   {
5457     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5458     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5459     // We need to free-up/coalesce garbage/blocks from a
5460     // co-terminal free run. This is done in the SweepClosure
5461     // destructor; so, do not remove this scope, else the
5462     // end-of-sweep-census below will be off by a little bit.
5463   }
5464   old_gen->cmsSpace()->sweep_completed();
5465   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5466   if (should_unload_classes()) {                // unloaded classes this cycle,
5467     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5468   } else {                                      // did not unload classes,
5469     _concurrent_cycles_since_last_unload++;     // ... increment count
5470   }
5471 }
5472 
5473 // Reset CMS data structures (for now just the marking bit map)
5474 // preparatory for the next cycle.
5475 void CMSCollector::reset_concurrent() {
5476   CMSTokenSyncWithLocks ts(true, bitMapLock());
5477 
5478   // If the state is not "Resetting", the foreground  thread
5479   // has done a collection and the resetting.
5480   if (_collectorState != Resetting) {
5481     assert(_collectorState == Idling, "The state should only change"
5482       " because the foreground collector has finished the collection");
5483     return;
5484   }
5485 
5486   // Clear the mark bitmap (no grey objects to start with)
5487   // for the next cycle.
5488   GCTraceCPUTime tcpu;
5489   CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5490 
5491   HeapWord* curAddr = _markBitMap.startWord();
5492   while (curAddr < _markBitMap.endWord()) {
5493     size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5494     MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5495     _markBitMap.clear_large_range(chunk);
5496     if (ConcurrentMarkSweepThread::should_yield() &&
5497         !foregroundGCIsActive() &&
5498         CMSYield) {
5499       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5500              "CMS thread should hold CMS token");
5501       assert_lock_strong(bitMapLock());
5502       bitMapLock()->unlock();
5503       ConcurrentMarkSweepThread::desynchronize(true);
5504       stopTimer();
5505       incrementYields();
5506 
5507       // See the comment in coordinator_yield()
5508       for (unsigned i = 0; i < CMSYieldSleepCount &&
5509                        ConcurrentMarkSweepThread::should_yield() &&
5510                        !CMSCollector::foregroundGCIsActive(); ++i) {
5511         os::sleep(Thread::current(), 1, false);
5512       }
5513 
5514       ConcurrentMarkSweepThread::synchronize(true);
5515       bitMapLock()->lock_without_safepoint_check();
5516       startTimer();
5517     }
5518     curAddr = chunk.end();
5519   }
5520   // A successful mostly concurrent collection has been done.
5521   // Because only the full (i.e., concurrent mode failure) collections
5522   // are being measured for gc overhead limits, clean the "near" flag
5523   // and count.
5524   size_policy()->reset_gc_overhead_limit_count();
5525   _collectorState = Idling;
5526 
5527   register_gc_end();
5528 }
5529 
5530 // Same as above but for STW paths
5531 void CMSCollector::reset_stw() {
5532   // already have the lock
5533   assert(_collectorState == Resetting, "just checking");
5534   assert_lock_strong(bitMapLock());
5535   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5536   _markBitMap.clear_all();
5537   _collectorState = Idling;
5538   register_gc_end();
5539 }
5540 
5541 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5542   GCTraceCPUTime tcpu;
5543   TraceCollectorStats tcs(counters());
5544 
5545   switch (op) {
5546     case CMS_op_checkpointRootsInitial: {
5547       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5548       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5549       checkpointRootsInitial();
5550       break;
5551     }
5552     case CMS_op_checkpointRootsFinal: {
5553       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5554       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5555       checkpointRootsFinal();
5556       break;
5557     }
5558     default:
5559       fatal("No such CMS_op");
5560   }
5561 }
5562 
5563 #ifndef PRODUCT
5564 size_t const CMSCollector::skip_header_HeapWords() {
5565   return FreeChunk::header_size();
5566 }
5567 
5568 // Try and collect here conditions that should hold when
5569 // CMS thread is exiting. The idea is that the foreground GC
5570 // thread should not be blocked if it wants to terminate
5571 // the CMS thread and yet continue to run the VM for a while
5572 // after that.
5573 void CMSCollector::verify_ok_to_terminate() const {
5574   assert(Thread::current()->is_ConcurrentGC_thread(),
5575          "should be called by CMS thread");
5576   assert(!_foregroundGCShouldWait, "should be false");
5577   // We could check here that all the various low-level locks
5578   // are not held by the CMS thread, but that is overkill; see
5579   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5580   // is checked.
5581 }
5582 #endif
5583 
5584 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5585    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5586           "missing Printezis mark?");
5587   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5588   size_t size = pointer_delta(nextOneAddr + 1, addr);
5589   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5590          "alignment problem");
5591   assert(size >= 3, "Necessary for Printezis marks to work");
5592   return size;
5593 }
5594 
5595 // A variant of the above (block_size_using_printezis_bits()) except
5596 // that we return 0 if the P-bits are not yet set.
5597 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5598   if (_markBitMap.isMarked(addr + 1)) {
5599     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5600     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5601     size_t size = pointer_delta(nextOneAddr + 1, addr);
5602     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5603            "alignment problem");
5604     assert(size >= 3, "Necessary for Printezis marks to work");
5605     return size;
5606   }
5607   return 0;
5608 }
5609 
5610 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5611   size_t sz = 0;
5612   oop p = (oop)addr;
5613   if (p->klass_or_null() != NULL) {
5614     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5615   } else {
5616     sz = block_size_using_printezis_bits(addr);
5617   }
5618   assert(sz > 0, "size must be nonzero");
5619   HeapWord* next_block = addr + sz;
5620   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5621                                              CardTableModRefBS::card_size);
5622   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5623          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5624          "must be different cards");
5625   return next_card;
5626 }
5627 
5628 
5629 // CMS Bit Map Wrapper /////////////////////////////////////////
5630 
5631 // Construct a CMS bit map infrastructure, but don't create the
5632 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5633 // further below.
5634 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5635   _bm(),
5636   _shifter(shifter),
5637   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5638                                     Monitor::_safepoint_check_sometimes) : NULL)
5639 {
5640   _bmStartWord = 0;
5641   _bmWordSize  = 0;
5642 }
5643 
5644 bool CMSBitMap::allocate(MemRegion mr) {
5645   _bmStartWord = mr.start();
5646   _bmWordSize  = mr.word_size();
5647   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5648                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5649   if (!brs.is_reserved()) {
5650     warning("CMS bit map allocation failure");
5651     return false;
5652   }
5653   // For now we'll just commit all of the bit map up front.
5654   // Later on we'll try to be more parsimonious with swap.
5655   if (!_virtual_space.initialize(brs, brs.size())) {
5656     warning("CMS bit map backing store failure");
5657     return false;
5658   }
5659   assert(_virtual_space.committed_size() == brs.size(),
5660          "didn't reserve backing store for all of CMS bit map?");
5661   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5662   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5663          _bmWordSize, "inconsistency in bit map sizing");
5664   _bm.set_size(_bmWordSize >> _shifter);
5665 
5666   // bm.clear(); // can we rely on getting zero'd memory? verify below
5667   assert(isAllClear(),
5668          "Expected zero'd memory from ReservedSpace constructor");
5669   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5670          "consistency check");
5671   return true;
5672 }
5673 
5674 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5675   HeapWord *next_addr, *end_addr, *last_addr;
5676   assert_locked();
5677   assert(covers(mr), "out-of-range error");
5678   // XXX assert that start and end are appropriately aligned
5679   for (next_addr = mr.start(), end_addr = mr.end();
5680        next_addr < end_addr; next_addr = last_addr) {
5681     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5682     last_addr = dirty_region.end();
5683     if (!dirty_region.is_empty()) {
5684       cl->do_MemRegion(dirty_region);
5685     } else {
5686       assert(last_addr == end_addr, "program logic");
5687       return;
5688     }
5689   }
5690 }
5691 
5692 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5693   _bm.print_on_error(st, prefix);
5694 }
5695 
5696 #ifndef PRODUCT
5697 void CMSBitMap::assert_locked() const {
5698   CMSLockVerifier::assert_locked(lock());
5699 }
5700 
5701 bool CMSBitMap::covers(MemRegion mr) const {
5702   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5703   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5704          "size inconsistency");
5705   return (mr.start() >= _bmStartWord) &&
5706          (mr.end()   <= endWord());
5707 }
5708 
5709 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5710     return (start >= _bmStartWord && (start + size) <= endWord());
5711 }
5712 
5713 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5714   // verify that there are no 1 bits in the interval [left, right)
5715   FalseBitMapClosure falseBitMapClosure;
5716   iterate(&falseBitMapClosure, left, right);
5717 }
5718 
5719 void CMSBitMap::region_invariant(MemRegion mr)
5720 {
5721   assert_locked();
5722   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5723   assert(!mr.is_empty(), "unexpected empty region");
5724   assert(covers(mr), "mr should be covered by bit map");
5725   // convert address range into offset range
5726   size_t start_ofs = heapWordToOffset(mr.start());
5727   // Make sure that end() is appropriately aligned
5728   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5729                         (1 << (_shifter+LogHeapWordSize))),
5730          "Misaligned mr.end()");
5731   size_t end_ofs   = heapWordToOffset(mr.end());
5732   assert(end_ofs > start_ofs, "Should mark at least one bit");
5733 }
5734 
5735 #endif
5736 
5737 bool CMSMarkStack::allocate(size_t size) {
5738   // allocate a stack of the requisite depth
5739   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5740                    size * sizeof(oop)));
5741   if (!rs.is_reserved()) {
5742     warning("CMSMarkStack allocation failure");
5743     return false;
5744   }
5745   if (!_virtual_space.initialize(rs, rs.size())) {
5746     warning("CMSMarkStack backing store failure");
5747     return false;
5748   }
5749   assert(_virtual_space.committed_size() == rs.size(),
5750          "didn't reserve backing store for all of CMS stack?");
5751   _base = (oop*)(_virtual_space.low());
5752   _index = 0;
5753   _capacity = size;
5754   NOT_PRODUCT(_max_depth = 0);
5755   return true;
5756 }
5757 
5758 // XXX FIX ME !!! In the MT case we come in here holding a
5759 // leaf lock. For printing we need to take a further lock
5760 // which has lower rank. We need to recalibrate the two
5761 // lock-ranks involved in order to be able to print the
5762 // messages below. (Or defer the printing to the caller.
5763 // For now we take the expedient path of just disabling the
5764 // messages for the problematic case.)
5765 void CMSMarkStack::expand() {
5766   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5767   if (_capacity == MarkStackSizeMax) {
5768     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5769       // We print a warning message only once per CMS cycle.
5770       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5771     }
5772     return;
5773   }
5774   // Double capacity if possible
5775   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5776   // Do not give up existing stack until we have managed to
5777   // get the double capacity that we desired.
5778   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5779                    new_capacity * sizeof(oop)));
5780   if (rs.is_reserved()) {
5781     // Release the backing store associated with old stack
5782     _virtual_space.release();
5783     // Reinitialize virtual space for new stack
5784     if (!_virtual_space.initialize(rs, rs.size())) {
5785       fatal("Not enough swap for expanded marking stack");
5786     }
5787     _base = (oop*)(_virtual_space.low());
5788     _index = 0;
5789     _capacity = new_capacity;
5790   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5791     // Failed to double capacity, continue;
5792     // we print a detail message only once per CMS cycle.
5793     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5794                         _capacity / K, new_capacity / K);
5795   }
5796 }
5797 
5798 
5799 // Closures
5800 // XXX: there seems to be a lot of code  duplication here;
5801 // should refactor and consolidate common code.
5802 
5803 // This closure is used to mark refs into the CMS generation in
5804 // the CMS bit map. Called at the first checkpoint. This closure
5805 // assumes that we do not need to re-mark dirty cards; if the CMS
5806 // generation on which this is used is not an oldest
5807 // generation then this will lose younger_gen cards!
5808 
5809 MarkRefsIntoClosure::MarkRefsIntoClosure(
5810   MemRegion span, CMSBitMap* bitMap):
5811     _span(span),
5812     _bitMap(bitMap)
5813 {
5814   assert(ref_processor() == NULL, "deliberately left NULL");
5815   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5816 }
5817 
5818 void MarkRefsIntoClosure::do_oop(oop obj) {
5819   // if p points into _span, then mark corresponding bit in _markBitMap
5820   assert(obj->is_oop(), "expected an oop");
5821   HeapWord* addr = (HeapWord*)obj;
5822   if (_span.contains(addr)) {
5823     // this should be made more efficient
5824     _bitMap->mark(addr);
5825   }
5826 }
5827 
5828 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5829 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5830 
5831 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
5832   MemRegion span, CMSBitMap* bitMap):
5833     _span(span),
5834     _bitMap(bitMap)
5835 {
5836   assert(ref_processor() == NULL, "deliberately left NULL");
5837   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5838 }
5839 
5840 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
5841   // if p points into _span, then mark corresponding bit in _markBitMap
5842   assert(obj->is_oop(), "expected an oop");
5843   HeapWord* addr = (HeapWord*)obj;
5844   if (_span.contains(addr)) {
5845     // this should be made more efficient
5846     _bitMap->par_mark(addr);
5847   }
5848 }
5849 
5850 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
5851 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
5852 
5853 // A variant of the above, used for CMS marking verification.
5854 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5855   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5856     _span(span),
5857     _verification_bm(verification_bm),
5858     _cms_bm(cms_bm)
5859 {
5860   assert(ref_processor() == NULL, "deliberately left NULL");
5861   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5862 }
5863 
5864 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5865   // if p points into _span, then mark corresponding bit in _markBitMap
5866   assert(obj->is_oop(), "expected an oop");
5867   HeapWord* addr = (HeapWord*)obj;
5868   if (_span.contains(addr)) {
5869     _verification_bm->mark(addr);
5870     if (!_cms_bm->isMarked(addr)) {
5871       LogHandle(gc, verify) log;
5872       ResourceMark rm;
5873       oop(addr)->print_on(log.info_stream());
5874       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5875       fatal("... aborting");
5876     }
5877   }
5878 }
5879 
5880 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5881 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5882 
5883 //////////////////////////////////////////////////
5884 // MarkRefsIntoAndScanClosure
5885 //////////////////////////////////////////////////
5886 
5887 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5888                                                        ReferenceProcessor* rp,
5889                                                        CMSBitMap* bit_map,
5890                                                        CMSBitMap* mod_union_table,
5891                                                        CMSMarkStack*  mark_stack,
5892                                                        CMSCollector* collector,
5893                                                        bool should_yield,
5894                                                        bool concurrent_precleaning):
5895   _collector(collector),
5896   _span(span),
5897   _bit_map(bit_map),
5898   _mark_stack(mark_stack),
5899   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5900                       mark_stack, concurrent_precleaning),
5901   _yield(should_yield),
5902   _concurrent_precleaning(concurrent_precleaning),
5903   _freelistLock(NULL)
5904 {
5905   // FIXME: Should initialize in base class constructor.
5906   assert(rp != NULL, "ref_processor shouldn't be NULL");
5907   set_ref_processor_internal(rp);
5908 }
5909 
5910 // This closure is used to mark refs into the CMS generation at the
5911 // second (final) checkpoint, and to scan and transitively follow
5912 // the unmarked oops. It is also used during the concurrent precleaning
5913 // phase while scanning objects on dirty cards in the CMS generation.
5914 // The marks are made in the marking bit map and the marking stack is
5915 // used for keeping the (newly) grey objects during the scan.
5916 // The parallel version (Par_...) appears further below.
5917 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5918   if (obj != NULL) {
5919     assert(obj->is_oop(), "expected an oop");
5920     HeapWord* addr = (HeapWord*)obj;
5921     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5922     assert(_collector->overflow_list_is_empty(),
5923            "overflow list should be empty");
5924     if (_span.contains(addr) &&
5925         !_bit_map->isMarked(addr)) {
5926       // mark bit map (object is now grey)
5927       _bit_map->mark(addr);
5928       // push on marking stack (stack should be empty), and drain the
5929       // stack by applying this closure to the oops in the oops popped
5930       // from the stack (i.e. blacken the grey objects)
5931       bool res = _mark_stack->push(obj);
5932       assert(res, "Should have space to push on empty stack");
5933       do {
5934         oop new_oop = _mark_stack->pop();
5935         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5936         assert(_bit_map->isMarked((HeapWord*)new_oop),
5937                "only grey objects on this stack");
5938         // iterate over the oops in this oop, marking and pushing
5939         // the ones in CMS heap (i.e. in _span).
5940         new_oop->oop_iterate(&_pushAndMarkClosure);
5941         // check if it's time to yield
5942         do_yield_check();
5943       } while (!_mark_stack->isEmpty() ||
5944                (!_concurrent_precleaning && take_from_overflow_list()));
5945         // if marking stack is empty, and we are not doing this
5946         // during precleaning, then check the overflow list
5947     }
5948     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5949     assert(_collector->overflow_list_is_empty(),
5950            "overflow list was drained above");
5951 
5952     assert(_collector->no_preserved_marks(),
5953            "All preserved marks should have been restored above");
5954   }
5955 }
5956 
5957 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5958 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5959 
5960 void MarkRefsIntoAndScanClosure::do_yield_work() {
5961   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5962          "CMS thread should hold CMS token");
5963   assert_lock_strong(_freelistLock);
5964   assert_lock_strong(_bit_map->lock());
5965   // relinquish the free_list_lock and bitMaplock()
5966   _bit_map->lock()->unlock();
5967   _freelistLock->unlock();
5968   ConcurrentMarkSweepThread::desynchronize(true);
5969   _collector->stopTimer();
5970   _collector->incrementYields();
5971 
5972   // See the comment in coordinator_yield()
5973   for (unsigned i = 0;
5974        i < CMSYieldSleepCount &&
5975        ConcurrentMarkSweepThread::should_yield() &&
5976        !CMSCollector::foregroundGCIsActive();
5977        ++i) {
5978     os::sleep(Thread::current(), 1, false);
5979   }
5980 
5981   ConcurrentMarkSweepThread::synchronize(true);
5982   _freelistLock->lock_without_safepoint_check();
5983   _bit_map->lock()->lock_without_safepoint_check();
5984   _collector->startTimer();
5985 }
5986 
5987 ///////////////////////////////////////////////////////////
5988 // Par_MarkRefsIntoAndScanClosure: a parallel version of
5989 //                                 MarkRefsIntoAndScanClosure
5990 ///////////////////////////////////////////////////////////
5991 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
5992   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
5993   CMSBitMap* bit_map, OopTaskQueue* work_queue):
5994   _span(span),
5995   _bit_map(bit_map),
5996   _work_queue(work_queue),
5997   _low_water_mark(MIN2((work_queue->max_elems()/4),
5998                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
5999   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6000 {
6001   // FIXME: Should initialize in base class constructor.
6002   assert(rp != NULL, "ref_processor shouldn't be NULL");
6003   set_ref_processor_internal(rp);
6004 }
6005 
6006 // This closure is used to mark refs into the CMS generation at the
6007 // second (final) checkpoint, and to scan and transitively follow
6008 // the unmarked oops. The marks are made in the marking bit map and
6009 // the work_queue is used for keeping the (newly) grey objects during
6010 // the scan phase whence they are also available for stealing by parallel
6011 // threads. Since the marking bit map is shared, updates are
6012 // synchronized (via CAS).
6013 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6014   if (obj != NULL) {
6015     // Ignore mark word because this could be an already marked oop
6016     // that may be chained at the end of the overflow list.
6017     assert(obj->is_oop(true), "expected an oop");
6018     HeapWord* addr = (HeapWord*)obj;
6019     if (_span.contains(addr) &&
6020         !_bit_map->isMarked(addr)) {
6021       // mark bit map (object will become grey):
6022       // It is possible for several threads to be
6023       // trying to "claim" this object concurrently;
6024       // the unique thread that succeeds in marking the
6025       // object first will do the subsequent push on
6026       // to the work queue (or overflow list).
6027       if (_bit_map->par_mark(addr)) {
6028         // push on work_queue (which may not be empty), and trim the
6029         // queue to an appropriate length by applying this closure to
6030         // the oops in the oops popped from the stack (i.e. blacken the
6031         // grey objects)
6032         bool res = _work_queue->push(obj);
6033         assert(res, "Low water mark should be less than capacity?");
6034         trim_queue(_low_water_mark);
6035       } // Else, another thread claimed the object
6036     }
6037   }
6038 }
6039 
6040 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6041 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6042 
6043 // This closure is used to rescan the marked objects on the dirty cards
6044 // in the mod union table and the card table proper.
6045 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6046   oop p, MemRegion mr) {
6047 
6048   size_t size = 0;
6049   HeapWord* addr = (HeapWord*)p;
6050   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6051   assert(_span.contains(addr), "we are scanning the CMS generation");
6052   // check if it's time to yield
6053   if (do_yield_check()) {
6054     // We yielded for some foreground stop-world work,
6055     // and we have been asked to abort this ongoing preclean cycle.
6056     return 0;
6057   }
6058   if (_bitMap->isMarked(addr)) {
6059     // it's marked; is it potentially uninitialized?
6060     if (p->klass_or_null() != NULL) {
6061         // an initialized object; ignore mark word in verification below
6062         // since we are running concurrent with mutators
6063         assert(p->is_oop(true), "should be an oop");
6064         if (p->is_objArray()) {
6065           // objArrays are precisely marked; restrict scanning
6066           // to dirty cards only.
6067           size = CompactibleFreeListSpace::adjustObjectSize(
6068                    p->oop_iterate_size(_scanningClosure, mr));
6069         } else {
6070           // A non-array may have been imprecisely marked; we need
6071           // to scan object in its entirety.
6072           size = CompactibleFreeListSpace::adjustObjectSize(
6073                    p->oop_iterate_size(_scanningClosure));
6074         }
6075         #ifdef ASSERT
6076           size_t direct_size =
6077             CompactibleFreeListSpace::adjustObjectSize(p->size());
6078           assert(size == direct_size, "Inconsistency in size");
6079           assert(size >= 3, "Necessary for Printezis marks to work");
6080           if (!_bitMap->isMarked(addr+1)) {
6081             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6082           } else {
6083             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6084             assert(_bitMap->isMarked(addr+size-1),
6085                    "inconsistent Printezis mark");
6086           }
6087         #endif // ASSERT
6088     } else {
6089       // An uninitialized object.
6090       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6091       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6092       size = pointer_delta(nextOneAddr + 1, addr);
6093       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6094              "alignment problem");
6095       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6096       // will dirty the card when the klass pointer is installed in the
6097       // object (signaling the completion of initialization).
6098     }
6099   } else {
6100     // Either a not yet marked object or an uninitialized object
6101     if (p->klass_or_null() == NULL) {
6102       // An uninitialized object, skip to the next card, since
6103       // we may not be able to read its P-bits yet.
6104       assert(size == 0, "Initial value");
6105     } else {
6106       // An object not (yet) reached by marking: we merely need to
6107       // compute its size so as to go look at the next block.
6108       assert(p->is_oop(true), "should be an oop");
6109       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6110     }
6111   }
6112   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6113   return size;
6114 }
6115 
6116 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6117   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6118          "CMS thread should hold CMS token");
6119   assert_lock_strong(_freelistLock);
6120   assert_lock_strong(_bitMap->lock());
6121   // relinquish the free_list_lock and bitMaplock()
6122   _bitMap->lock()->unlock();
6123   _freelistLock->unlock();
6124   ConcurrentMarkSweepThread::desynchronize(true);
6125   _collector->stopTimer();
6126   _collector->incrementYields();
6127 
6128   // See the comment in coordinator_yield()
6129   for (unsigned i = 0; i < CMSYieldSleepCount &&
6130                    ConcurrentMarkSweepThread::should_yield() &&
6131                    !CMSCollector::foregroundGCIsActive(); ++i) {
6132     os::sleep(Thread::current(), 1, false);
6133   }
6134 
6135   ConcurrentMarkSweepThread::synchronize(true);
6136   _freelistLock->lock_without_safepoint_check();
6137   _bitMap->lock()->lock_without_safepoint_check();
6138   _collector->startTimer();
6139 }
6140 
6141 
6142 //////////////////////////////////////////////////////////////////
6143 // SurvivorSpacePrecleanClosure
6144 //////////////////////////////////////////////////////////////////
6145 // This (single-threaded) closure is used to preclean the oops in
6146 // the survivor spaces.
6147 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6148 
6149   HeapWord* addr = (HeapWord*)p;
6150   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6151   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6152   assert(p->klass_or_null() != NULL, "object should be initialized");
6153   // an initialized object; ignore mark word in verification below
6154   // since we are running concurrent with mutators
6155   assert(p->is_oop(true), "should be an oop");
6156   // Note that we do not yield while we iterate over
6157   // the interior oops of p, pushing the relevant ones
6158   // on our marking stack.
6159   size_t size = p->oop_iterate_size(_scanning_closure);
6160   do_yield_check();
6161   // Observe that below, we do not abandon the preclean
6162   // phase as soon as we should; rather we empty the
6163   // marking stack before returning. This is to satisfy
6164   // some existing assertions. In general, it may be a
6165   // good idea to abort immediately and complete the marking
6166   // from the grey objects at a later time.
6167   while (!_mark_stack->isEmpty()) {
6168     oop new_oop = _mark_stack->pop();
6169     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6170     assert(_bit_map->isMarked((HeapWord*)new_oop),
6171            "only grey objects on this stack");
6172     // iterate over the oops in this oop, marking and pushing
6173     // the ones in CMS heap (i.e. in _span).
6174     new_oop->oop_iterate(_scanning_closure);
6175     // check if it's time to yield
6176     do_yield_check();
6177   }
6178   unsigned int after_count =
6179     GenCollectedHeap::heap()->total_collections();
6180   bool abort = (_before_count != after_count) ||
6181                _collector->should_abort_preclean();
6182   return abort ? 0 : size;
6183 }
6184 
6185 void SurvivorSpacePrecleanClosure::do_yield_work() {
6186   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6187          "CMS thread should hold CMS token");
6188   assert_lock_strong(_bit_map->lock());
6189   // Relinquish the bit map lock
6190   _bit_map->lock()->unlock();
6191   ConcurrentMarkSweepThread::desynchronize(true);
6192   _collector->stopTimer();
6193   _collector->incrementYields();
6194 
6195   // See the comment in coordinator_yield()
6196   for (unsigned i = 0; i < CMSYieldSleepCount &&
6197                        ConcurrentMarkSweepThread::should_yield() &&
6198                        !CMSCollector::foregroundGCIsActive(); ++i) {
6199     os::sleep(Thread::current(), 1, false);
6200   }
6201 
6202   ConcurrentMarkSweepThread::synchronize(true);
6203   _bit_map->lock()->lock_without_safepoint_check();
6204   _collector->startTimer();
6205 }
6206 
6207 // This closure is used to rescan the marked objects on the dirty cards
6208 // in the mod union table and the card table proper. In the parallel
6209 // case, although the bitMap is shared, we do a single read so the
6210 // isMarked() query is "safe".
6211 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6212   // Ignore mark word because we are running concurrent with mutators
6213   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6214   HeapWord* addr = (HeapWord*)p;
6215   assert(_span.contains(addr), "we are scanning the CMS generation");
6216   bool is_obj_array = false;
6217   #ifdef ASSERT
6218     if (!_parallel) {
6219       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6220       assert(_collector->overflow_list_is_empty(),
6221              "overflow list should be empty");
6222 
6223     }
6224   #endif // ASSERT
6225   if (_bit_map->isMarked(addr)) {
6226     // Obj arrays are precisely marked, non-arrays are not;
6227     // so we scan objArrays precisely and non-arrays in their
6228     // entirety.
6229     if (p->is_objArray()) {
6230       is_obj_array = true;
6231       if (_parallel) {
6232         p->oop_iterate(_par_scan_closure, mr);
6233       } else {
6234         p->oop_iterate(_scan_closure, mr);
6235       }
6236     } else {
6237       if (_parallel) {
6238         p->oop_iterate(_par_scan_closure);
6239       } else {
6240         p->oop_iterate(_scan_closure);
6241       }
6242     }
6243   }
6244   #ifdef ASSERT
6245     if (!_parallel) {
6246       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6247       assert(_collector->overflow_list_is_empty(),
6248              "overflow list should be empty");
6249 
6250     }
6251   #endif // ASSERT
6252   return is_obj_array;
6253 }
6254 
6255 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6256                         MemRegion span,
6257                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6258                         bool should_yield, bool verifying):
6259   _collector(collector),
6260   _span(span),
6261   _bitMap(bitMap),
6262   _mut(&collector->_modUnionTable),
6263   _markStack(markStack),
6264   _yield(should_yield),
6265   _skipBits(0)
6266 {
6267   assert(_markStack->isEmpty(), "stack should be empty");
6268   _finger = _bitMap->startWord();
6269   _threshold = _finger;
6270   assert(_collector->_restart_addr == NULL, "Sanity check");
6271   assert(_span.contains(_finger), "Out of bounds _finger?");
6272   DEBUG_ONLY(_verifying = verifying;)
6273 }
6274 
6275 void MarkFromRootsClosure::reset(HeapWord* addr) {
6276   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6277   assert(_span.contains(addr), "Out of bounds _finger?");
6278   _finger = addr;
6279   _threshold = (HeapWord*)round_to(
6280                  (intptr_t)_finger, CardTableModRefBS::card_size);
6281 }
6282 
6283 // Should revisit to see if this should be restructured for
6284 // greater efficiency.
6285 bool MarkFromRootsClosure::do_bit(size_t offset) {
6286   if (_skipBits > 0) {
6287     _skipBits--;
6288     return true;
6289   }
6290   // convert offset into a HeapWord*
6291   HeapWord* addr = _bitMap->startWord() + offset;
6292   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6293          "address out of range");
6294   assert(_bitMap->isMarked(addr), "tautology");
6295   if (_bitMap->isMarked(addr+1)) {
6296     // this is an allocated but not yet initialized object
6297     assert(_skipBits == 0, "tautology");
6298     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6299     oop p = oop(addr);
6300     if (p->klass_or_null() == NULL) {
6301       DEBUG_ONLY(if (!_verifying) {)
6302         // We re-dirty the cards on which this object lies and increase
6303         // the _threshold so that we'll come back to scan this object
6304         // during the preclean or remark phase. (CMSCleanOnEnter)
6305         if (CMSCleanOnEnter) {
6306           size_t sz = _collector->block_size_using_printezis_bits(addr);
6307           HeapWord* end_card_addr   = (HeapWord*)round_to(
6308                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6309           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6310           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6311           // Bump _threshold to end_card_addr; note that
6312           // _threshold cannot possibly exceed end_card_addr, anyhow.
6313           // This prevents future clearing of the card as the scan proceeds
6314           // to the right.
6315           assert(_threshold <= end_card_addr,
6316                  "Because we are just scanning into this object");
6317           if (_threshold < end_card_addr) {
6318             _threshold = end_card_addr;
6319           }
6320           if (p->klass_or_null() != NULL) {
6321             // Redirty the range of cards...
6322             _mut->mark_range(redirty_range);
6323           } // ...else the setting of klass will dirty the card anyway.
6324         }
6325       DEBUG_ONLY(})
6326       return true;
6327     }
6328   }
6329   scanOopsInOop(addr);
6330   return true;
6331 }
6332 
6333 // We take a break if we've been at this for a while,
6334 // so as to avoid monopolizing the locks involved.
6335 void MarkFromRootsClosure::do_yield_work() {
6336   // First give up the locks, then yield, then re-lock
6337   // We should probably use a constructor/destructor idiom to
6338   // do this unlock/lock or modify the MutexUnlocker class to
6339   // serve our purpose. XXX
6340   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6341          "CMS thread should hold CMS token");
6342   assert_lock_strong(_bitMap->lock());
6343   _bitMap->lock()->unlock();
6344   ConcurrentMarkSweepThread::desynchronize(true);
6345   _collector->stopTimer();
6346   _collector->incrementYields();
6347 
6348   // See the comment in coordinator_yield()
6349   for (unsigned i = 0; i < CMSYieldSleepCount &&
6350                        ConcurrentMarkSweepThread::should_yield() &&
6351                        !CMSCollector::foregroundGCIsActive(); ++i) {
6352     os::sleep(Thread::current(), 1, false);
6353   }
6354 
6355   ConcurrentMarkSweepThread::synchronize(true);
6356   _bitMap->lock()->lock_without_safepoint_check();
6357   _collector->startTimer();
6358 }
6359 
6360 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6361   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6362   assert(_markStack->isEmpty(),
6363          "should drain stack to limit stack usage");
6364   // convert ptr to an oop preparatory to scanning
6365   oop obj = oop(ptr);
6366   // Ignore mark word in verification below, since we
6367   // may be running concurrent with mutators.
6368   assert(obj->is_oop(true), "should be an oop");
6369   assert(_finger <= ptr, "_finger runneth ahead");
6370   // advance the finger to right end of this object
6371   _finger = ptr + obj->size();
6372   assert(_finger > ptr, "we just incremented it above");
6373   // On large heaps, it may take us some time to get through
6374   // the marking phase. During
6375   // this time it's possible that a lot of mutations have
6376   // accumulated in the card table and the mod union table --
6377   // these mutation records are redundant until we have
6378   // actually traced into the corresponding card.
6379   // Here, we check whether advancing the finger would make
6380   // us cross into a new card, and if so clear corresponding
6381   // cards in the MUT (preclean them in the card-table in the
6382   // future).
6383 
6384   DEBUG_ONLY(if (!_verifying) {)
6385     // The clean-on-enter optimization is disabled by default,
6386     // until we fix 6178663.
6387     if (CMSCleanOnEnter && (_finger > _threshold)) {
6388       // [_threshold, _finger) represents the interval
6389       // of cards to be cleared  in MUT (or precleaned in card table).
6390       // The set of cards to be cleared is all those that overlap
6391       // with the interval [_threshold, _finger); note that
6392       // _threshold is always kept card-aligned but _finger isn't
6393       // always card-aligned.
6394       HeapWord* old_threshold = _threshold;
6395       assert(old_threshold == (HeapWord*)round_to(
6396               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6397              "_threshold should always be card-aligned");
6398       _threshold = (HeapWord*)round_to(
6399                      (intptr_t)_finger, CardTableModRefBS::card_size);
6400       MemRegion mr(old_threshold, _threshold);
6401       assert(!mr.is_empty(), "Control point invariant");
6402       assert(_span.contains(mr), "Should clear within span");
6403       _mut->clear_range(mr);
6404     }
6405   DEBUG_ONLY(})
6406   // Note: the finger doesn't advance while we drain
6407   // the stack below.
6408   PushOrMarkClosure pushOrMarkClosure(_collector,
6409                                       _span, _bitMap, _markStack,
6410                                       _finger, this);
6411   bool res = _markStack->push(obj);
6412   assert(res, "Empty non-zero size stack should have space for single push");
6413   while (!_markStack->isEmpty()) {
6414     oop new_oop = _markStack->pop();
6415     // Skip verifying header mark word below because we are
6416     // running concurrent with mutators.
6417     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6418     // now scan this oop's oops
6419     new_oop->oop_iterate(&pushOrMarkClosure);
6420     do_yield_check();
6421   }
6422   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6423 }
6424 
6425 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6426                        CMSCollector* collector, MemRegion span,
6427                        CMSBitMap* bit_map,
6428                        OopTaskQueue* work_queue,
6429                        CMSMarkStack*  overflow_stack):
6430   _collector(collector),
6431   _whole_span(collector->_span),
6432   _span(span),
6433   _bit_map(bit_map),
6434   _mut(&collector->_modUnionTable),
6435   _work_queue(work_queue),
6436   _overflow_stack(overflow_stack),
6437   _skip_bits(0),
6438   _task(task)
6439 {
6440   assert(_work_queue->size() == 0, "work_queue should be empty");
6441   _finger = span.start();
6442   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6443   assert(_span.contains(_finger), "Out of bounds _finger?");
6444 }
6445 
6446 // Should revisit to see if this should be restructured for
6447 // greater efficiency.
6448 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6449   if (_skip_bits > 0) {
6450     _skip_bits--;
6451     return true;
6452   }
6453   // convert offset into a HeapWord*
6454   HeapWord* addr = _bit_map->startWord() + offset;
6455   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6456          "address out of range");
6457   assert(_bit_map->isMarked(addr), "tautology");
6458   if (_bit_map->isMarked(addr+1)) {
6459     // this is an allocated object that might not yet be initialized
6460     assert(_skip_bits == 0, "tautology");
6461     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6462     oop p = oop(addr);
6463     if (p->klass_or_null() == NULL) {
6464       // in the case of Clean-on-Enter optimization, redirty card
6465       // and avoid clearing card by increasing  the threshold.
6466       return true;
6467     }
6468   }
6469   scan_oops_in_oop(addr);
6470   return true;
6471 }
6472 
6473 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6474   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6475   // Should we assert that our work queue is empty or
6476   // below some drain limit?
6477   assert(_work_queue->size() == 0,
6478          "should drain stack to limit stack usage");
6479   // convert ptr to an oop preparatory to scanning
6480   oop obj = oop(ptr);
6481   // Ignore mark word in verification below, since we
6482   // may be running concurrent with mutators.
6483   assert(obj->is_oop(true), "should be an oop");
6484   assert(_finger <= ptr, "_finger runneth ahead");
6485   // advance the finger to right end of this object
6486   _finger = ptr + obj->size();
6487   assert(_finger > ptr, "we just incremented it above");
6488   // On large heaps, it may take us some time to get through
6489   // the marking phase. During
6490   // this time it's possible that a lot of mutations have
6491   // accumulated in the card table and the mod union table --
6492   // these mutation records are redundant until we have
6493   // actually traced into the corresponding card.
6494   // Here, we check whether advancing the finger would make
6495   // us cross into a new card, and if so clear corresponding
6496   // cards in the MUT (preclean them in the card-table in the
6497   // future).
6498 
6499   // The clean-on-enter optimization is disabled by default,
6500   // until we fix 6178663.
6501   if (CMSCleanOnEnter && (_finger > _threshold)) {
6502     // [_threshold, _finger) represents the interval
6503     // of cards to be cleared  in MUT (or precleaned in card table).
6504     // The set of cards to be cleared is all those that overlap
6505     // with the interval [_threshold, _finger); note that
6506     // _threshold is always kept card-aligned but _finger isn't
6507     // always card-aligned.
6508     HeapWord* old_threshold = _threshold;
6509     assert(old_threshold == (HeapWord*)round_to(
6510             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6511            "_threshold should always be card-aligned");
6512     _threshold = (HeapWord*)round_to(
6513                    (intptr_t)_finger, CardTableModRefBS::card_size);
6514     MemRegion mr(old_threshold, _threshold);
6515     assert(!mr.is_empty(), "Control point invariant");
6516     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6517     _mut->clear_range(mr);
6518   }
6519 
6520   // Note: the local finger doesn't advance while we drain
6521   // the stack below, but the global finger sure can and will.
6522   HeapWord** gfa = _task->global_finger_addr();
6523   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6524                                       _span, _bit_map,
6525                                       _work_queue,
6526                                       _overflow_stack,
6527                                       _finger,
6528                                       gfa, this);
6529   bool res = _work_queue->push(obj);   // overflow could occur here
6530   assert(res, "Will hold once we use workqueues");
6531   while (true) {
6532     oop new_oop;
6533     if (!_work_queue->pop_local(new_oop)) {
6534       // We emptied our work_queue; check if there's stuff that can
6535       // be gotten from the overflow stack.
6536       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6537             _overflow_stack, _work_queue)) {
6538         do_yield_check();
6539         continue;
6540       } else {  // done
6541         break;
6542       }
6543     }
6544     // Skip verifying header mark word below because we are
6545     // running concurrent with mutators.
6546     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6547     // now scan this oop's oops
6548     new_oop->oop_iterate(&pushOrMarkClosure);
6549     do_yield_check();
6550   }
6551   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6552 }
6553 
6554 // Yield in response to a request from VM Thread or
6555 // from mutators.
6556 void Par_MarkFromRootsClosure::do_yield_work() {
6557   assert(_task != NULL, "sanity");
6558   _task->yield();
6559 }
6560 
6561 // A variant of the above used for verifying CMS marking work.
6562 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6563                         MemRegion span,
6564                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6565                         CMSMarkStack*  mark_stack):
6566   _collector(collector),
6567   _span(span),
6568   _verification_bm(verification_bm),
6569   _cms_bm(cms_bm),
6570   _mark_stack(mark_stack),
6571   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6572                       mark_stack)
6573 {
6574   assert(_mark_stack->isEmpty(), "stack should be empty");
6575   _finger = _verification_bm->startWord();
6576   assert(_collector->_restart_addr == NULL, "Sanity check");
6577   assert(_span.contains(_finger), "Out of bounds _finger?");
6578 }
6579 
6580 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6581   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6582   assert(_span.contains(addr), "Out of bounds _finger?");
6583   _finger = addr;
6584 }
6585 
6586 // Should revisit to see if this should be restructured for
6587 // greater efficiency.
6588 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6589   // convert offset into a HeapWord*
6590   HeapWord* addr = _verification_bm->startWord() + offset;
6591   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6592          "address out of range");
6593   assert(_verification_bm->isMarked(addr), "tautology");
6594   assert(_cms_bm->isMarked(addr), "tautology");
6595 
6596   assert(_mark_stack->isEmpty(),
6597          "should drain stack to limit stack usage");
6598   // convert addr to an oop preparatory to scanning
6599   oop obj = oop(addr);
6600   assert(obj->is_oop(), "should be an oop");
6601   assert(_finger <= addr, "_finger runneth ahead");
6602   // advance the finger to right end of this object
6603   _finger = addr + obj->size();
6604   assert(_finger > addr, "we just incremented it above");
6605   // Note: the finger doesn't advance while we drain
6606   // the stack below.
6607   bool res = _mark_stack->push(obj);
6608   assert(res, "Empty non-zero size stack should have space for single push");
6609   while (!_mark_stack->isEmpty()) {
6610     oop new_oop = _mark_stack->pop();
6611     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6612     // now scan this oop's oops
6613     new_oop->oop_iterate(&_pam_verify_closure);
6614   }
6615   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6616   return true;
6617 }
6618 
6619 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6620   CMSCollector* collector, MemRegion span,
6621   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6622   CMSMarkStack*  mark_stack):
6623   MetadataAwareOopClosure(collector->ref_processor()),
6624   _collector(collector),
6625   _span(span),
6626   _verification_bm(verification_bm),
6627   _cms_bm(cms_bm),
6628   _mark_stack(mark_stack)
6629 { }
6630 
6631 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6632 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6633 
6634 // Upon stack overflow, we discard (part of) the stack,
6635 // remembering the least address amongst those discarded
6636 // in CMSCollector's _restart_address.
6637 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6638   // Remember the least grey address discarded
6639   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6640   _collector->lower_restart_addr(ra);
6641   _mark_stack->reset();  // discard stack contents
6642   _mark_stack->expand(); // expand the stack if possible
6643 }
6644 
6645 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6646   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6647   HeapWord* addr = (HeapWord*)obj;
6648   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6649     // Oop lies in _span and isn't yet grey or black
6650     _verification_bm->mark(addr);            // now grey
6651     if (!_cms_bm->isMarked(addr)) {
6652       LogHandle(gc, verify) log;
6653       ResourceMark rm;
6654       oop(addr)->print_on(log.info_stream());
6655       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6656       fatal("... aborting");
6657     }
6658 
6659     if (!_mark_stack->push(obj)) { // stack overflow
6660       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6661       assert(_mark_stack->isFull(), "Else push should have succeeded");
6662       handle_stack_overflow(addr);
6663     }
6664     // anything including and to the right of _finger
6665     // will be scanned as we iterate over the remainder of the
6666     // bit map
6667   }
6668 }
6669 
6670 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6671                      MemRegion span,
6672                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6673                      HeapWord* finger, MarkFromRootsClosure* parent) :
6674   MetadataAwareOopClosure(collector->ref_processor()),
6675   _collector(collector),
6676   _span(span),
6677   _bitMap(bitMap),
6678   _markStack(markStack),
6679   _finger(finger),
6680   _parent(parent)
6681 { }
6682 
6683 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6684                      MemRegion span,
6685                      CMSBitMap* bit_map,
6686                      OopTaskQueue* work_queue,
6687                      CMSMarkStack*  overflow_stack,
6688                      HeapWord* finger,
6689                      HeapWord** global_finger_addr,
6690                      Par_MarkFromRootsClosure* parent) :
6691   MetadataAwareOopClosure(collector->ref_processor()),
6692   _collector(collector),
6693   _whole_span(collector->_span),
6694   _span(span),
6695   _bit_map(bit_map),
6696   _work_queue(work_queue),
6697   _overflow_stack(overflow_stack),
6698   _finger(finger),
6699   _global_finger_addr(global_finger_addr),
6700   _parent(parent)
6701 { }
6702 
6703 // Assumes thread-safe access by callers, who are
6704 // responsible for mutual exclusion.
6705 void CMSCollector::lower_restart_addr(HeapWord* low) {
6706   assert(_span.contains(low), "Out of bounds addr");
6707   if (_restart_addr == NULL) {
6708     _restart_addr = low;
6709   } else {
6710     _restart_addr = MIN2(_restart_addr, low);
6711   }
6712 }
6713 
6714 // Upon stack overflow, we discard (part of) the stack,
6715 // remembering the least address amongst those discarded
6716 // in CMSCollector's _restart_address.
6717 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6718   // Remember the least grey address discarded
6719   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6720   _collector->lower_restart_addr(ra);
6721   _markStack->reset();  // discard stack contents
6722   _markStack->expand(); // expand the stack if possible
6723 }
6724 
6725 // Upon stack overflow, we discard (part of) the stack,
6726 // remembering the least address amongst those discarded
6727 // in CMSCollector's _restart_address.
6728 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6729   // We need to do this under a mutex to prevent other
6730   // workers from interfering with the work done below.
6731   MutexLockerEx ml(_overflow_stack->par_lock(),
6732                    Mutex::_no_safepoint_check_flag);
6733   // Remember the least grey address discarded
6734   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6735   _collector->lower_restart_addr(ra);
6736   _overflow_stack->reset();  // discard stack contents
6737   _overflow_stack->expand(); // expand the stack if possible
6738 }
6739 
6740 void PushOrMarkClosure::do_oop(oop obj) {
6741   // Ignore mark word because we are running concurrent with mutators.
6742   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6743   HeapWord* addr = (HeapWord*)obj;
6744   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6745     // Oop lies in _span and isn't yet grey or black
6746     _bitMap->mark(addr);            // now grey
6747     if (addr < _finger) {
6748       // the bit map iteration has already either passed, or
6749       // sampled, this bit in the bit map; we'll need to
6750       // use the marking stack to scan this oop's oops.
6751       bool simulate_overflow = false;
6752       NOT_PRODUCT(
6753         if (CMSMarkStackOverflowALot &&
6754             _collector->simulate_overflow()) {
6755           // simulate a stack overflow
6756           simulate_overflow = true;
6757         }
6758       )
6759       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6760         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6761         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6762         handle_stack_overflow(addr);
6763       }
6764     }
6765     // anything including and to the right of _finger
6766     // will be scanned as we iterate over the remainder of the
6767     // bit map
6768     do_yield_check();
6769   }
6770 }
6771 
6772 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6773 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6774 
6775 void Par_PushOrMarkClosure::do_oop(oop obj) {
6776   // Ignore mark word because we are running concurrent with mutators.
6777   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6778   HeapWord* addr = (HeapWord*)obj;
6779   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6780     // Oop lies in _span and isn't yet grey or black
6781     // We read the global_finger (volatile read) strictly after marking oop
6782     bool res = _bit_map->par_mark(addr);    // now grey
6783     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6784     // Should we push this marked oop on our stack?
6785     // -- if someone else marked it, nothing to do
6786     // -- if target oop is above global finger nothing to do
6787     // -- if target oop is in chunk and above local finger
6788     //      then nothing to do
6789     // -- else push on work queue
6790     if (   !res       // someone else marked it, they will deal with it
6791         || (addr >= *gfa)  // will be scanned in a later task
6792         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6793       return;
6794     }
6795     // the bit map iteration has already either passed, or
6796     // sampled, this bit in the bit map; we'll need to
6797     // use the marking stack to scan this oop's oops.
6798     bool simulate_overflow = false;
6799     NOT_PRODUCT(
6800       if (CMSMarkStackOverflowALot &&
6801           _collector->simulate_overflow()) {
6802         // simulate a stack overflow
6803         simulate_overflow = true;
6804       }
6805     )
6806     if (simulate_overflow ||
6807         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6808       // stack overflow
6809       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6810       // We cannot assert that the overflow stack is full because
6811       // it may have been emptied since.
6812       assert(simulate_overflow ||
6813              _work_queue->size() == _work_queue->max_elems(),
6814             "Else push should have succeeded");
6815       handle_stack_overflow(addr);
6816     }
6817     do_yield_check();
6818   }
6819 }
6820 
6821 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
6822 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
6823 
6824 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6825                                        MemRegion span,
6826                                        ReferenceProcessor* rp,
6827                                        CMSBitMap* bit_map,
6828                                        CMSBitMap* mod_union_table,
6829                                        CMSMarkStack*  mark_stack,
6830                                        bool           concurrent_precleaning):
6831   MetadataAwareOopClosure(rp),
6832   _collector(collector),
6833   _span(span),
6834   _bit_map(bit_map),
6835   _mod_union_table(mod_union_table),
6836   _mark_stack(mark_stack),
6837   _concurrent_precleaning(concurrent_precleaning)
6838 {
6839   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6840 }
6841 
6842 // Grey object rescan during pre-cleaning and second checkpoint phases --
6843 // the non-parallel version (the parallel version appears further below.)
6844 void PushAndMarkClosure::do_oop(oop obj) {
6845   // Ignore mark word verification. If during concurrent precleaning,
6846   // the object monitor may be locked. If during the checkpoint
6847   // phases, the object may already have been reached by a  different
6848   // path and may be at the end of the global overflow list (so
6849   // the mark word may be NULL).
6850   assert(obj->is_oop_or_null(true /* ignore mark word */),
6851          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6852   HeapWord* addr = (HeapWord*)obj;
6853   // Check if oop points into the CMS generation
6854   // and is not marked
6855   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6856     // a white object ...
6857     _bit_map->mark(addr);         // ... now grey
6858     // push on the marking stack (grey set)
6859     bool simulate_overflow = false;
6860     NOT_PRODUCT(
6861       if (CMSMarkStackOverflowALot &&
6862           _collector->simulate_overflow()) {
6863         // simulate a stack overflow
6864         simulate_overflow = true;
6865       }
6866     )
6867     if (simulate_overflow || !_mark_stack->push(obj)) {
6868       if (_concurrent_precleaning) {
6869          // During precleaning we can just dirty the appropriate card(s)
6870          // in the mod union table, thus ensuring that the object remains
6871          // in the grey set  and continue. In the case of object arrays
6872          // we need to dirty all of the cards that the object spans,
6873          // since the rescan of object arrays will be limited to the
6874          // dirty cards.
6875          // Note that no one can be interfering with us in this action
6876          // of dirtying the mod union table, so no locking or atomics
6877          // are required.
6878          if (obj->is_objArray()) {
6879            size_t sz = obj->size();
6880            HeapWord* end_card_addr = (HeapWord*)round_to(
6881                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6882            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6883            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6884            _mod_union_table->mark_range(redirty_range);
6885          } else {
6886            _mod_union_table->mark(addr);
6887          }
6888          _collector->_ser_pmc_preclean_ovflw++;
6889       } else {
6890          // During the remark phase, we need to remember this oop
6891          // in the overflow list.
6892          _collector->push_on_overflow_list(obj);
6893          _collector->_ser_pmc_remark_ovflw++;
6894       }
6895     }
6896   }
6897 }
6898 
6899 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
6900                                                MemRegion span,
6901                                                ReferenceProcessor* rp,
6902                                                CMSBitMap* bit_map,
6903                                                OopTaskQueue* work_queue):
6904   MetadataAwareOopClosure(rp),
6905   _collector(collector),
6906   _span(span),
6907   _bit_map(bit_map),
6908   _work_queue(work_queue)
6909 {
6910   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6911 }
6912 
6913 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6914 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6915 
6916 // Grey object rescan during second checkpoint phase --
6917 // the parallel version.
6918 void Par_PushAndMarkClosure::do_oop(oop obj) {
6919   // In the assert below, we ignore the mark word because
6920   // this oop may point to an already visited object that is
6921   // on the overflow stack (in which case the mark word has
6922   // been hijacked for chaining into the overflow stack --
6923   // if this is the last object in the overflow stack then
6924   // its mark word will be NULL). Because this object may
6925   // have been subsequently popped off the global overflow
6926   // stack, and the mark word possibly restored to the prototypical
6927   // value, by the time we get to examined this failing assert in
6928   // the debugger, is_oop_or_null(false) may subsequently start
6929   // to hold.
6930   assert(obj->is_oop_or_null(true),
6931          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6932   HeapWord* addr = (HeapWord*)obj;
6933   // Check if oop points into the CMS generation
6934   // and is not marked
6935   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6936     // a white object ...
6937     // If we manage to "claim" the object, by being the
6938     // first thread to mark it, then we push it on our
6939     // marking stack
6940     if (_bit_map->par_mark(addr)) {     // ... now grey
6941       // push on work queue (grey set)
6942       bool simulate_overflow = false;
6943       NOT_PRODUCT(
6944         if (CMSMarkStackOverflowALot &&
6945             _collector->par_simulate_overflow()) {
6946           // simulate a stack overflow
6947           simulate_overflow = true;
6948         }
6949       )
6950       if (simulate_overflow || !_work_queue->push(obj)) {
6951         _collector->par_push_on_overflow_list(obj);
6952         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6953       }
6954     } // Else, some other thread got there first
6955   }
6956 }
6957 
6958 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
6959 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
6960 
6961 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6962   Mutex* bml = _collector->bitMapLock();
6963   assert_lock_strong(bml);
6964   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6965          "CMS thread should hold CMS token");
6966 
6967   bml->unlock();
6968   ConcurrentMarkSweepThread::desynchronize(true);
6969 
6970   _collector->stopTimer();
6971   _collector->incrementYields();
6972 
6973   // See the comment in coordinator_yield()
6974   for (unsigned i = 0; i < CMSYieldSleepCount &&
6975                        ConcurrentMarkSweepThread::should_yield() &&
6976                        !CMSCollector::foregroundGCIsActive(); ++i) {
6977     os::sleep(Thread::current(), 1, false);
6978   }
6979 
6980   ConcurrentMarkSweepThread::synchronize(true);
6981   bml->lock();
6982 
6983   _collector->startTimer();
6984 }
6985 
6986 bool CMSPrecleanRefsYieldClosure::should_return() {
6987   if (ConcurrentMarkSweepThread::should_yield()) {
6988     do_yield_work();
6989   }
6990   return _collector->foregroundGCIsActive();
6991 }
6992 
6993 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
6994   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
6995          "mr should be aligned to start at a card boundary");
6996   // We'd like to assert:
6997   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
6998   //        "mr should be a range of cards");
6999   // However, that would be too strong in one case -- the last
7000   // partition ends at _unallocated_block which, in general, can be
7001   // an arbitrary boundary, not necessarily card aligned.
7002   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
7003   _space->object_iterate_mem(mr, &_scan_cl);
7004 }
7005 
7006 SweepClosure::SweepClosure(CMSCollector* collector,
7007                            ConcurrentMarkSweepGeneration* g,
7008                            CMSBitMap* bitMap, bool should_yield) :
7009   _collector(collector),
7010   _g(g),
7011   _sp(g->cmsSpace()),
7012   _limit(_sp->sweep_limit()),
7013   _freelistLock(_sp->freelistLock()),
7014   _bitMap(bitMap),
7015   _yield(should_yield),
7016   _inFreeRange(false),           // No free range at beginning of sweep
7017   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7018   _lastFreeRangeCoalesced(false),
7019   _freeFinger(g->used_region().start())
7020 {
7021   NOT_PRODUCT(
7022     _numObjectsFreed = 0;
7023     _numWordsFreed   = 0;
7024     _numObjectsLive = 0;
7025     _numWordsLive = 0;
7026     _numObjectsAlreadyFree = 0;
7027     _numWordsAlreadyFree = 0;
7028     _last_fc = NULL;
7029 
7030     _sp->initializeIndexedFreeListArrayReturnedBytes();
7031     _sp->dictionary()->initialize_dict_returned_bytes();
7032   )
7033   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7034          "sweep _limit out of bounds");
7035   log_develop_trace(gc, sweep)("====================");
7036   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7037 }
7038 
7039 void SweepClosure::print_on(outputStream* st) const {
7040   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7041                 p2i(_sp->bottom()), p2i(_sp->end()));
7042   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7043   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7044   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7045   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7046                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7047 }
7048 
7049 #ifndef PRODUCT
7050 // Assertion checking only:  no useful work in product mode --
7051 // however, if any of the flags below become product flags,
7052 // you may need to review this code to see if it needs to be
7053 // enabled in product mode.
7054 SweepClosure::~SweepClosure() {
7055   assert_lock_strong(_freelistLock);
7056   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7057          "sweep _limit out of bounds");
7058   if (inFreeRange()) {
7059     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7060     print();
7061     ShouldNotReachHere();
7062   }
7063 
7064   if (log_is_enabled(Debug, gc, sweep)) {
7065     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7066                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7067     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7068                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7069     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7070     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7071   }
7072 
7073   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7074     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7075     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7076     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7077     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7078                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7079   }
7080   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7081   log_develop_trace(gc, sweep)("================");
7082 }
7083 #endif  // PRODUCT
7084 
7085 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7086     bool freeRangeInFreeLists) {
7087   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7088                                p2i(freeFinger), freeRangeInFreeLists);
7089   assert(!inFreeRange(), "Trampling existing free range");
7090   set_inFreeRange(true);
7091   set_lastFreeRangeCoalesced(false);
7092 
7093   set_freeFinger(freeFinger);
7094   set_freeRangeInFreeLists(freeRangeInFreeLists);
7095   if (CMSTestInFreeList) {
7096     if (freeRangeInFreeLists) {
7097       FreeChunk* fc = (FreeChunk*) freeFinger;
7098       assert(fc->is_free(), "A chunk on the free list should be free.");
7099       assert(fc->size() > 0, "Free range should have a size");
7100       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7101     }
7102   }
7103 }
7104 
7105 // Note that the sweeper runs concurrently with mutators. Thus,
7106 // it is possible for direct allocation in this generation to happen
7107 // in the middle of the sweep. Note that the sweeper also coalesces
7108 // contiguous free blocks. Thus, unless the sweeper and the allocator
7109 // synchronize appropriately freshly allocated blocks may get swept up.
7110 // This is accomplished by the sweeper locking the free lists while
7111 // it is sweeping. Thus blocks that are determined to be free are
7112 // indeed free. There is however one additional complication:
7113 // blocks that have been allocated since the final checkpoint and
7114 // mark, will not have been marked and so would be treated as
7115 // unreachable and swept up. To prevent this, the allocator marks
7116 // the bit map when allocating during the sweep phase. This leads,
7117 // however, to a further complication -- objects may have been allocated
7118 // but not yet initialized -- in the sense that the header isn't yet
7119 // installed. The sweeper can not then determine the size of the block
7120 // in order to skip over it. To deal with this case, we use a technique
7121 // (due to Printezis) to encode such uninitialized block sizes in the
7122 // bit map. Since the bit map uses a bit per every HeapWord, but the
7123 // CMS generation has a minimum object size of 3 HeapWords, it follows
7124 // that "normal marks" won't be adjacent in the bit map (there will
7125 // always be at least two 0 bits between successive 1 bits). We make use
7126 // of these "unused" bits to represent uninitialized blocks -- the bit
7127 // corresponding to the start of the uninitialized object and the next
7128 // bit are both set. Finally, a 1 bit marks the end of the object that
7129 // started with the two consecutive 1 bits to indicate its potentially
7130 // uninitialized state.
7131 
7132 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7133   FreeChunk* fc = (FreeChunk*)addr;
7134   size_t res;
7135 
7136   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7137   // than "addr == _limit" because although _limit was a block boundary when
7138   // we started the sweep, it may no longer be one because heap expansion
7139   // may have caused us to coalesce the block ending at the address _limit
7140   // with a newly expanded chunk (this happens when _limit was set to the
7141   // previous _end of the space), so we may have stepped past _limit:
7142   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7143   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7144     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7145            "sweep _limit out of bounds");
7146     assert(addr < _sp->end(), "addr out of bounds");
7147     // Flush any free range we might be holding as a single
7148     // coalesced chunk to the appropriate free list.
7149     if (inFreeRange()) {
7150       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7151              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7152       flush_cur_free_chunk(freeFinger(),
7153                            pointer_delta(addr, freeFinger()));
7154       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7155                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7156                                    lastFreeRangeCoalesced() ? 1 : 0);
7157     }
7158 
7159     // help the iterator loop finish
7160     return pointer_delta(_sp->end(), addr);
7161   }
7162 
7163   assert(addr < _limit, "sweep invariant");
7164   // check if we should yield
7165   do_yield_check(addr);
7166   if (fc->is_free()) {
7167     // Chunk that is already free
7168     res = fc->size();
7169     do_already_free_chunk(fc);
7170     debug_only(_sp->verifyFreeLists());
7171     // If we flush the chunk at hand in lookahead_and_flush()
7172     // and it's coalesced with a preceding chunk, then the
7173     // process of "mangling" the payload of the coalesced block
7174     // will cause erasure of the size information from the
7175     // (erstwhile) header of all the coalesced blocks but the
7176     // first, so the first disjunct in the assert will not hold
7177     // in that specific case (in which case the second disjunct
7178     // will hold).
7179     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7180            "Otherwise the size info doesn't change at this step");
7181     NOT_PRODUCT(
7182       _numObjectsAlreadyFree++;
7183       _numWordsAlreadyFree += res;
7184     )
7185     NOT_PRODUCT(_last_fc = fc;)
7186   } else if (!_bitMap->isMarked(addr)) {
7187     // Chunk is fresh garbage
7188     res = do_garbage_chunk(fc);
7189     debug_only(_sp->verifyFreeLists());
7190     NOT_PRODUCT(
7191       _numObjectsFreed++;
7192       _numWordsFreed += res;
7193     )
7194   } else {
7195     // Chunk that is alive.
7196     res = do_live_chunk(fc);
7197     debug_only(_sp->verifyFreeLists());
7198     NOT_PRODUCT(
7199         _numObjectsLive++;
7200         _numWordsLive += res;
7201     )
7202   }
7203   return res;
7204 }
7205 
7206 // For the smart allocation, record following
7207 //  split deaths - a free chunk is removed from its free list because
7208 //      it is being split into two or more chunks.
7209 //  split birth - a free chunk is being added to its free list because
7210 //      a larger free chunk has been split and resulted in this free chunk.
7211 //  coal death - a free chunk is being removed from its free list because
7212 //      it is being coalesced into a large free chunk.
7213 //  coal birth - a free chunk is being added to its free list because
7214 //      it was created when two or more free chunks where coalesced into
7215 //      this free chunk.
7216 //
7217 // These statistics are used to determine the desired number of free
7218 // chunks of a given size.  The desired number is chosen to be relative
7219 // to the end of a CMS sweep.  The desired number at the end of a sweep
7220 // is the
7221 //      count-at-end-of-previous-sweep (an amount that was enough)
7222 //              - count-at-beginning-of-current-sweep  (the excess)
7223 //              + split-births  (gains in this size during interval)
7224 //              - split-deaths  (demands on this size during interval)
7225 // where the interval is from the end of one sweep to the end of the
7226 // next.
7227 //
7228 // When sweeping the sweeper maintains an accumulated chunk which is
7229 // the chunk that is made up of chunks that have been coalesced.  That
7230 // will be termed the left-hand chunk.  A new chunk of garbage that
7231 // is being considered for coalescing will be referred to as the
7232 // right-hand chunk.
7233 //
7234 // When making a decision on whether to coalesce a right-hand chunk with
7235 // the current left-hand chunk, the current count vs. the desired count
7236 // of the left-hand chunk is considered.  Also if the right-hand chunk
7237 // is near the large chunk at the end of the heap (see
7238 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7239 // left-hand chunk is coalesced.
7240 //
7241 // When making a decision about whether to split a chunk, the desired count
7242 // vs. the current count of the candidate to be split is also considered.
7243 // If the candidate is underpopulated (currently fewer chunks than desired)
7244 // a chunk of an overpopulated (currently more chunks than desired) size may
7245 // be chosen.  The "hint" associated with a free list, if non-null, points
7246 // to a free list which may be overpopulated.
7247 //
7248 
7249 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7250   const size_t size = fc->size();
7251   // Chunks that cannot be coalesced are not in the
7252   // free lists.
7253   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7254     assert(_sp->verify_chunk_in_free_list(fc),
7255            "free chunk should be in free lists");
7256   }
7257   // a chunk that is already free, should not have been
7258   // marked in the bit map
7259   HeapWord* const addr = (HeapWord*) fc;
7260   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7261   // Verify that the bit map has no bits marked between
7262   // addr and purported end of this block.
7263   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7264 
7265   // Some chunks cannot be coalesced under any circumstances.
7266   // See the definition of cantCoalesce().
7267   if (!fc->cantCoalesce()) {
7268     // This chunk can potentially be coalesced.
7269     // All the work is done in
7270     do_post_free_or_garbage_chunk(fc, size);
7271     // Note that if the chunk is not coalescable (the else arm
7272     // below), we unconditionally flush, without needing to do
7273     // a "lookahead," as we do below.
7274     if (inFreeRange()) lookahead_and_flush(fc, size);
7275   } else {
7276     // Code path common to both original and adaptive free lists.
7277 
7278     // cant coalesce with previous block; this should be treated
7279     // as the end of a free run if any
7280     if (inFreeRange()) {
7281       // we kicked some butt; time to pick up the garbage
7282       assert(freeFinger() < addr, "freeFinger points too high");
7283       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7284     }
7285     // else, nothing to do, just continue
7286   }
7287 }
7288 
7289 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7290   // This is a chunk of garbage.  It is not in any free list.
7291   // Add it to a free list or let it possibly be coalesced into
7292   // a larger chunk.
7293   HeapWord* const addr = (HeapWord*) fc;
7294   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7295 
7296   // Verify that the bit map has no bits marked between
7297   // addr and purported end of just dead object.
7298   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7299   do_post_free_or_garbage_chunk(fc, size);
7300 
7301   assert(_limit >= addr + size,
7302          "A freshly garbage chunk can't possibly straddle over _limit");
7303   if (inFreeRange()) lookahead_and_flush(fc, size);
7304   return size;
7305 }
7306 
7307 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7308   HeapWord* addr = (HeapWord*) fc;
7309   // The sweeper has just found a live object. Return any accumulated
7310   // left hand chunk to the free lists.
7311   if (inFreeRange()) {
7312     assert(freeFinger() < addr, "freeFinger points too high");
7313     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7314   }
7315 
7316   // This object is live: we'd normally expect this to be
7317   // an oop, and like to assert the following:
7318   // assert(oop(addr)->is_oop(), "live block should be an oop");
7319   // However, as we commented above, this may be an object whose
7320   // header hasn't yet been initialized.
7321   size_t size;
7322   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7323   if (_bitMap->isMarked(addr + 1)) {
7324     // Determine the size from the bit map, rather than trying to
7325     // compute it from the object header.
7326     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7327     size = pointer_delta(nextOneAddr + 1, addr);
7328     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7329            "alignment problem");
7330 
7331 #ifdef ASSERT
7332       if (oop(addr)->klass_or_null() != NULL) {
7333         // Ignore mark word because we are running concurrent with mutators
7334         assert(oop(addr)->is_oop(true), "live block should be an oop");
7335         assert(size ==
7336                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7337                "P-mark and computed size do not agree");
7338       }
7339 #endif
7340 
7341   } else {
7342     // This should be an initialized object that's alive.
7343     assert(oop(addr)->klass_or_null() != NULL,
7344            "Should be an initialized object");
7345     // Ignore mark word because we are running concurrent with mutators
7346     assert(oop(addr)->is_oop(true), "live block should be an oop");
7347     // Verify that the bit map has no bits marked between
7348     // addr and purported end of this block.
7349     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7350     assert(size >= 3, "Necessary for Printezis marks to work");
7351     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7352     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7353   }
7354   return size;
7355 }
7356 
7357 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7358                                                  size_t chunkSize) {
7359   // do_post_free_or_garbage_chunk() should only be called in the case
7360   // of the adaptive free list allocator.
7361   const bool fcInFreeLists = fc->is_free();
7362   assert((HeapWord*)fc <= _limit, "sweep invariant");
7363   if (CMSTestInFreeList && fcInFreeLists) {
7364     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7365   }
7366 
7367   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7368 
7369   HeapWord* const fc_addr = (HeapWord*) fc;
7370 
7371   bool coalesce = false;
7372   const size_t left  = pointer_delta(fc_addr, freeFinger());
7373   const size_t right = chunkSize;
7374   switch (FLSCoalescePolicy) {
7375     // numeric value forms a coalition aggressiveness metric
7376     case 0:  { // never coalesce
7377       coalesce = false;
7378       break;
7379     }
7380     case 1: { // coalesce if left & right chunks on overpopulated lists
7381       coalesce = _sp->coalOverPopulated(left) &&
7382                  _sp->coalOverPopulated(right);
7383       break;
7384     }
7385     case 2: { // coalesce if left chunk on overpopulated list (default)
7386       coalesce = _sp->coalOverPopulated(left);
7387       break;
7388     }
7389     case 3: { // coalesce if left OR right chunk on overpopulated list
7390       coalesce = _sp->coalOverPopulated(left) ||
7391                  _sp->coalOverPopulated(right);
7392       break;
7393     }
7394     case 4: { // always coalesce
7395       coalesce = true;
7396       break;
7397     }
7398     default:
7399      ShouldNotReachHere();
7400   }
7401 
7402   // Should the current free range be coalesced?
7403   // If the chunk is in a free range and either we decided to coalesce above
7404   // or the chunk is near the large block at the end of the heap
7405   // (isNearLargestChunk() returns true), then coalesce this chunk.
7406   const bool doCoalesce = inFreeRange()
7407                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7408   if (doCoalesce) {
7409     // Coalesce the current free range on the left with the new
7410     // chunk on the right.  If either is on a free list,
7411     // it must be removed from the list and stashed in the closure.
7412     if (freeRangeInFreeLists()) {
7413       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7414       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7415              "Size of free range is inconsistent with chunk size.");
7416       if (CMSTestInFreeList) {
7417         assert(_sp->verify_chunk_in_free_list(ffc),
7418                "Chunk is not in free lists");
7419       }
7420       _sp->coalDeath(ffc->size());
7421       _sp->removeFreeChunkFromFreeLists(ffc);
7422       set_freeRangeInFreeLists(false);
7423     }
7424     if (fcInFreeLists) {
7425       _sp->coalDeath(chunkSize);
7426       assert(fc->size() == chunkSize,
7427         "The chunk has the wrong size or is not in the free lists");
7428       _sp->removeFreeChunkFromFreeLists(fc);
7429     }
7430     set_lastFreeRangeCoalesced(true);
7431     print_free_block_coalesced(fc);
7432   } else {  // not in a free range and/or should not coalesce
7433     // Return the current free range and start a new one.
7434     if (inFreeRange()) {
7435       // In a free range but cannot coalesce with the right hand chunk.
7436       // Put the current free range into the free lists.
7437       flush_cur_free_chunk(freeFinger(),
7438                            pointer_delta(fc_addr, freeFinger()));
7439     }
7440     // Set up for new free range.  Pass along whether the right hand
7441     // chunk is in the free lists.
7442     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7443   }
7444 }
7445 
7446 // Lookahead flush:
7447 // If we are tracking a free range, and this is the last chunk that
7448 // we'll look at because its end crosses past _limit, we'll preemptively
7449 // flush it along with any free range we may be holding on to. Note that
7450 // this can be the case only for an already free or freshly garbage
7451 // chunk. If this block is an object, it can never straddle
7452 // over _limit. The "straddling" occurs when _limit is set at
7453 // the previous end of the space when this cycle started, and
7454 // a subsequent heap expansion caused the previously co-terminal
7455 // free block to be coalesced with the newly expanded portion,
7456 // thus rendering _limit a non-block-boundary making it dangerous
7457 // for the sweeper to step over and examine.
7458 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7459   assert(inFreeRange(), "Should only be called if currently in a free range.");
7460   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7461   assert(_sp->used_region().contains(eob - 1),
7462          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7463          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7464          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7465          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7466   if (eob >= _limit) {
7467     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7468     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7469                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7470                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7471                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7472     // Return the storage we are tracking back into the free lists.
7473     log_develop_trace(gc, sweep)("Flushing ... ");
7474     assert(freeFinger() < eob, "Error");
7475     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7476   }
7477 }
7478 
7479 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7480   assert(inFreeRange(), "Should only be called if currently in a free range.");
7481   assert(size > 0,
7482     "A zero sized chunk cannot be added to the free lists.");
7483   if (!freeRangeInFreeLists()) {
7484     if (CMSTestInFreeList) {
7485       FreeChunk* fc = (FreeChunk*) chunk;
7486       fc->set_size(size);
7487       assert(!_sp->verify_chunk_in_free_list(fc),
7488              "chunk should not be in free lists yet");
7489     }
7490     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7491     // A new free range is going to be starting.  The current
7492     // free range has not been added to the free lists yet or
7493     // was removed so add it back.
7494     // If the current free range was coalesced, then the death
7495     // of the free range was recorded.  Record a birth now.
7496     if (lastFreeRangeCoalesced()) {
7497       _sp->coalBirth(size);
7498     }
7499     _sp->addChunkAndRepairOffsetTable(chunk, size,
7500             lastFreeRangeCoalesced());
7501   } else {
7502     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7503   }
7504   set_inFreeRange(false);
7505   set_freeRangeInFreeLists(false);
7506 }
7507 
7508 // We take a break if we've been at this for a while,
7509 // so as to avoid monopolizing the locks involved.
7510 void SweepClosure::do_yield_work(HeapWord* addr) {
7511   // Return current free chunk being used for coalescing (if any)
7512   // to the appropriate freelist.  After yielding, the next
7513   // free block encountered will start a coalescing range of
7514   // free blocks.  If the next free block is adjacent to the
7515   // chunk just flushed, they will need to wait for the next
7516   // sweep to be coalesced.
7517   if (inFreeRange()) {
7518     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7519   }
7520 
7521   // First give up the locks, then yield, then re-lock.
7522   // We should probably use a constructor/destructor idiom to
7523   // do this unlock/lock or modify the MutexUnlocker class to
7524   // serve our purpose. XXX
7525   assert_lock_strong(_bitMap->lock());
7526   assert_lock_strong(_freelistLock);
7527   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7528          "CMS thread should hold CMS token");
7529   _bitMap->lock()->unlock();
7530   _freelistLock->unlock();
7531   ConcurrentMarkSweepThread::desynchronize(true);
7532   _collector->stopTimer();
7533   _collector->incrementYields();
7534 
7535   // See the comment in coordinator_yield()
7536   for (unsigned i = 0; i < CMSYieldSleepCount &&
7537                        ConcurrentMarkSweepThread::should_yield() &&
7538                        !CMSCollector::foregroundGCIsActive(); ++i) {
7539     os::sleep(Thread::current(), 1, false);
7540   }
7541 
7542   ConcurrentMarkSweepThread::synchronize(true);
7543   _freelistLock->lock();
7544   _bitMap->lock()->lock_without_safepoint_check();
7545   _collector->startTimer();
7546 }
7547 
7548 #ifndef PRODUCT
7549 // This is actually very useful in a product build if it can
7550 // be called from the debugger.  Compile it into the product
7551 // as needed.
7552 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7553   return debug_cms_space->verify_chunk_in_free_list(fc);
7554 }
7555 #endif
7556 
7557 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7558   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7559                                p2i(fc), fc->size());
7560 }
7561 
7562 // CMSIsAliveClosure
7563 bool CMSIsAliveClosure::do_object_b(oop obj) {
7564   HeapWord* addr = (HeapWord*)obj;
7565   return addr != NULL &&
7566          (!_span.contains(addr) || _bit_map->isMarked(addr));
7567 }
7568 
7569 
7570 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7571                       MemRegion span,
7572                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7573                       bool cpc):
7574   _collector(collector),
7575   _span(span),
7576   _bit_map(bit_map),
7577   _mark_stack(mark_stack),
7578   _concurrent_precleaning(cpc) {
7579   assert(!_span.is_empty(), "Empty span could spell trouble");
7580 }
7581 
7582 
7583 // CMSKeepAliveClosure: the serial version
7584 void CMSKeepAliveClosure::do_oop(oop obj) {
7585   HeapWord* addr = (HeapWord*)obj;
7586   if (_span.contains(addr) &&
7587       !_bit_map->isMarked(addr)) {
7588     _bit_map->mark(addr);
7589     bool simulate_overflow = false;
7590     NOT_PRODUCT(
7591       if (CMSMarkStackOverflowALot &&
7592           _collector->simulate_overflow()) {
7593         // simulate a stack overflow
7594         simulate_overflow = true;
7595       }
7596     )
7597     if (simulate_overflow || !_mark_stack->push(obj)) {
7598       if (_concurrent_precleaning) {
7599         // We dirty the overflown object and let the remark
7600         // phase deal with it.
7601         assert(_collector->overflow_list_is_empty(), "Error");
7602         // In the case of object arrays, we need to dirty all of
7603         // the cards that the object spans. No locking or atomics
7604         // are needed since no one else can be mutating the mod union
7605         // table.
7606         if (obj->is_objArray()) {
7607           size_t sz = obj->size();
7608           HeapWord* end_card_addr =
7609             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7610           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7611           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7612           _collector->_modUnionTable.mark_range(redirty_range);
7613         } else {
7614           _collector->_modUnionTable.mark(addr);
7615         }
7616         _collector->_ser_kac_preclean_ovflw++;
7617       } else {
7618         _collector->push_on_overflow_list(obj);
7619         _collector->_ser_kac_ovflw++;
7620       }
7621     }
7622   }
7623 }
7624 
7625 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7626 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7627 
7628 // CMSParKeepAliveClosure: a parallel version of the above.
7629 // The work queues are private to each closure (thread),
7630 // but (may be) available for stealing by other threads.
7631 void CMSParKeepAliveClosure::do_oop(oop obj) {
7632   HeapWord* addr = (HeapWord*)obj;
7633   if (_span.contains(addr) &&
7634       !_bit_map->isMarked(addr)) {
7635     // In general, during recursive tracing, several threads
7636     // may be concurrently getting here; the first one to
7637     // "tag" it, claims it.
7638     if (_bit_map->par_mark(addr)) {
7639       bool res = _work_queue->push(obj);
7640       assert(res, "Low water mark should be much less than capacity");
7641       // Do a recursive trim in the hope that this will keep
7642       // stack usage lower, but leave some oops for potential stealers
7643       trim_queue(_low_water_mark);
7644     } // Else, another thread got there first
7645   }
7646 }
7647 
7648 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7649 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7650 
7651 void CMSParKeepAliveClosure::trim_queue(uint max) {
7652   while (_work_queue->size() > max) {
7653     oop new_oop;
7654     if (_work_queue->pop_local(new_oop)) {
7655       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7656       assert(_bit_map->isMarked((HeapWord*)new_oop),
7657              "no white objects on this stack!");
7658       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7659       // iterate over the oops in this oop, marking and pushing
7660       // the ones in CMS heap (i.e. in _span).
7661       new_oop->oop_iterate(&_mark_and_push);
7662     }
7663   }
7664 }
7665 
7666 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7667                                 CMSCollector* collector,
7668                                 MemRegion span, CMSBitMap* bit_map,
7669                                 OopTaskQueue* work_queue):
7670   _collector(collector),
7671   _span(span),
7672   _bit_map(bit_map),
7673   _work_queue(work_queue) { }
7674 
7675 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7676   HeapWord* addr = (HeapWord*)obj;
7677   if (_span.contains(addr) &&
7678       !_bit_map->isMarked(addr)) {
7679     if (_bit_map->par_mark(addr)) {
7680       bool simulate_overflow = false;
7681       NOT_PRODUCT(
7682         if (CMSMarkStackOverflowALot &&
7683             _collector->par_simulate_overflow()) {
7684           // simulate a stack overflow
7685           simulate_overflow = true;
7686         }
7687       )
7688       if (simulate_overflow || !_work_queue->push(obj)) {
7689         _collector->par_push_on_overflow_list(obj);
7690         _collector->_par_kac_ovflw++;
7691       }
7692     } // Else another thread got there already
7693   }
7694 }
7695 
7696 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7697 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7698 
7699 //////////////////////////////////////////////////////////////////
7700 //  CMSExpansionCause                /////////////////////////////
7701 //////////////////////////////////////////////////////////////////
7702 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7703   switch (cause) {
7704     case _no_expansion:
7705       return "No expansion";
7706     case _satisfy_free_ratio:
7707       return "Free ratio";
7708     case _satisfy_promotion:
7709       return "Satisfy promotion";
7710     case _satisfy_allocation:
7711       return "allocation";
7712     case _allocate_par_lab:
7713       return "Par LAB";
7714     case _allocate_par_spooling_space:
7715       return "Par Spooling Space";
7716     case _adaptive_size_policy:
7717       return "Ergonomics";
7718     default:
7719       return "unknown";
7720   }
7721 }
7722 
7723 void CMSDrainMarkingStackClosure::do_void() {
7724   // the max number to take from overflow list at a time
7725   const size_t num = _mark_stack->capacity()/4;
7726   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7727          "Overflow list should be NULL during concurrent phases");
7728   while (!_mark_stack->isEmpty() ||
7729          // if stack is empty, check the overflow list
7730          _collector->take_from_overflow_list(num, _mark_stack)) {
7731     oop obj = _mark_stack->pop();
7732     HeapWord* addr = (HeapWord*)obj;
7733     assert(_span.contains(addr), "Should be within span");
7734     assert(_bit_map->isMarked(addr), "Should be marked");
7735     assert(obj->is_oop(), "Should be an oop");
7736     obj->oop_iterate(_keep_alive);
7737   }
7738 }
7739 
7740 void CMSParDrainMarkingStackClosure::do_void() {
7741   // drain queue
7742   trim_queue(0);
7743 }
7744 
7745 // Trim our work_queue so its length is below max at return
7746 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7747   while (_work_queue->size() > max) {
7748     oop new_oop;
7749     if (_work_queue->pop_local(new_oop)) {
7750       assert(new_oop->is_oop(), "Expected an oop");
7751       assert(_bit_map->isMarked((HeapWord*)new_oop),
7752              "no white objects on this stack!");
7753       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7754       // iterate over the oops in this oop, marking and pushing
7755       // the ones in CMS heap (i.e. in _span).
7756       new_oop->oop_iterate(&_mark_and_push);
7757     }
7758   }
7759 }
7760 
7761 ////////////////////////////////////////////////////////////////////
7762 // Support for Marking Stack Overflow list handling and related code
7763 ////////////////////////////////////////////////////////////////////
7764 // Much of the following code is similar in shape and spirit to the
7765 // code used in ParNewGC. We should try and share that code
7766 // as much as possible in the future.
7767 
7768 #ifndef PRODUCT
7769 // Debugging support for CMSStackOverflowALot
7770 
7771 // It's OK to call this multi-threaded;  the worst thing
7772 // that can happen is that we'll get a bunch of closely
7773 // spaced simulated overflows, but that's OK, in fact
7774 // probably good as it would exercise the overflow code
7775 // under contention.
7776 bool CMSCollector::simulate_overflow() {
7777   if (_overflow_counter-- <= 0) { // just being defensive
7778     _overflow_counter = CMSMarkStackOverflowInterval;
7779     return true;
7780   } else {
7781     return false;
7782   }
7783 }
7784 
7785 bool CMSCollector::par_simulate_overflow() {
7786   return simulate_overflow();
7787 }
7788 #endif
7789 
7790 // Single-threaded
7791 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7792   assert(stack->isEmpty(), "Expected precondition");
7793   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7794   size_t i = num;
7795   oop  cur = _overflow_list;
7796   const markOop proto = markOopDesc::prototype();
7797   NOT_PRODUCT(ssize_t n = 0;)
7798   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7799     next = oop(cur->mark());
7800     cur->set_mark(proto);   // until proven otherwise
7801     assert(cur->is_oop(), "Should be an oop");
7802     bool res = stack->push(cur);
7803     assert(res, "Bit off more than can chew?");
7804     NOT_PRODUCT(n++;)
7805   }
7806   _overflow_list = cur;
7807 #ifndef PRODUCT
7808   assert(_num_par_pushes >= n, "Too many pops?");
7809   _num_par_pushes -=n;
7810 #endif
7811   return !stack->isEmpty();
7812 }
7813 
7814 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7815 // (MT-safe) Get a prefix of at most "num" from the list.
7816 // The overflow list is chained through the mark word of
7817 // each object in the list. We fetch the entire list,
7818 // break off a prefix of the right size and return the
7819 // remainder. If other threads try to take objects from
7820 // the overflow list at that time, they will wait for
7821 // some time to see if data becomes available. If (and
7822 // only if) another thread places one or more object(s)
7823 // on the global list before we have returned the suffix
7824 // to the global list, we will walk down our local list
7825 // to find its end and append the global list to
7826 // our suffix before returning it. This suffix walk can
7827 // prove to be expensive (quadratic in the amount of traffic)
7828 // when there are many objects in the overflow list and
7829 // there is much producer-consumer contention on the list.
7830 // *NOTE*: The overflow list manipulation code here and
7831 // in ParNewGeneration:: are very similar in shape,
7832 // except that in the ParNew case we use the old (from/eden)
7833 // copy of the object to thread the list via its klass word.
7834 // Because of the common code, if you make any changes in
7835 // the code below, please check the ParNew version to see if
7836 // similar changes might be needed.
7837 // CR 6797058 has been filed to consolidate the common code.
7838 bool CMSCollector::par_take_from_overflow_list(size_t num,
7839                                                OopTaskQueue* work_q,
7840                                                int no_of_gc_threads) {
7841   assert(work_q->size() == 0, "First empty local work queue");
7842   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7843   if (_overflow_list == NULL) {
7844     return false;
7845   }
7846   // Grab the entire list; we'll put back a suffix
7847   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7848   Thread* tid = Thread::current();
7849   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7850   // set to ParallelGCThreads.
7851   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7852   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7853   // If the list is busy, we spin for a short while,
7854   // sleeping between attempts to get the list.
7855   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7856     os::sleep(tid, sleep_time_millis, false);
7857     if (_overflow_list == NULL) {
7858       // Nothing left to take
7859       return false;
7860     } else if (_overflow_list != BUSY) {
7861       // Try and grab the prefix
7862       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7863     }
7864   }
7865   // If the list was found to be empty, or we spun long
7866   // enough, we give up and return empty-handed. If we leave
7867   // the list in the BUSY state below, it must be the case that
7868   // some other thread holds the overflow list and will set it
7869   // to a non-BUSY state in the future.
7870   if (prefix == NULL || prefix == BUSY) {
7871      // Nothing to take or waited long enough
7872      if (prefix == NULL) {
7873        // Write back the NULL in case we overwrote it with BUSY above
7874        // and it is still the same value.
7875        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7876      }
7877      return false;
7878   }
7879   assert(prefix != NULL && prefix != BUSY, "Error");
7880   size_t i = num;
7881   oop cur = prefix;
7882   // Walk down the first "num" objects, unless we reach the end.
7883   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7884   if (cur->mark() == NULL) {
7885     // We have "num" or fewer elements in the list, so there
7886     // is nothing to return to the global list.
7887     // Write back the NULL in lieu of the BUSY we wrote
7888     // above, if it is still the same value.
7889     if (_overflow_list == BUSY) {
7890       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7891     }
7892   } else {
7893     // Chop off the suffix and return it to the global list.
7894     assert(cur->mark() != BUSY, "Error");
7895     oop suffix_head = cur->mark(); // suffix will be put back on global list
7896     cur->set_mark(NULL);           // break off suffix
7897     // It's possible that the list is still in the empty(busy) state
7898     // we left it in a short while ago; in that case we may be
7899     // able to place back the suffix without incurring the cost
7900     // of a walk down the list.
7901     oop observed_overflow_list = _overflow_list;
7902     oop cur_overflow_list = observed_overflow_list;
7903     bool attached = false;
7904     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7905       observed_overflow_list =
7906         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7907       if (cur_overflow_list == observed_overflow_list) {
7908         attached = true;
7909         break;
7910       } else cur_overflow_list = observed_overflow_list;
7911     }
7912     if (!attached) {
7913       // Too bad, someone else sneaked in (at least) an element; we'll need
7914       // to do a splice. Find tail of suffix so we can prepend suffix to global
7915       // list.
7916       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7917       oop suffix_tail = cur;
7918       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7919              "Tautology");
7920       observed_overflow_list = _overflow_list;
7921       do {
7922         cur_overflow_list = observed_overflow_list;
7923         if (cur_overflow_list != BUSY) {
7924           // Do the splice ...
7925           suffix_tail->set_mark(markOop(cur_overflow_list));
7926         } else { // cur_overflow_list == BUSY
7927           suffix_tail->set_mark(NULL);
7928         }
7929         // ... and try to place spliced list back on overflow_list ...
7930         observed_overflow_list =
7931           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7932       } while (cur_overflow_list != observed_overflow_list);
7933       // ... until we have succeeded in doing so.
7934     }
7935   }
7936 
7937   // Push the prefix elements on work_q
7938   assert(prefix != NULL, "control point invariant");
7939   const markOop proto = markOopDesc::prototype();
7940   oop next;
7941   NOT_PRODUCT(ssize_t n = 0;)
7942   for (cur = prefix; cur != NULL; cur = next) {
7943     next = oop(cur->mark());
7944     cur->set_mark(proto);   // until proven otherwise
7945     assert(cur->is_oop(), "Should be an oop");
7946     bool res = work_q->push(cur);
7947     assert(res, "Bit off more than we can chew?");
7948     NOT_PRODUCT(n++;)
7949   }
7950 #ifndef PRODUCT
7951   assert(_num_par_pushes >= n, "Too many pops?");
7952   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7953 #endif
7954   return true;
7955 }
7956 
7957 // Single-threaded
7958 void CMSCollector::push_on_overflow_list(oop p) {
7959   NOT_PRODUCT(_num_par_pushes++;)
7960   assert(p->is_oop(), "Not an oop");
7961   preserve_mark_if_necessary(p);
7962   p->set_mark((markOop)_overflow_list);
7963   _overflow_list = p;
7964 }
7965 
7966 // Multi-threaded; use CAS to prepend to overflow list
7967 void CMSCollector::par_push_on_overflow_list(oop p) {
7968   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7969   assert(p->is_oop(), "Not an oop");
7970   par_preserve_mark_if_necessary(p);
7971   oop observed_overflow_list = _overflow_list;
7972   oop cur_overflow_list;
7973   do {
7974     cur_overflow_list = observed_overflow_list;
7975     if (cur_overflow_list != BUSY) {
7976       p->set_mark(markOop(cur_overflow_list));
7977     } else {
7978       p->set_mark(NULL);
7979     }
7980     observed_overflow_list =
7981       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7982   } while (cur_overflow_list != observed_overflow_list);
7983 }
7984 #undef BUSY
7985 
7986 // Single threaded
7987 // General Note on GrowableArray: pushes may silently fail
7988 // because we are (temporarily) out of C-heap for expanding
7989 // the stack. The problem is quite ubiquitous and affects
7990 // a lot of code in the JVM. The prudent thing for GrowableArray
7991 // to do (for now) is to exit with an error. However, that may
7992 // be too draconian in some cases because the caller may be
7993 // able to recover without much harm. For such cases, we
7994 // should probably introduce a "soft_push" method which returns
7995 // an indication of success or failure with the assumption that
7996 // the caller may be able to recover from a failure; code in
7997 // the VM can then be changed, incrementally, to deal with such
7998 // failures where possible, thus, incrementally hardening the VM
7999 // in such low resource situations.
8000 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8001   _preserved_oop_stack.push(p);
8002   _preserved_mark_stack.push(m);
8003   assert(m == p->mark(), "Mark word changed");
8004   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8005          "bijection");
8006 }
8007 
8008 // Single threaded
8009 void CMSCollector::preserve_mark_if_necessary(oop p) {
8010   markOop m = p->mark();
8011   if (m->must_be_preserved(p)) {
8012     preserve_mark_work(p, m);
8013   }
8014 }
8015 
8016 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8017   markOop m = p->mark();
8018   if (m->must_be_preserved(p)) {
8019     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8020     // Even though we read the mark word without holding
8021     // the lock, we are assured that it will not change
8022     // because we "own" this oop, so no other thread can
8023     // be trying to push it on the overflow list; see
8024     // the assertion in preserve_mark_work() that checks
8025     // that m == p->mark().
8026     preserve_mark_work(p, m);
8027   }
8028 }
8029 
8030 // We should be able to do this multi-threaded,
8031 // a chunk of stack being a task (this is
8032 // correct because each oop only ever appears
8033 // once in the overflow list. However, it's
8034 // not very easy to completely overlap this with
8035 // other operations, so will generally not be done
8036 // until all work's been completed. Because we
8037 // expect the preserved oop stack (set) to be small,
8038 // it's probably fine to do this single-threaded.
8039 // We can explore cleverer concurrent/overlapped/parallel
8040 // processing of preserved marks if we feel the
8041 // need for this in the future. Stack overflow should
8042 // be so rare in practice and, when it happens, its
8043 // effect on performance so great that this will
8044 // likely just be in the noise anyway.
8045 void CMSCollector::restore_preserved_marks_if_any() {
8046   assert(SafepointSynchronize::is_at_safepoint(),
8047          "world should be stopped");
8048   assert(Thread::current()->is_ConcurrentGC_thread() ||
8049          Thread::current()->is_VM_thread(),
8050          "should be single-threaded");
8051   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8052          "bijection");
8053 
8054   while (!_preserved_oop_stack.is_empty()) {
8055     oop p = _preserved_oop_stack.pop();
8056     assert(p->is_oop(), "Should be an oop");
8057     assert(_span.contains(p), "oop should be in _span");
8058     assert(p->mark() == markOopDesc::prototype(),
8059            "Set when taken from overflow list");
8060     markOop m = _preserved_mark_stack.pop();
8061     p->set_mark(m);
8062   }
8063   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8064          "stacks were cleared above");
8065 }
8066 
8067 #ifndef PRODUCT
8068 bool CMSCollector::no_preserved_marks() const {
8069   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8070 }
8071 #endif
8072 
8073 // Transfer some number of overflown objects to usual marking
8074 // stack. Return true if some objects were transferred.
8075 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8076   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8077                     (size_t)ParGCDesiredObjsFromOverflowList);
8078 
8079   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8080   assert(_collector->overflow_list_is_empty() || res,
8081          "If list is not empty, we should have taken something");
8082   assert(!res || !_mark_stack->isEmpty(),
8083          "If we took something, it should now be on our stack");
8084   return res;
8085 }
8086 
8087 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8088   size_t res = _sp->block_size_no_stall(addr, _collector);
8089   if (_sp->block_is_obj(addr)) {
8090     if (_live_bit_map->isMarked(addr)) {
8091       // It can't have been dead in a previous cycle
8092       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8093     } else {
8094       _dead_bit_map->mark(addr);      // mark the dead object
8095     }
8096   }
8097   // Could be 0, if the block size could not be computed without stalling.
8098   return res;
8099 }
8100 
8101 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8102 
8103   switch (phase) {
8104     case CMSCollector::InitialMarking:
8105       initialize(true  /* fullGC */ ,
8106                  cause /* cause of the GC */,
8107                  true  /* recordGCBeginTime */,
8108                  true  /* recordPreGCUsage */,
8109                  false /* recordPeakUsage */,
8110                  false /* recordPostGCusage */,
8111                  true  /* recordAccumulatedGCTime */,
8112                  false /* recordGCEndTime */,
8113                  false /* countCollection */  );
8114       break;
8115 
8116     case CMSCollector::FinalMarking:
8117       initialize(true  /* fullGC */ ,
8118                  cause /* cause of the GC */,
8119                  false /* recordGCBeginTime */,
8120                  false /* recordPreGCUsage */,
8121                  false /* recordPeakUsage */,
8122                  false /* recordPostGCusage */,
8123                  true  /* recordAccumulatedGCTime */,
8124                  false /* recordGCEndTime */,
8125                  false /* countCollection */  );
8126       break;
8127 
8128     case CMSCollector::Sweeping:
8129       initialize(true  /* fullGC */ ,
8130                  cause /* cause of the GC */,
8131                  false /* recordGCBeginTime */,
8132                  false /* recordPreGCUsage */,
8133                  true  /* recordPeakUsage */,
8134                  true  /* recordPostGCusage */,
8135                  false /* recordAccumulatedGCTime */,
8136                  true  /* recordGCEndTime */,
8137                  true  /* countCollection */  );
8138       break;
8139 
8140     default:
8141       ShouldNotReachHere();
8142   }
8143 }