1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   bool inline_unsafe_allocate();
 217   bool inline_unsafe_copyMemory();
 218   bool inline_native_currentThread();
 219 #ifdef TRACE_HAVE_INTRINSICS
 220   bool inline_native_classID();
 221   bool inline_native_threadID();
 222 #endif
 223   bool inline_native_time_funcs(address method, const char* funcName);
 224   bool inline_native_isInterrupted();
 225   bool inline_native_Class_query(vmIntrinsics::ID id);
 226   bool inline_native_subtype_check();
 227 
 228   bool inline_native_newArray();
 229   bool inline_native_getLength();
 230   bool inline_array_copyOf(bool is_copyOfRange);
 231   bool inline_array_equals();
 232   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 233   bool inline_native_clone(bool is_virtual);
 234   bool inline_native_Reflection_getCallerClass();
 235   // Helper function for inlining native object hash method
 236   bool inline_native_hashcode(bool is_virtual, bool is_static);
 237   bool inline_native_getClass();
 238 
 239   // Helper functions for inlining arraycopy
 240   bool inline_arraycopy();
 241   void generate_arraycopy(const TypePtr* adr_type,
 242                           BasicType basic_elem_type,
 243                           Node* src,  Node* src_offset,
 244                           Node* dest, Node* dest_offset,
 245                           Node* copy_length,
 246                           bool disjoint_bases = false,
 247                           bool length_never_negative = false,
 248                           RegionNode* slow_region = NULL);
 249   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 250                                                 RegionNode* slow_region);
 251   void generate_clear_array(const TypePtr* adr_type,
 252                             Node* dest,
 253                             BasicType basic_elem_type,
 254                             Node* slice_off,
 255                             Node* slice_len,
 256                             Node* slice_end);
 257   bool generate_block_arraycopy(const TypePtr* adr_type,
 258                                 BasicType basic_elem_type,
 259                                 AllocateNode* alloc,
 260                                 Node* src,  Node* src_offset,
 261                                 Node* dest, Node* dest_offset,
 262                                 Node* dest_size, bool dest_uninitialized);
 263   void generate_slow_arraycopy(const TypePtr* adr_type,
 264                                Node* src,  Node* src_offset,
 265                                Node* dest, Node* dest_offset,
 266                                Node* copy_length, bool dest_uninitialized);
 267   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 268                                      Node* dest_elem_klass,
 269                                      Node* src,  Node* src_offset,
 270                                      Node* dest, Node* dest_offset,
 271                                      Node* copy_length, bool dest_uninitialized);
 272   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 273                                    Node* src,  Node* src_offset,
 274                                    Node* dest, Node* dest_offset,
 275                                    Node* copy_length, bool dest_uninitialized);
 276   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 277                                     BasicType basic_elem_type,
 278                                     bool disjoint_bases,
 279                                     Node* src,  Node* src_offset,
 280                                     Node* dest, Node* dest_offset,
 281                                     Node* copy_length, bool dest_uninitialized);
 282   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 283   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 284   bool inline_unsafe_ordered_store(BasicType type);
 285   bool inline_unsafe_fence(vmIntrinsics::ID id);
 286   bool inline_fp_conversions(vmIntrinsics::ID id);
 287   bool inline_number_methods(vmIntrinsics::ID id);
 288   bool inline_reference_get();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293   bool inline_encodeISOArray();
 294   bool inline_updateCRC32();
 295   bool inline_updateBytesCRC32();
 296   bool inline_updateByteBufferCRC32();
 297 };
 298 
 299 
 300 //---------------------------make_vm_intrinsic----------------------------
 301 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 302   vmIntrinsics::ID id = m->intrinsic_id();
 303   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 304 
 305   if (DisableIntrinsic[0] != '\0'
 306       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 307     // disabled by a user request on the command line:
 308     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 309     return NULL;
 310   }
 311 
 312   if (!m->is_loaded()) {
 313     // do not attempt to inline unloaded methods
 314     return NULL;
 315   }
 316 
 317   // Only a few intrinsics implement a virtual dispatch.
 318   // They are expensive calls which are also frequently overridden.
 319   if (is_virtual) {
 320     switch (id) {
 321     case vmIntrinsics::_hashCode:
 322     case vmIntrinsics::_clone:
 323       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 324       break;
 325     default:
 326       return NULL;
 327     }
 328   }
 329 
 330   // -XX:-InlineNatives disables nearly all intrinsics:
 331   if (!InlineNatives) {
 332     switch (id) {
 333     case vmIntrinsics::_indexOf:
 334     case vmIntrinsics::_compareTo:
 335     case vmIntrinsics::_equals:
 336     case vmIntrinsics::_equalsC:
 337     case vmIntrinsics::_getAndAddInt:
 338     case vmIntrinsics::_getAndAddLong:
 339     case vmIntrinsics::_getAndSetInt:
 340     case vmIntrinsics::_getAndSetLong:
 341     case vmIntrinsics::_getAndSetObject:
 342     case vmIntrinsics::_loadFence:
 343     case vmIntrinsics::_storeFence:
 344     case vmIntrinsics::_fullFence:
 345       break;  // InlineNatives does not control String.compareTo
 346     case vmIntrinsics::_Reference_get:
 347       break;  // InlineNatives does not control Reference.get
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   bool is_predicted = false;
 354 
 355   switch (id) {
 356   case vmIntrinsics::_compareTo:
 357     if (!SpecialStringCompareTo)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 359     break;
 360   case vmIntrinsics::_indexOf:
 361     if (!SpecialStringIndexOf)  return NULL;
 362     break;
 363   case vmIntrinsics::_equals:
 364     if (!SpecialStringEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 366     break;
 367   case vmIntrinsics::_equalsC:
 368     if (!SpecialArraysEquals)  return NULL;
 369     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 370     break;
 371   case vmIntrinsics::_arraycopy:
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_copyMemory:
 375     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 376     if (!InlineArrayCopy)  return NULL;
 377     break;
 378   case vmIntrinsics::_hashCode:
 379     if (!InlineObjectHash)  return NULL;
 380     break;
 381   case vmIntrinsics::_clone:
 382   case vmIntrinsics::_copyOf:
 383   case vmIntrinsics::_copyOfRange:
 384     if (!InlineObjectCopy)  return NULL;
 385     // These also use the arraycopy intrinsic mechanism:
 386     if (!InlineArrayCopy)  return NULL;
 387     break;
 388   case vmIntrinsics::_encodeISOArray:
 389     if (!SpecialEncodeISOArray)  return NULL;
 390     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 391     break;
 392   case vmIntrinsics::_checkIndex:
 393     // We do not intrinsify this.  The optimizer does fine with it.
 394     return NULL;
 395 
 396   case vmIntrinsics::_getCallerClass:
 397     if (!UseNewReflection)  return NULL;
 398     if (!InlineReflectionGetCallerClass)  return NULL;
 399     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 400     break;
 401 
 402   case vmIntrinsics::_bitCount_i:
 403     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 404     break;
 405 
 406   case vmIntrinsics::_bitCount_l:
 407     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 408     break;
 409 
 410   case vmIntrinsics::_numberOfLeadingZeros_i:
 411     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 412     break;
 413 
 414   case vmIntrinsics::_numberOfLeadingZeros_l:
 415     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 416     break;
 417 
 418   case vmIntrinsics::_numberOfTrailingZeros_i:
 419     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 420     break;
 421 
 422   case vmIntrinsics::_numberOfTrailingZeros_l:
 423     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 424     break;
 425 
 426   case vmIntrinsics::_reverseBytes_c:
 427     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 428     break;
 429   case vmIntrinsics::_reverseBytes_s:
 430     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 431     break;
 432   case vmIntrinsics::_reverseBytes_i:
 433     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 434     break;
 435   case vmIntrinsics::_reverseBytes_l:
 436     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 437     break;
 438 
 439   case vmIntrinsics::_Reference_get:
 440     // Use the intrinsic version of Reference.get() so that the value in
 441     // the referent field can be registered by the G1 pre-barrier code.
 442     // Also add memory barrier to prevent commoning reads from this field
 443     // across safepoint since GC can change it value.
 444     break;
 445 
 446   case vmIntrinsics::_compareAndSwapObject:
 447 #ifdef _LP64
 448     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 449 #endif
 450     break;
 451 
 452   case vmIntrinsics::_compareAndSwapLong:
 453     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 454     break;
 455 
 456   case vmIntrinsics::_getAndAddInt:
 457     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 458     break;
 459 
 460   case vmIntrinsics::_getAndAddLong:
 461     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 462     break;
 463 
 464   case vmIntrinsics::_getAndSetInt:
 465     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 466     break;
 467 
 468   case vmIntrinsics::_getAndSetLong:
 469     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 470     break;
 471 
 472   case vmIntrinsics::_getAndSetObject:
 473 #ifdef _LP64
 474     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 475     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 476     break;
 477 #else
 478     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 479     break;
 480 #endif
 481 
 482   case vmIntrinsics::_aescrypt_encryptBlock:
 483   case vmIntrinsics::_aescrypt_decryptBlock:
 484     if (!UseAESIntrinsics) return NULL;
 485     break;
 486 
 487   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 488   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 489     if (!UseAESIntrinsics) return NULL;
 490     // these two require the predicated logic
 491     is_predicted = true;
 492     break;
 493 
 494   case vmIntrinsics::_updateCRC32:
 495   case vmIntrinsics::_updateBytesCRC32:
 496   case vmIntrinsics::_updateByteBufferCRC32:
 497     if (!UseCRC32Intrinsics) return NULL;
 498     break;
 499 
 500  default:
 501     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 502     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 503     break;
 504   }
 505 
 506   // -XX:-InlineClassNatives disables natives from the Class class.
 507   // The flag applies to all reflective calls, notably Array.newArray
 508   // (visible to Java programmers as Array.newInstance).
 509   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 510       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 511     if (!InlineClassNatives)  return NULL;
 512   }
 513 
 514   // -XX:-InlineThreadNatives disables natives from the Thread class.
 515   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 516     if (!InlineThreadNatives)  return NULL;
 517   }
 518 
 519   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 520   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 521       m->holder()->name() == ciSymbol::java_lang_Float() ||
 522       m->holder()->name() == ciSymbol::java_lang_Double()) {
 523     if (!InlineMathNatives)  return NULL;
 524   }
 525 
 526   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 527   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 528     if (!InlineUnsafeOps)  return NULL;
 529   }
 530 
 531   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 532 }
 533 
 534 //----------------------register_library_intrinsics-----------------------
 535 // Initialize this file's data structures, for each Compile instance.
 536 void Compile::register_library_intrinsics() {
 537   // Nothing to do here.
 538 }
 539 
 540 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 541   LibraryCallKit kit(jvms, this);
 542   Compile* C = kit.C;
 543   int nodes = C->unique();
 544 #ifndef PRODUCT
 545   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 546     char buf[1000];
 547     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 548     tty->print_cr("Intrinsic %s", str);
 549   }
 550 #endif
 551   ciMethod* callee = kit.callee();
 552   const int bci    = kit.bci();
 553 
 554   // Try to inline the intrinsic.
 555   if (kit.try_to_inline()) {
 556     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 557       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 558     }
 559     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 560     if (C->log()) {
 561       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 562                      vmIntrinsics::name_at(intrinsic_id()),
 563                      (is_virtual() ? " virtual='1'" : ""),
 564                      C->unique() - nodes);
 565     }
 566     // Push the result from the inlined method onto the stack.
 567     kit.push_result();
 568     return kit.transfer_exceptions_into_jvms();
 569   }
 570 
 571   // The intrinsic bailed out
 572   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 573     if (jvms->has_method()) {
 574       // Not a root compile.
 575       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 576       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 577     } else {
 578       // Root compile
 579       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 580                vmIntrinsics::name_at(intrinsic_id()),
 581                (is_virtual() ? " (virtual)" : ""), bci);
 582     }
 583   }
 584   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 585   return NULL;
 586 }
 587 
 588 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 589   LibraryCallKit kit(jvms, this);
 590   Compile* C = kit.C;
 591   int nodes = C->unique();
 592 #ifndef PRODUCT
 593   assert(is_predicted(), "sanity");
 594   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 595     char buf[1000];
 596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 597     tty->print_cr("Predicate for intrinsic %s", str);
 598   }
 599 #endif
 600   ciMethod* callee = kit.callee();
 601   const int bci    = kit.bci();
 602 
 603   Node* slow_ctl = kit.try_to_predicate();
 604   if (!kit.failing()) {
 605     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 607     }
 608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 609     if (C->log()) {
 610       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 611                      vmIntrinsics::name_at(intrinsic_id()),
 612                      (is_virtual() ? " virtual='1'" : ""),
 613                      C->unique() - nodes);
 614     }
 615     return slow_ctl; // Could be NULL if the check folds.
 616   }
 617 
 618   // The intrinsic bailed out
 619   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 620     if (jvms->has_method()) {
 621       // Not a root compile.
 622       const char* msg = "failed to generate predicate for intrinsic";
 623       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 624     } else {
 625       // Root compile
 626       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 627                                         vmIntrinsics::name_at(intrinsic_id()),
 628                                         (is_virtual() ? " (virtual)" : ""), bci);
 629     }
 630   }
 631   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 632   return NULL;
 633 }
 634 
 635 bool LibraryCallKit::try_to_inline() {
 636   // Handle symbolic names for otherwise undistinguished boolean switches:
 637   const bool is_store       = true;
 638   const bool is_native_ptr  = true;
 639   const bool is_static      = true;
 640   const bool is_volatile    = true;
 641 
 642   if (!jvms()->has_method()) {
 643     // Root JVMState has a null method.
 644     assert(map()->memory()->Opcode() == Op_Parm, "");
 645     // Insert the memory aliasing node
 646     set_all_memory(reset_memory());
 647   }
 648   assert(merged_memory(), "");
 649 
 650 
 651   switch (intrinsic_id()) {
 652   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 653   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 654   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 655 
 656   case vmIntrinsics::_dsin:
 657   case vmIntrinsics::_dcos:
 658   case vmIntrinsics::_dtan:
 659   case vmIntrinsics::_dabs:
 660   case vmIntrinsics::_datan2:
 661   case vmIntrinsics::_dsqrt:
 662   case vmIntrinsics::_dexp:
 663   case vmIntrinsics::_dlog:
 664   case vmIntrinsics::_dlog10:
 665   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 666 
 667   case vmIntrinsics::_min:
 668   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 669 
 670   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 671 
 672   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 673   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 674   case vmIntrinsics::_equals:                   return inline_string_equals();
 675 
 676   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 677   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 678   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 679   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 680   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 681   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 682   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 683   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 684   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 685 
 686   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 687   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 688   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 689   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 690   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 691   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 692   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 693   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 694   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 695 
 696   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 697   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 698   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 699   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 700   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 701   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 702   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 703   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 704 
 705   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 706   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 707   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 708   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 709   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 710   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 711   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 712   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 713 
 714   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 715   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 716   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 717   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 718   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 719   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 720   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 721   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 722   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 723 
 724   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 725   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 726   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 727   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 728   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 729   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 730   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 731   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 732   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 733 
 734   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 735   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 736   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 737   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 738 
 739   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 740   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 741   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 742 
 743   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 744   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 745   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 746 
 747   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 748   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 749   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 750   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 751   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 752 
 753   case vmIntrinsics::_loadFence:
 754   case vmIntrinsics::_storeFence:
 755   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 756 
 757   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 758   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 759 
 760 #ifdef TRACE_HAVE_INTRINSICS
 761   case vmIntrinsics::_classID:                  return inline_native_classID();
 762   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 763   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 764 #endif
 765   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 766   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 767   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 768   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 769   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 770   case vmIntrinsics::_getLength:                return inline_native_getLength();
 771   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 772   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 773   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 774   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 775 
 776   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 777 
 778   case vmIntrinsics::_isInstance:
 779   case vmIntrinsics::_getModifiers:
 780   case vmIntrinsics::_isInterface:
 781   case vmIntrinsics::_isArray:
 782   case vmIntrinsics::_isPrimitive:
 783   case vmIntrinsics::_getSuperclass:
 784   case vmIntrinsics::_getComponentType:
 785   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 786 
 787   case vmIntrinsics::_floatToRawIntBits:
 788   case vmIntrinsics::_floatToIntBits:
 789   case vmIntrinsics::_intBitsToFloat:
 790   case vmIntrinsics::_doubleToRawLongBits:
 791   case vmIntrinsics::_doubleToLongBits:
 792   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 793 
 794   case vmIntrinsics::_numberOfLeadingZeros_i:
 795   case vmIntrinsics::_numberOfLeadingZeros_l:
 796   case vmIntrinsics::_numberOfTrailingZeros_i:
 797   case vmIntrinsics::_numberOfTrailingZeros_l:
 798   case vmIntrinsics::_bitCount_i:
 799   case vmIntrinsics::_bitCount_l:
 800   case vmIntrinsics::_reverseBytes_i:
 801   case vmIntrinsics::_reverseBytes_l:
 802   case vmIntrinsics::_reverseBytes_s:
 803   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 804 
 805   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 806 
 807   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 808 
 809   case vmIntrinsics::_aescrypt_encryptBlock:
 810   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 811 
 812   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 813   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 814     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 815 
 816   case vmIntrinsics::_encodeISOArray:
 817     return inline_encodeISOArray();
 818 
 819   case vmIntrinsics::_updateCRC32:
 820     return inline_updateCRC32();
 821   case vmIntrinsics::_updateBytesCRC32:
 822     return inline_updateBytesCRC32();
 823   case vmIntrinsics::_updateByteBufferCRC32:
 824     return inline_updateByteBufferCRC32();
 825 
 826   default:
 827     // If you get here, it may be that someone has added a new intrinsic
 828     // to the list in vmSymbols.hpp without implementing it here.
 829 #ifndef PRODUCT
 830     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 831       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 832                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 833     }
 834 #endif
 835     return false;
 836   }
 837 }
 838 
 839 Node* LibraryCallKit::try_to_predicate() {
 840   if (!jvms()->has_method()) {
 841     // Root JVMState has a null method.
 842     assert(map()->memory()->Opcode() == Op_Parm, "");
 843     // Insert the memory aliasing node
 844     set_all_memory(reset_memory());
 845   }
 846   assert(merged_memory(), "");
 847 
 848   switch (intrinsic_id()) {
 849   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 850     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 851   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 852     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 853 
 854   default:
 855     // If you get here, it may be that someone has added a new intrinsic
 856     // to the list in vmSymbols.hpp without implementing it here.
 857 #ifndef PRODUCT
 858     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 859       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 860                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 861     }
 862 #endif
 863     Node* slow_ctl = control();
 864     set_control(top()); // No fast path instrinsic
 865     return slow_ctl;
 866   }
 867 }
 868 
 869 //------------------------------set_result-------------------------------
 870 // Helper function for finishing intrinsics.
 871 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 872   record_for_igvn(region);
 873   set_control(_gvn.transform(region));
 874   set_result( _gvn.transform(value));
 875   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 876 }
 877 
 878 //------------------------------generate_guard---------------------------
 879 // Helper function for generating guarded fast-slow graph structures.
 880 // The given 'test', if true, guards a slow path.  If the test fails
 881 // then a fast path can be taken.  (We generally hope it fails.)
 882 // In all cases, GraphKit::control() is updated to the fast path.
 883 // The returned value represents the control for the slow path.
 884 // The return value is never 'top'; it is either a valid control
 885 // or NULL if it is obvious that the slow path can never be taken.
 886 // Also, if region and the slow control are not NULL, the slow edge
 887 // is appended to the region.
 888 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 889   if (stopped()) {
 890     // Already short circuited.
 891     return NULL;
 892   }
 893 
 894   // Build an if node and its projections.
 895   // If test is true we take the slow path, which we assume is uncommon.
 896   if (_gvn.type(test) == TypeInt::ZERO) {
 897     // The slow branch is never taken.  No need to build this guard.
 898     return NULL;
 899   }
 900 
 901   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 902 
 903   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 904   if (if_slow == top()) {
 905     // The slow branch is never taken.  No need to build this guard.
 906     return NULL;
 907   }
 908 
 909   if (region != NULL)
 910     region->add_req(if_slow);
 911 
 912   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 913   set_control(if_fast);
 914 
 915   return if_slow;
 916 }
 917 
 918 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 919   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 920 }
 921 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 922   return generate_guard(test, region, PROB_FAIR);
 923 }
 924 
 925 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 926                                                      Node* *pos_index) {
 927   if (stopped())
 928     return NULL;                // already stopped
 929   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 930     return NULL;                // index is already adequately typed
 931   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 932   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 933   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 934   if (is_neg != NULL && pos_index != NULL) {
 935     // Emulate effect of Parse::adjust_map_after_if.
 936     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 937     ccast->set_req(0, control());
 938     (*pos_index) = _gvn.transform(ccast);
 939   }
 940   return is_neg;
 941 }
 942 
 943 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 944                                                         Node* *pos_index) {
 945   if (stopped())
 946     return NULL;                // already stopped
 947   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 948     return NULL;                // index is already adequately typed
 949   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 950   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 951   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
 952   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 953   if (is_notp != NULL && pos_index != NULL) {
 954     // Emulate effect of Parse::adjust_map_after_if.
 955     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 956     ccast->set_req(0, control());
 957     (*pos_index) = _gvn.transform(ccast);
 958   }
 959   return is_notp;
 960 }
 961 
 962 // Make sure that 'position' is a valid limit index, in [0..length].
 963 // There are two equivalent plans for checking this:
 964 //   A. (offset + copyLength)  unsigned<=  arrayLength
 965 //   B. offset  <=  (arrayLength - copyLength)
 966 // We require that all of the values above, except for the sum and
 967 // difference, are already known to be non-negative.
 968 // Plan A is robust in the face of overflow, if offset and copyLength
 969 // are both hugely positive.
 970 //
 971 // Plan B is less direct and intuitive, but it does not overflow at
 972 // all, since the difference of two non-negatives is always
 973 // representable.  Whenever Java methods must perform the equivalent
 974 // check they generally use Plan B instead of Plan A.
 975 // For the moment we use Plan A.
 976 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 977                                                   Node* subseq_length,
 978                                                   Node* array_length,
 979                                                   RegionNode* region) {
 980   if (stopped())
 981     return NULL;                // already stopped
 982   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 983   if (zero_offset && subseq_length->eqv_uncast(array_length))
 984     return NULL;                // common case of whole-array copy
 985   Node* last = subseq_length;
 986   if (!zero_offset)             // last += offset
 987     last = _gvn.transform(new (C) AddINode(last, offset));
 988   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
 989   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 990   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 991   return is_over;
 992 }
 993 
 994 
 995 //--------------------------generate_current_thread--------------------
 996 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 997   ciKlass*    thread_klass = env()->Thread_klass();
 998   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 999   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1000   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1001   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
1002   tls_output = thread;
1003   return threadObj;
1004 }
1005 
1006 
1007 //------------------------------make_string_method_node------------------------
1008 // Helper method for String intrinsic functions. This version is called
1009 // with str1 and str2 pointing to String object nodes.
1010 //
1011 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1012   Node* no_ctrl = NULL;
1013 
1014   // Get start addr of string
1015   Node* str1_value   = load_String_value(no_ctrl, str1);
1016   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1017   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1018 
1019   // Get length of string 1
1020   Node* str1_len  = load_String_length(no_ctrl, str1);
1021 
1022   Node* str2_value   = load_String_value(no_ctrl, str2);
1023   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1024   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1025 
1026   Node* str2_len = NULL;
1027   Node* result = NULL;
1028 
1029   switch (opcode) {
1030   case Op_StrIndexOf:
1031     // Get length of string 2
1032     str2_len = load_String_length(no_ctrl, str2);
1033 
1034     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1035                                  str1_start, str1_len, str2_start, str2_len);
1036     break;
1037   case Op_StrComp:
1038     // Get length of string 2
1039     str2_len = load_String_length(no_ctrl, str2);
1040 
1041     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1042                                  str1_start, str1_len, str2_start, str2_len);
1043     break;
1044   case Op_StrEquals:
1045     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1046                                str1_start, str2_start, str1_len);
1047     break;
1048   default:
1049     ShouldNotReachHere();
1050     return NULL;
1051   }
1052 
1053   // All these intrinsics have checks.
1054   C->set_has_split_ifs(true); // Has chance for split-if optimization
1055 
1056   return _gvn.transform(result);
1057 }
1058 
1059 // Helper method for String intrinsic functions. This version is called
1060 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1061 // to Int nodes containing the lenghts of str1 and str2.
1062 //
1063 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1064   Node* result = NULL;
1065   switch (opcode) {
1066   case Op_StrIndexOf:
1067     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1068                                  str1_start, cnt1, str2_start, cnt2);
1069     break;
1070   case Op_StrComp:
1071     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1072                                  str1_start, cnt1, str2_start, cnt2);
1073     break;
1074   case Op_StrEquals:
1075     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1076                                  str1_start, str2_start, cnt1);
1077     break;
1078   default:
1079     ShouldNotReachHere();
1080     return NULL;
1081   }
1082 
1083   // All these intrinsics have checks.
1084   C->set_has_split_ifs(true); // Has chance for split-if optimization
1085 
1086   return _gvn.transform(result);
1087 }
1088 
1089 //------------------------------inline_string_compareTo------------------------
1090 // public int java.lang.String.compareTo(String anotherString);
1091 bool LibraryCallKit::inline_string_compareTo() {
1092   Node* receiver = null_check(argument(0));
1093   Node* arg      = null_check(argument(1));
1094   if (stopped()) {
1095     return true;
1096   }
1097   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1098   return true;
1099 }
1100 
1101 //------------------------------inline_string_equals------------------------
1102 bool LibraryCallKit::inline_string_equals() {
1103   Node* receiver = null_check_receiver();
1104   // NOTE: Do not null check argument for String.equals() because spec
1105   // allows to specify NULL as argument.
1106   Node* argument = this->argument(1);
1107   if (stopped()) {
1108     return true;
1109   }
1110 
1111   // paths (plus control) merge
1112   RegionNode* region = new (C) RegionNode(5);
1113   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1114 
1115   // does source == target string?
1116   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1117   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1118 
1119   Node* if_eq = generate_slow_guard(bol, NULL);
1120   if (if_eq != NULL) {
1121     // receiver == argument
1122     phi->init_req(2, intcon(1));
1123     region->init_req(2, if_eq);
1124   }
1125 
1126   // get String klass for instanceOf
1127   ciInstanceKlass* klass = env()->String_klass();
1128 
1129   if (!stopped()) {
1130     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1131     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1132     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1133 
1134     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1135     //instanceOf == true, fallthrough
1136 
1137     if (inst_false != NULL) {
1138       phi->init_req(3, intcon(0));
1139       region->init_req(3, inst_false);
1140     }
1141   }
1142 
1143   if (!stopped()) {
1144     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1145 
1146     // Properly cast the argument to String
1147     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1148     // This path is taken only when argument's type is String:NotNull.
1149     argument = cast_not_null(argument, false);
1150 
1151     Node* no_ctrl = NULL;
1152 
1153     // Get start addr of receiver
1154     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1155     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1156     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1157 
1158     // Get length of receiver
1159     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1160 
1161     // Get start addr of argument
1162     Node* argument_val    = load_String_value(no_ctrl, argument);
1163     Node* argument_offset = load_String_offset(no_ctrl, argument);
1164     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1165 
1166     // Get length of argument
1167     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1168 
1169     // Check for receiver count != argument count
1170     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1171     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1172     Node* if_ne = generate_slow_guard(bol, NULL);
1173     if (if_ne != NULL) {
1174       phi->init_req(4, intcon(0));
1175       region->init_req(4, if_ne);
1176     }
1177 
1178     // Check for count == 0 is done by assembler code for StrEquals.
1179 
1180     if (!stopped()) {
1181       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1182       phi->init_req(1, equals);
1183       region->init_req(1, control());
1184     }
1185   }
1186 
1187   // post merge
1188   set_control(_gvn.transform(region));
1189   record_for_igvn(region);
1190 
1191   set_result(_gvn.transform(phi));
1192   return true;
1193 }
1194 
1195 //------------------------------inline_array_equals----------------------------
1196 bool LibraryCallKit::inline_array_equals() {
1197   Node* arg1 = argument(0);
1198   Node* arg2 = argument(1);
1199   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1200   return true;
1201 }
1202 
1203 // Java version of String.indexOf(constant string)
1204 // class StringDecl {
1205 //   StringDecl(char[] ca) {
1206 //     offset = 0;
1207 //     count = ca.length;
1208 //     value = ca;
1209 //   }
1210 //   int offset;
1211 //   int count;
1212 //   char[] value;
1213 // }
1214 //
1215 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1216 //                             int targetOffset, int cache_i, int md2) {
1217 //   int cache = cache_i;
1218 //   int sourceOffset = string_object.offset;
1219 //   int sourceCount = string_object.count;
1220 //   int targetCount = target_object.length;
1221 //
1222 //   int targetCountLess1 = targetCount - 1;
1223 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1224 //
1225 //   char[] source = string_object.value;
1226 //   char[] target = target_object;
1227 //   int lastChar = target[targetCountLess1];
1228 //
1229 //  outer_loop:
1230 //   for (int i = sourceOffset; i < sourceEnd; ) {
1231 //     int src = source[i + targetCountLess1];
1232 //     if (src == lastChar) {
1233 //       // With random strings and a 4-character alphabet,
1234 //       // reverse matching at this point sets up 0.8% fewer
1235 //       // frames, but (paradoxically) makes 0.3% more probes.
1236 //       // Since those probes are nearer the lastChar probe,
1237 //       // there is may be a net D$ win with reverse matching.
1238 //       // But, reversing loop inhibits unroll of inner loop
1239 //       // for unknown reason.  So, does running outer loop from
1240 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1241 //       for (int j = 0; j < targetCountLess1; j++) {
1242 //         if (target[targetOffset + j] != source[i+j]) {
1243 //           if ((cache & (1 << source[i+j])) == 0) {
1244 //             if (md2 < j+1) {
1245 //               i += j+1;
1246 //               continue outer_loop;
1247 //             }
1248 //           }
1249 //           i += md2;
1250 //           continue outer_loop;
1251 //         }
1252 //       }
1253 //       return i - sourceOffset;
1254 //     }
1255 //     if ((cache & (1 << src)) == 0) {
1256 //       i += targetCountLess1;
1257 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1258 //     i++;
1259 //   }
1260 //   return -1;
1261 // }
1262 
1263 //------------------------------string_indexOf------------------------
1264 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1265                                      jint cache_i, jint md2_i) {
1266 
1267   Node* no_ctrl  = NULL;
1268   float likely   = PROB_LIKELY(0.9);
1269   float unlikely = PROB_UNLIKELY(0.9);
1270 
1271   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1272 
1273   Node* source        = load_String_value(no_ctrl, string_object);
1274   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1275   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1276 
1277   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1278   jint target_length = target_array->length();
1279   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1280   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1281 
1282   IdealKit kit(this, false, true);
1283 #define __ kit.
1284   Node* zero             = __ ConI(0);
1285   Node* one              = __ ConI(1);
1286   Node* cache            = __ ConI(cache_i);
1287   Node* md2              = __ ConI(md2_i);
1288   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1289   Node* targetCount      = __ ConI(target_length);
1290   Node* targetCountLess1 = __ ConI(target_length - 1);
1291   Node* targetOffset     = __ ConI(targetOffset_i);
1292   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1293 
1294   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1295   Node* outer_loop = __ make_label(2 /* goto */);
1296   Node* return_    = __ make_label(1);
1297 
1298   __ set(rtn,__ ConI(-1));
1299   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1300        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1301        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1302        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1303        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1304          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1305               Node* tpj = __ AddI(targetOffset, __ value(j));
1306               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1307               Node* ipj  = __ AddI(__ value(i), __ value(j));
1308               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1309               __ if_then(targ, BoolTest::ne, src2); {
1310                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1311                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1312                     __ increment(i, __ AddI(__ value(j), one));
1313                     __ goto_(outer_loop);
1314                   } __ end_if(); __ dead(j);
1315                 }__ end_if(); __ dead(j);
1316                 __ increment(i, md2);
1317                 __ goto_(outer_loop);
1318               }__ end_if();
1319               __ increment(j, one);
1320          }__ end_loop(); __ dead(j);
1321          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1322          __ goto_(return_);
1323        }__ end_if();
1324        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1325          __ increment(i, targetCountLess1);
1326        }__ end_if();
1327        __ increment(i, one);
1328        __ bind(outer_loop);
1329   }__ end_loop(); __ dead(i);
1330   __ bind(return_);
1331 
1332   // Final sync IdealKit and GraphKit.
1333   final_sync(kit);
1334   Node* result = __ value(rtn);
1335 #undef __
1336   C->set_has_loops(true);
1337   return result;
1338 }
1339 
1340 //------------------------------inline_string_indexOf------------------------
1341 bool LibraryCallKit::inline_string_indexOf() {
1342   Node* receiver = argument(0);
1343   Node* arg      = argument(1);
1344 
1345   Node* result;
1346   // Disable the use of pcmpestri until it can be guaranteed that
1347   // the load doesn't cross into the uncommited space.
1348   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1349       UseSSE42Intrinsics) {
1350     // Generate SSE4.2 version of indexOf
1351     // We currently only have match rules that use SSE4.2
1352 
1353     receiver = null_check(receiver);
1354     arg      = null_check(arg);
1355     if (stopped()) {
1356       return true;
1357     }
1358 
1359     ciInstanceKlass* str_klass = env()->String_klass();
1360     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1361 
1362     // Make the merge point
1363     RegionNode* result_rgn = new (C) RegionNode(4);
1364     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1365     Node* no_ctrl  = NULL;
1366 
1367     // Get start addr of source string
1368     Node* source = load_String_value(no_ctrl, receiver);
1369     Node* source_offset = load_String_offset(no_ctrl, receiver);
1370     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1371 
1372     // Get length of source string
1373     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1374 
1375     // Get start addr of substring
1376     Node* substr = load_String_value(no_ctrl, arg);
1377     Node* substr_offset = load_String_offset(no_ctrl, arg);
1378     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1379 
1380     // Get length of source string
1381     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1382 
1383     // Check for substr count > string count
1384     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1385     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1386     Node* if_gt = generate_slow_guard(bol, NULL);
1387     if (if_gt != NULL) {
1388       result_phi->init_req(2, intcon(-1));
1389       result_rgn->init_req(2, if_gt);
1390     }
1391 
1392     if (!stopped()) {
1393       // Check for substr count == 0
1394       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1395       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1396       Node* if_zero = generate_slow_guard(bol, NULL);
1397       if (if_zero != NULL) {
1398         result_phi->init_req(3, intcon(0));
1399         result_rgn->init_req(3, if_zero);
1400       }
1401     }
1402 
1403     if (!stopped()) {
1404       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1405       result_phi->init_req(1, result);
1406       result_rgn->init_req(1, control());
1407     }
1408     set_control(_gvn.transform(result_rgn));
1409     record_for_igvn(result_rgn);
1410     result = _gvn.transform(result_phi);
1411 
1412   } else { // Use LibraryCallKit::string_indexOf
1413     // don't intrinsify if argument isn't a constant string.
1414     if (!arg->is_Con()) {
1415      return false;
1416     }
1417     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1418     if (str_type == NULL) {
1419       return false;
1420     }
1421     ciInstanceKlass* klass = env()->String_klass();
1422     ciObject* str_const = str_type->const_oop();
1423     if (str_const == NULL || str_const->klass() != klass) {
1424       return false;
1425     }
1426     ciInstance* str = str_const->as_instance();
1427     assert(str != NULL, "must be instance");
1428 
1429     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1430     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1431 
1432     int o;
1433     int c;
1434     if (java_lang_String::has_offset_field()) {
1435       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1436       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1437     } else {
1438       o = 0;
1439       c = pat->length();
1440     }
1441 
1442     // constant strings have no offset and count == length which
1443     // simplifies the resulting code somewhat so lets optimize for that.
1444     if (o != 0 || c != pat->length()) {
1445      return false;
1446     }
1447 
1448     receiver = null_check(receiver, T_OBJECT);
1449     // NOTE: No null check on the argument is needed since it's a constant String oop.
1450     if (stopped()) {
1451       return true;
1452     }
1453 
1454     // The null string as a pattern always returns 0 (match at beginning of string)
1455     if (c == 0) {
1456       set_result(intcon(0));
1457       return true;
1458     }
1459 
1460     // Generate default indexOf
1461     jchar lastChar = pat->char_at(o + (c - 1));
1462     int cache = 0;
1463     int i;
1464     for (i = 0; i < c - 1; i++) {
1465       assert(i < pat->length(), "out of range");
1466       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1467     }
1468 
1469     int md2 = c;
1470     for (i = 0; i < c - 1; i++) {
1471       assert(i < pat->length(), "out of range");
1472       if (pat->char_at(o + i) == lastChar) {
1473         md2 = (c - 1) - i;
1474       }
1475     }
1476 
1477     result = string_indexOf(receiver, pat, o, cache, md2);
1478   }
1479   set_result(result);
1480   return true;
1481 }
1482 
1483 //--------------------------round_double_node--------------------------------
1484 // Round a double node if necessary.
1485 Node* LibraryCallKit::round_double_node(Node* n) {
1486   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1487     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1488   return n;
1489 }
1490 
1491 //------------------------------inline_math-----------------------------------
1492 // public static double Math.abs(double)
1493 // public static double Math.sqrt(double)
1494 // public static double Math.log(double)
1495 // public static double Math.log10(double)
1496 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1497   Node* arg = round_double_node(argument(0));
1498   Node* n;
1499   switch (id) {
1500   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1501   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1502   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1503   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1504   default:  fatal_unexpected_iid(id);  break;
1505   }
1506   set_result(_gvn.transform(n));
1507   return true;
1508 }
1509 
1510 //------------------------------inline_trig----------------------------------
1511 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1512 // argument reduction which will turn into a fast/slow diamond.
1513 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1514   Node* arg = round_double_node(argument(0));
1515   Node* n = NULL;
1516 
1517   switch (id) {
1518   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1519   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1520   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1521   default:  fatal_unexpected_iid(id);  break;
1522   }
1523   n = _gvn.transform(n);
1524 
1525   // Rounding required?  Check for argument reduction!
1526   if (Matcher::strict_fp_requires_explicit_rounding) {
1527     static const double     pi_4 =  0.7853981633974483;
1528     static const double neg_pi_4 = -0.7853981633974483;
1529     // pi/2 in 80-bit extended precision
1530     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1531     // -pi/2 in 80-bit extended precision
1532     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1533     // Cutoff value for using this argument reduction technique
1534     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1535     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1536 
1537     // Pseudocode for sin:
1538     // if (x <= Math.PI / 4.0) {
1539     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1540     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1541     // } else {
1542     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1543     // }
1544     // return StrictMath.sin(x);
1545 
1546     // Pseudocode for cos:
1547     // if (x <= Math.PI / 4.0) {
1548     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1549     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1550     // } else {
1551     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1552     // }
1553     // return StrictMath.cos(x);
1554 
1555     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1556     // requires a special machine instruction to load it.  Instead we'll try
1557     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1558     // probably do the math inside the SIN encoding.
1559 
1560     // Make the merge point
1561     RegionNode* r = new (C) RegionNode(3);
1562     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1563 
1564     // Flatten arg so we need only 1 test
1565     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1566     // Node for PI/4 constant
1567     Node *pi4 = makecon(TypeD::make(pi_4));
1568     // Check PI/4 : abs(arg)
1569     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1570     // Check: If PI/4 < abs(arg) then go slow
1571     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1572     // Branch either way
1573     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1574     set_control(opt_iff(r,iff));
1575 
1576     // Set fast path result
1577     phi->init_req(2, n);
1578 
1579     // Slow path - non-blocking leaf call
1580     Node* call = NULL;
1581     switch (id) {
1582     case vmIntrinsics::_dsin:
1583       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1584                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1585                                "Sin", NULL, arg, top());
1586       break;
1587     case vmIntrinsics::_dcos:
1588       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1589                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1590                                "Cos", NULL, arg, top());
1591       break;
1592     case vmIntrinsics::_dtan:
1593       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1594                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1595                                "Tan", NULL, arg, top());
1596       break;
1597     }
1598     assert(control()->in(0) == call, "");
1599     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1600     r->init_req(1, control());
1601     phi->init_req(1, slow_result);
1602 
1603     // Post-merge
1604     set_control(_gvn.transform(r));
1605     record_for_igvn(r);
1606     n = _gvn.transform(phi);
1607 
1608     C->set_has_split_ifs(true); // Has chance for split-if optimization
1609   }
1610   set_result(n);
1611   return true;
1612 }
1613 
1614 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1615   //-------------------
1616   //result=(result.isNaN())? funcAddr():result;
1617   // Check: If isNaN() by checking result!=result? then either trap
1618   // or go to runtime
1619   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1620   // Build the boolean node
1621   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1622 
1623   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1624     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1625       // The pow or exp intrinsic returned a NaN, which requires a call
1626       // to the runtime.  Recompile with the runtime call.
1627       uncommon_trap(Deoptimization::Reason_intrinsic,
1628                     Deoptimization::Action_make_not_entrant);
1629     }
1630     set_result(result);
1631   } else {
1632     // If this inlining ever returned NaN in the past, we compile a call
1633     // to the runtime to properly handle corner cases
1634 
1635     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1636     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1637     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1638 
1639     if (!if_slow->is_top()) {
1640       RegionNode* result_region = new (C) RegionNode(3);
1641       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1642 
1643       result_region->init_req(1, if_fast);
1644       result_val->init_req(1, result);
1645 
1646       set_control(if_slow);
1647 
1648       const TypePtr* no_memory_effects = NULL;
1649       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1650                                    no_memory_effects,
1651                                    x, top(), y, y ? top() : NULL);
1652       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1653 #ifdef ASSERT
1654       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1655       assert(value_top == top(), "second value must be top");
1656 #endif
1657 
1658       result_region->init_req(2, control());
1659       result_val->init_req(2, value);
1660       set_result(result_region, result_val);
1661     } else {
1662       set_result(result);
1663     }
1664   }
1665 }
1666 
1667 //------------------------------inline_exp-------------------------------------
1668 // Inline exp instructions, if possible.  The Intel hardware only misses
1669 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1670 bool LibraryCallKit::inline_exp() {
1671   Node* arg = round_double_node(argument(0));
1672   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1673 
1674   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1675 
1676   C->set_has_split_ifs(true); // Has chance for split-if optimization
1677   return true;
1678 }
1679 
1680 //------------------------------inline_pow-------------------------------------
1681 // Inline power instructions, if possible.
1682 bool LibraryCallKit::inline_pow() {
1683   // Pseudocode for pow
1684   // if (x <= 0.0) {
1685   //   long longy = (long)y;
1686   //   if ((double)longy == y) { // if y is long
1687   //     if (y + 1 == y) longy = 0; // huge number: even
1688   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1689   //   } else {
1690   //     result = NaN;
1691   //   }
1692   // } else {
1693   //   result = DPow(x,y);
1694   // }
1695   // if (result != result)?  {
1696   //   result = uncommon_trap() or runtime_call();
1697   // }
1698   // return result;
1699 
1700   Node* x = round_double_node(argument(0));
1701   Node* y = round_double_node(argument(2));
1702 
1703   Node* result = NULL;
1704 
1705   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1706     // Short form: skip the fancy tests and just check for NaN result.
1707     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1708   } else {
1709     // If this inlining ever returned NaN in the past, include all
1710     // checks + call to the runtime.
1711 
1712     // Set the merge point for If node with condition of (x <= 0.0)
1713     // There are four possible paths to region node and phi node
1714     RegionNode *r = new (C) RegionNode(4);
1715     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1716 
1717     // Build the first if node: if (x <= 0.0)
1718     // Node for 0 constant
1719     Node *zeronode = makecon(TypeD::ZERO);
1720     // Check x:0
1721     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1722     // Check: If (x<=0) then go complex path
1723     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1724     // Branch either way
1725     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1726     // Fast path taken; set region slot 3
1727     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1728     r->init_req(3,fast_taken); // Capture fast-control
1729 
1730     // Fast path not-taken, i.e. slow path
1731     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1732 
1733     // Set fast path result
1734     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1735     phi->init_req(3, fast_result);
1736 
1737     // Complex path
1738     // Build the second if node (if y is long)
1739     // Node for (long)y
1740     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1741     // Node for (double)((long) y)
1742     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1743     // Check (double)((long) y) : y
1744     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1745     // Check if (y isn't long) then go to slow path
1746 
1747     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1748     // Branch either way
1749     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1750     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1751 
1752     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1753 
1754     // Calculate DPow(abs(x), y)*(1 & (long)y)
1755     // Node for constant 1
1756     Node *conone = longcon(1);
1757     // 1& (long)y
1758     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1759 
1760     // A huge number is always even. Detect a huge number by checking
1761     // if y + 1 == y and set integer to be tested for parity to 0.
1762     // Required for corner case:
1763     // (long)9.223372036854776E18 = max_jlong
1764     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1765     // max_jlong is odd but 9.223372036854776E18 is even
1766     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1767     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1768     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1769     Node* correctedsign = NULL;
1770     if (ConditionalMoveLimit != 0) {
1771       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1772     } else {
1773       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1774       RegionNode *r = new (C) RegionNode(3);
1775       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1776       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1777       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1778       phi->init_req(1, signnode);
1779       phi->init_req(2, longcon(0));
1780       correctedsign = _gvn.transform(phi);
1781       ylong_path = _gvn.transform(r);
1782       record_for_igvn(r);
1783     }
1784 
1785     // zero node
1786     Node *conzero = longcon(0);
1787     // Check (1&(long)y)==0?
1788     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1789     // Check if (1&(long)y)!=0?, if so the result is negative
1790     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1791     // abs(x)
1792     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1793     // abs(x)^y
1794     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1795     // -abs(x)^y
1796     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1797     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1798     Node *signresult = NULL;
1799     if (ConditionalMoveLimit != 0) {
1800       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1801     } else {
1802       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1803       RegionNode *r = new (C) RegionNode(3);
1804       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1805       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1806       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1807       phi->init_req(1, absxpowy);
1808       phi->init_req(2, negabsxpowy);
1809       signresult = _gvn.transform(phi);
1810       ylong_path = _gvn.transform(r);
1811       record_for_igvn(r);
1812     }
1813     // Set complex path fast result
1814     r->init_req(2, ylong_path);
1815     phi->init_req(2, signresult);
1816 
1817     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1818     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1819     r->init_req(1,slow_path);
1820     phi->init_req(1,slow_result);
1821 
1822     // Post merge
1823     set_control(_gvn.transform(r));
1824     record_for_igvn(r);
1825     result = _gvn.transform(phi);
1826   }
1827 
1828   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1829 
1830   C->set_has_split_ifs(true); // Has chance for split-if optimization
1831   return true;
1832 }
1833 
1834 //------------------------------runtime_math-----------------------------
1835 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1836   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1837          "must be (DD)D or (D)D type");
1838 
1839   // Inputs
1840   Node* a = round_double_node(argument(0));
1841   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1842 
1843   const TypePtr* no_memory_effects = NULL;
1844   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1845                                  no_memory_effects,
1846                                  a, top(), b, b ? top() : NULL);
1847   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1848 #ifdef ASSERT
1849   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1850   assert(value_top == top(), "second value must be top");
1851 #endif
1852 
1853   set_result(value);
1854   return true;
1855 }
1856 
1857 //------------------------------inline_math_native-----------------------------
1858 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1859 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1860   switch (id) {
1861     // These intrinsics are not properly supported on all hardware
1862   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1863     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1864   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1865     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1866   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1867     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1868 
1869   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1870     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1871   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1872     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1873 
1874     // These intrinsics are supported on all hardware
1875   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1876   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1877 
1878   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1879     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1880   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1881     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1882 #undef FN_PTR
1883 
1884    // These intrinsics are not yet correctly implemented
1885   case vmIntrinsics::_datan2:
1886     return false;
1887 
1888   default:
1889     fatal_unexpected_iid(id);
1890     return false;
1891   }
1892 }
1893 
1894 static bool is_simple_name(Node* n) {
1895   return (n->req() == 1         // constant
1896           || (n->is_Type() && n->as_Type()->type()->singleton())
1897           || n->is_Proj()       // parameter or return value
1898           || n->is_Phi()        // local of some sort
1899           );
1900 }
1901 
1902 //----------------------------inline_min_max-----------------------------------
1903 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1904   set_result(generate_min_max(id, argument(0), argument(1)));
1905   return true;
1906 }
1907 
1908 Node*
1909 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1910   // These are the candidate return value:
1911   Node* xvalue = x0;
1912   Node* yvalue = y0;
1913 
1914   if (xvalue == yvalue) {
1915     return xvalue;
1916   }
1917 
1918   bool want_max = (id == vmIntrinsics::_max);
1919 
1920   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1921   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1922   if (txvalue == NULL || tyvalue == NULL)  return top();
1923   // This is not really necessary, but it is consistent with a
1924   // hypothetical MaxINode::Value method:
1925   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1926 
1927   // %%% This folding logic should (ideally) be in a different place.
1928   // Some should be inside IfNode, and there to be a more reliable
1929   // transformation of ?: style patterns into cmoves.  We also want
1930   // more powerful optimizations around cmove and min/max.
1931 
1932   // Try to find a dominating comparison of these guys.
1933   // It can simplify the index computation for Arrays.copyOf
1934   // and similar uses of System.arraycopy.
1935   // First, compute the normalized version of CmpI(x, y).
1936   int   cmp_op = Op_CmpI;
1937   Node* xkey = xvalue;
1938   Node* ykey = yvalue;
1939   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
1940   if (ideal_cmpxy->is_Cmp()) {
1941     // E.g., if we have CmpI(length - offset, count),
1942     // it might idealize to CmpI(length, count + offset)
1943     cmp_op = ideal_cmpxy->Opcode();
1944     xkey = ideal_cmpxy->in(1);
1945     ykey = ideal_cmpxy->in(2);
1946   }
1947 
1948   // Start by locating any relevant comparisons.
1949   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1950   Node* cmpxy = NULL;
1951   Node* cmpyx = NULL;
1952   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1953     Node* cmp = start_from->fast_out(k);
1954     if (cmp->outcnt() > 0 &&            // must have prior uses
1955         cmp->in(0) == NULL &&           // must be context-independent
1956         cmp->Opcode() == cmp_op) {      // right kind of compare
1957       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1958       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1959     }
1960   }
1961 
1962   const int NCMPS = 2;
1963   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1964   int cmpn;
1965   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1966     if (cmps[cmpn] != NULL)  break;     // find a result
1967   }
1968   if (cmpn < NCMPS) {
1969     // Look for a dominating test that tells us the min and max.
1970     int depth = 0;                // Limit search depth for speed
1971     Node* dom = control();
1972     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1973       if (++depth >= 100)  break;
1974       Node* ifproj = dom;
1975       if (!ifproj->is_Proj())  continue;
1976       Node* iff = ifproj->in(0);
1977       if (!iff->is_If())  continue;
1978       Node* bol = iff->in(1);
1979       if (!bol->is_Bool())  continue;
1980       Node* cmp = bol->in(1);
1981       if (cmp == NULL)  continue;
1982       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1983         if (cmps[cmpn] == cmp)  break;
1984       if (cmpn == NCMPS)  continue;
1985       BoolTest::mask btest = bol->as_Bool()->_test._test;
1986       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1987       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1988       // At this point, we know that 'x btest y' is true.
1989       switch (btest) {
1990       case BoolTest::eq:
1991         // They are proven equal, so we can collapse the min/max.
1992         // Either value is the answer.  Choose the simpler.
1993         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1994           return yvalue;
1995         return xvalue;
1996       case BoolTest::lt:          // x < y
1997       case BoolTest::le:          // x <= y
1998         return (want_max ? yvalue : xvalue);
1999       case BoolTest::gt:          // x > y
2000       case BoolTest::ge:          // x >= y
2001         return (want_max ? xvalue : yvalue);
2002       }
2003     }
2004   }
2005 
2006   // We failed to find a dominating test.
2007   // Let's pick a test that might GVN with prior tests.
2008   Node*          best_bol   = NULL;
2009   BoolTest::mask best_btest = BoolTest::illegal;
2010   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2011     Node* cmp = cmps[cmpn];
2012     if (cmp == NULL)  continue;
2013     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2014       Node* bol = cmp->fast_out(j);
2015       if (!bol->is_Bool())  continue;
2016       BoolTest::mask btest = bol->as_Bool()->_test._test;
2017       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2018       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2019       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2020         best_bol   = bol->as_Bool();
2021         best_btest = btest;
2022       }
2023     }
2024   }
2025 
2026   Node* answer_if_true  = NULL;
2027   Node* answer_if_false = NULL;
2028   switch (best_btest) {
2029   default:
2030     if (cmpxy == NULL)
2031       cmpxy = ideal_cmpxy;
2032     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2033     // and fall through:
2034   case BoolTest::lt:          // x < y
2035   case BoolTest::le:          // x <= y
2036     answer_if_true  = (want_max ? yvalue : xvalue);
2037     answer_if_false = (want_max ? xvalue : yvalue);
2038     break;
2039   case BoolTest::gt:          // x > y
2040   case BoolTest::ge:          // x >= y
2041     answer_if_true  = (want_max ? xvalue : yvalue);
2042     answer_if_false = (want_max ? yvalue : xvalue);
2043     break;
2044   }
2045 
2046   jint hi, lo;
2047   if (want_max) {
2048     // We can sharpen the minimum.
2049     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2050     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2051   } else {
2052     // We can sharpen the maximum.
2053     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2054     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2055   }
2056 
2057   // Use a flow-free graph structure, to avoid creating excess control edges
2058   // which could hinder other optimizations.
2059   // Since Math.min/max is often used with arraycopy, we want
2060   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2061   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2062                                answer_if_false, answer_if_true,
2063                                TypeInt::make(lo, hi, widen));
2064 
2065   return _gvn.transform(cmov);
2066 
2067   /*
2068   // This is not as desirable as it may seem, since Min and Max
2069   // nodes do not have a full set of optimizations.
2070   // And they would interfere, anyway, with 'if' optimizations
2071   // and with CMoveI canonical forms.
2072   switch (id) {
2073   case vmIntrinsics::_min:
2074     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2075   case vmIntrinsics::_max:
2076     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2077   default:
2078     ShouldNotReachHere();
2079   }
2080   */
2081 }
2082 
2083 inline int
2084 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2085   const TypePtr* base_type = TypePtr::NULL_PTR;
2086   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2087   if (base_type == NULL) {
2088     // Unknown type.
2089     return Type::AnyPtr;
2090   } else if (base_type == TypePtr::NULL_PTR) {
2091     // Since this is a NULL+long form, we have to switch to a rawptr.
2092     base   = _gvn.transform(new (C) CastX2PNode(offset));
2093     offset = MakeConX(0);
2094     return Type::RawPtr;
2095   } else if (base_type->base() == Type::RawPtr) {
2096     return Type::RawPtr;
2097   } else if (base_type->isa_oopptr()) {
2098     // Base is never null => always a heap address.
2099     if (base_type->ptr() == TypePtr::NotNull) {
2100       return Type::OopPtr;
2101     }
2102     // Offset is small => always a heap address.
2103     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2104     if (offset_type != NULL &&
2105         base_type->offset() == 0 &&     // (should always be?)
2106         offset_type->_lo >= 0 &&
2107         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2108       return Type::OopPtr;
2109     }
2110     // Otherwise, it might either be oop+off or NULL+addr.
2111     return Type::AnyPtr;
2112   } else {
2113     // No information:
2114     return Type::AnyPtr;
2115   }
2116 }
2117 
2118 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2119   int kind = classify_unsafe_addr(base, offset);
2120   if (kind == Type::RawPtr) {
2121     return basic_plus_adr(top(), base, offset);
2122   } else {
2123     return basic_plus_adr(base, offset);
2124   }
2125 }
2126 
2127 //--------------------------inline_number_methods-----------------------------
2128 // inline int     Integer.numberOfLeadingZeros(int)
2129 // inline int        Long.numberOfLeadingZeros(long)
2130 //
2131 // inline int     Integer.numberOfTrailingZeros(int)
2132 // inline int        Long.numberOfTrailingZeros(long)
2133 //
2134 // inline int     Integer.bitCount(int)
2135 // inline int        Long.bitCount(long)
2136 //
2137 // inline char  Character.reverseBytes(char)
2138 // inline short     Short.reverseBytes(short)
2139 // inline int     Integer.reverseBytes(int)
2140 // inline long       Long.reverseBytes(long)
2141 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2142   Node* arg = argument(0);
2143   Node* n;
2144   switch (id) {
2145   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2146   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2147   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2148   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2149   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2150   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2151   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2152   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2153   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2154   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2155   default:  fatal_unexpected_iid(id);  break;
2156   }
2157   set_result(_gvn.transform(n));
2158   return true;
2159 }
2160 
2161 //----------------------------inline_unsafe_access----------------------------
2162 
2163 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2164 
2165 // Helper that guards and inserts a pre-barrier.
2166 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2167                                         Node* pre_val, bool need_mem_bar) {
2168   // We could be accessing the referent field of a reference object. If so, when G1
2169   // is enabled, we need to log the value in the referent field in an SATB buffer.
2170   // This routine performs some compile time filters and generates suitable
2171   // runtime filters that guard the pre-barrier code.
2172   // Also add memory barrier for non volatile load from the referent field
2173   // to prevent commoning of loads across safepoint.
2174   if (!UseG1GC && !need_mem_bar)
2175     return;
2176 
2177   // Some compile time checks.
2178 
2179   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2180   const TypeX* otype = offset->find_intptr_t_type();
2181   if (otype != NULL && otype->is_con() &&
2182       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2183     // Constant offset but not the reference_offset so just return
2184     return;
2185   }
2186 
2187   // We only need to generate the runtime guards for instances.
2188   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2189   if (btype != NULL) {
2190     if (btype->isa_aryptr()) {
2191       // Array type so nothing to do
2192       return;
2193     }
2194 
2195     const TypeInstPtr* itype = btype->isa_instptr();
2196     if (itype != NULL) {
2197       // Can the klass of base_oop be statically determined to be
2198       // _not_ a sub-class of Reference and _not_ Object?
2199       ciKlass* klass = itype->klass();
2200       if ( klass->is_loaded() &&
2201           !klass->is_subtype_of(env()->Reference_klass()) &&
2202           !env()->Object_klass()->is_subtype_of(klass)) {
2203         return;
2204       }
2205     }
2206   }
2207 
2208   // The compile time filters did not reject base_oop/offset so
2209   // we need to generate the following runtime filters
2210   //
2211   // if (offset == java_lang_ref_Reference::_reference_offset) {
2212   //   if (instance_of(base, java.lang.ref.Reference)) {
2213   //     pre_barrier(_, pre_val, ...);
2214   //   }
2215   // }
2216 
2217   float likely   = PROB_LIKELY(  0.999);
2218   float unlikely = PROB_UNLIKELY(0.999);
2219 
2220   IdealKit ideal(this);
2221 #define __ ideal.
2222 
2223   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2224 
2225   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2226       // Update graphKit memory and control from IdealKit.
2227       sync_kit(ideal);
2228 
2229       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2230       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2231 
2232       // Update IdealKit memory and control from graphKit.
2233       __ sync_kit(this);
2234 
2235       Node* one = __ ConI(1);
2236       // is_instof == 0 if base_oop == NULL
2237       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2238 
2239         // Update graphKit from IdeakKit.
2240         sync_kit(ideal);
2241 
2242         // Use the pre-barrier to record the value in the referent field
2243         pre_barrier(false /* do_load */,
2244                     __ ctrl(),
2245                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2246                     pre_val /* pre_val */,
2247                     T_OBJECT);
2248         if (need_mem_bar) {
2249           // Add memory barrier to prevent commoning reads from this field
2250           // across safepoint since GC can change its value.
2251           insert_mem_bar(Op_MemBarCPUOrder);
2252         }
2253         // Update IdealKit from graphKit.
2254         __ sync_kit(this);
2255 
2256       } __ end_if(); // _ref_type != ref_none
2257   } __ end_if(); // offset == referent_offset
2258 
2259   // Final sync IdealKit and GraphKit.
2260   final_sync(ideal);
2261 #undef __
2262 }
2263 
2264 
2265 // Interpret Unsafe.fieldOffset cookies correctly:
2266 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2267 
2268 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2269   // Attempt to infer a sharper value type from the offset and base type.
2270   ciKlass* sharpened_klass = NULL;
2271 
2272   // See if it is an instance field, with an object type.
2273   if (alias_type->field() != NULL) {
2274     assert(!is_native_ptr, "native pointer op cannot use a java address");
2275     if (alias_type->field()->type()->is_klass()) {
2276       sharpened_klass = alias_type->field()->type()->as_klass();
2277     }
2278   }
2279 
2280   // See if it is a narrow oop array.
2281   if (adr_type->isa_aryptr()) {
2282     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2283       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2284       if (elem_type != NULL) {
2285         sharpened_klass = elem_type->klass();
2286       }
2287     }
2288   }
2289 
2290   // The sharpened class might be unloaded if there is no class loader
2291   // contraint in place.
2292   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2293     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2294 
2295 #ifndef PRODUCT
2296     if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2297       tty->print("  from base type: ");  adr_type->dump();
2298       tty->print("  sharpened value: ");  tjp->dump();
2299     }
2300 #endif
2301     // Sharpen the value type.
2302     return tjp;
2303   }
2304   return NULL;
2305 }
2306 
2307 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2308   if (callee()->is_static())  return false;  // caller must have the capability!
2309 
2310 #ifndef PRODUCT
2311   {
2312     ResourceMark rm;
2313     // Check the signatures.
2314     ciSignature* sig = callee()->signature();
2315 #ifdef ASSERT
2316     if (!is_store) {
2317       // Object getObject(Object base, int/long offset), etc.
2318       BasicType rtype = sig->return_type()->basic_type();
2319       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2320           rtype = T_ADDRESS;  // it is really a C void*
2321       assert(rtype == type, "getter must return the expected value");
2322       if (!is_native_ptr) {
2323         assert(sig->count() == 2, "oop getter has 2 arguments");
2324         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2325         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2326       } else {
2327         assert(sig->count() == 1, "native getter has 1 argument");
2328         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2329       }
2330     } else {
2331       // void putObject(Object base, int/long offset, Object x), etc.
2332       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2333       if (!is_native_ptr) {
2334         assert(sig->count() == 3, "oop putter has 3 arguments");
2335         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2336         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2337       } else {
2338         assert(sig->count() == 2, "native putter has 2 arguments");
2339         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2340       }
2341       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2342       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2343         vtype = T_ADDRESS;  // it is really a C void*
2344       assert(vtype == type, "putter must accept the expected value");
2345     }
2346 #endif // ASSERT
2347  }
2348 #endif //PRODUCT
2349 
2350   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2351 
2352   Node* receiver = argument(0);  // type: oop
2353 
2354   // Build address expression.  See the code in inline_unsafe_prefetch.
2355   Node* adr;
2356   Node* heap_base_oop = top();
2357   Node* offset = top();
2358   Node* val;
2359 
2360   if (!is_native_ptr) {
2361     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2362     Node* base = argument(1);  // type: oop
2363     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2364     offset = argument(2);  // type: long
2365     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2366     // to be plain byte offsets, which are also the same as those accepted
2367     // by oopDesc::field_base.
2368     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2369            "fieldOffset must be byte-scaled");
2370     // 32-bit machines ignore the high half!
2371     offset = ConvL2X(offset);
2372     adr = make_unsafe_address(base, offset);
2373     heap_base_oop = base;
2374     val = is_store ? argument(4) : NULL;
2375   } else {
2376     Node* ptr = argument(1);  // type: long
2377     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2378     adr = make_unsafe_address(NULL, ptr);
2379     val = is_store ? argument(3) : NULL;
2380   }
2381 
2382   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2383 
2384   // First guess at the value type.
2385   const Type *value_type = Type::get_const_basic_type(type);
2386 
2387   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2388   // there was not enough information to nail it down.
2389   Compile::AliasType* alias_type = C->alias_type(adr_type);
2390   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2391 
2392   // We will need memory barriers unless we can determine a unique
2393   // alias category for this reference.  (Note:  If for some reason
2394   // the barriers get omitted and the unsafe reference begins to "pollute"
2395   // the alias analysis of the rest of the graph, either Compile::can_alias
2396   // or Compile::must_alias will throw a diagnostic assert.)
2397   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2398 
2399   // If we are reading the value of the referent field of a Reference
2400   // object (either by using Unsafe directly or through reflection)
2401   // then, if G1 is enabled, we need to record the referent in an
2402   // SATB log buffer using the pre-barrier mechanism.
2403   // Also we need to add memory barrier to prevent commoning reads
2404   // from this field across safepoint since GC can change its value.
2405   bool need_read_barrier = !is_native_ptr && !is_store &&
2406                            offset != top() && heap_base_oop != top();
2407 
2408   if (!is_store && type == T_OBJECT) {
2409     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2410     if (tjp != NULL) {
2411       value_type = tjp;
2412     }
2413   }
2414 
2415   receiver = null_check(receiver);
2416   if (stopped()) {
2417     return true;
2418   }
2419   // Heap pointers get a null-check from the interpreter,
2420   // as a courtesy.  However, this is not guaranteed by Unsafe,
2421   // and it is not possible to fully distinguish unintended nulls
2422   // from intended ones in this API.
2423 
2424   if (is_volatile) {
2425     // We need to emit leading and trailing CPU membars (see below) in
2426     // addition to memory membars when is_volatile. This is a little
2427     // too strong, but avoids the need to insert per-alias-type
2428     // volatile membars (for stores; compare Parse::do_put_xxx), which
2429     // we cannot do effectively here because we probably only have a
2430     // rough approximation of type.
2431     need_mem_bar = true;
2432     // For Stores, place a memory ordering barrier now.
2433     if (is_store)
2434       insert_mem_bar(Op_MemBarRelease);
2435   }
2436 
2437   // Memory barrier to prevent normal and 'unsafe' accesses from
2438   // bypassing each other.  Happens after null checks, so the
2439   // exception paths do not take memory state from the memory barrier,
2440   // so there's no problems making a strong assert about mixing users
2441   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2442   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2443   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2444 
2445   if (!is_store) {
2446     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2447     // load value
2448     switch (type) {
2449     case T_BOOLEAN:
2450     case T_CHAR:
2451     case T_BYTE:
2452     case T_SHORT:
2453     case T_INT:
2454     case T_LONG:
2455     case T_FLOAT:
2456     case T_DOUBLE:
2457       break;
2458     case T_OBJECT:
2459       if (need_read_barrier) {
2460         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2461       }
2462       break;
2463     case T_ADDRESS:
2464       // Cast to an int type.
2465       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2466       p = ConvX2L(p);
2467       break;
2468     default:
2469       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2470       break;
2471     }
2472     // The load node has the control of the preceding MemBarCPUOrder.  All
2473     // following nodes will have the control of the MemBarCPUOrder inserted at
2474     // the end of this method.  So, pushing the load onto the stack at a later
2475     // point is fine.
2476     set_result(p);
2477   } else {
2478     // place effect of store into memory
2479     switch (type) {
2480     case T_DOUBLE:
2481       val = dstore_rounding(val);
2482       break;
2483     case T_ADDRESS:
2484       // Repackage the long as a pointer.
2485       val = ConvL2X(val);
2486       val = _gvn.transform(new (C) CastX2PNode(val));
2487       break;
2488     }
2489 
2490     if (type != T_OBJECT ) {
2491       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2492     } else {
2493       // Possibly an oop being stored to Java heap or native memory
2494       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2495         // oop to Java heap.
2496         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2497       } else {
2498         // We can't tell at compile time if we are storing in the Java heap or outside
2499         // of it. So we need to emit code to conditionally do the proper type of
2500         // store.
2501 
2502         IdealKit ideal(this);
2503 #define __ ideal.
2504         // QQQ who knows what probability is here??
2505         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2506           // Sync IdealKit and graphKit.
2507           sync_kit(ideal);
2508           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2509           // Update IdealKit memory.
2510           __ sync_kit(this);
2511         } __ else_(); {
2512           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2513         } __ end_if();
2514         // Final sync IdealKit and GraphKit.
2515         final_sync(ideal);
2516 #undef __
2517       }
2518     }
2519   }
2520 
2521   if (is_volatile) {
2522     if (!is_store)
2523       insert_mem_bar(Op_MemBarAcquire);
2524     else
2525       insert_mem_bar(Op_MemBarVolatile);
2526   }
2527 
2528   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2529 
2530   return true;
2531 }
2532 
2533 //----------------------------inline_unsafe_prefetch----------------------------
2534 
2535 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2536 #ifndef PRODUCT
2537   {
2538     ResourceMark rm;
2539     // Check the signatures.
2540     ciSignature* sig = callee()->signature();
2541 #ifdef ASSERT
2542     // Object getObject(Object base, int/long offset), etc.
2543     BasicType rtype = sig->return_type()->basic_type();
2544     if (!is_native_ptr) {
2545       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2546       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2547       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2548     } else {
2549       assert(sig->count() == 1, "native prefetch has 1 argument");
2550       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2551     }
2552 #endif // ASSERT
2553   }
2554 #endif // !PRODUCT
2555 
2556   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2557 
2558   const int idx = is_static ? 0 : 1;
2559   if (!is_static) {
2560     null_check_receiver();
2561     if (stopped()) {
2562       return true;
2563     }
2564   }
2565 
2566   // Build address expression.  See the code in inline_unsafe_access.
2567   Node *adr;
2568   if (!is_native_ptr) {
2569     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2570     Node* base   = argument(idx + 0);  // type: oop
2571     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2572     Node* offset = argument(idx + 1);  // type: long
2573     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2574     // to be plain byte offsets, which are also the same as those accepted
2575     // by oopDesc::field_base.
2576     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2577            "fieldOffset must be byte-scaled");
2578     // 32-bit machines ignore the high half!
2579     offset = ConvL2X(offset);
2580     adr = make_unsafe_address(base, offset);
2581   } else {
2582     Node* ptr = argument(idx + 0);  // type: long
2583     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2584     adr = make_unsafe_address(NULL, ptr);
2585   }
2586 
2587   // Generate the read or write prefetch
2588   Node *prefetch;
2589   if (is_store) {
2590     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2591   } else {
2592     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2593   }
2594   prefetch->init_req(0, control());
2595   set_i_o(_gvn.transform(prefetch));
2596 
2597   return true;
2598 }
2599 
2600 //----------------------------inline_unsafe_load_store----------------------------
2601 // This method serves a couple of different customers (depending on LoadStoreKind):
2602 //
2603 // LS_cmpxchg:
2604 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2605 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2606 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2607 //
2608 // LS_xadd:
2609 //   public int  getAndAddInt( Object o, long offset, int  delta)
2610 //   public long getAndAddLong(Object o, long offset, long delta)
2611 //
2612 // LS_xchg:
2613 //   int    getAndSet(Object o, long offset, int    newValue)
2614 //   long   getAndSet(Object o, long offset, long   newValue)
2615 //   Object getAndSet(Object o, long offset, Object newValue)
2616 //
2617 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2618   // This basic scheme here is the same as inline_unsafe_access, but
2619   // differs in enough details that combining them would make the code
2620   // overly confusing.  (This is a true fact! I originally combined
2621   // them, but even I was confused by it!) As much code/comments as
2622   // possible are retained from inline_unsafe_access though to make
2623   // the correspondences clearer. - dl
2624 
2625   if (callee()->is_static())  return false;  // caller must have the capability!
2626 
2627 #ifndef PRODUCT
2628   BasicType rtype;
2629   {
2630     ResourceMark rm;
2631     // Check the signatures.
2632     ciSignature* sig = callee()->signature();
2633     rtype = sig->return_type()->basic_type();
2634     if (kind == LS_xadd || kind == LS_xchg) {
2635       // Check the signatures.
2636 #ifdef ASSERT
2637       assert(rtype == type, "get and set must return the expected type");
2638       assert(sig->count() == 3, "get and set has 3 arguments");
2639       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2640       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2641       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2642 #endif // ASSERT
2643     } else if (kind == LS_cmpxchg) {
2644       // Check the signatures.
2645 #ifdef ASSERT
2646       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2647       assert(sig->count() == 4, "CAS has 4 arguments");
2648       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2649       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2650 #endif // ASSERT
2651     } else {
2652       ShouldNotReachHere();
2653     }
2654   }
2655 #endif //PRODUCT
2656 
2657   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2658 
2659   // Get arguments:
2660   Node* receiver = NULL;
2661   Node* base     = NULL;
2662   Node* offset   = NULL;
2663   Node* oldval   = NULL;
2664   Node* newval   = NULL;
2665   if (kind == LS_cmpxchg) {
2666     const bool two_slot_type = type2size[type] == 2;
2667     receiver = argument(0);  // type: oop
2668     base     = argument(1);  // type: oop
2669     offset   = argument(2);  // type: long
2670     oldval   = argument(4);  // type: oop, int, or long
2671     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2672   } else if (kind == LS_xadd || kind == LS_xchg){
2673     receiver = argument(0);  // type: oop
2674     base     = argument(1);  // type: oop
2675     offset   = argument(2);  // type: long
2676     oldval   = NULL;
2677     newval   = argument(4);  // type: oop, int, or long
2678   }
2679 
2680   // Null check receiver.
2681   receiver = null_check(receiver);
2682   if (stopped()) {
2683     return true;
2684   }
2685 
2686   // Build field offset expression.
2687   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2688   // to be plain byte offsets, which are also the same as those accepted
2689   // by oopDesc::field_base.
2690   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2691   // 32-bit machines ignore the high half of long offsets
2692   offset = ConvL2X(offset);
2693   Node* adr = make_unsafe_address(base, offset);
2694   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2695 
2696   // For CAS, unlike inline_unsafe_access, there seems no point in
2697   // trying to refine types. Just use the coarse types here.
2698   const Type *value_type = Type::get_const_basic_type(type);
2699   Compile::AliasType* alias_type = C->alias_type(adr_type);
2700   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2701 
2702   if (kind == LS_xchg && type == T_OBJECT) {
2703     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2704     if (tjp != NULL) {
2705       value_type = tjp;
2706     }
2707   }
2708 
2709   int alias_idx = C->get_alias_index(adr_type);
2710 
2711   // Memory-model-wise, a LoadStore acts like a little synchronized
2712   // block, so needs barriers on each side.  These don't translate
2713   // into actual barriers on most machines, but we still need rest of
2714   // compiler to respect ordering.
2715 
2716   insert_mem_bar(Op_MemBarRelease);
2717   insert_mem_bar(Op_MemBarCPUOrder);
2718 
2719   // 4984716: MemBars must be inserted before this
2720   //          memory node in order to avoid a false
2721   //          dependency which will confuse the scheduler.
2722   Node *mem = memory(alias_idx);
2723 
2724   // For now, we handle only those cases that actually exist: ints,
2725   // longs, and Object. Adding others should be straightforward.
2726   Node* load_store;
2727   switch(type) {
2728   case T_INT:
2729     if (kind == LS_xadd) {
2730       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2731     } else if (kind == LS_xchg) {
2732       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2733     } else if (kind == LS_cmpxchg) {
2734       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2735     } else {
2736       ShouldNotReachHere();
2737     }
2738     break;
2739   case T_LONG:
2740     if (kind == LS_xadd) {
2741       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2742     } else if (kind == LS_xchg) {
2743       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2744     } else if (kind == LS_cmpxchg) {
2745       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2746     } else {
2747       ShouldNotReachHere();
2748     }
2749     break;
2750   case T_OBJECT:
2751     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2752     // could be delayed during Parse (for example, in adjust_map_after_if()).
2753     // Execute transformation here to avoid barrier generation in such case.
2754     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2755       newval = _gvn.makecon(TypePtr::NULL_PTR);
2756 
2757     // Reference stores need a store barrier.
2758     if (kind == LS_cmpxchg) {
2759       // The only known value which might get overwritten is oldval.
2760       pre_barrier(false /* do_load */,
2761                   control(), NULL, NULL, max_juint, NULL, NULL,
2762                   oldval /* pre_val */,
2763                   T_OBJECT);
2764     }
2765     // LS_xchg: see below.
2766 
2767 #ifdef _LP64
2768     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2769       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2770       if (kind == LS_xchg) {
2771         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2772                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2773       } else {
2774         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2775         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2776         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2777                                                                    newval_enc, oldval_enc));
2778       }
2779     } else
2780 #endif
2781     {
2782       if (kind == LS_xchg) {
2783         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2784       } else {
2785         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2786         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2787       }
2788     }
2789     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2790     break;
2791   default:
2792     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2793     break;
2794   }
2795 
2796   // SCMemProjNodes represent the memory state of a LoadStore. Their
2797   // main role is to prevent LoadStore nodes from being optimized away
2798   // when their results aren't used.
2799   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2800   set_memory(proj, alias_idx);
2801 
2802 #ifdef _LP64
2803   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2804     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2805   }
2806 #endif
2807 
2808   // G1: Don't need to load pre_val. The old value is returned by load_store.
2809   // The pre_barrier can execute after the xchg as long as no safepoint
2810   // gets inserted between them.
2811   if (type == T_OBJECT && kind == LS_xchg) {
2812     pre_barrier(false /* do_load */,
2813                 control(), NULL, NULL, max_juint, NULL, NULL,
2814                 load_store /* pre_val */,
2815                 T_OBJECT);
2816   }
2817 
2818   // Add the trailing membar surrounding the access
2819   insert_mem_bar(Op_MemBarCPUOrder);
2820   insert_mem_bar(Op_MemBarAcquire);
2821 
2822   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2823   set_result(load_store);
2824   return true;
2825 }
2826 
2827 //----------------------------inline_unsafe_ordered_store----------------------
2828 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2829 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2830 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2831 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2832   // This is another variant of inline_unsafe_access, differing in
2833   // that it always issues store-store ("release") barrier and ensures
2834   // store-atomicity (which only matters for "long").
2835 
2836   if (callee()->is_static())  return false;  // caller must have the capability!
2837 
2838 #ifndef PRODUCT
2839   {
2840     ResourceMark rm;
2841     // Check the signatures.
2842     ciSignature* sig = callee()->signature();
2843 #ifdef ASSERT
2844     BasicType rtype = sig->return_type()->basic_type();
2845     assert(rtype == T_VOID, "must return void");
2846     assert(sig->count() == 3, "has 3 arguments");
2847     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2848     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2849 #endif // ASSERT
2850   }
2851 #endif //PRODUCT
2852 
2853   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2854 
2855   // Get arguments:
2856   Node* receiver = argument(0);  // type: oop
2857   Node* base     = argument(1);  // type: oop
2858   Node* offset   = argument(2);  // type: long
2859   Node* val      = argument(4);  // type: oop, int, or long
2860 
2861   // Null check receiver.
2862   receiver = null_check(receiver);
2863   if (stopped()) {
2864     return true;
2865   }
2866 
2867   // Build field offset expression.
2868   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2869   // 32-bit machines ignore the high half of long offsets
2870   offset = ConvL2X(offset);
2871   Node* adr = make_unsafe_address(base, offset);
2872   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2873   const Type *value_type = Type::get_const_basic_type(type);
2874   Compile::AliasType* alias_type = C->alias_type(adr_type);
2875 
2876   insert_mem_bar(Op_MemBarRelease);
2877   insert_mem_bar(Op_MemBarCPUOrder);
2878   // Ensure that the store is atomic for longs:
2879   const bool require_atomic_access = true;
2880   Node* store;
2881   if (type == T_OBJECT) // reference stores need a store barrier.
2882     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2883   else {
2884     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2885   }
2886   insert_mem_bar(Op_MemBarCPUOrder);
2887   return true;
2888 }
2889 
2890 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2891   // Regardless of form, don't allow previous ld/st to move down,
2892   // then issue acquire, release, or volatile mem_bar.
2893   insert_mem_bar(Op_MemBarCPUOrder);
2894   switch(id) {
2895     case vmIntrinsics::_loadFence:
2896       insert_mem_bar(Op_MemBarAcquire);
2897       return true;
2898     case vmIntrinsics::_storeFence:
2899       insert_mem_bar(Op_MemBarRelease);
2900       return true;
2901     case vmIntrinsics::_fullFence:
2902       insert_mem_bar(Op_MemBarVolatile);
2903       return true;
2904     default:
2905       fatal_unexpected_iid(id);
2906       return false;
2907   }
2908 }
2909 
2910 //----------------------------inline_unsafe_allocate---------------------------
2911 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2912 bool LibraryCallKit::inline_unsafe_allocate() {
2913   if (callee()->is_static())  return false;  // caller must have the capability!
2914 
2915   null_check_receiver();  // null-check, then ignore
2916   Node* cls = null_check(argument(1));
2917   if (stopped())  return true;
2918 
2919   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2920   kls = null_check(kls);
2921   if (stopped())  return true;  // argument was like int.class
2922 
2923   // Note:  The argument might still be an illegal value like
2924   // Serializable.class or Object[].class.   The runtime will handle it.
2925   // But we must make an explicit check for initialization.
2926   Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2927   // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2928   // can generate code to load it as unsigned byte.
2929   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2930   Node* bits = intcon(InstanceKlass::fully_initialized);
2931   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2932   // The 'test' is non-zero if we need to take a slow path.
2933 
2934   Node* obj = new_instance(kls, test);
2935   set_result(obj);
2936   return true;
2937 }
2938 
2939 #ifdef TRACE_HAVE_INTRINSICS
2940 /*
2941  * oop -> myklass
2942  * myklass->trace_id |= USED
2943  * return myklass->trace_id & ~0x3
2944  */
2945 bool LibraryCallKit::inline_native_classID() {
2946   null_check_receiver();  // null-check, then ignore
2947   Node* cls = null_check(argument(1), T_OBJECT);
2948   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2949   kls = null_check(kls, T_OBJECT);
2950   ByteSize offset = TRACE_ID_OFFSET;
2951   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2952   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2953   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2954   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2955   Node* clsused = longcon(0x01l); // set the class bit
2956   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2957 
2958   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2959   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2960   set_result(andl);
2961   return true;
2962 }
2963 
2964 bool LibraryCallKit::inline_native_threadID() {
2965   Node* tls_ptr = NULL;
2966   Node* cur_thr = generate_current_thread(tls_ptr);
2967   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2968   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2969   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2970 
2971   Node* threadid = NULL;
2972   size_t thread_id_size = OSThread::thread_id_size();
2973   if (thread_id_size == (size_t) BytesPerLong) {
2974     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2975   } else if (thread_id_size == (size_t) BytesPerInt) {
2976     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2977   } else {
2978     ShouldNotReachHere();
2979   }
2980   set_result(threadid);
2981   return true;
2982 }
2983 #endif
2984 
2985 //------------------------inline_native_time_funcs--------------
2986 // inline code for System.currentTimeMillis() and System.nanoTime()
2987 // these have the same type and signature
2988 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2989   const TypeFunc* tf = OptoRuntime::void_long_Type();
2990   const TypePtr* no_memory_effects = NULL;
2991   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2992   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2993 #ifdef ASSERT
2994   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2995   assert(value_top == top(), "second value must be top");
2996 #endif
2997   set_result(value);
2998   return true;
2999 }
3000 
3001 //------------------------inline_native_currentThread------------------
3002 bool LibraryCallKit::inline_native_currentThread() {
3003   Node* junk = NULL;
3004   set_result(generate_current_thread(junk));
3005   return true;
3006 }
3007 
3008 //------------------------inline_native_isInterrupted------------------
3009 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3010 bool LibraryCallKit::inline_native_isInterrupted() {
3011   // Add a fast path to t.isInterrupted(clear_int):
3012   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3013   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3014   // So, in the common case that the interrupt bit is false,
3015   // we avoid making a call into the VM.  Even if the interrupt bit
3016   // is true, if the clear_int argument is false, we avoid the VM call.
3017   // However, if the receiver is not currentThread, we must call the VM,
3018   // because there must be some locking done around the operation.
3019 
3020   // We only go to the fast case code if we pass two guards.
3021   // Paths which do not pass are accumulated in the slow_region.
3022 
3023   enum {
3024     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3025     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3026     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3027     PATH_LIMIT
3028   };
3029 
3030   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3031   // out of the function.
3032   insert_mem_bar(Op_MemBarCPUOrder);
3033 
3034   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3035   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3036 
3037   RegionNode* slow_region = new (C) RegionNode(1);
3038   record_for_igvn(slow_region);
3039 
3040   // (a) Receiving thread must be the current thread.
3041   Node* rec_thr = argument(0);
3042   Node* tls_ptr = NULL;
3043   Node* cur_thr = generate_current_thread(tls_ptr);
3044   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3045   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3046 
3047   generate_slow_guard(bol_thr, slow_region);
3048 
3049   // (b) Interrupt bit on TLS must be false.
3050   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3051   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3052   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3053 
3054   // Set the control input on the field _interrupted read to prevent it floating up.
3055   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3056   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3057   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3058 
3059   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3060 
3061   // First fast path:  if (!TLS._interrupted) return false;
3062   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3063   result_rgn->init_req(no_int_result_path, false_bit);
3064   result_val->init_req(no_int_result_path, intcon(0));
3065 
3066   // drop through to next case
3067   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3068 
3069   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3070   Node* clr_arg = argument(1);
3071   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3072   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3073   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3074 
3075   // Second fast path:  ... else if (!clear_int) return true;
3076   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3077   result_rgn->init_req(no_clear_result_path, false_arg);
3078   result_val->init_req(no_clear_result_path, intcon(1));
3079 
3080   // drop through to next case
3081   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3082 
3083   // (d) Otherwise, go to the slow path.
3084   slow_region->add_req(control());
3085   set_control( _gvn.transform(slow_region));
3086 
3087   if (stopped()) {
3088     // There is no slow path.
3089     result_rgn->init_req(slow_result_path, top());
3090     result_val->init_req(slow_result_path, top());
3091   } else {
3092     // non-virtual because it is a private non-static
3093     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3094 
3095     Node* slow_val = set_results_for_java_call(slow_call);
3096     // this->control() comes from set_results_for_java_call
3097 
3098     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3099     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3100 
3101     // These two phis are pre-filled with copies of of the fast IO and Memory
3102     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3103     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3104 
3105     result_rgn->init_req(slow_result_path, control());
3106     result_io ->init_req(slow_result_path, i_o());
3107     result_mem->init_req(slow_result_path, reset_memory());
3108     result_val->init_req(slow_result_path, slow_val);
3109 
3110     set_all_memory(_gvn.transform(result_mem));
3111     set_i_o(       _gvn.transform(result_io));
3112   }
3113 
3114   C->set_has_split_ifs(true); // Has chance for split-if optimization
3115   set_result(result_rgn, result_val);
3116   return true;
3117 }
3118 
3119 //---------------------------load_mirror_from_klass----------------------------
3120 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3121 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3122   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3123   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3124 }
3125 
3126 //-----------------------load_klass_from_mirror_common-------------------------
3127 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3128 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3129 // and branch to the given path on the region.
3130 // If never_see_null, take an uncommon trap on null, so we can optimistically
3131 // compile for the non-null case.
3132 // If the region is NULL, force never_see_null = true.
3133 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3134                                                     bool never_see_null,
3135                                                     RegionNode* region,
3136                                                     int null_path,
3137                                                     int offset) {
3138   if (region == NULL)  never_see_null = true;
3139   Node* p = basic_plus_adr(mirror, offset);
3140   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3141   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3142   Node* null_ctl = top();
3143   kls = null_check_oop(kls, &null_ctl, never_see_null);
3144   if (region != NULL) {
3145     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3146     region->init_req(null_path, null_ctl);
3147   } else {
3148     assert(null_ctl == top(), "no loose ends");
3149   }
3150   return kls;
3151 }
3152 
3153 //--------------------(inline_native_Class_query helpers)---------------------
3154 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3155 // Fall through if (mods & mask) == bits, take the guard otherwise.
3156 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3157   // Branch around if the given klass has the given modifier bit set.
3158   // Like generate_guard, adds a new path onto the region.
3159   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3160   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3161   Node* mask = intcon(modifier_mask);
3162   Node* bits = intcon(modifier_bits);
3163   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3164   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3165   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3166   return generate_fair_guard(bol, region);
3167 }
3168 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3169   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3170 }
3171 
3172 //-------------------------inline_native_Class_query-------------------
3173 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3174   const Type* return_type = TypeInt::BOOL;
3175   Node* prim_return_value = top();  // what happens if it's a primitive class?
3176   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3177   bool expect_prim = false;     // most of these guys expect to work on refs
3178 
3179   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3180 
3181   Node* mirror = argument(0);
3182   Node* obj    = top();
3183 
3184   switch (id) {
3185   case vmIntrinsics::_isInstance:
3186     // nothing is an instance of a primitive type
3187     prim_return_value = intcon(0);
3188     obj = argument(1);
3189     break;
3190   case vmIntrinsics::_getModifiers:
3191     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3192     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3193     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3194     break;
3195   case vmIntrinsics::_isInterface:
3196     prim_return_value = intcon(0);
3197     break;
3198   case vmIntrinsics::_isArray:
3199     prim_return_value = intcon(0);
3200     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3201     break;
3202   case vmIntrinsics::_isPrimitive:
3203     prim_return_value = intcon(1);
3204     expect_prim = true;  // obviously
3205     break;
3206   case vmIntrinsics::_getSuperclass:
3207     prim_return_value = null();
3208     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3209     break;
3210   case vmIntrinsics::_getComponentType:
3211     prim_return_value = null();
3212     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3213     break;
3214   case vmIntrinsics::_getClassAccessFlags:
3215     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3216     return_type = TypeInt::INT;  // not bool!  6297094
3217     break;
3218   default:
3219     fatal_unexpected_iid(id);
3220     break;
3221   }
3222 
3223   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3224   if (mirror_con == NULL)  return false;  // cannot happen?
3225 
3226 #ifndef PRODUCT
3227   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3228     ciType* k = mirror_con->java_mirror_type();
3229     if (k) {
3230       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3231       k->print_name();
3232       tty->cr();
3233     }
3234   }
3235 #endif
3236 
3237   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3238   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3239   record_for_igvn(region);
3240   PhiNode* phi = new (C) PhiNode(region, return_type);
3241 
3242   // The mirror will never be null of Reflection.getClassAccessFlags, however
3243   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3244   // if it is. See bug 4774291.
3245 
3246   // For Reflection.getClassAccessFlags(), the null check occurs in
3247   // the wrong place; see inline_unsafe_access(), above, for a similar
3248   // situation.
3249   mirror = null_check(mirror);
3250   // If mirror or obj is dead, only null-path is taken.
3251   if (stopped())  return true;
3252 
3253   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3254 
3255   // Now load the mirror's klass metaobject, and null-check it.
3256   // Side-effects region with the control path if the klass is null.
3257   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3258   // If kls is null, we have a primitive mirror.
3259   phi->init_req(_prim_path, prim_return_value);
3260   if (stopped()) { set_result(region, phi); return true; }
3261 
3262   Node* p;  // handy temp
3263   Node* null_ctl;
3264 
3265   // Now that we have the non-null klass, we can perform the real query.
3266   // For constant classes, the query will constant-fold in LoadNode::Value.
3267   Node* query_value = top();
3268   switch (id) {
3269   case vmIntrinsics::_isInstance:
3270     // nothing is an instance of a primitive type
3271     query_value = gen_instanceof(obj, kls);
3272     break;
3273 
3274   case vmIntrinsics::_getModifiers:
3275     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3276     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3277     break;
3278 
3279   case vmIntrinsics::_isInterface:
3280     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3281     if (generate_interface_guard(kls, region) != NULL)
3282       // A guard was added.  If the guard is taken, it was an interface.
3283       phi->add_req(intcon(1));
3284     // If we fall through, it's a plain class.
3285     query_value = intcon(0);
3286     break;
3287 
3288   case vmIntrinsics::_isArray:
3289     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3290     if (generate_array_guard(kls, region) != NULL)
3291       // A guard was added.  If the guard is taken, it was an array.
3292       phi->add_req(intcon(1));
3293     // If we fall through, it's a plain class.
3294     query_value = intcon(0);
3295     break;
3296 
3297   case vmIntrinsics::_isPrimitive:
3298     query_value = intcon(0); // "normal" path produces false
3299     break;
3300 
3301   case vmIntrinsics::_getSuperclass:
3302     // The rules here are somewhat unfortunate, but we can still do better
3303     // with random logic than with a JNI call.
3304     // Interfaces store null or Object as _super, but must report null.
3305     // Arrays store an intermediate super as _super, but must report Object.
3306     // Other types can report the actual _super.
3307     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3308     if (generate_interface_guard(kls, region) != NULL)
3309       // A guard was added.  If the guard is taken, it was an interface.
3310       phi->add_req(null());
3311     if (generate_array_guard(kls, region) != NULL)
3312       // A guard was added.  If the guard is taken, it was an array.
3313       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3314     // If we fall through, it's a plain class.  Get its _super.
3315     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3316     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3317     null_ctl = top();
3318     kls = null_check_oop(kls, &null_ctl);
3319     if (null_ctl != top()) {
3320       // If the guard is taken, Object.superClass is null (both klass and mirror).
3321       region->add_req(null_ctl);
3322       phi   ->add_req(null());
3323     }
3324     if (!stopped()) {
3325       query_value = load_mirror_from_klass(kls);
3326     }
3327     break;
3328 
3329   case vmIntrinsics::_getComponentType:
3330     if (generate_array_guard(kls, region) != NULL) {
3331       // Be sure to pin the oop load to the guard edge just created:
3332       Node* is_array_ctrl = region->in(region->req()-1);
3333       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3334       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3335       phi->add_req(cmo);
3336     }
3337     query_value = null();  // non-array case is null
3338     break;
3339 
3340   case vmIntrinsics::_getClassAccessFlags:
3341     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3342     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3343     break;
3344 
3345   default:
3346     fatal_unexpected_iid(id);
3347     break;
3348   }
3349 
3350   // Fall-through is the normal case of a query to a real class.
3351   phi->init_req(1, query_value);
3352   region->init_req(1, control());
3353 
3354   C->set_has_split_ifs(true); // Has chance for split-if optimization
3355   set_result(region, phi);
3356   return true;
3357 }
3358 
3359 //--------------------------inline_native_subtype_check------------------------
3360 // This intrinsic takes the JNI calls out of the heart of
3361 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3362 bool LibraryCallKit::inline_native_subtype_check() {
3363   // Pull both arguments off the stack.
3364   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3365   args[0] = argument(0);
3366   args[1] = argument(1);
3367   Node* klasses[2];             // corresponding Klasses: superk, subk
3368   klasses[0] = klasses[1] = top();
3369 
3370   enum {
3371     // A full decision tree on {superc is prim, subc is prim}:
3372     _prim_0_path = 1,           // {P,N} => false
3373                                 // {P,P} & superc!=subc => false
3374     _prim_same_path,            // {P,P} & superc==subc => true
3375     _prim_1_path,               // {N,P} => false
3376     _ref_subtype_path,          // {N,N} & subtype check wins => true
3377     _both_ref_path,             // {N,N} & subtype check loses => false
3378     PATH_LIMIT
3379   };
3380 
3381   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3382   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3383   record_for_igvn(region);
3384 
3385   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3386   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3387   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3388 
3389   // First null-check both mirrors and load each mirror's klass metaobject.
3390   int which_arg;
3391   for (which_arg = 0; which_arg <= 1; which_arg++) {
3392     Node* arg = args[which_arg];
3393     arg = null_check(arg);
3394     if (stopped())  break;
3395     args[which_arg] = arg;
3396 
3397     Node* p = basic_plus_adr(arg, class_klass_offset);
3398     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3399     klasses[which_arg] = _gvn.transform(kls);
3400   }
3401 
3402   // Having loaded both klasses, test each for null.
3403   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3404   for (which_arg = 0; which_arg <= 1; which_arg++) {
3405     Node* kls = klasses[which_arg];
3406     Node* null_ctl = top();
3407     kls = null_check_oop(kls, &null_ctl, never_see_null);
3408     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3409     region->init_req(prim_path, null_ctl);
3410     if (stopped())  break;
3411     klasses[which_arg] = kls;
3412   }
3413 
3414   if (!stopped()) {
3415     // now we have two reference types, in klasses[0..1]
3416     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3417     Node* superk = klasses[0];  // the receiver
3418     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3419     // now we have a successful reference subtype check
3420     region->set_req(_ref_subtype_path, control());
3421   }
3422 
3423   // If both operands are primitive (both klasses null), then
3424   // we must return true when they are identical primitives.
3425   // It is convenient to test this after the first null klass check.
3426   set_control(region->in(_prim_0_path)); // go back to first null check
3427   if (!stopped()) {
3428     // Since superc is primitive, make a guard for the superc==subc case.
3429     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3430     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3431     generate_guard(bol_eq, region, PROB_FAIR);
3432     if (region->req() == PATH_LIMIT+1) {
3433       // A guard was added.  If the added guard is taken, superc==subc.
3434       region->swap_edges(PATH_LIMIT, _prim_same_path);
3435       region->del_req(PATH_LIMIT);
3436     }
3437     region->set_req(_prim_0_path, control()); // Not equal after all.
3438   }
3439 
3440   // these are the only paths that produce 'true':
3441   phi->set_req(_prim_same_path,   intcon(1));
3442   phi->set_req(_ref_subtype_path, intcon(1));
3443 
3444   // pull together the cases:
3445   assert(region->req() == PATH_LIMIT, "sane region");
3446   for (uint i = 1; i < region->req(); i++) {
3447     Node* ctl = region->in(i);
3448     if (ctl == NULL || ctl == top()) {
3449       region->set_req(i, top());
3450       phi   ->set_req(i, top());
3451     } else if (phi->in(i) == NULL) {
3452       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3453     }
3454   }
3455 
3456   set_control(_gvn.transform(region));
3457   set_result(_gvn.transform(phi));
3458   return true;
3459 }
3460 
3461 //---------------------generate_array_guard_common------------------------
3462 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3463                                                   bool obj_array, bool not_array) {
3464   // If obj_array/non_array==false/false:
3465   // Branch around if the given klass is in fact an array (either obj or prim).
3466   // If obj_array/non_array==false/true:
3467   // Branch around if the given klass is not an array klass of any kind.
3468   // If obj_array/non_array==true/true:
3469   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3470   // If obj_array/non_array==true/false:
3471   // Branch around if the kls is an oop array (Object[] or subtype)
3472   //
3473   // Like generate_guard, adds a new path onto the region.
3474   jint  layout_con = 0;
3475   Node* layout_val = get_layout_helper(kls, layout_con);
3476   if (layout_val == NULL) {
3477     bool query = (obj_array
3478                   ? Klass::layout_helper_is_objArray(layout_con)
3479                   : Klass::layout_helper_is_array(layout_con));
3480     if (query == not_array) {
3481       return NULL;                       // never a branch
3482     } else {                             // always a branch
3483       Node* always_branch = control();
3484       if (region != NULL)
3485         region->add_req(always_branch);
3486       set_control(top());
3487       return always_branch;
3488     }
3489   }
3490   // Now test the correct condition.
3491   jint  nval = (obj_array
3492                 ? ((jint)Klass::_lh_array_tag_type_value
3493                    <<    Klass::_lh_array_tag_shift)
3494                 : Klass::_lh_neutral_value);
3495   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3496   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3497   // invert the test if we are looking for a non-array
3498   if (not_array)  btest = BoolTest(btest).negate();
3499   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3500   return generate_fair_guard(bol, region);
3501 }
3502 
3503 
3504 //-----------------------inline_native_newArray--------------------------
3505 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3506 bool LibraryCallKit::inline_native_newArray() {
3507   Node* mirror    = argument(0);
3508   Node* count_val = argument(1);
3509 
3510   mirror = null_check(mirror);
3511   // If mirror or obj is dead, only null-path is taken.
3512   if (stopped())  return true;
3513 
3514   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3515   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3516   PhiNode*    result_val = new(C) PhiNode(result_reg,
3517                                           TypeInstPtr::NOTNULL);
3518   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3519   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3520                                           TypePtr::BOTTOM);
3521 
3522   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3523   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3524                                                   result_reg, _slow_path);
3525   Node* normal_ctl   = control();
3526   Node* no_array_ctl = result_reg->in(_slow_path);
3527 
3528   // Generate code for the slow case.  We make a call to newArray().
3529   set_control(no_array_ctl);
3530   if (!stopped()) {
3531     // Either the input type is void.class, or else the
3532     // array klass has not yet been cached.  Either the
3533     // ensuing call will throw an exception, or else it
3534     // will cache the array klass for next time.
3535     PreserveJVMState pjvms(this);
3536     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3537     Node* slow_result = set_results_for_java_call(slow_call);
3538     // this->control() comes from set_results_for_java_call
3539     result_reg->set_req(_slow_path, control());
3540     result_val->set_req(_slow_path, slow_result);
3541     result_io ->set_req(_slow_path, i_o());
3542     result_mem->set_req(_slow_path, reset_memory());
3543   }
3544 
3545   set_control(normal_ctl);
3546   if (!stopped()) {
3547     // Normal case:  The array type has been cached in the java.lang.Class.
3548     // The following call works fine even if the array type is polymorphic.
3549     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3550     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3551     result_reg->init_req(_normal_path, control());
3552     result_val->init_req(_normal_path, obj);
3553     result_io ->init_req(_normal_path, i_o());
3554     result_mem->init_req(_normal_path, reset_memory());
3555   }
3556 
3557   // Return the combined state.
3558   set_i_o(        _gvn.transform(result_io)  );
3559   set_all_memory( _gvn.transform(result_mem));
3560 
3561   C->set_has_split_ifs(true); // Has chance for split-if optimization
3562   set_result(result_reg, result_val);
3563   return true;
3564 }
3565 
3566 //----------------------inline_native_getLength--------------------------
3567 // public static native int java.lang.reflect.Array.getLength(Object array);
3568 bool LibraryCallKit::inline_native_getLength() {
3569   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3570 
3571   Node* array = null_check(argument(0));
3572   // If array is dead, only null-path is taken.
3573   if (stopped())  return true;
3574 
3575   // Deoptimize if it is a non-array.
3576   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3577 
3578   if (non_array != NULL) {
3579     PreserveJVMState pjvms(this);
3580     set_control(non_array);
3581     uncommon_trap(Deoptimization::Reason_intrinsic,
3582                   Deoptimization::Action_maybe_recompile);
3583   }
3584 
3585   // If control is dead, only non-array-path is taken.
3586   if (stopped())  return true;
3587 
3588   // The works fine even if the array type is polymorphic.
3589   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3590   Node* result = load_array_length(array);
3591 
3592   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3593   set_result(result);
3594   return true;
3595 }
3596 
3597 //------------------------inline_array_copyOf----------------------------
3598 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3599 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3600 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3601   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3602 
3603   // Get the arguments.
3604   Node* original          = argument(0);
3605   Node* start             = is_copyOfRange? argument(1): intcon(0);
3606   Node* end               = is_copyOfRange? argument(2): argument(1);
3607   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3608 
3609   Node* newcopy;
3610 
3611   // Set the original stack and the reexecute bit for the interpreter to reexecute
3612   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3613   { PreserveReexecuteState preexecs(this);
3614     jvms()->set_should_reexecute(true);
3615 
3616     array_type_mirror = null_check(array_type_mirror);
3617     original          = null_check(original);
3618 
3619     // Check if a null path was taken unconditionally.
3620     if (stopped())  return true;
3621 
3622     Node* orig_length = load_array_length(original);
3623 
3624     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3625     klass_node = null_check(klass_node);
3626 
3627     RegionNode* bailout = new (C) RegionNode(1);
3628     record_for_igvn(bailout);
3629 
3630     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3631     // Bail out if that is so.
3632     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3633     if (not_objArray != NULL) {
3634       // Improve the klass node's type from the new optimistic assumption:
3635       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3636       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3637       Node* cast = new (C) CastPPNode(klass_node, akls);
3638       cast->init_req(0, control());
3639       klass_node = _gvn.transform(cast);
3640     }
3641 
3642     // Bail out if either start or end is negative.
3643     generate_negative_guard(start, bailout, &start);
3644     generate_negative_guard(end,   bailout, &end);
3645 
3646     Node* length = end;
3647     if (_gvn.type(start) != TypeInt::ZERO) {
3648       length = _gvn.transform(new (C) SubINode(end, start));
3649     }
3650 
3651     // Bail out if length is negative.
3652     // Without this the new_array would throw
3653     // NegativeArraySizeException but IllegalArgumentException is what
3654     // should be thrown
3655     generate_negative_guard(length, bailout, &length);
3656 
3657     if (bailout->req() > 1) {
3658       PreserveJVMState pjvms(this);
3659       set_control(_gvn.transform(bailout));
3660       uncommon_trap(Deoptimization::Reason_intrinsic,
3661                     Deoptimization::Action_maybe_recompile);
3662     }
3663 
3664     if (!stopped()) {
3665       // How many elements will we copy from the original?
3666       // The answer is MinI(orig_length - start, length).
3667       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3668       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3669 
3670       newcopy = new_array(klass_node, length, 0);  // no argments to push
3671 
3672       // Generate a direct call to the right arraycopy function(s).
3673       // We know the copy is disjoint but we might not know if the
3674       // oop stores need checking.
3675       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3676       // This will fail a store-check if x contains any non-nulls.
3677       bool disjoint_bases = true;
3678       // if start > orig_length then the length of the copy may be
3679       // negative.
3680       bool length_never_negative = !is_copyOfRange;
3681       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3682                          original, start, newcopy, intcon(0), moved,
3683                          disjoint_bases, length_never_negative);
3684     }
3685   } // original reexecute is set back here
3686 
3687   C->set_has_split_ifs(true); // Has chance for split-if optimization
3688   if (!stopped()) {
3689     set_result(newcopy);
3690   }
3691   return true;
3692 }
3693 
3694 
3695 //----------------------generate_virtual_guard---------------------------
3696 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3697 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3698                                              RegionNode* slow_region) {
3699   ciMethod* method = callee();
3700   int vtable_index = method->vtable_index();
3701   // Get the Method* out of the appropriate vtable entry.
3702   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3703                      vtable_index*vtableEntry::size()) * wordSize +
3704                      vtableEntry::method_offset_in_bytes();
3705   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3706   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3707 
3708   // Compare the target method with the expected method (e.g., Object.hashCode).
3709   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3710 
3711   Node* native_call = makecon(native_call_addr);
3712   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3713   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3714 
3715   return generate_slow_guard(test_native, slow_region);
3716 }
3717 
3718 //-----------------------generate_method_call----------------------------
3719 // Use generate_method_call to make a slow-call to the real
3720 // method if the fast path fails.  An alternative would be to
3721 // use a stub like OptoRuntime::slow_arraycopy_Java.
3722 // This only works for expanding the current library call,
3723 // not another intrinsic.  (E.g., don't use this for making an
3724 // arraycopy call inside of the copyOf intrinsic.)
3725 CallJavaNode*
3726 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3727   // When compiling the intrinsic method itself, do not use this technique.
3728   guarantee(callee() != C->method(), "cannot make slow-call to self");
3729 
3730   ciMethod* method = callee();
3731   // ensure the JVMS we have will be correct for this call
3732   guarantee(method_id == method->intrinsic_id(), "must match");
3733 
3734   const TypeFunc* tf = TypeFunc::make(method);
3735   CallJavaNode* slow_call;
3736   if (is_static) {
3737     assert(!is_virtual, "");
3738     slow_call = new(C) CallStaticJavaNode(C, tf,
3739                            SharedRuntime::get_resolve_static_call_stub(),
3740                            method, bci());
3741   } else if (is_virtual) {
3742     null_check_receiver();
3743     int vtable_index = Method::invalid_vtable_index;
3744     if (UseInlineCaches) {
3745       // Suppress the vtable call
3746     } else {
3747       // hashCode and clone are not a miranda methods,
3748       // so the vtable index is fixed.
3749       // No need to use the linkResolver to get it.
3750        vtable_index = method->vtable_index();
3751     }
3752     slow_call = new(C) CallDynamicJavaNode(tf,
3753                           SharedRuntime::get_resolve_virtual_call_stub(),
3754                           method, vtable_index, bci());
3755   } else {  // neither virtual nor static:  opt_virtual
3756     null_check_receiver();
3757     slow_call = new(C) CallStaticJavaNode(C, tf,
3758                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3759                                 method, bci());
3760     slow_call->set_optimized_virtual(true);
3761   }
3762   set_arguments_for_java_call(slow_call);
3763   set_edges_for_java_call(slow_call);
3764   return slow_call;
3765 }
3766 
3767 
3768 //------------------------------inline_native_hashcode--------------------
3769 // Build special case code for calls to hashCode on an object.
3770 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3771   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3772   assert(!(is_virtual && is_static), "either virtual, special, or static");
3773 
3774   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3775 
3776   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3777   PhiNode*    result_val = new(C) PhiNode(result_reg,
3778                                           TypeInt::INT);
3779   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3780   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3781                                           TypePtr::BOTTOM);
3782   Node* obj = NULL;
3783   if (!is_static) {
3784     // Check for hashing null object
3785     obj = null_check_receiver();
3786     if (stopped())  return true;        // unconditionally null
3787     result_reg->init_req(_null_path, top());
3788     result_val->init_req(_null_path, top());
3789   } else {
3790     // Do a null check, and return zero if null.
3791     // System.identityHashCode(null) == 0
3792     obj = argument(0);
3793     Node* null_ctl = top();
3794     obj = null_check_oop(obj, &null_ctl);
3795     result_reg->init_req(_null_path, null_ctl);
3796     result_val->init_req(_null_path, _gvn.intcon(0));
3797   }
3798 
3799   // Unconditionally null?  Then return right away.
3800   if (stopped()) {
3801     set_control( result_reg->in(_null_path));
3802     if (!stopped())
3803       set_result(result_val->in(_null_path));
3804     return true;
3805   }
3806 
3807   // After null check, get the object's klass.
3808   Node* obj_klass = load_object_klass(obj);
3809 
3810   // This call may be virtual (invokevirtual) or bound (invokespecial).
3811   // For each case we generate slightly different code.
3812 
3813   // We only go to the fast case code if we pass a number of guards.  The
3814   // paths which do not pass are accumulated in the slow_region.
3815   RegionNode* slow_region = new (C) RegionNode(1);
3816   record_for_igvn(slow_region);
3817 
3818   // If this is a virtual call, we generate a funny guard.  We pull out
3819   // the vtable entry corresponding to hashCode() from the target object.
3820   // If the target method which we are calling happens to be the native
3821   // Object hashCode() method, we pass the guard.  We do not need this
3822   // guard for non-virtual calls -- the caller is known to be the native
3823   // Object hashCode().
3824   if (is_virtual) {
3825     generate_virtual_guard(obj_klass, slow_region);
3826   }
3827 
3828   // Get the header out of the object, use LoadMarkNode when available
3829   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3830   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3831 
3832   // Test the header to see if it is unlocked.
3833   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3834   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
3835   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3836   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
3837   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
3838 
3839   generate_slow_guard(test_unlocked, slow_region);
3840 
3841   // Get the hash value and check to see that it has been properly assigned.
3842   // We depend on hash_mask being at most 32 bits and avoid the use of
3843   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3844   // vm: see markOop.hpp.
3845   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3846   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3847   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
3848   // This hack lets the hash bits live anywhere in the mark object now, as long
3849   // as the shift drops the relevant bits into the low 32 bits.  Note that
3850   // Java spec says that HashCode is an int so there's no point in capturing
3851   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3852   hshifted_header      = ConvX2I(hshifted_header);
3853   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
3854 
3855   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3856   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
3857   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
3858 
3859   generate_slow_guard(test_assigned, slow_region);
3860 
3861   Node* init_mem = reset_memory();
3862   // fill in the rest of the null path:
3863   result_io ->init_req(_null_path, i_o());
3864   result_mem->init_req(_null_path, init_mem);
3865 
3866   result_val->init_req(_fast_path, hash_val);
3867   result_reg->init_req(_fast_path, control());
3868   result_io ->init_req(_fast_path, i_o());
3869   result_mem->init_req(_fast_path, init_mem);
3870 
3871   // Generate code for the slow case.  We make a call to hashCode().
3872   set_control(_gvn.transform(slow_region));
3873   if (!stopped()) {
3874     // No need for PreserveJVMState, because we're using up the present state.
3875     set_all_memory(init_mem);
3876     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3877     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3878     Node* slow_result = set_results_for_java_call(slow_call);
3879     // this->control() comes from set_results_for_java_call
3880     result_reg->init_req(_slow_path, control());
3881     result_val->init_req(_slow_path, slow_result);
3882     result_io  ->set_req(_slow_path, i_o());
3883     result_mem ->set_req(_slow_path, reset_memory());
3884   }
3885 
3886   // Return the combined state.
3887   set_i_o(        _gvn.transform(result_io)  );
3888   set_all_memory( _gvn.transform(result_mem));
3889 
3890   set_result(result_reg, result_val);
3891   return true;
3892 }
3893 
3894 //---------------------------inline_native_getClass----------------------------
3895 // public final native Class<?> java.lang.Object.getClass();
3896 //
3897 // Build special case code for calls to getClass on an object.
3898 bool LibraryCallKit::inline_native_getClass() {
3899   Node* obj = null_check_receiver();
3900   if (stopped())  return true;
3901   set_result(load_mirror_from_klass(load_object_klass(obj)));
3902   return true;
3903 }
3904 
3905 //-----------------inline_native_Reflection_getCallerClass---------------------
3906 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3907 //
3908 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3909 //
3910 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3911 // in that it must skip particular security frames and checks for
3912 // caller sensitive methods.
3913 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3914 #ifndef PRODUCT
3915   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3916     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3917   }
3918 #endif
3919 
3920   if (!jvms()->has_method()) {
3921 #ifndef PRODUCT
3922     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3923       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3924     }
3925 #endif
3926     return false;
3927   }
3928 
3929   // Walk back up the JVM state to find the caller at the required
3930   // depth.
3931   JVMState* caller_jvms = jvms();
3932 
3933   // Cf. JVM_GetCallerClass
3934   // NOTE: Start the loop at depth 1 because the current JVM state does
3935   // not include the Reflection.getCallerClass() frame.
3936   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3937     ciMethod* m = caller_jvms->method();
3938     switch (n) {
3939     case 0:
3940       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3941       break;
3942     case 1:
3943       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3944       if (!m->caller_sensitive()) {
3945 #ifndef PRODUCT
3946         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3947           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3948         }
3949 #endif
3950         return false;  // bail-out; let JVM_GetCallerClass do the work
3951       }
3952       break;
3953     default:
3954       if (!m->is_ignored_by_security_stack_walk()) {
3955         // We have reached the desired frame; return the holder class.
3956         // Acquire method holder as java.lang.Class and push as constant.
3957         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3958         ciInstance* caller_mirror = caller_klass->java_mirror();
3959         set_result(makecon(TypeInstPtr::make(caller_mirror)));
3960 
3961 #ifndef PRODUCT
3962         if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3963           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
3964           tty->print_cr("  JVM state at this point:");
3965           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3966             ciMethod* m = jvms()->of_depth(i)->method();
3967             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3968           }
3969         }
3970 #endif
3971         return true;
3972       }
3973       break;
3974     }
3975   }
3976 
3977 #ifndef PRODUCT
3978   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3979     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
3980     tty->print_cr("  JVM state at this point:");
3981     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3982       ciMethod* m = jvms()->of_depth(i)->method();
3983       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3984     }
3985   }
3986 #endif
3987 
3988   return false;  // bail-out; let JVM_GetCallerClass do the work
3989 }
3990 
3991 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3992   Node* arg = argument(0);
3993   Node* result;
3994 
3995   switch (id) {
3996   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3997   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3998   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3999   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4000 
4001   case vmIntrinsics::_doubleToLongBits: {
4002     // two paths (plus control) merge in a wood
4003     RegionNode *r = new (C) RegionNode(3);
4004     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4005 
4006     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4007     // Build the boolean node
4008     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4009 
4010     // Branch either way.
4011     // NaN case is less traveled, which makes all the difference.
4012     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4013     Node *opt_isnan = _gvn.transform(ifisnan);
4014     assert( opt_isnan->is_If(), "Expect an IfNode");
4015     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4016     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4017 
4018     set_control(iftrue);
4019 
4020     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4021     Node *slow_result = longcon(nan_bits); // return NaN
4022     phi->init_req(1, _gvn.transform( slow_result ));
4023     r->init_req(1, iftrue);
4024 
4025     // Else fall through
4026     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4027     set_control(iffalse);
4028 
4029     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4030     r->init_req(2, iffalse);
4031 
4032     // Post merge
4033     set_control(_gvn.transform(r));
4034     record_for_igvn(r);
4035 
4036     C->set_has_split_ifs(true); // Has chance for split-if optimization
4037     result = phi;
4038     assert(result->bottom_type()->isa_long(), "must be");
4039     break;
4040   }
4041 
4042   case vmIntrinsics::_floatToIntBits: {
4043     // two paths (plus control) merge in a wood
4044     RegionNode *r = new (C) RegionNode(3);
4045     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4046 
4047     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4048     // Build the boolean node
4049     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4050 
4051     // Branch either way.
4052     // NaN case is less traveled, which makes all the difference.
4053     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4054     Node *opt_isnan = _gvn.transform(ifisnan);
4055     assert( opt_isnan->is_If(), "Expect an IfNode");
4056     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4057     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4058 
4059     set_control(iftrue);
4060 
4061     static const jint nan_bits = 0x7fc00000;
4062     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4063     phi->init_req(1, _gvn.transform( slow_result ));
4064     r->init_req(1, iftrue);
4065 
4066     // Else fall through
4067     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4068     set_control(iffalse);
4069 
4070     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4071     r->init_req(2, iffalse);
4072 
4073     // Post merge
4074     set_control(_gvn.transform(r));
4075     record_for_igvn(r);
4076 
4077     C->set_has_split_ifs(true); // Has chance for split-if optimization
4078     result = phi;
4079     assert(result->bottom_type()->isa_int(), "must be");
4080     break;
4081   }
4082 
4083   default:
4084     fatal_unexpected_iid(id);
4085     break;
4086   }
4087   set_result(_gvn.transform(result));
4088   return true;
4089 }
4090 
4091 #ifdef _LP64
4092 #define XTOP ,top() /*additional argument*/
4093 #else  //_LP64
4094 #define XTOP        /*no additional argument*/
4095 #endif //_LP64
4096 
4097 //----------------------inline_unsafe_copyMemory-------------------------
4098 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4099 bool LibraryCallKit::inline_unsafe_copyMemory() {
4100   if (callee()->is_static())  return false;  // caller must have the capability!
4101   null_check_receiver();  // null-check receiver
4102   if (stopped())  return true;
4103 
4104   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4105 
4106   Node* src_ptr =         argument(1);   // type: oop
4107   Node* src_off = ConvL2X(argument(2));  // type: long
4108   Node* dst_ptr =         argument(4);   // type: oop
4109   Node* dst_off = ConvL2X(argument(5));  // type: long
4110   Node* size    = ConvL2X(argument(7));  // type: long
4111 
4112   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4113          "fieldOffset must be byte-scaled");
4114 
4115   Node* src = make_unsafe_address(src_ptr, src_off);
4116   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4117 
4118   // Conservatively insert a memory barrier on all memory slices.
4119   // Do not let writes of the copy source or destination float below the copy.
4120   insert_mem_bar(Op_MemBarCPUOrder);
4121 
4122   // Call it.  Note that the length argument is not scaled.
4123   make_runtime_call(RC_LEAF|RC_NO_FP,
4124                     OptoRuntime::fast_arraycopy_Type(),
4125                     StubRoutines::unsafe_arraycopy(),
4126                     "unsafe_arraycopy",
4127                     TypeRawPtr::BOTTOM,
4128                     src, dst, size XTOP);
4129 
4130   // Do not let reads of the copy destination float above the copy.
4131   insert_mem_bar(Op_MemBarCPUOrder);
4132 
4133   return true;
4134 }
4135 
4136 //------------------------clone_coping-----------------------------------
4137 // Helper function for inline_native_clone.
4138 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4139   assert(obj_size != NULL, "");
4140   Node* raw_obj = alloc_obj->in(1);
4141   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4142 
4143   AllocateNode* alloc = NULL;
4144   if (ReduceBulkZeroing) {
4145     // We will be completely responsible for initializing this object -
4146     // mark Initialize node as complete.
4147     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4148     // The object was just allocated - there should be no any stores!
4149     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4150     // Mark as complete_with_arraycopy so that on AllocateNode
4151     // expansion, we know this AllocateNode is initialized by an array
4152     // copy and a StoreStore barrier exists after the array copy.
4153     alloc->initialization()->set_complete_with_arraycopy();
4154   }
4155 
4156   // Copy the fastest available way.
4157   // TODO: generate fields copies for small objects instead.
4158   Node* src  = obj;
4159   Node* dest = alloc_obj;
4160   Node* size = _gvn.transform(obj_size);
4161 
4162   // Exclude the header but include array length to copy by 8 bytes words.
4163   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4164   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4165                             instanceOopDesc::base_offset_in_bytes();
4166   // base_off:
4167   // 8  - 32-bit VM
4168   // 12 - 64-bit VM, compressed klass
4169   // 16 - 64-bit VM, normal klass
4170   if (base_off % BytesPerLong != 0) {
4171     assert(UseCompressedKlassPointers, "");
4172     if (is_array) {
4173       // Exclude length to copy by 8 bytes words.
4174       base_off += sizeof(int);
4175     } else {
4176       // Include klass to copy by 8 bytes words.
4177       base_off = instanceOopDesc::klass_offset_in_bytes();
4178     }
4179     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4180   }
4181   src  = basic_plus_adr(src,  base_off);
4182   dest = basic_plus_adr(dest, base_off);
4183 
4184   // Compute the length also, if needed:
4185   Node* countx = size;
4186   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4187   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4188 
4189   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4190   bool disjoint_bases = true;
4191   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4192                                src, NULL, dest, NULL, countx,
4193                                /*dest_uninitialized*/true);
4194 
4195   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4196   if (card_mark) {
4197     assert(!is_array, "");
4198     // Put in store barrier for any and all oops we are sticking
4199     // into this object.  (We could avoid this if we could prove
4200     // that the object type contains no oop fields at all.)
4201     Node* no_particular_value = NULL;
4202     Node* no_particular_field = NULL;
4203     int raw_adr_idx = Compile::AliasIdxRaw;
4204     post_barrier(control(),
4205                  memory(raw_adr_type),
4206                  alloc_obj,
4207                  no_particular_field,
4208                  raw_adr_idx,
4209                  no_particular_value,
4210                  T_OBJECT,
4211                  false);
4212   }
4213 
4214   // Do not let reads from the cloned object float above the arraycopy.
4215   if (alloc != NULL) {
4216     // Do not let stores that initialize this object be reordered with
4217     // a subsequent store that would make this object accessible by
4218     // other threads.
4219     // Record what AllocateNode this StoreStore protects so that
4220     // escape analysis can go from the MemBarStoreStoreNode to the
4221     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4222     // based on the escape status of the AllocateNode.
4223     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4224   } else {
4225     insert_mem_bar(Op_MemBarCPUOrder);
4226   }
4227 }
4228 
4229 //------------------------inline_native_clone----------------------------
4230 // protected native Object java.lang.Object.clone();
4231 //
4232 // Here are the simple edge cases:
4233 //  null receiver => normal trap
4234 //  virtual and clone was overridden => slow path to out-of-line clone
4235 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4236 //
4237 // The general case has two steps, allocation and copying.
4238 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4239 //
4240 // Copying also has two cases, oop arrays and everything else.
4241 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4242 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4243 //
4244 // These steps fold up nicely if and when the cloned object's klass
4245 // can be sharply typed as an object array, a type array, or an instance.
4246 //
4247 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4248   PhiNode* result_val;
4249 
4250   // Set the reexecute bit for the interpreter to reexecute
4251   // the bytecode that invokes Object.clone if deoptimization happens.
4252   { PreserveReexecuteState preexecs(this);
4253     jvms()->set_should_reexecute(true);
4254 
4255     Node* obj = null_check_receiver();
4256     if (stopped())  return true;
4257 
4258     Node* obj_klass = load_object_klass(obj);
4259     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4260     const TypeOopPtr*   toop   = ((tklass != NULL)
4261                                 ? tklass->as_instance_type()
4262                                 : TypeInstPtr::NOTNULL);
4263 
4264     // Conservatively insert a memory barrier on all memory slices.
4265     // Do not let writes into the original float below the clone.
4266     insert_mem_bar(Op_MemBarCPUOrder);
4267 
4268     // paths into result_reg:
4269     enum {
4270       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4271       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4272       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4273       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4274       PATH_LIMIT
4275     };
4276     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4277     result_val             = new(C) PhiNode(result_reg,
4278                                             TypeInstPtr::NOTNULL);
4279     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4280     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4281                                             TypePtr::BOTTOM);
4282     record_for_igvn(result_reg);
4283 
4284     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4285     int raw_adr_idx = Compile::AliasIdxRaw;
4286 
4287     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4288     if (array_ctl != NULL) {
4289       // It's an array.
4290       PreserveJVMState pjvms(this);
4291       set_control(array_ctl);
4292       Node* obj_length = load_array_length(obj);
4293       Node* obj_size  = NULL;
4294       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4295 
4296       if (!use_ReduceInitialCardMarks()) {
4297         // If it is an oop array, it requires very special treatment,
4298         // because card marking is required on each card of the array.
4299         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4300         if (is_obja != NULL) {
4301           PreserveJVMState pjvms2(this);
4302           set_control(is_obja);
4303           // Generate a direct call to the right arraycopy function(s).
4304           bool disjoint_bases = true;
4305           bool length_never_negative = true;
4306           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4307                              obj, intcon(0), alloc_obj, intcon(0),
4308                              obj_length,
4309                              disjoint_bases, length_never_negative);
4310           result_reg->init_req(_objArray_path, control());
4311           result_val->init_req(_objArray_path, alloc_obj);
4312           result_i_o ->set_req(_objArray_path, i_o());
4313           result_mem ->set_req(_objArray_path, reset_memory());
4314         }
4315       }
4316       // Otherwise, there are no card marks to worry about.
4317       // (We can dispense with card marks if we know the allocation
4318       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4319       //  causes the non-eden paths to take compensating steps to
4320       //  simulate a fresh allocation, so that no further
4321       //  card marks are required in compiled code to initialize
4322       //  the object.)
4323 
4324       if (!stopped()) {
4325         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4326 
4327         // Present the results of the copy.
4328         result_reg->init_req(_array_path, control());
4329         result_val->init_req(_array_path, alloc_obj);
4330         result_i_o ->set_req(_array_path, i_o());
4331         result_mem ->set_req(_array_path, reset_memory());
4332       }
4333     }
4334 
4335     // We only go to the instance fast case code if we pass a number of guards.
4336     // The paths which do not pass are accumulated in the slow_region.
4337     RegionNode* slow_region = new (C) RegionNode(1);
4338     record_for_igvn(slow_region);
4339     if (!stopped()) {
4340       // It's an instance (we did array above).  Make the slow-path tests.
4341       // If this is a virtual call, we generate a funny guard.  We grab
4342       // the vtable entry corresponding to clone() from the target object.
4343       // If the target method which we are calling happens to be the
4344       // Object clone() method, we pass the guard.  We do not need this
4345       // guard for non-virtual calls; the caller is known to be the native
4346       // Object clone().
4347       if (is_virtual) {
4348         generate_virtual_guard(obj_klass, slow_region);
4349       }
4350 
4351       // The object must be cloneable and must not have a finalizer.
4352       // Both of these conditions may be checked in a single test.
4353       // We could optimize the cloneable test further, but we don't care.
4354       generate_access_flags_guard(obj_klass,
4355                                   // Test both conditions:
4356                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4357                                   // Must be cloneable but not finalizer:
4358                                   JVM_ACC_IS_CLONEABLE,
4359                                   slow_region);
4360     }
4361 
4362     if (!stopped()) {
4363       // It's an instance, and it passed the slow-path tests.
4364       PreserveJVMState pjvms(this);
4365       Node* obj_size  = NULL;
4366       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4367 
4368       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4369 
4370       // Present the results of the slow call.
4371       result_reg->init_req(_instance_path, control());
4372       result_val->init_req(_instance_path, alloc_obj);
4373       result_i_o ->set_req(_instance_path, i_o());
4374       result_mem ->set_req(_instance_path, reset_memory());
4375     }
4376 
4377     // Generate code for the slow case.  We make a call to clone().
4378     set_control(_gvn.transform(slow_region));
4379     if (!stopped()) {
4380       PreserveJVMState pjvms(this);
4381       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4382       Node* slow_result = set_results_for_java_call(slow_call);
4383       // this->control() comes from set_results_for_java_call
4384       result_reg->init_req(_slow_path, control());
4385       result_val->init_req(_slow_path, slow_result);
4386       result_i_o ->set_req(_slow_path, i_o());
4387       result_mem ->set_req(_slow_path, reset_memory());
4388     }
4389 
4390     // Return the combined state.
4391     set_control(    _gvn.transform(result_reg));
4392     set_i_o(        _gvn.transform(result_i_o));
4393     set_all_memory( _gvn.transform(result_mem));
4394   } // original reexecute is set back here
4395 
4396   set_result(_gvn.transform(result_val));
4397   return true;
4398 }
4399 
4400 //------------------------------basictype2arraycopy----------------------------
4401 address LibraryCallKit::basictype2arraycopy(BasicType t,
4402                                             Node* src_offset,
4403                                             Node* dest_offset,
4404                                             bool disjoint_bases,
4405                                             const char* &name,
4406                                             bool dest_uninitialized) {
4407   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4408   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4409 
4410   bool aligned = false;
4411   bool disjoint = disjoint_bases;
4412 
4413   // if the offsets are the same, we can treat the memory regions as
4414   // disjoint, because either the memory regions are in different arrays,
4415   // or they are identical (which we can treat as disjoint.)  We can also
4416   // treat a copy with a destination index  less that the source index
4417   // as disjoint since a low->high copy will work correctly in this case.
4418   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4419       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4420     // both indices are constants
4421     int s_offs = src_offset_inttype->get_con();
4422     int d_offs = dest_offset_inttype->get_con();
4423     int element_size = type2aelembytes(t);
4424     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4425               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4426     if (s_offs >= d_offs)  disjoint = true;
4427   } else if (src_offset == dest_offset && src_offset != NULL) {
4428     // This can occur if the offsets are identical non-constants.
4429     disjoint = true;
4430   }
4431 
4432   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4433 }
4434 
4435 
4436 //------------------------------inline_arraycopy-----------------------
4437 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4438 //                                                      Object dest, int destPos,
4439 //                                                      int length);
4440 bool LibraryCallKit::inline_arraycopy() {
4441   // Get the arguments.
4442   Node* src         = argument(0);  // type: oop
4443   Node* src_offset  = argument(1);  // type: int
4444   Node* dest        = argument(2);  // type: oop
4445   Node* dest_offset = argument(3);  // type: int
4446   Node* length      = argument(4);  // type: int
4447 
4448   // Compile time checks.  If any of these checks cannot be verified at compile time,
4449   // we do not make a fast path for this call.  Instead, we let the call remain as it
4450   // is.  The checks we choose to mandate at compile time are:
4451   //
4452   // (1) src and dest are arrays.
4453   const Type* src_type  = src->Value(&_gvn);
4454   const Type* dest_type = dest->Value(&_gvn);
4455   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4456   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4457   if (top_src  == NULL || top_src->klass()  == NULL ||
4458       top_dest == NULL || top_dest->klass() == NULL) {
4459     // Conservatively insert a memory barrier on all memory slices.
4460     // Do not let writes into the source float below the arraycopy.
4461     insert_mem_bar(Op_MemBarCPUOrder);
4462 
4463     // Call StubRoutines::generic_arraycopy stub.
4464     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4465                        src, src_offset, dest, dest_offset, length);
4466 
4467     // Do not let reads from the destination float above the arraycopy.
4468     // Since we cannot type the arrays, we don't know which slices
4469     // might be affected.  We could restrict this barrier only to those
4470     // memory slices which pertain to array elements--but don't bother.
4471     if (!InsertMemBarAfterArraycopy)
4472       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4473       insert_mem_bar(Op_MemBarCPUOrder);
4474     return true;
4475   }
4476 
4477   // (2) src and dest arrays must have elements of the same BasicType
4478   // Figure out the size and type of the elements we will be copying.
4479   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4480   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4481   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4482   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4483 
4484   if (src_elem != dest_elem || dest_elem == T_VOID) {
4485     // The component types are not the same or are not recognized.  Punt.
4486     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4487     generate_slow_arraycopy(TypePtr::BOTTOM,
4488                             src, src_offset, dest, dest_offset, length,
4489                             /*dest_uninitialized*/false);
4490     return true;
4491   }
4492 
4493   //---------------------------------------------------------------------------
4494   // We will make a fast path for this call to arraycopy.
4495 
4496   // We have the following tests left to perform:
4497   //
4498   // (3) src and dest must not be null.
4499   // (4) src_offset must not be negative.
4500   // (5) dest_offset must not be negative.
4501   // (6) length must not be negative.
4502   // (7) src_offset + length must not exceed length of src.
4503   // (8) dest_offset + length must not exceed length of dest.
4504   // (9) each element of an oop array must be assignable
4505 
4506   RegionNode* slow_region = new (C) RegionNode(1);
4507   record_for_igvn(slow_region);
4508 
4509   // (3) operands must not be null
4510   // We currently perform our null checks with the null_check routine.
4511   // This means that the null exceptions will be reported in the caller
4512   // rather than (correctly) reported inside of the native arraycopy call.
4513   // This should be corrected, given time.  We do our null check with the
4514   // stack pointer restored.
4515   src  = null_check(src,  T_ARRAY);
4516   dest = null_check(dest, T_ARRAY);
4517 
4518   // (4) src_offset must not be negative.
4519   generate_negative_guard(src_offset, slow_region);
4520 
4521   // (5) dest_offset must not be negative.
4522   generate_negative_guard(dest_offset, slow_region);
4523 
4524   // (6) length must not be negative (moved to generate_arraycopy()).
4525   // generate_negative_guard(length, slow_region);
4526 
4527   // (7) src_offset + length must not exceed length of src.
4528   generate_limit_guard(src_offset, length,
4529                        load_array_length(src),
4530                        slow_region);
4531 
4532   // (8) dest_offset + length must not exceed length of dest.
4533   generate_limit_guard(dest_offset, length,
4534                        load_array_length(dest),
4535                        slow_region);
4536 
4537   // (9) each element of an oop array must be assignable
4538   // The generate_arraycopy subroutine checks this.
4539 
4540   // This is where the memory effects are placed:
4541   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4542   generate_arraycopy(adr_type, dest_elem,
4543                      src, src_offset, dest, dest_offset, length,
4544                      false, false, slow_region);
4545 
4546   return true;
4547 }
4548 
4549 //-----------------------------generate_arraycopy----------------------
4550 // Generate an optimized call to arraycopy.
4551 // Caller must guard against non-arrays.
4552 // Caller must determine a common array basic-type for both arrays.
4553 // Caller must validate offsets against array bounds.
4554 // The slow_region has already collected guard failure paths
4555 // (such as out of bounds length or non-conformable array types).
4556 // The generated code has this shape, in general:
4557 //
4558 //     if (length == 0)  return   // via zero_path
4559 //     slowval = -1
4560 //     if (types unknown) {
4561 //       slowval = call generic copy loop
4562 //       if (slowval == 0)  return  // via checked_path
4563 //     } else if (indexes in bounds) {
4564 //       if ((is object array) && !(array type check)) {
4565 //         slowval = call checked copy loop
4566 //         if (slowval == 0)  return  // via checked_path
4567 //       } else {
4568 //         call bulk copy loop
4569 //         return  // via fast_path
4570 //       }
4571 //     }
4572 //     // adjust params for remaining work:
4573 //     if (slowval != -1) {
4574 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4575 //     }
4576 //   slow_region:
4577 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4578 //     return  // via slow_call_path
4579 //
4580 // This routine is used from several intrinsics:  System.arraycopy,
4581 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4582 //
4583 void
4584 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4585                                    BasicType basic_elem_type,
4586                                    Node* src,  Node* src_offset,
4587                                    Node* dest, Node* dest_offset,
4588                                    Node* copy_length,
4589                                    bool disjoint_bases,
4590                                    bool length_never_negative,
4591                                    RegionNode* slow_region) {
4592 
4593   if (slow_region == NULL) {
4594     slow_region = new(C) RegionNode(1);
4595     record_for_igvn(slow_region);
4596   }
4597 
4598   Node* original_dest      = dest;
4599   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4600   bool  dest_uninitialized = false;
4601 
4602   // See if this is the initialization of a newly-allocated array.
4603   // If so, we will take responsibility here for initializing it to zero.
4604   // (Note:  Because tightly_coupled_allocation performs checks on the
4605   // out-edges of the dest, we need to avoid making derived pointers
4606   // from it until we have checked its uses.)
4607   if (ReduceBulkZeroing
4608       && !ZeroTLAB              // pointless if already zeroed
4609       && basic_elem_type != T_CONFLICT // avoid corner case
4610       && !src->eqv_uncast(dest)
4611       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4612           != NULL)
4613       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4614       && alloc->maybe_set_complete(&_gvn)) {
4615     // "You break it, you buy it."
4616     InitializeNode* init = alloc->initialization();
4617     assert(init->is_complete(), "we just did this");
4618     init->set_complete_with_arraycopy();
4619     assert(dest->is_CheckCastPP(), "sanity");
4620     assert(dest->in(0)->in(0) == init, "dest pinned");
4621     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4622     // From this point on, every exit path is responsible for
4623     // initializing any non-copied parts of the object to zero.
4624     // Also, if this flag is set we make sure that arraycopy interacts properly
4625     // with G1, eliding pre-barriers. See CR 6627983.
4626     dest_uninitialized = true;
4627   } else {
4628     // No zeroing elimination here.
4629     alloc             = NULL;
4630     //original_dest   = dest;
4631     //dest_uninitialized = false;
4632   }
4633 
4634   // Results are placed here:
4635   enum { fast_path        = 1,  // normal void-returning assembly stub
4636          checked_path     = 2,  // special assembly stub with cleanup
4637          slow_call_path   = 3,  // something went wrong; call the VM
4638          zero_path        = 4,  // bypass when length of copy is zero
4639          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4640          PATH_LIMIT       = 6
4641   };
4642   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4643   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4644   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4645   record_for_igvn(result_region);
4646   _gvn.set_type_bottom(result_i_o);
4647   _gvn.set_type_bottom(result_memory);
4648   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4649 
4650   // The slow_control path:
4651   Node* slow_control;
4652   Node* slow_i_o = i_o();
4653   Node* slow_mem = memory(adr_type);
4654   debug_only(slow_control = (Node*) badAddress);
4655 
4656   // Checked control path:
4657   Node* checked_control = top();
4658   Node* checked_mem     = NULL;
4659   Node* checked_i_o     = NULL;
4660   Node* checked_value   = NULL;
4661 
4662   if (basic_elem_type == T_CONFLICT) {
4663     assert(!dest_uninitialized, "");
4664     Node* cv = generate_generic_arraycopy(adr_type,
4665                                           src, src_offset, dest, dest_offset,
4666                                           copy_length, dest_uninitialized);
4667     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4668     checked_control = control();
4669     checked_i_o     = i_o();
4670     checked_mem     = memory(adr_type);
4671     checked_value   = cv;
4672     set_control(top());         // no fast path
4673   }
4674 
4675   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4676   if (not_pos != NULL) {
4677     PreserveJVMState pjvms(this);
4678     set_control(not_pos);
4679 
4680     // (6) length must not be negative.
4681     if (!length_never_negative) {
4682       generate_negative_guard(copy_length, slow_region);
4683     }
4684 
4685     // copy_length is 0.
4686     if (!stopped() && dest_uninitialized) {
4687       Node* dest_length = alloc->in(AllocateNode::ALength);
4688       if (copy_length->eqv_uncast(dest_length)
4689           || _gvn.find_int_con(dest_length, 1) <= 0) {
4690         // There is no zeroing to do. No need for a secondary raw memory barrier.
4691       } else {
4692         // Clear the whole thing since there are no source elements to copy.
4693         generate_clear_array(adr_type, dest, basic_elem_type,
4694                              intcon(0), NULL,
4695                              alloc->in(AllocateNode::AllocSize));
4696         // Use a secondary InitializeNode as raw memory barrier.
4697         // Currently it is needed only on this path since other
4698         // paths have stub or runtime calls as raw memory barriers.
4699         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4700                                                        Compile::AliasIdxRaw,
4701                                                        top())->as_Initialize();
4702         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4703       }
4704     }
4705 
4706     // Present the results of the fast call.
4707     result_region->init_req(zero_path, control());
4708     result_i_o   ->init_req(zero_path, i_o());
4709     result_memory->init_req(zero_path, memory(adr_type));
4710   }
4711 
4712   if (!stopped() && dest_uninitialized) {
4713     // We have to initialize the *uncopied* part of the array to zero.
4714     // The copy destination is the slice dest[off..off+len].  The other slices
4715     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4716     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4717     Node* dest_length = alloc->in(AllocateNode::ALength);
4718     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
4719                                                           copy_length));
4720 
4721     // If there is a head section that needs zeroing, do it now.
4722     if (find_int_con(dest_offset, -1) != 0) {
4723       generate_clear_array(adr_type, dest, basic_elem_type,
4724                            intcon(0), dest_offset,
4725                            NULL);
4726     }
4727 
4728     // Next, perform a dynamic check on the tail length.
4729     // It is often zero, and we can win big if we prove this.
4730     // There are two wins:  Avoid generating the ClearArray
4731     // with its attendant messy index arithmetic, and upgrade
4732     // the copy to a more hardware-friendly word size of 64 bits.
4733     Node* tail_ctl = NULL;
4734     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4735       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
4736       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
4737       tail_ctl = generate_slow_guard(bol_lt, NULL);
4738       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4739     }
4740 
4741     // At this point, let's assume there is no tail.
4742     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4743       // There is no tail.  Try an upgrade to a 64-bit copy.
4744       bool didit = false;
4745       { PreserveJVMState pjvms(this);
4746         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4747                                          src, src_offset, dest, dest_offset,
4748                                          dest_size, dest_uninitialized);
4749         if (didit) {
4750           // Present the results of the block-copying fast call.
4751           result_region->init_req(bcopy_path, control());
4752           result_i_o   ->init_req(bcopy_path, i_o());
4753           result_memory->init_req(bcopy_path, memory(adr_type));
4754         }
4755       }
4756       if (didit)
4757         set_control(top());     // no regular fast path
4758     }
4759 
4760     // Clear the tail, if any.
4761     if (tail_ctl != NULL) {
4762       Node* notail_ctl = stopped() ? NULL : control();
4763       set_control(tail_ctl);
4764       if (notail_ctl == NULL) {
4765         generate_clear_array(adr_type, dest, basic_elem_type,
4766                              dest_tail, NULL,
4767                              dest_size);
4768       } else {
4769         // Make a local merge.
4770         Node* done_ctl = new(C) RegionNode(3);
4771         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4772         done_ctl->init_req(1, notail_ctl);
4773         done_mem->init_req(1, memory(adr_type));
4774         generate_clear_array(adr_type, dest, basic_elem_type,
4775                              dest_tail, NULL,
4776                              dest_size);
4777         done_ctl->init_req(2, control());
4778         done_mem->init_req(2, memory(adr_type));
4779         set_control( _gvn.transform(done_ctl));
4780         set_memory(  _gvn.transform(done_mem), adr_type );
4781       }
4782     }
4783   }
4784 
4785   BasicType copy_type = basic_elem_type;
4786   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4787   if (!stopped() && copy_type == T_OBJECT) {
4788     // If src and dest have compatible element types, we can copy bits.
4789     // Types S[] and D[] are compatible if D is a supertype of S.
4790     //
4791     // If they are not, we will use checked_oop_disjoint_arraycopy,
4792     // which performs a fast optimistic per-oop check, and backs off
4793     // further to JVM_ArrayCopy on the first per-oop check that fails.
4794     // (Actually, we don't move raw bits only; the GC requires card marks.)
4795 
4796     // Get the Klass* for both src and dest
4797     Node* src_klass  = load_object_klass(src);
4798     Node* dest_klass = load_object_klass(dest);
4799 
4800     // Generate the subtype check.
4801     // This might fold up statically, or then again it might not.
4802     //
4803     // Non-static example:  Copying List<String>.elements to a new String[].
4804     // The backing store for a List<String> is always an Object[],
4805     // but its elements are always type String, if the generic types
4806     // are correct at the source level.
4807     //
4808     // Test S[] against D[], not S against D, because (probably)
4809     // the secondary supertype cache is less busy for S[] than S.
4810     // This usually only matters when D is an interface.
4811     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4812     // Plug failing path into checked_oop_disjoint_arraycopy
4813     if (not_subtype_ctrl != top()) {
4814       PreserveJVMState pjvms(this);
4815       set_control(not_subtype_ctrl);
4816       // (At this point we can assume disjoint_bases, since types differ.)
4817       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4818       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4819       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4820       Node* dest_elem_klass = _gvn.transform(n1);
4821       Node* cv = generate_checkcast_arraycopy(adr_type,
4822                                               dest_elem_klass,
4823                                               src, src_offset, dest, dest_offset,
4824                                               ConvI2X(copy_length), dest_uninitialized);
4825       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4826       checked_control = control();
4827       checked_i_o     = i_o();
4828       checked_mem     = memory(adr_type);
4829       checked_value   = cv;
4830     }
4831     // At this point we know we do not need type checks on oop stores.
4832 
4833     // Let's see if we need card marks:
4834     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4835       // If we do not need card marks, copy using the jint or jlong stub.
4836       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4837       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4838              "sizes agree");
4839     }
4840   }
4841 
4842   if (!stopped()) {
4843     // Generate the fast path, if possible.
4844     PreserveJVMState pjvms(this);
4845     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4846                                  src, src_offset, dest, dest_offset,
4847                                  ConvI2X(copy_length), dest_uninitialized);
4848 
4849     // Present the results of the fast call.
4850     result_region->init_req(fast_path, control());
4851     result_i_o   ->init_req(fast_path, i_o());
4852     result_memory->init_req(fast_path, memory(adr_type));
4853   }
4854 
4855   // Here are all the slow paths up to this point, in one bundle:
4856   slow_control = top();
4857   if (slow_region != NULL)
4858     slow_control = _gvn.transform(slow_region);
4859   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4860 
4861   set_control(checked_control);
4862   if (!stopped()) {
4863     // Clean up after the checked call.
4864     // The returned value is either 0 or -1^K,
4865     // where K = number of partially transferred array elements.
4866     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
4867     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
4868     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4869 
4870     // If it is 0, we are done, so transfer to the end.
4871     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
4872     result_region->init_req(checked_path, checks_done);
4873     result_i_o   ->init_req(checked_path, checked_i_o);
4874     result_memory->init_req(checked_path, checked_mem);
4875 
4876     // If it is not zero, merge into the slow call.
4877     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
4878     RegionNode* slow_reg2 = new(C) RegionNode(3);
4879     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4880     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4881     record_for_igvn(slow_reg2);
4882     slow_reg2  ->init_req(1, slow_control);
4883     slow_i_o2  ->init_req(1, slow_i_o);
4884     slow_mem2  ->init_req(1, slow_mem);
4885     slow_reg2  ->init_req(2, control());
4886     slow_i_o2  ->init_req(2, checked_i_o);
4887     slow_mem2  ->init_req(2, checked_mem);
4888 
4889     slow_control = _gvn.transform(slow_reg2);
4890     slow_i_o     = _gvn.transform(slow_i_o2);
4891     slow_mem     = _gvn.transform(slow_mem2);
4892 
4893     if (alloc != NULL) {
4894       // We'll restart from the very beginning, after zeroing the whole thing.
4895       // This can cause double writes, but that's OK since dest is brand new.
4896       // So we ignore the low 31 bits of the value returned from the stub.
4897     } else {
4898       // We must continue the copy exactly where it failed, or else
4899       // another thread might see the wrong number of writes to dest.
4900       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
4901       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4902       slow_offset->init_req(1, intcon(0));
4903       slow_offset->init_req(2, checked_offset);
4904       slow_offset  = _gvn.transform(slow_offset);
4905 
4906       // Adjust the arguments by the conditionally incoming offset.
4907       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
4908       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
4909       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
4910 
4911       // Tweak the node variables to adjust the code produced below:
4912       src_offset  = src_off_plus;
4913       dest_offset = dest_off_plus;
4914       copy_length = length_minus;
4915     }
4916   }
4917 
4918   set_control(slow_control);
4919   if (!stopped()) {
4920     // Generate the slow path, if needed.
4921     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4922 
4923     set_memory(slow_mem, adr_type);
4924     set_i_o(slow_i_o);
4925 
4926     if (dest_uninitialized) {
4927       generate_clear_array(adr_type, dest, basic_elem_type,
4928                            intcon(0), NULL,
4929                            alloc->in(AllocateNode::AllocSize));
4930     }
4931 
4932     generate_slow_arraycopy(adr_type,
4933                             src, src_offset, dest, dest_offset,
4934                             copy_length, /*dest_uninitialized*/false);
4935 
4936     result_region->init_req(slow_call_path, control());
4937     result_i_o   ->init_req(slow_call_path, i_o());
4938     result_memory->init_req(slow_call_path, memory(adr_type));
4939   }
4940 
4941   // Remove unused edges.
4942   for (uint i = 1; i < result_region->req(); i++) {
4943     if (result_region->in(i) == NULL)
4944       result_region->init_req(i, top());
4945   }
4946 
4947   // Finished; return the combined state.
4948   set_control( _gvn.transform(result_region));
4949   set_i_o(     _gvn.transform(result_i_o)    );
4950   set_memory(  _gvn.transform(result_memory), adr_type );
4951 
4952   // The memory edges above are precise in order to model effects around
4953   // array copies accurately to allow value numbering of field loads around
4954   // arraycopy.  Such field loads, both before and after, are common in Java
4955   // collections and similar classes involving header/array data structures.
4956   //
4957   // But with low number of register or when some registers are used or killed
4958   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4959   // The next memory barrier is added to avoid it. If the arraycopy can be
4960   // optimized away (which it can, sometimes) then we can manually remove
4961   // the membar also.
4962   //
4963   // Do not let reads from the cloned object float above the arraycopy.
4964   if (alloc != NULL) {
4965     // Do not let stores that initialize this object be reordered with
4966     // a subsequent store that would make this object accessible by
4967     // other threads.
4968     // Record what AllocateNode this StoreStore protects so that
4969     // escape analysis can go from the MemBarStoreStoreNode to the
4970     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4971     // based on the escape status of the AllocateNode.
4972     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4973   } else if (InsertMemBarAfterArraycopy)
4974     insert_mem_bar(Op_MemBarCPUOrder);
4975 }
4976 
4977 
4978 // Helper function which determines if an arraycopy immediately follows
4979 // an allocation, with no intervening tests or other escapes for the object.
4980 AllocateArrayNode*
4981 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4982                                            RegionNode* slow_region) {
4983   if (stopped())             return NULL;  // no fast path
4984   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4985 
4986   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4987   if (alloc == NULL)  return NULL;
4988 
4989   Node* rawmem = memory(Compile::AliasIdxRaw);
4990   // Is the allocation's memory state untouched?
4991   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4992     // Bail out if there have been raw-memory effects since the allocation.
4993     // (Example:  There might have been a call or safepoint.)
4994     return NULL;
4995   }
4996   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4997   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4998     return NULL;
4999   }
5000 
5001   // There must be no unexpected observers of this allocation.
5002   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5003     Node* obs = ptr->fast_out(i);
5004     if (obs != this->map()) {
5005       return NULL;
5006     }
5007   }
5008 
5009   // This arraycopy must unconditionally follow the allocation of the ptr.
5010   Node* alloc_ctl = ptr->in(0);
5011   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5012 
5013   Node* ctl = control();
5014   while (ctl != alloc_ctl) {
5015     // There may be guards which feed into the slow_region.
5016     // Any other control flow means that we might not get a chance
5017     // to finish initializing the allocated object.
5018     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5019       IfNode* iff = ctl->in(0)->as_If();
5020       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5021       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5022       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5023         ctl = iff->in(0);       // This test feeds the known slow_region.
5024         continue;
5025       }
5026       // One more try:  Various low-level checks bottom out in
5027       // uncommon traps.  If the debug-info of the trap omits
5028       // any reference to the allocation, as we've already
5029       // observed, then there can be no objection to the trap.
5030       bool found_trap = false;
5031       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5032         Node* obs = not_ctl->fast_out(j);
5033         if (obs->in(0) == not_ctl && obs->is_Call() &&
5034             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5035           found_trap = true; break;
5036         }
5037       }
5038       if (found_trap) {
5039         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5040         continue;
5041       }
5042     }
5043     return NULL;
5044   }
5045 
5046   // If we get this far, we have an allocation which immediately
5047   // precedes the arraycopy, and we can take over zeroing the new object.
5048   // The arraycopy will finish the initialization, and provide
5049   // a new control state to which we will anchor the destination pointer.
5050 
5051   return alloc;
5052 }
5053 
5054 // Helper for initialization of arrays, creating a ClearArray.
5055 // It writes zero bits in [start..end), within the body of an array object.
5056 // The memory effects are all chained onto the 'adr_type' alias category.
5057 //
5058 // Since the object is otherwise uninitialized, we are free
5059 // to put a little "slop" around the edges of the cleared area,
5060 // as long as it does not go back into the array's header,
5061 // or beyond the array end within the heap.
5062 //
5063 // The lower edge can be rounded down to the nearest jint and the
5064 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5065 //
5066 // Arguments:
5067 //   adr_type           memory slice where writes are generated
5068 //   dest               oop of the destination array
5069 //   basic_elem_type    element type of the destination
5070 //   slice_idx          array index of first element to store
5071 //   slice_len          number of elements to store (or NULL)
5072 //   dest_size          total size in bytes of the array object
5073 //
5074 // Exactly one of slice_len or dest_size must be non-NULL.
5075 // If dest_size is non-NULL, zeroing extends to the end of the object.
5076 // If slice_len is non-NULL, the slice_idx value must be a constant.
5077 void
5078 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5079                                      Node* dest,
5080                                      BasicType basic_elem_type,
5081                                      Node* slice_idx,
5082                                      Node* slice_len,
5083                                      Node* dest_size) {
5084   // one or the other but not both of slice_len and dest_size:
5085   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5086   if (slice_len == NULL)  slice_len = top();
5087   if (dest_size == NULL)  dest_size = top();
5088 
5089   // operate on this memory slice:
5090   Node* mem = memory(adr_type); // memory slice to operate on
5091 
5092   // scaling and rounding of indexes:
5093   int scale = exact_log2(type2aelembytes(basic_elem_type));
5094   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5095   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5096   int bump_bit  = (-1 << scale) & BytesPerInt;
5097 
5098   // determine constant starts and ends
5099   const intptr_t BIG_NEG = -128;
5100   assert(BIG_NEG + 2*abase < 0, "neg enough");
5101   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5102   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5103   if (slice_len_con == 0) {
5104     return;                     // nothing to do here
5105   }
5106   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5107   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5108   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5109     assert(end_con < 0, "not two cons");
5110     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5111                        BytesPerLong);
5112   }
5113 
5114   if (start_con >= 0 && end_con >= 0) {
5115     // Constant start and end.  Simple.
5116     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5117                                        start_con, end_con, &_gvn);
5118   } else if (start_con >= 0 && dest_size != top()) {
5119     // Constant start, pre-rounded end after the tail of the array.
5120     Node* end = dest_size;
5121     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5122                                        start_con, end, &_gvn);
5123   } else if (start_con >= 0 && slice_len != top()) {
5124     // Constant start, non-constant end.  End needs rounding up.
5125     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5126     intptr_t end_base  = abase + (slice_idx_con << scale);
5127     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5128     Node*    end       = ConvI2X(slice_len);
5129     if (scale != 0)
5130       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5131     end_base += end_round;
5132     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5133     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5134     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5135                                        start_con, end, &_gvn);
5136   } else if (start_con < 0 && dest_size != top()) {
5137     // Non-constant start, pre-rounded end after the tail of the array.
5138     // This is almost certainly a "round-to-end" operation.
5139     Node* start = slice_idx;
5140     start = ConvI2X(start);
5141     if (scale != 0)
5142       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5143     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5144     if ((bump_bit | clear_low) != 0) {
5145       int to_clear = (bump_bit | clear_low);
5146       // Align up mod 8, then store a jint zero unconditionally
5147       // just before the mod-8 boundary.
5148       if (((abase + bump_bit) & ~to_clear) - bump_bit
5149           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5150         bump_bit = 0;
5151         assert((abase & to_clear) == 0, "array base must be long-aligned");
5152       } else {
5153         // Bump 'start' up to (or past) the next jint boundary:
5154         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5155         assert((abase & clear_low) == 0, "array base must be int-aligned");
5156       }
5157       // Round bumped 'start' down to jlong boundary in body of array.
5158       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5159       if (bump_bit != 0) {
5160         // Store a zero to the immediately preceding jint:
5161         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5162         Node* p1 = basic_plus_adr(dest, x1);
5163         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5164         mem = _gvn.transform(mem);
5165       }
5166     }
5167     Node* end = dest_size; // pre-rounded
5168     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5169                                        start, end, &_gvn);
5170   } else {
5171     // Non-constant start, unrounded non-constant end.
5172     // (Nobody zeroes a random midsection of an array using this routine.)
5173     ShouldNotReachHere();       // fix caller
5174   }
5175 
5176   // Done.
5177   set_memory(mem, adr_type);
5178 }
5179 
5180 
5181 bool
5182 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5183                                          BasicType basic_elem_type,
5184                                          AllocateNode* alloc,
5185                                          Node* src,  Node* src_offset,
5186                                          Node* dest, Node* dest_offset,
5187                                          Node* dest_size, bool dest_uninitialized) {
5188   // See if there is an advantage from block transfer.
5189   int scale = exact_log2(type2aelembytes(basic_elem_type));
5190   if (scale >= LogBytesPerLong)
5191     return false;               // it is already a block transfer
5192 
5193   // Look at the alignment of the starting offsets.
5194   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5195 
5196   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5197   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5198   if (src_off_con < 0 || dest_off_con < 0)
5199     // At present, we can only understand constants.
5200     return false;
5201 
5202   intptr_t src_off  = abase + (src_off_con  << scale);
5203   intptr_t dest_off = abase + (dest_off_con << scale);
5204 
5205   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5206     // Non-aligned; too bad.
5207     // One more chance:  Pick off an initial 32-bit word.
5208     // This is a common case, since abase can be odd mod 8.
5209     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5210         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5211       Node* sptr = basic_plus_adr(src,  src_off);
5212       Node* dptr = basic_plus_adr(dest, dest_off);
5213       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5214       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5215       src_off += BytesPerInt;
5216       dest_off += BytesPerInt;
5217     } else {
5218       return false;
5219     }
5220   }
5221   assert(src_off % BytesPerLong == 0, "");
5222   assert(dest_off % BytesPerLong == 0, "");
5223 
5224   // Do this copy by giant steps.
5225   Node* sptr  = basic_plus_adr(src,  src_off);
5226   Node* dptr  = basic_plus_adr(dest, dest_off);
5227   Node* countx = dest_size;
5228   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5229   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5230 
5231   bool disjoint_bases = true;   // since alloc != NULL
5232   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5233                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5234 
5235   return true;
5236 }
5237 
5238 
5239 // Helper function; generates code for the slow case.
5240 // We make a call to a runtime method which emulates the native method,
5241 // but without the native wrapper overhead.
5242 void
5243 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5244                                         Node* src,  Node* src_offset,
5245                                         Node* dest, Node* dest_offset,
5246                                         Node* copy_length, bool dest_uninitialized) {
5247   assert(!dest_uninitialized, "Invariant");
5248   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5249                                  OptoRuntime::slow_arraycopy_Type(),
5250                                  OptoRuntime::slow_arraycopy_Java(),
5251                                  "slow_arraycopy", adr_type,
5252                                  src, src_offset, dest, dest_offset,
5253                                  copy_length);
5254 
5255   // Handle exceptions thrown by this fellow:
5256   make_slow_call_ex(call, env()->Throwable_klass(), false);
5257 }
5258 
5259 // Helper function; generates code for cases requiring runtime checks.
5260 Node*
5261 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5262                                              Node* dest_elem_klass,
5263                                              Node* src,  Node* src_offset,
5264                                              Node* dest, Node* dest_offset,
5265                                              Node* copy_length, bool dest_uninitialized) {
5266   if (stopped())  return NULL;
5267 
5268   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5269   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5270     return NULL;
5271   }
5272 
5273   // Pick out the parameters required to perform a store-check
5274   // for the target array.  This is an optimistic check.  It will
5275   // look in each non-null element's class, at the desired klass's
5276   // super_check_offset, for the desired klass.
5277   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5278   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5279   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5280   Node* check_offset = ConvI2X(_gvn.transform(n3));
5281   Node* check_value  = dest_elem_klass;
5282 
5283   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5284   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5285 
5286   // (We know the arrays are never conjoint, because their types differ.)
5287   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5288                                  OptoRuntime::checkcast_arraycopy_Type(),
5289                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5290                                  // five arguments, of which two are
5291                                  // intptr_t (jlong in LP64)
5292                                  src_start, dest_start,
5293                                  copy_length XTOP,
5294                                  check_offset XTOP,
5295                                  check_value);
5296 
5297   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5298 }
5299 
5300 
5301 // Helper function; generates code for cases requiring runtime checks.
5302 Node*
5303 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5304                                            Node* src,  Node* src_offset,
5305                                            Node* dest, Node* dest_offset,
5306                                            Node* copy_length, bool dest_uninitialized) {
5307   assert(!dest_uninitialized, "Invariant");
5308   if (stopped())  return NULL;
5309   address copyfunc_addr = StubRoutines::generic_arraycopy();
5310   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5311     return NULL;
5312   }
5313 
5314   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5315                     OptoRuntime::generic_arraycopy_Type(),
5316                     copyfunc_addr, "generic_arraycopy", adr_type,
5317                     src, src_offset, dest, dest_offset, copy_length);
5318 
5319   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5320 }
5321 
5322 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5323 void
5324 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5325                                              BasicType basic_elem_type,
5326                                              bool disjoint_bases,
5327                                              Node* src,  Node* src_offset,
5328                                              Node* dest, Node* dest_offset,
5329                                              Node* copy_length, bool dest_uninitialized) {
5330   if (stopped())  return;               // nothing to do
5331 
5332   Node* src_start  = src;
5333   Node* dest_start = dest;
5334   if (src_offset != NULL || dest_offset != NULL) {
5335     assert(src_offset != NULL && dest_offset != NULL, "");
5336     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5337     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5338   }
5339 
5340   // Figure out which arraycopy runtime method to call.
5341   const char* copyfunc_name = "arraycopy";
5342   address     copyfunc_addr =
5343       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5344                           disjoint_bases, copyfunc_name, dest_uninitialized);
5345 
5346   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5347   make_runtime_call(RC_LEAF|RC_NO_FP,
5348                     OptoRuntime::fast_arraycopy_Type(),
5349                     copyfunc_addr, copyfunc_name, adr_type,
5350                     src_start, dest_start, copy_length XTOP);
5351 }
5352 
5353 //-------------inline_encodeISOArray-----------------------------------
5354 // encode char[] to byte[] in ISO_8859_1
5355 bool LibraryCallKit::inline_encodeISOArray() {
5356   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5357   // no receiver since it is static method
5358   Node *src         = argument(0);
5359   Node *src_offset  = argument(1);
5360   Node *dst         = argument(2);
5361   Node *dst_offset  = argument(3);
5362   Node *length      = argument(4);
5363 
5364   const Type* src_type = src->Value(&_gvn);
5365   const Type* dst_type = dst->Value(&_gvn);
5366   const TypeAryPtr* top_src = src_type->isa_aryptr();
5367   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5368   if (top_src  == NULL || top_src->klass()  == NULL ||
5369       top_dest == NULL || top_dest->klass() == NULL) {
5370     // failed array check
5371     return false;
5372   }
5373 
5374   // Figure out the size and type of the elements we will be copying.
5375   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5376   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5377   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5378     return false;
5379   }
5380   Node* src_start = array_element_address(src, src_offset, src_elem);
5381   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5382   // 'src_start' points to src array + scaled offset
5383   // 'dst_start' points to dst array + scaled offset
5384 
5385   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5386   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5387   enc = _gvn.transform(enc);
5388   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5389   set_memory(res_mem, mtype);
5390   set_result(enc);
5391   return true;
5392 }
5393 
5394 /**
5395  * Calculate CRC32 for byte.
5396  * int java.util.zip.CRC32.update(int crc, int b)
5397  */
5398 bool LibraryCallKit::inline_updateCRC32() {
5399   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5400   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5401   // no receiver since it is static method
5402   Node* crc  = argument(0); // type: int
5403   Node* b    = argument(1); // type: int
5404 
5405   /*
5406    *    int c = ~ crc;
5407    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5408    *    b = b ^ (c >>> 8);
5409    *    crc = ~b;
5410    */
5411 
5412   Node* M1 = intcon(-1);
5413   crc = _gvn.transform(new (C) XorINode(crc, M1));
5414   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5415   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5416 
5417   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5418   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5419   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5420   result = make_load(control(), adr, TypeInt::INT, T_INT);
5421 
5422   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5423   result = _gvn.transform(new (C) XorINode(crc, result));
5424   result = _gvn.transform(new (C) XorINode(result, M1));
5425   set_result(result);
5426   return true;
5427 }
5428 
5429 /**
5430  * Calculate CRC32 for byte[] array.
5431  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5432  */
5433 bool LibraryCallKit::inline_updateBytesCRC32() {
5434   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5435   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5436   // no receiver since it is static method
5437   Node* crc     = argument(0); // type: int
5438   Node* src     = argument(1); // type: oop
5439   Node* offset  = argument(2); // type: int
5440   Node* length  = argument(3); // type: int
5441 
5442   const Type* src_type = src->Value(&_gvn);
5443   const TypeAryPtr* top_src = src_type->isa_aryptr();
5444   if (top_src  == NULL || top_src->klass()  == NULL) {
5445     // failed array check
5446     return false;
5447   }
5448 
5449   // Figure out the size and type of the elements we will be copying.
5450   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5451   if (src_elem != T_BYTE) {
5452     return false;
5453   }
5454 
5455   // 'src_start' points to src array + scaled offset
5456   Node* src_start = array_element_address(src, offset, src_elem);
5457 
5458   // We assume that range check is done by caller.
5459   // TODO: generate range check (offset+length < src.length) in debug VM.
5460 
5461   // Call the stub.
5462   address stubAddr = StubRoutines::updateBytesCRC32();
5463   const char *stubName = "updateBytesCRC32";
5464 
5465   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5466                                  stubAddr, stubName, TypePtr::BOTTOM,
5467                                  crc, src_start, length);
5468   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5469   set_result(result);
5470   return true;
5471 }
5472 
5473 /**
5474  * Calculate CRC32 for ByteBuffer.
5475  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5476  */
5477 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5478   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5479   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5480   // no receiver since it is static method
5481   Node* crc     = argument(0); // type: int
5482   Node* src     = argument(1); // type: long
5483   Node* offset  = argument(3); // type: int
5484   Node* length  = argument(4); // type: int
5485 
5486   src = ConvL2X(src);  // adjust Java long to machine word
5487   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5488   offset = ConvI2X(offset);
5489 
5490   // 'src_start' points to src array + scaled offset
5491   Node* src_start = basic_plus_adr(top(), base, offset);
5492 
5493   // Call the stub.
5494   address stubAddr = StubRoutines::updateBytesCRC32();
5495   const char *stubName = "updateBytesCRC32";
5496 
5497   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5498                                  stubAddr, stubName, TypePtr::BOTTOM,
5499                                  crc, src_start, length);
5500   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5501   set_result(result);
5502   return true;
5503 }
5504 
5505 //----------------------------inline_reference_get----------------------------
5506 // public T java.lang.ref.Reference.get();
5507 bool LibraryCallKit::inline_reference_get() {
5508   const int referent_offset = java_lang_ref_Reference::referent_offset;
5509   guarantee(referent_offset > 0, "should have already been set");
5510 
5511   // Get the argument:
5512   Node* reference_obj = null_check_receiver();
5513   if (stopped()) return true;
5514 
5515   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5516 
5517   ciInstanceKlass* klass = env()->Object_klass();
5518   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5519 
5520   Node* no_ctrl = NULL;
5521   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5522 
5523   // Use the pre-barrier to record the value in the referent field
5524   pre_barrier(false /* do_load */,
5525               control(),
5526               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5527               result /* pre_val */,
5528               T_OBJECT);
5529 
5530   // Add memory barrier to prevent commoning reads from this field
5531   // across safepoint since GC can change its value.
5532   insert_mem_bar(Op_MemBarCPUOrder);
5533 
5534   set_result(result);
5535   return true;
5536 }
5537 
5538 
5539 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5540                                               bool is_exact=true, bool is_static=false) {
5541 
5542   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5543   assert(tinst != NULL, "obj is null");
5544   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5545   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5546 
5547   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5548                                                                           ciSymbol::make(fieldTypeString),
5549                                                                           is_static);
5550   if (field == NULL) return (Node *) NULL;
5551   assert (field != NULL, "undefined field");
5552 
5553   // Next code  copied from Parse::do_get_xxx():
5554 
5555   // Compute address and memory type.
5556   int offset  = field->offset_in_bytes();
5557   bool is_vol = field->is_volatile();
5558   ciType* field_klass = field->type();
5559   assert(field_klass->is_loaded(), "should be loaded");
5560   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5561   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5562   BasicType bt = field->layout_type();
5563 
5564   // Build the resultant type of the load
5565   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5566 
5567   // Build the load.
5568   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5569   return loadedField;
5570 }
5571 
5572 
5573 //------------------------------inline_aescrypt_Block-----------------------
5574 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5575   address stubAddr;
5576   const char *stubName;
5577   assert(UseAES, "need AES instruction support");
5578 
5579   switch(id) {
5580   case vmIntrinsics::_aescrypt_encryptBlock:
5581     stubAddr = StubRoutines::aescrypt_encryptBlock();
5582     stubName = "aescrypt_encryptBlock";
5583     break;
5584   case vmIntrinsics::_aescrypt_decryptBlock:
5585     stubAddr = StubRoutines::aescrypt_decryptBlock();
5586     stubName = "aescrypt_decryptBlock";
5587     break;
5588   }
5589   if (stubAddr == NULL) return false;
5590 
5591   Node* aescrypt_object = argument(0);
5592   Node* src             = argument(1);
5593   Node* src_offset      = argument(2);
5594   Node* dest            = argument(3);
5595   Node* dest_offset     = argument(4);
5596 
5597   // (1) src and dest are arrays.
5598   const Type* src_type = src->Value(&_gvn);
5599   const Type* dest_type = dest->Value(&_gvn);
5600   const TypeAryPtr* top_src = src_type->isa_aryptr();
5601   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5602   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5603 
5604   // for the quick and dirty code we will skip all the checks.
5605   // we are just trying to get the call to be generated.
5606   Node* src_start  = src;
5607   Node* dest_start = dest;
5608   if (src_offset != NULL || dest_offset != NULL) {
5609     assert(src_offset != NULL && dest_offset != NULL, "");
5610     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5611     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5612   }
5613 
5614   // now need to get the start of its expanded key array
5615   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5616   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5617   if (k_start == NULL) return false;
5618 
5619   // Call the stub.
5620   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5621                     stubAddr, stubName, TypePtr::BOTTOM,
5622                     src_start, dest_start, k_start);
5623 
5624   return true;
5625 }
5626 
5627 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5628 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5629   address stubAddr;
5630   const char *stubName;
5631 
5632   assert(UseAES, "need AES instruction support");
5633 
5634   switch(id) {
5635   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5636     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5637     stubName = "cipherBlockChaining_encryptAESCrypt";
5638     break;
5639   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5640     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5641     stubName = "cipherBlockChaining_decryptAESCrypt";
5642     break;
5643   }
5644   if (stubAddr == NULL) return false;
5645 
5646   Node* cipherBlockChaining_object = argument(0);
5647   Node* src                        = argument(1);
5648   Node* src_offset                 = argument(2);
5649   Node* len                        = argument(3);
5650   Node* dest                       = argument(4);
5651   Node* dest_offset                = argument(5);
5652 
5653   // (1) src and dest are arrays.
5654   const Type* src_type = src->Value(&_gvn);
5655   const Type* dest_type = dest->Value(&_gvn);
5656   const TypeAryPtr* top_src = src_type->isa_aryptr();
5657   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5658   assert (top_src  != NULL && top_src->klass()  != NULL
5659           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5660 
5661   // checks are the responsibility of the caller
5662   Node* src_start  = src;
5663   Node* dest_start = dest;
5664   if (src_offset != NULL || dest_offset != NULL) {
5665     assert(src_offset != NULL && dest_offset != NULL, "");
5666     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5667     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5668   }
5669 
5670   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5671   // (because of the predicated logic executed earlier).
5672   // so we cast it here safely.
5673   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5674 
5675   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5676   if (embeddedCipherObj == NULL) return false;
5677 
5678   // cast it to what we know it will be at runtime
5679   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5680   assert(tinst != NULL, "CBC obj is null");
5681   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5682   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5683   if (!klass_AESCrypt->is_loaded()) return false;
5684 
5685   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5686   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5687   const TypeOopPtr* xtype = aklass->as_instance_type();
5688   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5689   aescrypt_object = _gvn.transform(aescrypt_object);
5690 
5691   // we need to get the start of the aescrypt_object's expanded key array
5692   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5693   if (k_start == NULL) return false;
5694 
5695   // similarly, get the start address of the r vector
5696   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5697   if (objRvec == NULL) return false;
5698   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5699 
5700   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5701   make_runtime_call(RC_LEAF|RC_NO_FP,
5702                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5703                     stubAddr, stubName, TypePtr::BOTTOM,
5704                     src_start, dest_start, k_start, r_start, len);
5705 
5706   // return is void so no result needs to be pushed
5707 
5708   return true;
5709 }
5710 
5711 //------------------------------get_key_start_from_aescrypt_object-----------------------
5712 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5713   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5714   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5715   if (objAESCryptKey == NULL) return (Node *) NULL;
5716 
5717   // now have the array, need to get the start address of the K array
5718   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5719   return k_start;
5720 }
5721 
5722 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5723 // Return node representing slow path of predicate check.
5724 // the pseudo code we want to emulate with this predicate is:
5725 // for encryption:
5726 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5727 // for decryption:
5728 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5729 //    note cipher==plain is more conservative than the original java code but that's OK
5730 //
5731 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5732   // First, check receiver for NULL since it is virtual method.
5733   Node* objCBC = argument(0);
5734   objCBC = null_check(objCBC);
5735 
5736   if (stopped()) return NULL; // Always NULL
5737 
5738   // Load embeddedCipher field of CipherBlockChaining object.
5739   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5740 
5741   // get AESCrypt klass for instanceOf check
5742   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5743   // will have same classloader as CipherBlockChaining object
5744   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5745   assert(tinst != NULL, "CBCobj is null");
5746   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5747 
5748   // we want to do an instanceof comparison against the AESCrypt class
5749   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5750   if (!klass_AESCrypt->is_loaded()) {
5751     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5752     Node* ctrl = control();
5753     set_control(top()); // no regular fast path
5754     return ctrl;
5755   }
5756   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5757 
5758   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5759   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5760   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5761 
5762   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5763 
5764   // for encryption, we are done
5765   if (!decrypting)
5766     return instof_false;  // even if it is NULL
5767 
5768   // for decryption, we need to add a further check to avoid
5769   // taking the intrinsic path when cipher and plain are the same
5770   // see the original java code for why.
5771   RegionNode* region = new(C) RegionNode(3);
5772   region->init_req(1, instof_false);
5773   Node* src = argument(1);
5774   Node* dest = argument(4);
5775   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5776   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5777   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5778   region->init_req(2, src_dest_conjoint);
5779 
5780   record_for_igvn(region);
5781   return _gvn.transform(region);
5782 }