1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectorPolicy.hpp"
  38 #include "gc/g1/g1CollectorState.hpp"
  39 #include "gc/g1/g1EvacStats.inline.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootClosures.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcId.hpp"
  57 #include "gc/shared/gcLocker.inline.hpp"
  58 #include "gc/shared/gcTimer.hpp"
  59 #include "gc/shared/gcTrace.hpp"
  60 #include "gc/shared/gcTraceTime.inline.hpp"
  61 #include "gc/shared/generationSpec.hpp"
  62 #include "gc/shared/isGCActiveMark.hpp"
  63 #include "gc/shared/referenceProcessor.inline.hpp"
  64 #include "gc/shared/taskqueue.inline.hpp"
  65 #include "logging/log.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_dirtied;
 116   G1CollectedHeap* _g1h;
 117   G1SATBCardTableLoggingModRefBS* _g1_bs;
 118 
 119   HeapRegion* region_for_card(jbyte* card_ptr) const {
 120     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 121   }
 122 
 123   bool will_become_free(HeapRegion* hr) const {
 124     // A region will be freed by free_collection_set if the region is in the
 125     // collection set and has not had an evacuation failure.
 126     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 127   }
 128 
 129  public:
 130   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 131     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 132 
 133   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 134     HeapRegion* hr = region_for_card(card_ptr);
 135 
 136     // Should only dirty cards in regions that won't be freed.
 137     if (!will_become_free(hr)) {
 138       *card_ptr = CardTableModRefBS::dirty_card_val();
 139       _num_dirtied++;
 140     }
 141 
 142     return true;
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 160 {
 161   // Claim the right to put the region on the dirty cards region list
 162   // by installing a self pointer.
 163   HeapRegion* next = hr->get_next_dirty_cards_region();
 164   if (next == NULL) {
 165     HeapRegion* res = (HeapRegion*)
 166       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 167                           NULL);
 168     if (res == NULL) {
 169       HeapRegion* head;
 170       do {
 171         // Put the region to the dirty cards region list.
 172         head = _dirty_cards_region_list;
 173         next = (HeapRegion*)
 174           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 175         if (next == head) {
 176           assert(hr->get_next_dirty_cards_region() == hr,
 177                  "hr->get_next_dirty_cards_region() != hr");
 178           if (next == NULL) {
 179             // The last region in the list points to itself.
 180             hr->set_next_dirty_cards_region(hr);
 181           } else {
 182             hr->set_next_dirty_cards_region(next);
 183           }
 184         }
 185       } while (next != head);
 186     }
 187   }
 188 }
 189 
 190 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 191 {
 192   HeapRegion* head;
 193   HeapRegion* hr;
 194   do {
 195     head = _dirty_cards_region_list;
 196     if (head == NULL) {
 197       return NULL;
 198     }
 199     HeapRegion* new_head = head->get_next_dirty_cards_region();
 200     if (head == new_head) {
 201       // The last region.
 202       new_head = NULL;
 203     }
 204     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 205                                           head);
 206   } while (hr != head);
 207   assert(hr != NULL, "invariant");
 208   hr->set_next_dirty_cards_region(NULL);
 209   return hr;
 210 }
 211 
 212 // Returns true if the reference points to an object that
 213 // can move in an incremental collection.
 214 bool G1CollectedHeap::is_scavengable(const void* p) {
 215   HeapRegion* hr = heap_region_containing(p);
 216   return !hr->is_pinned();
 217 }
 218 
 219 // Private methods.
 220 
 221 HeapRegion*
 222 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 223   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 224   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 225     if (!_secondary_free_list.is_empty()) {
 226       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 227                                       "secondary_free_list has %u entries",
 228                                       _secondary_free_list.length());
 229       // It looks as if there are free regions available on the
 230       // secondary_free_list. Let's move them to the free_list and try
 231       // again to allocate from it.
 232       append_secondary_free_list();
 233 
 234       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 235              "empty we should have moved at least one entry to the free_list");
 236       HeapRegion* res = _hrm.allocate_free_region(is_old);
 237       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 238                                       "allocated " HR_FORMAT " from secondary_free_list",
 239                                       HR_FORMAT_PARAMS(res));
 240       return res;
 241     }
 242 
 243     // Wait here until we get notified either when (a) there are no
 244     // more free regions coming or (b) some regions have been moved on
 245     // the secondary_free_list.
 246     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 247   }
 248 
 249   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 250                                   "could not allocate from secondary_free_list");
 251   return NULL;
 252 }
 253 
 254 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 255   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 256          "the only time we use this to allocate a humongous region is "
 257          "when we are allocating a single humongous region");
 258 
 259   HeapRegion* res;
 260   if (G1StressConcRegionFreeing) {
 261     if (!_secondary_free_list.is_empty()) {
 262       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 263                                       "forced to look at the secondary_free_list");
 264       res = new_region_try_secondary_free_list(is_old);
 265       if (res != NULL) {
 266         return res;
 267       }
 268     }
 269   }
 270 
 271   res = _hrm.allocate_free_region(is_old);
 272 
 273   if (res == NULL) {
 274     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 275                                     "res == NULL, trying the secondary_free_list");
 276     res = new_region_try_secondary_free_list(is_old);
 277   }
 278   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 279     // Currently, only attempts to allocate GC alloc regions set
 280     // do_expand to true. So, we should only reach here during a
 281     // safepoint. If this assumption changes we might have to
 282     // reconsider the use of _expand_heap_after_alloc_failure.
 283     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 284 
 285     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 286                               word_size * HeapWordSize);
 287 
 288     if (expand(word_size * HeapWordSize)) {
 289       // Given that expand() succeeded in expanding the heap, and we
 290       // always expand the heap by an amount aligned to the heap
 291       // region size, the free list should in theory not be empty.
 292       // In either case allocate_free_region() will check for NULL.
 293       res = _hrm.allocate_free_region(is_old);
 294     } else {
 295       _expand_heap_after_alloc_failure = false;
 296     }
 297   }
 298   return res;
 299 }
 300 
 301 HeapWord*
 302 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 303                                                            uint num_regions,
 304                                                            size_t word_size,
 305                                                            AllocationContext_t context) {
 306   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 307   assert(is_humongous(word_size), "word_size should be humongous");
 308   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 309 
 310   // Index of last region in the series.
 311   uint last = first + num_regions - 1;
 312 
 313   // We need to initialize the region(s) we just discovered. This is
 314   // a bit tricky given that it can happen concurrently with
 315   // refinement threads refining cards on these regions and
 316   // potentially wanting to refine the BOT as they are scanning
 317   // those cards (this can happen shortly after a cleanup; see CR
 318   // 6991377). So we have to set up the region(s) carefully and in
 319   // a specific order.
 320 
 321   // The word size sum of all the regions we will allocate.
 322   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 323   assert(word_size <= word_size_sum, "sanity");
 324 
 325   // This will be the "starts humongous" region.
 326   HeapRegion* first_hr = region_at(first);
 327   // The header of the new object will be placed at the bottom of
 328   // the first region.
 329   HeapWord* new_obj = first_hr->bottom();
 330   // This will be the new top of the new object.
 331   HeapWord* obj_top = new_obj + word_size;
 332 
 333   // First, we need to zero the header of the space that we will be
 334   // allocating. When we update top further down, some refinement
 335   // threads might try to scan the region. By zeroing the header we
 336   // ensure that any thread that will try to scan the region will
 337   // come across the zero klass word and bail out.
 338   //
 339   // NOTE: It would not have been correct to have used
 340   // CollectedHeap::fill_with_object() and make the space look like
 341   // an int array. The thread that is doing the allocation will
 342   // later update the object header to a potentially different array
 343   // type and, for a very short period of time, the klass and length
 344   // fields will be inconsistent. This could cause a refinement
 345   // thread to calculate the object size incorrectly.
 346   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 347 
 348   // How many words we use for filler objects.
 349   size_t word_fill_size = word_size_sum - word_size;
 350 
 351   // How many words memory we "waste" which cannot hold a filler object.
 352   size_t words_not_fillable = 0;
 353 
 354   if (word_fill_size >= min_fill_size()) {
 355     fill_with_objects(obj_top, word_fill_size);
 356   } else if (word_fill_size > 0) {
 357     // We have space to fill, but we cannot fit an object there.
 358     words_not_fillable = word_fill_size;
 359     word_fill_size = 0;
 360   }
 361 
 362   // We will set up the first region as "starts humongous". This
 363   // will also update the BOT covering all the regions to reflect
 364   // that there is a single object that starts at the bottom of the
 365   // first region.
 366   first_hr->set_starts_humongous(obj_top, word_fill_size);
 367   first_hr->set_allocation_context(context);
 368   // Then, if there are any, we will set up the "continues
 369   // humongous" regions.
 370   HeapRegion* hr = NULL;
 371   for (uint i = first + 1; i <= last; ++i) {
 372     hr = region_at(i);
 373     hr->set_continues_humongous(first_hr);
 374     hr->set_allocation_context(context);
 375   }
 376 
 377   // Up to this point no concurrent thread would have been able to
 378   // do any scanning on any region in this series. All the top
 379   // fields still point to bottom, so the intersection between
 380   // [bottom,top] and [card_start,card_end] will be empty. Before we
 381   // update the top fields, we'll do a storestore to make sure that
 382   // no thread sees the update to top before the zeroing of the
 383   // object header and the BOT initialization.
 384   OrderAccess::storestore();
 385 
 386   // Now, we will update the top fields of the "continues humongous"
 387   // regions except the last one.
 388   for (uint i = first; i < last; ++i) {
 389     hr = region_at(i);
 390     hr->set_top(hr->end());
 391   }
 392 
 393   hr = region_at(last);
 394   // If we cannot fit a filler object, we must set top to the end
 395   // of the humongous object, otherwise we cannot iterate the heap
 396   // and the BOT will not be complete.
 397   hr->set_top(hr->end() - words_not_fillable);
 398 
 399   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 400          "obj_top should be in last region");
 401 
 402   check_bitmaps("Humongous Region Allocation", first_hr);
 403 
 404   assert(words_not_fillable == 0 ||
 405          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 406          "Miscalculation in humongous allocation");
 407 
 408   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 409 
 410   for (uint i = first; i <= last; ++i) {
 411     hr = region_at(i);
 412     _humongous_set.add(hr);
 413     _hr_printer.alloc(hr);
 414   }
 415 
 416   return new_obj;
 417 }
 418 
 419 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 420   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 421   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 422 }
 423 
 424 // If could fit into free regions w/o expansion, try.
 425 // Otherwise, if can expand, do so.
 426 // Otherwise, if using ex regions might help, try with ex given back.
 427 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 428   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 429 
 430   verify_region_sets_optional();
 431 
 432   uint first = G1_NO_HRM_INDEX;
 433   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 434 
 435   if (obj_regions == 1) {
 436     // Only one region to allocate, try to use a fast path by directly allocating
 437     // from the free lists. Do not try to expand here, we will potentially do that
 438     // later.
 439     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 440     if (hr != NULL) {
 441       first = hr->hrm_index();
 442     }
 443   } else {
 444     // We can't allocate humongous regions spanning more than one region while
 445     // cleanupComplete() is running, since some of the regions we find to be
 446     // empty might not yet be added to the free list. It is not straightforward
 447     // to know in which list they are on so that we can remove them. We only
 448     // need to do this if we need to allocate more than one region to satisfy the
 449     // current humongous allocation request. If we are only allocating one region
 450     // we use the one-region region allocation code (see above), that already
 451     // potentially waits for regions from the secondary free list.
 452     wait_while_free_regions_coming();
 453     append_secondary_free_list_if_not_empty_with_lock();
 454 
 455     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 456     // are lucky enough to find some.
 457     first = _hrm.find_contiguous_only_empty(obj_regions);
 458     if (first != G1_NO_HRM_INDEX) {
 459       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 460     }
 461   }
 462 
 463   if (first == G1_NO_HRM_INDEX) {
 464     // Policy: We could not find enough regions for the humongous object in the
 465     // free list. Look through the heap to find a mix of free and uncommitted regions.
 466     // If so, try expansion.
 467     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 468     if (first != G1_NO_HRM_INDEX) {
 469       // We found something. Make sure these regions are committed, i.e. expand
 470       // the heap. Alternatively we could do a defragmentation GC.
 471       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 472                                     word_size * HeapWordSize);
 473 
 474 
 475       _hrm.expand_at(first, obj_regions);
 476       g1_policy()->record_new_heap_size(num_regions());
 477 
 478 #ifdef ASSERT
 479       for (uint i = first; i < first + obj_regions; ++i) {
 480         HeapRegion* hr = region_at(i);
 481         assert(hr->is_free(), "sanity");
 482         assert(hr->is_empty(), "sanity");
 483         assert(is_on_master_free_list(hr), "sanity");
 484       }
 485 #endif
 486       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 487     } else {
 488       // Policy: Potentially trigger a defragmentation GC.
 489     }
 490   }
 491 
 492   HeapWord* result = NULL;
 493   if (first != G1_NO_HRM_INDEX) {
 494     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 495                                                        word_size, context);
 496     assert(result != NULL, "it should always return a valid result");
 497 
 498     // A successful humongous object allocation changes the used space
 499     // information of the old generation so we need to recalculate the
 500     // sizes and update the jstat counters here.
 501     g1mm()->update_sizes();
 502   }
 503 
 504   verify_region_sets_optional();
 505 
 506   return result;
 507 }
 508 
 509 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 510   assert_heap_not_locked_and_not_at_safepoint();
 511   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 512 
 513   uint dummy_gc_count_before;
 514   uint dummy_gclocker_retry_count = 0;
 515   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 516 }
 517 
 518 HeapWord*
 519 G1CollectedHeap::mem_allocate(size_t word_size,
 520                               bool*  gc_overhead_limit_was_exceeded) {
 521   assert_heap_not_locked_and_not_at_safepoint();
 522 
 523   // Loop until the allocation is satisfied, or unsatisfied after GC.
 524   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 525     uint gc_count_before;
 526 
 527     HeapWord* result = NULL;
 528     if (!is_humongous(word_size)) {
 529       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 530     } else {
 531       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 532     }
 533     if (result != NULL) {
 534       return result;
 535     }
 536 
 537     // Create the garbage collection operation...
 538     VM_G1CollectForAllocation op(gc_count_before, word_size);
 539     op.set_allocation_context(AllocationContext::current());
 540 
 541     // ...and get the VM thread to execute it.
 542     VMThread::execute(&op);
 543 
 544     if (op.prologue_succeeded() && op.pause_succeeded()) {
 545       // If the operation was successful we'll return the result even
 546       // if it is NULL. If the allocation attempt failed immediately
 547       // after a Full GC, it's unlikely we'll be able to allocate now.
 548       HeapWord* result = op.result();
 549       if (result != NULL && !is_humongous(word_size)) {
 550         // Allocations that take place on VM operations do not do any
 551         // card dirtying and we have to do it here. We only have to do
 552         // this for non-humongous allocations, though.
 553         dirty_young_block(result, word_size);
 554       }
 555       return result;
 556     } else {
 557       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 558         return NULL;
 559       }
 560       assert(op.result() == NULL,
 561              "the result should be NULL if the VM op did not succeed");
 562     }
 563 
 564     // Give a warning if we seem to be looping forever.
 565     if ((QueuedAllocationWarningCount > 0) &&
 566         (try_count % QueuedAllocationWarningCount == 0)) {
 567       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 568     }
 569   }
 570 
 571   ShouldNotReachHere();
 572   return NULL;
 573 }
 574 
 575 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 576                                                    AllocationContext_t context,
 577                                                    uint* gc_count_before_ret,
 578                                                    uint* gclocker_retry_count_ret) {
 579   // Make sure you read the note in attempt_allocation_humongous().
 580 
 581   assert_heap_not_locked_and_not_at_safepoint();
 582   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 583          "be called for humongous allocation requests");
 584 
 585   // We should only get here after the first-level allocation attempt
 586   // (attempt_allocation()) failed to allocate.
 587 
 588   // We will loop until a) we manage to successfully perform the
 589   // allocation or b) we successfully schedule a collection which
 590   // fails to perform the allocation. b) is the only case when we'll
 591   // return NULL.
 592   HeapWord* result = NULL;
 593   for (int try_count = 1; /* we'll return */; try_count += 1) {
 594     bool should_try_gc;
 595     uint gc_count_before;
 596 
 597     {
 598       MutexLockerEx x(Heap_lock);
 599       result = _allocator->attempt_allocation_locked(word_size, context);
 600       if (result != NULL) {
 601         return result;
 602       }
 603 
 604       if (GC_locker::is_active_and_needs_gc()) {
 605         if (g1_policy()->can_expand_young_list()) {
 606           // No need for an ergo verbose message here,
 607           // can_expand_young_list() does this when it returns true.
 608           result = _allocator->attempt_allocation_force(word_size, context);
 609           if (result != NULL) {
 610             return result;
 611           }
 612         }
 613         should_try_gc = false;
 614       } else {
 615         // The GCLocker may not be active but the GCLocker initiated
 616         // GC may not yet have been performed (GCLocker::needs_gc()
 617         // returns true). In this case we do not try this GC and
 618         // wait until the GCLocker initiated GC is performed, and
 619         // then retry the allocation.
 620         if (GC_locker::needs_gc()) {
 621           should_try_gc = false;
 622         } else {
 623           // Read the GC count while still holding the Heap_lock.
 624           gc_count_before = total_collections();
 625           should_try_gc = true;
 626         }
 627       }
 628     }
 629 
 630     if (should_try_gc) {
 631       bool succeeded;
 632       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 633                                    GCCause::_g1_inc_collection_pause);
 634       if (result != NULL) {
 635         assert(succeeded, "only way to get back a non-NULL result");
 636         return result;
 637       }
 638 
 639       if (succeeded) {
 640         // If we get here we successfully scheduled a collection which
 641         // failed to allocate. No point in trying to allocate
 642         // further. We'll just return NULL.
 643         MutexLockerEx x(Heap_lock);
 644         *gc_count_before_ret = total_collections();
 645         return NULL;
 646       }
 647     } else {
 648       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 649         MutexLockerEx x(Heap_lock);
 650         *gc_count_before_ret = total_collections();
 651         return NULL;
 652       }
 653       // The GCLocker is either active or the GCLocker initiated
 654       // GC has not yet been performed. Stall until it is and
 655       // then retry the allocation.
 656       GC_locker::stall_until_clear();
 657       (*gclocker_retry_count_ret) += 1;
 658     }
 659 
 660     // We can reach here if we were unsuccessful in scheduling a
 661     // collection (because another thread beat us to it) or if we were
 662     // stalled due to the GC locker. In either can we should retry the
 663     // allocation attempt in case another thread successfully
 664     // performed a collection and reclaimed enough space. We do the
 665     // first attempt (without holding the Heap_lock) here and the
 666     // follow-on attempt will be at the start of the next loop
 667     // iteration (after taking the Heap_lock).
 668     result = _allocator->attempt_allocation(word_size, context);
 669     if (result != NULL) {
 670       return result;
 671     }
 672 
 673     // Give a warning if we seem to be looping forever.
 674     if ((QueuedAllocationWarningCount > 0) &&
 675         (try_count % QueuedAllocationWarningCount == 0)) {
 676       warning("G1CollectedHeap::attempt_allocation_slow() "
 677               "retries %d times", try_count);
 678     }
 679   }
 680 
 681   ShouldNotReachHere();
 682   return NULL;
 683 }
 684 
 685 void G1CollectedHeap::begin_archive_alloc_range() {
 686   assert_at_safepoint(true /* should_be_vm_thread */);
 687   if (_archive_allocator == NULL) {
 688     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 689   }
 690 }
 691 
 692 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 693   // Allocations in archive regions cannot be of a size that would be considered
 694   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 695   // may be different at archive-restore time.
 696   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 697 }
 698 
 699 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 700   assert_at_safepoint(true /* should_be_vm_thread */);
 701   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 702   if (is_archive_alloc_too_large(word_size)) {
 703     return NULL;
 704   }
 705   return _archive_allocator->archive_mem_allocate(word_size);
 706 }
 707 
 708 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 709                                               size_t end_alignment_in_bytes) {
 710   assert_at_safepoint(true /* should_be_vm_thread */);
 711   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 712 
 713   // Call complete_archive to do the real work, filling in the MemRegion
 714   // array with the archive regions.
 715   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 716   delete _archive_allocator;
 717   _archive_allocator = NULL;
 718 }
 719 
 720 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 721   assert(ranges != NULL, "MemRegion array NULL");
 722   assert(count != 0, "No MemRegions provided");
 723   MemRegion reserved = _hrm.reserved();
 724   for (size_t i = 0; i < count; i++) {
 725     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 726       return false;
 727     }
 728   }
 729   return true;
 730 }
 731 
 732 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 733   assert(!is_init_completed(), "Expect to be called at JVM init time");
 734   assert(ranges != NULL, "MemRegion array NULL");
 735   assert(count != 0, "No MemRegions provided");
 736   MutexLockerEx x(Heap_lock);
 737 
 738   MemRegion reserved = _hrm.reserved();
 739   HeapWord* prev_last_addr = NULL;
 740   HeapRegion* prev_last_region = NULL;
 741 
 742   // Temporarily disable pretouching of heap pages. This interface is used
 743   // when mmap'ing archived heap data in, so pre-touching is wasted.
 744   FlagSetting fs(AlwaysPreTouch, false);
 745 
 746   // Enable archive object checking in G1MarkSweep. We have to let it know
 747   // about each archive range, so that objects in those ranges aren't marked.
 748   G1MarkSweep::enable_archive_object_check();
 749 
 750   // For each specified MemRegion range, allocate the corresponding G1
 751   // regions and mark them as archive regions. We expect the ranges in
 752   // ascending starting address order, without overlap.
 753   for (size_t i = 0; i < count; i++) {
 754     MemRegion curr_range = ranges[i];
 755     HeapWord* start_address = curr_range.start();
 756     size_t word_size = curr_range.word_size();
 757     HeapWord* last_address = curr_range.last();
 758     size_t commits = 0;
 759 
 760     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 761               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 762               p2i(start_address), p2i(last_address));
 763     guarantee(start_address > prev_last_addr,
 764               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 765               p2i(start_address), p2i(prev_last_addr));
 766     prev_last_addr = last_address;
 767 
 768     // Check for ranges that start in the same G1 region in which the previous
 769     // range ended, and adjust the start address so we don't try to allocate
 770     // the same region again. If the current range is entirely within that
 771     // region, skip it, just adjusting the recorded top.
 772     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 773     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 774       start_address = start_region->end();
 775       if (start_address > last_address) {
 776         increase_used(word_size * HeapWordSize);
 777         start_region->set_top(last_address + 1);
 778         continue;
 779       }
 780       start_region->set_top(start_address);
 781       curr_range = MemRegion(start_address, last_address + 1);
 782       start_region = _hrm.addr_to_region(start_address);
 783     }
 784 
 785     // Perform the actual region allocation, exiting if it fails.
 786     // Then note how much new space we have allocated.
 787     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 788       return false;
 789     }
 790     increase_used(word_size * HeapWordSize);
 791     if (commits != 0) {
 792       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 793                                 HeapRegion::GrainWords * HeapWordSize * commits);
 794 
 795     }
 796 
 797     // Mark each G1 region touched by the range as archive, add it to the old set,
 798     // and set the allocation context and top.
 799     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 800     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 801     prev_last_region = last_region;
 802 
 803     while (curr_region != NULL) {
 804       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 805              "Region already in use (index %u)", curr_region->hrm_index());
 806       curr_region->set_allocation_context(AllocationContext::system());
 807       curr_region->set_archive();
 808       _hr_printer.alloc(curr_region);
 809       _old_set.add(curr_region);
 810       if (curr_region != last_region) {
 811         curr_region->set_top(curr_region->end());
 812         curr_region = _hrm.next_region_in_heap(curr_region);
 813       } else {
 814         curr_region->set_top(last_address + 1);
 815         curr_region = NULL;
 816       }
 817     }
 818 
 819     // Notify mark-sweep of the archive range.
 820     G1MarkSweep::set_range_archive(curr_range, true);
 821   }
 822   return true;
 823 }
 824 
 825 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 826   assert(!is_init_completed(), "Expect to be called at JVM init time");
 827   assert(ranges != NULL, "MemRegion array NULL");
 828   assert(count != 0, "No MemRegions provided");
 829   MemRegion reserved = _hrm.reserved();
 830   HeapWord *prev_last_addr = NULL;
 831   HeapRegion* prev_last_region = NULL;
 832 
 833   // For each MemRegion, create filler objects, if needed, in the G1 regions
 834   // that contain the address range. The address range actually within the
 835   // MemRegion will not be modified. That is assumed to have been initialized
 836   // elsewhere, probably via an mmap of archived heap data.
 837   MutexLockerEx x(Heap_lock);
 838   for (size_t i = 0; i < count; i++) {
 839     HeapWord* start_address = ranges[i].start();
 840     HeapWord* last_address = ranges[i].last();
 841 
 842     assert(reserved.contains(start_address) && reserved.contains(last_address),
 843            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 844            p2i(start_address), p2i(last_address));
 845     assert(start_address > prev_last_addr,
 846            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 847            p2i(start_address), p2i(prev_last_addr));
 848 
 849     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 850     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 851     HeapWord* bottom_address = start_region->bottom();
 852 
 853     // Check for a range beginning in the same region in which the
 854     // previous one ended.
 855     if (start_region == prev_last_region) {
 856       bottom_address = prev_last_addr + 1;
 857     }
 858 
 859     // Verify that the regions were all marked as archive regions by
 860     // alloc_archive_regions.
 861     HeapRegion* curr_region = start_region;
 862     while (curr_region != NULL) {
 863       guarantee(curr_region->is_archive(),
 864                 "Expected archive region at index %u", curr_region->hrm_index());
 865       if (curr_region != last_region) {
 866         curr_region = _hrm.next_region_in_heap(curr_region);
 867       } else {
 868         curr_region = NULL;
 869       }
 870     }
 871 
 872     prev_last_addr = last_address;
 873     prev_last_region = last_region;
 874 
 875     // Fill the memory below the allocated range with dummy object(s),
 876     // if the region bottom does not match the range start, or if the previous
 877     // range ended within the same G1 region, and there is a gap.
 878     if (start_address != bottom_address) {
 879       size_t fill_size = pointer_delta(start_address, bottom_address);
 880       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 881       increase_used(fill_size * HeapWordSize);
 882     }
 883   }
 884 }
 885 
 886 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 887                                                      uint* gc_count_before_ret,
 888                                                      uint* gclocker_retry_count_ret) {
 889   assert_heap_not_locked_and_not_at_safepoint();
 890   assert(!is_humongous(word_size), "attempt_allocation() should not "
 891          "be called for humongous allocation requests");
 892 
 893   AllocationContext_t context = AllocationContext::current();
 894   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 895 
 896   if (result == NULL) {
 897     result = attempt_allocation_slow(word_size,
 898                                      context,
 899                                      gc_count_before_ret,
 900                                      gclocker_retry_count_ret);
 901   }
 902   assert_heap_not_locked();
 903   if (result != NULL) {
 904     dirty_young_block(result, word_size);
 905   }
 906   return result;
 907 }
 908 
 909 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 910   assert(!is_init_completed(), "Expect to be called at JVM init time");
 911   assert(ranges != NULL, "MemRegion array NULL");
 912   assert(count != 0, "No MemRegions provided");
 913   MemRegion reserved = _hrm.reserved();
 914   HeapWord* prev_last_addr = NULL;
 915   HeapRegion* prev_last_region = NULL;
 916   size_t size_used = 0;
 917   size_t uncommitted_regions = 0;
 918 
 919   // For each Memregion, free the G1 regions that constitute it, and
 920   // notify mark-sweep that the range is no longer to be considered 'archive.'
 921   MutexLockerEx x(Heap_lock);
 922   for (size_t i = 0; i < count; i++) {
 923     HeapWord* start_address = ranges[i].start();
 924     HeapWord* last_address = ranges[i].last();
 925 
 926     assert(reserved.contains(start_address) && reserved.contains(last_address),
 927            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 928            p2i(start_address), p2i(last_address));
 929     assert(start_address > prev_last_addr,
 930            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 931            p2i(start_address), p2i(prev_last_addr));
 932     size_used += ranges[i].byte_size();
 933     prev_last_addr = last_address;
 934 
 935     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 936     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 937 
 938     // Check for ranges that start in the same G1 region in which the previous
 939     // range ended, and adjust the start address so we don't try to free
 940     // the same region again. If the current range is entirely within that
 941     // region, skip it.
 942     if (start_region == prev_last_region) {
 943       start_address = start_region->end();
 944       if (start_address > last_address) {
 945         continue;
 946       }
 947       start_region = _hrm.addr_to_region(start_address);
 948     }
 949     prev_last_region = last_region;
 950 
 951     // After verifying that each region was marked as an archive region by
 952     // alloc_archive_regions, set it free and empty and uncommit it.
 953     HeapRegion* curr_region = start_region;
 954     while (curr_region != NULL) {
 955       guarantee(curr_region->is_archive(),
 956                 "Expected archive region at index %u", curr_region->hrm_index());
 957       uint curr_index = curr_region->hrm_index();
 958       _old_set.remove(curr_region);
 959       curr_region->set_free();
 960       curr_region->set_top(curr_region->bottom());
 961       if (curr_region != last_region) {
 962         curr_region = _hrm.next_region_in_heap(curr_region);
 963       } else {
 964         curr_region = NULL;
 965       }
 966       _hrm.shrink_at(curr_index, 1);
 967       uncommitted_regions++;
 968     }
 969 
 970     // Notify mark-sweep that this is no longer an archive range.
 971     G1MarkSweep::set_range_archive(ranges[i], false);
 972   }
 973 
 974   if (uncommitted_regions != 0) {
 975     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 976                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 977   }
 978   decrease_used(size_used);
 979 }
 980 
 981 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 982                                                         uint* gc_count_before_ret,
 983                                                         uint* gclocker_retry_count_ret) {
 984   // The structure of this method has a lot of similarities to
 985   // attempt_allocation_slow(). The reason these two were not merged
 986   // into a single one is that such a method would require several "if
 987   // allocation is not humongous do this, otherwise do that"
 988   // conditional paths which would obscure its flow. In fact, an early
 989   // version of this code did use a unified method which was harder to
 990   // follow and, as a result, it had subtle bugs that were hard to
 991   // track down. So keeping these two methods separate allows each to
 992   // be more readable. It will be good to keep these two in sync as
 993   // much as possible.
 994 
 995   assert_heap_not_locked_and_not_at_safepoint();
 996   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 997          "should only be called for humongous allocations");
 998 
 999   // Humongous objects can exhaust the heap quickly, so we should check if we
1000   // need to start a marking cycle at each humongous object allocation. We do
1001   // the check before we do the actual allocation. The reason for doing it
1002   // before the allocation is that we avoid having to keep track of the newly
1003   // allocated memory while we do a GC.
1004   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1005                                            word_size)) {
1006     collect(GCCause::_g1_humongous_allocation);
1007   }
1008 
1009   // We will loop until a) we manage to successfully perform the
1010   // allocation or b) we successfully schedule a collection which
1011   // fails to perform the allocation. b) is the only case when we'll
1012   // return NULL.
1013   HeapWord* result = NULL;
1014   for (int try_count = 1; /* we'll return */; try_count += 1) {
1015     bool should_try_gc;
1016     uint gc_count_before;
1017 
1018     {
1019       MutexLockerEx x(Heap_lock);
1020 
1021       // Given that humongous objects are not allocated in young
1022       // regions, we'll first try to do the allocation without doing a
1023       // collection hoping that there's enough space in the heap.
1024       result = humongous_obj_allocate(word_size, AllocationContext::current());
1025       if (result != NULL) {
1026         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1027         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1028         return result;
1029       }
1030 
1031       if (GC_locker::is_active_and_needs_gc()) {
1032         should_try_gc = false;
1033       } else {
1034          // The GCLocker may not be active but the GCLocker initiated
1035         // GC may not yet have been performed (GCLocker::needs_gc()
1036         // returns true). In this case we do not try this GC and
1037         // wait until the GCLocker initiated GC is performed, and
1038         // then retry the allocation.
1039         if (GC_locker::needs_gc()) {
1040           should_try_gc = false;
1041         } else {
1042           // Read the GC count while still holding the Heap_lock.
1043           gc_count_before = total_collections();
1044           should_try_gc = true;
1045         }
1046       }
1047     }
1048 
1049     if (should_try_gc) {
1050       // If we failed to allocate the humongous object, we should try to
1051       // do a collection pause (if we're allowed) in case it reclaims
1052       // enough space for the allocation to succeed after the pause.
1053 
1054       bool succeeded;
1055       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1056                                    GCCause::_g1_humongous_allocation);
1057       if (result != NULL) {
1058         assert(succeeded, "only way to get back a non-NULL result");
1059         return result;
1060       }
1061 
1062       if (succeeded) {
1063         // If we get here we successfully scheduled a collection which
1064         // failed to allocate. No point in trying to allocate
1065         // further. We'll just return NULL.
1066         MutexLockerEx x(Heap_lock);
1067         *gc_count_before_ret = total_collections();
1068         return NULL;
1069       }
1070     } else {
1071       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1072         MutexLockerEx x(Heap_lock);
1073         *gc_count_before_ret = total_collections();
1074         return NULL;
1075       }
1076       // The GCLocker is either active or the GCLocker initiated
1077       // GC has not yet been performed. Stall until it is and
1078       // then retry the allocation.
1079       GC_locker::stall_until_clear();
1080       (*gclocker_retry_count_ret) += 1;
1081     }
1082 
1083     // We can reach here if we were unsuccessful in scheduling a
1084     // collection (because another thread beat us to it) or if we were
1085     // stalled due to the GC locker. In either can we should retry the
1086     // allocation attempt in case another thread successfully
1087     // performed a collection and reclaimed enough space.  Give a
1088     // warning if we seem to be looping forever.
1089 
1090     if ((QueuedAllocationWarningCount > 0) &&
1091         (try_count % QueuedAllocationWarningCount == 0)) {
1092       warning("G1CollectedHeap::attempt_allocation_humongous() "
1093               "retries %d times", try_count);
1094     }
1095   }
1096 
1097   ShouldNotReachHere();
1098   return NULL;
1099 }
1100 
1101 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1102                                                            AllocationContext_t context,
1103                                                            bool expect_null_mutator_alloc_region) {
1104   assert_at_safepoint(true /* should_be_vm_thread */);
1105   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1106          "the current alloc region was unexpectedly found to be non-NULL");
1107 
1108   if (!is_humongous(word_size)) {
1109     return _allocator->attempt_allocation_locked(word_size, context);
1110   } else {
1111     HeapWord* result = humongous_obj_allocate(word_size, context);
1112     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1113       collector_state()->set_initiate_conc_mark_if_possible(true);
1114     }
1115     return result;
1116   }
1117 
1118   ShouldNotReachHere();
1119 }
1120 
1121 class PostMCRemSetClearClosure: public HeapRegionClosure {
1122   G1CollectedHeap* _g1h;
1123   ModRefBarrierSet* _mr_bs;
1124 public:
1125   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1126     _g1h(g1h), _mr_bs(mr_bs) {}
1127 
1128   bool doHeapRegion(HeapRegion* r) {
1129     HeapRegionRemSet* hrrs = r->rem_set();
1130 
1131     _g1h->reset_gc_time_stamps(r);
1132 
1133     if (r->is_continues_humongous()) {
1134       // We'll assert that the strong code root list and RSet is empty
1135       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1136       assert(hrrs->occupied() == 0, "RSet should be empty");
1137     } else {
1138       hrrs->clear();
1139     }
1140     // You might think here that we could clear just the cards
1141     // corresponding to the used region.  But no: if we leave a dirty card
1142     // in a region we might allocate into, then it would prevent that card
1143     // from being enqueued, and cause it to be missed.
1144     // Re: the performance cost: we shouldn't be doing full GC anyway!
1145     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1146 
1147     return false;
1148   }
1149 };
1150 
1151 void G1CollectedHeap::clear_rsets_post_compaction() {
1152   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1153   heap_region_iterate(&rs_clear);
1154 }
1155 
1156 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1157   G1CollectedHeap*   _g1h;
1158   UpdateRSOopClosure _cl;
1159 public:
1160   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1161     _cl(g1->g1_rem_set(), worker_i),
1162     _g1h(g1)
1163   { }
1164 
1165   bool doHeapRegion(HeapRegion* r) {
1166     if (!r->is_continues_humongous()) {
1167       _cl.set_from(r);
1168       r->oop_iterate(&_cl);
1169     }
1170     return false;
1171   }
1172 };
1173 
1174 class ParRebuildRSTask: public AbstractGangTask {
1175   G1CollectedHeap* _g1;
1176   HeapRegionClaimer _hrclaimer;
1177 
1178 public:
1179   ParRebuildRSTask(G1CollectedHeap* g1) :
1180       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1181 
1182   void work(uint worker_id) {
1183     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1184     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1185   }
1186 };
1187 
1188 class PostCompactionPrinterClosure: public HeapRegionClosure {
1189 private:
1190   G1HRPrinter* _hr_printer;
1191 public:
1192   bool doHeapRegion(HeapRegion* hr) {
1193     assert(!hr->is_young(), "not expecting to find young regions");
1194     _hr_printer->post_compaction(hr);
1195     return false;
1196   }
1197 
1198   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1199     : _hr_printer(hr_printer) { }
1200 };
1201 
1202 void G1CollectedHeap::print_hrm_post_compaction() {
1203   if (_hr_printer.is_active()) {
1204     PostCompactionPrinterClosure cl(hr_printer());
1205     heap_region_iterate(&cl);
1206   }
1207 
1208 }
1209 
1210 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1211                                          bool clear_all_soft_refs) {
1212   assert_at_safepoint(true /* should_be_vm_thread */);
1213 
1214   if (GC_locker::check_active_before_gc()) {
1215     return false;
1216   }
1217 
1218   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1219   gc_timer->register_gc_start();
1220 
1221   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1222   GCIdMark gc_id_mark;
1223   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1224 
1225   SvcGCMarker sgcm(SvcGCMarker::FULL);
1226   ResourceMark rm;
1227 
1228   print_heap_before_gc();
1229   trace_heap_before_gc(gc_tracer);
1230 
1231   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1232 
1233   verify_region_sets_optional();
1234 
1235   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1236                            collector_policy()->should_clear_all_soft_refs();
1237 
1238   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1239 
1240   {
1241     IsGCActiveMark x;
1242 
1243     // Timing
1244     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1245     GCTraceCPUTime tcpu;
1246 
1247     {
1248       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1249       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1250       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1251 
1252       g1_policy()->record_full_collection_start();
1253 
1254       // Note: When we have a more flexible GC logging framework that
1255       // allows us to add optional attributes to a GC log record we
1256       // could consider timing and reporting how long we wait in the
1257       // following two methods.
1258       wait_while_free_regions_coming();
1259       // If we start the compaction before the CM threads finish
1260       // scanning the root regions we might trip them over as we'll
1261       // be moving objects / updating references. So let's wait until
1262       // they are done. By telling them to abort, they should complete
1263       // early.
1264       _cm->root_regions()->abort();
1265       _cm->root_regions()->wait_until_scan_finished();
1266       append_secondary_free_list_if_not_empty_with_lock();
1267 
1268       gc_prologue(true);
1269       increment_total_collections(true /* full gc */);
1270       increment_old_marking_cycles_started();
1271 
1272       assert(used() == recalculate_used(), "Should be equal");
1273 
1274       verify_before_gc();
1275 
1276       check_bitmaps("Full GC Start");
1277       pre_full_gc_dump(gc_timer);
1278 
1279 #if defined(COMPILER2) || INCLUDE_JVMCI
1280       DerivedPointerTable::clear();
1281 #endif
1282 
1283       // Disable discovery and empty the discovered lists
1284       // for the CM ref processor.
1285       ref_processor_cm()->disable_discovery();
1286       ref_processor_cm()->abandon_partial_discovery();
1287       ref_processor_cm()->verify_no_references_recorded();
1288 
1289       // Abandon current iterations of concurrent marking and concurrent
1290       // refinement, if any are in progress. We have to do this before
1291       // wait_until_scan_finished() below.
1292       concurrent_mark()->abort();
1293 
1294       // Make sure we'll choose a new allocation region afterwards.
1295       _allocator->release_mutator_alloc_region();
1296       _allocator->abandon_gc_alloc_regions();
1297       g1_rem_set()->cleanupHRRS();
1298 
1299       // We may have added regions to the current incremental collection
1300       // set between the last GC or pause and now. We need to clear the
1301       // incremental collection set and then start rebuilding it afresh
1302       // after this full GC.
1303       abandon_collection_set(g1_policy()->inc_cset_head());
1304       g1_policy()->clear_incremental_cset();
1305       g1_policy()->stop_incremental_cset_building();
1306 
1307       tear_down_region_sets(false /* free_list_only */);
1308       collector_state()->set_gcs_are_young(true);
1309 
1310       // See the comments in g1CollectedHeap.hpp and
1311       // G1CollectedHeap::ref_processing_init() about
1312       // how reference processing currently works in G1.
1313 
1314       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1315       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1316 
1317       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1318       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1319 
1320       ref_processor_stw()->enable_discovery();
1321       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1322 
1323       // Do collection work
1324       {
1325         HandleMark hm;  // Discard invalid handles created during gc
1326         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1327       }
1328 
1329       assert(num_free_regions() == 0, "we should not have added any free regions");
1330       rebuild_region_sets(false /* free_list_only */);
1331 
1332       // Enqueue any discovered reference objects that have
1333       // not been removed from the discovered lists.
1334       ref_processor_stw()->enqueue_discovered_references();
1335 
1336 #if defined(COMPILER2) || INCLUDE_JVMCI
1337       DerivedPointerTable::update_pointers();
1338 #endif
1339 
1340       MemoryService::track_memory_usage();
1341 
1342       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1343       ref_processor_stw()->verify_no_references_recorded();
1344 
1345       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1346       ClassLoaderDataGraph::purge();
1347       MetaspaceAux::verify_metrics();
1348 
1349       // Note: since we've just done a full GC, concurrent
1350       // marking is no longer active. Therefore we need not
1351       // re-enable reference discovery for the CM ref processor.
1352       // That will be done at the start of the next marking cycle.
1353       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       reset_gc_time_stamp();
1357       // Since everything potentially moved, we will clear all remembered
1358       // sets, and clear all cards.  Later we will rebuild remembered
1359       // sets. We will also reset the GC time stamps of the regions.
1360       clear_rsets_post_compaction();
1361       check_gc_time_stamps();
1362 
1363       resize_if_necessary_after_full_collection();
1364 
1365       // We should do this after we potentially resize the heap so
1366       // that all the COMMIT / UNCOMMIT events are generated before
1367       // the compaction events.
1368       print_hrm_post_compaction();
1369 
1370       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1371       if (hot_card_cache->use_cache()) {
1372         hot_card_cache->reset_card_counts();
1373         hot_card_cache->reset_hot_cache();
1374       }
1375 
1376       // Rebuild remembered sets of all regions.
1377       uint n_workers =
1378         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1379                                                 workers()->active_workers(),
1380                                                 Threads::number_of_non_daemon_threads());
1381       workers()->set_active_workers(n_workers);
1382 
1383       ParRebuildRSTask rebuild_rs_task(this);
1384       workers()->run_task(&rebuild_rs_task);
1385 
1386       // Rebuild the strong code root lists for each region
1387       rebuild_strong_code_roots();
1388 
1389       if (true) { // FIXME
1390         MetaspaceGC::compute_new_size();
1391       }
1392 
1393 #ifdef TRACESPINNING
1394       ParallelTaskTerminator::print_termination_counts();
1395 #endif
1396 
1397       // Discard all rset updates
1398       JavaThread::dirty_card_queue_set().abandon_logs();
1399       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1400 
1401       _young_list->reset_sampled_info();
1402       // At this point there should be no regions in the
1403       // entire heap tagged as young.
1404       assert(check_young_list_empty(true /* check_heap */),
1405              "young list should be empty at this point");
1406 
1407       // Update the number of full collections that have been completed.
1408       increment_old_marking_cycles_completed(false /* concurrent */);
1409 
1410       _hrm.verify_optional();
1411       verify_region_sets_optional();
1412 
1413       verify_after_gc();
1414 
1415       // Clear the previous marking bitmap, if needed for bitmap verification.
1416       // Note we cannot do this when we clear the next marking bitmap in
1417       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1418       // objects marked during a full GC against the previous bitmap.
1419       // But we need to clear it before calling check_bitmaps below since
1420       // the full GC has compacted objects and updated TAMS but not updated
1421       // the prev bitmap.
1422       if (G1VerifyBitmaps) {
1423         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1424       }
1425       check_bitmaps("Full GC End");
1426 
1427       // Start a new incremental collection set for the next pause
1428       assert(g1_policy()->collection_set() == NULL, "must be");
1429       g1_policy()->start_incremental_cset_building();
1430 
1431       clear_cset_fast_test();
1432 
1433       _allocator->init_mutator_alloc_region();
1434 
1435       g1_policy()->record_full_collection_end();
1436 
1437       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1438       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1439       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1440       // before any GC notifications are raised.
1441       g1mm()->update_sizes();
1442 
1443       gc_epilogue(true);
1444     }
1445 
1446     g1_policy()->print_detailed_heap_transition();
1447 
1448     print_heap_after_gc();
1449     trace_heap_after_gc(gc_tracer);
1450 
1451     post_full_gc_dump(gc_timer);
1452 
1453     gc_timer->register_gc_end();
1454     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1455   }
1456 
1457   return true;
1458 }
1459 
1460 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1461   // Currently, there is no facility in the do_full_collection(bool) API to notify
1462   // the caller that the collection did not succeed (e.g., because it was locked
1463   // out by the GC locker). So, right now, we'll ignore the return value.
1464   bool dummy = do_full_collection(true,                /* explicit_gc */
1465                                   clear_all_soft_refs);
1466 }
1467 
1468 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1469   // Include bytes that will be pre-allocated to support collections, as "used".
1470   const size_t used_after_gc = used();
1471   const size_t capacity_after_gc = capacity();
1472   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1473 
1474   // This is enforced in arguments.cpp.
1475   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1476          "otherwise the code below doesn't make sense");
1477 
1478   // We don't have floating point command-line arguments
1479   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1480   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1481   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1482   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1483 
1484   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1485   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1486 
1487   // We have to be careful here as these two calculations can overflow
1488   // 32-bit size_t's.
1489   double used_after_gc_d = (double) used_after_gc;
1490   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1491   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1492 
1493   // Let's make sure that they are both under the max heap size, which
1494   // by default will make them fit into a size_t.
1495   double desired_capacity_upper_bound = (double) max_heap_size;
1496   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1497                                     desired_capacity_upper_bound);
1498   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1499                                     desired_capacity_upper_bound);
1500 
1501   // We can now safely turn them into size_t's.
1502   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1503   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1504 
1505   // This assert only makes sense here, before we adjust them
1506   // with respect to the min and max heap size.
1507   assert(minimum_desired_capacity <= maximum_desired_capacity,
1508          "minimum_desired_capacity = " SIZE_FORMAT ", "
1509          "maximum_desired_capacity = " SIZE_FORMAT,
1510          minimum_desired_capacity, maximum_desired_capacity);
1511 
1512   // Should not be greater than the heap max size. No need to adjust
1513   // it with respect to the heap min size as it's a lower bound (i.e.,
1514   // we'll try to make the capacity larger than it, not smaller).
1515   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1516   // Should not be less than the heap min size. No need to adjust it
1517   // with respect to the heap max size as it's an upper bound (i.e.,
1518   // we'll try to make the capacity smaller than it, not greater).
1519   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1520 
1521   if (capacity_after_gc < minimum_desired_capacity) {
1522     // Don't expand unless it's significant
1523     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1524 
1525     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1526                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1527                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1528 
1529     expand(expand_bytes);
1530 
1531     // No expansion, now see if we want to shrink
1532   } else if (capacity_after_gc > maximum_desired_capacity) {
1533     // Capacity too large, compute shrinking size
1534     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1535 
1536     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1537                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1538                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1539 
1540     shrink(shrink_bytes);
1541   }
1542 }
1543 
1544 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1545                                                             AllocationContext_t context,
1546                                                             bool do_gc,
1547                                                             bool clear_all_soft_refs,
1548                                                             bool expect_null_mutator_alloc_region,
1549                                                             bool* gc_succeeded) {
1550   *gc_succeeded = true;
1551   // Let's attempt the allocation first.
1552   HeapWord* result =
1553     attempt_allocation_at_safepoint(word_size,
1554                                     context,
1555                                     expect_null_mutator_alloc_region);
1556   if (result != NULL) {
1557     assert(*gc_succeeded, "sanity");
1558     return result;
1559   }
1560 
1561   // In a G1 heap, we're supposed to keep allocation from failing by
1562   // incremental pauses.  Therefore, at least for now, we'll favor
1563   // expansion over collection.  (This might change in the future if we can
1564   // do something smarter than full collection to satisfy a failed alloc.)
1565   result = expand_and_allocate(word_size, context);
1566   if (result != NULL) {
1567     assert(*gc_succeeded, "sanity");
1568     return result;
1569   }
1570 
1571   if (do_gc) {
1572     // Expansion didn't work, we'll try to do a Full GC.
1573     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1574                                        clear_all_soft_refs);
1575   }
1576 
1577   return NULL;
1578 }
1579 
1580 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1581                                                      AllocationContext_t context,
1582                                                      bool* succeeded) {
1583   assert_at_safepoint(true /* should_be_vm_thread */);
1584 
1585   // Attempts to allocate followed by Full GC.
1586   HeapWord* result =
1587     satisfy_failed_allocation_helper(word_size,
1588                                      context,
1589                                      true,  /* do_gc */
1590                                      false, /* clear_all_soft_refs */
1591                                      false, /* expect_null_mutator_alloc_region */
1592                                      succeeded);
1593 
1594   if (result != NULL || !*succeeded) {
1595     return result;
1596   }
1597 
1598   // Attempts to allocate followed by Full GC that will collect all soft references.
1599   result = satisfy_failed_allocation_helper(word_size,
1600                                             context,
1601                                             true, /* do_gc */
1602                                             true, /* clear_all_soft_refs */
1603                                             true, /* expect_null_mutator_alloc_region */
1604                                             succeeded);
1605 
1606   if (result != NULL || !*succeeded) {
1607     return result;
1608   }
1609 
1610   // Attempts to allocate, no GC
1611   result = satisfy_failed_allocation_helper(word_size,
1612                                             context,
1613                                             false, /* do_gc */
1614                                             false, /* clear_all_soft_refs */
1615                                             true,  /* expect_null_mutator_alloc_region */
1616                                             succeeded);
1617 
1618   if (result != NULL) {
1619     assert(*succeeded, "sanity");
1620     return result;
1621   }
1622 
1623   assert(!collector_policy()->should_clear_all_soft_refs(),
1624          "Flag should have been handled and cleared prior to this point");
1625 
1626   // What else?  We might try synchronous finalization later.  If the total
1627   // space available is large enough for the allocation, then a more
1628   // complete compaction phase than we've tried so far might be
1629   // appropriate.
1630   assert(*succeeded, "sanity");
1631   return NULL;
1632 }
1633 
1634 // Attempting to expand the heap sufficiently
1635 // to support an allocation of the given "word_size".  If
1636 // successful, perform the allocation and return the address of the
1637 // allocated block, or else "NULL".
1638 
1639 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1640   assert_at_safepoint(true /* should_be_vm_thread */);
1641 
1642   verify_region_sets_optional();
1643 
1644   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1645   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1646                             word_size * HeapWordSize);
1647 
1648 
1649   if (expand(expand_bytes)) {
1650     _hrm.verify_optional();
1651     verify_region_sets_optional();
1652     return attempt_allocation_at_safepoint(word_size,
1653                                            context,
1654                                            false /* expect_null_mutator_alloc_region */);
1655   }
1656   return NULL;
1657 }
1658 
1659 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1660   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1661   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1662                                        HeapRegion::GrainBytes);
1663 
1664   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1665                             expand_bytes, aligned_expand_bytes);
1666 
1667   if (is_maximal_no_gc()) {
1668     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1669     return false;
1670   }
1671 
1672   double expand_heap_start_time_sec = os::elapsedTime();
1673   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1674   assert(regions_to_expand > 0, "Must expand by at least one region");
1675 
1676   uint expanded_by = _hrm.expand_by(regions_to_expand);
1677   if (expand_time_ms != NULL) {
1678     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1679   }
1680 
1681   if (expanded_by > 0) {
1682     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1683     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1684     g1_policy()->record_new_heap_size(num_regions());
1685   } else {
1686     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1687 
1688     // The expansion of the virtual storage space was unsuccessful.
1689     // Let's see if it was because we ran out of swap.
1690     if (G1ExitOnExpansionFailure &&
1691         _hrm.available() >= regions_to_expand) {
1692       // We had head room...
1693       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1694     }
1695   }
1696   return regions_to_expand > 0;
1697 }
1698 
1699 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1700   size_t aligned_shrink_bytes =
1701     ReservedSpace::page_align_size_down(shrink_bytes);
1702   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1703                                          HeapRegion::GrainBytes);
1704   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1705 
1706   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1707   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1708 
1709 
1710   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1711                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1712   if (num_regions_removed > 0) {
1713     g1_policy()->record_new_heap_size(num_regions());
1714   } else {
1715     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1716   }
1717 }
1718 
1719 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1720   verify_region_sets_optional();
1721 
1722   // We should only reach here at the end of a Full GC which means we
1723   // should not not be holding to any GC alloc regions. The method
1724   // below will make sure of that and do any remaining clean up.
1725   _allocator->abandon_gc_alloc_regions();
1726 
1727   // Instead of tearing down / rebuilding the free lists here, we
1728   // could instead use the remove_all_pending() method on free_list to
1729   // remove only the ones that we need to remove.
1730   tear_down_region_sets(true /* free_list_only */);
1731   shrink_helper(shrink_bytes);
1732   rebuild_region_sets(true /* free_list_only */);
1733 
1734   _hrm.verify_optional();
1735   verify_region_sets_optional();
1736 }
1737 
1738 // Public methods.
1739 
1740 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1741   CollectedHeap(),
1742   _g1_policy(policy_),
1743   _dirty_card_queue_set(false),
1744   _is_alive_closure_cm(this),
1745   _is_alive_closure_stw(this),
1746   _ref_processor_cm(NULL),
1747   _ref_processor_stw(NULL),
1748   _bot(NULL),
1749   _cg1r(NULL),
1750   _g1mm(NULL),
1751   _refine_cte_cl(NULL),
1752   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1753   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1754   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1755   _humongous_reclaim_candidates(),
1756   _has_humongous_reclaim_candidates(false),
1757   _archive_allocator(NULL),
1758   _free_regions_coming(false),
1759   _young_list(new YoungList(this)),
1760   _gc_time_stamp(0),
1761   _summary_bytes_used(0),
1762   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1763   _old_evac_stats(OldPLABSize, PLABWeight),
1764   _expand_heap_after_alloc_failure(true),
1765   _old_marking_cycles_started(0),
1766   _old_marking_cycles_completed(0),
1767   _heap_summary_sent(false),
1768   _in_cset_fast_test(),
1769   _dirty_cards_region_list(NULL),
1770   _worker_cset_start_region(NULL),
1771   _worker_cset_start_region_time_stamp(NULL),
1772   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1773   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1774   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1775   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1776 
1777   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1778                           /* are_GC_task_threads */true,
1779                           /* are_ConcurrentGC_threads */false);
1780   _workers->initialize_workers();
1781 
1782   _allocator = G1Allocator::create_allocator(this);
1783   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1784 
1785   // Override the default _filler_array_max_size so that no humongous filler
1786   // objects are created.
1787   _filler_array_max_size = _humongous_object_threshold_in_words;
1788 
1789   uint n_queues = ParallelGCThreads;
1790   _task_queues = new RefToScanQueueSet(n_queues);
1791 
1792   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1793   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1794   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1795 
1796   for (uint i = 0; i < n_queues; i++) {
1797     RefToScanQueue* q = new RefToScanQueue();
1798     q->initialize();
1799     _task_queues->register_queue(i, q);
1800     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1801   }
1802   clear_cset_start_regions();
1803 
1804   // Initialize the G1EvacuationFailureALot counters and flags.
1805   NOT_PRODUCT(reset_evacuation_should_fail();)
1806 
1807   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1808 }
1809 
1810 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1811                                                                  size_t size,
1812                                                                  size_t translation_factor) {
1813   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1814   // Allocate a new reserved space, preferring to use large pages.
1815   ReservedSpace rs(size, preferred_page_size);
1816   G1RegionToSpaceMapper* result  =
1817     G1RegionToSpaceMapper::create_mapper(rs,
1818                                          size,
1819                                          rs.alignment(),
1820                                          HeapRegion::GrainBytes,
1821                                          translation_factor,
1822                                          mtGC);
1823   if (TracePageSizes) {
1824     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1825                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1826   }
1827   return result;
1828 }
1829 
1830 jint G1CollectedHeap::initialize() {
1831   CollectedHeap::pre_initialize();
1832   os::enable_vtime();
1833 
1834   // Necessary to satisfy locking discipline assertions.
1835 
1836   MutexLocker x(Heap_lock);
1837 
1838   // While there are no constraints in the GC code that HeapWordSize
1839   // be any particular value, there are multiple other areas in the
1840   // system which believe this to be true (e.g. oop->object_size in some
1841   // cases incorrectly returns the size in wordSize units rather than
1842   // HeapWordSize).
1843   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1844 
1845   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1846   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1847   size_t heap_alignment = collector_policy()->heap_alignment();
1848 
1849   // Ensure that the sizes are properly aligned.
1850   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1851   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1852   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1853 
1854   _refine_cte_cl = new RefineCardTableEntryClosure();
1855 
1856   jint ecode = JNI_OK;
1857   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1858   if (_cg1r == NULL) {
1859     return ecode;
1860   }
1861 
1862   // Reserve the maximum.
1863 
1864   // When compressed oops are enabled, the preferred heap base
1865   // is calculated by subtracting the requested size from the
1866   // 32Gb boundary and using the result as the base address for
1867   // heap reservation. If the requested size is not aligned to
1868   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1869   // into the ReservedHeapSpace constructor) then the actual
1870   // base of the reserved heap may end up differing from the
1871   // address that was requested (i.e. the preferred heap base).
1872   // If this happens then we could end up using a non-optimal
1873   // compressed oops mode.
1874 
1875   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1876                                                  heap_alignment);
1877 
1878   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1879 
1880   // Create the barrier set for the entire reserved region.
1881   G1SATBCardTableLoggingModRefBS* bs
1882     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1883   bs->initialize();
1884   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1885   set_barrier_set(bs);
1886 
1887   // Also create a G1 rem set.
1888   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1889 
1890   // Carve out the G1 part of the heap.
1891   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1892   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1893   G1RegionToSpaceMapper* heap_storage =
1894     G1RegionToSpaceMapper::create_mapper(g1_rs,
1895                                          g1_rs.size(),
1896                                          page_size,
1897                                          HeapRegion::GrainBytes,
1898                                          1,
1899                                          mtJavaHeap);
1900   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1901                        max_byte_size, page_size,
1902                        heap_rs.base(),
1903                        heap_rs.size());
1904   heap_storage->set_mapping_changed_listener(&_listener);
1905 
1906   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1907   G1RegionToSpaceMapper* bot_storage =
1908     create_aux_memory_mapper("Block offset table",
1909                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1910                              G1BlockOffsetTable::heap_map_factor());
1911 
1912   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1913   G1RegionToSpaceMapper* cardtable_storage =
1914     create_aux_memory_mapper("Card table",
1915                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1916                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1917 
1918   G1RegionToSpaceMapper* card_counts_storage =
1919     create_aux_memory_mapper("Card counts table",
1920                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1921                              G1CardCounts::heap_map_factor());
1922 
1923   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1924   G1RegionToSpaceMapper* prev_bitmap_storage =
1925     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1926   G1RegionToSpaceMapper* next_bitmap_storage =
1927     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1928 
1929   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1930   g1_barrier_set()->initialize(cardtable_storage);
1931    // Do later initialization work for concurrent refinement.
1932   _cg1r->init(card_counts_storage);
1933 
1934   // 6843694 - ensure that the maximum region index can fit
1935   // in the remembered set structures.
1936   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1937   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1938 
1939   G1RemSet::initialize(max_regions());
1940 
1941   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1942   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1943   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1944             "too many cards per region");
1945 
1946   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1947 
1948   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1949 
1950   {
1951     HeapWord* start = _hrm.reserved().start();
1952     HeapWord* end = _hrm.reserved().end();
1953     size_t granularity = HeapRegion::GrainBytes;
1954 
1955     _in_cset_fast_test.initialize(start, end, granularity);
1956     _humongous_reclaim_candidates.initialize(start, end, granularity);
1957   }
1958 
1959   // Create the ConcurrentMark data structure and thread.
1960   // (Must do this late, so that "max_regions" is defined.)
1961   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1962   if (_cm == NULL || !_cm->completed_initialization()) {
1963     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1964     return JNI_ENOMEM;
1965   }
1966   _cmThread = _cm->cmThread();
1967 
1968   // Now expand into the initial heap size.
1969   if (!expand(init_byte_size)) {
1970     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1971     return JNI_ENOMEM;
1972   }
1973 
1974   // Perform any initialization actions delegated to the policy.
1975   g1_policy()->init();
1976 
1977   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1978                                                SATB_Q_FL_lock,
1979                                                G1SATBProcessCompletedThreshold,
1980                                                Shared_SATB_Q_lock);
1981 
1982   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1983                                                 DirtyCardQ_CBL_mon,
1984                                                 DirtyCardQ_FL_lock,
1985                                                 concurrent_g1_refine()->yellow_zone(),
1986                                                 concurrent_g1_refine()->red_zone(),
1987                                                 Shared_DirtyCardQ_lock,
1988                                                 NULL,  // fl_owner
1989                                                 true); // init_free_ids
1990 
1991   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1992                                     DirtyCardQ_CBL_mon,
1993                                     DirtyCardQ_FL_lock,
1994                                     -1, // never trigger processing
1995                                     -1, // no limit on length
1996                                     Shared_DirtyCardQ_lock,
1997                                     &JavaThread::dirty_card_queue_set());
1998 
1999   // Here we allocate the dummy HeapRegion that is required by the
2000   // G1AllocRegion class.
2001   HeapRegion* dummy_region = _hrm.get_dummy_region();
2002 
2003   // We'll re-use the same region whether the alloc region will
2004   // require BOT updates or not and, if it doesn't, then a non-young
2005   // region will complain that it cannot support allocations without
2006   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2007   dummy_region->set_eden();
2008   // Make sure it's full.
2009   dummy_region->set_top(dummy_region->end());
2010   G1AllocRegion::setup(this, dummy_region);
2011 
2012   _allocator->init_mutator_alloc_region();
2013 
2014   // Do create of the monitoring and management support so that
2015   // values in the heap have been properly initialized.
2016   _g1mm = new G1MonitoringSupport(this);
2017 
2018   G1StringDedup::initialize();
2019 
2020   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2021   for (uint i = 0; i < ParallelGCThreads; i++) {
2022     new (&_preserved_objs[i]) OopAndMarkOopStack();
2023   }
2024 
2025   return JNI_OK;
2026 }
2027 
2028 void G1CollectedHeap::stop() {
2029   // Stop all concurrent threads. We do this to make sure these threads
2030   // do not continue to execute and access resources (e.g. logging)
2031   // that are destroyed during shutdown.
2032   _cg1r->stop();
2033   _cmThread->stop();
2034   if (G1StringDedup::is_enabled()) {
2035     G1StringDedup::stop();
2036   }
2037 }
2038 
2039 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2040   return HeapRegion::max_region_size();
2041 }
2042 
2043 void G1CollectedHeap::post_initialize() {
2044   CollectedHeap::post_initialize();
2045   ref_processing_init();
2046 }
2047 
2048 void G1CollectedHeap::ref_processing_init() {
2049   // Reference processing in G1 currently works as follows:
2050   //
2051   // * There are two reference processor instances. One is
2052   //   used to record and process discovered references
2053   //   during concurrent marking; the other is used to
2054   //   record and process references during STW pauses
2055   //   (both full and incremental).
2056   // * Both ref processors need to 'span' the entire heap as
2057   //   the regions in the collection set may be dotted around.
2058   //
2059   // * For the concurrent marking ref processor:
2060   //   * Reference discovery is enabled at initial marking.
2061   //   * Reference discovery is disabled and the discovered
2062   //     references processed etc during remarking.
2063   //   * Reference discovery is MT (see below).
2064   //   * Reference discovery requires a barrier (see below).
2065   //   * Reference processing may or may not be MT
2066   //     (depending on the value of ParallelRefProcEnabled
2067   //     and ParallelGCThreads).
2068   //   * A full GC disables reference discovery by the CM
2069   //     ref processor and abandons any entries on it's
2070   //     discovered lists.
2071   //
2072   // * For the STW processor:
2073   //   * Non MT discovery is enabled at the start of a full GC.
2074   //   * Processing and enqueueing during a full GC is non-MT.
2075   //   * During a full GC, references are processed after marking.
2076   //
2077   //   * Discovery (may or may not be MT) is enabled at the start
2078   //     of an incremental evacuation pause.
2079   //   * References are processed near the end of a STW evacuation pause.
2080   //   * For both types of GC:
2081   //     * Discovery is atomic - i.e. not concurrent.
2082   //     * Reference discovery will not need a barrier.
2083 
2084   MemRegion mr = reserved_region();
2085 
2086   // Concurrent Mark ref processor
2087   _ref_processor_cm =
2088     new ReferenceProcessor(mr,    // span
2089                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2090                                 // mt processing
2091                            ParallelGCThreads,
2092                                 // degree of mt processing
2093                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2094                                 // mt discovery
2095                            MAX2(ParallelGCThreads, ConcGCThreads),
2096                                 // degree of mt discovery
2097                            false,
2098                                 // Reference discovery is not atomic
2099                            &_is_alive_closure_cm);
2100                                 // is alive closure
2101                                 // (for efficiency/performance)
2102 
2103   // STW ref processor
2104   _ref_processor_stw =
2105     new ReferenceProcessor(mr,    // span
2106                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2107                                 // mt processing
2108                            ParallelGCThreads,
2109                                 // degree of mt processing
2110                            (ParallelGCThreads > 1),
2111                                 // mt discovery
2112                            ParallelGCThreads,
2113                                 // degree of mt discovery
2114                            true,
2115                                 // Reference discovery is atomic
2116                            &_is_alive_closure_stw);
2117                                 // is alive closure
2118                                 // (for efficiency/performance)
2119 }
2120 
2121 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2122   return g1_policy();
2123 }
2124 
2125 size_t G1CollectedHeap::capacity() const {
2126   return _hrm.length() * HeapRegion::GrainBytes;
2127 }
2128 
2129 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2130   hr->reset_gc_time_stamp();
2131 }
2132 
2133 #ifndef PRODUCT
2134 
2135 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2136 private:
2137   unsigned _gc_time_stamp;
2138   bool _failures;
2139 
2140 public:
2141   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2142     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2143 
2144   virtual bool doHeapRegion(HeapRegion* hr) {
2145     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2146     if (_gc_time_stamp != region_gc_time_stamp) {
2147       log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2148                            region_gc_time_stamp, _gc_time_stamp);
2149       _failures = true;
2150     }
2151     return false;
2152   }
2153 
2154   bool failures() { return _failures; }
2155 };
2156 
2157 void G1CollectedHeap::check_gc_time_stamps() {
2158   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2159   heap_region_iterate(&cl);
2160   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2161 }
2162 #endif // PRODUCT
2163 
2164 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2165   _cg1r->hot_card_cache()->drain(cl, worker_i);
2166 }
2167 
2168 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2169   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2170   size_t n_completed_buffers = 0;
2171   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2172     n_completed_buffers++;
2173   }
2174   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2175   dcqs.clear_n_completed_buffers();
2176   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2177 }
2178 
2179 // Computes the sum of the storage used by the various regions.
2180 size_t G1CollectedHeap::used() const {
2181   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2182   if (_archive_allocator != NULL) {
2183     result += _archive_allocator->used();
2184   }
2185   return result;
2186 }
2187 
2188 size_t G1CollectedHeap::used_unlocked() const {
2189   return _summary_bytes_used;
2190 }
2191 
2192 class SumUsedClosure: public HeapRegionClosure {
2193   size_t _used;
2194 public:
2195   SumUsedClosure() : _used(0) {}
2196   bool doHeapRegion(HeapRegion* r) {
2197     _used += r->used();
2198     return false;
2199   }
2200   size_t result() { return _used; }
2201 };
2202 
2203 size_t G1CollectedHeap::recalculate_used() const {
2204   double recalculate_used_start = os::elapsedTime();
2205 
2206   SumUsedClosure blk;
2207   heap_region_iterate(&blk);
2208 
2209   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2210   return blk.result();
2211 }
2212 
2213 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2214   switch (cause) {
2215     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2216     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2217     case GCCause::_update_allocation_context_stats_inc: return true;
2218     case GCCause::_wb_conc_mark:                        return true;
2219     default :                                           return false;
2220   }
2221 }
2222 
2223 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2224   switch (cause) {
2225     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2226     case GCCause::_g1_humongous_allocation: return true;
2227     default:                                return is_user_requested_concurrent_full_gc(cause);
2228   }
2229 }
2230 
2231 #ifndef PRODUCT
2232 void G1CollectedHeap::allocate_dummy_regions() {
2233   // Let's fill up most of the region
2234   size_t word_size = HeapRegion::GrainWords - 1024;
2235   // And as a result the region we'll allocate will be humongous.
2236   guarantee(is_humongous(word_size), "sanity");
2237 
2238   // _filler_array_max_size is set to humongous object threshold
2239   // but temporarily change it to use CollectedHeap::fill_with_object().
2240   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2241 
2242   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2243     // Let's use the existing mechanism for the allocation
2244     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2245                                                  AllocationContext::system());
2246     if (dummy_obj != NULL) {
2247       MemRegion mr(dummy_obj, word_size);
2248       CollectedHeap::fill_with_object(mr);
2249     } else {
2250       // If we can't allocate once, we probably cannot allocate
2251       // again. Let's get out of the loop.
2252       break;
2253     }
2254   }
2255 }
2256 #endif // !PRODUCT
2257 
2258 void G1CollectedHeap::increment_old_marking_cycles_started() {
2259   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2260          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2261          "Wrong marking cycle count (started: %d, completed: %d)",
2262          _old_marking_cycles_started, _old_marking_cycles_completed);
2263 
2264   _old_marking_cycles_started++;
2265 }
2266 
2267 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2268   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2269 
2270   // We assume that if concurrent == true, then the caller is a
2271   // concurrent thread that was joined the Suspendible Thread
2272   // Set. If there's ever a cheap way to check this, we should add an
2273   // assert here.
2274 
2275   // Given that this method is called at the end of a Full GC or of a
2276   // concurrent cycle, and those can be nested (i.e., a Full GC can
2277   // interrupt a concurrent cycle), the number of full collections
2278   // completed should be either one (in the case where there was no
2279   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2280   // behind the number of full collections started.
2281 
2282   // This is the case for the inner caller, i.e. a Full GC.
2283   assert(concurrent ||
2284          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2285          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2286          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2287          "is inconsistent with _old_marking_cycles_completed = %u",
2288          _old_marking_cycles_started, _old_marking_cycles_completed);
2289 
2290   // This is the case for the outer caller, i.e. the concurrent cycle.
2291   assert(!concurrent ||
2292          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2293          "for outer caller (concurrent cycle): "
2294          "_old_marking_cycles_started = %u "
2295          "is inconsistent with _old_marking_cycles_completed = %u",
2296          _old_marking_cycles_started, _old_marking_cycles_completed);
2297 
2298   _old_marking_cycles_completed += 1;
2299 
2300   // We need to clear the "in_progress" flag in the CM thread before
2301   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2302   // is set) so that if a waiter requests another System.gc() it doesn't
2303   // incorrectly see that a marking cycle is still in progress.
2304   if (concurrent) {
2305     _cmThread->set_idle();
2306   }
2307 
2308   // This notify_all() will ensure that a thread that called
2309   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2310   // and it's waiting for a full GC to finish will be woken up. It is
2311   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2312   FullGCCount_lock->notify_all();
2313 }
2314 
2315 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2316   GCIdMarkAndRestore conc_gc_id_mark;
2317   collector_state()->set_concurrent_cycle_started(true);
2318   _gc_timer_cm->register_gc_start(start_time);
2319 
2320   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2321   trace_heap_before_gc(_gc_tracer_cm);
2322   _cmThread->set_gc_id(GCId::current());
2323 }
2324 
2325 void G1CollectedHeap::register_concurrent_cycle_end() {
2326   if (collector_state()->concurrent_cycle_started()) {
2327     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2328     if (_cm->has_aborted()) {
2329       _gc_tracer_cm->report_concurrent_mode_failure();
2330     }
2331 
2332     _gc_timer_cm->register_gc_end();
2333     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2334 
2335     // Clear state variables to prepare for the next concurrent cycle.
2336     collector_state()->set_concurrent_cycle_started(false);
2337     _heap_summary_sent = false;
2338   }
2339 }
2340 
2341 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2342   if (collector_state()->concurrent_cycle_started()) {
2343     // This function can be called when:
2344     //  the cleanup pause is run
2345     //  the concurrent cycle is aborted before the cleanup pause.
2346     //  the concurrent cycle is aborted after the cleanup pause,
2347     //   but before the concurrent cycle end has been registered.
2348     // Make sure that we only send the heap information once.
2349     if (!_heap_summary_sent) {
2350       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2351       trace_heap_after_gc(_gc_tracer_cm);
2352       _heap_summary_sent = true;
2353     }
2354   }
2355 }
2356 
2357 void G1CollectedHeap::collect(GCCause::Cause cause) {
2358   assert_heap_not_locked();
2359 
2360   uint gc_count_before;
2361   uint old_marking_count_before;
2362   uint full_gc_count_before;
2363   bool retry_gc;
2364 
2365   do {
2366     retry_gc = false;
2367 
2368     {
2369       MutexLocker ml(Heap_lock);
2370 
2371       // Read the GC count while holding the Heap_lock
2372       gc_count_before = total_collections();
2373       full_gc_count_before = total_full_collections();
2374       old_marking_count_before = _old_marking_cycles_started;
2375     }
2376 
2377     if (should_do_concurrent_full_gc(cause)) {
2378       // Schedule an initial-mark evacuation pause that will start a
2379       // concurrent cycle. We're setting word_size to 0 which means that
2380       // we are not requesting a post-GC allocation.
2381       VM_G1IncCollectionPause op(gc_count_before,
2382                                  0,     /* word_size */
2383                                  true,  /* should_initiate_conc_mark */
2384                                  g1_policy()->max_pause_time_ms(),
2385                                  cause);
2386       op.set_allocation_context(AllocationContext::current());
2387 
2388       VMThread::execute(&op);
2389       if (!op.pause_succeeded()) {
2390         if (old_marking_count_before == _old_marking_cycles_started) {
2391           retry_gc = op.should_retry_gc();
2392         } else {
2393           // A Full GC happened while we were trying to schedule the
2394           // initial-mark GC. No point in starting a new cycle given
2395           // that the whole heap was collected anyway.
2396         }
2397 
2398         if (retry_gc) {
2399           if (GC_locker::is_active_and_needs_gc()) {
2400             GC_locker::stall_until_clear();
2401           }
2402         }
2403       }
2404     } else {
2405       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2406           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2407 
2408         // Schedule a standard evacuation pause. We're setting word_size
2409         // to 0 which means that we are not requesting a post-GC allocation.
2410         VM_G1IncCollectionPause op(gc_count_before,
2411                                    0,     /* word_size */
2412                                    false, /* should_initiate_conc_mark */
2413                                    g1_policy()->max_pause_time_ms(),
2414                                    cause);
2415         VMThread::execute(&op);
2416       } else {
2417         // Schedule a Full GC.
2418         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2419         VMThread::execute(&op);
2420       }
2421     }
2422   } while (retry_gc);
2423 }
2424 
2425 bool G1CollectedHeap::is_in(const void* p) const {
2426   if (_hrm.reserved().contains(p)) {
2427     // Given that we know that p is in the reserved space,
2428     // heap_region_containing() should successfully
2429     // return the containing region.
2430     HeapRegion* hr = heap_region_containing(p);
2431     return hr->is_in(p);
2432   } else {
2433     return false;
2434   }
2435 }
2436 
2437 #ifdef ASSERT
2438 bool G1CollectedHeap::is_in_exact(const void* p) const {
2439   bool contains = reserved_region().contains(p);
2440   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2441   if (contains && available) {
2442     return true;
2443   } else {
2444     return false;
2445   }
2446 }
2447 #endif
2448 
2449 bool G1CollectedHeap::obj_in_cs(oop obj) {
2450   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2451   return r != NULL && r->in_collection_set();
2452 }
2453 
2454 // Iteration functions.
2455 
2456 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2457 
2458 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2459   ExtendedOopClosure* _cl;
2460 public:
2461   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2462   bool doHeapRegion(HeapRegion* r) {
2463     if (!r->is_continues_humongous()) {
2464       r->oop_iterate(_cl);
2465     }
2466     return false;
2467   }
2468 };
2469 
2470 // Iterates an ObjectClosure over all objects within a HeapRegion.
2471 
2472 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2473   ObjectClosure* _cl;
2474 public:
2475   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2476   bool doHeapRegion(HeapRegion* r) {
2477     if (!r->is_continues_humongous()) {
2478       r->object_iterate(_cl);
2479     }
2480     return false;
2481   }
2482 };
2483 
2484 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2485   IterateObjectClosureRegionClosure blk(cl);
2486   heap_region_iterate(&blk);
2487 }
2488 
2489 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2490   _hrm.iterate(cl);
2491 }
2492 
2493 void
2494 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2495                                          uint worker_id,
2496                                          HeapRegionClaimer *hrclaimer,
2497                                          bool concurrent) const {
2498   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2499 }
2500 
2501 // Clear the cached CSet starting regions and (more importantly)
2502 // the time stamps. Called when we reset the GC time stamp.
2503 void G1CollectedHeap::clear_cset_start_regions() {
2504   assert(_worker_cset_start_region != NULL, "sanity");
2505   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2506 
2507   for (uint i = 0; i < ParallelGCThreads; i++) {
2508     _worker_cset_start_region[i] = NULL;
2509     _worker_cset_start_region_time_stamp[i] = 0;
2510   }
2511 }
2512 
2513 // Given the id of a worker, obtain or calculate a suitable
2514 // starting region for iterating over the current collection set.
2515 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2516   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2517 
2518   HeapRegion* result = NULL;
2519   unsigned gc_time_stamp = get_gc_time_stamp();
2520 
2521   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2522     // Cached starting region for current worker was set
2523     // during the current pause - so it's valid.
2524     // Note: the cached starting heap region may be NULL
2525     // (when the collection set is empty).
2526     result = _worker_cset_start_region[worker_i];
2527     assert(result == NULL || result->in_collection_set(), "sanity");
2528     return result;
2529   }
2530 
2531   // The cached entry was not valid so let's calculate
2532   // a suitable starting heap region for this worker.
2533 
2534   // We want the parallel threads to start their collection
2535   // set iteration at different collection set regions to
2536   // avoid contention.
2537   // If we have:
2538   //          n collection set regions
2539   //          p threads
2540   // Then thread t will start at region floor ((t * n) / p)
2541 
2542   result = g1_policy()->collection_set();
2543   uint cs_size = g1_policy()->cset_region_length();
2544   uint active_workers = workers()->active_workers();
2545 
2546   uint end_ind   = (cs_size * worker_i) / active_workers;
2547   uint start_ind = 0;
2548 
2549   if (worker_i > 0 &&
2550       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2551     // Previous workers starting region is valid
2552     // so let's iterate from there
2553     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2554     result = _worker_cset_start_region[worker_i - 1];
2555   }
2556 
2557   for (uint i = start_ind; i < end_ind; i++) {
2558     result = result->next_in_collection_set();
2559   }
2560 
2561   // Note: the calculated starting heap region may be NULL
2562   // (when the collection set is empty).
2563   assert(result == NULL || result->in_collection_set(), "sanity");
2564   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2565          "should be updated only once per pause");
2566   _worker_cset_start_region[worker_i] = result;
2567   OrderAccess::storestore();
2568   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2569   return result;
2570 }
2571 
2572 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2573   HeapRegion* r = g1_policy()->collection_set();
2574   while (r != NULL) {
2575     HeapRegion* next = r->next_in_collection_set();
2576     if (cl->doHeapRegion(r)) {
2577       cl->incomplete();
2578       return;
2579     }
2580     r = next;
2581   }
2582 }
2583 
2584 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2585                                                   HeapRegionClosure *cl) {
2586   if (r == NULL) {
2587     // The CSet is empty so there's nothing to do.
2588     return;
2589   }
2590 
2591   assert(r->in_collection_set(),
2592          "Start region must be a member of the collection set.");
2593   HeapRegion* cur = r;
2594   while (cur != NULL) {
2595     HeapRegion* next = cur->next_in_collection_set();
2596     if (cl->doHeapRegion(cur) && false) {
2597       cl->incomplete();
2598       return;
2599     }
2600     cur = next;
2601   }
2602   cur = g1_policy()->collection_set();
2603   while (cur != r) {
2604     HeapRegion* next = cur->next_in_collection_set();
2605     if (cl->doHeapRegion(cur) && false) {
2606       cl->incomplete();
2607       return;
2608     }
2609     cur = next;
2610   }
2611 }
2612 
2613 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2614   HeapRegion* result = _hrm.next_region_in_heap(from);
2615   while (result != NULL && result->is_pinned()) {
2616     result = _hrm.next_region_in_heap(result);
2617   }
2618   return result;
2619 }
2620 
2621 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2622   HeapRegion* hr = heap_region_containing(addr);
2623   return hr->block_start(addr);
2624 }
2625 
2626 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2627   HeapRegion* hr = heap_region_containing(addr);
2628   return hr->block_size(addr);
2629 }
2630 
2631 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2632   HeapRegion* hr = heap_region_containing(addr);
2633   return hr->block_is_obj(addr);
2634 }
2635 
2636 bool G1CollectedHeap::supports_tlab_allocation() const {
2637   return true;
2638 }
2639 
2640 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2641   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2642 }
2643 
2644 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2645   return young_list()->eden_used_bytes();
2646 }
2647 
2648 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2649 // must be equal to the humongous object limit.
2650 size_t G1CollectedHeap::max_tlab_size() const {
2651   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2652 }
2653 
2654 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2655   AllocationContext_t context = AllocationContext::current();
2656   return _allocator->unsafe_max_tlab_alloc(context);
2657 }
2658 
2659 size_t G1CollectedHeap::max_capacity() const {
2660   return _hrm.reserved().byte_size();
2661 }
2662 
2663 jlong G1CollectedHeap::millis_since_last_gc() {
2664   // assert(false, "NYI");
2665   return 0;
2666 }
2667 
2668 void G1CollectedHeap::prepare_for_verify() {
2669   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2670     ensure_parsability(false);
2671   }
2672   g1_rem_set()->prepare_for_verify();
2673 }
2674 
2675 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2676                                               VerifyOption vo) {
2677   switch (vo) {
2678   case VerifyOption_G1UsePrevMarking:
2679     return hr->obj_allocated_since_prev_marking(obj);
2680   case VerifyOption_G1UseNextMarking:
2681     return hr->obj_allocated_since_next_marking(obj);
2682   case VerifyOption_G1UseMarkWord:
2683     return false;
2684   default:
2685     ShouldNotReachHere();
2686   }
2687   return false; // keep some compilers happy
2688 }
2689 
2690 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2691   switch (vo) {
2692   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2693   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2694   case VerifyOption_G1UseMarkWord:    return NULL;
2695   default:                            ShouldNotReachHere();
2696   }
2697   return NULL; // keep some compilers happy
2698 }
2699 
2700 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2701   switch (vo) {
2702   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2703   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2704   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2705   default:                            ShouldNotReachHere();
2706   }
2707   return false; // keep some compilers happy
2708 }
2709 
2710 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2711   switch (vo) {
2712   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2713   case VerifyOption_G1UseNextMarking: return "NTAMS";
2714   case VerifyOption_G1UseMarkWord:    return "NONE";
2715   default:                            ShouldNotReachHere();
2716   }
2717   return NULL; // keep some compilers happy
2718 }
2719 
2720 class VerifyRootsClosure: public OopClosure {
2721 private:
2722   G1CollectedHeap* _g1h;
2723   VerifyOption     _vo;
2724   bool             _failures;
2725 public:
2726   // _vo == UsePrevMarking -> use "prev" marking information,
2727   // _vo == UseNextMarking -> use "next" marking information,
2728   // _vo == UseMarkWord    -> use mark word from object header.
2729   VerifyRootsClosure(VerifyOption vo) :
2730     _g1h(G1CollectedHeap::heap()),
2731     _vo(vo),
2732     _failures(false) { }
2733 
2734   bool failures() { return _failures; }
2735 
2736   template <class T> void do_oop_nv(T* p) {
2737     T heap_oop = oopDesc::load_heap_oop(p);
2738     if (!oopDesc::is_null(heap_oop)) {
2739       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2740       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2741         LogHandle(gc, verify) log;
2742         log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2743         if (_vo == VerifyOption_G1UseMarkWord) {
2744           log.info("  Mark word: " PTR_FORMAT, p2i(obj->mark()));
2745         }
2746         ResourceMark rm;
2747         obj->print_on(log.info_stream());
2748         _failures = true;
2749       }
2750     }
2751   }
2752 
2753   void do_oop(oop* p)       { do_oop_nv(p); }
2754   void do_oop(narrowOop* p) { do_oop_nv(p); }
2755 };
2756 
2757 class G1VerifyCodeRootOopClosure: public OopClosure {
2758   G1CollectedHeap* _g1h;
2759   OopClosure* _root_cl;
2760   nmethod* _nm;
2761   VerifyOption _vo;
2762   bool _failures;
2763 
2764   template <class T> void do_oop_work(T* p) {
2765     // First verify that this root is live
2766     _root_cl->do_oop(p);
2767 
2768     if (!G1VerifyHeapRegionCodeRoots) {
2769       // We're not verifying the code roots attached to heap region.
2770       return;
2771     }
2772 
2773     // Don't check the code roots during marking verification in a full GC
2774     if (_vo == VerifyOption_G1UseMarkWord) {
2775       return;
2776     }
2777 
2778     // Now verify that the current nmethod (which contains p) is
2779     // in the code root list of the heap region containing the
2780     // object referenced by p.
2781 
2782     T heap_oop = oopDesc::load_heap_oop(p);
2783     if (!oopDesc::is_null(heap_oop)) {
2784       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2785 
2786       // Now fetch the region containing the object
2787       HeapRegion* hr = _g1h->heap_region_containing(obj);
2788       HeapRegionRemSet* hrrs = hr->rem_set();
2789       // Verify that the strong code root list for this region
2790       // contains the nmethod
2791       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2792         log_info(gc, verify)("Code root location " PTR_FORMAT " "
2793                              "from nmethod " PTR_FORMAT " not in strong "
2794                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2795                              p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2796         _failures = true;
2797       }
2798     }
2799   }
2800 
2801 public:
2802   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2803     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2804 
2805   void do_oop(oop* p) { do_oop_work(p); }
2806   void do_oop(narrowOop* p) { do_oop_work(p); }
2807 
2808   void set_nmethod(nmethod* nm) { _nm = nm; }
2809   bool failures() { return _failures; }
2810 };
2811 
2812 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2813   G1VerifyCodeRootOopClosure* _oop_cl;
2814 
2815 public:
2816   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2817     _oop_cl(oop_cl) {}
2818 
2819   void do_code_blob(CodeBlob* cb) {
2820     nmethod* nm = cb->as_nmethod_or_null();
2821     if (nm != NULL) {
2822       _oop_cl->set_nmethod(nm);
2823       nm->oops_do(_oop_cl);
2824     }
2825   }
2826 };
2827 
2828 class YoungRefCounterClosure : public OopClosure {
2829   G1CollectedHeap* _g1h;
2830   int              _count;
2831  public:
2832   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2833   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2834   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2835 
2836   int count() { return _count; }
2837   void reset_count() { _count = 0; };
2838 };
2839 
2840 class VerifyKlassClosure: public KlassClosure {
2841   YoungRefCounterClosure _young_ref_counter_closure;
2842   OopClosure *_oop_closure;
2843  public:
2844   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2845   void do_klass(Klass* k) {
2846     k->oops_do(_oop_closure);
2847 
2848     _young_ref_counter_closure.reset_count();
2849     k->oops_do(&_young_ref_counter_closure);
2850     if (_young_ref_counter_closure.count() > 0) {
2851       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2852     }
2853   }
2854 };
2855 
2856 class VerifyLivenessOopClosure: public OopClosure {
2857   G1CollectedHeap* _g1h;
2858   VerifyOption _vo;
2859 public:
2860   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2861     _g1h(g1h), _vo(vo)
2862   { }
2863   void do_oop(narrowOop *p) { do_oop_work(p); }
2864   void do_oop(      oop *p) { do_oop_work(p); }
2865 
2866   template <class T> void do_oop_work(T *p) {
2867     oop obj = oopDesc::load_decode_heap_oop(p);
2868     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2869               "Dead object referenced by a not dead object");
2870   }
2871 };
2872 
2873 class VerifyObjsInRegionClosure: public ObjectClosure {
2874 private:
2875   G1CollectedHeap* _g1h;
2876   size_t _live_bytes;
2877   HeapRegion *_hr;
2878   VerifyOption _vo;
2879 public:
2880   // _vo == UsePrevMarking -> use "prev" marking information,
2881   // _vo == UseNextMarking -> use "next" marking information,
2882   // _vo == UseMarkWord    -> use mark word from object header.
2883   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2884     : _live_bytes(0), _hr(hr), _vo(vo) {
2885     _g1h = G1CollectedHeap::heap();
2886   }
2887   void do_object(oop o) {
2888     VerifyLivenessOopClosure isLive(_g1h, _vo);
2889     assert(o != NULL, "Huh?");
2890     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2891       // If the object is alive according to the mark word,
2892       // then verify that the marking information agrees.
2893       // Note we can't verify the contra-positive of the
2894       // above: if the object is dead (according to the mark
2895       // word), it may not be marked, or may have been marked
2896       // but has since became dead, or may have been allocated
2897       // since the last marking.
2898       if (_vo == VerifyOption_G1UseMarkWord) {
2899         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2900       }
2901 
2902       o->oop_iterate_no_header(&isLive);
2903       if (!_hr->obj_allocated_since_prev_marking(o)) {
2904         size_t obj_size = o->size();    // Make sure we don't overflow
2905         _live_bytes += (obj_size * HeapWordSize);
2906       }
2907     }
2908   }
2909   size_t live_bytes() { return _live_bytes; }
2910 };
2911 
2912 class VerifyArchiveOopClosure: public OopClosure {
2913 public:
2914   VerifyArchiveOopClosure(HeapRegion *hr) { }
2915   void do_oop(narrowOop *p) { do_oop_work(p); }
2916   void do_oop(      oop *p) { do_oop_work(p); }
2917 
2918   template <class T> void do_oop_work(T *p) {
2919     oop obj = oopDesc::load_decode_heap_oop(p);
2920     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2921               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2922               p2i(p), p2i(obj));
2923   }
2924 };
2925 
2926 class VerifyArchiveRegionClosure: public ObjectClosure {
2927 public:
2928   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2929   // Verify that all object pointers are to archive regions.
2930   void do_object(oop o) {
2931     VerifyArchiveOopClosure checkOop(NULL);
2932     assert(o != NULL, "Should not be here for NULL oops");
2933     o->oop_iterate_no_header(&checkOop);
2934   }
2935 };
2936 
2937 class VerifyRegionClosure: public HeapRegionClosure {
2938 private:
2939   bool             _par;
2940   VerifyOption     _vo;
2941   bool             _failures;
2942 public:
2943   // _vo == UsePrevMarking -> use "prev" marking information,
2944   // _vo == UseNextMarking -> use "next" marking information,
2945   // _vo == UseMarkWord    -> use mark word from object header.
2946   VerifyRegionClosure(bool par, VerifyOption vo)
2947     : _par(par),
2948       _vo(vo),
2949       _failures(false) {}
2950 
2951   bool failures() {
2952     return _failures;
2953   }
2954 
2955   bool doHeapRegion(HeapRegion* r) {
2956     // For archive regions, verify there are no heap pointers to
2957     // non-pinned regions. For all others, verify liveness info.
2958     if (r->is_archive()) {
2959       VerifyArchiveRegionClosure verify_oop_pointers(r);
2960       r->object_iterate(&verify_oop_pointers);
2961       return true;
2962     }
2963     if (!r->is_continues_humongous()) {
2964       bool failures = false;
2965       r->verify(_vo, &failures);
2966       if (failures) {
2967         _failures = true;
2968       } else if (!r->is_starts_humongous()) {
2969         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2970         r->object_iterate(&not_dead_yet_cl);
2971         if (_vo != VerifyOption_G1UseNextMarking) {
2972           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2973             log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
2974                                  p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
2975             _failures = true;
2976           }
2977         } else {
2978           // When vo == UseNextMarking we cannot currently do a sanity
2979           // check on the live bytes as the calculation has not been
2980           // finalized yet.
2981         }
2982       }
2983     }
2984     return false; // stop the region iteration if we hit a failure
2985   }
2986 };
2987 
2988 // This is the task used for parallel verification of the heap regions
2989 
2990 class G1ParVerifyTask: public AbstractGangTask {
2991 private:
2992   G1CollectedHeap*  _g1h;
2993   VerifyOption      _vo;
2994   bool              _failures;
2995   HeapRegionClaimer _hrclaimer;
2996 
2997 public:
2998   // _vo == UsePrevMarking -> use "prev" marking information,
2999   // _vo == UseNextMarking -> use "next" marking information,
3000   // _vo == UseMarkWord    -> use mark word from object header.
3001   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3002       AbstractGangTask("Parallel verify task"),
3003       _g1h(g1h),
3004       _vo(vo),
3005       _failures(false),
3006       _hrclaimer(g1h->workers()->active_workers()) {}
3007 
3008   bool failures() {
3009     return _failures;
3010   }
3011 
3012   void work(uint worker_id) {
3013     HandleMark hm;
3014     VerifyRegionClosure blk(true, _vo);
3015     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3016     if (blk.failures()) {
3017       _failures = true;
3018     }
3019   }
3020 };
3021 
3022 void G1CollectedHeap::verify(VerifyOption vo) {
3023   if (!SafepointSynchronize::is_at_safepoint()) {
3024     log_info(gc, verify)("Skipping verification. Not at safepoint.");
3025   }
3026 
3027   assert(Thread::current()->is_VM_thread(),
3028          "Expected to be executed serially by the VM thread at this point");
3029 
3030   log_debug(gc, verify)("Roots");
3031   VerifyRootsClosure rootsCl(vo);
3032   VerifyKlassClosure klassCl(this, &rootsCl);
3033   CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3034 
3035   // We apply the relevant closures to all the oops in the
3036   // system dictionary, class loader data graph, the string table
3037   // and the nmethods in the code cache.
3038   G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3039   G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3040 
3041   {
3042     G1RootProcessor root_processor(this, 1);
3043     root_processor.process_all_roots(&rootsCl,
3044                                      &cldCl,
3045                                      &blobsCl);
3046   }
3047 
3048   bool failures = rootsCl.failures() || codeRootsCl.failures();
3049 
3050   if (vo != VerifyOption_G1UseMarkWord) {
3051     // If we're verifying during a full GC then the region sets
3052     // will have been torn down at the start of the GC. Therefore
3053     // verifying the region sets will fail. So we only verify
3054     // the region sets when not in a full GC.
3055     log_debug(gc, verify)("HeapRegionSets");
3056     verify_region_sets();
3057   }
3058 
3059   log_debug(gc, verify)("HeapRegions");
3060   if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3061 
3062     G1ParVerifyTask task(this, vo);
3063     workers()->run_task(&task);
3064     if (task.failures()) {
3065       failures = true;
3066     }
3067 
3068   } else {
3069     VerifyRegionClosure blk(false, vo);
3070     heap_region_iterate(&blk);
3071     if (blk.failures()) {
3072       failures = true;
3073     }
3074   }
3075 
3076   if (G1StringDedup::is_enabled()) {
3077     log_debug(gc, verify)("StrDedup");
3078     G1StringDedup::verify();
3079   }
3080 
3081   if (failures) {
3082     log_info(gc, verify)("Heap after failed verification:");
3083     // It helps to have the per-region information in the output to
3084     // help us track down what went wrong. This is why we call
3085     // print_extended_on() instead of print_on().
3086     LogHandle(gc, verify) log;
3087     ResourceMark rm;
3088     print_extended_on(log.info_stream());
3089   }
3090   guarantee(!failures, "there should not have been any failures");
3091 }
3092 
3093 double G1CollectedHeap::verify(bool guard, const char* msg) {
3094   double verify_time_ms = 0.0;
3095 
3096   if (guard && total_collections() >= VerifyGCStartAt) {
3097     double verify_start = os::elapsedTime();
3098     HandleMark hm;  // Discard invalid handles created during verification
3099     prepare_for_verify();
3100     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3101     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3102   }
3103 
3104   return verify_time_ms;
3105 }
3106 
3107 void G1CollectedHeap::verify_before_gc() {
3108   double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
3109   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3110 }
3111 
3112 void G1CollectedHeap::verify_after_gc() {
3113   double verify_time_ms = verify(VerifyAfterGC, "After GC");
3114   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3115 }
3116 
3117 class PrintRegionClosure: public HeapRegionClosure {
3118   outputStream* _st;
3119 public:
3120   PrintRegionClosure(outputStream* st) : _st(st) {}
3121   bool doHeapRegion(HeapRegion* r) {
3122     r->print_on(_st);
3123     return false;
3124   }
3125 };
3126 
3127 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3128                                        const HeapRegion* hr,
3129                                        const VerifyOption vo) const {
3130   switch (vo) {
3131   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3132   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3133   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3134   default:                            ShouldNotReachHere();
3135   }
3136   return false; // keep some compilers happy
3137 }
3138 
3139 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3140                                        const VerifyOption vo) const {
3141   switch (vo) {
3142   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3143   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3144   case VerifyOption_G1UseMarkWord: {
3145     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3146     return !obj->is_gc_marked() && !hr->is_archive();
3147   }
3148   default:                            ShouldNotReachHere();
3149   }
3150   return false; // keep some compilers happy
3151 }
3152 
3153 void G1CollectedHeap::print_on(outputStream* st) const {
3154   st->print(" %-20s", "garbage-first heap");
3155   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3156             capacity()/K, used_unlocked()/K);
3157   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3158             p2i(_hrm.reserved().start()),
3159             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3160             p2i(_hrm.reserved().end()));
3161   st->cr();
3162   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3163   uint young_regions = _young_list->length();
3164   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3165             (size_t) young_regions * HeapRegion::GrainBytes / K);
3166   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3167   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3168             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3169   st->cr();
3170   MetaspaceAux::print_on(st);
3171 }
3172 
3173 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3174   print_on(st);
3175 
3176   // Print the per-region information.
3177   st->cr();
3178   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
3179                "HS=humongous(starts), HC=humongous(continues), "
3180                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3181                "AC=allocation context, "
3182                "TAMS=top-at-mark-start (previous, next)");
3183   PrintRegionClosure blk(st);
3184   heap_region_iterate(&blk);
3185 }
3186 
3187 void G1CollectedHeap::print_on_error(outputStream* st) const {
3188   this->CollectedHeap::print_on_error(st);
3189 
3190   if (_cm != NULL) {
3191     st->cr();
3192     _cm->print_on_error(st);
3193   }
3194 }
3195 
3196 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3197   workers()->print_worker_threads_on(st);
3198   _cmThread->print_on(st);
3199   st->cr();
3200   _cm->print_worker_threads_on(st);
3201   _cg1r->print_worker_threads_on(st);
3202   if (G1StringDedup::is_enabled()) {
3203     G1StringDedup::print_worker_threads_on(st);
3204   }
3205 }
3206 
3207 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3208   workers()->threads_do(tc);
3209   tc->do_thread(_cmThread);
3210   _cg1r->threads_do(tc);
3211   if (G1StringDedup::is_enabled()) {
3212     G1StringDedup::threads_do(tc);
3213   }
3214 }
3215 
3216 void G1CollectedHeap::print_tracing_info() const {
3217   // We'll overload this to mean "trace GC pause statistics."
3218   if (TraceYoungGenTime || TraceOldGenTime) {
3219     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3220     // to that.
3221     g1_policy()->print_tracing_info();
3222   }
3223   g1_rem_set()->print_summary_info();
3224   concurrent_mark()->print_summary_info();
3225   g1_policy()->print_yg_surv_rate_info();
3226 }
3227 
3228 #ifndef PRODUCT
3229 // Helpful for debugging RSet issues.
3230 
3231 class PrintRSetsClosure : public HeapRegionClosure {
3232 private:
3233   const char* _msg;
3234   size_t _occupied_sum;
3235 
3236 public:
3237   bool doHeapRegion(HeapRegion* r) {
3238     HeapRegionRemSet* hrrs = r->rem_set();
3239     size_t occupied = hrrs->occupied();
3240     _occupied_sum += occupied;
3241 
3242     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
3243     if (occupied == 0) {
3244       tty->print_cr("  RSet is empty");
3245     } else {
3246       hrrs->print();
3247     }
3248     tty->print_cr("----------");
3249     return false;
3250   }
3251 
3252   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3253     tty->cr();
3254     tty->print_cr("========================================");
3255     tty->print_cr("%s", msg);
3256     tty->cr();
3257   }
3258 
3259   ~PrintRSetsClosure() {
3260     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3261     tty->print_cr("========================================");
3262     tty->cr();
3263   }
3264 };
3265 
3266 void G1CollectedHeap::print_cset_rsets() {
3267   PrintRSetsClosure cl("Printing CSet RSets");
3268   collection_set_iterate(&cl);
3269 }
3270 
3271 void G1CollectedHeap::print_all_rsets() {
3272   PrintRSetsClosure cl("Printing All RSets");;
3273   heap_region_iterate(&cl);
3274 }
3275 #endif // PRODUCT
3276 
3277 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3278   YoungList* young_list = heap()->young_list();
3279 
3280   size_t eden_used_bytes = young_list->eden_used_bytes();
3281   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3282 
3283   size_t eden_capacity_bytes =
3284     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3285 
3286   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3287   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3288 }
3289 
3290 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3291   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3292                        stats->unused(), stats->used(), stats->region_end_waste(),
3293                        stats->regions_filled(), stats->direct_allocated(),
3294                        stats->failure_used(), stats->failure_waste());
3295 }
3296 
3297 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3298   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3299   gc_tracer->report_gc_heap_summary(when, heap_summary);
3300 
3301   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3302   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3303 }
3304 
3305 
3306 G1CollectedHeap* G1CollectedHeap::heap() {
3307   CollectedHeap* heap = Universe::heap();
3308   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3309   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3310   return (G1CollectedHeap*)heap;
3311 }
3312 
3313 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3314   // always_do_update_barrier = false;
3315   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3316   // Fill TLAB's and such
3317   accumulate_statistics_all_tlabs();
3318   ensure_parsability(true);
3319 
3320   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
3321 }
3322 
3323 void G1CollectedHeap::gc_epilogue(bool full) {
3324   // we are at the end of the GC. Total collections has already been increased.
3325   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
3326 
3327   // FIXME: what is this about?
3328   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3329   // is set.
3330 #if defined(COMPILER2) || INCLUDE_JVMCI
3331   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3332 #endif
3333   // always_do_update_barrier = true;
3334 
3335   resize_all_tlabs();
3336   allocation_context_stats().update(full);
3337 
3338   // We have just completed a GC. Update the soft reference
3339   // policy with the new heap occupancy
3340   Universe::update_heap_info_at_gc();
3341 }
3342 
3343 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3344                                                uint gc_count_before,
3345                                                bool* succeeded,
3346                                                GCCause::Cause gc_cause) {
3347   assert_heap_not_locked_and_not_at_safepoint();
3348   g1_policy()->record_stop_world_start();
3349   VM_G1IncCollectionPause op(gc_count_before,
3350                              word_size,
3351                              false, /* should_initiate_conc_mark */
3352                              g1_policy()->max_pause_time_ms(),
3353                              gc_cause);
3354 
3355   op.set_allocation_context(AllocationContext::current());
3356   VMThread::execute(&op);
3357 
3358   HeapWord* result = op.result();
3359   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3360   assert(result == NULL || ret_succeeded,
3361          "the result should be NULL if the VM did not succeed");
3362   *succeeded = ret_succeeded;
3363 
3364   assert_heap_not_locked();
3365   return result;
3366 }
3367 
3368 void
3369 G1CollectedHeap::doConcurrentMark() {
3370   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3371   if (!_cmThread->in_progress()) {
3372     _cmThread->set_started();
3373     CGC_lock->notify();
3374   }
3375 }
3376 
3377 size_t G1CollectedHeap::pending_card_num() {
3378   size_t extra_cards = 0;
3379   JavaThread *curr = Threads::first();
3380   while (curr != NULL) {
3381     DirtyCardQueue& dcq = curr->dirty_card_queue();
3382     extra_cards += dcq.size();
3383     curr = curr->next();
3384   }
3385   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3386   size_t buffer_size = dcqs.buffer_size();
3387   size_t buffer_num = dcqs.completed_buffers_num();
3388 
3389   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3390   // in bytes - not the number of 'entries'. We need to convert
3391   // into a number of cards.
3392   return (buffer_size * buffer_num + extra_cards) / oopSize;
3393 }
3394 
3395 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3396  private:
3397   size_t _total_humongous;
3398   size_t _candidate_humongous;
3399 
3400   DirtyCardQueue _dcq;
3401 
3402   // We don't nominate objects with many remembered set entries, on
3403   // the assumption that such objects are likely still live.
3404   bool is_remset_small(HeapRegion* region) const {
3405     HeapRegionRemSet* const rset = region->rem_set();
3406     return G1EagerReclaimHumongousObjectsWithStaleRefs
3407       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3408       : rset->is_empty();
3409   }
3410 
3411   bool is_typeArray_region(HeapRegion* region) const {
3412     return oop(region->bottom())->is_typeArray();
3413   }
3414 
3415   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3416     assert(region->is_starts_humongous(), "Must start a humongous object");
3417 
3418     // Candidate selection must satisfy the following constraints
3419     // while concurrent marking is in progress:
3420     //
3421     // * In order to maintain SATB invariants, an object must not be
3422     // reclaimed if it was allocated before the start of marking and
3423     // has not had its references scanned.  Such an object must have
3424     // its references (including type metadata) scanned to ensure no
3425     // live objects are missed by the marking process.  Objects
3426     // allocated after the start of concurrent marking don't need to
3427     // be scanned.
3428     //
3429     // * An object must not be reclaimed if it is on the concurrent
3430     // mark stack.  Objects allocated after the start of concurrent
3431     // marking are never pushed on the mark stack.
3432     //
3433     // Nominating only objects allocated after the start of concurrent
3434     // marking is sufficient to meet both constraints.  This may miss
3435     // some objects that satisfy the constraints, but the marking data
3436     // structures don't support efficiently performing the needed
3437     // additional tests or scrubbing of the mark stack.
3438     //
3439     // However, we presently only nominate is_typeArray() objects.
3440     // A humongous object containing references induces remembered
3441     // set entries on other regions.  In order to reclaim such an
3442     // object, those remembered sets would need to be cleaned up.
3443     //
3444     // We also treat is_typeArray() objects specially, allowing them
3445     // to be reclaimed even if allocated before the start of
3446     // concurrent mark.  For this we rely on mark stack insertion to
3447     // exclude is_typeArray() objects, preventing reclaiming an object
3448     // that is in the mark stack.  We also rely on the metadata for
3449     // such objects to be built-in and so ensured to be kept live.
3450     // Frequent allocation and drop of large binary blobs is an
3451     // important use case for eager reclaim, and this special handling
3452     // may reduce needed headroom.
3453 
3454     return is_typeArray_region(region) && is_remset_small(region);
3455   }
3456 
3457  public:
3458   RegisterHumongousWithInCSetFastTestClosure()
3459   : _total_humongous(0),
3460     _candidate_humongous(0),
3461     _dcq(&JavaThread::dirty_card_queue_set()) {
3462   }
3463 
3464   virtual bool doHeapRegion(HeapRegion* r) {
3465     if (!r->is_starts_humongous()) {
3466       return false;
3467     }
3468     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3469 
3470     bool is_candidate = humongous_region_is_candidate(g1h, r);
3471     uint rindex = r->hrm_index();
3472     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3473     if (is_candidate) {
3474       _candidate_humongous++;
3475       g1h->register_humongous_region_with_cset(rindex);
3476       // Is_candidate already filters out humongous object with large remembered sets.
3477       // If we have a humongous object with a few remembered sets, we simply flush these
3478       // remembered set entries into the DCQS. That will result in automatic
3479       // re-evaluation of their remembered set entries during the following evacuation
3480       // phase.
3481       if (!r->rem_set()->is_empty()) {
3482         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3483                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3484         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3485         HeapRegionRemSetIterator hrrs(r->rem_set());
3486         size_t card_index;
3487         while (hrrs.has_next(card_index)) {
3488           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3489           // The remembered set might contain references to already freed
3490           // regions. Filter out such entries to avoid failing card table
3491           // verification.
3492           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3493             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3494               *card_ptr = CardTableModRefBS::dirty_card_val();
3495               _dcq.enqueue(card_ptr);
3496             }
3497           }
3498         }
3499         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3500                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3501                hrrs.n_yielded(), r->rem_set()->occupied());
3502         r->rem_set()->clear_locked();
3503       }
3504       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3505     }
3506     _total_humongous++;
3507 
3508     return false;
3509   }
3510 
3511   size_t total_humongous() const { return _total_humongous; }
3512   size_t candidate_humongous() const { return _candidate_humongous; }
3513 
3514   void flush_rem_set_entries() { _dcq.flush(); }
3515 };
3516 
3517 void G1CollectedHeap::register_humongous_regions_with_cset() {
3518   if (!G1EagerReclaimHumongousObjects) {
3519     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3520     return;
3521   }
3522   double time = os::elapsed_counter();
3523 
3524   // Collect reclaim candidate information and register candidates with cset.
3525   RegisterHumongousWithInCSetFastTestClosure cl;
3526   heap_region_iterate(&cl);
3527 
3528   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3529   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3530                                                                   cl.total_humongous(),
3531                                                                   cl.candidate_humongous());
3532   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3533 
3534   // Finally flush all remembered set entries to re-check into the global DCQS.
3535   cl.flush_rem_set_entries();
3536 }
3537 
3538 #ifdef ASSERT
3539 class VerifyCSetClosure: public HeapRegionClosure {
3540 public:
3541   bool doHeapRegion(HeapRegion* hr) {
3542     // Here we check that the CSet region's RSet is ready for parallel
3543     // iteration. The fields that we'll verify are only manipulated
3544     // when the region is part of a CSet and is collected. Afterwards,
3545     // we reset these fields when we clear the region's RSet (when the
3546     // region is freed) so they are ready when the region is
3547     // re-allocated. The only exception to this is if there's an
3548     // evacuation failure and instead of freeing the region we leave
3549     // it in the heap. In that case, we reset these fields during
3550     // evacuation failure handling.
3551     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3552 
3553     // Here's a good place to add any other checks we'd like to
3554     // perform on CSet regions.
3555     return false;
3556   }
3557 };
3558 #endif // ASSERT
3559 
3560 uint G1CollectedHeap::num_task_queues() const {
3561   return _task_queues->size();
3562 }
3563 
3564 #if TASKQUEUE_STATS
3565 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3566   st->print_raw_cr("GC Task Stats");
3567   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3568   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3569 }
3570 
3571 void G1CollectedHeap::print_taskqueue_stats() const {
3572   if (!develop_log_is_enabled(Trace, gc, task, stats)) {
3573     return;
3574   }
3575   LogHandle(gc, task, stats) log;
3576   ResourceMark rm;
3577   outputStream* st = log.trace_stream();
3578 
3579   print_taskqueue_stats_hdr(st);
3580 
3581   TaskQueueStats totals;
3582   const uint n = num_task_queues();
3583   for (uint i = 0; i < n; ++i) {
3584     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3585     totals += task_queue(i)->stats;
3586   }
3587   st->print_raw("tot "); totals.print(st); st->cr();
3588 
3589   DEBUG_ONLY(totals.verify());
3590 }
3591 
3592 void G1CollectedHeap::reset_taskqueue_stats() {
3593   const uint n = num_task_queues();
3594   for (uint i = 0; i < n; ++i) {
3595     task_queue(i)->stats.reset();
3596   }
3597 }
3598 #endif // TASKQUEUE_STATS
3599 
3600 void G1CollectedHeap::log_gc_footer(jlong pause_time_counter) {
3601   if (evacuation_failed()) {
3602     log_info(gc)("To-space exhausted");
3603   }
3604 
3605   double pause_time_ms = TimeHelper::counter_to_millis(pause_time_counter);
3606   g1_policy()->print_phases(pause_time_ms);
3607 
3608   g1_policy()->print_detailed_heap_transition();
3609 }
3610 
3611 
3612 void G1CollectedHeap::wait_for_root_region_scanning() {
3613   double scan_wait_start = os::elapsedTime();
3614   // We have to wait until the CM threads finish scanning the
3615   // root regions as it's the only way to ensure that all the
3616   // objects on them have been correctly scanned before we start
3617   // moving them during the GC.
3618   bool waited = _cm->root_regions()->wait_until_scan_finished();
3619   double wait_time_ms = 0.0;
3620   if (waited) {
3621     double scan_wait_end = os::elapsedTime();
3622     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3623   }
3624   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3625 }
3626 
3627 bool
3628 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3629   assert_at_safepoint(true /* should_be_vm_thread */);
3630   guarantee(!is_gc_active(), "collection is not reentrant");
3631 
3632   if (GC_locker::check_active_before_gc()) {
3633     return false;
3634   }
3635 
3636   _gc_timer_stw->register_gc_start();
3637 
3638   GCIdMark gc_id_mark;
3639   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3640 
3641   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3642   ResourceMark rm;
3643 
3644   wait_for_root_region_scanning();
3645 
3646   print_heap_before_gc();
3647   trace_heap_before_gc(_gc_tracer_stw);
3648 
3649   verify_region_sets_optional();
3650   verify_dirty_young_regions();
3651 
3652   // This call will decide whether this pause is an initial-mark
3653   // pause. If it is, during_initial_mark_pause() will return true
3654   // for the duration of this pause.
3655   g1_policy()->decide_on_conc_mark_initiation();
3656 
3657   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3658   assert(!collector_state()->during_initial_mark_pause() ||
3659           collector_state()->gcs_are_young(), "sanity");
3660 
3661   // We also do not allow mixed GCs during marking.
3662   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3663 
3664   // Record whether this pause is an initial mark. When the current
3665   // thread has completed its logging output and it's safe to signal
3666   // the CM thread, the flag's value in the policy has been reset.
3667   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3668 
3669   // Inner scope for scope based logging, timers, and stats collection
3670   {
3671     EvacuationInfo evacuation_info;
3672 
3673     if (collector_state()->during_initial_mark_pause()) {
3674       // We are about to start a marking cycle, so we increment the
3675       // full collection counter.
3676       increment_old_marking_cycles_started();
3677       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3678     }
3679 
3680     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3681 
3682     GCTraceCPUTime tcpu;
3683 
3684     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3685                                                                   workers()->active_workers(),
3686                                                                   Threads::number_of_non_daemon_threads());
3687     workers()->set_active_workers(active_workers);
3688     FormatBuffer<> gc_string("Pause ");
3689     if (collector_state()->during_initial_mark_pause()) {
3690       gc_string.append("Initial Mark");
3691     } else if (collector_state()->gcs_are_young()) {
3692       gc_string.append("Young");
3693     } else {
3694       gc_string.append("Mixed");
3695     }
3696     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3697 
3698     jlong pause_start_counter = os::elapsed_counter();
3699     g1_policy()->note_gc_start(active_workers);
3700 
3701     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3702     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3703 
3704     // If the secondary_free_list is not empty, append it to the
3705     // free_list. No need to wait for the cleanup operation to finish;
3706     // the region allocation code will check the secondary_free_list
3707     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3708     // set, skip this step so that the region allocation code has to
3709     // get entries from the secondary_free_list.
3710     if (!G1StressConcRegionFreeing) {
3711       append_secondary_free_list_if_not_empty_with_lock();
3712     }
3713 
3714     assert(check_young_list_well_formed(), "young list should be well formed");
3715 
3716     // Don't dynamically change the number of GC threads this early.  A value of
3717     // 0 is used to indicate serial work.  When parallel work is done,
3718     // it will be set.
3719 
3720     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3721       IsGCActiveMark x;
3722 
3723       gc_prologue(false);
3724       increment_total_collections(false /* full gc */);
3725       increment_gc_time_stamp();
3726 
3727       verify_before_gc();
3728 
3729       check_bitmaps("GC Start");
3730 
3731 #if defined(COMPILER2) || INCLUDE_JVMCI
3732       DerivedPointerTable::clear();
3733 #endif
3734 
3735       // Please see comment in g1CollectedHeap.hpp and
3736       // G1CollectedHeap::ref_processing_init() to see how
3737       // reference processing currently works in G1.
3738 
3739       // Enable discovery in the STW reference processor
3740       if (g1_policy()->should_process_references()) {
3741         ref_processor_stw()->enable_discovery();
3742       } else {
3743         ref_processor_stw()->disable_discovery();
3744       }
3745 
3746       {
3747         // We want to temporarily turn off discovery by the
3748         // CM ref processor, if necessary, and turn it back on
3749         // on again later if we do. Using a scoped
3750         // NoRefDiscovery object will do this.
3751         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3752 
3753         // Forget the current alloc region (we might even choose it to be part
3754         // of the collection set!).
3755         _allocator->release_mutator_alloc_region();
3756 
3757         // This timing is only used by the ergonomics to handle our pause target.
3758         // It is unclear why this should not include the full pause. We will
3759         // investigate this in CR 7178365.
3760         //
3761         // Preserving the old comment here if that helps the investigation:
3762         //
3763         // The elapsed time induced by the start time below deliberately elides
3764         // the possible verification above.
3765         double sample_start_time_sec = os::elapsedTime();
3766 
3767         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3768 
3769         if (collector_state()->during_initial_mark_pause()) {
3770           concurrent_mark()->checkpointRootsInitialPre();
3771         }
3772 
3773         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3774         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3775 
3776         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3777 
3778         // Make sure the remembered sets are up to date. This needs to be
3779         // done before register_humongous_regions_with_cset(), because the
3780         // remembered sets are used there to choose eager reclaim candidates.
3781         // If the remembered sets are not up to date we might miss some
3782         // entries that need to be handled.
3783         g1_rem_set()->cleanupHRRS();
3784 
3785         register_humongous_regions_with_cset();
3786 
3787         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3788 
3789         _cm->note_start_of_gc();
3790         // We call this after finalize_cset() to
3791         // ensure that the CSet has been finalized.
3792         _cm->verify_no_cset_oops();
3793 
3794         if (_hr_printer.is_active()) {
3795           HeapRegion* hr = g1_policy()->collection_set();
3796           while (hr != NULL) {
3797             _hr_printer.cset(hr);
3798             hr = hr->next_in_collection_set();
3799           }
3800         }
3801 
3802 #ifdef ASSERT
3803         VerifyCSetClosure cl;
3804         collection_set_iterate(&cl);
3805 #endif // ASSERT
3806 
3807         // Initialize the GC alloc regions.
3808         _allocator->init_gc_alloc_regions(evacuation_info);
3809 
3810         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3811         pre_evacuate_collection_set();
3812 
3813         // Actually do the work...
3814         evacuate_collection_set(evacuation_info, &per_thread_states);
3815 
3816         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3817 
3818         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3819         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3820 
3821         eagerly_reclaim_humongous_regions();
3822 
3823         g1_policy()->clear_collection_set();
3824 
3825         // Start a new incremental collection set for the next pause.
3826         g1_policy()->start_incremental_cset_building();
3827 
3828         clear_cset_fast_test();
3829 
3830         _young_list->reset_sampled_info();
3831 
3832         // Don't check the whole heap at this point as the
3833         // GC alloc regions from this pause have been tagged
3834         // as survivors and moved on to the survivor list.
3835         // Survivor regions will fail the !is_young() check.
3836         assert(check_young_list_empty(false /* check_heap */),
3837           "young list should be empty");
3838 
3839         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3840                                              _young_list->first_survivor_region(),
3841                                              _young_list->last_survivor_region());
3842 
3843         _young_list->reset_auxilary_lists();
3844 
3845         if (evacuation_failed()) {
3846           set_used(recalculate_used());
3847           if (_archive_allocator != NULL) {
3848             _archive_allocator->clear_used();
3849           }
3850           for (uint i = 0; i < ParallelGCThreads; i++) {
3851             if (_evacuation_failed_info_array[i].has_failed()) {
3852               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3853             }
3854           }
3855         } else {
3856           // The "used" of the the collection set have already been subtracted
3857           // when they were freed.  Add in the bytes evacuated.
3858           increase_used(g1_policy()->bytes_copied_during_gc());
3859         }
3860 
3861         if (collector_state()->during_initial_mark_pause()) {
3862           // We have to do this before we notify the CM threads that
3863           // they can start working to make sure that all the
3864           // appropriate initialization is done on the CM object.
3865           concurrent_mark()->checkpointRootsInitialPost();
3866           collector_state()->set_mark_in_progress(true);
3867           // Note that we don't actually trigger the CM thread at
3868           // this point. We do that later when we're sure that
3869           // the current thread has completed its logging output.
3870         }
3871 
3872         allocate_dummy_regions();
3873 
3874         _allocator->init_mutator_alloc_region();
3875 
3876         {
3877           size_t expand_bytes = g1_policy()->expansion_amount();
3878           if (expand_bytes > 0) {
3879             size_t bytes_before = capacity();
3880             // No need for an ergo logging here,
3881             // expansion_amount() does this when it returns a value > 0.
3882             double expand_ms;
3883             if (!expand(expand_bytes, &expand_ms)) {
3884               // We failed to expand the heap. Cannot do anything about it.
3885             }
3886             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3887           }
3888         }
3889 
3890         // We redo the verification but now wrt to the new CSet which
3891         // has just got initialized after the previous CSet was freed.
3892         _cm->verify_no_cset_oops();
3893         _cm->note_end_of_gc();
3894 
3895         // This timing is only used by the ergonomics to handle our pause target.
3896         // It is unclear why this should not include the full pause. We will
3897         // investigate this in CR 7178365.
3898         double sample_end_time_sec = os::elapsedTime();
3899         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3900         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3901         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3902 
3903         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3904         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3905 
3906         MemoryService::track_memory_usage();
3907 
3908         // In prepare_for_verify() below we'll need to scan the deferred
3909         // update buffers to bring the RSets up-to-date if
3910         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3911         // the update buffers we'll probably need to scan cards on the
3912         // regions we just allocated to (i.e., the GC alloc
3913         // regions). However, during the last GC we called
3914         // set_saved_mark() on all the GC alloc regions, so card
3915         // scanning might skip the [saved_mark_word()...top()] area of
3916         // those regions (i.e., the area we allocated objects into
3917         // during the last GC). But it shouldn't. Given that
3918         // saved_mark_word() is conditional on whether the GC time stamp
3919         // on the region is current or not, by incrementing the GC time
3920         // stamp here we invalidate all the GC time stamps on all the
3921         // regions and saved_mark_word() will simply return top() for
3922         // all the regions. This is a nicer way of ensuring this rather
3923         // than iterating over the regions and fixing them. In fact, the
3924         // GC time stamp increment here also ensures that
3925         // saved_mark_word() will return top() between pauses, i.e.,
3926         // during concurrent refinement. So we don't need the
3927         // is_gc_active() check to decided which top to use when
3928         // scanning cards (see CR 7039627).
3929         increment_gc_time_stamp();
3930 
3931         verify_after_gc();
3932         check_bitmaps("GC End");
3933 
3934         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3935         ref_processor_stw()->verify_no_references_recorded();
3936 
3937         // CM reference discovery will be re-enabled if necessary.
3938       }
3939 
3940 #ifdef TRACESPINNING
3941       ParallelTaskTerminator::print_termination_counts();
3942 #endif
3943 
3944       gc_epilogue(false);
3945     }
3946 
3947     // Print the remainder of the GC log output.
3948     log_gc_footer(os::elapsed_counter() - pause_start_counter);
3949 
3950     // It is not yet to safe to tell the concurrent mark to
3951     // start as we have some optional output below. We don't want the
3952     // output from the concurrent mark thread interfering with this
3953     // logging output either.
3954 
3955     _hrm.verify_optional();
3956     verify_region_sets_optional();
3957 
3958     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3959     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3960 
3961     print_heap_after_gc();
3962     trace_heap_after_gc(_gc_tracer_stw);
3963 
3964     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3965     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3966     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3967     // before any GC notifications are raised.
3968     g1mm()->update_sizes();
3969 
3970     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3971     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3972     _gc_timer_stw->register_gc_end();
3973     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3974   }
3975   // It should now be safe to tell the concurrent mark thread to start
3976   // without its logging output interfering with the logging output
3977   // that came from the pause.
3978 
3979   if (should_start_conc_mark) {
3980     // CAUTION: after the doConcurrentMark() call below,
3981     // the concurrent marking thread(s) could be running
3982     // concurrently with us. Make sure that anything after
3983     // this point does not assume that we are the only GC thread
3984     // running. Note: of course, the actual marking work will
3985     // not start until the safepoint itself is released in
3986     // SuspendibleThreadSet::desynchronize().
3987     doConcurrentMark();
3988   }
3989 
3990   return true;
3991 }
3992 
3993 void G1CollectedHeap::restore_preserved_marks() {
3994   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
3995   workers()->run_task(&rpm_task);
3996 }
3997 
3998 void G1CollectedHeap::remove_self_forwarding_pointers() {
3999   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4000   workers()->run_task(&rsfp_task);
4001 }
4002 
4003 void G1CollectedHeap::restore_after_evac_failure() {
4004   double remove_self_forwards_start = os::elapsedTime();
4005 
4006   remove_self_forwarding_pointers();
4007   restore_preserved_marks();
4008 
4009   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4010 }
4011 
4012 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4013   if (!_evacuation_failed) {
4014     _evacuation_failed = true;
4015   }
4016 
4017   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4018 
4019   // We want to call the "for_promotion_failure" version only in the
4020   // case of a promotion failure.
4021   if (m->must_be_preserved_for_promotion_failure(obj)) {
4022     OopAndMarkOop elem(obj, m);
4023     _preserved_objs[worker_id].push(elem);
4024   }
4025 }
4026 
4027 bool G1ParEvacuateFollowersClosure::offer_termination() {
4028   G1ParScanThreadState* const pss = par_scan_state();
4029   start_term_time();
4030   const bool res = terminator()->offer_termination();
4031   end_term_time();
4032   return res;
4033 }
4034 
4035 void G1ParEvacuateFollowersClosure::do_void() {
4036   G1ParScanThreadState* const pss = par_scan_state();
4037   pss->trim_queue();
4038   do {
4039     pss->steal_and_trim_queue(queues());
4040   } while (!offer_termination());
4041 }
4042 
4043 class G1ParTask : public AbstractGangTask {
4044 protected:
4045   G1CollectedHeap*         _g1h;
4046   G1ParScanThreadStateSet* _pss;
4047   RefToScanQueueSet*       _queues;
4048   G1RootProcessor*         _root_processor;
4049   ParallelTaskTerminator   _terminator;
4050   uint                     _n_workers;
4051 
4052 public:
4053   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4054     : AbstractGangTask("G1 collection"),
4055       _g1h(g1h),
4056       _pss(per_thread_states),
4057       _queues(task_queues),
4058       _root_processor(root_processor),
4059       _terminator(n_workers, _queues),
4060       _n_workers(n_workers)
4061   {}
4062 
4063   void work(uint worker_id) {
4064     if (worker_id >= _n_workers) return;  // no work needed this round
4065 
4066     double start_sec = os::elapsedTime();
4067     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4068 
4069     {
4070       ResourceMark rm;
4071       HandleMark   hm;
4072 
4073       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4074 
4075       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4076       pss->set_ref_processor(rp);
4077 
4078       double start_strong_roots_sec = os::elapsedTime();
4079 
4080       _root_processor->evacuate_roots(pss->closures(), worker_id);
4081 
4082       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4083 
4084       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4085       // treating the nmethods visited to act as roots for concurrent marking.
4086       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4087       // objects copied by the current evacuation.
4088       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4089                                                                              pss->closures()->weak_codeblobs(),
4090                                                                              worker_id);
4091 
4092       _pss->add_cards_scanned(worker_id, cards_scanned);
4093 
4094       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4095 
4096       double term_sec = 0.0;
4097       size_t evac_term_attempts = 0;
4098       {
4099         double start = os::elapsedTime();
4100         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4101         evac.do_void();
4102 
4103         evac_term_attempts = evac.term_attempts();
4104         term_sec = evac.term_time();
4105         double elapsed_sec = os::elapsedTime() - start;
4106         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4107         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4108         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4109       }
4110 
4111       assert(pss->queue_is_empty(), "should be empty");
4112 
4113       if (log_is_enabled(Debug, gc, task, stats)) {
4114         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4115         size_t lab_waste;
4116         size_t lab_undo_waste;
4117         pss->waste(lab_waste, lab_undo_waste);
4118         _g1h->print_termination_stats(worker_id,
4119                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4120                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4121                                       term_sec * 1000.0,                          /* evac term time */
4122                                       evac_term_attempts,                         /* evac term attempts */
4123                                       lab_waste,                                  /* alloc buffer waste */
4124                                       lab_undo_waste                              /* undo waste */
4125                                       );
4126       }
4127 
4128       // Close the inner scope so that the ResourceMark and HandleMark
4129       // destructors are executed here and are included as part of the
4130       // "GC Worker Time".
4131     }
4132     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4133   }
4134 };
4135 
4136 void G1CollectedHeap::print_termination_stats_hdr() {
4137   log_debug(gc, task, stats)("GC Termination Stats");
4138   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4139   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
4140   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4141 }
4142 
4143 void G1CollectedHeap::print_termination_stats(uint worker_id,
4144                                               double elapsed_ms,
4145                                               double strong_roots_ms,
4146                                               double term_ms,
4147                                               size_t term_attempts,
4148                                               size_t alloc_buffer_waste,
4149                                               size_t undo_waste) const {
4150   log_debug(gc, task, stats)
4151               ("%3d %9.2f %9.2f %6.2f "
4152                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4153                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4154                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4155                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4156                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4157                alloc_buffer_waste * HeapWordSize / K,
4158                undo_waste * HeapWordSize / K);
4159 }
4160 
4161 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4162 private:
4163   BoolObjectClosure* _is_alive;
4164   int _initial_string_table_size;
4165   int _initial_symbol_table_size;
4166 
4167   bool  _process_strings;
4168   int _strings_processed;
4169   int _strings_removed;
4170 
4171   bool  _process_symbols;
4172   int _symbols_processed;
4173   int _symbols_removed;
4174 
4175 public:
4176   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4177     AbstractGangTask("String/Symbol Unlinking"),
4178     _is_alive(is_alive),
4179     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4180     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4181 
4182     _initial_string_table_size = StringTable::the_table()->table_size();
4183     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4184     if (process_strings) {
4185       StringTable::clear_parallel_claimed_index();
4186     }
4187     if (process_symbols) {
4188       SymbolTable::clear_parallel_claimed_index();
4189     }
4190   }
4191 
4192   ~G1StringSymbolTableUnlinkTask() {
4193     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4194               "claim value %d after unlink less than initial string table size %d",
4195               StringTable::parallel_claimed_index(), _initial_string_table_size);
4196     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4197               "claim value %d after unlink less than initial symbol table size %d",
4198               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4199 
4200     log_debug(gc, stringdedup)("Cleaned string and symbol table, "
4201                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4202                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4203                                strings_processed(), strings_removed(),
4204                                symbols_processed(), symbols_removed());
4205   }
4206 
4207   void work(uint worker_id) {
4208     int strings_processed = 0;
4209     int strings_removed = 0;
4210     int symbols_processed = 0;
4211     int symbols_removed = 0;
4212     if (_process_strings) {
4213       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4214       Atomic::add(strings_processed, &_strings_processed);
4215       Atomic::add(strings_removed, &_strings_removed);
4216     }
4217     if (_process_symbols) {
4218       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4219       Atomic::add(symbols_processed, &_symbols_processed);
4220       Atomic::add(symbols_removed, &_symbols_removed);
4221     }
4222   }
4223 
4224   size_t strings_processed() const { return (size_t)_strings_processed; }
4225   size_t strings_removed()   const { return (size_t)_strings_removed; }
4226 
4227   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4228   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4229 };
4230 
4231 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4232 private:
4233   static Monitor* _lock;
4234 
4235   BoolObjectClosure* const _is_alive;
4236   const bool               _unloading_occurred;
4237   const uint               _num_workers;
4238 
4239   // Variables used to claim nmethods.
4240   nmethod* _first_nmethod;
4241   volatile nmethod* _claimed_nmethod;
4242 
4243   // The list of nmethods that need to be processed by the second pass.
4244   volatile nmethod* _postponed_list;
4245   volatile uint     _num_entered_barrier;
4246 
4247  public:
4248   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4249       _is_alive(is_alive),
4250       _unloading_occurred(unloading_occurred),
4251       _num_workers(num_workers),
4252       _first_nmethod(NULL),
4253       _claimed_nmethod(NULL),
4254       _postponed_list(NULL),
4255       _num_entered_barrier(0)
4256   {
4257     nmethod::increase_unloading_clock();
4258     // Get first alive nmethod
4259     NMethodIterator iter = NMethodIterator();
4260     if(iter.next_alive()) {
4261       _first_nmethod = iter.method();
4262     }
4263     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4264   }
4265 
4266   ~G1CodeCacheUnloadingTask() {
4267     CodeCache::verify_clean_inline_caches();
4268 
4269     CodeCache::set_needs_cache_clean(false);
4270     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4271 
4272     CodeCache::verify_icholder_relocations();
4273   }
4274 
4275  private:
4276   void add_to_postponed_list(nmethod* nm) {
4277       nmethod* old;
4278       do {
4279         old = (nmethod*)_postponed_list;
4280         nm->set_unloading_next(old);
4281       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4282   }
4283 
4284   void clean_nmethod(nmethod* nm) {
4285     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4286 
4287     if (postponed) {
4288       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4289       add_to_postponed_list(nm);
4290     }
4291 
4292     // Mark that this thread has been cleaned/unloaded.
4293     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4294     nm->set_unloading_clock(nmethod::global_unloading_clock());
4295   }
4296 
4297   void clean_nmethod_postponed(nmethod* nm) {
4298     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4299   }
4300 
4301   static const int MaxClaimNmethods = 16;
4302 
4303   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4304     nmethod* first;
4305     NMethodIterator last;
4306 
4307     do {
4308       *num_claimed_nmethods = 0;
4309 
4310       first = (nmethod*)_claimed_nmethod;
4311       last = NMethodIterator(first);
4312 
4313       if (first != NULL) {
4314 
4315         for (int i = 0; i < MaxClaimNmethods; i++) {
4316           if (!last.next_alive()) {
4317             break;
4318           }
4319           claimed_nmethods[i] = last.method();
4320           (*num_claimed_nmethods)++;
4321         }
4322       }
4323 
4324     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4325   }
4326 
4327   nmethod* claim_postponed_nmethod() {
4328     nmethod* claim;
4329     nmethod* next;
4330 
4331     do {
4332       claim = (nmethod*)_postponed_list;
4333       if (claim == NULL) {
4334         return NULL;
4335       }
4336 
4337       next = claim->unloading_next();
4338 
4339     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4340 
4341     return claim;
4342   }
4343 
4344  public:
4345   // Mark that we're done with the first pass of nmethod cleaning.
4346   void barrier_mark(uint worker_id) {
4347     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4348     _num_entered_barrier++;
4349     if (_num_entered_barrier == _num_workers) {
4350       ml.notify_all();
4351     }
4352   }
4353 
4354   // See if we have to wait for the other workers to
4355   // finish their first-pass nmethod cleaning work.
4356   void barrier_wait(uint worker_id) {
4357     if (_num_entered_barrier < _num_workers) {
4358       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4359       while (_num_entered_barrier < _num_workers) {
4360           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4361       }
4362     }
4363   }
4364 
4365   // Cleaning and unloading of nmethods. Some work has to be postponed
4366   // to the second pass, when we know which nmethods survive.
4367   void work_first_pass(uint worker_id) {
4368     // The first nmethods is claimed by the first worker.
4369     if (worker_id == 0 && _first_nmethod != NULL) {
4370       clean_nmethod(_first_nmethod);
4371       _first_nmethod = NULL;
4372     }
4373 
4374     int num_claimed_nmethods;
4375     nmethod* claimed_nmethods[MaxClaimNmethods];
4376 
4377     while (true) {
4378       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4379 
4380       if (num_claimed_nmethods == 0) {
4381         break;
4382       }
4383 
4384       for (int i = 0; i < num_claimed_nmethods; i++) {
4385         clean_nmethod(claimed_nmethods[i]);
4386       }
4387     }
4388   }
4389 
4390   void work_second_pass(uint worker_id) {
4391     nmethod* nm;
4392     // Take care of postponed nmethods.
4393     while ((nm = claim_postponed_nmethod()) != NULL) {
4394       clean_nmethod_postponed(nm);
4395     }
4396   }
4397 };
4398 
4399 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4400 
4401 class G1KlassCleaningTask : public StackObj {
4402   BoolObjectClosure*                      _is_alive;
4403   volatile jint                           _clean_klass_tree_claimed;
4404   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4405 
4406  public:
4407   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4408       _is_alive(is_alive),
4409       _clean_klass_tree_claimed(0),
4410       _klass_iterator() {
4411   }
4412 
4413  private:
4414   bool claim_clean_klass_tree_task() {
4415     if (_clean_klass_tree_claimed) {
4416       return false;
4417     }
4418 
4419     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4420   }
4421 
4422   InstanceKlass* claim_next_klass() {
4423     Klass* klass;
4424     do {
4425       klass =_klass_iterator.next_klass();
4426     } while (klass != NULL && !klass->is_instance_klass());
4427 
4428     // this can be null so don't call InstanceKlass::cast
4429     return static_cast<InstanceKlass*>(klass);
4430   }
4431 
4432 public:
4433 
4434   void clean_klass(InstanceKlass* ik) {
4435     ik->clean_weak_instanceklass_links(_is_alive);
4436   }
4437 
4438   void work() {
4439     ResourceMark rm;
4440 
4441     // One worker will clean the subklass/sibling klass tree.
4442     if (claim_clean_klass_tree_task()) {
4443       Klass::clean_subklass_tree(_is_alive);
4444     }
4445 
4446     // All workers will help cleaning the classes,
4447     InstanceKlass* klass;
4448     while ((klass = claim_next_klass()) != NULL) {
4449       clean_klass(klass);
4450     }
4451   }
4452 };
4453 
4454 // To minimize the remark pause times, the tasks below are done in parallel.
4455 class G1ParallelCleaningTask : public AbstractGangTask {
4456 private:
4457   G1StringSymbolTableUnlinkTask _string_symbol_task;
4458   G1CodeCacheUnloadingTask      _code_cache_task;
4459   G1KlassCleaningTask           _klass_cleaning_task;
4460 
4461 public:
4462   // The constructor is run in the VMThread.
4463   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4464       AbstractGangTask("Parallel Cleaning"),
4465       _string_symbol_task(is_alive, process_strings, process_symbols),
4466       _code_cache_task(num_workers, is_alive, unloading_occurred),
4467       _klass_cleaning_task(is_alive) {
4468   }
4469 
4470   // The parallel work done by all worker threads.
4471   void work(uint worker_id) {
4472     // Do first pass of code cache cleaning.
4473     _code_cache_task.work_first_pass(worker_id);
4474 
4475     // Let the threads mark that the first pass is done.
4476     _code_cache_task.barrier_mark(worker_id);
4477 
4478     // Clean the Strings and Symbols.
4479     _string_symbol_task.work(worker_id);
4480 
4481     // Wait for all workers to finish the first code cache cleaning pass.
4482     _code_cache_task.barrier_wait(worker_id);
4483 
4484     // Do the second code cache cleaning work, which realize on
4485     // the liveness information gathered during the first pass.
4486     _code_cache_task.work_second_pass(worker_id);
4487 
4488     // Clean all klasses that were not unloaded.
4489     _klass_cleaning_task.work();
4490   }
4491 };
4492 
4493 
4494 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4495                                         bool process_strings,
4496                                         bool process_symbols,
4497                                         bool class_unloading_occurred) {
4498   uint n_workers = workers()->active_workers();
4499 
4500   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4501                                         n_workers, class_unloading_occurred);
4502   workers()->run_task(&g1_unlink_task);
4503 }
4504 
4505 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4506                                                      bool process_strings, bool process_symbols) {
4507   {
4508     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4509     workers()->run_task(&g1_unlink_task);
4510   }
4511 
4512   if (G1StringDedup::is_enabled()) {
4513     G1StringDedup::unlink(is_alive);
4514   }
4515 }
4516 
4517 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4518  private:
4519   DirtyCardQueueSet* _queue;
4520   G1CollectedHeap* _g1h;
4521  public:
4522   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4523     _queue(queue), _g1h(g1h) { }
4524 
4525   virtual void work(uint worker_id) {
4526     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4527     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4528 
4529     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4530     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4531 
4532     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4533   }
4534 };
4535 
4536 void G1CollectedHeap::redirty_logged_cards() {
4537   double redirty_logged_cards_start = os::elapsedTime();
4538 
4539   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4540   dirty_card_queue_set().reset_for_par_iteration();
4541   workers()->run_task(&redirty_task);
4542 
4543   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4544   dcq.merge_bufferlists(&dirty_card_queue_set());
4545   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4546 
4547   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4548 }
4549 
4550 // Weak Reference Processing support
4551 
4552 // An always "is_alive" closure that is used to preserve referents.
4553 // If the object is non-null then it's alive.  Used in the preservation
4554 // of referent objects that are pointed to by reference objects
4555 // discovered by the CM ref processor.
4556 class G1AlwaysAliveClosure: public BoolObjectClosure {
4557   G1CollectedHeap* _g1;
4558 public:
4559   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4560   bool do_object_b(oop p) {
4561     if (p != NULL) {
4562       return true;
4563     }
4564     return false;
4565   }
4566 };
4567 
4568 bool G1STWIsAliveClosure::do_object_b(oop p) {
4569   // An object is reachable if it is outside the collection set,
4570   // or is inside and copied.
4571   return !_g1->is_in_cset(p) || p->is_forwarded();
4572 }
4573 
4574 // Non Copying Keep Alive closure
4575 class G1KeepAliveClosure: public OopClosure {
4576   G1CollectedHeap* _g1;
4577 public:
4578   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4579   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4580   void do_oop(oop* p) {
4581     oop obj = *p;
4582     assert(obj != NULL, "the caller should have filtered out NULL values");
4583 
4584     const InCSetState cset_state = _g1->in_cset_state(obj);
4585     if (!cset_state.is_in_cset_or_humongous()) {
4586       return;
4587     }
4588     if (cset_state.is_in_cset()) {
4589       assert( obj->is_forwarded(), "invariant" );
4590       *p = obj->forwardee();
4591     } else {
4592       assert(!obj->is_forwarded(), "invariant" );
4593       assert(cset_state.is_humongous(),
4594              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4595       _g1->set_humongous_is_live(obj);
4596     }
4597   }
4598 };
4599 
4600 // Copying Keep Alive closure - can be called from both
4601 // serial and parallel code as long as different worker
4602 // threads utilize different G1ParScanThreadState instances
4603 // and different queues.
4604 
4605 class G1CopyingKeepAliveClosure: public OopClosure {
4606   G1CollectedHeap*         _g1h;
4607   OopClosure*              _copy_non_heap_obj_cl;
4608   G1ParScanThreadState*    _par_scan_state;
4609 
4610 public:
4611   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4612                             OopClosure* non_heap_obj_cl,
4613                             G1ParScanThreadState* pss):
4614     _g1h(g1h),
4615     _copy_non_heap_obj_cl(non_heap_obj_cl),
4616     _par_scan_state(pss)
4617   {}
4618 
4619   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4620   virtual void do_oop(      oop* p) { do_oop_work(p); }
4621 
4622   template <class T> void do_oop_work(T* p) {
4623     oop obj = oopDesc::load_decode_heap_oop(p);
4624 
4625     if (_g1h->is_in_cset_or_humongous(obj)) {
4626       // If the referent object has been forwarded (either copied
4627       // to a new location or to itself in the event of an
4628       // evacuation failure) then we need to update the reference
4629       // field and, if both reference and referent are in the G1
4630       // heap, update the RSet for the referent.
4631       //
4632       // If the referent has not been forwarded then we have to keep
4633       // it alive by policy. Therefore we have copy the referent.
4634       //
4635       // If the reference field is in the G1 heap then we can push
4636       // on the PSS queue. When the queue is drained (after each
4637       // phase of reference processing) the object and it's followers
4638       // will be copied, the reference field set to point to the
4639       // new location, and the RSet updated. Otherwise we need to
4640       // use the the non-heap or metadata closures directly to copy
4641       // the referent object and update the pointer, while avoiding
4642       // updating the RSet.
4643 
4644       if (_g1h->is_in_g1_reserved(p)) {
4645         _par_scan_state->push_on_queue(p);
4646       } else {
4647         assert(!Metaspace::contains((const void*)p),
4648                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4649         _copy_non_heap_obj_cl->do_oop(p);
4650       }
4651     }
4652   }
4653 };
4654 
4655 // Serial drain queue closure. Called as the 'complete_gc'
4656 // closure for each discovered list in some of the
4657 // reference processing phases.
4658 
4659 class G1STWDrainQueueClosure: public VoidClosure {
4660 protected:
4661   G1CollectedHeap* _g1h;
4662   G1ParScanThreadState* _par_scan_state;
4663 
4664   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4665 
4666 public:
4667   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4668     _g1h(g1h),
4669     _par_scan_state(pss)
4670   { }
4671 
4672   void do_void() {
4673     G1ParScanThreadState* const pss = par_scan_state();
4674     pss->trim_queue();
4675   }
4676 };
4677 
4678 // Parallel Reference Processing closures
4679 
4680 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4681 // processing during G1 evacuation pauses.
4682 
4683 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4684 private:
4685   G1CollectedHeap*          _g1h;
4686   G1ParScanThreadStateSet*  _pss;
4687   RefToScanQueueSet*        _queues;
4688   WorkGang*                 _workers;
4689   uint                      _active_workers;
4690 
4691 public:
4692   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4693                            G1ParScanThreadStateSet* per_thread_states,
4694                            WorkGang* workers,
4695                            RefToScanQueueSet *task_queues,
4696                            uint n_workers) :
4697     _g1h(g1h),
4698     _pss(per_thread_states),
4699     _queues(task_queues),
4700     _workers(workers),
4701     _active_workers(n_workers)
4702   {
4703     assert(n_workers > 0, "shouldn't call this otherwise");
4704   }
4705 
4706   // Executes the given task using concurrent marking worker threads.
4707   virtual void execute(ProcessTask& task);
4708   virtual void execute(EnqueueTask& task);
4709 };
4710 
4711 // Gang task for possibly parallel reference processing
4712 
4713 class G1STWRefProcTaskProxy: public AbstractGangTask {
4714   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4715   ProcessTask&     _proc_task;
4716   G1CollectedHeap* _g1h;
4717   G1ParScanThreadStateSet* _pss;
4718   RefToScanQueueSet* _task_queues;
4719   ParallelTaskTerminator* _terminator;
4720 
4721 public:
4722   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4723                         G1CollectedHeap* g1h,
4724                         G1ParScanThreadStateSet* per_thread_states,
4725                         RefToScanQueueSet *task_queues,
4726                         ParallelTaskTerminator* terminator) :
4727     AbstractGangTask("Process reference objects in parallel"),
4728     _proc_task(proc_task),
4729     _g1h(g1h),
4730     _pss(per_thread_states),
4731     _task_queues(task_queues),
4732     _terminator(terminator)
4733   {}
4734 
4735   virtual void work(uint worker_id) {
4736     // The reference processing task executed by a single worker.
4737     ResourceMark rm;
4738     HandleMark   hm;
4739 
4740     G1STWIsAliveClosure is_alive(_g1h);
4741 
4742     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4743     pss->set_ref_processor(NULL);
4744 
4745     // Keep alive closure.
4746     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4747 
4748     // Complete GC closure
4749     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4750 
4751     // Call the reference processing task's work routine.
4752     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4753 
4754     // Note we cannot assert that the refs array is empty here as not all
4755     // of the processing tasks (specifically phase2 - pp2_work) execute
4756     // the complete_gc closure (which ordinarily would drain the queue) so
4757     // the queue may not be empty.
4758   }
4759 };
4760 
4761 // Driver routine for parallel reference processing.
4762 // Creates an instance of the ref processing gang
4763 // task and has the worker threads execute it.
4764 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4765   assert(_workers != NULL, "Need parallel worker threads.");
4766 
4767   ParallelTaskTerminator terminator(_active_workers, _queues);
4768   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4769 
4770   _workers->run_task(&proc_task_proxy);
4771 }
4772 
4773 // Gang task for parallel reference enqueueing.
4774 
4775 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4776   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4777   EnqueueTask& _enq_task;
4778 
4779 public:
4780   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4781     AbstractGangTask("Enqueue reference objects in parallel"),
4782     _enq_task(enq_task)
4783   { }
4784 
4785   virtual void work(uint worker_id) {
4786     _enq_task.work(worker_id);
4787   }
4788 };
4789 
4790 // Driver routine for parallel reference enqueueing.
4791 // Creates an instance of the ref enqueueing gang
4792 // task and has the worker threads execute it.
4793 
4794 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4795   assert(_workers != NULL, "Need parallel worker threads.");
4796 
4797   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4798 
4799   _workers->run_task(&enq_task_proxy);
4800 }
4801 
4802 // End of weak reference support closures
4803 
4804 // Abstract task used to preserve (i.e. copy) any referent objects
4805 // that are in the collection set and are pointed to by reference
4806 // objects discovered by the CM ref processor.
4807 
4808 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4809 protected:
4810   G1CollectedHeap*         _g1h;
4811   G1ParScanThreadStateSet* _pss;
4812   RefToScanQueueSet*       _queues;
4813   ParallelTaskTerminator   _terminator;
4814   uint                     _n_workers;
4815 
4816 public:
4817   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4818     AbstractGangTask("ParPreserveCMReferents"),
4819     _g1h(g1h),
4820     _pss(per_thread_states),
4821     _queues(task_queues),
4822     _terminator(workers, _queues),
4823     _n_workers(workers)
4824   { }
4825 
4826   void work(uint worker_id) {
4827     ResourceMark rm;
4828     HandleMark   hm;
4829 
4830     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4831     pss->set_ref_processor(NULL);
4832     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4833 
4834     // Is alive closure
4835     G1AlwaysAliveClosure always_alive(_g1h);
4836 
4837     // Copying keep alive closure. Applied to referent objects that need
4838     // to be copied.
4839     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4840 
4841     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4842 
4843     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4844     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4845 
4846     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4847     // So this must be true - but assert just in case someone decides to
4848     // change the worker ids.
4849     assert(worker_id < limit, "sanity");
4850     assert(!rp->discovery_is_atomic(), "check this code");
4851 
4852     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4853     for (uint idx = worker_id; idx < limit; idx += stride) {
4854       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4855 
4856       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4857       while (iter.has_next()) {
4858         // Since discovery is not atomic for the CM ref processor, we
4859         // can see some null referent objects.
4860         iter.load_ptrs(DEBUG_ONLY(true));
4861         oop ref = iter.obj();
4862 
4863         // This will filter nulls.
4864         if (iter.is_referent_alive()) {
4865           iter.make_referent_alive();
4866         }
4867         iter.move_to_next();
4868       }
4869     }
4870 
4871     // Drain the queue - which may cause stealing
4872     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4873     drain_queue.do_void();
4874     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4875     assert(pss->queue_is_empty(), "should be");
4876   }
4877 };
4878 
4879 void G1CollectedHeap::process_weak_jni_handles() {
4880   double ref_proc_start = os::elapsedTime();
4881 
4882   G1STWIsAliveClosure is_alive(this);
4883   G1KeepAliveClosure keep_alive(this);
4884   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4885 
4886   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4887   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4888 }
4889 
4890 // Weak Reference processing during an evacuation pause (part 1).
4891 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4892   double ref_proc_start = os::elapsedTime();
4893 
4894   ReferenceProcessor* rp = _ref_processor_stw;
4895   assert(rp->discovery_enabled(), "should have been enabled");
4896 
4897   // Any reference objects, in the collection set, that were 'discovered'
4898   // by the CM ref processor should have already been copied (either by
4899   // applying the external root copy closure to the discovered lists, or
4900   // by following an RSet entry).
4901   //
4902   // But some of the referents, that are in the collection set, that these
4903   // reference objects point to may not have been copied: the STW ref
4904   // processor would have seen that the reference object had already
4905   // been 'discovered' and would have skipped discovering the reference,
4906   // but would not have treated the reference object as a regular oop.
4907   // As a result the copy closure would not have been applied to the
4908   // referent object.
4909   //
4910   // We need to explicitly copy these referent objects - the references
4911   // will be processed at the end of remarking.
4912   //
4913   // We also need to do this copying before we process the reference
4914   // objects discovered by the STW ref processor in case one of these
4915   // referents points to another object which is also referenced by an
4916   // object discovered by the STW ref processor.
4917 
4918   uint no_of_gc_workers = workers()->active_workers();
4919 
4920   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4921                                                  per_thread_states,
4922                                                  no_of_gc_workers,
4923                                                  _task_queues);
4924 
4925   workers()->run_task(&keep_cm_referents);
4926 
4927   // Closure to test whether a referent is alive.
4928   G1STWIsAliveClosure is_alive(this);
4929 
4930   // Even when parallel reference processing is enabled, the processing
4931   // of JNI refs is serial and performed serially by the current thread
4932   // rather than by a worker. The following PSS will be used for processing
4933   // JNI refs.
4934 
4935   // Use only a single queue for this PSS.
4936   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4937   pss->set_ref_processor(NULL);
4938   assert(pss->queue_is_empty(), "pre-condition");
4939 
4940   // Keep alive closure.
4941   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4942 
4943   // Serial Complete GC closure
4944   G1STWDrainQueueClosure drain_queue(this, pss);
4945 
4946   // Setup the soft refs policy...
4947   rp->setup_policy(false);
4948 
4949   ReferenceProcessorStats stats;
4950   if (!rp->processing_is_mt()) {
4951     // Serial reference processing...
4952     stats = rp->process_discovered_references(&is_alive,
4953                                               &keep_alive,
4954                                               &drain_queue,
4955                                               NULL,
4956                                               _gc_timer_stw);
4957   } else {
4958     // Parallel reference processing
4959     assert(rp->num_q() == no_of_gc_workers, "sanity");
4960     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
4961 
4962     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4963     stats = rp->process_discovered_references(&is_alive,
4964                                               &keep_alive,
4965                                               &drain_queue,
4966                                               &par_task_executor,
4967                                               _gc_timer_stw);
4968   }
4969 
4970   _gc_tracer_stw->report_gc_reference_stats(stats);
4971 
4972   // We have completed copying any necessary live referent objects.
4973   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4974 
4975   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4976   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4977 }
4978 
4979 // Weak Reference processing during an evacuation pause (part 2).
4980 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4981   double ref_enq_start = os::elapsedTime();
4982 
4983   ReferenceProcessor* rp = _ref_processor_stw;
4984   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4985 
4986   // Now enqueue any remaining on the discovered lists on to
4987   // the pending list.
4988   if (!rp->processing_is_mt()) {
4989     // Serial reference processing...
4990     rp->enqueue_discovered_references();
4991   } else {
4992     // Parallel reference enqueueing
4993 
4994     uint n_workers = workers()->active_workers();
4995 
4996     assert(rp->num_q() == n_workers, "sanity");
4997     assert(n_workers <= rp->max_num_q(), "sanity");
4998 
4999     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5000     rp->enqueue_discovered_references(&par_task_executor);
5001   }
5002 
5003   rp->verify_no_references_recorded();
5004   assert(!rp->discovery_enabled(), "should have been disabled");
5005 
5006   // FIXME
5007   // CM's reference processing also cleans up the string and symbol tables.
5008   // Should we do that here also? We could, but it is a serial operation
5009   // and could significantly increase the pause time.
5010 
5011   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5012   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5013 }
5014 
5015 void G1CollectedHeap::pre_evacuate_collection_set() {
5016   _expand_heap_after_alloc_failure = true;
5017   _evacuation_failed = false;
5018 
5019   // Disable the hot card cache.
5020   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5021   hot_card_cache->reset_hot_cache_claimed_index();
5022   hot_card_cache->set_use_cache(false);
5023 
5024   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5025 }
5026 
5027 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5028   // Should G1EvacuationFailureALot be in effect for this GC?
5029   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5030 
5031   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5032   double start_par_time_sec = os::elapsedTime();
5033   double end_par_time_sec;
5034 
5035   {
5036     const uint n_workers = workers()->active_workers();
5037     G1RootProcessor root_processor(this, n_workers);
5038     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5039     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5040     if (collector_state()->during_initial_mark_pause()) {
5041       ClassLoaderDataGraph::clear_claimed_marks();
5042     }
5043 
5044     print_termination_stats_hdr();
5045 
5046     workers()->run_task(&g1_par_task);
5047     end_par_time_sec = os::elapsedTime();
5048 
5049     // Closing the inner scope will execute the destructor
5050     // for the G1RootProcessor object. We record the current
5051     // elapsed time before closing the scope so that time
5052     // taken for the destructor is NOT included in the
5053     // reported parallel time.
5054   }
5055 
5056   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5057 
5058   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5059   phase_times->record_par_time(par_time_ms);
5060 
5061   double code_root_fixup_time_ms =
5062         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5063   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5064 }
5065 
5066 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5067   // Process any discovered reference objects - we have
5068   // to do this _before_ we retire the GC alloc regions
5069   // as we may have to copy some 'reachable' referent
5070   // objects (and their reachable sub-graphs) that were
5071   // not copied during the pause.
5072   if (g1_policy()->should_process_references()) {
5073     process_discovered_references(per_thread_states);
5074   } else {
5075     ref_processor_stw()->verify_no_references_recorded();
5076     process_weak_jni_handles();
5077   }
5078 
5079   if (G1StringDedup::is_enabled()) {
5080     double fixup_start = os::elapsedTime();
5081 
5082     G1STWIsAliveClosure is_alive(this);
5083     G1KeepAliveClosure keep_alive(this);
5084     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
5085 
5086     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5087     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
5088   }
5089 
5090   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5091 
5092   if (evacuation_failed()) {
5093     restore_after_evac_failure();
5094 
5095     // Reset the G1EvacuationFailureALot counters and flags
5096     // Note: the values are reset only when an actual
5097     // evacuation failure occurs.
5098     NOT_PRODUCT(reset_evacuation_should_fail();)
5099   }
5100 
5101   // Enqueue any remaining references remaining on the STW
5102   // reference processor's discovered lists. We need to do
5103   // this after the card table is cleaned (and verified) as
5104   // the act of enqueueing entries on to the pending list
5105   // will log these updates (and dirty their associated
5106   // cards). We need these updates logged to update any
5107   // RSets.
5108   if (g1_policy()->should_process_references()) {
5109     enqueue_discovered_references(per_thread_states);
5110   } else {
5111     g1_policy()->phase_times()->record_ref_enq_time(0);
5112   }
5113 
5114   _allocator->release_gc_alloc_regions(evacuation_info);
5115 
5116   per_thread_states->flush();
5117 
5118   record_obj_copy_mem_stats();
5119 
5120   _survivor_evac_stats.adjust_desired_plab_sz();
5121   _old_evac_stats.adjust_desired_plab_sz();
5122 
5123   // Reset and re-enable the hot card cache.
5124   // Note the counts for the cards in the regions in the
5125   // collection set are reset when the collection set is freed.
5126   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5127   hot_card_cache->reset_hot_cache();
5128   hot_card_cache->set_use_cache(true);
5129 
5130   purge_code_root_memory();
5131 
5132   redirty_logged_cards();
5133 #if defined(COMPILER2) || INCLUDE_JVMCI
5134   DerivedPointerTable::update_pointers();
5135 #endif
5136 }
5137 
5138 void G1CollectedHeap::record_obj_copy_mem_stats() {
5139   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
5140 
5141   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5142                                                create_g1_evac_summary(&_old_evac_stats));
5143 }
5144 
5145 void G1CollectedHeap::free_region(HeapRegion* hr,
5146                                   FreeRegionList* free_list,
5147                                   bool par,
5148                                   bool locked) {
5149   assert(!hr->is_free(), "the region should not be free");
5150   assert(!hr->is_empty(), "the region should not be empty");
5151   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5152   assert(free_list != NULL, "pre-condition");
5153 
5154   if (G1VerifyBitmaps) {
5155     MemRegion mr(hr->bottom(), hr->end());
5156     concurrent_mark()->clearRangePrevBitmap(mr);
5157   }
5158 
5159   // Clear the card counts for this region.
5160   // Note: we only need to do this if the region is not young
5161   // (since we don't refine cards in young regions).
5162   if (!hr->is_young()) {
5163     _cg1r->hot_card_cache()->reset_card_counts(hr);
5164   }
5165   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5166   free_list->add_ordered(hr);
5167 }
5168 
5169 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5170                                             FreeRegionList* free_list,
5171                                             bool par) {
5172   assert(hr->is_humongous(), "this is only for humongous regions");
5173   assert(free_list != NULL, "pre-condition");
5174   hr->clear_humongous();
5175   free_region(hr, free_list, par);
5176 }
5177 
5178 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
5179                                            const uint humongous_regions_removed) {
5180   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
5181     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5182     _old_set.bulk_remove(old_regions_removed);
5183     _humongous_set.bulk_remove(humongous_regions_removed);
5184   }
5185 
5186 }
5187 
5188 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5189   assert(list != NULL, "list can't be null");
5190   if (!list->is_empty()) {
5191     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5192     _hrm.insert_list_into_free_list(list);
5193   }
5194 }
5195 
5196 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5197   decrease_used(bytes);
5198 }
5199 
5200 class G1ParCleanupCTTask : public AbstractGangTask {
5201   G1SATBCardTableModRefBS* _ct_bs;
5202   G1CollectedHeap* _g1h;
5203   HeapRegion* volatile _su_head;
5204 public:
5205   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5206                      G1CollectedHeap* g1h) :
5207     AbstractGangTask("G1 Par Cleanup CT Task"),
5208     _ct_bs(ct_bs), _g1h(g1h) { }
5209 
5210   void work(uint worker_id) {
5211     HeapRegion* r;
5212     while (r = _g1h->pop_dirty_cards_region()) {
5213       clear_cards(r);
5214     }
5215   }
5216 
5217   void clear_cards(HeapRegion* r) {
5218     // Cards of the survivors should have already been dirtied.
5219     if (!r->is_survivor()) {
5220       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5221     }
5222   }
5223 };
5224 
5225 #ifndef PRODUCT
5226 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5227   G1CollectedHeap* _g1h;
5228   G1SATBCardTableModRefBS* _ct_bs;
5229 public:
5230   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5231     : _g1h(g1h), _ct_bs(ct_bs) { }
5232   virtual bool doHeapRegion(HeapRegion* r) {
5233     if (r->is_survivor()) {
5234       _g1h->verify_dirty_region(r);
5235     } else {
5236       _g1h->verify_not_dirty_region(r);
5237     }
5238     return false;
5239   }
5240 };
5241 
5242 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5243   // All of the region should be clean.
5244   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5245   MemRegion mr(hr->bottom(), hr->end());
5246   ct_bs->verify_not_dirty_region(mr);
5247 }
5248 
5249 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5250   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5251   // dirty allocated blocks as they allocate them. The thread that
5252   // retires each region and replaces it with a new one will do a
5253   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5254   // not dirty that area (one less thing to have to do while holding
5255   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5256   // is dirty.
5257   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5258   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5259   if (hr->is_young()) {
5260     ct_bs->verify_g1_young_region(mr);
5261   } else {
5262     ct_bs->verify_dirty_region(mr);
5263   }
5264 }
5265 
5266 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5267   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5268   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5269     verify_dirty_region(hr);
5270   }
5271 }
5272 
5273 void G1CollectedHeap::verify_dirty_young_regions() {
5274   verify_dirty_young_list(_young_list->first_region());
5275 }
5276 
5277 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5278                                                HeapWord* tams, HeapWord* end) {
5279   guarantee(tams <= end,
5280             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5281   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5282   if (result < end) {
5283     log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
5284     log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
5285     return false;
5286   }
5287   return true;
5288 }
5289 
5290 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5291   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5292   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5293 
5294   HeapWord* bottom = hr->bottom();
5295   HeapWord* ptams  = hr->prev_top_at_mark_start();
5296   HeapWord* ntams  = hr->next_top_at_mark_start();
5297   HeapWord* end    = hr->end();
5298 
5299   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5300 
5301   bool res_n = true;
5302   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5303   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5304   // if we happen to be in that state.
5305   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5306     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5307   }
5308   if (!res_p || !res_n) {
5309     log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
5310     log_info(gc, verify)("#### Caller: %s", caller);
5311     return false;
5312   }
5313   return true;
5314 }
5315 
5316 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5317   if (!G1VerifyBitmaps) return;
5318 
5319   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5320 }
5321 
5322 class G1VerifyBitmapClosure : public HeapRegionClosure {
5323 private:
5324   const char* _caller;
5325   G1CollectedHeap* _g1h;
5326   bool _failures;
5327 
5328 public:
5329   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5330     _caller(caller), _g1h(g1h), _failures(false) { }
5331 
5332   bool failures() { return _failures; }
5333 
5334   virtual bool doHeapRegion(HeapRegion* hr) {
5335     bool result = _g1h->verify_bitmaps(_caller, hr);
5336     if (!result) {
5337       _failures = true;
5338     }
5339     return false;
5340   }
5341 };
5342 
5343 void G1CollectedHeap::check_bitmaps(const char* caller) {
5344   if (!G1VerifyBitmaps) return;
5345 
5346   G1VerifyBitmapClosure cl(caller, this);
5347   heap_region_iterate(&cl);
5348   guarantee(!cl.failures(), "bitmap verification");
5349 }
5350 
5351 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5352  private:
5353   bool _failures;
5354  public:
5355   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5356 
5357   virtual bool doHeapRegion(HeapRegion* hr) {
5358     uint i = hr->hrm_index();
5359     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5360     if (hr->is_humongous()) {
5361       if (hr->in_collection_set()) {
5362         log_info(gc, verify)("## humongous region %u in CSet", i);
5363         _failures = true;
5364         return true;
5365       }
5366       if (cset_state.is_in_cset()) {
5367         log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i);
5368         _failures = true;
5369         return true;
5370       }
5371       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5372         log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i);
5373         _failures = true;
5374         return true;
5375       }
5376     } else {
5377       if (cset_state.is_humongous()) {
5378         log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i);
5379         _failures = true;
5380         return true;
5381       }
5382       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5383         log_info(gc, verify)("## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5384                              hr->in_collection_set(), cset_state.value(), i);
5385         _failures = true;
5386         return true;
5387       }
5388       if (cset_state.is_in_cset()) {
5389         if (hr->is_young() != (cset_state.is_young())) {
5390           log_info(gc, verify)("## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5391                                hr->is_young(), cset_state.value(), i);
5392           _failures = true;
5393           return true;
5394         }
5395         if (hr->is_old() != (cset_state.is_old())) {
5396           log_info(gc, verify)("## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
5397                                hr->is_old(), cset_state.value(), i);
5398           _failures = true;
5399           return true;
5400         }
5401       }
5402     }
5403     return false;
5404   }
5405 
5406   bool failures() const { return _failures; }
5407 };
5408 
5409 bool G1CollectedHeap::check_cset_fast_test() {
5410   G1CheckCSetFastTableClosure cl;
5411   _hrm.iterate(&cl);
5412   return !cl.failures();
5413 }
5414 #endif // PRODUCT
5415 
5416 class G1ParScrubRemSetTask: public AbstractGangTask {
5417 protected:
5418   G1RemSet* _g1rs;
5419   BitMap* _region_bm;
5420   BitMap* _card_bm;
5421   HeapRegionClaimer _hrclaimer;
5422 
5423 public:
5424   G1ParScrubRemSetTask(G1RemSet* g1_rs, BitMap* region_bm, BitMap* card_bm, uint num_workers) :
5425     AbstractGangTask("G1 ScrubRS"),
5426     _g1rs(g1_rs),
5427     _region_bm(region_bm),
5428     _card_bm(card_bm),
5429     _hrclaimer(num_workers) {
5430   }
5431 
5432   void work(uint worker_id) {
5433     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
5434   }
5435 };
5436 
5437 void G1CollectedHeap::scrub_rem_set(BitMap* region_bm, BitMap* card_bm) {
5438   uint num_workers = workers()->active_workers();
5439   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), region_bm, card_bm, num_workers);
5440   workers()->run_task(&g1_par_scrub_rs_task);
5441 }
5442 
5443 void G1CollectedHeap::cleanUpCardTable() {
5444   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5445   double start = os::elapsedTime();
5446 
5447   {
5448     // Iterate over the dirty cards region list.
5449     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5450 
5451     workers()->run_task(&cleanup_task);
5452 #ifndef PRODUCT
5453     if (G1VerifyCTCleanup || VerifyAfterGC) {
5454       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5455       heap_region_iterate(&cleanup_verifier);
5456     }
5457 #endif
5458   }
5459 
5460   double elapsed = os::elapsedTime() - start;
5461   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5462 }
5463 
5464 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5465   size_t pre_used = 0;
5466   FreeRegionList local_free_list("Local List for CSet Freeing");
5467 
5468   double young_time_ms     = 0.0;
5469   double non_young_time_ms = 0.0;
5470 
5471   // Since the collection set is a superset of the the young list,
5472   // all we need to do to clear the young list is clear its
5473   // head and length, and unlink any young regions in the code below
5474   _young_list->clear();
5475 
5476   G1CollectorPolicy* policy = g1_policy();
5477 
5478   double start_sec = os::elapsedTime();
5479   bool non_young = true;
5480 
5481   HeapRegion* cur = cs_head;
5482   int age_bound = -1;
5483   size_t rs_lengths = 0;
5484 
5485   while (cur != NULL) {
5486     assert(!is_on_master_free_list(cur), "sanity");
5487     if (non_young) {
5488       if (cur->is_young()) {
5489         double end_sec = os::elapsedTime();
5490         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5491         non_young_time_ms += elapsed_ms;
5492 
5493         start_sec = os::elapsedTime();
5494         non_young = false;
5495       }
5496     } else {
5497       if (!cur->is_young()) {
5498         double end_sec = os::elapsedTime();
5499         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5500         young_time_ms += elapsed_ms;
5501 
5502         start_sec = os::elapsedTime();
5503         non_young = true;
5504       }
5505     }
5506 
5507     rs_lengths += cur->rem_set()->occupied_locked();
5508 
5509     HeapRegion* next = cur->next_in_collection_set();
5510     assert(cur->in_collection_set(), "bad CS");
5511     cur->set_next_in_collection_set(NULL);
5512     clear_in_cset(cur);
5513 
5514     if (cur->is_young()) {
5515       int index = cur->young_index_in_cset();
5516       assert(index != -1, "invariant");
5517       assert((uint) index < policy->young_cset_region_length(), "invariant");
5518       size_t words_survived = surviving_young_words[index];
5519       cur->record_surv_words_in_group(words_survived);
5520 
5521       // At this point the we have 'popped' cur from the collection set
5522       // (linked via next_in_collection_set()) but it is still in the
5523       // young list (linked via next_young_region()). Clear the
5524       // _next_young_region field.
5525       cur->set_next_young_region(NULL);
5526     } else {
5527       int index = cur->young_index_in_cset();
5528       assert(index == -1, "invariant");
5529     }
5530 
5531     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5532             (!cur->is_young() && cur->young_index_in_cset() == -1),
5533             "invariant" );
5534 
5535     if (!cur->evacuation_failed()) {
5536       MemRegion used_mr = cur->used_region();
5537 
5538       // And the region is empty.
5539       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5540       pre_used += cur->used();
5541       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5542     } else {
5543       cur->uninstall_surv_rate_group();
5544       if (cur->is_young()) {
5545         cur->set_young_index_in_cset(-1);
5546       }
5547       cur->set_evacuation_failed(false);
5548       // When moving a young gen region to old gen, we "allocate" that whole region
5549       // there. This is in addition to any already evacuated objects. Notify the
5550       // policy about that.
5551       // Old gen regions do not cause an additional allocation: both the objects
5552       // still in the region and the ones already moved are accounted for elsewhere.
5553       if (cur->is_young()) {
5554         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
5555       }
5556       // The region is now considered to be old.
5557       cur->set_old();
5558       // Do some allocation statistics accounting. Regions that failed evacuation
5559       // are always made old, so there is no need to update anything in the young
5560       // gen statistics, but we need to update old gen statistics.
5561       size_t used_words = cur->marked_bytes() / HeapWordSize;
5562       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5563       _old_set.add(cur);
5564       evacuation_info.increment_collectionset_used_after(cur->used());
5565     }
5566     cur = next;
5567   }
5568 
5569   evacuation_info.set_regions_freed(local_free_list.length());
5570   policy->record_max_rs_lengths(rs_lengths);
5571   policy->cset_regions_freed();
5572 
5573   double end_sec = os::elapsedTime();
5574   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5575 
5576   if (non_young) {
5577     non_young_time_ms += elapsed_ms;
5578   } else {
5579     young_time_ms += elapsed_ms;
5580   }
5581 
5582   prepend_to_freelist(&local_free_list);
5583   decrement_summary_bytes(pre_used);
5584   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5585   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5586 }
5587 
5588 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5589  private:
5590   FreeRegionList* _free_region_list;
5591   HeapRegionSet* _proxy_set;
5592   uint _humongous_regions_removed;
5593   size_t _freed_bytes;
5594  public:
5595 
5596   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5597     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
5598   }
5599 
5600   virtual bool doHeapRegion(HeapRegion* r) {
5601     if (!r->is_starts_humongous()) {
5602       return false;
5603     }
5604 
5605     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5606 
5607     oop obj = (oop)r->bottom();
5608     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5609 
5610     // The following checks whether the humongous object is live are sufficient.
5611     // The main additional check (in addition to having a reference from the roots
5612     // or the young gen) is whether the humongous object has a remembered set entry.
5613     //
5614     // A humongous object cannot be live if there is no remembered set for it
5615     // because:
5616     // - there can be no references from within humongous starts regions referencing
5617     // the object because we never allocate other objects into them.
5618     // (I.e. there are no intra-region references that may be missed by the
5619     // remembered set)
5620     // - as soon there is a remembered set entry to the humongous starts region
5621     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5622     // until the end of a concurrent mark.
5623     //
5624     // It is not required to check whether the object has been found dead by marking
5625     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5626     // all objects allocated during that time are considered live.
5627     // SATB marking is even more conservative than the remembered set.
5628     // So if at this point in the collection there is no remembered set entry,
5629     // nobody has a reference to it.
5630     // At the start of collection we flush all refinement logs, and remembered sets
5631     // are completely up-to-date wrt to references to the humongous object.
5632     //
5633     // Other implementation considerations:
5634     // - never consider object arrays at this time because they would pose
5635     // considerable effort for cleaning up the the remembered sets. This is
5636     // required because stale remembered sets might reference locations that
5637     // are currently allocated into.
5638     uint region_idx = r->hrm_index();
5639     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5640         !r->rem_set()->is_empty()) {
5641       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5642                                region_idx,
5643                                (size_t)obj->size() * HeapWordSize,
5644                                p2i(r->bottom()),
5645                                r->rem_set()->occupied(),
5646                                r->rem_set()->strong_code_roots_list_length(),
5647                                next_bitmap->isMarked(r->bottom()),
5648                                g1h->is_humongous_reclaim_candidate(region_idx),
5649                                obj->is_typeArray()
5650                               );
5651       return false;
5652     }
5653 
5654     guarantee(obj->is_typeArray(),
5655               "Only eagerly reclaiming type arrays is supported, but the object "
5656               PTR_FORMAT " is not.", p2i(r->bottom()));
5657 
5658     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5659                              region_idx,
5660                              (size_t)obj->size() * HeapWordSize,
5661                              p2i(r->bottom()),
5662                              r->rem_set()->occupied(),
5663                              r->rem_set()->strong_code_roots_list_length(),
5664                              next_bitmap->isMarked(r->bottom()),
5665                              g1h->is_humongous_reclaim_candidate(region_idx),
5666                              obj->is_typeArray()
5667                             );
5668 
5669     // Need to clear mark bit of the humongous object if already set.
5670     if (next_bitmap->isMarked(r->bottom())) {
5671       next_bitmap->clear(r->bottom());
5672     }
5673     do {
5674       HeapRegion* next = g1h->next_region_in_humongous(r);
5675       _freed_bytes += r->used();
5676       r->set_containing_set(NULL);
5677       _humongous_regions_removed++;
5678       g1h->free_humongous_region(r, _free_region_list, false);
5679       r = next;
5680     } while (r != NULL);
5681 
5682     return false;
5683   }
5684 
5685   uint humongous_free_count() {
5686     return _humongous_regions_removed;
5687   }
5688 
5689   size_t bytes_freed() const {
5690     return _freed_bytes;
5691   }
5692 };
5693 
5694 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5695   assert_at_safepoint(true);
5696 
5697   if (!G1EagerReclaimHumongousObjects ||
5698       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5699     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5700     return;
5701   }
5702 
5703   double start_time = os::elapsedTime();
5704 
5705   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5706 
5707   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5708   heap_region_iterate(&cl);
5709 
5710   remove_from_old_sets(0, cl.humongous_free_count());
5711 
5712   G1HRPrinter* hrp = hr_printer();
5713   if (hrp->is_active()) {
5714     FreeRegionListIterator iter(&local_cleanup_list);
5715     while (iter.more_available()) {
5716       HeapRegion* hr = iter.get_next();
5717       hrp->cleanup(hr);
5718     }
5719   }
5720 
5721   prepend_to_freelist(&local_cleanup_list);
5722   decrement_summary_bytes(cl.bytes_freed());
5723 
5724   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5725                                                                     cl.humongous_free_count());
5726 }
5727 
5728 // This routine is similar to the above but does not record
5729 // any policy statistics or update free lists; we are abandoning
5730 // the current incremental collection set in preparation of a
5731 // full collection. After the full GC we will start to build up
5732 // the incremental collection set again.
5733 // This is only called when we're doing a full collection
5734 // and is immediately followed by the tearing down of the young list.
5735 
5736 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5737   HeapRegion* cur = cs_head;
5738 
5739   while (cur != NULL) {
5740     HeapRegion* next = cur->next_in_collection_set();
5741     assert(cur->in_collection_set(), "bad CS");
5742     cur->set_next_in_collection_set(NULL);
5743     clear_in_cset(cur);
5744     cur->set_young_index_in_cset(-1);
5745     cur = next;
5746   }
5747 }
5748 
5749 void G1CollectedHeap::set_free_regions_coming() {
5750   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5751 
5752   assert(!free_regions_coming(), "pre-condition");
5753   _free_regions_coming = true;
5754 }
5755 
5756 void G1CollectedHeap::reset_free_regions_coming() {
5757   assert(free_regions_coming(), "pre-condition");
5758 
5759   {
5760     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5761     _free_regions_coming = false;
5762     SecondaryFreeList_lock->notify_all();
5763   }
5764 
5765   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5766 }
5767 
5768 void G1CollectedHeap::wait_while_free_regions_coming() {
5769   // Most of the time we won't have to wait, so let's do a quick test
5770   // first before we take the lock.
5771   if (!free_regions_coming()) {
5772     return;
5773   }
5774 
5775   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5776 
5777   {
5778     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5779     while (free_regions_coming()) {
5780       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5781     }
5782   }
5783 
5784   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5785 }
5786 
5787 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5788   return _allocator->is_retained_old_region(hr);
5789 }
5790 
5791 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5792   _young_list->push_region(hr);
5793 }
5794 
5795 class NoYoungRegionsClosure: public HeapRegionClosure {
5796 private:
5797   bool _success;
5798 public:
5799   NoYoungRegionsClosure() : _success(true) { }
5800   bool doHeapRegion(HeapRegion* r) {
5801     if (r->is_young()) {
5802       log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5803                            p2i(r->bottom()), p2i(r->end()));
5804       _success = false;
5805     }
5806     return false;
5807   }
5808   bool success() { return _success; }
5809 };
5810 
5811 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5812   bool ret = _young_list->check_list_empty(check_sample);
5813 
5814   if (check_heap) {
5815     NoYoungRegionsClosure closure;
5816     heap_region_iterate(&closure);
5817     ret = ret && closure.success();
5818   }
5819 
5820   return ret;
5821 }
5822 
5823 class TearDownRegionSetsClosure : public HeapRegionClosure {
5824 private:
5825   HeapRegionSet *_old_set;
5826 
5827 public:
5828   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5829 
5830   bool doHeapRegion(HeapRegion* r) {
5831     if (r->is_old()) {
5832       _old_set->remove(r);
5833     } else {
5834       // We ignore free regions, we'll empty the free list afterwards.
5835       // We ignore young regions, we'll empty the young list afterwards.
5836       // We ignore humongous regions, we're not tearing down the
5837       // humongous regions set.
5838       assert(r->is_free() || r->is_young() || r->is_humongous(),
5839              "it cannot be another type");
5840     }
5841     return false;
5842   }
5843 
5844   ~TearDownRegionSetsClosure() {
5845     assert(_old_set->is_empty(), "post-condition");
5846   }
5847 };
5848 
5849 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5850   assert_at_safepoint(true /* should_be_vm_thread */);
5851 
5852   if (!free_list_only) {
5853     TearDownRegionSetsClosure cl(&_old_set);
5854     heap_region_iterate(&cl);
5855 
5856     // Note that emptying the _young_list is postponed and instead done as
5857     // the first step when rebuilding the regions sets again. The reason for
5858     // this is that during a full GC string deduplication needs to know if
5859     // a collected region was young or old when the full GC was initiated.
5860   }
5861   _hrm.remove_all_free_regions();
5862 }
5863 
5864 void G1CollectedHeap::increase_used(size_t bytes) {
5865   _summary_bytes_used += bytes;
5866 }
5867 
5868 void G1CollectedHeap::decrease_used(size_t bytes) {
5869   assert(_summary_bytes_used >= bytes,
5870          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5871          _summary_bytes_used, bytes);
5872   _summary_bytes_used -= bytes;
5873 }
5874 
5875 void G1CollectedHeap::set_used(size_t bytes) {
5876   _summary_bytes_used = bytes;
5877 }
5878 
5879 class RebuildRegionSetsClosure : public HeapRegionClosure {
5880 private:
5881   bool            _free_list_only;
5882   HeapRegionSet*   _old_set;
5883   HeapRegionManager*   _hrm;
5884   size_t          _total_used;
5885 
5886 public:
5887   RebuildRegionSetsClosure(bool free_list_only,
5888                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5889     _free_list_only(free_list_only),
5890     _old_set(old_set), _hrm(hrm), _total_used(0) {
5891     assert(_hrm->num_free_regions() == 0, "pre-condition");
5892     if (!free_list_only) {
5893       assert(_old_set->is_empty(), "pre-condition");
5894     }
5895   }
5896 
5897   bool doHeapRegion(HeapRegion* r) {
5898     if (r->is_empty()) {
5899       // Add free regions to the free list
5900       r->set_free();
5901       r->set_allocation_context(AllocationContext::system());
5902       _hrm->insert_into_free_list(r);
5903     } else if (!_free_list_only) {
5904       assert(!r->is_young(), "we should not come across young regions");
5905 
5906       if (r->is_humongous()) {
5907         // We ignore humongous regions. We left the humongous set unchanged.
5908       } else {
5909         // Objects that were compacted would have ended up on regions
5910         // that were previously old or free.  Archive regions (which are
5911         // old) will not have been touched.
5912         assert(r->is_free() || r->is_old(), "invariant");
5913         // We now consider them old, so register as such. Leave
5914         // archive regions set that way, however, while still adding
5915         // them to the old set.
5916         if (!r->is_archive()) {
5917           r->set_old();
5918         }
5919         _old_set->add(r);
5920       }
5921       _total_used += r->used();
5922     }
5923 
5924     return false;
5925   }
5926 
5927   size_t total_used() {
5928     return _total_used;
5929   }
5930 };
5931 
5932 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5933   assert_at_safepoint(true /* should_be_vm_thread */);
5934 
5935   if (!free_list_only) {
5936     _young_list->empty_list();
5937   }
5938 
5939   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5940   heap_region_iterate(&cl);
5941 
5942   if (!free_list_only) {
5943     set_used(cl.total_used());
5944     if (_archive_allocator != NULL) {
5945       _archive_allocator->clear_used();
5946     }
5947   }
5948   assert(used_unlocked() == recalculate_used(),
5949          "inconsistent used_unlocked(), "
5950          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5951          used_unlocked(), recalculate_used());
5952 }
5953 
5954 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5955   _refine_cte_cl->set_concurrent(concurrent);
5956 }
5957 
5958 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5959   HeapRegion* hr = heap_region_containing(p);
5960   return hr->is_in(p);
5961 }
5962 
5963 // Methods for the mutator alloc region
5964 
5965 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5966                                                       bool force) {
5967   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5968   assert(!force || g1_policy()->can_expand_young_list(),
5969          "if force is true we should be able to expand the young list");
5970   bool young_list_full = g1_policy()->is_young_list_full();
5971   if (force || !young_list_full) {
5972     HeapRegion* new_alloc_region = new_region(word_size,
5973                                               false /* is_old */,
5974                                               false /* do_expand */);
5975     if (new_alloc_region != NULL) {
5976       set_region_short_lived_locked(new_alloc_region);
5977       _hr_printer.alloc(new_alloc_region, young_list_full);
5978       check_bitmaps("Mutator Region Allocation", new_alloc_region);
5979       return new_alloc_region;
5980     }
5981   }
5982   return NULL;
5983 }
5984 
5985 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5986                                                   size_t allocated_bytes) {
5987   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5988   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5989 
5990   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5991   increase_used(allocated_bytes);
5992   _hr_printer.retire(alloc_region);
5993   // We update the eden sizes here, when the region is retired,
5994   // instead of when it's allocated, since this is the point that its
5995   // used space has been recored in _summary_bytes_used.
5996   g1mm()->update_eden_size();
5997 }
5998 
5999 // Methods for the GC alloc regions
6000 
6001 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6002                                                  uint count,
6003                                                  InCSetState dest) {
6004   assert(FreeList_lock->owned_by_self(), "pre-condition");
6005 
6006   if (count < g1_policy()->max_regions(dest)) {
6007     const bool is_survivor = (dest.is_young());
6008     HeapRegion* new_alloc_region = new_region(word_size,
6009                                               !is_survivor,
6010                                               true /* do_expand */);
6011     if (new_alloc_region != NULL) {
6012       // We really only need to do this for old regions given that we
6013       // should never scan survivors. But it doesn't hurt to do it
6014       // for survivors too.
6015       new_alloc_region->record_timestamp();
6016       if (is_survivor) {
6017         new_alloc_region->set_survivor();
6018         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6019       } else {
6020         new_alloc_region->set_old();
6021         check_bitmaps("Old Region Allocation", new_alloc_region);
6022       }
6023       _hr_printer.alloc(new_alloc_region);
6024       bool during_im = collector_state()->during_initial_mark_pause();
6025       new_alloc_region->note_start_of_copying(during_im);
6026       return new_alloc_region;
6027     }
6028   }
6029   return NULL;
6030 }
6031 
6032 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6033                                              size_t allocated_bytes,
6034                                              InCSetState dest) {
6035   bool during_im = collector_state()->during_initial_mark_pause();
6036   alloc_region->note_end_of_copying(during_im);
6037   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6038   if (dest.is_young()) {
6039     young_list()->add_survivor_region(alloc_region);
6040   } else {
6041     _old_set.add(alloc_region);
6042   }
6043   _hr_printer.retire(alloc_region);
6044 }
6045 
6046 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6047   bool expanded = false;
6048   uint index = _hrm.find_highest_free(&expanded);
6049 
6050   if (index != G1_NO_HRM_INDEX) {
6051     if (expanded) {
6052       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
6053                                 HeapRegion::GrainWords * HeapWordSize);
6054     }
6055     _hrm.allocate_free_regions_starting_at(index, 1);
6056     return region_at(index);
6057   }
6058   return NULL;
6059 }
6060 
6061 // Heap region set verification
6062 
6063 class VerifyRegionListsClosure : public HeapRegionClosure {
6064 private:
6065   HeapRegionSet*   _old_set;
6066   HeapRegionSet*   _humongous_set;
6067   HeapRegionManager*   _hrm;
6068 
6069 public:
6070   uint _old_count;
6071   uint _humongous_count;
6072   uint _free_count;
6073 
6074   VerifyRegionListsClosure(HeapRegionSet* old_set,
6075                            HeapRegionSet* humongous_set,
6076                            HeapRegionManager* hrm) :
6077     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6078     _old_count(), _humongous_count(), _free_count(){ }
6079 
6080   bool doHeapRegion(HeapRegion* hr) {
6081     if (hr->is_young()) {
6082       // TODO
6083     } else if (hr->is_humongous()) {
6084       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6085       _humongous_count++;
6086     } else if (hr->is_empty()) {
6087       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6088       _free_count++;
6089     } else if (hr->is_old()) {
6090       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6091       _old_count++;
6092     } else {
6093       // There are no other valid region types. Check for one invalid
6094       // one we can identify: pinned without old or humongous set.
6095       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6096       ShouldNotReachHere();
6097     }
6098     return false;
6099   }
6100 
6101   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6102     guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
6103     guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
6104     guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
6105   }
6106 };
6107 
6108 void G1CollectedHeap::verify_region_sets() {
6109   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6110 
6111   // First, check the explicit lists.
6112   _hrm.verify();
6113   {
6114     // Given that a concurrent operation might be adding regions to
6115     // the secondary free list we have to take the lock before
6116     // verifying it.
6117     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6118     _secondary_free_list.verify_list();
6119   }
6120 
6121   // If a concurrent region freeing operation is in progress it will
6122   // be difficult to correctly attributed any free regions we come
6123   // across to the correct free list given that they might belong to
6124   // one of several (free_list, secondary_free_list, any local lists,
6125   // etc.). So, if that's the case we will skip the rest of the
6126   // verification operation. Alternatively, waiting for the concurrent
6127   // operation to complete will have a non-trivial effect on the GC's
6128   // operation (no concurrent operation will last longer than the
6129   // interval between two calls to verification) and it might hide
6130   // any issues that we would like to catch during testing.
6131   if (free_regions_coming()) {
6132     return;
6133   }
6134 
6135   // Make sure we append the secondary_free_list on the free_list so
6136   // that all free regions we will come across can be safely
6137   // attributed to the free_list.
6138   append_secondary_free_list_if_not_empty_with_lock();
6139 
6140   // Finally, make sure that the region accounting in the lists is
6141   // consistent with what we see in the heap.
6142 
6143   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6144   heap_region_iterate(&cl);
6145   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6146 }
6147 
6148 // Optimized nmethod scanning
6149 
6150 class RegisterNMethodOopClosure: public OopClosure {
6151   G1CollectedHeap* _g1h;
6152   nmethod* _nm;
6153 
6154   template <class T> void do_oop_work(T* p) {
6155     T heap_oop = oopDesc::load_heap_oop(p);
6156     if (!oopDesc::is_null(heap_oop)) {
6157       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6158       HeapRegion* hr = _g1h->heap_region_containing(obj);
6159       assert(!hr->is_continues_humongous(),
6160              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6161              " starting at " HR_FORMAT,
6162              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6163 
6164       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6165       hr->add_strong_code_root_locked(_nm);
6166     }
6167   }
6168 
6169 public:
6170   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6171     _g1h(g1h), _nm(nm) {}
6172 
6173   void do_oop(oop* p)       { do_oop_work(p); }
6174   void do_oop(narrowOop* p) { do_oop_work(p); }
6175 };
6176 
6177 class UnregisterNMethodOopClosure: public OopClosure {
6178   G1CollectedHeap* _g1h;
6179   nmethod* _nm;
6180 
6181   template <class T> void do_oop_work(T* p) {
6182     T heap_oop = oopDesc::load_heap_oop(p);
6183     if (!oopDesc::is_null(heap_oop)) {
6184       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6185       HeapRegion* hr = _g1h->heap_region_containing(obj);
6186       assert(!hr->is_continues_humongous(),
6187              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6188              " starting at " HR_FORMAT,
6189              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6190 
6191       hr->remove_strong_code_root(_nm);
6192     }
6193   }
6194 
6195 public:
6196   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6197     _g1h(g1h), _nm(nm) {}
6198 
6199   void do_oop(oop* p)       { do_oop_work(p); }
6200   void do_oop(narrowOop* p) { do_oop_work(p); }
6201 };
6202 
6203 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6204   CollectedHeap::register_nmethod(nm);
6205 
6206   guarantee(nm != NULL, "sanity");
6207   RegisterNMethodOopClosure reg_cl(this, nm);
6208   nm->oops_do(&reg_cl);
6209 }
6210 
6211 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6212   CollectedHeap::unregister_nmethod(nm);
6213 
6214   guarantee(nm != NULL, "sanity");
6215   UnregisterNMethodOopClosure reg_cl(this, nm);
6216   nm->oops_do(&reg_cl, true);
6217 }
6218 
6219 void G1CollectedHeap::purge_code_root_memory() {
6220   double purge_start = os::elapsedTime();
6221   G1CodeRootSet::purge();
6222   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6223   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6224 }
6225 
6226 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6227   G1CollectedHeap* _g1h;
6228 
6229 public:
6230   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6231     _g1h(g1h) {}
6232 
6233   void do_code_blob(CodeBlob* cb) {
6234     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6235     if (nm == NULL) {
6236       return;
6237     }
6238 
6239     if (ScavengeRootsInCode) {
6240       _g1h->register_nmethod(nm);
6241     }
6242   }
6243 };
6244 
6245 void G1CollectedHeap::rebuild_strong_code_roots() {
6246   RebuildStrongCodeRootClosure blob_cl(this);
6247   CodeCache::blobs_do(&blob_cl);
6248 }