1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_SPACE_HPP
  26 #define SHARE_VM_GC_SHARED_SPACE_HPP
  27 
  28 #include "gc/shared/blockOffsetTable.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/workgroup.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/iterator.hpp"
  33 #include "memory/memRegion.hpp"
  34 #include "oops/markOop.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "utilities/macros.hpp"
  37 
  38 // A space is an abstraction for the "storage units" backing
  39 // up the generation abstraction. It includes specific
  40 // implementations for keeping track of free and used space,
  41 // for iterating over objects and free blocks, etc.
  42 
  43 // Forward decls.
  44 class Space;
  45 class BlockOffsetArray;
  46 class BlockOffsetArrayContigSpace;
  47 class Generation;
  48 class CompactibleSpace;
  49 class BlockOffsetTable;
  50 class CardTableRS;
  51 class DirtyCardToOopClosure;
  52 
  53 // A Space describes a heap area. Class Space is an abstract
  54 // base class.
  55 //
  56 // Space supports allocation, size computation and GC support is provided.
  57 //
  58 // Invariant: bottom() and end() are on page_size boundaries and
  59 // bottom() <= top() <= end()
  60 // top() is inclusive and end() is exclusive.
  61 
  62 class Space: public CHeapObj<mtGC> {
  63   friend class VMStructs;
  64  protected:
  65   HeapWord* _bottom;
  66   HeapWord* _end;
  67 
  68   // Used in support of save_marks()
  69   HeapWord* _saved_mark_word;
  70 
  71   // A sequential tasks done structure. This supports
  72   // parallel GC, where we have threads dynamically
  73   // claiming sub-tasks from a larger parallel task.
  74   SequentialSubTasksDone _par_seq_tasks;
  75 
  76   Space():
  77     _bottom(NULL), _end(NULL) { }
  78 
  79  public:
  80   // Accessors
  81   HeapWord* bottom() const         { return _bottom; }
  82   HeapWord* end() const            { return _end;    }
  83   virtual void set_bottom(HeapWord* value) { _bottom = value; }
  84   virtual void set_end(HeapWord* value)    { _end = value; }
  85 
  86   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
  87 
  88   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
  89 
  90   // Returns true if this object has been allocated since a
  91   // generation's "save_marks" call.
  92   virtual bool obj_allocated_since_save_marks(const oop obj) const {
  93     return (HeapWord*)obj >= saved_mark_word();
  94   }
  95 
  96   virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
  97     return NULL;
  98   }
  99 
 100   // Returns a subregion of the space containing only the allocated objects in
 101   // the space.
 102   virtual MemRegion used_region() const = 0;
 103 
 104   // Returns a region that is guaranteed to contain (at least) all objects
 105   // allocated at the time of the last call to "save_marks".  If the space
 106   // initializes its DirtyCardToOopClosure's specifying the "contig" option
 107   // (that is, if the space is contiguous), then this region must contain only
 108   // such objects: the memregion will be from the bottom of the region to the
 109   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
 110   // the space must distinguish between objects in the region allocated before
 111   // and after the call to save marks.
 112   MemRegion used_region_at_save_marks() const {
 113     return MemRegion(bottom(), saved_mark_word());
 114   }
 115 
 116   // Initialization.
 117   // "initialize" should be called once on a space, before it is used for
 118   // any purpose.  The "mr" arguments gives the bounds of the space, and
 119   // the "clear_space" argument should be true unless the memory in "mr" is
 120   // known to be zeroed.
 121   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 122 
 123   // The "clear" method must be called on a region that may have
 124   // had allocation performed in it, but is now to be considered empty.
 125   virtual void clear(bool mangle_space);
 126 
 127   // For detecting GC bugs.  Should only be called at GC boundaries, since
 128   // some unused space may be used as scratch space during GC's.
 129   // We also call this when expanding a space to satisfy an allocation
 130   // request. See bug #4668531
 131   virtual void mangle_unused_area() = 0;
 132   virtual void mangle_unused_area_complete() = 0;
 133 
 134   // Testers
 135   bool is_empty() const              { return used() == 0; }
 136   bool not_empty() const             { return used() > 0; }
 137 
 138   // Returns true iff the given the space contains the
 139   // given address as part of an allocated object. For
 140   // certain kinds of spaces, this might be a potentially
 141   // expensive operation. To prevent performance problems
 142   // on account of its inadvertent use in product jvm's,
 143   // we restrict its use to assertion checks only.
 144   bool is_in(const void* p) const {
 145     return used_region().contains(p);
 146   }
 147 
 148   // Returns true iff the given reserved memory of the space contains the
 149   // given address.
 150   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
 151 
 152   // Returns true iff the given block is not allocated.
 153   virtual bool is_free_block(const HeapWord* p) const = 0;
 154 
 155   // Test whether p is double-aligned
 156   static bool is_aligned(void* p) {
 157     return ((intptr_t)p & (sizeof(double)-1)) == 0;
 158   }
 159 
 160   // Size computations.  Sizes are in bytes.
 161   size_t capacity()     const { return byte_size(bottom(), end()); }
 162   virtual size_t used() const = 0;
 163   virtual size_t free() const = 0;
 164 
 165   // Iterate over all the ref-containing fields of all objects in the
 166   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
 167   // applications of the closure are not included in the iteration.
 168   virtual void oop_iterate(ExtendedOopClosure* cl);
 169 
 170   // Iterate over all objects in the space, calling "cl.do_object" on
 171   // each.  Objects allocated by applications of the closure are not
 172   // included in the iteration.
 173   virtual void object_iterate(ObjectClosure* blk) = 0;
 174   // Similar to object_iterate() except only iterates over
 175   // objects whose internal references point to objects in the space.
 176   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
 177 
 178   // Create and return a new dirty card to oop closure. Can be
 179   // overridden to return the appropriate type of closure
 180   // depending on the type of space in which the closure will
 181   // operate. ResourceArea allocated.
 182   virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 183                                              CardTableModRefBS::PrecisionStyle precision,
 184                                              HeapWord* boundary,
 185                                              bool parallel);
 186 
 187   // If "p" is in the space, returns the address of the start of the
 188   // "block" that contains "p".  We say "block" instead of "object" since
 189   // some heaps may not pack objects densely; a chunk may either be an
 190   // object or a non-object.  If "p" is not in the space, return NULL.
 191   virtual HeapWord* block_start_const(const void* p) const = 0;
 192 
 193   // The non-const version may have benevolent side effects on the data
 194   // structure supporting these calls, possibly speeding up future calls.
 195   // The default implementation, however, is simply to call the const
 196   // version.
 197   virtual HeapWord* block_start(const void* p);
 198 
 199   // Requires "addr" to be the start of a chunk, and returns its size.
 200   // "addr + size" is required to be the start of a new chunk, or the end
 201   // of the active area of the heap.
 202   virtual size_t block_size(const HeapWord* addr) const = 0;
 203 
 204   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 205   // the block is an object.
 206   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 207 
 208   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 209   // the block is an object and the object is alive.
 210   virtual bool obj_is_alive(const HeapWord* addr) const;
 211 
 212   // Allocation (return NULL if full).  Assumes the caller has established
 213   // mutually exclusive access to the space.
 214   virtual HeapWord* allocate(size_t word_size) = 0;
 215 
 216   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 217   virtual HeapWord* par_allocate(size_t word_size) = 0;
 218 
 219   // Mark-sweep-compact support: all spaces can update pointers to objects
 220   // moving as a part of compaction.
 221   virtual void adjust_pointers() = 0;
 222 
 223   virtual void print() const;
 224   virtual void print_on(outputStream* st) const;
 225   virtual void print_short() const;
 226   virtual void print_short_on(outputStream* st) const;
 227 
 228 
 229   // Accessor for parallel sequential tasks.
 230   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
 231 
 232   // IF "this" is a ContiguousSpace, return it, else return NULL.
 233   virtual ContiguousSpace* toContiguousSpace() {
 234     return NULL;
 235   }
 236 
 237   // Debugging
 238   virtual void verify() const = 0;
 239 };
 240 
 241 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
 242 // OopClosure to (the addresses of) all the ref-containing fields that could
 243 // be modified by virtue of the given MemRegion being dirty. (Note that
 244 // because of the imprecise nature of the write barrier, this may iterate
 245 // over oops beyond the region.)
 246 // This base type for dirty card to oop closures handles memory regions
 247 // in non-contiguous spaces with no boundaries, and should be sub-classed
 248 // to support other space types. See ContiguousDCTOC for a sub-class
 249 // that works with ContiguousSpaces.
 250 
 251 class DirtyCardToOopClosure: public MemRegionClosureRO {
 252 protected:
 253   ExtendedOopClosure* _cl;
 254   Space* _sp;
 255   CardTableModRefBS::PrecisionStyle _precision;
 256   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
 257                                 // pointing below boundary.
 258   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
 259                                 // a downwards traversal; this is the
 260                                 // lowest location already done (or,
 261                                 // alternatively, the lowest address that
 262                                 // shouldn't be done again.  NULL means infinity.)
 263   NOT_PRODUCT(HeapWord* _last_bottom;)
 264   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
 265 
 266   // Get the actual top of the area on which the closure will
 267   // operate, given where the top is assumed to be (the end of the
 268   // memory region passed to do_MemRegion) and where the object
 269   // at the top is assumed to start. For example, an object may
 270   // start at the top but actually extend past the assumed top,
 271   // in which case the top becomes the end of the object.
 272   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 273 
 274   // Walk the given memory region from bottom to (actual) top
 275   // looking for objects and applying the oop closure (_cl) to
 276   // them. The base implementation of this treats the area as
 277   // blocks, where a block may or may not be an object. Sub-
 278   // classes should override this to provide more accurate
 279   // or possibly more efficient walking.
 280   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
 281 
 282 public:
 283   DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
 284                         CardTableModRefBS::PrecisionStyle precision,
 285                         HeapWord* boundary) :
 286     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
 287     _min_done(NULL) {
 288     NOT_PRODUCT(_last_bottom = NULL);
 289     NOT_PRODUCT(_last_explicit_min_done = NULL);
 290   }
 291 
 292   void do_MemRegion(MemRegion mr);
 293 
 294   void set_min_done(HeapWord* min_done) {
 295     _min_done = min_done;
 296     NOT_PRODUCT(_last_explicit_min_done = _min_done);
 297   }
 298 #ifndef PRODUCT
 299   void set_last_bottom(HeapWord* last_bottom) {
 300     _last_bottom = last_bottom;
 301   }
 302 #endif
 303 };
 304 
 305 // A structure to represent a point at which objects are being copied
 306 // during compaction.
 307 class CompactPoint : public StackObj {
 308 public:
 309   Generation* gen;
 310   CompactibleSpace* space;
 311   HeapWord* threshold;
 312 
 313   CompactPoint(Generation* g = NULL) :
 314     gen(g), space(NULL), threshold(0) {}
 315 };
 316 
 317 // A space that supports compaction operations.  This is usually, but not
 318 // necessarily, a space that is normally contiguous.  But, for example, a
 319 // free-list-based space whose normal collection is a mark-sweep without
 320 // compaction could still support compaction in full GC's.
 321 //
 322 // The compaction operations are implemented by the
 323 // scan_and_{adjust_pointers,compact,forward} function templates.
 324 // The following are, non-virtual, auxiliary functions used by these function templates:
 325 // - scan_limit()
 326 // - scanned_block_is_obj()
 327 // - scanned_block_size()
 328 // - adjust_obj_size()
 329 // - obj_size()
 330 // These functions are to be used exclusively by the scan_and_* function templates,
 331 // and must be defined for all (non-abstract) subclasses of CompactibleSpace.
 332 //
 333 // NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
 334 // in any of the auxiliary functions must also override the corresponding
 335 // prepare_for_compaction/adjust_pointers/compact functions using them.
 336 // If not, such changes will not be used or have no effect on the compaction operations.
 337 //
 338 // This translates to the following dependencies:
 339 // Overrides/definitions of
 340 //  - scan_limit
 341 //  - scanned_block_is_obj
 342 //  - scanned_block_size
 343 // require override/definition of prepare_for_compaction().
 344 // Similar dependencies exist between
 345 //  - adjust_obj_size  and adjust_pointers()
 346 //  - obj_size         and compact().
 347 //
 348 // Additionally, this also means that changes to block_size() or block_is_obj() that
 349 // should be effective during the compaction operations must provide a corresponding
 350 // definition of scanned_block_size/scanned_block_is_obj respectively.
 351 class CompactibleSpace: public Space {
 352   friend class VMStructs;
 353   friend class CompactibleFreeListSpace;
 354 private:
 355   HeapWord* _compaction_top;
 356   CompactibleSpace* _next_compaction_space;
 357 
 358   // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
 359   inline size_t adjust_obj_size(size_t size) const {
 360     return size;
 361   }
 362 
 363   inline size_t obj_size(const HeapWord* addr) const;
 364 
 365 public:
 366   CompactibleSpace() :
 367    _compaction_top(NULL), _next_compaction_space(NULL) {}
 368 
 369   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 370   virtual void clear(bool mangle_space);
 371 
 372   // Used temporarily during a compaction phase to hold the value
 373   // top should have when compaction is complete.
 374   HeapWord* compaction_top() const { return _compaction_top;    }
 375 
 376   void set_compaction_top(HeapWord* value) {
 377     assert(value == NULL || (value >= bottom() && value <= end()),
 378       "should point inside space");
 379     _compaction_top = value;
 380   }
 381 
 382   // Perform operations on the space needed after a compaction
 383   // has been performed.
 384   virtual void reset_after_compaction() = 0;
 385 
 386   // Returns the next space (in the current generation) to be compacted in
 387   // the global compaction order.  Also is used to select the next
 388   // space into which to compact.
 389 
 390   virtual CompactibleSpace* next_compaction_space() const {
 391     return _next_compaction_space;
 392   }
 393 
 394   void set_next_compaction_space(CompactibleSpace* csp) {
 395     _next_compaction_space = csp;
 396   }
 397 
 398   // MarkSweep support phase2
 399 
 400   // Start the process of compaction of the current space: compute
 401   // post-compaction addresses, and insert forwarding pointers.  The fields
 402   // "cp->gen" and "cp->compaction_space" are the generation and space into
 403   // which we are currently compacting.  This call updates "cp" as necessary,
 404   // and leaves the "compaction_top" of the final value of
 405   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
 406   // this phase as if the final copy had occurred; if so, "cp->threshold"
 407   // indicates when the next such action should be taken.
 408   virtual void prepare_for_compaction(CompactPoint* cp) = 0;
 409   // MarkSweep support phase3
 410   virtual void adjust_pointers();
 411   // MarkSweep support phase4
 412   virtual void compact();
 413 
 414   // The maximum percentage of objects that can be dead in the compacted
 415   // live part of a compacted space ("deadwood" support.)
 416   virtual size_t allowed_dead_ratio() const { return 0; };
 417 
 418   // Some contiguous spaces may maintain some data structures that should
 419   // be updated whenever an allocation crosses a boundary.  This function
 420   // returns the first such boundary.
 421   // (The default implementation returns the end of the space, so the
 422   // boundary is never crossed.)
 423   virtual HeapWord* initialize_threshold() { return end(); }
 424 
 425   // "q" is an object of the given "size" that should be forwarded;
 426   // "cp" names the generation ("gen") and containing "this" (which must
 427   // also equal "cp->space").  "compact_top" is where in "this" the
 428   // next object should be forwarded to.  If there is room in "this" for
 429   // the object, insert an appropriate forwarding pointer in "q".
 430   // If not, go to the next compaction space (there must
 431   // be one, since compaction must succeed -- we go to the first space of
 432   // the previous generation if necessary, updating "cp"), reset compact_top
 433   // and then forward.  In either case, returns the new value of "compact_top".
 434   // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
 435   // function of the then-current compaction space, and updates "cp->threshold
 436   // accordingly".
 437   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
 438                     HeapWord* compact_top);
 439 
 440   // Return a size with adjustments as required of the space.
 441   virtual size_t adjust_object_size_v(size_t size) const { return size; }
 442 
 443 protected:
 444   // Used during compaction.
 445   HeapWord* _first_dead;
 446   HeapWord* _end_of_live;
 447 
 448   // Minimum size of a free block.
 449   virtual size_t minimum_free_block_size() const { return 0; }
 450 
 451   // This the function is invoked when an allocation of an object covering
 452   // "start" to "end occurs crosses the threshold; returns the next
 453   // threshold.  (The default implementation does nothing.)
 454   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
 455     return end();
 456   }
 457 
 458   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
 459   // free block of the given "word_len", and that "q", were it an object,
 460   // would not move if forwarded.  If the size allows, fill the free
 461   // block with an object, to prevent excessive compaction.  Returns "true"
 462   // iff the free region was made deadspace, and modifies
 463   // "allowed_deadspace_words" to reflect the number of available deadspace
 464   // words remaining after this operation.
 465   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
 466                         size_t word_len);
 467 
 468   // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
 469   // The space argument should be a subclass of CompactibleSpace, implementing
 470   // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
 471   // and possibly also overriding obj_size(), and adjust_obj_size().
 472   // These functions should avoid virtual calls whenever possible.
 473 
 474   // Frequently calls adjust_obj_size().
 475   template <class SpaceType>
 476   static inline void scan_and_adjust_pointers(SpaceType* space);
 477 
 478   // Frequently calls obj_size().
 479   template <class SpaceType>
 480   static inline void scan_and_compact(SpaceType* space);
 481 
 482   // Frequently calls scanned_block_is_obj() and scanned_block_size().
 483   // Requires the scan_limit() function.
 484   template <class SpaceType>
 485   static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
 486 };
 487 
 488 class GenSpaceMangler;
 489 
 490 // A space in which the free area is contiguous.  It therefore supports
 491 // faster allocation, and compaction.
 492 class ContiguousSpace: public CompactibleSpace {
 493   friend class VMStructs;
 494   // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
 495   template <typename SpaceType>
 496   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 497 
 498  private:
 499   // Auxiliary functions for scan_and_forward support.
 500   // See comments for CompactibleSpace for more information.
 501   inline HeapWord* scan_limit() const {
 502     return top();
 503   }
 504 
 505   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 506     return true; // Always true, since scan_limit is top
 507   }
 508 
 509   inline size_t scanned_block_size(const HeapWord* addr) const;
 510 
 511  protected:
 512   HeapWord* _top;
 513   HeapWord* _concurrent_iteration_safe_limit;
 514   // A helper for mangling the unused area of the space in debug builds.
 515   GenSpaceMangler* _mangler;
 516 
 517   GenSpaceMangler* mangler() { return _mangler; }
 518 
 519   // Allocation helpers (return NULL if full).
 520   inline HeapWord* allocate_impl(size_t word_size);
 521   inline HeapWord* par_allocate_impl(size_t word_size);
 522 
 523  public:
 524   ContiguousSpace();
 525   ~ContiguousSpace();
 526 
 527   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 528   virtual void clear(bool mangle_space);
 529 
 530   // Accessors
 531   HeapWord* top() const            { return _top;    }
 532   void set_top(HeapWord* value)    { _top = value; }
 533 
 534   void set_saved_mark()            { _saved_mark_word = top();    }
 535   void reset_saved_mark()          { _saved_mark_word = bottom(); }
 536 
 537   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
 538 
 539   // In debug mode mangle (write it with a particular bit
 540   // pattern) the unused part of a space.
 541 
 542   // Used to save the an address in a space for later use during mangling.
 543   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
 544   // Used to save the space's current top for later use during mangling.
 545   void set_top_for_allocations() PRODUCT_RETURN;
 546 
 547   // Mangle regions in the space from the current top up to the
 548   // previously mangled part of the space.
 549   void mangle_unused_area() PRODUCT_RETURN;
 550   // Mangle [top, end)
 551   void mangle_unused_area_complete() PRODUCT_RETURN;
 552 
 553   // Do some sparse checking on the area that should have been mangled.
 554   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
 555   // Check the complete area that should have been mangled.
 556   // This code may be NULL depending on the macro DEBUG_MANGLING.
 557   void check_mangled_unused_area_complete() PRODUCT_RETURN;
 558 
 559   // Size computations: sizes in bytes.
 560   size_t capacity() const        { return byte_size(bottom(), end()); }
 561   size_t used() const            { return byte_size(bottom(), top()); }
 562   size_t free() const            { return byte_size(top(),    end()); }
 563 
 564   virtual bool is_free_block(const HeapWord* p) const;
 565 
 566   // In a contiguous space we have a more obvious bound on what parts
 567   // contain objects.
 568   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 569 
 570   // Allocation (return NULL if full)
 571   virtual HeapWord* allocate(size_t word_size);
 572   virtual HeapWord* par_allocate(size_t word_size);
 573   HeapWord* allocate_aligned(size_t word_size);
 574 
 575   // Iteration
 576   void oop_iterate(ExtendedOopClosure* cl);
 577   void object_iterate(ObjectClosure* blk);
 578   // For contiguous spaces this method will iterate safely over objects
 579   // in the space (i.e., between bottom and top) when at a safepoint.
 580   void safe_object_iterate(ObjectClosure* blk);
 581 
 582   // Iterate over as many initialized objects in the space as possible,
 583   // calling "cl.do_object_careful" on each. Return NULL if all objects
 584   // in the space (at the start of the iteration) were iterated over.
 585   // Return an address indicating the extent of the iteration in the
 586   // event that the iteration had to return because of finding an
 587   // uninitialized object in the space, or if the closure "cl"
 588   // signaled early termination.
 589   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
 590   HeapWord* concurrent_iteration_safe_limit() {
 591     assert(_concurrent_iteration_safe_limit <= top(),
 592            "_concurrent_iteration_safe_limit update missed");
 593     return _concurrent_iteration_safe_limit;
 594   }
 595   // changes the safe limit, all objects from bottom() to the new
 596   // limit should be properly initialized
 597   void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
 598     assert(new_limit <= top(), "uninitialized objects in the safe range");
 599     _concurrent_iteration_safe_limit = new_limit;
 600   }
 601 
 602 
 603 #if INCLUDE_ALL_GCS
 604   // In support of parallel oop_iterate.
 605   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
 606     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
 607 
 608     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
 609   #undef ContigSpace_PAR_OOP_ITERATE_DECL
 610 #endif // INCLUDE_ALL_GCS
 611 
 612   // Compaction support
 613   virtual void reset_after_compaction() {
 614     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
 615     set_top(compaction_top());
 616     // set new iteration safe limit
 617     set_concurrent_iteration_safe_limit(compaction_top());
 618   }
 619 
 620   // Override.
 621   DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
 622                                      CardTableModRefBS::PrecisionStyle precision,
 623                                      HeapWord* boundary,
 624                                      bool parallel);
 625 
 626   // Apply "blk->do_oop" to the addresses of all reference fields in objects
 627   // starting with the _saved_mark_word, which was noted during a generation's
 628   // save_marks and is required to denote the head of an object.
 629   // Fields in objects allocated by applications of the closure
 630   // *are* included in the iteration.
 631   // Updates _saved_mark_word to point to just after the last object
 632   // iterated over.
 633 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 634   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
 635 
 636   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
 637 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
 638 
 639   // Same as object_iterate, but starting from "mark", which is required
 640   // to denote the start of an object.  Objects allocated by
 641   // applications of the closure *are* included in the iteration.
 642   virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);
 643 
 644   // Very inefficient implementation.
 645   virtual HeapWord* block_start_const(const void* p) const;
 646   size_t block_size(const HeapWord* p) const;
 647   // If a block is in the allocated area, it is an object.
 648   bool block_is_obj(const HeapWord* p) const { return p < top(); }
 649 
 650   // Addresses for inlined allocation
 651   HeapWord** top_addr() { return &_top; }
 652   HeapWord** end_addr() { return &_end; }
 653 
 654   // Overrides for more efficient compaction support.
 655   void prepare_for_compaction(CompactPoint* cp);
 656 
 657   virtual void print_on(outputStream* st) const;
 658 
 659   // Checked dynamic downcasts.
 660   virtual ContiguousSpace* toContiguousSpace() {
 661     return this;
 662   }
 663 
 664   // Debugging
 665   virtual void verify() const;
 666 
 667   // Used to increase collection frequency.  "factor" of 0 means entire
 668   // space.
 669   void allocate_temporary_filler(int factor);
 670 };
 671 
 672 
 673 // A dirty card to oop closure that does filtering.
 674 // It knows how to filter out objects that are outside of the _boundary.
 675 class Filtering_DCTOC : public DirtyCardToOopClosure {
 676 protected:
 677   // Override.
 678   void walk_mem_region(MemRegion mr,
 679                        HeapWord* bottom, HeapWord* top);
 680 
 681   // Walk the given memory region, from bottom to top, applying
 682   // the given oop closure to (possibly) all objects found. The
 683   // given oop closure may or may not be the same as the oop
 684   // closure with which this closure was created, as it may
 685   // be a filtering closure which makes use of the _boundary.
 686   // We offer two signatures, so the FilteringClosure static type is
 687   // apparent.
 688   virtual void walk_mem_region_with_cl(MemRegion mr,
 689                                        HeapWord* bottom, HeapWord* top,
 690                                        ExtendedOopClosure* cl) = 0;
 691   virtual void walk_mem_region_with_cl(MemRegion mr,
 692                                        HeapWord* bottom, HeapWord* top,
 693                                        FilteringClosure* cl) = 0;
 694 
 695 public:
 696   Filtering_DCTOC(Space* sp, ExtendedOopClosure* cl,
 697                   CardTableModRefBS::PrecisionStyle precision,
 698                   HeapWord* boundary) :
 699     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
 700 };
 701 
 702 // A dirty card to oop closure for contiguous spaces
 703 // (ContiguousSpace and sub-classes).
 704 // It is a FilteringClosure, as defined above, and it knows:
 705 //
 706 // 1. That the actual top of any area in a memory region
 707 //    contained by the space is bounded by the end of the contiguous
 708 //    region of the space.
 709 // 2. That the space is really made up of objects and not just
 710 //    blocks.
 711 
 712 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
 713 protected:
 714   // Overrides.
 715   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
 716 
 717   virtual void walk_mem_region_with_cl(MemRegion mr,
 718                                        HeapWord* bottom, HeapWord* top,
 719                                        ExtendedOopClosure* cl);
 720   virtual void walk_mem_region_with_cl(MemRegion mr,
 721                                        HeapWord* bottom, HeapWord* top,
 722                                        FilteringClosure* cl);
 723 
 724 public:
 725   ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
 726                        CardTableModRefBS::PrecisionStyle precision,
 727                        HeapWord* boundary) :
 728     Filtering_DCTOC(sp, cl, precision, boundary)
 729   {}
 730 };
 731 
 732 // A ContigSpace that Supports an efficient "block_start" operation via
 733 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
 734 // other spaces.)  This is the abstract base class for old generation
 735 // (tenured) spaces.
 736 
 737 class OffsetTableContigSpace: public ContiguousSpace {
 738   friend class VMStructs;
 739  protected:
 740   BlockOffsetArrayContigSpace _offsets;
 741   Mutex _par_alloc_lock;
 742 
 743  public:
 744   // Constructor
 745   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 746                          MemRegion mr);
 747 
 748   void set_bottom(HeapWord* value);
 749   void set_end(HeapWord* value);
 750 
 751   void clear(bool mangle_space);
 752 
 753   inline HeapWord* block_start_const(const void* p) const;
 754 
 755   // Add offset table update.
 756   virtual inline HeapWord* allocate(size_t word_size);
 757   inline HeapWord* par_allocate(size_t word_size);
 758 
 759   // MarkSweep support phase3
 760   virtual HeapWord* initialize_threshold();
 761   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 762 
 763   virtual void print_on(outputStream* st) const;
 764 
 765   // Debugging
 766   void verify() const;
 767 };
 768 
 769 
 770 // Class TenuredSpace is used by TenuredGeneration
 771 
 772 class TenuredSpace: public OffsetTableContigSpace {
 773   friend class VMStructs;
 774  protected:
 775   // Mark sweep support
 776   size_t allowed_dead_ratio() const;
 777  public:
 778   // Constructor
 779   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
 780                MemRegion mr) :
 781     OffsetTableContigSpace(sharedOffsetArray, mr) {}
 782 };
 783 #endif // SHARE_VM_GC_SHARED_SPACE_HPP