1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/cardTableRS.hpp"
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/gcHeapSummary.hpp"
  30 #include "gc/shared/gcLocker.inline.hpp"
  31 #include "gc/shared/gcPolicyCounters.hpp"
  32 #include "gc/shared/gcTimer.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "gc/shared/genCollectedHeap.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/generationSpec.hpp"
  38 #include "gc/shared/referencePolicy.hpp"
  39 #include "gc/shared/space.inline.hpp"
  40 #include "gc/shared/spaceDecorator.hpp"
  41 #include "gc/shared/strongRootsScope.hpp"
  42 #include "logging/log.hpp"
  43 #include "memory/iterator.hpp"
  44 #include "oops/instanceRefKlass.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/prefetch.inline.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "utilities/copy.hpp"
  51 #include "utilities/globalDefinitions.hpp"
  52 #include "utilities/stack.inline.hpp"
  53 #if INCLUDE_ALL_GCS
  54 #include "gc/cms/parOopClosures.hpp"
  55 #endif
  56 
  57 //
  58 // DefNewGeneration functions.
  59 
  60 // Methods of protected closure types.
  61 
  62 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  63   assert(_young_gen->kind() == Generation::ParNew ||
  64          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  65 }
  66 
  67 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  68   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  69 }
  70 
  71 DefNewGeneration::KeepAliveClosure::
  72 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  73   _rs = GenCollectedHeap::heap()->rem_set();
  74 }
  75 
  76 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  77 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  78 
  79 
  80 DefNewGeneration::FastKeepAliveClosure::
  81 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  82   DefNewGeneration::KeepAliveClosure(cl) {
  83   _boundary = g->reserved().end();
  84 }
  85 
  86 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  87 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  88 
  89 DefNewGeneration::EvacuateFollowersClosure::
  90 EvacuateFollowersClosure(GenCollectedHeap* gch,
  91                          ScanClosure* cur,
  92                          ScanClosure* older) :
  93   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  94 {}
  95 
  96 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  97   do {
  98     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
  99   } while (!_gch->no_allocs_since_save_marks());
 100 }
 101 
 102 DefNewGeneration::FastEvacuateFollowersClosure::
 103 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 104                              FastScanClosure* cur,
 105                              FastScanClosure* older) :
 106   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 107 {
 108   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 109   _young_gen = (DefNewGeneration*)_gch->young_gen();
 110 }
 111 
 112 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 113   do {
 114     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 115   } while (!_gch->no_allocs_since_save_marks());
 116   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 117 }
 118 
 119 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 120     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 121 {
 122   _boundary = _g->reserved().end();
 123 }
 124 
 125 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 126 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 127 
 128 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 129     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 130 {
 131   _boundary = _g->reserved().end();
 132 }
 133 
 134 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 135 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 136 
 137 void KlassScanClosure::do_klass(Klass* klass) {
 138   NOT_PRODUCT(ResourceMark rm);
 139   log_develop_trace(gc, scavenge)("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 140                                   p2i(klass),
 141                                   klass->external_name(),
 142                                   klass->has_modified_oops() ? "true" : "false");
 143 
 144   // If the klass has not been dirtied we know that there's
 145   // no references into  the young gen and we can skip it.
 146   if (klass->has_modified_oops()) {
 147     if (_accumulate_modified_oops) {
 148       klass->accumulate_modified_oops();
 149     }
 150 
 151     // Clear this state since we're going to scavenge all the metadata.
 152     klass->clear_modified_oops();
 153 
 154     // Tell the closure which Klass is being scanned so that it can be dirtied
 155     // if oops are left pointing into the young gen.
 156     _scavenge_closure->set_scanned_klass(klass);
 157 
 158     klass->oops_do(_scavenge_closure);
 159 
 160     _scavenge_closure->set_scanned_klass(NULL);
 161   }
 162 }
 163 
 164 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 165   _g(g)
 166 {
 167   _boundary = _g->reserved().end();
 168 }
 169 
 170 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 171 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 172 
 173 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 174 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 175 
 176 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 177                                    KlassRemSet* klass_rem_set)
 178     : _scavenge_closure(scavenge_closure),
 179       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 180 
 181 
 182 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 183                                    size_t initial_size,
 184                                    const char* policy)
 185   : Generation(rs, initial_size),
 186     _promo_failure_drain_in_progress(false),
 187     _should_allocate_from_space(false)
 188 {
 189   MemRegion cmr((HeapWord*)_virtual_space.low(),
 190                 (HeapWord*)_virtual_space.high());
 191   GenCollectedHeap* gch = GenCollectedHeap::heap();
 192 
 193   gch->barrier_set()->resize_covered_region(cmr);
 194 
 195   _eden_space = new ContiguousSpace();
 196   _from_space = new ContiguousSpace();
 197   _to_space   = new ContiguousSpace();
 198 
 199   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 200     vm_exit_during_initialization("Could not allocate a new gen space");
 201   }
 202 
 203   // Compute the maximum eden and survivor space sizes. These sizes
 204   // are computed assuming the entire reserved space is committed.
 205   // These values are exported as performance counters.
 206   uintx alignment = gch->collector_policy()->space_alignment();
 207   uintx size = _virtual_space.reserved_size();
 208   _max_survivor_size = compute_survivor_size(size, alignment);
 209   _max_eden_size = size - (2*_max_survivor_size);
 210 
 211   // allocate the performance counters
 212   GenCollectorPolicy* gcp = gch->gen_policy();
 213 
 214   // Generation counters -- generation 0, 3 subspaces
 215   _gen_counters = new GenerationCounters("new", 0, 3,
 216       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 217   _gc_counters = new CollectorCounters(policy, 0);
 218 
 219   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 220                                       _gen_counters);
 221   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 222                                       _gen_counters);
 223   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 224                                     _gen_counters);
 225 
 226   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 227   update_counters();
 228   _old_gen = NULL;
 229   _tenuring_threshold = MaxTenuringThreshold;
 230   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 231 
 232   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 233 }
 234 
 235 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 236                                                 bool clear_space,
 237                                                 bool mangle_space) {
 238   uintx alignment =
 239     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 240 
 241   // If the spaces are being cleared (only done at heap initialization
 242   // currently), the survivor spaces need not be empty.
 243   // Otherwise, no care is taken for used areas in the survivor spaces
 244   // so check.
 245   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 246     "Initialization of the survivor spaces assumes these are empty");
 247 
 248   // Compute sizes
 249   uintx size = _virtual_space.committed_size();
 250   uintx survivor_size = compute_survivor_size(size, alignment);
 251   uintx eden_size = size - (2*survivor_size);
 252   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 253 
 254   if (eden_size < minimum_eden_size) {
 255     // May happen due to 64Kb rounding, if so adjust eden size back up
 256     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 257     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 258     uintx unaligned_survivor_size =
 259       align_size_down(maximum_survivor_size, alignment);
 260     survivor_size = MAX2(unaligned_survivor_size, alignment);
 261     eden_size = size - (2*survivor_size);
 262     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 263     assert(eden_size >= minimum_eden_size, "just checking");
 264   }
 265 
 266   char *eden_start = _virtual_space.low();
 267   char *from_start = eden_start + eden_size;
 268   char *to_start   = from_start + survivor_size;
 269   char *to_end     = to_start   + survivor_size;
 270 
 271   assert(to_end == _virtual_space.high(), "just checking");
 272   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 273   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 274   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 275 
 276   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 277   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 278   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 279 
 280   // A minimum eden size implies that there is a part of eden that
 281   // is being used and that affects the initialization of any
 282   // newly formed eden.
 283   bool live_in_eden = minimum_eden_size > 0;
 284 
 285   // If not clearing the spaces, do some checking to verify that
 286   // the space are already mangled.
 287   if (!clear_space) {
 288     // Must check mangling before the spaces are reshaped.  Otherwise,
 289     // the bottom or end of one space may have moved into another
 290     // a failure of the check may not correctly indicate which space
 291     // is not properly mangled.
 292     if (ZapUnusedHeapArea) {
 293       HeapWord* limit = (HeapWord*) _virtual_space.high();
 294       eden()->check_mangled_unused_area(limit);
 295       from()->check_mangled_unused_area(limit);
 296         to()->check_mangled_unused_area(limit);
 297     }
 298   }
 299 
 300   // Reset the spaces for their new regions.
 301   eden()->initialize(edenMR,
 302                      clear_space && !live_in_eden,
 303                      SpaceDecorator::Mangle);
 304   // If clear_space and live_in_eden, we will not have cleared any
 305   // portion of eden above its top. This can cause newly
 306   // expanded space not to be mangled if using ZapUnusedHeapArea.
 307   // We explicitly do such mangling here.
 308   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 309     eden()->mangle_unused_area();
 310   }
 311   from()->initialize(fromMR, clear_space, mangle_space);
 312   to()->initialize(toMR, clear_space, mangle_space);
 313 
 314   // Set next compaction spaces.
 315   eden()->set_next_compaction_space(from());
 316   // The to-space is normally empty before a compaction so need
 317   // not be considered.  The exception is during promotion
 318   // failure handling when to-space can contain live objects.
 319   from()->set_next_compaction_space(NULL);
 320 }
 321 
 322 void DefNewGeneration::swap_spaces() {
 323   ContiguousSpace* s = from();
 324   _from_space        = to();
 325   _to_space          = s;
 326   eden()->set_next_compaction_space(from());
 327   // The to-space is normally empty before a compaction so need
 328   // not be considered.  The exception is during promotion
 329   // failure handling when to-space can contain live objects.
 330   from()->set_next_compaction_space(NULL);
 331 
 332   if (UsePerfData) {
 333     CSpaceCounters* c = _from_counters;
 334     _from_counters = _to_counters;
 335     _to_counters = c;
 336   }
 337 }
 338 
 339 bool DefNewGeneration::expand(size_t bytes) {
 340   MutexLocker x(ExpandHeap_lock);
 341   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 342   bool success = _virtual_space.expand_by(bytes);
 343   if (success && ZapUnusedHeapArea) {
 344     // Mangle newly committed space immediately because it
 345     // can be done here more simply that after the new
 346     // spaces have been computed.
 347     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 348     MemRegion mangle_region(prev_high, new_high);
 349     SpaceMangler::mangle_region(mangle_region);
 350   }
 351 
 352   // Do not attempt an expand-to-the reserve size.  The
 353   // request should properly observe the maximum size of
 354   // the generation so an expand-to-reserve should be
 355   // unnecessary.  Also a second call to expand-to-reserve
 356   // value potentially can cause an undue expansion.
 357   // For example if the first expand fail for unknown reasons,
 358   // but the second succeeds and expands the heap to its maximum
 359   // value.
 360   if (GCLocker::is_active()) {
 361     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 362   }
 363 
 364   return success;
 365 }
 366 
 367 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 368                                                     size_t new_size_before,
 369                                                     size_t alignment) const {
 370   size_t desired_new_size = new_size_before;
 371 
 372   if (NewSizeThreadIncrease > 0) {
 373     int threads_count;
 374     size_t thread_increase_size = 0;
 375 
 376     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 377     threads_count = Threads::number_of_non_daemon_threads();
 378     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 379       thread_increase_size = threads_count * NewSizeThreadIncrease;
 380 
 381       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 382       if (new_size_candidate <= max_uintx - thread_increase_size) {
 383         new_size_candidate += thread_increase_size;
 384 
 385         // 3. Check an overflow at 'align_size_up'.
 386         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 387         if (new_size_candidate <= aligned_max) {
 388           desired_new_size = align_size_up(new_size_candidate, alignment);
 389         }
 390       }
 391     }
 392   }
 393 
 394   return desired_new_size;
 395 }
 396 
 397 void DefNewGeneration::compute_new_size() {
 398   // This is called after a GC that includes the old generation, so from-space
 399   // will normally be empty.
 400   // Note that we check both spaces, since if scavenge failed they revert roles.
 401   // If not we bail out (otherwise we would have to relocate the objects).
 402   if (!from()->is_empty() || !to()->is_empty()) {
 403     return;
 404   }
 405 
 406   GenCollectedHeap* gch = GenCollectedHeap::heap();
 407 
 408   size_t old_size = gch->old_gen()->capacity();
 409   size_t new_size_before = _virtual_space.committed_size();
 410   size_t min_new_size = initial_size();
 411   size_t max_new_size = reserved().byte_size();
 412   assert(min_new_size <= new_size_before &&
 413          new_size_before <= max_new_size,
 414          "just checking");
 415   // All space sizes must be multiples of Generation::GenGrain.
 416   size_t alignment = Generation::GenGrain;
 417 
 418   int threads_count = 0;
 419   size_t thread_increase_size = 0;
 420 
 421   size_t new_size_candidate = old_size / NewRatio;
 422   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 423   // and reverts to previous value if any overflow happens
 424   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 425 
 426   // Adjust new generation size
 427   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 428   assert(desired_new_size <= max_new_size, "just checking");
 429 
 430   bool changed = false;
 431   if (desired_new_size > new_size_before) {
 432     size_t change = desired_new_size - new_size_before;
 433     assert(change % alignment == 0, "just checking");
 434     if (expand(change)) {
 435        changed = true;
 436     }
 437     // If the heap failed to expand to the desired size,
 438     // "changed" will be false.  If the expansion failed
 439     // (and at this point it was expected to succeed),
 440     // ignore the failure (leaving "changed" as false).
 441   }
 442   if (desired_new_size < new_size_before && eden()->is_empty()) {
 443     // bail out of shrinking if objects in eden
 444     size_t change = new_size_before - desired_new_size;
 445     assert(change % alignment == 0, "just checking");
 446     _virtual_space.shrink_by(change);
 447     changed = true;
 448   }
 449   if (changed) {
 450     // The spaces have already been mangled at this point but
 451     // may not have been cleared (set top = bottom) and should be.
 452     // Mangling was done when the heap was being expanded.
 453     compute_space_boundaries(eden()->used(),
 454                              SpaceDecorator::Clear,
 455                              SpaceDecorator::DontMangle);
 456     MemRegion cmr((HeapWord*)_virtual_space.low(),
 457                   (HeapWord*)_virtual_space.high());
 458     gch->barrier_set()->resize_covered_region(cmr);
 459 
 460     log_debug(gc, heap, ergo)(
 461         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 462         new_size_before/K, _virtual_space.committed_size()/K,
 463         eden()->capacity()/K, from()->capacity()/K);
 464     log_trace(gc, heap, ergo)(
 465         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 466           thread_increase_size/K, threads_count);
 467       }
 468 }
 469 
 470 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 471   assert(false, "NYI -- are you sure you want to call this?");
 472 }
 473 
 474 
 475 size_t DefNewGeneration::capacity() const {
 476   return eden()->capacity()
 477        + from()->capacity();  // to() is only used during scavenge
 478 }
 479 
 480 
 481 size_t DefNewGeneration::used() const {
 482   return eden()->used()
 483        + from()->used();      // to() is only used during scavenge
 484 }
 485 
 486 
 487 size_t DefNewGeneration::free() const {
 488   return eden()->free()
 489        + from()->free();      // to() is only used during scavenge
 490 }
 491 
 492 size_t DefNewGeneration::max_capacity() const {
 493   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 494   const size_t reserved_bytes = reserved().byte_size();
 495   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 496 }
 497 
 498 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 499   return eden()->free();
 500 }
 501 
 502 size_t DefNewGeneration::capacity_before_gc() const {
 503   return eden()->capacity();
 504 }
 505 
 506 size_t DefNewGeneration::contiguous_available() const {
 507   return eden()->free();
 508 }
 509 
 510 
 511 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 512 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 513 
 514 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 515   eden()->object_iterate(blk);
 516   from()->object_iterate(blk);
 517 }
 518 
 519 
 520 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 521                                      bool usedOnly) {
 522   blk->do_space(eden());
 523   blk->do_space(from());
 524   blk->do_space(to());
 525 }
 526 
 527 // The last collection bailed out, we are running out of heap space,
 528 // so we try to allocate the from-space, too.
 529 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 530   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 531 
 532   // If the Heap_lock is not locked by this thread, this will be called
 533   // again later with the Heap_lock held.
 534   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 535 
 536   HeapWord* result = NULL;
 537   if (do_alloc) {
 538     result = from()->allocate(size);
 539   }
 540 
 541   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 542                         size,
 543                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 544                           "true" : "false",
 545                         Heap_lock->is_locked() ? "locked" : "unlocked",
 546                         from()->free(),
 547                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 548                         do_alloc ? "  Heap_lock is not owned by self" : "",
 549                         result == NULL ? "NULL" : "object");
 550 
 551   return result;
 552 }
 553 
 554 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 555                                                 bool   is_tlab,
 556                                                 bool   parallel) {
 557   // We don't attempt to expand the young generation (but perhaps we should.)
 558   return allocate(size, is_tlab);
 559 }
 560 
 561 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 562   // Set the desired survivor size to half the real survivor space
 563   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 564   _tenuring_threshold =
 565     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 566 }
 567 
 568 void DefNewGeneration::collect(bool   full,
 569                                bool   clear_all_soft_refs,
 570                                size_t size,
 571                                bool   is_tlab) {
 572   assert(full || size > 0, "otherwise we don't want to collect");
 573 
 574   GenCollectedHeap* gch = GenCollectedHeap::heap();
 575 
 576   _gc_timer->register_gc_start();
 577   DefNewTracer gc_tracer;
 578   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 579 
 580   _old_gen = gch->old_gen();
 581 
 582   // If the next generation is too full to accommodate promotion
 583   // from this generation, pass on collection; let the next generation
 584   // do it.
 585   if (!collection_attempt_is_safe()) {
 586     log_trace(gc)(":: Collection attempt not safe ::");
 587     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 588     return;
 589   }
 590   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 591 
 592   init_assuming_no_promotion_failure();
 593 
 594   GCTraceTime(Trace, gc) tm("DefNew", NULL, gch->gc_cause());
 595 
 596   gch->trace_heap_before_gc(&gc_tracer);
 597 
 598   // These can be shared for all code paths
 599   IsAliveClosure is_alive(this);
 600   ScanWeakRefClosure scan_weak_ref(this);
 601 
 602   age_table()->clear();
 603   to()->clear(SpaceDecorator::Mangle);
 604 
 605   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 606 
 607   assert(gch->no_allocs_since_save_marks(),
 608          "save marks have not been newly set.");
 609 
 610   // Not very pretty.
 611   CollectorPolicy* cp = gch->collector_policy();
 612 
 613   FastScanClosure fsc_with_no_gc_barrier(this, false);
 614   FastScanClosure fsc_with_gc_barrier(this, true);
 615 
 616   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 617                                       gch->rem_set()->klass_rem_set());
 618   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 619                                            &fsc_with_no_gc_barrier,
 620                                            false);
 621 
 622   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 623   FastEvacuateFollowersClosure evacuate_followers(gch,
 624                                                   &fsc_with_no_gc_barrier,
 625                                                   &fsc_with_gc_barrier);
 626 
 627   assert(gch->no_allocs_since_save_marks(),
 628          "save marks have not been newly set.");
 629 
 630   {
 631     // DefNew needs to run with n_threads == 0, to make sure the serial
 632     // version of the card table scanning code is used.
 633     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 634     StrongRootsScope srs(0);
 635 
 636     gch->gen_process_roots(&srs,
 637                            GenCollectedHeap::YoungGen,
 638                            true,  // Process younger gens, if any,
 639                                   // as strong roots.
 640                            GenCollectedHeap::SO_ScavengeCodeCache,
 641                            GenCollectedHeap::StrongAndWeakRoots,
 642                            &fsc_with_no_gc_barrier,
 643                            &fsc_with_gc_barrier,
 644                            &cld_scan_closure);
 645   }
 646 
 647   // "evacuate followers".
 648   evacuate_followers.do_void();
 649 
 650   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 651   ReferenceProcessor* rp = ref_processor();
 652   rp->setup_policy(clear_all_soft_refs);
 653   const ReferenceProcessorStats& stats =
 654   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 655                                     NULL, _gc_timer);
 656   gc_tracer.report_gc_reference_stats(stats);
 657   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 658 
 659   if (!_promotion_failed) {
 660     // Swap the survivor spaces.
 661     eden()->clear(SpaceDecorator::Mangle);
 662     from()->clear(SpaceDecorator::Mangle);
 663     if (ZapUnusedHeapArea) {
 664       // This is now done here because of the piece-meal mangling which
 665       // can check for valid mangling at intermediate points in the
 666       // collection(s).  When a young collection fails to collect
 667       // sufficient space resizing of the young generation can occur
 668       // an redistribute the spaces in the young generation.  Mangle
 669       // here so that unzapped regions don't get distributed to
 670       // other spaces.
 671       to()->mangle_unused_area();
 672     }
 673     swap_spaces();
 674 
 675     assert(to()->is_empty(), "to space should be empty now");
 676 
 677     adjust_desired_tenuring_threshold();
 678 
 679     // A successful scavenge should restart the GC time limit count which is
 680     // for full GC's.
 681     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 682     size_policy->reset_gc_overhead_limit_count();
 683     assert(!gch->incremental_collection_failed(), "Should be clear");
 684   } else {
 685     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 686     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 687 
 688     remove_forwarding_pointers();
 689     log_debug(gc)("Promotion failed");
 690     // Add to-space to the list of space to compact
 691     // when a promotion failure has occurred.  In that
 692     // case there can be live objects in to-space
 693     // as a result of a partial evacuation of eden
 694     // and from-space.
 695     swap_spaces();   // For uniformity wrt ParNewGeneration.
 696     from()->set_next_compaction_space(to());
 697     gch->set_incremental_collection_failed();
 698 
 699     // Inform the next generation that a promotion failure occurred.
 700     _old_gen->promotion_failure_occurred();
 701     gc_tracer.report_promotion_failed(_promotion_failed_info);
 702 
 703     // Reset the PromotionFailureALot counters.
 704     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 705   }
 706   // set new iteration safe limit for the survivor spaces
 707   from()->set_concurrent_iteration_safe_limit(from()->top());
 708   to()->set_concurrent_iteration_safe_limit(to()->top());
 709 
 710   // We need to use a monotonically non-decreasing time in ms
 711   // or we will see time-warp warnings and os::javaTimeMillis()
 712   // does not guarantee monotonicity.
 713   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 714   update_time_of_last_gc(now);
 715 
 716   gch->trace_heap_after_gc(&gc_tracer);
 717 
 718   _gc_timer->register_gc_end();
 719 
 720   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 721 }
 722 
 723 class RemoveForwardPointerClosure: public ObjectClosure {
 724 public:
 725   void do_object(oop obj) {
 726     obj->init_mark();
 727   }
 728 };
 729 
 730 void DefNewGeneration::init_assuming_no_promotion_failure() {
 731   _promotion_failed = false;
 732   _promotion_failed_info.reset();
 733   from()->set_next_compaction_space(NULL);
 734 }
 735 
 736 void DefNewGeneration::remove_forwarding_pointers() {
 737   RemoveForwardPointerClosure rspc;
 738   eden()->object_iterate(&rspc);
 739   from()->object_iterate(&rspc);
 740 
 741   // Now restore saved marks, if any.
 742   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 743          "should be the same");
 744   while (!_objs_with_preserved_marks.is_empty()) {
 745     oop obj   = _objs_with_preserved_marks.pop();
 746     markOop m = _preserved_marks_of_objs.pop();
 747     obj->set_mark(m);
 748   }
 749   _objs_with_preserved_marks.clear(true);
 750   _preserved_marks_of_objs.clear(true);
 751 }
 752 
 753 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 754   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 755          "Oversaving!");
 756   _objs_with_preserved_marks.push(obj);
 757   _preserved_marks_of_objs.push(m);
 758 }
 759 
 760 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 761   if (m->must_be_preserved_for_promotion_failure(obj)) {
 762     preserve_mark(obj, m);
 763   }
 764 }
 765 
 766 void DefNewGeneration::handle_promotion_failure(oop old) {
 767   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 768 
 769   _promotion_failed = true;
 770   _promotion_failed_info.register_copy_failure(old->size());
 771   preserve_mark_if_necessary(old, old->mark());
 772   // forward to self
 773   old->forward_to(old);
 774 
 775   _promo_failure_scan_stack.push(old);
 776 
 777   if (!_promo_failure_drain_in_progress) {
 778     // prevent recursion in copy_to_survivor_space()
 779     _promo_failure_drain_in_progress = true;
 780     drain_promo_failure_scan_stack();
 781     _promo_failure_drain_in_progress = false;
 782   }
 783 }
 784 
 785 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 786   assert(is_in_reserved(old) && !old->is_forwarded(),
 787          "shouldn't be scavenging this oop");
 788   size_t s = old->size();
 789   oop obj = NULL;
 790 
 791   // Try allocating obj in to-space (unless too old)
 792   if (old->age() < tenuring_threshold()) {
 793     obj = (oop) to()->allocate_aligned(s);
 794   }
 795 
 796   // Otherwise try allocating obj tenured
 797   if (obj == NULL) {
 798     obj = _old_gen->promote(old, s);
 799     if (obj == NULL) {
 800       handle_promotion_failure(old);
 801       return old;
 802     }
 803   } else {
 804     // Prefetch beyond obj
 805     const intx interval = PrefetchCopyIntervalInBytes;
 806     Prefetch::write(obj, interval);
 807 
 808     // Copy obj
 809     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 810 
 811     // Increment age if obj still in new generation
 812     obj->incr_age();
 813     age_table()->add(obj, s);
 814   }
 815 
 816   // Done, insert forward pointer to obj in this header
 817   old->forward_to(obj);
 818 
 819   return obj;
 820 }
 821 
 822 void DefNewGeneration::drain_promo_failure_scan_stack() {
 823   while (!_promo_failure_scan_stack.is_empty()) {
 824      oop obj = _promo_failure_scan_stack.pop();
 825      obj->oop_iterate(_promo_failure_scan_stack_closure);
 826   }
 827 }
 828 
 829 void DefNewGeneration::save_marks() {
 830   eden()->set_saved_mark();
 831   to()->set_saved_mark();
 832   from()->set_saved_mark();
 833 }
 834 
 835 
 836 void DefNewGeneration::reset_saved_marks() {
 837   eden()->reset_saved_mark();
 838   to()->reset_saved_mark();
 839   from()->reset_saved_mark();
 840 }
 841 
 842 
 843 bool DefNewGeneration::no_allocs_since_save_marks() {
 844   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 845   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 846   return to()->saved_mark_at_top();
 847 }
 848 
 849 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 850                                                                 \
 851 void DefNewGeneration::                                         \
 852 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 853   cl->set_generation(this);                                     \
 854   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 855   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 856   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 857   cl->reset_generation();                                       \
 858   save_marks();                                                 \
 859 }
 860 
 861 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 862 
 863 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 864 
 865 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 866                                          size_t max_alloc_words) {
 867   if (requestor == this || _promotion_failed) {
 868     return;
 869   }
 870   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 871 
 872   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 873   if (to_space->top() > to_space->bottom()) {
 874     trace("to_space not empty when contribute_scratch called");
 875   }
 876   */
 877 
 878   ContiguousSpace* to_space = to();
 879   assert(to_space->end() >= to_space->top(), "pointers out of order");
 880   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 881   if (free_words >= MinFreeScratchWords) {
 882     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 883     sb->num_words = free_words;
 884     sb->next = list;
 885     list = sb;
 886   }
 887 }
 888 
 889 void DefNewGeneration::reset_scratch() {
 890   // If contributing scratch in to_space, mangle all of
 891   // to_space if ZapUnusedHeapArea.  This is needed because
 892   // top is not maintained while using to-space as scratch.
 893   if (ZapUnusedHeapArea) {
 894     to()->mangle_unused_area_complete();
 895   }
 896 }
 897 
 898 bool DefNewGeneration::collection_attempt_is_safe() {
 899   if (!to()->is_empty()) {
 900     log_trace(gc)(":: to is not empty ::");
 901     return false;
 902   }
 903   if (_old_gen == NULL) {
 904     GenCollectedHeap* gch = GenCollectedHeap::heap();
 905     _old_gen = gch->old_gen();
 906   }
 907   return _old_gen->promotion_attempt_is_safe(used());
 908 }
 909 
 910 void DefNewGeneration::gc_epilogue(bool full) {
 911   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 912 
 913   assert(!GCLocker::is_active(), "We should not be executing here");
 914   // Check if the heap is approaching full after a collection has
 915   // been done.  Generally the young generation is empty at
 916   // a minimum at the end of a collection.  If it is not, then
 917   // the heap is approaching full.
 918   GenCollectedHeap* gch = GenCollectedHeap::heap();
 919   if (full) {
 920     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 921     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 922       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 923                             GCCause::to_string(gch->gc_cause()));
 924       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 925       set_should_allocate_from_space(); // we seem to be running out of space
 926     } else {
 927       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 928                             GCCause::to_string(gch->gc_cause()));
 929       gch->clear_incremental_collection_failed(); // We just did a full collection
 930       clear_should_allocate_from_space(); // if set
 931     }
 932   } else {
 933 #ifdef ASSERT
 934     // It is possible that incremental_collection_failed() == true
 935     // here, because an attempted scavenge did not succeed. The policy
 936     // is normally expected to cause a full collection which should
 937     // clear that condition, so we should not be here twice in a row
 938     // with incremental_collection_failed() == true without having done
 939     // a full collection in between.
 940     if (!seen_incremental_collection_failed &&
 941         gch->incremental_collection_failed()) {
 942       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 943                             GCCause::to_string(gch->gc_cause()));
 944       seen_incremental_collection_failed = true;
 945     } else if (seen_incremental_collection_failed) {
 946       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 947                             GCCause::to_string(gch->gc_cause()));
 948       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 949              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 950              !gch->incremental_collection_failed(),
 951              "Twice in a row");
 952       seen_incremental_collection_failed = false;
 953     }
 954 #endif // ASSERT
 955   }
 956 
 957   if (ZapUnusedHeapArea) {
 958     eden()->check_mangled_unused_area_complete();
 959     from()->check_mangled_unused_area_complete();
 960     to()->check_mangled_unused_area_complete();
 961   }
 962 
 963   if (!CleanChunkPoolAsync) {
 964     Chunk::clean_chunk_pool();
 965   }
 966 
 967   // update the generation and space performance counters
 968   update_counters();
 969   gch->collector_policy()->counters()->update_counters();
 970 }
 971 
 972 void DefNewGeneration::record_spaces_top() {
 973   assert(ZapUnusedHeapArea, "Not mangling unused space");
 974   eden()->set_top_for_allocations();
 975   to()->set_top_for_allocations();
 976   from()->set_top_for_allocations();
 977 }
 978 
 979 void DefNewGeneration::ref_processor_init() {
 980   Generation::ref_processor_init();
 981 }
 982 
 983 
 984 void DefNewGeneration::update_counters() {
 985   if (UsePerfData) {
 986     _eden_counters->update_all();
 987     _from_counters->update_all();
 988     _to_counters->update_all();
 989     _gen_counters->update_all();
 990   }
 991 }
 992 
 993 void DefNewGeneration::verify() {
 994   eden()->verify();
 995   from()->verify();
 996     to()->verify();
 997 }
 998 
 999 void DefNewGeneration::print_on(outputStream* st) const {
1000   Generation::print_on(st);
1001   st->print("  eden");
1002   eden()->print_on(st);
1003   st->print("  from");
1004   from()->print_on(st);
1005   st->print("  to  ");
1006   to()->print_on(st);
1007 }
1008 
1009 
1010 const char* DefNewGeneration::name() const {
1011   return "def new generation";
1012 }
1013 
1014 // Moved from inline file as they are not called inline
1015 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1016   return eden();
1017 }
1018 
1019 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1020   // This is the slow-path allocation for the DefNewGeneration.
1021   // Most allocations are fast-path in compiled code.
1022   // We try to allocate from the eden.  If that works, we are happy.
1023   // Note that since DefNewGeneration supports lock-free allocation, we
1024   // have to use it here, as well.
1025   HeapWord* result = eden()->par_allocate(word_size);
1026   if (result != NULL) {
1027     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1028       _old_gen->sample_eden_chunk();
1029     }
1030   } else {
1031     // If the eden is full and the last collection bailed out, we are running
1032     // out of heap space, and we try to allocate the from-space, too.
1033     // allocate_from_space can't be inlined because that would introduce a
1034     // circular dependency at compile time.
1035     result = allocate_from_space(word_size);
1036   }
1037   return result;
1038 }
1039 
1040 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1041                                          bool is_tlab) {
1042   HeapWord* res = eden()->par_allocate(word_size);
1043   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1044     _old_gen->sample_eden_chunk();
1045   }
1046   return res;
1047 }
1048 
1049 size_t DefNewGeneration::tlab_capacity() const {
1050   return eden()->capacity();
1051 }
1052 
1053 size_t DefNewGeneration::tlab_used() const {
1054   return eden()->used();
1055 }
1056 
1057 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1058   return unsafe_max_alloc_nogc();
1059 }