1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/shared/ageTable.inline.hpp"
  28 #include "gc/shared/cardTableRS.hpp"
  29 #include "gc/shared/collectorCounters.hpp"
  30 #include "gc/shared/gcHeapSummary.hpp"
  31 #include "gc/shared/gcLocker.inline.hpp"
  32 #include "gc/shared/gcPolicyCounters.hpp"
  33 #include "gc/shared/gcTimer.hpp"
  34 #include "gc/shared/gcTrace.hpp"
  35 #include "gc/shared/gcTraceTime.inline.hpp"
  36 #include "gc/shared/genCollectedHeap.hpp"
  37 #include "gc/shared/genOopClosures.inline.hpp"
  38 #include "gc/shared/generationSpec.hpp"
  39 #include "gc/shared/referencePolicy.hpp"
  40 #include "gc/shared/space.inline.hpp"
  41 #include "gc/shared/spaceDecorator.hpp"
  42 #include "gc/shared/strongRootsScope.hpp"
  43 #include "logging/log.hpp"
  44 #include "memory/iterator.hpp"
  45 #include "oops/instanceRefKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/atomic.inline.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/prefetch.inline.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "utilities/copy.hpp"
  52 #include "utilities/globalDefinitions.hpp"
  53 #include "utilities/stack.inline.hpp"
  54 #if INCLUDE_ALL_GCS
  55 #include "gc/cms/parOopClosures.hpp"
  56 #endif
  57 
  58 //
  59 // DefNewGeneration functions.
  60 
  61 // Methods of protected closure types.
  62 
  63 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  64   assert(_young_gen->kind() == Generation::ParNew ||
  65          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  66 }
  67 
  68 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  69   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  70 }
  71 
  72 DefNewGeneration::KeepAliveClosure::
  73 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  74   _rs = GenCollectedHeap::heap()->rem_set();
  75 }
  76 
  77 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  78 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  79 
  80 
  81 DefNewGeneration::FastKeepAliveClosure::
  82 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  83   DefNewGeneration::KeepAliveClosure(cl) {
  84   _boundary = g->reserved().end();
  85 }
  86 
  87 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  88 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  89 
  90 DefNewGeneration::EvacuateFollowersClosure::
  91 EvacuateFollowersClosure(GenCollectedHeap* gch,
  92                          ScanClosure* cur,
  93                          ScanClosure* older) :
  94   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
  95 {}
  96 
  97 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  98   do {
  99     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 100   } while (!_gch->no_allocs_since_save_marks());
 101 }
 102 
 103 DefNewGeneration::FastEvacuateFollowersClosure::
 104 FastEvacuateFollowersClosure(GenCollectedHeap* gch,
 105                              FastScanClosure* cur,
 106                              FastScanClosure* older) :
 107   _gch(gch), _scan_cur_or_nonheap(cur), _scan_older(older)
 108 {
 109   assert(_gch->young_gen()->kind() == Generation::DefNew, "Generation should be DefNew");
 110   _young_gen = (DefNewGeneration*)_gch->young_gen();
 111 }
 112 
 113 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 114   do {
 115     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen, _scan_cur_or_nonheap, _scan_older);
 116   } while (!_gch->no_allocs_since_save_marks());
 117   guarantee(_young_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 118 }
 119 
 120 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 121     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 122 {
 123   _boundary = _g->reserved().end();
 124 }
 125 
 126 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 127 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 128 
 129 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 130     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 131 {
 132   _boundary = _g->reserved().end();
 133 }
 134 
 135 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 136 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 137 
 138 void KlassScanClosure::do_klass(Klass* klass) {
 139   NOT_PRODUCT(ResourceMark rm);
 140   log_develop_trace(gc, scavenge)("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 141                                   p2i(klass),
 142                                   klass->external_name(),
 143                                   klass->has_modified_oops() ? "true" : "false");
 144 
 145   // If the klass has not been dirtied we know that there's
 146   // no references into  the young gen and we can skip it.
 147   if (klass->has_modified_oops()) {
 148     if (_accumulate_modified_oops) {
 149       klass->accumulate_modified_oops();
 150     }
 151 
 152     // Clear this state since we're going to scavenge all the metadata.
 153     klass->clear_modified_oops();
 154 
 155     // Tell the closure which Klass is being scanned so that it can be dirtied
 156     // if oops are left pointing into the young gen.
 157     _scavenge_closure->set_scanned_klass(klass);
 158 
 159     klass->oops_do(_scavenge_closure);
 160 
 161     _scavenge_closure->set_scanned_klass(NULL);
 162   }
 163 }
 164 
 165 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 166   _g(g)
 167 {
 168   _boundary = _g->reserved().end();
 169 }
 170 
 171 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 172 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 173 
 174 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 175 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 176 
 177 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 178                                    KlassRemSet* klass_rem_set)
 179     : _scavenge_closure(scavenge_closure),
 180       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 181 
 182 
 183 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 184                                    size_t initial_size,
 185                                    const char* policy)
 186   : Generation(rs, initial_size),
 187     _promo_failure_drain_in_progress(false),
 188     _should_allocate_from_space(false)
 189 {
 190   MemRegion cmr((HeapWord*)_virtual_space.low(),
 191                 (HeapWord*)_virtual_space.high());
 192   GenCollectedHeap* gch = GenCollectedHeap::heap();
 193 
 194   gch->barrier_set()->resize_covered_region(cmr);
 195 
 196   _eden_space = new ContiguousSpace();
 197   _from_space = new ContiguousSpace();
 198   _to_space   = new ContiguousSpace();
 199 
 200   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 201     vm_exit_during_initialization("Could not allocate a new gen space");
 202   }
 203 
 204   // Compute the maximum eden and survivor space sizes. These sizes
 205   // are computed assuming the entire reserved space is committed.
 206   // These values are exported as performance counters.
 207   uintx alignment = gch->collector_policy()->space_alignment();
 208   uintx size = _virtual_space.reserved_size();
 209   _max_survivor_size = compute_survivor_size(size, alignment);
 210   _max_eden_size = size - (2*_max_survivor_size);
 211 
 212   // allocate the performance counters
 213   GenCollectorPolicy* gcp = gch->gen_policy();
 214 
 215   // Generation counters -- generation 0, 3 subspaces
 216   _gen_counters = new GenerationCounters("new", 0, 3,
 217       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 218   _gc_counters = new CollectorCounters(policy, 0);
 219 
 220   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 221                                       _gen_counters);
 222   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 223                                       _gen_counters);
 224   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 225                                     _gen_counters);
 226 
 227   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 228   update_counters();
 229   _old_gen = NULL;
 230   _tenuring_threshold = MaxTenuringThreshold;
 231   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 232 
 233   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 234 }
 235 
 236 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 237                                                 bool clear_space,
 238                                                 bool mangle_space) {
 239   uintx alignment =
 240     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 241 
 242   // If the spaces are being cleared (only done at heap initialization
 243   // currently), the survivor spaces need not be empty.
 244   // Otherwise, no care is taken for used areas in the survivor spaces
 245   // so check.
 246   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 247     "Initialization of the survivor spaces assumes these are empty");
 248 
 249   // Compute sizes
 250   uintx size = _virtual_space.committed_size();
 251   uintx survivor_size = compute_survivor_size(size, alignment);
 252   uintx eden_size = size - (2*survivor_size);
 253   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 254 
 255   if (eden_size < minimum_eden_size) {
 256     // May happen due to 64Kb rounding, if so adjust eden size back up
 257     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 258     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 259     uintx unaligned_survivor_size =
 260       align_size_down(maximum_survivor_size, alignment);
 261     survivor_size = MAX2(unaligned_survivor_size, alignment);
 262     eden_size = size - (2*survivor_size);
 263     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 264     assert(eden_size >= minimum_eden_size, "just checking");
 265   }
 266 
 267   char *eden_start = _virtual_space.low();
 268   char *from_start = eden_start + eden_size;
 269   char *to_start   = from_start + survivor_size;
 270   char *to_end     = to_start   + survivor_size;
 271 
 272   assert(to_end == _virtual_space.high(), "just checking");
 273   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 274   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 275   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 276 
 277   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 278   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 279   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 280 
 281   // A minimum eden size implies that there is a part of eden that
 282   // is being used and that affects the initialization of any
 283   // newly formed eden.
 284   bool live_in_eden = minimum_eden_size > 0;
 285 
 286   // If not clearing the spaces, do some checking to verify that
 287   // the space are already mangled.
 288   if (!clear_space) {
 289     // Must check mangling before the spaces are reshaped.  Otherwise,
 290     // the bottom or end of one space may have moved into another
 291     // a failure of the check may not correctly indicate which space
 292     // is not properly mangled.
 293     if (ZapUnusedHeapArea) {
 294       HeapWord* limit = (HeapWord*) _virtual_space.high();
 295       eden()->check_mangled_unused_area(limit);
 296       from()->check_mangled_unused_area(limit);
 297         to()->check_mangled_unused_area(limit);
 298     }
 299   }
 300 
 301   // Reset the spaces for their new regions.
 302   eden()->initialize(edenMR,
 303                      clear_space && !live_in_eden,
 304                      SpaceDecorator::Mangle);
 305   // If clear_space and live_in_eden, we will not have cleared any
 306   // portion of eden above its top. This can cause newly
 307   // expanded space not to be mangled if using ZapUnusedHeapArea.
 308   // We explicitly do such mangling here.
 309   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 310     eden()->mangle_unused_area();
 311   }
 312   from()->initialize(fromMR, clear_space, mangle_space);
 313   to()->initialize(toMR, clear_space, mangle_space);
 314 
 315   // Set next compaction spaces.
 316   eden()->set_next_compaction_space(from());
 317   // The to-space is normally empty before a compaction so need
 318   // not be considered.  The exception is during promotion
 319   // failure handling when to-space can contain live objects.
 320   from()->set_next_compaction_space(NULL);
 321 }
 322 
 323 void DefNewGeneration::swap_spaces() {
 324   ContiguousSpace* s = from();
 325   _from_space        = to();
 326   _to_space          = s;
 327   eden()->set_next_compaction_space(from());
 328   // The to-space is normally empty before a compaction so need
 329   // not be considered.  The exception is during promotion
 330   // failure handling when to-space can contain live objects.
 331   from()->set_next_compaction_space(NULL);
 332 
 333   if (UsePerfData) {
 334     CSpaceCounters* c = _from_counters;
 335     _from_counters = _to_counters;
 336     _to_counters = c;
 337   }
 338 }
 339 
 340 bool DefNewGeneration::expand(size_t bytes) {
 341   MutexLocker x(ExpandHeap_lock);
 342   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 343   bool success = _virtual_space.expand_by(bytes);
 344   if (success && ZapUnusedHeapArea) {
 345     // Mangle newly committed space immediately because it
 346     // can be done here more simply that after the new
 347     // spaces have been computed.
 348     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 349     MemRegion mangle_region(prev_high, new_high);
 350     SpaceMangler::mangle_region(mangle_region);
 351   }
 352 
 353   // Do not attempt an expand-to-the reserve size.  The
 354   // request should properly observe the maximum size of
 355   // the generation so an expand-to-reserve should be
 356   // unnecessary.  Also a second call to expand-to-reserve
 357   // value potentially can cause an undue expansion.
 358   // For example if the first expand fail for unknown reasons,
 359   // but the second succeeds and expands the heap to its maximum
 360   // value.
 361   if (GCLocker::is_active()) {
 362     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 363   }
 364 
 365   return success;
 366 }
 367 
 368 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 369                                                     size_t new_size_before,
 370                                                     size_t alignment) const {
 371   size_t desired_new_size = new_size_before;
 372 
 373   if (NewSizeThreadIncrease > 0) {
 374     int threads_count;
 375     size_t thread_increase_size = 0;
 376 
 377     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 378     threads_count = Threads::number_of_non_daemon_threads();
 379     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 380       thread_increase_size = threads_count * NewSizeThreadIncrease;
 381 
 382       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 383       if (new_size_candidate <= max_uintx - thread_increase_size) {
 384         new_size_candidate += thread_increase_size;
 385 
 386         // 3. Check an overflow at 'align_size_up'.
 387         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 388         if (new_size_candidate <= aligned_max) {
 389           desired_new_size = align_size_up(new_size_candidate, alignment);
 390         }
 391       }
 392     }
 393   }
 394 
 395   return desired_new_size;
 396 }
 397 
 398 void DefNewGeneration::compute_new_size() {
 399   // This is called after a GC that includes the old generation, so from-space
 400   // will normally be empty.
 401   // Note that we check both spaces, since if scavenge failed they revert roles.
 402   // If not we bail out (otherwise we would have to relocate the objects).
 403   if (!from()->is_empty() || !to()->is_empty()) {
 404     return;
 405   }
 406 
 407   GenCollectedHeap* gch = GenCollectedHeap::heap();
 408 
 409   size_t old_size = gch->old_gen()->capacity();
 410   size_t new_size_before = _virtual_space.committed_size();
 411   size_t min_new_size = initial_size();
 412   size_t max_new_size = reserved().byte_size();
 413   assert(min_new_size <= new_size_before &&
 414          new_size_before <= max_new_size,
 415          "just checking");
 416   // All space sizes must be multiples of Generation::GenGrain.
 417   size_t alignment = Generation::GenGrain;
 418 
 419   int threads_count = 0;
 420   size_t thread_increase_size = 0;
 421 
 422   size_t new_size_candidate = old_size / NewRatio;
 423   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 424   // and reverts to previous value if any overflow happens
 425   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 426 
 427   // Adjust new generation size
 428   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 429   assert(desired_new_size <= max_new_size, "just checking");
 430 
 431   bool changed = false;
 432   if (desired_new_size > new_size_before) {
 433     size_t change = desired_new_size - new_size_before;
 434     assert(change % alignment == 0, "just checking");
 435     if (expand(change)) {
 436        changed = true;
 437     }
 438     // If the heap failed to expand to the desired size,
 439     // "changed" will be false.  If the expansion failed
 440     // (and at this point it was expected to succeed),
 441     // ignore the failure (leaving "changed" as false).
 442   }
 443   if (desired_new_size < new_size_before && eden()->is_empty()) {
 444     // bail out of shrinking if objects in eden
 445     size_t change = new_size_before - desired_new_size;
 446     assert(change % alignment == 0, "just checking");
 447     _virtual_space.shrink_by(change);
 448     changed = true;
 449   }
 450   if (changed) {
 451     // The spaces have already been mangled at this point but
 452     // may not have been cleared (set top = bottom) and should be.
 453     // Mangling was done when the heap was being expanded.
 454     compute_space_boundaries(eden()->used(),
 455                              SpaceDecorator::Clear,
 456                              SpaceDecorator::DontMangle);
 457     MemRegion cmr((HeapWord*)_virtual_space.low(),
 458                   (HeapWord*)_virtual_space.high());
 459     gch->barrier_set()->resize_covered_region(cmr);
 460 
 461     log_debug(gc, heap, ergo)(
 462         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 463         new_size_before/K, _virtual_space.committed_size()/K,
 464         eden()->capacity()/K, from()->capacity()/K);
 465     log_trace(gc, heap, ergo)(
 466         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 467           thread_increase_size/K, threads_count);
 468       }
 469 }
 470 
 471 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 472   assert(false, "NYI -- are you sure you want to call this?");
 473 }
 474 
 475 
 476 size_t DefNewGeneration::capacity() const {
 477   return eden()->capacity()
 478        + from()->capacity();  // to() is only used during scavenge
 479 }
 480 
 481 
 482 size_t DefNewGeneration::used() const {
 483   return eden()->used()
 484        + from()->used();      // to() is only used during scavenge
 485 }
 486 
 487 
 488 size_t DefNewGeneration::free() const {
 489   return eden()->free()
 490        + from()->free();      // to() is only used during scavenge
 491 }
 492 
 493 size_t DefNewGeneration::max_capacity() const {
 494   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 495   const size_t reserved_bytes = reserved().byte_size();
 496   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 497 }
 498 
 499 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 500   return eden()->free();
 501 }
 502 
 503 size_t DefNewGeneration::capacity_before_gc() const {
 504   return eden()->capacity();
 505 }
 506 
 507 size_t DefNewGeneration::contiguous_available() const {
 508   return eden()->free();
 509 }
 510 
 511 
 512 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 513 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 514 
 515 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 516   eden()->object_iterate(blk);
 517   from()->object_iterate(blk);
 518 }
 519 
 520 
 521 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 522                                      bool usedOnly) {
 523   blk->do_space(eden());
 524   blk->do_space(from());
 525   blk->do_space(to());
 526 }
 527 
 528 // The last collection bailed out, we are running out of heap space,
 529 // so we try to allocate the from-space, too.
 530 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 531   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 532 
 533   // If the Heap_lock is not locked by this thread, this will be called
 534   // again later with the Heap_lock held.
 535   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 536 
 537   HeapWord* result = NULL;
 538   if (do_alloc) {
 539     result = from()->allocate(size);
 540   }
 541 
 542   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 543                         size,
 544                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 545                           "true" : "false",
 546                         Heap_lock->is_locked() ? "locked" : "unlocked",
 547                         from()->free(),
 548                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 549                         do_alloc ? "  Heap_lock is not owned by self" : "",
 550                         result == NULL ? "NULL" : "object");
 551 
 552   return result;
 553 }
 554 
 555 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 556                                                 bool   is_tlab,
 557                                                 bool   parallel) {
 558   // We don't attempt to expand the young generation (but perhaps we should.)
 559   return allocate(size, is_tlab);
 560 }
 561 
 562 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 563   // Set the desired survivor size to half the real survivor space
 564   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 565   _tenuring_threshold =
 566     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 567 }
 568 
 569 void DefNewGeneration::collect(bool   full,
 570                                bool   clear_all_soft_refs,
 571                                size_t size,
 572                                bool   is_tlab) {
 573   assert(full || size > 0, "otherwise we don't want to collect");
 574 
 575   GenCollectedHeap* gch = GenCollectedHeap::heap();
 576 
 577   _gc_timer->register_gc_start();
 578   DefNewTracer gc_tracer;
 579   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 580 
 581   _old_gen = gch->old_gen();
 582 
 583   // If the next generation is too full to accommodate promotion
 584   // from this generation, pass on collection; let the next generation
 585   // do it.
 586   if (!collection_attempt_is_safe()) {
 587     log_trace(gc)(":: Collection attempt not safe ::");
 588     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 589     return;
 590   }
 591   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 592 
 593   init_assuming_no_promotion_failure();
 594 
 595   GCTraceTime(Trace, gc) tm("DefNew", NULL, gch->gc_cause());
 596 
 597   gch->trace_heap_before_gc(&gc_tracer);
 598 
 599   // These can be shared for all code paths
 600   IsAliveClosure is_alive(this);
 601   ScanWeakRefClosure scan_weak_ref(this);
 602 
 603   age_table()->clear();
 604   to()->clear(SpaceDecorator::Mangle);
 605 
 606   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 607 
 608   assert(gch->no_allocs_since_save_marks(),
 609          "save marks have not been newly set.");
 610 
 611   // Not very pretty.
 612   CollectorPolicy* cp = gch->collector_policy();
 613 
 614   FastScanClosure fsc_with_no_gc_barrier(this, false);
 615   FastScanClosure fsc_with_gc_barrier(this, true);
 616 
 617   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 618                                       gch->rem_set()->klass_rem_set());
 619   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 620                                            &fsc_with_no_gc_barrier,
 621                                            false);
 622 
 623   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 624   FastEvacuateFollowersClosure evacuate_followers(gch,
 625                                                   &fsc_with_no_gc_barrier,
 626                                                   &fsc_with_gc_barrier);
 627 
 628   assert(gch->no_allocs_since_save_marks(),
 629          "save marks have not been newly set.");
 630 
 631   {
 632     // DefNew needs to run with n_threads == 0, to make sure the serial
 633     // version of the card table scanning code is used.
 634     // See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
 635     StrongRootsScope srs(0);
 636 
 637     gch->gen_process_roots(&srs,
 638                            GenCollectedHeap::YoungGen,
 639                            true,  // Process younger gens, if any,
 640                                   // as strong roots.
 641                            GenCollectedHeap::SO_ScavengeCodeCache,
 642                            GenCollectedHeap::StrongAndWeakRoots,
 643                            &fsc_with_no_gc_barrier,
 644                            &fsc_with_gc_barrier,
 645                            &cld_scan_closure);
 646   }
 647 
 648   // "evacuate followers".
 649   evacuate_followers.do_void();
 650 
 651   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 652   ReferenceProcessor* rp = ref_processor();
 653   rp->setup_policy(clear_all_soft_refs);
 654   const ReferenceProcessorStats& stats =
 655   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 656                                     NULL, _gc_timer);
 657   gc_tracer.report_gc_reference_stats(stats);
 658   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 659 
 660   if (!_promotion_failed) {
 661     // Swap the survivor spaces.
 662     eden()->clear(SpaceDecorator::Mangle);
 663     from()->clear(SpaceDecorator::Mangle);
 664     if (ZapUnusedHeapArea) {
 665       // This is now done here because of the piece-meal mangling which
 666       // can check for valid mangling at intermediate points in the
 667       // collection(s).  When a young collection fails to collect
 668       // sufficient space resizing of the young generation can occur
 669       // an redistribute the spaces in the young generation.  Mangle
 670       // here so that unzapped regions don't get distributed to
 671       // other spaces.
 672       to()->mangle_unused_area();
 673     }
 674     swap_spaces();
 675 
 676     assert(to()->is_empty(), "to space should be empty now");
 677 
 678     adjust_desired_tenuring_threshold();
 679 
 680     // A successful scavenge should restart the GC time limit count which is
 681     // for full GC's.
 682     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 683     size_policy->reset_gc_overhead_limit_count();
 684     assert(!gch->incremental_collection_failed(), "Should be clear");
 685   } else {
 686     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 687     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 688 
 689     remove_forwarding_pointers();
 690     log_debug(gc)("Promotion failed");
 691     // Add to-space to the list of space to compact
 692     // when a promotion failure has occurred.  In that
 693     // case there can be live objects in to-space
 694     // as a result of a partial evacuation of eden
 695     // and from-space.
 696     swap_spaces();   // For uniformity wrt ParNewGeneration.
 697     from()->set_next_compaction_space(to());
 698     gch->set_incremental_collection_failed();
 699 
 700     // Inform the next generation that a promotion failure occurred.
 701     _old_gen->promotion_failure_occurred();
 702     gc_tracer.report_promotion_failed(_promotion_failed_info);
 703 
 704     // Reset the PromotionFailureALot counters.
 705     NOT_PRODUCT(gch->reset_promotion_should_fail();)
 706   }
 707   // set new iteration safe limit for the survivor spaces
 708   from()->set_concurrent_iteration_safe_limit(from()->top());
 709   to()->set_concurrent_iteration_safe_limit(to()->top());
 710 
 711   // We need to use a monotonically non-decreasing time in ms
 712   // or we will see time-warp warnings and os::javaTimeMillis()
 713   // does not guarantee monotonicity.
 714   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 715   update_time_of_last_gc(now);
 716 
 717   gch->trace_heap_after_gc(&gc_tracer);
 718 
 719   _gc_timer->register_gc_end();
 720 
 721   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 722 }
 723 
 724 class RemoveForwardPointerClosure: public ObjectClosure {
 725 public:
 726   void do_object(oop obj) {
 727     obj->init_mark();
 728   }
 729 };
 730 
 731 void DefNewGeneration::init_assuming_no_promotion_failure() {
 732   _promotion_failed = false;
 733   _promotion_failed_info.reset();
 734   from()->set_next_compaction_space(NULL);
 735 }
 736 
 737 void DefNewGeneration::remove_forwarding_pointers() {
 738   RemoveForwardPointerClosure rspc;
 739   eden()->object_iterate(&rspc);
 740   from()->object_iterate(&rspc);
 741 
 742   // Now restore saved marks, if any.
 743   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 744          "should be the same");
 745   while (!_objs_with_preserved_marks.is_empty()) {
 746     oop obj   = _objs_with_preserved_marks.pop();
 747     markOop m = _preserved_marks_of_objs.pop();
 748     obj->set_mark(m);
 749   }
 750   _objs_with_preserved_marks.clear(true);
 751   _preserved_marks_of_objs.clear(true);
 752 }
 753 
 754 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 755   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 756          "Oversaving!");
 757   _objs_with_preserved_marks.push(obj);
 758   _preserved_marks_of_objs.push(m);
 759 }
 760 
 761 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 762   if (m->must_be_preserved_for_promotion_failure(obj)) {
 763     preserve_mark(obj, m);
 764   }
 765 }
 766 
 767 void DefNewGeneration::handle_promotion_failure(oop old) {
 768   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 769 
 770   _promotion_failed = true;
 771   _promotion_failed_info.register_copy_failure(old->size());
 772   preserve_mark_if_necessary(old, old->mark());
 773   // forward to self
 774   old->forward_to(old);
 775 
 776   _promo_failure_scan_stack.push(old);
 777 
 778   if (!_promo_failure_drain_in_progress) {
 779     // prevent recursion in copy_to_survivor_space()
 780     _promo_failure_drain_in_progress = true;
 781     drain_promo_failure_scan_stack();
 782     _promo_failure_drain_in_progress = false;
 783   }
 784 }
 785 
 786 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 787   assert(is_in_reserved(old) && !old->is_forwarded(),
 788          "shouldn't be scavenging this oop");
 789   size_t s = old->size();
 790   oop obj = NULL;
 791 
 792   // Try allocating obj in to-space (unless too old)
 793   if (old->age() < tenuring_threshold()) {
 794     obj = (oop) to()->allocate_aligned(s);
 795   }
 796 
 797   // Otherwise try allocating obj tenured
 798   if (obj == NULL) {
 799     obj = _old_gen->promote(old, s);
 800     if (obj == NULL) {
 801       handle_promotion_failure(old);
 802       return old;
 803     }
 804   } else {
 805     // Prefetch beyond obj
 806     const intx interval = PrefetchCopyIntervalInBytes;
 807     Prefetch::write(obj, interval);
 808 
 809     // Copy obj
 810     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 811 
 812     // Increment age if obj still in new generation
 813     obj->incr_age();
 814     age_table()->add(obj, s);
 815   }
 816 
 817   // Done, insert forward pointer to obj in this header
 818   old->forward_to(obj);
 819 
 820   return obj;
 821 }
 822 
 823 void DefNewGeneration::drain_promo_failure_scan_stack() {
 824   while (!_promo_failure_scan_stack.is_empty()) {
 825      oop obj = _promo_failure_scan_stack.pop();
 826      obj->oop_iterate(_promo_failure_scan_stack_closure);
 827   }
 828 }
 829 
 830 void DefNewGeneration::save_marks() {
 831   eden()->set_saved_mark();
 832   to()->set_saved_mark();
 833   from()->set_saved_mark();
 834 }
 835 
 836 
 837 void DefNewGeneration::reset_saved_marks() {
 838   eden()->reset_saved_mark();
 839   to()->reset_saved_mark();
 840   from()->reset_saved_mark();
 841 }
 842 
 843 
 844 bool DefNewGeneration::no_allocs_since_save_marks() {
 845   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 846   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 847   return to()->saved_mark_at_top();
 848 }
 849 
 850 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 851                                                                 \
 852 void DefNewGeneration::                                         \
 853 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 854   cl->set_generation(this);                                     \
 855   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 856   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 857   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 858   cl->reset_generation();                                       \
 859   save_marks();                                                 \
 860 }
 861 
 862 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 863 
 864 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 865 
 866 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 867                                          size_t max_alloc_words) {
 868   if (requestor == this || _promotion_failed) {
 869     return;
 870   }
 871   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 872 
 873   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 874   if (to_space->top() > to_space->bottom()) {
 875     trace("to_space not empty when contribute_scratch called");
 876   }
 877   */
 878 
 879   ContiguousSpace* to_space = to();
 880   assert(to_space->end() >= to_space->top(), "pointers out of order");
 881   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 882   if (free_words >= MinFreeScratchWords) {
 883     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 884     sb->num_words = free_words;
 885     sb->next = list;
 886     list = sb;
 887   }
 888 }
 889 
 890 void DefNewGeneration::reset_scratch() {
 891   // If contributing scratch in to_space, mangle all of
 892   // to_space if ZapUnusedHeapArea.  This is needed because
 893   // top is not maintained while using to-space as scratch.
 894   if (ZapUnusedHeapArea) {
 895     to()->mangle_unused_area_complete();
 896   }
 897 }
 898 
 899 bool DefNewGeneration::collection_attempt_is_safe() {
 900   if (!to()->is_empty()) {
 901     log_trace(gc)(":: to is not empty ::");
 902     return false;
 903   }
 904   if (_old_gen == NULL) {
 905     GenCollectedHeap* gch = GenCollectedHeap::heap();
 906     _old_gen = gch->old_gen();
 907   }
 908   return _old_gen->promotion_attempt_is_safe(used());
 909 }
 910 
 911 void DefNewGeneration::gc_epilogue(bool full) {
 912   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 913 
 914   assert(!GCLocker::is_active(), "We should not be executing here");
 915   // Check if the heap is approaching full after a collection has
 916   // been done.  Generally the young generation is empty at
 917   // a minimum at the end of a collection.  If it is not, then
 918   // the heap is approaching full.
 919   GenCollectedHeap* gch = GenCollectedHeap::heap();
 920   if (full) {
 921     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 922     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 923       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 924                             GCCause::to_string(gch->gc_cause()));
 925       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 926       set_should_allocate_from_space(); // we seem to be running out of space
 927     } else {
 928       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 929                             GCCause::to_string(gch->gc_cause()));
 930       gch->clear_incremental_collection_failed(); // We just did a full collection
 931       clear_should_allocate_from_space(); // if set
 932     }
 933   } else {
 934 #ifdef ASSERT
 935     // It is possible that incremental_collection_failed() == true
 936     // here, because an attempted scavenge did not succeed. The policy
 937     // is normally expected to cause a full collection which should
 938     // clear that condition, so we should not be here twice in a row
 939     // with incremental_collection_failed() == true without having done
 940     // a full collection in between.
 941     if (!seen_incremental_collection_failed &&
 942         gch->incremental_collection_failed()) {
 943       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 944                             GCCause::to_string(gch->gc_cause()));
 945       seen_incremental_collection_failed = true;
 946     } else if (seen_incremental_collection_failed) {
 947       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 948                             GCCause::to_string(gch->gc_cause()));
 949       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 950              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 951              !gch->incremental_collection_failed(),
 952              "Twice in a row");
 953       seen_incremental_collection_failed = false;
 954     }
 955 #endif // ASSERT
 956   }
 957 
 958   if (ZapUnusedHeapArea) {
 959     eden()->check_mangled_unused_area_complete();
 960     from()->check_mangled_unused_area_complete();
 961     to()->check_mangled_unused_area_complete();
 962   }
 963 
 964   if (!CleanChunkPoolAsync) {
 965     Chunk::clean_chunk_pool();
 966   }
 967 
 968   // update the generation and space performance counters
 969   update_counters();
 970   gch->collector_policy()->counters()->update_counters();
 971 }
 972 
 973 void DefNewGeneration::record_spaces_top() {
 974   assert(ZapUnusedHeapArea, "Not mangling unused space");
 975   eden()->set_top_for_allocations();
 976   to()->set_top_for_allocations();
 977   from()->set_top_for_allocations();
 978 }
 979 
 980 void DefNewGeneration::ref_processor_init() {
 981   Generation::ref_processor_init();
 982 }
 983 
 984 
 985 void DefNewGeneration::update_counters() {
 986   if (UsePerfData) {
 987     _eden_counters->update_all();
 988     _from_counters->update_all();
 989     _to_counters->update_all();
 990     _gen_counters->update_all();
 991   }
 992 }
 993 
 994 void DefNewGeneration::verify() {
 995   eden()->verify();
 996   from()->verify();
 997     to()->verify();
 998 }
 999 
1000 void DefNewGeneration::print_on(outputStream* st) const {
1001   Generation::print_on(st);
1002   st->print("  eden");
1003   eden()->print_on(st);
1004   st->print("  from");
1005   from()->print_on(st);
1006   st->print("  to  ");
1007   to()->print_on(st);
1008 }
1009 
1010 
1011 const char* DefNewGeneration::name() const {
1012   return "def new generation";
1013 }
1014 
1015 // Moved from inline file as they are not called inline
1016 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1017   return eden();
1018 }
1019 
1020 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1021   // This is the slow-path allocation for the DefNewGeneration.
1022   // Most allocations are fast-path in compiled code.
1023   // We try to allocate from the eden.  If that works, we are happy.
1024   // Note that since DefNewGeneration supports lock-free allocation, we
1025   // have to use it here, as well.
1026   HeapWord* result = eden()->par_allocate(word_size);
1027   if (result != NULL) {
1028     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1029       _old_gen->sample_eden_chunk();
1030     }
1031   } else {
1032     // If the eden is full and the last collection bailed out, we are running
1033     // out of heap space, and we try to allocate the from-space, too.
1034     // allocate_from_space can't be inlined because that would introduce a
1035     // circular dependency at compile time.
1036     result = allocate_from_space(word_size);
1037   }
1038   return result;
1039 }
1040 
1041 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1042                                          bool is_tlab) {
1043   HeapWord* res = eden()->par_allocate(word_size);
1044   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1045     _old_gen->sample_eden_chunk();
1046   }
1047   return res;
1048 }
1049 
1050 size_t DefNewGeneration::tlab_capacity() const {
1051   return eden()->capacity();
1052 }
1053 
1054 size_t DefNewGeneration::tlab_used() const {
1055   return eden()->used();
1056 }
1057 
1058 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1059   return unsafe_max_alloc_nogc();
1060 }