1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/gcTrace.hpp"
  29 #include "gc/shared/referencePolicy.hpp"
  30 #include "gc/shared/referenceProcessorStats.hpp"
  31 #include "memory/referenceType.hpp"
  32 #include "oops/instanceRefKlass.hpp"
  33 
  34 class GCTimer;
  35 
  36 // ReferenceProcessor class encapsulates the per-"collector" processing
  37 // of java.lang.Reference objects for GC. The interface is useful for supporting
  38 // a generational abstraction, in particular when there are multiple
  39 // generations that are being independently collected -- possibly
  40 // concurrently and/or incrementally.  Note, however, that the
  41 // ReferenceProcessor class abstracts away from a generational setting
  42 // by using only a heap interval (called "span" below), thus allowing
  43 // its use in a straightforward manner in a general, non-generational
  44 // setting.
  45 //
  46 // The basic idea is that each ReferenceProcessor object concerns
  47 // itself with ("weak") reference processing in a specific "span"
  48 // of the heap of interest to a specific collector. Currently,
  49 // the span is a convex interval of the heap, but, efficiency
  50 // apart, there seems to be no reason it couldn't be extended
  51 // (with appropriate modifications) to any "non-convex interval".
  52 
  53 // forward references
  54 class ReferencePolicy;
  55 class AbstractRefProcTaskExecutor;
  56 
  57 // List of discovered references.
  58 class DiscoveredList {
  59 public:
  60   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  61   inline oop head() const;
  62   HeapWord* adr_head() {
  63     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  64                                (HeapWord*)&_oop_head;
  65   }
  66   inline void set_head(oop o);
  67   inline bool is_empty() const;
  68   size_t length()               { return _len; }
  69   void   set_length(size_t len) { _len = len;  }
  70   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  71   void   dec_length(size_t dec) { _len -= dec; }
  72 private:
  73   // Set value depending on UseCompressedOops. This could be a template class
  74   // but then we have to fix all the instantiations and declarations that use this class.
  75   oop       _oop_head;
  76   narrowOop _compressed_head;
  77   size_t _len;
  78 };
  79 
  80 // Iterator for the list of discovered references.
  81 class DiscoveredListIterator {
  82 private:
  83   DiscoveredList&    _refs_list;
  84   HeapWord*          _prev_next;
  85   oop                _prev;
  86   oop                _ref;
  87   HeapWord*          _discovered_addr;
  88   oop                _next;
  89   HeapWord*          _referent_addr;
  90   oop                _referent;
  91   OopClosure*        _keep_alive;
  92   BoolObjectClosure* _is_alive;
  93 
  94   DEBUG_ONLY(
  95   oop                _first_seen; // cyclic linked list check
  96   )
  97 
  98   NOT_PRODUCT(
  99   size_t             _processed;
 100   size_t             _removed;
 101   )
 102 
 103 public:
 104   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 105                                 OopClosure*        keep_alive,
 106                                 BoolObjectClosure* is_alive);
 107 
 108   // End Of List.
 109   inline bool has_next() const { return _ref != NULL; }
 110 
 111   // Get oop to the Reference object.
 112   inline oop obj() const { return _ref; }
 113 
 114   // Get oop to the referent object.
 115   inline oop referent() const { return _referent; }
 116 
 117   // Returns true if referent is alive.
 118   inline bool is_referent_alive() const {
 119     return _is_alive->do_object_b(_referent);
 120   }
 121 
 122   // Loads data for the current reference.
 123   // The "allow_null_referent" argument tells us to allow for the possibility
 124   // of a NULL referent in the discovered Reference object. This typically
 125   // happens in the case of concurrent collectors that may have done the
 126   // discovery concurrently, or interleaved, with mutator execution.
 127   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 128 
 129   // Move to the next discovered reference.
 130   inline void next() {
 131     _prev_next = _discovered_addr;
 132     _prev = _ref;
 133     move_to_next();
 134   }
 135 
 136   // Remove the current reference from the list
 137   void remove();
 138 
 139   // Make the referent alive.
 140   inline void make_referent_alive() {
 141     if (UseCompressedOops) {
 142       _keep_alive->do_oop((narrowOop*)_referent_addr);
 143     } else {
 144       _keep_alive->do_oop((oop*)_referent_addr);
 145     }
 146   }
 147 
 148   // NULL out referent pointer.
 149   void clear_referent();
 150 
 151   // Statistics
 152   NOT_PRODUCT(
 153   inline size_t processed() const { return _processed; }
 154   inline size_t removed() const   { return _removed; }
 155   )
 156 
 157   inline void move_to_next() {
 158     if (_ref == _next) {
 159       // End of the list.
 160       _ref = NULL;
 161     } else {
 162       _ref = _next;
 163     }
 164     assert(_ref != _first_seen, "cyclic ref_list found");
 165     NOT_PRODUCT(_processed++);
 166   }
 167 };
 168 
 169 class ReferenceProcessor : public CHeapObj<mtGC> {
 170 
 171  private:
 172   size_t total_count(DiscoveredList lists[]);
 173 
 174  protected:
 175   // The SoftReference master timestamp clock
 176   static jlong _soft_ref_timestamp_clock;
 177 
 178   MemRegion   _span;                    // (right-open) interval of heap
 179                                         // subject to wkref discovery
 180 
 181   bool        _discovering_refs;        // true when discovery enabled
 182   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 183                                         // other collectors in configuration
 184   bool        _discovery_is_mt;         // true if reference discovery is MT.
 185 
 186   bool        _enqueuing_is_done;       // true if all weak references enqueued
 187   bool        _processing_is_mt;        // true during phases when
 188                                         // reference processing is MT.
 189   uint        _next_id;                 // round-robin mod _num_q counter in
 190                                         // support of work distribution
 191 
 192   // For collectors that do not keep GC liveness information
 193   // in the object header, this field holds a closure that
 194   // helps the reference processor determine the reachability
 195   // of an oop. It is currently initialized to NULL for all
 196   // collectors except for CMS and G1.
 197   BoolObjectClosure* _is_alive_non_header;
 198 
 199   // Soft ref clearing policies
 200   // . the default policy
 201   static ReferencePolicy*   _default_soft_ref_policy;
 202   // . the "clear all" policy
 203   static ReferencePolicy*   _always_clear_soft_ref_policy;
 204   // . the current policy below is either one of the above
 205   ReferencePolicy*          _current_soft_ref_policy;
 206 
 207   // The discovered ref lists themselves
 208 
 209   // The active MT'ness degree of the queues below
 210   uint             _num_q;
 211   // The maximum MT'ness degree of the queues below
 212   uint             _max_num_q;
 213 
 214   // Master array of discovered oops
 215   DiscoveredList* _discovered_refs;
 216 
 217   // Arrays of lists of oops, one per thread (pointers into master array above)
 218   DiscoveredList* _discoveredSoftRefs;
 219   DiscoveredList* _discoveredWeakRefs;
 220   DiscoveredList* _discoveredFinalRefs;
 221   DiscoveredList* _discoveredPhantomRefs;
 222 
 223  public:
 224   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 225 
 226   uint num_q()                             { return _num_q; }
 227   uint max_num_q()                         { return _max_num_q; }
 228   void set_active_mt_degree(uint v)        { _num_q = v; }
 229 
 230   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 231 
 232   ReferencePolicy* setup_policy(bool always_clear) {
 233     _current_soft_ref_policy = always_clear ?
 234       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 235     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 236     return _current_soft_ref_policy;
 237   }
 238 
 239   // Process references with a certain reachability level.
 240   void process_discovered_reflist(DiscoveredList               refs_lists[],
 241                                   ReferencePolicy*             policy,
 242                                   bool                         clear_referent,
 243                                   BoolObjectClosure*           is_alive,
 244                                   OopClosure*                  keep_alive,
 245                                   VoidClosure*                 complete_gc,
 246                                   AbstractRefProcTaskExecutor* task_executor);
 247 
 248   void process_phaseJNI(BoolObjectClosure* is_alive,
 249                         OopClosure*        keep_alive,
 250                         VoidClosure*       complete_gc);
 251 
 252   // Work methods used by the method process_discovered_reflist
 253   // Phase1: keep alive all those referents that are otherwise
 254   // dead but which must be kept alive by policy (and their closure).
 255   void process_phase1(DiscoveredList&     refs_list,
 256                       ReferencePolicy*    policy,
 257                       BoolObjectClosure*  is_alive,
 258                       OopClosure*         keep_alive,
 259                       VoidClosure*        complete_gc);
 260   // Phase2: remove all those references whose referents are
 261   // reachable.
 262   inline void process_phase2(DiscoveredList&    refs_list,
 263                              BoolObjectClosure* is_alive,
 264                              OopClosure*        keep_alive,
 265                              VoidClosure*       complete_gc) {
 266     if (discovery_is_atomic()) {
 267       // complete_gc is ignored in this case for this phase
 268       pp2_work(refs_list, is_alive, keep_alive);
 269     } else {
 270       assert(complete_gc != NULL, "Error");
 271       pp2_work_concurrent_discovery(refs_list, is_alive,
 272                                     keep_alive, complete_gc);
 273     }
 274   }
 275   // Work methods in support of process_phase2
 276   void pp2_work(DiscoveredList&    refs_list,
 277                 BoolObjectClosure* is_alive,
 278                 OopClosure*        keep_alive);
 279   void pp2_work_concurrent_discovery(
 280                 DiscoveredList&    refs_list,
 281                 BoolObjectClosure* is_alive,
 282                 OopClosure*        keep_alive,
 283                 VoidClosure*       complete_gc);
 284   // Phase3: process the referents by either clearing them
 285   // or keeping them alive (and their closure)
 286   void process_phase3(DiscoveredList&    refs_list,
 287                       bool               clear_referent,
 288                       BoolObjectClosure* is_alive,
 289                       OopClosure*        keep_alive,
 290                       VoidClosure*       complete_gc);
 291 
 292   // Enqueue references with a certain reachability level
 293   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 294 
 295   // "Preclean" all the discovered reference lists
 296   // by removing references with strongly reachable referents.
 297   // The first argument is a predicate on an oop that indicates
 298   // its (strong) reachability and the second is a closure that
 299   // may be used to incrementalize or abort the precleaning process.
 300   // The caller is responsible for taking care of potential
 301   // interference with concurrent operations on these lists
 302   // (or predicates involved) by other threads. Currently
 303   // only used by the CMS collector.
 304   void preclean_discovered_references(BoolObjectClosure* is_alive,
 305                                       OopClosure*        keep_alive,
 306                                       VoidClosure*       complete_gc,
 307                                       YieldClosure*      yield,
 308                                       GCTimer*           gc_timer);
 309 
 310   // Returns the name of the discovered reference list
 311   // occupying the i / _num_q slot.
 312   const char* list_name(uint i);
 313 
 314   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 315 
 316  protected:
 317   // "Preclean" the given discovered reference list
 318   // by removing references with strongly reachable referents.
 319   // Currently used in support of CMS only.
 320   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 321                                    BoolObjectClosure* is_alive,
 322                                    OopClosure*        keep_alive,
 323                                    VoidClosure*       complete_gc,
 324                                    YieldClosure*      yield);
 325 
 326   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 327   uint next_id() {
 328     uint id = _next_id;
 329     if (++_next_id == _num_q) {
 330       _next_id = 0;
 331     }
 332     return id;
 333   }
 334   DiscoveredList* get_discovered_list(ReferenceType rt);
 335   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 336                                         HeapWord* discovered_addr);
 337 
 338   void clear_discovered_references(DiscoveredList& refs_list);
 339 
 340   // Calculate the number of jni handles.
 341   size_t count_jni_refs();
 342 
 343   void log_reflist_counts(DiscoveredList ref_lists[], size_t total_count) PRODUCT_RETURN;
 344 
 345   // Balances reference queues.
 346   void balance_queues(DiscoveredList ref_lists[]);
 347 
 348   // Update (advance) the soft ref master clock field.
 349   void update_soft_ref_master_clock();
 350 
 351  public:
 352   // Default parameters give you a vanilla reference processor.
 353   ReferenceProcessor(MemRegion span,
 354                      bool mt_processing = false, uint mt_processing_degree = 1,
 355                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 356                      bool atomic_discovery = true,
 357                      BoolObjectClosure* is_alive_non_header = NULL);
 358 
 359   // RefDiscoveryPolicy values
 360   enum DiscoveryPolicy {
 361     ReferenceBasedDiscovery = 0,
 362     ReferentBasedDiscovery  = 1,
 363     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 364     DiscoveryPolicyMax      = ReferentBasedDiscovery
 365   };
 366 
 367   static void init_statics();
 368 
 369  public:
 370   // get and set "is_alive_non_header" field
 371   BoolObjectClosure* is_alive_non_header() {
 372     return _is_alive_non_header;
 373   }
 374   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 375     _is_alive_non_header = is_alive_non_header;
 376   }
 377 
 378   // get and set span
 379   MemRegion span()                   { return _span; }
 380   void      set_span(MemRegion span) { _span = span; }
 381 
 382   // start and stop weak ref discovery
 383   void enable_discovery(bool check_no_refs = true);
 384   void disable_discovery()  { _discovering_refs = false; }
 385   bool discovery_enabled()  { return _discovering_refs;  }
 386 
 387   // whether discovery is atomic wrt other collectors
 388   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 389   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 390 
 391   // whether discovery is done by multiple threads same-old-timeously
 392   bool discovery_is_mt() const { return _discovery_is_mt; }
 393   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 394 
 395   // Whether we are in a phase when _processing_ is MT.
 396   bool processing_is_mt() const { return _processing_is_mt; }
 397   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 398 
 399   // whether all enqueueing of weak references is complete
 400   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 401   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 402 
 403   // iterate over oops
 404   void weak_oops_do(OopClosure* f);       // weak roots
 405 
 406   // Balance each of the discovered lists.
 407   void balance_all_queues();
 408   void verify_list(DiscoveredList& ref_list);
 409 
 410   // Discover a Reference object, using appropriate discovery criteria
 411   bool discover_reference(oop obj, ReferenceType rt);
 412 
 413   // Process references found during GC (called by the garbage collector)
 414   ReferenceProcessorStats
 415   process_discovered_references(BoolObjectClosure*           is_alive,
 416                                 OopClosure*                  keep_alive,
 417                                 VoidClosure*                 complete_gc,
 418                                 AbstractRefProcTaskExecutor* task_executor,
 419                                 GCTimer *gc_timer);
 420 
 421   // Enqueue references at end of GC (called by the garbage collector)
 422   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 423 
 424   // If a discovery is in process that is being superceded, abandon it: all
 425   // the discovered lists will be empty, and all the objects on them will
 426   // have NULL discovered fields.  Must be called only at a safepoint.
 427   void abandon_partial_discovery();
 428 
 429   // debugging
 430   void verify_no_references_recorded() PRODUCT_RETURN;
 431   void verify_referent(oop obj)        PRODUCT_RETURN;
 432 };
 433 
 434 // A utility class to disable reference discovery in
 435 // the scope which contains it, for given ReferenceProcessor.
 436 class NoRefDiscovery: StackObj {
 437  private:
 438   ReferenceProcessor* _rp;
 439   bool _was_discovering_refs;
 440  public:
 441   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 442     _was_discovering_refs = _rp->discovery_enabled();
 443     if (_was_discovering_refs) {
 444       _rp->disable_discovery();
 445     }
 446   }
 447 
 448   ~NoRefDiscovery() {
 449     if (_was_discovering_refs) {
 450       _rp->enable_discovery(false /*check_no_refs*/);
 451     }
 452   }
 453 };
 454 
 455 
 456 // A utility class to temporarily mutate the span of the
 457 // given ReferenceProcessor in the scope that contains it.
 458 class ReferenceProcessorSpanMutator: StackObj {
 459  private:
 460   ReferenceProcessor* _rp;
 461   MemRegion           _saved_span;
 462 
 463  public:
 464   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 465                                 MemRegion span):
 466     _rp(rp) {
 467     _saved_span = _rp->span();
 468     _rp->set_span(span);
 469   }
 470 
 471   ~ReferenceProcessorSpanMutator() {
 472     _rp->set_span(_saved_span);
 473   }
 474 };
 475 
 476 // A utility class to temporarily change the MT'ness of
 477 // reference discovery for the given ReferenceProcessor
 478 // in the scope that contains it.
 479 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 480  private:
 481   ReferenceProcessor* _rp;
 482   bool                _saved_mt;
 483 
 484  public:
 485   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 486                                        bool mt):
 487     _rp(rp) {
 488     _saved_mt = _rp->discovery_is_mt();
 489     _rp->set_mt_discovery(mt);
 490   }
 491 
 492   ~ReferenceProcessorMTDiscoveryMutator() {
 493     _rp->set_mt_discovery(_saved_mt);
 494   }
 495 };
 496 
 497 
 498 // A utility class to temporarily change the disposition
 499 // of the "is_alive_non_header" closure field of the
 500 // given ReferenceProcessor in the scope that contains it.
 501 class ReferenceProcessorIsAliveMutator: StackObj {
 502  private:
 503   ReferenceProcessor* _rp;
 504   BoolObjectClosure*  _saved_cl;
 505 
 506  public:
 507   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 508                                    BoolObjectClosure*  cl):
 509     _rp(rp) {
 510     _saved_cl = _rp->is_alive_non_header();
 511     _rp->set_is_alive_non_header(cl);
 512   }
 513 
 514   ~ReferenceProcessorIsAliveMutator() {
 515     _rp->set_is_alive_non_header(_saved_cl);
 516   }
 517 };
 518 
 519 // A utility class to temporarily change the disposition
 520 // of the "discovery_is_atomic" field of the
 521 // given ReferenceProcessor in the scope that contains it.
 522 class ReferenceProcessorAtomicMutator: StackObj {
 523  private:
 524   ReferenceProcessor* _rp;
 525   bool                _saved_atomic_discovery;
 526 
 527  public:
 528   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 529                                   bool atomic):
 530     _rp(rp) {
 531     _saved_atomic_discovery = _rp->discovery_is_atomic();
 532     _rp->set_atomic_discovery(atomic);
 533   }
 534 
 535   ~ReferenceProcessorAtomicMutator() {
 536     _rp->set_atomic_discovery(_saved_atomic_discovery);
 537   }
 538 };
 539 
 540 
 541 // A utility class to temporarily change the MT processing
 542 // disposition of the given ReferenceProcessor instance
 543 // in the scope that contains it.
 544 class ReferenceProcessorMTProcMutator: StackObj {
 545  private:
 546   ReferenceProcessor* _rp;
 547   bool  _saved_mt;
 548 
 549  public:
 550   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 551                                   bool mt):
 552     _rp(rp) {
 553     _saved_mt = _rp->processing_is_mt();
 554     _rp->set_mt_processing(mt);
 555   }
 556 
 557   ~ReferenceProcessorMTProcMutator() {
 558     _rp->set_mt_processing(_saved_mt);
 559   }
 560 };
 561 
 562 
 563 // This class is an interface used to implement task execution for the
 564 // reference processing.
 565 class AbstractRefProcTaskExecutor {
 566 public:
 567 
 568   // Abstract tasks to execute.
 569   class ProcessTask;
 570   class EnqueueTask;
 571 
 572   // Executes a task using worker threads.
 573   virtual void execute(ProcessTask& task) = 0;
 574   virtual void execute(EnqueueTask& task) = 0;
 575 
 576   // Switch to single threaded mode.
 577   virtual void set_single_threaded_mode() { };
 578 };
 579 
 580 // Abstract reference processing task to execute.
 581 class AbstractRefProcTaskExecutor::ProcessTask {
 582 protected:
 583   ProcessTask(ReferenceProcessor& ref_processor,
 584               DiscoveredList      refs_lists[],
 585               bool                marks_oops_alive)
 586     : _ref_processor(ref_processor),
 587       _refs_lists(refs_lists),
 588       _marks_oops_alive(marks_oops_alive)
 589   { }
 590 
 591 public:
 592   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 593                     OopClosure& keep_alive,
 594                     VoidClosure& complete_gc) = 0;
 595 
 596   // Returns true if a task marks some oops as alive.
 597   bool marks_oops_alive() const
 598   { return _marks_oops_alive; }
 599 
 600 protected:
 601   ReferenceProcessor& _ref_processor;
 602   DiscoveredList*     _refs_lists;
 603   const bool          _marks_oops_alive;
 604 };
 605 
 606 // Abstract reference processing task to execute.
 607 class AbstractRefProcTaskExecutor::EnqueueTask {
 608 protected:
 609   EnqueueTask(ReferenceProcessor& ref_processor,
 610               DiscoveredList      refs_lists[],
 611               HeapWord*           pending_list_addr,
 612               int                 n_queues)
 613     : _ref_processor(ref_processor),
 614       _refs_lists(refs_lists),
 615       _pending_list_addr(pending_list_addr),
 616       _n_queues(n_queues)
 617   { }
 618 
 619 public:
 620   virtual void work(unsigned int work_id) = 0;
 621 
 622 protected:
 623   ReferenceProcessor& _ref_processor;
 624   DiscoveredList*     _refs_lists;
 625   HeapWord*           _pending_list_addr;
 626   int                 _n_queues;
 627 };
 628 
 629 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP