1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/compilationPolicy.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/signature.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "runtime/vframe_hp.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/xmlstream.hpp"
  57 
  58 #if INCLUDE_JVMCI
  59 #include "jvmci/jvmciRuntime.hpp"
  60 #include "jvmci/jvmciJavaClasses.hpp"
  61 #endif
  62 
  63 
  64 bool DeoptimizationMarker::_is_active = false;
  65 
  66 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  67                                          int  caller_adjustment,
  68                                          int  caller_actual_parameters,
  69                                          int  number_of_frames,
  70                                          intptr_t* frame_sizes,
  71                                          address* frame_pcs,
  72                                          BasicType return_type,
  73                                          int exec_mode) {
  74   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  75   _caller_adjustment         = caller_adjustment;
  76   _caller_actual_parameters  = caller_actual_parameters;
  77   _number_of_frames          = number_of_frames;
  78   _frame_sizes               = frame_sizes;
  79   _frame_pcs                 = frame_pcs;
  80   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  81   _return_type               = return_type;
  82   _initial_info              = 0;
  83   // PD (x86 only)
  84   _counter_temp              = 0;
  85   _unpack_kind               = exec_mode;
  86   _sender_sp_temp            = 0;
  87 
  88   _total_frame_sizes         = size_of_frames();
  89   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  90 }
  91 
  92 
  93 Deoptimization::UnrollBlock::~UnrollBlock() {
  94   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  95   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  96   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  97 }
  98 
  99 
 100 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 101   assert(register_number < RegisterMap::reg_count, "checking register number");
 102   return &_register_block[register_number * 2];
 103 }
 104 
 105 
 106 
 107 int Deoptimization::UnrollBlock::size_of_frames() const {
 108   // Acount first for the adjustment of the initial frame
 109   int result = _caller_adjustment;
 110   for (int index = 0; index < number_of_frames(); index++) {
 111     result += frame_sizes()[index];
 112   }
 113   return result;
 114 }
 115 
 116 
 117 void Deoptimization::UnrollBlock::print() {
 118   ttyLocker ttyl;
 119   tty->print_cr("UnrollBlock");
 120   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 121   tty->print(   "  frame_sizes: ");
 122   for (int index = 0; index < number_of_frames(); index++) {
 123     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 124   }
 125   tty->cr();
 126 }
 127 
 128 
 129 // In order to make fetch_unroll_info work properly with escape
 130 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 131 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 132 // of previously eliminated objects occurs in realloc_objects, which is
 133 // called from the method fetch_unroll_info_helper below.
 134 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 135   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 136   // but makes the entry a little slower. There is however a little dance we have to
 137   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 138 
 139   // fetch_unroll_info() is called at the beginning of the deoptimization
 140   // handler. Note this fact before we start generating temporary frames
 141   // that can confuse an asynchronous stack walker. This counter is
 142   // decremented at the end of unpack_frames().
 143   if (TraceDeoptimization) {
 144     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 145   }
 146   thread->inc_in_deopt_handler();
 147 
 148   return fetch_unroll_info_helper(thread, exec_mode);
 149 JRT_END
 150 
 151 
 152 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 153 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 154 
 155   // Note: there is a safepoint safety issue here. No matter whether we enter
 156   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 157   // the vframeArray is created.
 158   //
 159 
 160   // Allocate our special deoptimization ResourceMark
 161   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 162   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 163   thread->set_deopt_mark(dmark);
 164 
 165   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 166   RegisterMap map(thread, true);
 167   RegisterMap dummy_map(thread, false);
 168   // Now get the deoptee with a valid map
 169   frame deoptee = stub_frame.sender(&map);
 170   // Set the deoptee nmethod
 171   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 172   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 173   bool skip_internal = thread->deopt_nmethod() != NULL && !thread->deopt_nmethod()->compiler()->is_jvmci();
 174 
 175   if (VerifyStack) {
 176     thread->validate_frame_layout();
 177   }
 178 
 179   // Create a growable array of VFrames where each VFrame represents an inlined
 180   // Java frame.  This storage is allocated with the usual system arena.
 181   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 182   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 183   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 184   while (!vf->is_top()) {
 185     assert(vf->is_compiled_frame(), "Wrong frame type");
 186     chunk->push(compiledVFrame::cast(vf));
 187     vf = vf->sender();
 188   }
 189   assert(vf->is_compiled_frame(), "Wrong frame type");
 190   chunk->push(compiledVFrame::cast(vf));
 191 
 192   ScopeDesc* trap_scope = chunk->at(0)->scope();
 193   Handle exceptionObject;
 194   if (trap_scope->rethrow_exception()) {
 195     if (PrintDeoptimizationDetails) {
 196       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 197     }
 198     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 199     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 200     ScopeValue* topOfStack = expressions->top();
 201     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 202     assert(exceptionObject() != NULL, "exception oop can not be null");
 203   }
 204 
 205   bool realloc_failures = false;
 206 
 207 #if defined(COMPILER2) || INCLUDE_JVMCI
 208   // Reallocate the non-escaping objects and restore their fields. Then
 209   // relock objects if synchronization on them was eliminated.
 210 #ifndef INCLUDE_JVMCI
 211   if (DoEscapeAnalysis || EliminateNestedLocks) {
 212     if (EliminateAllocations) {
 213 #endif // INCLUDE_JVMCI
 214       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 215       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 216 
 217       // The flag return_oop() indicates call sites which return oop
 218       // in compiled code. Such sites include java method calls,
 219       // runtime calls (for example, used to allocate new objects/arrays
 220       // on slow code path) and any other calls generated in compiled code.
 221       // It is not guaranteed that we can get such information here only
 222       // by analyzing bytecode in deoptimized frames. This is why this flag
 223       // is set during method compilation (see Compile::Process_OopMap_Node()).
 224       // If the previous frame was popped, we don't have a result.
 225       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 226       Handle return_value;
 227       if (save_oop_result) {
 228         // Reallocation may trigger GC. If deoptimization happened on return from
 229         // call which returns oop we need to save it since it is not in oopmap.
 230         oop result = deoptee.saved_oop_result(&map);
 231         assert(result == NULL || result->is_oop(), "must be oop");
 232         return_value = Handle(thread, result);
 233         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 234         if (TraceDeoptimization) {
 235           ttyLocker ttyl;
 236           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 237         }
 238       }
 239       if (objects != NULL) {
 240         JRT_BLOCK
 241           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 242         JRT_END
 243         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 244 #ifndef PRODUCT
 245         if (TraceDeoptimization) {
 246           ttyLocker ttyl;
 247           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 248           print_objects(objects, realloc_failures);
 249         }
 250 #endif
 251       }
 252       if (save_oop_result) {
 253         // Restore result.
 254         deoptee.set_saved_oop_result(&map, return_value());
 255       }
 256 #ifndef INCLUDE_JVMCI
 257     }
 258     if (EliminateLocks) {
 259 #endif // INCLUDE_JVMCI
 260 #ifndef PRODUCT
 261       bool first = true;
 262 #endif
 263       for (int i = 0; i < chunk->length(); i++) {
 264         compiledVFrame* cvf = chunk->at(i);
 265         assert (cvf->scope() != NULL,"expect only compiled java frames");
 266         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 267         if (monitors->is_nonempty()) {
 268           relock_objects(monitors, thread, realloc_failures);
 269 #ifndef PRODUCT
 270           if (PrintDeoptimizationDetails) {
 271             ttyLocker ttyl;
 272             for (int j = 0; j < monitors->length(); j++) {
 273               MonitorInfo* mi = monitors->at(j);
 274               if (mi->eliminated()) {
 275                 if (first) {
 276                   first = false;
 277                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 278                 }
 279                 if (mi->owner_is_scalar_replaced()) {
 280                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 281                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 282                 } else {
 283                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 284                 }
 285               }
 286             }
 287           }
 288 #endif // !PRODUCT
 289         }
 290       }
 291 #ifndef INCLUDE_JVMCI
 292     }
 293   }
 294 #endif // INCLUDE_JVMCI
 295 #endif // COMPILER2 || INCLUDE_JVMCI
 296 
 297   // Ensure that no safepoint is taken after pointers have been stored
 298   // in fields of rematerialized objects.  If a safepoint occurs from here on
 299   // out the java state residing in the vframeArray will be missed.
 300   No_Safepoint_Verifier no_safepoint;
 301 
 302   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 303 #if defined(COMPILER2) || INCLUDE_JVMCI
 304   if (realloc_failures) {
 305     pop_frames_failed_reallocs(thread, array);
 306   }
 307 #endif
 308 
 309   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 310   thread->set_vframe_array_head(array);
 311 
 312   // Now that the vframeArray has been created if we have any deferred local writes
 313   // added by jvmti then we can free up that structure as the data is now in the
 314   // vframeArray
 315 
 316   if (thread->deferred_locals() != NULL) {
 317     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 318     int i = 0;
 319     do {
 320       // Because of inlining we could have multiple vframes for a single frame
 321       // and several of the vframes could have deferred writes. Find them all.
 322       if (list->at(i)->id() == array->original().id()) {
 323         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 324         list->remove_at(i);
 325         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 326         delete dlv;
 327       } else {
 328         i++;
 329       }
 330     } while ( i < list->length() );
 331     if (list->length() == 0) {
 332       thread->set_deferred_locals(NULL);
 333       // free the list and elements back to C heap.
 334       delete list;
 335     }
 336 
 337   }
 338 
 339 #ifndef SHARK
 340   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 341   CodeBlob* cb = stub_frame.cb();
 342   // Verify we have the right vframeArray
 343   assert(cb->frame_size() >= 0, "Unexpected frame size");
 344   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 345 
 346   // If the deopt call site is a MethodHandle invoke call site we have
 347   // to adjust the unpack_sp.
 348   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 349   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 350     unpack_sp = deoptee.unextended_sp();
 351 
 352 #ifdef ASSERT
 353   assert(cb->is_deoptimization_stub() ||
 354          cb->is_uncommon_trap_stub() ||
 355          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 356          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 357          "unexpected code blob: %s", cb->name());
 358 #endif
 359 #else
 360   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 361 #endif // !SHARK
 362 
 363   // This is a guarantee instead of an assert because if vframe doesn't match
 364   // we will unpack the wrong deoptimized frame and wind up in strange places
 365   // where it will be very difficult to figure out what went wrong. Better
 366   // to die an early death here than some very obscure death later when the
 367   // trail is cold.
 368   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 369   // in that it will fail to detect a problem when there is one. This needs
 370   // more work in tiger timeframe.
 371   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 372 
 373   int number_of_frames = array->frames();
 374 
 375   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 376   // virtual activation, which is the reverse of the elements in the vframes array.
 377   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 378   // +1 because we always have an interpreter return address for the final slot.
 379   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 380   int popframe_extra_args = 0;
 381   // Create an interpreter return address for the stub to use as its return
 382   // address so the skeletal frames are perfectly walkable
 383   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 384 
 385   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 386   // activation be put back on the expression stack of the caller for reexecution
 387   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 388     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 389   }
 390 
 391   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 392   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 393   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 394   //
 395   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 396   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 397 
 398   // It's possible that the number of parameters at the call site is
 399   // different than number of arguments in the callee when method
 400   // handles are used.  If the caller is interpreted get the real
 401   // value so that the proper amount of space can be added to it's
 402   // frame.
 403   bool caller_was_method_handle = false;
 404   if (deopt_sender.is_interpreted_frame()) {
 405     methodHandle method = deopt_sender.interpreter_frame_method();
 406     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 407     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 408       // Method handle invokes may involve fairly arbitrary chains of
 409       // calls so it's impossible to know how much actual space the
 410       // caller has for locals.
 411       caller_was_method_handle = true;
 412     }
 413   }
 414 
 415   //
 416   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 417   // frame_sizes/frame_pcs[1] next oldest frame (int)
 418   // frame_sizes/frame_pcs[n] youngest frame (int)
 419   //
 420   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 421   // owns the space for the return address to it's caller).  Confusing ain't it.
 422   //
 423   // The vframe array can address vframes with indices running from
 424   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 425   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 426   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 427   // so things look a little strange in this loop.
 428   //
 429   int callee_parameters = 0;
 430   int callee_locals = 0;
 431   for (int index = 0; index < array->frames(); index++ ) {
 432     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 433     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 434     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 435     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 436                                                                                                     callee_locals,
 437                                                                                                     index == 0,
 438                                                                                                     popframe_extra_args);
 439     // This pc doesn't have to be perfect just good enough to identify the frame
 440     // as interpreted so the skeleton frame will be walkable
 441     // The correct pc will be set when the skeleton frame is completely filled out
 442     // The final pc we store in the loop is wrong and will be overwritten below
 443     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 444 
 445     callee_parameters = array->element(index)->method()->size_of_parameters();
 446     callee_locals = array->element(index)->method()->max_locals();
 447     popframe_extra_args = 0;
 448   }
 449 
 450   // Compute whether the root vframe returns a float or double value.
 451   BasicType return_type;
 452   {
 453     HandleMark hm;
 454     methodHandle method(thread, array->element(0)->method());
 455     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 456     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 457   }
 458 
 459   // Compute information for handling adapters and adjusting the frame size of the caller.
 460   int caller_adjustment = 0;
 461 
 462   // Compute the amount the oldest interpreter frame will have to adjust
 463   // its caller's stack by. If the caller is a compiled frame then
 464   // we pretend that the callee has no parameters so that the
 465   // extension counts for the full amount of locals and not just
 466   // locals-parms. This is because without a c2i adapter the parm
 467   // area as created by the compiled frame will not be usable by
 468   // the interpreter. (Depending on the calling convention there
 469   // may not even be enough space).
 470 
 471   // QQQ I'd rather see this pushed down into last_frame_adjust
 472   // and have it take the sender (aka caller).
 473 
 474   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 475     caller_adjustment = last_frame_adjust(0, callee_locals);
 476   } else if (callee_locals > callee_parameters) {
 477     // The caller frame may need extending to accommodate
 478     // non-parameter locals of the first unpacked interpreted frame.
 479     // Compute that adjustment.
 480     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 481   }
 482 
 483   // If the sender is deoptimized the we must retrieve the address of the handler
 484   // since the frame will "magically" show the original pc before the deopt
 485   // and we'd undo the deopt.
 486 
 487   frame_pcs[0] = deopt_sender.raw_pc();
 488 
 489 #ifndef SHARK
 490   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 491 #endif // SHARK
 492 
 493 #ifdef INCLUDE_JVMCI
 494   if (exceptionObject() != NULL) {
 495     thread->set_exception_oop(exceptionObject());
 496     exec_mode = Unpack_exception;
 497   }
 498 #endif
 499 
 500   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 501                                       caller_adjustment * BytesPerWord,
 502                                       caller_was_method_handle ? 0 : callee_parameters,
 503                                       number_of_frames,
 504                                       frame_sizes,
 505                                       frame_pcs,
 506                                       return_type,
 507                                       exec_mode);
 508   // On some platforms, we need a way to pass some platform dependent
 509   // information to the unpacking code so the skeletal frames come out
 510   // correct (initial fp value, unextended sp, ...)
 511   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 512 
 513   if (array->frames() > 1) {
 514     if (VerifyStack && TraceDeoptimization) {
 515       ttyLocker ttyl;
 516       tty->print_cr("Deoptimizing method containing inlining");
 517     }
 518   }
 519 
 520   array->set_unroll_block(info);
 521   return info;
 522 }
 523 
 524 // Called to cleanup deoptimization data structures in normal case
 525 // after unpacking to stack and when stack overflow error occurs
 526 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 527                                         vframeArray *array) {
 528 
 529   // Get array if coming from exception
 530   if (array == NULL) {
 531     array = thread->vframe_array_head();
 532   }
 533   thread->set_vframe_array_head(NULL);
 534 
 535   // Free the previous UnrollBlock
 536   vframeArray* old_array = thread->vframe_array_last();
 537   thread->set_vframe_array_last(array);
 538 
 539   if (old_array != NULL) {
 540     UnrollBlock* old_info = old_array->unroll_block();
 541     old_array->set_unroll_block(NULL);
 542     delete old_info;
 543     delete old_array;
 544   }
 545 
 546   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 547   // inside the vframeArray (StackValueCollections)
 548 
 549   delete thread->deopt_mark();
 550   thread->set_deopt_mark(NULL);
 551   thread->set_deopt_nmethod(NULL);
 552 
 553 
 554   if (JvmtiExport::can_pop_frame()) {
 555 #ifndef CC_INTERP
 556     // Regardless of whether we entered this routine with the pending
 557     // popframe condition bit set, we should always clear it now
 558     thread->clear_popframe_condition();
 559 #else
 560     // C++ interpreter will clear has_pending_popframe when it enters
 561     // with method_resume. For deopt_resume2 we clear it now.
 562     if (thread->popframe_forcing_deopt_reexecution())
 563         thread->clear_popframe_condition();
 564 #endif /* CC_INTERP */
 565   }
 566 
 567   // unpack_frames() is called at the end of the deoptimization handler
 568   // and (in C2) at the end of the uncommon trap handler. Note this fact
 569   // so that an asynchronous stack walker can work again. This counter is
 570   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 571   // the beginning of uncommon_trap().
 572   thread->dec_in_deopt_handler();
 573 }
 574 
 575 // Moved from cpu directories because none of the cpus has callee save values.
 576 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 577 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 578 
 579   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 580   // the days we had adapter frames. When we deoptimize a situation where a
 581   // compiled caller calls a compiled caller will have registers it expects
 582   // to survive the call to the callee. If we deoptimize the callee the only
 583   // way we can restore these registers is to have the oldest interpreter
 584   // frame that we create restore these values. That is what this routine
 585   // will accomplish.
 586 
 587   // At the moment we have modified c2 to not have any callee save registers
 588   // so this problem does not exist and this routine is just a place holder.
 589 
 590   assert(f->is_interpreted_frame(), "must be interpreted");
 591 }
 592 
 593 // Return BasicType of value being returned
 594 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 595 
 596   // We are already active int he special DeoptResourceMark any ResourceObj's we
 597   // allocate will be freed at the end of the routine.
 598 
 599   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 600   // but makes the entry a little slower. There is however a little dance we have to
 601   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 602   ResetNoHandleMark rnhm; // No-op in release/product versions
 603   HandleMark hm;
 604 
 605   frame stub_frame = thread->last_frame();
 606 
 607   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 608   // must point to the vframeArray for the unpack frame.
 609   vframeArray* array = thread->vframe_array_head();
 610 
 611 #ifndef PRODUCT
 612   if (TraceDeoptimization) {
 613     ttyLocker ttyl;
 614     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 615                   p2i(thread), p2i(array), exec_mode);
 616   }
 617 #endif
 618   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 619               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 620 
 621   UnrollBlock* info = array->unroll_block();
 622 
 623   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 624   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 625 
 626   BasicType bt = info->return_type();
 627 
 628   // If we have an exception pending, claim that the return type is an oop
 629   // so the deopt_blob does not overwrite the exception_oop.
 630 
 631   if (exec_mode == Unpack_exception)
 632     bt = T_OBJECT;
 633 
 634   // Cleanup thread deopt data
 635   cleanup_deopt_info(thread, array);
 636 
 637 #ifndef PRODUCT
 638   if (VerifyStack) {
 639     ResourceMark res_mark;
 640 
 641     thread->validate_frame_layout();
 642 
 643     // Verify that the just-unpacked frames match the interpreter's
 644     // notions of expression stack and locals
 645     vframeArray* cur_array = thread->vframe_array_last();
 646     RegisterMap rm(thread, false);
 647     rm.set_include_argument_oops(false);
 648     bool is_top_frame = true;
 649     int callee_size_of_parameters = 0;
 650     int callee_max_locals = 0;
 651     for (int i = 0; i < cur_array->frames(); i++) {
 652       vframeArrayElement* el = cur_array->element(i);
 653       frame* iframe = el->iframe();
 654       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 655 
 656       // Get the oop map for this bci
 657       InterpreterOopMap mask;
 658       int cur_invoke_parameter_size = 0;
 659       bool try_next_mask = false;
 660       int next_mask_expression_stack_size = -1;
 661       int top_frame_expression_stack_adjustment = 0;
 662       methodHandle mh(thread, iframe->interpreter_frame_method());
 663       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 664       BytecodeStream str(mh);
 665       str.set_start(iframe->interpreter_frame_bci());
 666       int max_bci = mh->code_size();
 667       // Get to the next bytecode if possible
 668       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 669       // Check to see if we can grab the number of outgoing arguments
 670       // at an uncommon trap for an invoke (where the compiler
 671       // generates debug info before the invoke has executed)
 672       Bytecodes::Code cur_code = str.next();
 673       if (cur_code == Bytecodes::_invokevirtual   ||
 674           cur_code == Bytecodes::_invokespecial   ||
 675           cur_code == Bytecodes::_invokestatic    ||
 676           cur_code == Bytecodes::_invokeinterface ||
 677           cur_code == Bytecodes::_invokedynamic) {
 678         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 679         Symbol* signature = invoke.signature();
 680         ArgumentSizeComputer asc(signature);
 681         cur_invoke_parameter_size = asc.size();
 682         if (invoke.has_receiver()) {
 683           // Add in receiver
 684           ++cur_invoke_parameter_size;
 685         }
 686         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 687           callee_size_of_parameters++;
 688         }
 689       }
 690       if (str.bci() < max_bci) {
 691         Bytecodes::Code bc = str.next();
 692         if (bc >= 0) {
 693           // The interpreter oop map generator reports results before
 694           // the current bytecode has executed except in the case of
 695           // calls. It seems to be hard to tell whether the compiler
 696           // has emitted debug information matching the "state before"
 697           // a given bytecode or the state after, so we try both
 698           switch (cur_code) {
 699             case Bytecodes::_invokevirtual:
 700             case Bytecodes::_invokespecial:
 701             case Bytecodes::_invokestatic:
 702             case Bytecodes::_invokeinterface:
 703             case Bytecodes::_invokedynamic:
 704             case Bytecodes::_athrow:
 705               break;
 706             default: {
 707               InterpreterOopMap next_mask;
 708               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 709               next_mask_expression_stack_size = next_mask.expression_stack_size();
 710               // Need to subtract off the size of the result type of
 711               // the bytecode because this is not described in the
 712               // debug info but returned to the interpreter in the TOS
 713               // caching register
 714               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 715               if (bytecode_result_type != T_ILLEGAL) {
 716                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 717               }
 718               assert(top_frame_expression_stack_adjustment >= 0, "");
 719               try_next_mask = true;
 720               break;
 721             }
 722           }
 723         }
 724       }
 725 
 726       // Verify stack depth and oops in frame
 727       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 728       if (!(
 729             /* SPARC */
 730             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 731             /* x86 */
 732             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 733             (try_next_mask &&
 734              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 735                                                                     top_frame_expression_stack_adjustment))) ||
 736             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 737             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 738              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 739             )) {
 740         ttyLocker ttyl;
 741 
 742         // Print out some information that will help us debug the problem
 743         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 744         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 745         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 746                       iframe->interpreter_frame_expression_stack_size());
 747         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 748         tty->print_cr("  try_next_mask = %d", try_next_mask);
 749         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 750         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 751         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 752         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 753         tty->print_cr("  exec_mode = %d", exec_mode);
 754         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 755         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 756         tty->print_cr("  Interpreted frames:");
 757         for (int k = 0; k < cur_array->frames(); k++) {
 758           vframeArrayElement* el = cur_array->element(k);
 759           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 760         }
 761         cur_array->print_on_2(tty);
 762         guarantee(false, "wrong number of expression stack elements during deopt");
 763       }
 764       VerifyOopClosure verify;
 765       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 766       callee_size_of_parameters = mh->size_of_parameters();
 767       callee_max_locals = mh->max_locals();
 768       is_top_frame = false;
 769     }
 770   }
 771 #endif /* !PRODUCT */
 772 
 773 
 774   return bt;
 775 JRT_END
 776 
 777 
 778 int Deoptimization::deoptimize_dependents() {
 779   Threads::deoptimized_wrt_marked_nmethods();
 780   return 0;
 781 }
 782 
 783 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 784   = Deoptimization::Action_reinterpret;
 785 
 786 #if defined(COMPILER2) || INCLUDE_JVMCI
 787 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 788   Handle pending_exception(thread->pending_exception());
 789   const char* exception_file = thread->exception_file();
 790   int exception_line = thread->exception_line();
 791   thread->clear_pending_exception();
 792 
 793   bool failures = false;
 794 
 795   for (int i = 0; i < objects->length(); i++) {
 796     assert(objects->at(i)->is_object(), "invalid debug information");
 797     ObjectValue* sv = (ObjectValue*) objects->at(i);
 798 
 799     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 800     oop obj = NULL;
 801 
 802     if (k->is_instance_klass()) {
 803       InstanceKlass* ik = InstanceKlass::cast(k());
 804       obj = ik->allocate_instance(THREAD);
 805     } else if (k->is_typeArray_klass()) {
 806       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 807       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 808       int len = sv->field_size() / type2size[ak->element_type()];
 809       obj = ak->allocate(len, THREAD);
 810     } else if (k->is_objArray_klass()) {
 811       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 812       obj = ak->allocate(sv->field_size(), THREAD);
 813     }
 814 
 815     if (obj == NULL) {
 816       failures = true;
 817     }
 818 
 819     assert(sv->value().is_null(), "redundant reallocation");
 820     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 821     CLEAR_PENDING_EXCEPTION;
 822     sv->set_value(obj);
 823   }
 824 
 825   if (failures) {
 826     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 827   } else if (pending_exception.not_null()) {
 828     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 829   }
 830 
 831   return failures;
 832 }
 833 
 834 // restore elements of an eliminated type array
 835 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 836   int index = 0;
 837   intptr_t val;
 838 
 839   for (int i = 0; i < sv->field_size(); i++) {
 840     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 841     switch(type) {
 842     case T_LONG: case T_DOUBLE: {
 843       assert(value->type() == T_INT, "Agreement.");
 844       StackValue* low =
 845         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 846 #ifdef _LP64
 847       jlong res = (jlong)low->get_int();
 848 #else
 849 #ifdef SPARC
 850       // For SPARC we have to swap high and low words.
 851       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 852 #else
 853       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 854 #endif //SPARC
 855 #endif
 856       obj->long_at_put(index, res);
 857       break;
 858     }
 859 
 860     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 861     case T_INT: case T_FLOAT: { // 4 bytes.
 862       assert(value->type() == T_INT, "Agreement.");
 863       bool big_value = false;
 864       if (i + 1 < sv->field_size() && type == T_INT) {
 865         if (sv->field_at(i)->is_location()) {
 866           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 867           if (type == Location::dbl || type == Location::lng) {
 868             big_value = true;
 869           }
 870         } else if (sv->field_at(i)->is_constant_int()) {
 871           ScopeValue* next_scope_field = sv->field_at(i + 1);
 872           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 873             big_value = true;
 874           }
 875         }
 876       }
 877 
 878       if (big_value) {
 879         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 880   #ifdef _LP64
 881         jlong res = (jlong)low->get_int();
 882   #else
 883   #ifdef SPARC
 884         // For SPARC we have to swap high and low words.
 885         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 886   #else
 887         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 888   #endif //SPARC
 889   #endif
 890         obj->int_at_put(index, (jint)*((jint*)&res));
 891         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 892       } else {
 893         val = value->get_int();
 894         obj->int_at_put(index, (jint)*((jint*)&val));
 895       }
 896       break;
 897     }
 898 
 899     case T_SHORT: case T_CHAR: // 2 bytes
 900       assert(value->type() == T_INT, "Agreement.");
 901       val = value->get_int();
 902       obj->short_at_put(index, (jshort)*((jint*)&val));
 903       break;
 904 
 905     case T_BOOLEAN: case T_BYTE: // 1 byte
 906       assert(value->type() == T_INT, "Agreement.");
 907       val = value->get_int();
 908       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 909       break;
 910 
 911       default:
 912         ShouldNotReachHere();
 913     }
 914     index++;
 915   }
 916 }
 917 
 918 
 919 // restore fields of an eliminated object array
 920 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 921   for (int i = 0; i < sv->field_size(); i++) {
 922     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 923     assert(value->type() == T_OBJECT, "object element expected");
 924     obj->obj_at_put(i, value->get_obj()());
 925   }
 926 }
 927 
 928 class ReassignedField {
 929 public:
 930   int _offset;
 931   BasicType _type;
 932 public:
 933   ReassignedField() {
 934     _offset = 0;
 935     _type = T_ILLEGAL;
 936   }
 937 };
 938 
 939 int compare(ReassignedField* left, ReassignedField* right) {
 940   return left->_offset - right->_offset;
 941 }
 942 
 943 // Restore fields of an eliminated instance object using the same field order
 944 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 945 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 946   if (klass->superklass() != NULL) {
 947     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 948   }
 949 
 950   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 951   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 952     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 953       ReassignedField field;
 954       field._offset = fs.offset();
 955       field._type = FieldType::basic_type(fs.signature());
 956       fields->append(field);
 957     }
 958   }
 959   fields->sort(compare);
 960   for (int i = 0; i < fields->length(); i++) {
 961     intptr_t val;
 962     ScopeValue* scope_field = sv->field_at(svIndex);
 963     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 964     int offset = fields->at(i)._offset;
 965     BasicType type = fields->at(i)._type;
 966     switch (type) {
 967       case T_OBJECT: case T_ARRAY:
 968         assert(value->type() == T_OBJECT, "Agreement.");
 969         obj->obj_field_put(offset, value->get_obj()());
 970         break;
 971 
 972       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 973       case T_INT: case T_FLOAT: { // 4 bytes.
 974         assert(value->type() == T_INT, "Agreement.");
 975         bool big_value = false;
 976         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 977           if (scope_field->is_location()) {
 978             Location::Type type = ((LocationValue*) scope_field)->location().type();
 979             if (type == Location::dbl || type == Location::lng) {
 980               big_value = true;
 981             }
 982           }
 983           if (scope_field->is_constant_int()) {
 984             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 985             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 986               big_value = true;
 987             }
 988           }
 989         }
 990 
 991         if (big_value) {
 992           i++;
 993           assert(i < fields->length(), "second T_INT field needed");
 994           assert(fields->at(i)._type == T_INT, "T_INT field needed");
 995         } else {
 996           val = value->get_int();
 997           obj->int_field_put(offset, (jint)*((jint*)&val));
 998           break;
 999         }
1000       }
1001         /* no break */
1002 
1003       case T_LONG: case T_DOUBLE: {
1004         assert(value->type() == T_INT, "Agreement.");
1005         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1006 #ifdef _LP64
1007         jlong res = (jlong)low->get_int();
1008 #else
1009 #ifdef SPARC
1010         // For SPARC we have to swap high and low words.
1011         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1012 #else
1013         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1014 #endif //SPARC
1015 #endif
1016         obj->long_field_put(offset, res);
1017         break;
1018       }
1019 
1020       case T_SHORT: case T_CHAR: // 2 bytes
1021         assert(value->type() == T_INT, "Agreement.");
1022         val = value->get_int();
1023         obj->short_field_put(offset, (jshort)*((jint*)&val));
1024         break;
1025 
1026       case T_BOOLEAN: case T_BYTE: // 1 byte
1027         assert(value->type() == T_INT, "Agreement.");
1028         val = value->get_int();
1029         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1030         break;
1031 
1032       default:
1033         ShouldNotReachHere();
1034     }
1035     svIndex++;
1036   }
1037   return svIndex;
1038 }
1039 
1040 // restore fields of all eliminated objects and arrays
1041 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1042   for (int i = 0; i < objects->length(); i++) {
1043     ObjectValue* sv = (ObjectValue*) objects->at(i);
1044     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1045     Handle obj = sv->value();
1046     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1047     if (PrintDeoptimizationDetails) {
1048       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1049     }
1050     if (obj.is_null()) {
1051       continue;
1052     }
1053 
1054     if (k->is_instance_klass()) {
1055       InstanceKlass* ik = InstanceKlass::cast(k());
1056       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1057     } else if (k->is_typeArray_klass()) {
1058       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1059       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1060     } else if (k->is_objArray_klass()) {
1061       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1062     }
1063   }
1064 }
1065 
1066 
1067 // relock objects for which synchronization was eliminated
1068 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1069   for (int i = 0; i < monitors->length(); i++) {
1070     MonitorInfo* mon_info = monitors->at(i);
1071     if (mon_info->eliminated()) {
1072       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1073       if (!mon_info->owner_is_scalar_replaced()) {
1074         Handle obj = Handle(mon_info->owner());
1075         markOop mark = obj->mark();
1076         if (UseBiasedLocking && mark->has_bias_pattern()) {
1077           // New allocated objects may have the mark set to anonymously biased.
1078           // Also the deoptimized method may called methods with synchronization
1079           // where the thread-local object is bias locked to the current thread.
1080           assert(mark->is_biased_anonymously() ||
1081                  mark->biased_locker() == thread, "should be locked to current thread");
1082           // Reset mark word to unbiased prototype.
1083           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1084           obj->set_mark(unbiased_prototype);
1085         }
1086         BasicLock* lock = mon_info->lock();
1087         ObjectSynchronizer::slow_enter(obj, lock, thread);
1088         assert(mon_info->owner()->is_locked(), "object must be locked now");
1089       }
1090     }
1091   }
1092 }
1093 
1094 
1095 #ifndef PRODUCT
1096 // print information about reallocated objects
1097 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1098   fieldDescriptor fd;
1099 
1100   for (int i = 0; i < objects->length(); i++) {
1101     ObjectValue* sv = (ObjectValue*) objects->at(i);
1102     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1103     Handle obj = sv->value();
1104 
1105     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1106     k->print_value();
1107     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1108     if (obj.is_null()) {
1109       tty->print(" allocation failed");
1110     } else {
1111       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1112     }
1113     tty->cr();
1114 
1115     if (Verbose && !obj.is_null()) {
1116       k->oop_print_on(obj(), tty);
1117     }
1118   }
1119 }
1120 #endif
1121 #endif // COMPILER2 || INCLUDE_JVMCI
1122 
1123 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1124   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1125 
1126 #ifndef PRODUCT
1127   if (PrintDeoptimizationDetails) {
1128     ttyLocker ttyl;
1129     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1130     fr.print_on(tty);
1131     tty->print_cr("     Virtual frames (innermost first):");
1132     for (int index = 0; index < chunk->length(); index++) {
1133       compiledVFrame* vf = chunk->at(index);
1134       tty->print("       %2d - ", index);
1135       vf->print_value();
1136       int bci = chunk->at(index)->raw_bci();
1137       const char* code_name;
1138       if (bci == SynchronizationEntryBCI) {
1139         code_name = "sync entry";
1140       } else {
1141         Bytecodes::Code code = vf->method()->code_at(bci);
1142         code_name = Bytecodes::name(code);
1143       }
1144       tty->print(" - %s", code_name);
1145       tty->print_cr(" @ bci %d ", bci);
1146       if (Verbose) {
1147         vf->print();
1148         tty->cr();
1149       }
1150     }
1151   }
1152 #endif
1153 
1154   // Register map for next frame (used for stack crawl).  We capture
1155   // the state of the deopt'ing frame's caller.  Thus if we need to
1156   // stuff a C2I adapter we can properly fill in the callee-save
1157   // register locations.
1158   frame caller = fr.sender(reg_map);
1159   int frame_size = caller.sp() - fr.sp();
1160 
1161   frame sender = caller;
1162 
1163   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1164   // the vframeArray containing the unpacking information is allocated in the C heap.
1165   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1166   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1167 
1168   // Compare the vframeArray to the collected vframes
1169   assert(array->structural_compare(thread, chunk), "just checking");
1170 
1171 #ifndef PRODUCT
1172   if (PrintDeoptimizationDetails) {
1173     ttyLocker ttyl;
1174     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1175   }
1176 #endif // PRODUCT
1177 
1178   return array;
1179 }
1180 
1181 #if defined(COMPILER2) || INCLUDE_JVMCI
1182 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1183   // Reallocation of some scalar replaced objects failed. Record
1184   // that we need to pop all the interpreter frames for the
1185   // deoptimized compiled frame.
1186   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1187   thread->set_frames_to_pop_failed_realloc(array->frames());
1188   // Unlock all monitors here otherwise the interpreter will see a
1189   // mix of locked and unlocked monitors (because of failed
1190   // reallocations of synchronized objects) and be confused.
1191   for (int i = 0; i < array->frames(); i++) {
1192     MonitorChunk* monitors = array->element(i)->monitors();
1193     if (monitors != NULL) {
1194       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1195         BasicObjectLock* src = monitors->at(j);
1196         if (src->obj() != NULL) {
1197           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1198         }
1199       }
1200       array->element(i)->free_monitors(thread);
1201 #ifdef ASSERT
1202       array->element(i)->set_removed_monitors();
1203 #endif
1204     }
1205   }
1206 }
1207 #endif
1208 
1209 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1210   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1211   for (int i = 0; i < monitors->length(); i++) {
1212     MonitorInfo* mon_info = monitors->at(i);
1213     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1214       objects_to_revoke->append(Handle(mon_info->owner()));
1215     }
1216   }
1217 }
1218 
1219 
1220 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1221   if (!UseBiasedLocking) {
1222     return;
1223   }
1224 
1225   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1226 
1227   // Unfortunately we don't have a RegisterMap available in most of
1228   // the places we want to call this routine so we need to walk the
1229   // stack again to update the register map.
1230   if (map == NULL || !map->update_map()) {
1231     StackFrameStream sfs(thread, true);
1232     bool found = false;
1233     while (!found && !sfs.is_done()) {
1234       frame* cur = sfs.current();
1235       sfs.next();
1236       found = cur->id() == fr.id();
1237     }
1238     assert(found, "frame to be deoptimized not found on target thread's stack");
1239     map = sfs.register_map();
1240   }
1241 
1242   vframe* vf = vframe::new_vframe(&fr, map, thread);
1243   compiledVFrame* cvf = compiledVFrame::cast(vf);
1244   // Revoke monitors' biases in all scopes
1245   while (!cvf->is_top()) {
1246     collect_monitors(cvf, objects_to_revoke);
1247     cvf = compiledVFrame::cast(cvf->sender());
1248   }
1249   collect_monitors(cvf, objects_to_revoke);
1250 
1251   if (SafepointSynchronize::is_at_safepoint()) {
1252     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1253   } else {
1254     BiasedLocking::revoke(objects_to_revoke);
1255   }
1256 }
1257 
1258 
1259 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1260   if (!UseBiasedLocking) {
1261     return;
1262   }
1263 
1264   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1265   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1266   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1267     if (jt->has_last_Java_frame()) {
1268       StackFrameStream sfs(jt, true);
1269       while (!sfs.is_done()) {
1270         frame* cur = sfs.current();
1271         if (cb->contains(cur->pc())) {
1272           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1273           compiledVFrame* cvf = compiledVFrame::cast(vf);
1274           // Revoke monitors' biases in all scopes
1275           while (!cvf->is_top()) {
1276             collect_monitors(cvf, objects_to_revoke);
1277             cvf = compiledVFrame::cast(cvf->sender());
1278           }
1279           collect_monitors(cvf, objects_to_revoke);
1280         }
1281         sfs.next();
1282       }
1283     }
1284   }
1285   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1286 }
1287 
1288 
1289 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1290   assert(fr.can_be_deoptimized(), "checking frame type");
1291 
1292   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1293 
1294   if (LogCompilation && xtty != NULL) {
1295     nmethod* nm = fr.cb()->as_nmethod_or_null();
1296     assert(nm != NULL, "only compiled methods can deopt");
1297 
1298     ttyLocker ttyl;
1299     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "'", (uintx)thread->osthread()->thread_id());
1300     nm->log_identity(xtty);
1301     xtty->end_head();
1302     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1303       xtty->begin_elem("jvms bci='%d'", sd->bci());
1304       xtty->method(sd->method());
1305       xtty->end_elem();
1306       if (sd->is_top())  break;
1307     }
1308     xtty->tail("deoptimized");
1309   }
1310 
1311   // Patch the compiled method so that when execution returns to it we will
1312   // deopt the execution state and return to the interpreter.
1313   fr.deoptimize(thread);
1314 }
1315 
1316 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1317   deoptimize(thread, fr, map, Reason_constraint);
1318 }
1319 
1320 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1321   // Deoptimize only if the frame comes from compile code.
1322   // Do not deoptimize the frame which is already patched
1323   // during the execution of the loops below.
1324   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1325     return;
1326   }
1327   ResourceMark rm;
1328   DeoptimizationMarker dm;
1329   if (UseBiasedLocking) {
1330     revoke_biases_of_monitors(thread, fr, map);
1331   }
1332   deoptimize_single_frame(thread, fr, reason);
1333 
1334 }
1335 
1336 
1337 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1338   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1339          "can only deoptimize other thread at a safepoint");
1340   // Compute frame and register map based on thread and sp.
1341   RegisterMap reg_map(thread, UseBiasedLocking);
1342   frame fr = thread->last_frame();
1343   while (fr.id() != id) {
1344     fr = fr.sender(&reg_map);
1345   }
1346   deoptimize(thread, fr, &reg_map, reason);
1347 }
1348 
1349 
1350 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1351   if (thread == Thread::current()) {
1352     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1353   } else {
1354     VM_DeoptimizeFrame deopt(thread, id, reason);
1355     VMThread::execute(&deopt);
1356   }
1357 }
1358 
1359 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1360   deoptimize_frame(thread, id, Reason_constraint);
1361 }
1362 
1363 // JVMTI PopFrame support
1364 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1365 {
1366   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1367 }
1368 JRT_END
1369 
1370 MethodData*
1371 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1372                                 bool create_if_missing) {
1373   Thread* THREAD = thread;
1374   MethodData* mdo = m()->method_data();
1375   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1376     // Build an MDO.  Ignore errors like OutOfMemory;
1377     // that simply means we won't have an MDO to update.
1378     Method::build_interpreter_method_data(m, THREAD);
1379     if (HAS_PENDING_EXCEPTION) {
1380       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1381       CLEAR_PENDING_EXCEPTION;
1382     }
1383     mdo = m()->method_data();
1384   }
1385   return mdo;
1386 }
1387 
1388 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1389 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1390   // in case of an unresolved klass entry, load the class.
1391   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1392     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1393     return;
1394   }
1395 
1396   if (!constant_pool->tag_at(index).is_symbol()) return;
1397 
1398   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1399   Symbol*  symbol  = constant_pool->symbol_at(index);
1400 
1401   // class name?
1402   if (symbol->byte_at(0) != '(') {
1403     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1404     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1405     return;
1406   }
1407 
1408   // then it must be a signature!
1409   ResourceMark rm(THREAD);
1410   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1411     if (ss.is_object()) {
1412       Symbol* class_name = ss.as_symbol(CHECK);
1413       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1414       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1415     }
1416   }
1417 }
1418 
1419 
1420 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1421   EXCEPTION_MARK;
1422   load_class_by_index(constant_pool, index, THREAD);
1423   if (HAS_PENDING_EXCEPTION) {
1424     // Exception happened during classloading. We ignore the exception here, since it
1425     // is going to be rethrown since the current activation is going to be deoptimized and
1426     // the interpreter will re-execute the bytecode.
1427     CLEAR_PENDING_EXCEPTION;
1428     // Class loading called java code which may have caused a stack
1429     // overflow. If the exception was thrown right before the return
1430     // to the runtime the stack is no longer guarded. Reguard the
1431     // stack otherwise if we return to the uncommon trap blob and the
1432     // stack bang causes a stack overflow we crash.
1433     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1434     JavaThread* thread = (JavaThread*)THREAD;
1435     bool guard_pages_enabled = thread->stack_guards_enabled();
1436     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1437     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1438   }
1439 }
1440 
1441 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1442   HandleMark hm;
1443 
1444   // uncommon_trap() is called at the beginning of the uncommon trap
1445   // handler. Note this fact before we start generating temporary frames
1446   // that can confuse an asynchronous stack walker. This counter is
1447   // decremented at the end of unpack_frames().
1448   thread->inc_in_deopt_handler();
1449 
1450   // We need to update the map if we have biased locking.
1451 #if INCLUDE_JVMCI
1452   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1453   RegisterMap reg_map(thread, true);
1454 #else
1455   RegisterMap reg_map(thread, UseBiasedLocking);
1456 #endif
1457   frame stub_frame = thread->last_frame();
1458   frame fr = stub_frame.sender(&reg_map);
1459   // Make sure the calling nmethod is not getting deoptimized and removed
1460   // before we are done with it.
1461   nmethodLocker nl(fr.pc());
1462 
1463   // Log a message
1464   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1465               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1466 
1467   {
1468     ResourceMark rm;
1469 
1470     // Revoke biases of any monitors in the frame to ensure we can migrate them
1471     revoke_biases_of_monitors(thread, fr, &reg_map);
1472 
1473     DeoptReason reason = trap_request_reason(trap_request);
1474     DeoptAction action = trap_request_action(trap_request);
1475 #if INCLUDE_JVMCI
1476     int debug_id = trap_request_debug_id(trap_request);
1477 #endif
1478     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1479 
1480     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1481     compiledVFrame* cvf = compiledVFrame::cast(vf);
1482 
1483     nmethod* nm = cvf->code();
1484 
1485     ScopeDesc*      trap_scope  = cvf->scope();
1486 
1487     if (TraceDeoptimization) {
1488       ttyLocker ttyl;
1489       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1490 #if INCLUDE_JVMCI
1491           , debug_id
1492 #endif
1493           );
1494     }
1495 
1496     methodHandle    trap_method = trap_scope->method();
1497     int             trap_bci    = trap_scope->bci();
1498 #if INCLUDE_JVMCI
1499     oop speculation = thread->pending_failed_speculation();
1500     if (nm->is_compiled_by_jvmci()) {
1501       if (speculation != NULL) {
1502         oop speculation_log = nm->speculation_log();
1503         if (speculation_log != NULL) {
1504           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1505             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1506               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1507             }
1508           }
1509           if (TraceDeoptimization) {
1510             tty->print_cr("Saving speculation to speculation log");
1511           }
1512           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1513         } else {
1514           if (TraceDeoptimization) {
1515             tty->print_cr("Speculation present but no speculation log");
1516           }
1517         }
1518         thread->set_pending_failed_speculation(NULL);
1519       } else {
1520         if (TraceDeoptimization) {
1521           tty->print_cr("No speculation");
1522         }
1523       }
1524     } else {
1525       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1526     }
1527 
1528     if (trap_bci == SynchronizationEntryBCI) {
1529       trap_bci = 0;
1530       thread->set_pending_monitorenter(true);
1531     }
1532 
1533     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1534       thread->set_pending_transfer_to_interpreter(true);
1535     }
1536 #endif
1537 
1538     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1539     // Record this event in the histogram.
1540     gather_statistics(reason, action, trap_bc);
1541 
1542     // Ensure that we can record deopt. history:
1543     // Need MDO to record RTM code generation state.
1544     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1545 
1546     methodHandle profiled_method;
1547 #if INCLUDE_JVMCI
1548     if (nm->is_compiled_by_jvmci()) {
1549       profiled_method = nm->method();
1550     } else {
1551       profiled_method = trap_method;
1552     }
1553 #else
1554     profiled_method = trap_method;
1555 #endif
1556 
1557     MethodData* trap_mdo =
1558       get_method_data(thread, profiled_method, create_if_missing);
1559 
1560     // Log a message
1561     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1562                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1563                               trap_method->name_and_sig_as_C_string(), trap_bci);
1564 
1565     // Print a bunch of diagnostics, if requested.
1566     if (TraceDeoptimization || LogCompilation) {
1567       ResourceMark rm;
1568       ttyLocker ttyl;
1569       char buf[100];
1570       if (xtty != NULL) {
1571         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1572                          os::current_thread_id(),
1573                          format_trap_request(buf, sizeof(buf), trap_request));
1574         nm->log_identity(xtty);
1575       }
1576       Symbol* class_name = NULL;
1577       bool unresolved = false;
1578       if (unloaded_class_index >= 0) {
1579         constantPoolHandle constants (THREAD, trap_method->constants());
1580         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1581           class_name = constants->klass_name_at(unloaded_class_index);
1582           unresolved = true;
1583           if (xtty != NULL)
1584             xtty->print(" unresolved='1'");
1585         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1586           class_name = constants->symbol_at(unloaded_class_index);
1587         }
1588         if (xtty != NULL)
1589           xtty->name(class_name);
1590       }
1591       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1592         // Dump the relevant MDO state.
1593         // This is the deopt count for the current reason, any previous
1594         // reasons or recompiles seen at this point.
1595         int dcnt = trap_mdo->trap_count(reason);
1596         if (dcnt != 0)
1597           xtty->print(" count='%d'", dcnt);
1598         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1599         int dos = (pdata == NULL)? 0: pdata->trap_state();
1600         if (dos != 0) {
1601           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1602           if (trap_state_is_recompiled(dos)) {
1603             int recnt2 = trap_mdo->overflow_recompile_count();
1604             if (recnt2 != 0)
1605               xtty->print(" recompiles2='%d'", recnt2);
1606           }
1607         }
1608       }
1609       if (xtty != NULL) {
1610         xtty->stamp();
1611         xtty->end_head();
1612       }
1613       if (TraceDeoptimization) {  // make noise on the tty
1614         tty->print("Uncommon trap occurred in");
1615         nm->method()->print_short_name(tty);
1616         tty->print(" compiler=%s compile_id=%d", nm->compiler() == NULL ? "" : nm->compiler()->name(), nm->compile_id());
1617 #if INCLUDE_JVMCI
1618         oop installedCode = nm->jvmci_installed_code();
1619         if (installedCode != NULL) {
1620           oop installedCodeName = NULL;
1621           if (installedCode->is_a(InstalledCode::klass())) {
1622             installedCodeName = InstalledCode::name(installedCode);
1623           }
1624           if (installedCodeName != NULL) {
1625             tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1626           } else {
1627             tty->print(" (JVMCI: installed code has no name) ");
1628           }
1629         } else if (nm->is_compiled_by_jvmci()) {
1630           tty->print(" (JVMCI: no installed code) ");
1631         }
1632 #endif
1633         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1634                    p2i(fr.pc()),
1635                    os::current_thread_id(),
1636                    trap_reason_name(reason),
1637                    trap_action_name(action),
1638                    unloaded_class_index
1639 #if INCLUDE_JVMCI
1640                    , debug_id
1641 #endif
1642                    );
1643         if (class_name != NULL) {
1644           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1645           class_name->print_symbol_on(tty);
1646         }
1647         tty->cr();
1648       }
1649       if (xtty != NULL) {
1650         // Log the precise location of the trap.
1651         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1652           xtty->begin_elem("jvms bci='%d'", sd->bci());
1653           xtty->method(sd->method());
1654           xtty->end_elem();
1655           if (sd->is_top())  break;
1656         }
1657         xtty->tail("uncommon_trap");
1658       }
1659     }
1660     // (End diagnostic printout.)
1661 
1662     // Load class if necessary
1663     if (unloaded_class_index >= 0) {
1664       constantPoolHandle constants(THREAD, trap_method->constants());
1665       load_class_by_index(constants, unloaded_class_index);
1666     }
1667 
1668     // Flush the nmethod if necessary and desirable.
1669     //
1670     // We need to avoid situations where we are re-flushing the nmethod
1671     // because of a hot deoptimization site.  Repeated flushes at the same
1672     // point need to be detected by the compiler and avoided.  If the compiler
1673     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1674     // module must take measures to avoid an infinite cycle of recompilation
1675     // and deoptimization.  There are several such measures:
1676     //
1677     //   1. If a recompilation is ordered a second time at some site X
1678     //   and for the same reason R, the action is adjusted to 'reinterpret',
1679     //   to give the interpreter time to exercise the method more thoroughly.
1680     //   If this happens, the method's overflow_recompile_count is incremented.
1681     //
1682     //   2. If the compiler fails to reduce the deoptimization rate, then
1683     //   the method's overflow_recompile_count will begin to exceed the set
1684     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1685     //   is adjusted to 'make_not_compilable', and the method is abandoned
1686     //   to the interpreter.  This is a performance hit for hot methods,
1687     //   but is better than a disastrous infinite cycle of recompilations.
1688     //   (Actually, only the method containing the site X is abandoned.)
1689     //
1690     //   3. In parallel with the previous measures, if the total number of
1691     //   recompilations of a method exceeds the much larger set limit
1692     //   PerMethodRecompilationCutoff, the method is abandoned.
1693     //   This should only happen if the method is very large and has
1694     //   many "lukewarm" deoptimizations.  The code which enforces this
1695     //   limit is elsewhere (class nmethod, class Method).
1696     //
1697     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1698     // to recompile at each bytecode independently of the per-BCI cutoff.
1699     //
1700     // The decision to update code is up to the compiler, and is encoded
1701     // in the Action_xxx code.  If the compiler requests Action_none
1702     // no trap state is changed, no compiled code is changed, and the
1703     // computation suffers along in the interpreter.
1704     //
1705     // The other action codes specify various tactics for decompilation
1706     // and recompilation.  Action_maybe_recompile is the loosest, and
1707     // allows the compiled code to stay around until enough traps are seen,
1708     // and until the compiler gets around to recompiling the trapping method.
1709     //
1710     // The other actions cause immediate removal of the present code.
1711 
1712     // Traps caused by injected profile shouldn't pollute trap counts.
1713     bool injected_profile_trap = trap_method->has_injected_profile() &&
1714                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1715 
1716     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1717     bool make_not_entrant = false;
1718     bool make_not_compilable = false;
1719     bool reprofile = false;
1720     switch (action) {
1721     case Action_none:
1722       // Keep the old code.
1723       update_trap_state = false;
1724       break;
1725     case Action_maybe_recompile:
1726       // Do not need to invalidate the present code, but we can
1727       // initiate another
1728       // Start compiler without (necessarily) invalidating the nmethod.
1729       // The system will tolerate the old code, but new code should be
1730       // generated when possible.
1731       break;
1732     case Action_reinterpret:
1733       // Go back into the interpreter for a while, and then consider
1734       // recompiling form scratch.
1735       make_not_entrant = true;
1736       // Reset invocation counter for outer most method.
1737       // This will allow the interpreter to exercise the bytecodes
1738       // for a while before recompiling.
1739       // By contrast, Action_make_not_entrant is immediate.
1740       //
1741       // Note that the compiler will track null_check, null_assert,
1742       // range_check, and class_check events and log them as if they
1743       // had been traps taken from compiled code.  This will update
1744       // the MDO trap history so that the next compilation will
1745       // properly detect hot trap sites.
1746       reprofile = true;
1747       break;
1748     case Action_make_not_entrant:
1749       // Request immediate recompilation, and get rid of the old code.
1750       // Make them not entrant, so next time they are called they get
1751       // recompiled.  Unloaded classes are loaded now so recompile before next
1752       // time they are called.  Same for uninitialized.  The interpreter will
1753       // link the missing class, if any.
1754       make_not_entrant = true;
1755       break;
1756     case Action_make_not_compilable:
1757       // Give up on compiling this method at all.
1758       make_not_entrant = true;
1759       make_not_compilable = true;
1760       break;
1761     default:
1762       ShouldNotReachHere();
1763     }
1764 
1765     // Setting +ProfileTraps fixes the following, on all platforms:
1766     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1767     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1768     // recompile relies on a MethodData* to record heroic opt failures.
1769 
1770     // Whether the interpreter is producing MDO data or not, we also need
1771     // to use the MDO to detect hot deoptimization points and control
1772     // aggressive optimization.
1773     bool inc_recompile_count = false;
1774     ProfileData* pdata = NULL;
1775     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1776       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1777       uint this_trap_count = 0;
1778       bool maybe_prior_trap = false;
1779       bool maybe_prior_recompile = false;
1780       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1781 #if INCLUDE_JVMCI
1782                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1783 #endif
1784                                    nm->method(),
1785                                    //outputs:
1786                                    this_trap_count,
1787                                    maybe_prior_trap,
1788                                    maybe_prior_recompile);
1789       // Because the interpreter also counts null, div0, range, and class
1790       // checks, these traps from compiled code are double-counted.
1791       // This is harmless; it just means that the PerXTrapLimit values
1792       // are in effect a little smaller than they look.
1793 
1794       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1795       if (per_bc_reason != Reason_none) {
1796         // Now take action based on the partially known per-BCI history.
1797         if (maybe_prior_trap
1798             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1799           // If there are too many traps at this BCI, force a recompile.
1800           // This will allow the compiler to see the limit overflow, and
1801           // take corrective action, if possible.  The compiler generally
1802           // does not use the exact PerBytecodeTrapLimit value, but instead
1803           // changes its tactics if it sees any traps at all.  This provides
1804           // a little hysteresis, delaying a recompile until a trap happens
1805           // several times.
1806           //
1807           // Actually, since there is only one bit of counter per BCI,
1808           // the possible per-BCI counts are {0,1,(per-method count)}.
1809           // This produces accurate results if in fact there is only
1810           // one hot trap site, but begins to get fuzzy if there are
1811           // many sites.  For example, if there are ten sites each
1812           // trapping two or more times, they each get the blame for
1813           // all of their traps.
1814           make_not_entrant = true;
1815         }
1816 
1817         // Detect repeated recompilation at the same BCI, and enforce a limit.
1818         if (make_not_entrant && maybe_prior_recompile) {
1819           // More than one recompile at this point.
1820           inc_recompile_count = maybe_prior_trap;
1821         }
1822       } else {
1823         // For reasons which are not recorded per-bytecode, we simply
1824         // force recompiles unconditionally.
1825         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1826         make_not_entrant = true;
1827       }
1828 
1829       // Go back to the compiler if there are too many traps in this method.
1830       if (this_trap_count >= per_method_trap_limit(reason)) {
1831         // If there are too many traps in this method, force a recompile.
1832         // This will allow the compiler to see the limit overflow, and
1833         // take corrective action, if possible.
1834         // (This condition is an unlikely backstop only, because the
1835         // PerBytecodeTrapLimit is more likely to take effect first,
1836         // if it is applicable.)
1837         make_not_entrant = true;
1838       }
1839 
1840       // Here's more hysteresis:  If there has been a recompile at
1841       // this trap point already, run the method in the interpreter
1842       // for a while to exercise it more thoroughly.
1843       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1844         reprofile = true;
1845       }
1846     }
1847 
1848     // Take requested actions on the method:
1849 
1850     // Recompile
1851     if (make_not_entrant) {
1852       if (!nm->make_not_entrant()) {
1853         return; // the call did not change nmethod's state
1854       }
1855 
1856       if (pdata != NULL) {
1857         // Record the recompilation event, if any.
1858         int tstate0 = pdata->trap_state();
1859         int tstate1 = trap_state_set_recompiled(tstate0, true);
1860         if (tstate1 != tstate0)
1861           pdata->set_trap_state(tstate1);
1862       }
1863 
1864 #if INCLUDE_RTM_OPT
1865       // Restart collecting RTM locking abort statistic if the method
1866       // is recompiled for a reason other than RTM state change.
1867       // Assume that in new recompiled code the statistic could be different,
1868       // for example, due to different inlining.
1869       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1870           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1871         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1872       }
1873 #endif
1874       // For code aging we count traps separately here, using make_not_entrant()
1875       // as a guard against simultaneous deopts in multiple threads.
1876       if (reason == Reason_tenured && trap_mdo != NULL) {
1877         trap_mdo->inc_tenure_traps();
1878       }
1879     }
1880 
1881     if (inc_recompile_count) {
1882       trap_mdo->inc_overflow_recompile_count();
1883       if ((uint)trap_mdo->overflow_recompile_count() >
1884           (uint)PerBytecodeRecompilationCutoff) {
1885         // Give up on the method containing the bad BCI.
1886         if (trap_method() == nm->method()) {
1887           make_not_compilable = true;
1888         } else {
1889           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1890           // But give grace to the enclosing nm->method().
1891         }
1892       }
1893     }
1894 
1895     // Reprofile
1896     if (reprofile) {
1897       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1898     }
1899 
1900     // Give up compiling
1901     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1902       assert(make_not_entrant, "consistent");
1903       nm->method()->set_not_compilable(CompLevel_full_optimization);
1904     }
1905 
1906   } // Free marked resources
1907 
1908 }
1909 JRT_END
1910 
1911 ProfileData*
1912 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1913                                          int trap_bci,
1914                                          Deoptimization::DeoptReason reason,
1915                                          bool update_total_trap_count,
1916 #if INCLUDE_JVMCI
1917                                          bool is_osr,
1918 #endif
1919                                          Method* compiled_method,
1920                                          //outputs:
1921                                          uint& ret_this_trap_count,
1922                                          bool& ret_maybe_prior_trap,
1923                                          bool& ret_maybe_prior_recompile) {
1924   bool maybe_prior_trap = false;
1925   bool maybe_prior_recompile = false;
1926   uint this_trap_count = 0;
1927   if (update_total_trap_count) {
1928     uint idx = reason;
1929 #if INCLUDE_JVMCI
1930     if (is_osr) {
1931       idx += Reason_LIMIT;
1932     }
1933 #endif
1934     uint prior_trap_count = trap_mdo->trap_count(idx);
1935     this_trap_count  = trap_mdo->inc_trap_count(idx);
1936 
1937     // If the runtime cannot find a place to store trap history,
1938     // it is estimated based on the general condition of the method.
1939     // If the method has ever been recompiled, or has ever incurred
1940     // a trap with the present reason , then this BCI is assumed
1941     // (pessimistically) to be the culprit.
1942     maybe_prior_trap      = (prior_trap_count != 0);
1943     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1944   }
1945   ProfileData* pdata = NULL;
1946 
1947 
1948   // For reasons which are recorded per bytecode, we check per-BCI data.
1949   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1950   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1951   if (per_bc_reason != Reason_none) {
1952     // Find the profile data for this BCI.  If there isn't one,
1953     // try to allocate one from the MDO's set of spares.
1954     // This will let us detect a repeated trap at this point.
1955     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1956 
1957     if (pdata != NULL) {
1958       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1959         if (LogCompilation && xtty != NULL) {
1960           ttyLocker ttyl;
1961           // no more room for speculative traps in this MDO
1962           xtty->elem("speculative_traps_oom");
1963         }
1964       }
1965       // Query the trap state of this profile datum.
1966       int tstate0 = pdata->trap_state();
1967       if (!trap_state_has_reason(tstate0, per_bc_reason))
1968         maybe_prior_trap = false;
1969       if (!trap_state_is_recompiled(tstate0))
1970         maybe_prior_recompile = false;
1971 
1972       // Update the trap state of this profile datum.
1973       int tstate1 = tstate0;
1974       // Record the reason.
1975       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1976       // Store the updated state on the MDO, for next time.
1977       if (tstate1 != tstate0)
1978         pdata->set_trap_state(tstate1);
1979     } else {
1980       if (LogCompilation && xtty != NULL) {
1981         ttyLocker ttyl;
1982         // Missing MDP?  Leave a small complaint in the log.
1983         xtty->elem("missing_mdp bci='%d'", trap_bci);
1984       }
1985     }
1986   }
1987 
1988   // Return results:
1989   ret_this_trap_count = this_trap_count;
1990   ret_maybe_prior_trap = maybe_prior_trap;
1991   ret_maybe_prior_recompile = maybe_prior_recompile;
1992   return pdata;
1993 }
1994 
1995 void
1996 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1997   ResourceMark rm;
1998   // Ignored outputs:
1999   uint ignore_this_trap_count;
2000   bool ignore_maybe_prior_trap;
2001   bool ignore_maybe_prior_recompile;
2002   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2003   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2004   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2005   query_update_method_data(trap_mdo, trap_bci,
2006                            (DeoptReason)reason,
2007                            update_total_counts,
2008 #if INCLUDE_JVMCI
2009                            false,
2010 #endif
2011                            NULL,
2012                            ignore_this_trap_count,
2013                            ignore_maybe_prior_trap,
2014                            ignore_maybe_prior_recompile);
2015 }
2016 
2017 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2018   if (TraceDeoptimization) {
2019     tty->print("Uncommon trap ");
2020   }
2021   // Still in Java no safepoints
2022   {
2023     // This enters VM and may safepoint
2024     uncommon_trap_inner(thread, trap_request);
2025   }
2026   return fetch_unroll_info_helper(thread, exec_mode);
2027 }
2028 
2029 // Local derived constants.
2030 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2031 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2032 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2033 
2034 //---------------------------trap_state_reason---------------------------------
2035 Deoptimization::DeoptReason
2036 Deoptimization::trap_state_reason(int trap_state) {
2037   // This assert provides the link between the width of DataLayout::trap_bits
2038   // and the encoding of "recorded" reasons.  It ensures there are enough
2039   // bits to store all needed reasons in the per-BCI MDO profile.
2040   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2041   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2042   trap_state -= recompile_bit;
2043   if (trap_state == DS_REASON_MASK) {
2044     return Reason_many;
2045   } else {
2046     assert((int)Reason_none == 0, "state=0 => Reason_none");
2047     return (DeoptReason)trap_state;
2048   }
2049 }
2050 //-------------------------trap_state_has_reason-------------------------------
2051 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2052   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2053   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2054   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2055   trap_state -= recompile_bit;
2056   if (trap_state == DS_REASON_MASK) {
2057     return -1;  // true, unspecifically (bottom of state lattice)
2058   } else if (trap_state == reason) {
2059     return 1;   // true, definitely
2060   } else if (trap_state == 0) {
2061     return 0;   // false, definitely (top of state lattice)
2062   } else {
2063     return 0;   // false, definitely
2064   }
2065 }
2066 //-------------------------trap_state_add_reason-------------------------------
2067 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2068   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2069   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2070   trap_state -= recompile_bit;
2071   if (trap_state == DS_REASON_MASK) {
2072     return trap_state + recompile_bit;     // already at state lattice bottom
2073   } else if (trap_state == reason) {
2074     return trap_state + recompile_bit;     // the condition is already true
2075   } else if (trap_state == 0) {
2076     return reason + recompile_bit;          // no condition has yet been true
2077   } else {
2078     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2079   }
2080 }
2081 //-----------------------trap_state_is_recompiled------------------------------
2082 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2083   return (trap_state & DS_RECOMPILE_BIT) != 0;
2084 }
2085 //-----------------------trap_state_set_recompiled-----------------------------
2086 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2087   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2088   else    return trap_state & ~DS_RECOMPILE_BIT;
2089 }
2090 //---------------------------format_trap_state---------------------------------
2091 // This is used for debugging and diagnostics, including LogFile output.
2092 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2093                                               int trap_state) {
2094   assert(buflen > 0, "sanity");
2095   DeoptReason reason      = trap_state_reason(trap_state);
2096   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2097   // Re-encode the state from its decoded components.
2098   int decoded_state = 0;
2099   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2100     decoded_state = trap_state_add_reason(decoded_state, reason);
2101   if (recomp_flag)
2102     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2103   // If the state re-encodes properly, format it symbolically.
2104   // Because this routine is used for debugging and diagnostics,
2105   // be robust even if the state is a strange value.
2106   size_t len;
2107   if (decoded_state != trap_state) {
2108     // Random buggy state that doesn't decode??
2109     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2110   } else {
2111     len = jio_snprintf(buf, buflen, "%s%s",
2112                        trap_reason_name(reason),
2113                        recomp_flag ? " recompiled" : "");
2114   }
2115   return buf;
2116 }
2117 
2118 
2119 //--------------------------------statics--------------------------------------
2120 const char* Deoptimization::_trap_reason_name[] = {
2121   // Note:  Keep this in sync. with enum DeoptReason.
2122   "none",
2123   "null_check",
2124   "null_assert" JVMCI_ONLY("_or_unreached0"),
2125   "range_check",
2126   "class_check",
2127   "array_check",
2128   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2129   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2130   "unloaded",
2131   "uninitialized",
2132   "unreached",
2133   "unhandled",
2134   "constraint",
2135   "div0_check",
2136   "age",
2137   "predicate",
2138   "loop_limit_check",
2139   "speculate_class_check",
2140   "speculate_null_check",
2141   "rtm_state_change",
2142   "unstable_if",
2143   "unstable_fused_if",
2144 #if INCLUDE_JVMCI
2145   "aliasing",
2146   "transfer_to_interpreter",
2147   "not_compiled_exception_handler",
2148   "unresolved",
2149   "jsr_mismatch",
2150 #endif
2151   "tenured"
2152 };
2153 const char* Deoptimization::_trap_action_name[] = {
2154   // Note:  Keep this in sync. with enum DeoptAction.
2155   "none",
2156   "maybe_recompile",
2157   "reinterpret",
2158   "make_not_entrant",
2159   "make_not_compilable"
2160 };
2161 
2162 const char* Deoptimization::trap_reason_name(int reason) {
2163   // Check that every reason has a name
2164   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2165 
2166   if (reason == Reason_many)  return "many";
2167   if ((uint)reason < Reason_LIMIT)
2168     return _trap_reason_name[reason];
2169   static char buf[20];
2170   sprintf(buf, "reason%d", reason);
2171   return buf;
2172 }
2173 const char* Deoptimization::trap_action_name(int action) {
2174   // Check that every action has a name
2175   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2176 
2177   if ((uint)action < Action_LIMIT)
2178     return _trap_action_name[action];
2179   static char buf[20];
2180   sprintf(buf, "action%d", action);
2181   return buf;
2182 }
2183 
2184 // This is used for debugging and diagnostics, including LogFile output.
2185 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2186                                                 int trap_request) {
2187   jint unloaded_class_index = trap_request_index(trap_request);
2188   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2189   const char* action = trap_action_name(trap_request_action(trap_request));
2190 #if INCLUDE_JVMCI
2191   int debug_id = trap_request_debug_id(trap_request);
2192 #endif
2193   size_t len;
2194   if (unloaded_class_index < 0) {
2195     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2196                        reason, action
2197 #if INCLUDE_JVMCI
2198                        ,debug_id
2199 #endif
2200                        );
2201   } else {
2202     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2203                        reason, action, unloaded_class_index
2204 #if INCLUDE_JVMCI
2205                        ,debug_id
2206 #endif
2207                        );
2208   }
2209   return buf;
2210 }
2211 
2212 juint Deoptimization::_deoptimization_hist
2213         [Deoptimization::Reason_LIMIT]
2214     [1 + Deoptimization::Action_LIMIT]
2215         [Deoptimization::BC_CASE_LIMIT]
2216   = {0};
2217 
2218 enum {
2219   LSB_BITS = 8,
2220   LSB_MASK = right_n_bits(LSB_BITS)
2221 };
2222 
2223 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2224                                        Bytecodes::Code bc) {
2225   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2226   assert(action >= 0 && action < Action_LIMIT, "oob");
2227   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2228   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2229   juint* cases = _deoptimization_hist[reason][1+action];
2230   juint* bc_counter_addr = NULL;
2231   juint  bc_counter      = 0;
2232   // Look for an unused counter, or an exact match to this BC.
2233   if (bc != Bytecodes::_illegal) {
2234     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2235       juint* counter_addr = &cases[bc_case];
2236       juint  counter = *counter_addr;
2237       if ((counter == 0 && bc_counter_addr == NULL)
2238           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2239         // this counter is either free or is already devoted to this BC
2240         bc_counter_addr = counter_addr;
2241         bc_counter = counter | bc;
2242       }
2243     }
2244   }
2245   if (bc_counter_addr == NULL) {
2246     // Overflow, or no given bytecode.
2247     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2248     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2249   }
2250   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2251 }
2252 
2253 jint Deoptimization::total_deoptimization_count() {
2254   return _deoptimization_hist[Reason_none][0][0];
2255 }
2256 
2257 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2258   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2259   return _deoptimization_hist[reason][0][0];
2260 }
2261 
2262 void Deoptimization::print_statistics() {
2263   juint total = total_deoptimization_count();
2264   juint account = total;
2265   if (total != 0) {
2266     ttyLocker ttyl;
2267     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2268     tty->print_cr("Deoptimization traps recorded:");
2269     #define PRINT_STAT_LINE(name, r) \
2270       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2271     PRINT_STAT_LINE("total", total);
2272     // For each non-zero entry in the histogram, print the reason,
2273     // the action, and (if specifically known) the type of bytecode.
2274     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2275       for (int action = 0; action < Action_LIMIT; action++) {
2276         juint* cases = _deoptimization_hist[reason][1+action];
2277         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2278           juint counter = cases[bc_case];
2279           if (counter != 0) {
2280             char name[1*K];
2281             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2282             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2283               bc = Bytecodes::_illegal;
2284             sprintf(name, "%s/%s/%s",
2285                     trap_reason_name(reason),
2286                     trap_action_name(action),
2287                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2288             juint r = counter >> LSB_BITS;
2289             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2290             account -= r;
2291           }
2292         }
2293       }
2294     }
2295     if (account != 0) {
2296       PRINT_STAT_LINE("unaccounted", account);
2297     }
2298     #undef PRINT_STAT_LINE
2299     if (xtty != NULL)  xtty->tail("statistics");
2300   }
2301 }
2302 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2303 
2304 
2305 // Stubs for C1 only system.
2306 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2307   return false;
2308 }
2309 
2310 const char* Deoptimization::trap_reason_name(int reason) {
2311   return "unknown";
2312 }
2313 
2314 void Deoptimization::print_statistics() {
2315   // no output
2316 }
2317 
2318 void
2319 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2320   // no udpate
2321 }
2322 
2323 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2324   return 0;
2325 }
2326 
2327 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2328                                        Bytecodes::Code bc) {
2329   // no update
2330 }
2331 
2332 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2333                                               int trap_state) {
2334   jio_snprintf(buf, buflen, "#%d", trap_state);
2335   return buf;
2336 }
2337 
2338 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI