1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/altHashing.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/filemap.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/dtrace.hpp"
  35 #include "utilities/hashtable.hpp"
  36 #include "utilities/hashtable.inline.hpp"
  37 #include "utilities/numberSeq.hpp"
  38 
  39 
  40 // This hashtable is implemented as an open hash table with a fixed number of buckets.
  41 
  42 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry_free_list() {
  43   BasicHashtableEntry<F>* entry = NULL;
  44   if (_free_list != NULL) {
  45     entry = _free_list;
  46     _free_list = _free_list->next();
  47   }
  48   return entry;
  49 }
  50 
  51 // HashtableEntrys are allocated in blocks to reduce the space overhead.
  52 template <MEMFLAGS F> BasicHashtableEntry<F>* BasicHashtable<F>::new_entry(unsigned int hashValue) {
  53   BasicHashtableEntry<F>* entry = new_entry_free_list();
  54 
  55   if (entry == NULL) {
  56     if (_first_free_entry + _entry_size >= _end_block) {
  57       int block_size = MIN2(512, MAX2((int)_table_size / 2, (int)_number_of_entries));
  58       int len = _entry_size * block_size;
  59       len = 1 << log2_intptr(len); // round down to power of 2
  60       assert(len >= _entry_size, "");
  61       _first_free_entry = NEW_C_HEAP_ARRAY2(char, len, F, CURRENT_PC);
  62       _end_block = _first_free_entry + len;
  63     }
  64     entry = (BasicHashtableEntry<F>*)_first_free_entry;
  65     _first_free_entry += _entry_size;
  66   }
  67 
  68   assert(_entry_size % HeapWordSize == 0, "");
  69   entry->set_hash(hashValue);
  70   return entry;
  71 }
  72 
  73 
  74 template <class T, MEMFLAGS F> HashtableEntry<T, F>* Hashtable<T, F>::new_entry(unsigned int hashValue, T obj) {
  75   HashtableEntry<T, F>* entry;
  76 
  77   entry = (HashtableEntry<T, F>*)BasicHashtable<F>::new_entry(hashValue);
  78   entry->set_literal(obj);
  79   return entry;
  80 }
  81 
  82 // Check to see if the hashtable is unbalanced.  The caller set a flag to
  83 // rehash at the next safepoint.  If this bucket is 60 times greater than the
  84 // expected average bucket length, it's an unbalanced hashtable.
  85 // This is somewhat an arbitrary heuristic but if one bucket gets to
  86 // rehash_count which is currently 100, there's probably something wrong.
  87 
  88 template <class T, MEMFLAGS F> bool RehashableHashtable<T, F>::check_rehash_table(int count) {
  89   assert(this->table_size() != 0, "underflow");
  90   if (count > (((double)this->number_of_entries()/(double)this->table_size())*rehash_multiple)) {
  91     // Set a flag for the next safepoint, which should be at some guaranteed
  92     // safepoint interval.
  93     return true;
  94   }
  95   return false;
  96 }
  97 
  98 template <class T, MEMFLAGS F> juint RehashableHashtable<T, F>::_seed = 0;
  99 
 100 // Create a new table and using alternate hash code, populate the new table
 101 // with the existing elements.   This can be used to change the hash code
 102 // and could in the future change the size of the table.
 103 
 104 template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::move_to(RehashableHashtable<T, F>* new_table) {
 105 
 106   // Initialize the global seed for hashing.
 107   _seed = AltHashing::compute_seed();
 108   assert(seed() != 0, "shouldn't be zero");
 109 
 110   int saved_entry_count = this->number_of_entries();
 111 
 112   // Iterate through the table and create a new entry for the new table
 113   for (int i = 0; i < new_table->table_size(); ++i) {
 114     for (HashtableEntry<T, F>* p = this->bucket(i); p != NULL; ) {
 115       HashtableEntry<T, F>* next = p->next();
 116       T string = p->literal();
 117       // Use alternate hashing algorithm on the symbol in the first table
 118       unsigned int hashValue = string->new_hash(seed());
 119       // Get a new index relative to the new table (can also change size)
 120       int index = new_table->hash_to_index(hashValue);
 121       p->set_hash(hashValue);
 122       // Keep the shared bit in the Hashtable entry to indicate that this entry
 123       // can't be deleted.   The shared bit is the LSB in the _next field so
 124       // walking the hashtable past these entries requires
 125       // BasicHashtableEntry::make_ptr() call.
 126       bool keep_shared = p->is_shared();
 127       this->unlink_entry(p);
 128       new_table->add_entry(index, p);
 129       if (keep_shared) {
 130         p->set_shared();
 131       }
 132       p = next;
 133     }
 134   }
 135   // give the new table the free list as well
 136   new_table->copy_freelist(this);
 137   assert(new_table->number_of_entries() == saved_entry_count, "lost entry on dictionary copy?");
 138 
 139   // Destroy memory used by the buckets in the hashtable.  The memory
 140   // for the elements has been used in a new table and is not
 141   // destroyed.  The memory reuse will benefit resizing the SystemDictionary
 142   // to avoid a memory allocation spike at safepoint.
 143   BasicHashtable<F>::free_buckets();
 144 }
 145 
 146 template <MEMFLAGS F> void BasicHashtable<F>::free_buckets() {
 147   if (NULL != _buckets) {
 148     // Don't delete the buckets in the shared space.  They aren't
 149     // allocated by os::malloc
 150     if (!UseSharedSpaces ||
 151         !FileMapInfo::current_info()->is_in_shared_space(_buckets)) {
 152        FREE_C_HEAP_ARRAY(HashtableBucket, _buckets);
 153     }
 154     _buckets = NULL;
 155   }
 156 }
 157 
 158 
 159 // Reverse the order of elements in the hash buckets.
 160 
 161 template <MEMFLAGS F> void BasicHashtable<F>::reverse() {
 162 
 163   for (int i = 0; i < _table_size; ++i) {
 164     BasicHashtableEntry<F>* new_list = NULL;
 165     BasicHashtableEntry<F>* p = bucket(i);
 166     while (p != NULL) {
 167       BasicHashtableEntry<F>* next = p->next();
 168       p->set_next(new_list);
 169       new_list = p;
 170       p = next;
 171     }
 172     *bucket_addr(i) = new_list;
 173   }
 174 }
 175 
 176 
 177 // Copy the table to the shared space.
 178 
 179 template <MEMFLAGS F> void BasicHashtable<F>::copy_table(char** top, char* end) {
 180 
 181   // Dump the hash table entries.
 182 
 183   intptr_t *plen = (intptr_t*)(*top);
 184   *top += sizeof(*plen);
 185 
 186   int i;
 187   for (i = 0; i < _table_size; ++i) {
 188     for (BasicHashtableEntry<F>** p = _buckets[i].entry_addr();
 189                               *p != NULL;
 190                                p = (*p)->next_addr()) {
 191       if (*top + entry_size() > end) {
 192         report_out_of_shared_space(SharedMiscData);
 193       }
 194       *p = (BasicHashtableEntry<F>*)memcpy(*top, *p, entry_size());
 195       *top += entry_size();
 196     }
 197   }
 198   *plen = (char*)(*top) - (char*)plen - sizeof(*plen);
 199 
 200   // Set the shared bit.
 201 
 202   for (i = 0; i < _table_size; ++i) {
 203     for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
 204       p->set_shared();
 205     }
 206   }
 207 }
 208 
 209 
 210 
 211 // Reverse the order of elements in the hash buckets.
 212 
 213 template <class T, MEMFLAGS F> void Hashtable<T, F>::reverse(void* boundary) {
 214 
 215   for (int i = 0; i < this->table_size(); ++i) {
 216     HashtableEntry<T, F>* high_list = NULL;
 217     HashtableEntry<T, F>* low_list = NULL;
 218     HashtableEntry<T, F>* last_low_entry = NULL;
 219     HashtableEntry<T, F>* p = bucket(i);
 220     while (p != NULL) {
 221       HashtableEntry<T, F>* next = p->next();
 222       if ((void*)p->literal() >= boundary) {
 223         p->set_next(high_list);
 224         high_list = p;
 225       } else {
 226         p->set_next(low_list);
 227         low_list = p;
 228         if (last_low_entry == NULL) {
 229           last_low_entry = p;
 230         }
 231       }
 232       p = next;
 233     }
 234     if (low_list != NULL) {
 235       *bucket_addr(i) = low_list;
 236       last_low_entry->set_next(high_list);
 237     } else {
 238       *bucket_addr(i) = high_list;
 239     }
 240   }
 241 }
 242 
 243 template <class T, MEMFLAGS F> int RehashableHashtable<T, F>::literal_size(Symbol *symbol) {
 244   return symbol->size() * HeapWordSize;
 245 }
 246 
 247 template <class T, MEMFLAGS F> int RehashableHashtable<T, F>::literal_size(oop oop) {
 248   // NOTE: this would over-count if (pre-JDK8) java_lang_Class::has_offset_field() is true,
 249   // and the String.value array is shared by several Strings. However, starting from JDK8,
 250   // the String.value array is not shared anymore.
 251   assert(oop != NULL && oop->klass() == SystemDictionary::String_klass(), "only strings are supported");
 252   return (oop->size() + java_lang_String::value(oop)->size()) * HeapWordSize;
 253 }
 254 
 255 // Dump footprint and bucket length statistics
 256 //
 257 // Note: if you create a new subclass of Hashtable<MyNewType, F>, you will need to
 258 // add a new function Hashtable<T, F>::literal_size(MyNewType lit)
 259 
 260 template <class T, MEMFLAGS F> void RehashableHashtable<T, F>::dump_table(outputStream* st, const char *table_name) {
 261   NumberSeq summary;
 262   int literal_bytes = 0;
 263   for (int i = 0; i < this->table_size(); ++i) {
 264     int count = 0;
 265     for (HashtableEntry<T, F>* e = this->bucket(i);
 266        e != NULL; e = e->next()) {
 267       count++;
 268       literal_bytes += literal_size(e->literal());
 269     }
 270     summary.add((double)count);
 271   }
 272   double num_buckets = summary.num();
 273   double num_entries = summary.sum();
 274 
 275   int bucket_bytes = (int)num_buckets * sizeof(HashtableBucket<F>);
 276   int entry_bytes  = (int)num_entries * sizeof(HashtableEntry<T, F>);
 277   int total_bytes = literal_bytes +  bucket_bytes + entry_bytes;
 278 
 279   double bucket_avg  = (num_buckets <= 0) ? 0 : (bucket_bytes  / num_buckets);
 280   double entry_avg   = (num_entries <= 0) ? 0 : (entry_bytes   / num_entries);
 281   double literal_avg = (num_entries <= 0) ? 0 : (literal_bytes / num_entries);
 282 
 283   st->print_cr("%s statistics:", table_name);
 284   st->print_cr("Number of buckets       : %9d = %9d bytes, avg %7.3f", (int)num_buckets, bucket_bytes,  bucket_avg);
 285   st->print_cr("Number of entries       : %9d = %9d bytes, avg %7.3f", (int)num_entries, entry_bytes,   entry_avg);
 286   st->print_cr("Number of literals      : %9d = %9d bytes, avg %7.3f", (int)num_entries, literal_bytes, literal_avg);
 287   st->print_cr("Total footprint         : %9s = %9d bytes", "", total_bytes);
 288   st->print_cr("Average bucket size     : %9.3f", summary.avg());
 289   st->print_cr("Variance of bucket size : %9.3f", summary.variance());
 290   st->print_cr("Std. dev. of bucket size: %9.3f", summary.sd());
 291   st->print_cr("Maximum bucket size     : %9d", (int)summary.maximum());
 292 }
 293 
 294 
 295 // Dump the hash table buckets.
 296 
 297 template <MEMFLAGS F> void BasicHashtable<F>::copy_buckets(char** top, char* end) {
 298   intptr_t len = _table_size * sizeof(HashtableBucket<F>);
 299   *(intptr_t*)(*top) = len;
 300   *top += sizeof(intptr_t);
 301 
 302   *(intptr_t*)(*top) = _number_of_entries;
 303   *top += sizeof(intptr_t);
 304 
 305   if (*top + len > end) {
 306     report_out_of_shared_space(SharedMiscData);
 307   }
 308   _buckets = (HashtableBucket<F>*)memcpy(*top, _buckets, len);
 309   *top += len;
 310 }
 311 
 312 
 313 #ifndef PRODUCT
 314 
 315 template <class T, MEMFLAGS F> void Hashtable<T, F>::print() {
 316   ResourceMark rm;
 317 
 318   for (int i = 0; i < BasicHashtable<F>::table_size(); i++) {
 319     HashtableEntry<T, F>* entry = bucket(i);
 320     while(entry != NULL) {
 321       tty->print("%d : ", i);
 322       entry->literal()->print();
 323       tty->cr();
 324       entry = entry->next();
 325     }
 326   }
 327 }
 328 
 329 
 330 template <MEMFLAGS F> void BasicHashtable<F>::verify() {
 331   int count = 0;
 332   for (int i = 0; i < table_size(); i++) {
 333     for (BasicHashtableEntry<F>* p = bucket(i); p != NULL; p = p->next()) {
 334       ++count;
 335     }
 336   }
 337   assert(count == number_of_entries(), "number of hashtable entries incorrect");
 338 }
 339 
 340 
 341 #endif // PRODUCT
 342 
 343 #ifdef ASSERT
 344 
 345 template <MEMFLAGS F> void BasicHashtable<F>::verify_lookup_length(double load) {
 346   if ((double)_lookup_length / (double)_lookup_count > load * 2.0) {
 347     warning("Performance bug: SystemDictionary lookup_count=%d "
 348             "lookup_length=%d average=%lf load=%f",
 349             _lookup_count, _lookup_length,
 350             (double) _lookup_length / _lookup_count, load);
 351   }
 352 }
 353 
 354 #endif
 355 
 356 
 357 // Explicitly instantiate these types
 358 #if INCLUDE_ALL_GCS
 359 template class Hashtable<nmethod*, mtGC>;
 360 template class HashtableEntry<nmethod*, mtGC>;
 361 template class BasicHashtable<mtGC>;
 362 #endif
 363 template class Hashtable<ConstantPool*, mtClass>;
 364 template class RehashableHashtable<Symbol*, mtSymbol>;
 365 template class RehashableHashtable<oopDesc*, mtSymbol>;
 366 template class Hashtable<Symbol*, mtSymbol>;
 367 template class Hashtable<Klass*, mtClass>;
 368 template class Hashtable<InstanceKlass*, mtClass>;
 369 template class Hashtable<oop, mtClass>;
 370 #if defined(SOLARIS) || defined(CHECK_UNHANDLED_OOPS)
 371 template class Hashtable<oop, mtSymbol>;
 372 template class RehashableHashtable<oop, mtSymbol>;
 373 #endif // SOLARIS || CHECK_UNHANDLED_OOPS
 374 template class Hashtable<oopDesc*, mtSymbol>;
 375 template class Hashtable<Symbol*, mtClass>;
 376 template class HashtableEntry<Symbol*, mtSymbol>;
 377 template class HashtableEntry<Symbol*, mtClass>;
 378 template class HashtableEntry<oop, mtSymbol>;
 379 template class BasicHashtableEntry<mtSymbol>;
 380 template class BasicHashtableEntry<mtCode>;
 381 template class BasicHashtable<mtClass>;
 382 template class BasicHashtable<mtClassShared>;
 383 template class BasicHashtable<mtSymbol>;
 384 template class BasicHashtable<mtCode>;
 385 template class BasicHashtable<mtInternal>;
 386 template class BasicHashtable<mtCompiler>;