1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/block.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/callnode.hpp"
  42 #include "opto/castnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/divnode.hpp"
  49 #include "opto/escape.hpp"
  50 #include "opto/idealGraphPrinter.hpp"
  51 #include "opto/loopnode.hpp"
  52 #include "opto/machnode.hpp"
  53 #include "opto/macro.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/mathexactnode.hpp"
  56 #include "opto/memnode.hpp"
  57 #include "opto/mulnode.hpp"
  58 #include "opto/narrowptrnode.hpp"
  59 #include "opto/node.hpp"
  60 #include "opto/opcodes.hpp"
  61 #include "opto/output.hpp"
  62 #include "opto/parse.hpp"
  63 #include "opto/phaseX.hpp"
  64 #include "opto/rootnode.hpp"
  65 #include "opto/runtime.hpp"
  66 #include "opto/stringopts.hpp"
  67 #include "opto/type.hpp"
  68 #include "opto/vectornode.hpp"
  69 #include "runtime/arguments.hpp"
  70 #include "runtime/sharedRuntime.hpp"
  71 #include "runtime/signature.hpp"
  72 #include "runtime/stubRoutines.hpp"
  73 #include "runtime/timer.hpp"
  74 #include "utilities/copy.hpp"
  75 
  76 
  77 // -------------------- Compile::mach_constant_base_node -----------------------
  78 // Constant table base node singleton.
  79 MachConstantBaseNode* Compile::mach_constant_base_node() {
  80   if (_mach_constant_base_node == NULL) {
  81     _mach_constant_base_node = new MachConstantBaseNode();
  82     _mach_constant_base_node->add_req(C->root());
  83   }
  84   return _mach_constant_base_node;
  85 }
  86 
  87 
  88 /// Support for intrinsics.
  89 
  90 // Return the index at which m must be inserted (or already exists).
  91 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  92 class IntrinsicDescPair {
  93  private:
  94   ciMethod* _m;
  95   bool _is_virtual;
  96  public:
  97   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
  98   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
  99     ciMethod* m= elt->method();
 100     ciMethod* key_m = key->_m;
 101     if (key_m < m)      return -1;
 102     else if (key_m > m) return 1;
 103     else {
 104       bool is_virtual = elt->is_virtual();
 105       bool key_virtual = key->_is_virtual;
 106       if (key_virtual < is_virtual)      return -1;
 107       else if (key_virtual > is_virtual) return 1;
 108       else                               return 0;
 109     }
 110   }
 111 };
 112 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 113 #ifdef ASSERT
 114   for (int i = 1; i < _intrinsics->length(); i++) {
 115     CallGenerator* cg1 = _intrinsics->at(i-1);
 116     CallGenerator* cg2 = _intrinsics->at(i);
 117     assert(cg1->method() != cg2->method()
 118            ? cg1->method()     < cg2->method()
 119            : cg1->is_virtual() < cg2->is_virtual(),
 120            "compiler intrinsics list must stay sorted");
 121   }
 122 #endif
 123   IntrinsicDescPair pair(m, is_virtual);
 124   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 125 }
 126 
 127 void Compile::register_intrinsic(CallGenerator* cg) {
 128   if (_intrinsics == NULL) {
 129     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 130   }
 131   int len = _intrinsics->length();
 132   bool found = false;
 133   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 134   assert(!found, "registering twice");
 135   _intrinsics->insert_before(index, cg);
 136   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 137 }
 138 
 139 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 140   assert(m->is_loaded(), "don't try this on unloaded methods");
 141   if (_intrinsics != NULL) {
 142     bool found = false;
 143     int index = intrinsic_insertion_index(m, is_virtual, found);
 144      if (found) {
 145       return _intrinsics->at(index);
 146     }
 147   }
 148   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 149   if (m->intrinsic_id() != vmIntrinsics::_none &&
 150       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 151     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 152     if (cg != NULL) {
 153       // Save it for next time:
 154       register_intrinsic(cg);
 155       return cg;
 156     } else {
 157       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 158     }
 159   }
 160   return NULL;
 161 }
 162 
 163 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 164 // in library_call.cpp.
 165 
 166 
 167 #ifndef PRODUCT
 168 // statistics gathering...
 169 
 170 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 171 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 172 
 173 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 174   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 175   int oflags = _intrinsic_hist_flags[id];
 176   assert(flags != 0, "what happened?");
 177   if (is_virtual) {
 178     flags |= _intrinsic_virtual;
 179   }
 180   bool changed = (flags != oflags);
 181   if ((flags & _intrinsic_worked) != 0) {
 182     juint count = (_intrinsic_hist_count[id] += 1);
 183     if (count == 1) {
 184       changed = true;           // first time
 185     }
 186     // increment the overall count also:
 187     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 188   }
 189   if (changed) {
 190     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 191       // Something changed about the intrinsic's virtuality.
 192       if ((flags & _intrinsic_virtual) != 0) {
 193         // This is the first use of this intrinsic as a virtual call.
 194         if (oflags != 0) {
 195           // We already saw it as a non-virtual, so note both cases.
 196           flags |= _intrinsic_both;
 197         }
 198       } else if ((oflags & _intrinsic_both) == 0) {
 199         // This is the first use of this intrinsic as a non-virtual
 200         flags |= _intrinsic_both;
 201       }
 202     }
 203     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 204   }
 205   // update the overall flags also:
 206   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 207   return changed;
 208 }
 209 
 210 static char* format_flags(int flags, char* buf) {
 211   buf[0] = 0;
 212   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 213   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 214   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 215   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 216   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 217   if (buf[0] == 0)  strcat(buf, ",");
 218   assert(buf[0] == ',', "must be");
 219   return &buf[1];
 220 }
 221 
 222 void Compile::print_intrinsic_statistics() {
 223   char flagsbuf[100];
 224   ttyLocker ttyl;
 225   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 226   tty->print_cr("Compiler intrinsic usage:");
 227   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 228   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 229   #define PRINT_STAT_LINE(name, c, f) \
 230     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 231   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 232     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 233     int   flags = _intrinsic_hist_flags[id];
 234     juint count = _intrinsic_hist_count[id];
 235     if ((flags | count) != 0) {
 236       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 237     }
 238   }
 239   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 240   if (xtty != NULL)  xtty->tail("statistics");
 241 }
 242 
 243 void Compile::print_statistics() {
 244   { ttyLocker ttyl;
 245     if (xtty != NULL)  xtty->head("statistics type='opto'");
 246     Parse::print_statistics();
 247     PhaseCCP::print_statistics();
 248     PhaseRegAlloc::print_statistics();
 249     Scheduling::print_statistics();
 250     PhasePeephole::print_statistics();
 251     PhaseIdealLoop::print_statistics();
 252     if (xtty != NULL)  xtty->tail("statistics");
 253   }
 254   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 255     // put this under its own <statistics> element.
 256     print_intrinsic_statistics();
 257   }
 258 }
 259 #endif //PRODUCT
 260 
 261 // Support for bundling info
 262 Bundle* Compile::node_bundling(const Node *n) {
 263   assert(valid_bundle_info(n), "oob");
 264   return &_node_bundling_base[n->_idx];
 265 }
 266 
 267 bool Compile::valid_bundle_info(const Node *n) {
 268   return (_node_bundling_limit > n->_idx);
 269 }
 270 
 271 
 272 void Compile::gvn_replace_by(Node* n, Node* nn) {
 273   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 274     Node* use = n->last_out(i);
 275     bool is_in_table = initial_gvn()->hash_delete(use);
 276     uint uses_found = 0;
 277     for (uint j = 0; j < use->len(); j++) {
 278       if (use->in(j) == n) {
 279         if (j < use->req())
 280           use->set_req(j, nn);
 281         else
 282           use->set_prec(j, nn);
 283         uses_found++;
 284       }
 285     }
 286     if (is_in_table) {
 287       // reinsert into table
 288       initial_gvn()->hash_find_insert(use);
 289     }
 290     record_for_igvn(use);
 291     i -= uses_found;    // we deleted 1 or more copies of this edge
 292   }
 293 }
 294 
 295 
 296 static inline bool not_a_node(const Node* n) {
 297   if (n == NULL)                   return true;
 298   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 299   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 300   return false;
 301 }
 302 
 303 // Identify all nodes that are reachable from below, useful.
 304 // Use breadth-first pass that records state in a Unique_Node_List,
 305 // recursive traversal is slower.
 306 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 307   int estimated_worklist_size = live_nodes();
 308   useful.map( estimated_worklist_size, NULL );  // preallocate space
 309 
 310   // Initialize worklist
 311   if (root() != NULL)     { useful.push(root()); }
 312   // If 'top' is cached, declare it useful to preserve cached node
 313   if( cached_top_node() ) { useful.push(cached_top_node()); }
 314 
 315   // Push all useful nodes onto the list, breadthfirst
 316   for( uint next = 0; next < useful.size(); ++next ) {
 317     assert( next < unique(), "Unique useful nodes < total nodes");
 318     Node *n  = useful.at(next);
 319     uint max = n->len();
 320     for( uint i = 0; i < max; ++i ) {
 321       Node *m = n->in(i);
 322       if (not_a_node(m))  continue;
 323       useful.push(m);
 324     }
 325   }
 326 }
 327 
 328 // Update dead_node_list with any missing dead nodes using useful
 329 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 330 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 331   uint max_idx = unique();
 332   VectorSet& useful_node_set = useful.member_set();
 333 
 334   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 335     // If node with index node_idx is not in useful set,
 336     // mark it as dead in dead node list.
 337     if (! useful_node_set.test(node_idx) ) {
 338       record_dead_node(node_idx);
 339     }
 340   }
 341 }
 342 
 343 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 344   int shift = 0;
 345   for (int i = 0; i < inlines->length(); i++) {
 346     CallGenerator* cg = inlines->at(i);
 347     CallNode* call = cg->call_node();
 348     if (shift > 0) {
 349       inlines->at_put(i-shift, cg);
 350     }
 351     if (!useful.member(call)) {
 352       shift++;
 353     }
 354   }
 355   inlines->trunc_to(inlines->length()-shift);
 356 }
 357 
 358 // Disconnect all useless nodes by disconnecting those at the boundary.
 359 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 360   uint next = 0;
 361   while (next < useful.size()) {
 362     Node *n = useful.at(next++);
 363     if (n->is_SafePoint()) {
 364       // We're done with a parsing phase. Replaced nodes are not valid
 365       // beyond that point.
 366       n->as_SafePoint()->delete_replaced_nodes();
 367     }
 368     // Use raw traversal of out edges since this code removes out edges
 369     int max = n->outcnt();
 370     for (int j = 0; j < max; ++j) {
 371       Node* child = n->raw_out(j);
 372       if (! useful.member(child)) {
 373         assert(!child->is_top() || child != top(),
 374                "If top is cached in Compile object it is in useful list");
 375         // Only need to remove this out-edge to the useless node
 376         n->raw_del_out(j);
 377         --j;
 378         --max;
 379       }
 380     }
 381     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 382       record_for_igvn(n->unique_out());
 383     }
 384   }
 385   // Remove useless macro and predicate opaq nodes
 386   for (int i = C->macro_count()-1; i >= 0; i--) {
 387     Node* n = C->macro_node(i);
 388     if (!useful.member(n)) {
 389       remove_macro_node(n);
 390     }
 391   }
 392   // Remove useless CastII nodes with range check dependency
 393   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 394     Node* cast = range_check_cast_node(i);
 395     if (!useful.member(cast)) {
 396       remove_range_check_cast(cast);
 397     }
 398   }
 399   // Remove useless expensive node
 400   for (int i = C->expensive_count()-1; i >= 0; i--) {
 401     Node* n = C->expensive_node(i);
 402     if (!useful.member(n)) {
 403       remove_expensive_node(n);
 404     }
 405   }
 406   // clean up the late inline lists
 407   remove_useless_late_inlines(&_string_late_inlines, useful);
 408   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 409   remove_useless_late_inlines(&_late_inlines, useful);
 410   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 411 }
 412 
 413 //------------------------------frame_size_in_words-----------------------------
 414 // frame_slots in units of words
 415 int Compile::frame_size_in_words() const {
 416   // shift is 0 in LP32 and 1 in LP64
 417   const int shift = (LogBytesPerWord - LogBytesPerInt);
 418   int words = _frame_slots >> shift;
 419   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 420   return words;
 421 }
 422 
 423 // To bang the stack of this compiled method we use the stack size
 424 // that the interpreter would need in case of a deoptimization. This
 425 // removes the need to bang the stack in the deoptimization blob which
 426 // in turn simplifies stack overflow handling.
 427 int Compile::bang_size_in_bytes() const {
 428   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 429 }
 430 
 431 // ============================================================================
 432 //------------------------------CompileWrapper---------------------------------
 433 class CompileWrapper : public StackObj {
 434   Compile *const _compile;
 435  public:
 436   CompileWrapper(Compile* compile);
 437 
 438   ~CompileWrapper();
 439 };
 440 
 441 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 442   // the Compile* pointer is stored in the current ciEnv:
 443   ciEnv* env = compile->env();
 444   assert(env == ciEnv::current(), "must already be a ciEnv active");
 445   assert(env->compiler_data() == NULL, "compile already active?");
 446   env->set_compiler_data(compile);
 447   assert(compile == Compile::current(), "sanity");
 448 
 449   compile->set_type_dict(NULL);
 450   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 451   compile->clone_map().set_clone_idx(0);
 452   compile->set_type_hwm(NULL);
 453   compile->set_type_last_size(0);
 454   compile->set_last_tf(NULL, NULL);
 455   compile->set_indexSet_arena(NULL);
 456   compile->set_indexSet_free_block_list(NULL);
 457   compile->init_type_arena();
 458   Type::Initialize(compile);
 459   _compile->set_scratch_buffer_blob(NULL);
 460   _compile->begin_method();
 461   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 462 }
 463 CompileWrapper::~CompileWrapper() {
 464   _compile->end_method();
 465   if (_compile->scratch_buffer_blob() != NULL)
 466     BufferBlob::free(_compile->scratch_buffer_blob());
 467   _compile->env()->set_compiler_data(NULL);
 468 }
 469 
 470 
 471 //----------------------------print_compile_messages---------------------------
 472 void Compile::print_compile_messages() {
 473 #ifndef PRODUCT
 474   // Check if recompiling
 475   if (_subsume_loads == false && PrintOpto) {
 476     // Recompiling without allowing machine instructions to subsume loads
 477     tty->print_cr("*********************************************************");
 478     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 479     tty->print_cr("*********************************************************");
 480   }
 481   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 482     // Recompiling without escape analysis
 483     tty->print_cr("*********************************************************");
 484     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 485     tty->print_cr("*********************************************************");
 486   }
 487   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 488     // Recompiling without boxing elimination
 489     tty->print_cr("*********************************************************");
 490     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 491     tty->print_cr("*********************************************************");
 492   }
 493   if (C->directive()->BreakAtCompileOption) {
 494     // Open the debugger when compiling this method.
 495     tty->print("### Breaking when compiling: ");
 496     method()->print_short_name();
 497     tty->cr();
 498     BREAKPOINT;
 499   }
 500 
 501   if( PrintOpto ) {
 502     if (is_osr_compilation()) {
 503       tty->print("[OSR]%3d", _compile_id);
 504     } else {
 505       tty->print("%3d", _compile_id);
 506     }
 507   }
 508 #endif
 509 }
 510 
 511 
 512 //-----------------------init_scratch_buffer_blob------------------------------
 513 // Construct a temporary BufferBlob and cache it for this compile.
 514 void Compile::init_scratch_buffer_blob(int const_size) {
 515   // If there is already a scratch buffer blob allocated and the
 516   // constant section is big enough, use it.  Otherwise free the
 517   // current and allocate a new one.
 518   BufferBlob* blob = scratch_buffer_blob();
 519   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 520     // Use the current blob.
 521   } else {
 522     if (blob != NULL) {
 523       BufferBlob::free(blob);
 524     }
 525 
 526     ResourceMark rm;
 527     _scratch_const_size = const_size;
 528     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 529     blob = BufferBlob::create("Compile::scratch_buffer", size);
 530     // Record the buffer blob for next time.
 531     set_scratch_buffer_blob(blob);
 532     // Have we run out of code space?
 533     if (scratch_buffer_blob() == NULL) {
 534       // Let CompilerBroker disable further compilations.
 535       record_failure("Not enough space for scratch buffer in CodeCache");
 536       return;
 537     }
 538   }
 539 
 540   // Initialize the relocation buffers
 541   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 542   set_scratch_locs_memory(locs_buf);
 543 }
 544 
 545 
 546 //-----------------------scratch_emit_size-------------------------------------
 547 // Helper function that computes size by emitting code
 548 uint Compile::scratch_emit_size(const Node* n) {
 549   // Start scratch_emit_size section.
 550   set_in_scratch_emit_size(true);
 551 
 552   // Emit into a trash buffer and count bytes emitted.
 553   // This is a pretty expensive way to compute a size,
 554   // but it works well enough if seldom used.
 555   // All common fixed-size instructions are given a size
 556   // method by the AD file.
 557   // Note that the scratch buffer blob and locs memory are
 558   // allocated at the beginning of the compile task, and
 559   // may be shared by several calls to scratch_emit_size.
 560   // The allocation of the scratch buffer blob is particularly
 561   // expensive, since it has to grab the code cache lock.
 562   BufferBlob* blob = this->scratch_buffer_blob();
 563   assert(blob != NULL, "Initialize BufferBlob at start");
 564   assert(blob->size() > MAX_inst_size, "sanity");
 565   relocInfo* locs_buf = scratch_locs_memory();
 566   address blob_begin = blob->content_begin();
 567   address blob_end   = (address)locs_buf;
 568   assert(blob->contains(blob_end), "sanity");
 569   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 570   buf.initialize_consts_size(_scratch_const_size);
 571   buf.initialize_stubs_size(MAX_stubs_size);
 572   assert(locs_buf != NULL, "sanity");
 573   int lsize = MAX_locs_size / 3;
 574   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 575   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 576   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 577 
 578   // Do the emission.
 579 
 580   Label fakeL; // Fake label for branch instructions.
 581   Label*   saveL = NULL;
 582   uint save_bnum = 0;
 583   bool is_branch = n->is_MachBranch();
 584   if (is_branch) {
 585     MacroAssembler masm(&buf);
 586     masm.bind(fakeL);
 587     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 588     n->as_MachBranch()->label_set(&fakeL, 0);
 589   }
 590   n->emit(buf, this->regalloc());
 591 
 592   // Emitting into the scratch buffer should not fail
 593   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 594 
 595   if (is_branch) // Restore label.
 596     n->as_MachBranch()->label_set(saveL, save_bnum);
 597 
 598   // End scratch_emit_size section.
 599   set_in_scratch_emit_size(false);
 600 
 601   return buf.insts_size();
 602 }
 603 
 604 
 605 // ============================================================================
 606 //------------------------------Compile standard-------------------------------
 607 debug_only( int Compile::_debug_idx = 100000; )
 608 
 609 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 610 // the continuation bci for on stack replacement.
 611 
 612 
 613 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 614                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 615                 : Phase(Compiler),
 616                   _env(ci_env),
 617                   _directive(directive),
 618                   _log(ci_env->log()),
 619                   _compile_id(ci_env->compile_id()),
 620                   _save_argument_registers(false),
 621                   _stub_name(NULL),
 622                   _stub_function(NULL),
 623                   _stub_entry_point(NULL),
 624                   _method(target),
 625                   _entry_bci(osr_bci),
 626                   _initial_gvn(NULL),
 627                   _for_igvn(NULL),
 628                   _warm_calls(NULL),
 629                   _subsume_loads(subsume_loads),
 630                   _do_escape_analysis(do_escape_analysis),
 631                   _eliminate_boxing(eliminate_boxing),
 632                   _failure_reason(NULL),
 633                   _code_buffer("Compile::Fill_buffer"),
 634                   _orig_pc_slot(0),
 635                   _orig_pc_slot_offset_in_bytes(0),
 636                   _has_method_handle_invokes(false),
 637                   _mach_constant_base_node(NULL),
 638                   _node_bundling_limit(0),
 639                   _node_bundling_base(NULL),
 640                   _java_calls(0),
 641                   _inner_loops(0),
 642                   _scratch_const_size(-1),
 643                   _in_scratch_emit_size(false),
 644                   _dead_node_list(comp_arena()),
 645                   _dead_node_count(0),
 646 #ifndef PRODUCT
 647                   _trace_opto_output(directive->TraceOptoOutputOption),
 648                   _in_dump_cnt(0),
 649                   _printer(IdealGraphPrinter::printer()),
 650 #endif
 651                   _congraph(NULL),
 652                   _comp_arena(mtCompiler),
 653                   _node_arena(mtCompiler),
 654                   _old_arena(mtCompiler),
 655                   _Compile_types(mtCompiler),
 656                   _replay_inline_data(NULL),
 657                   _late_inlines(comp_arena(), 2, 0, NULL),
 658                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 659                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 660                   _late_inlines_pos(0),
 661                   _number_of_mh_late_inlines(0),
 662                   _inlining_progress(false),
 663                   _inlining_incrementally(false),
 664                   _print_inlining_list(NULL),
 665                   _print_inlining_stream(NULL),
 666                   _print_inlining_idx(0),
 667                   _print_inlining_output(NULL),
 668                   _interpreter_frame_size(0),
 669                   _max_node_limit(MaxNodeLimit),
 670                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 671   C = this;
 672 #ifndef PRODUCT
 673   if (_printer != NULL) {
 674     _printer->set_compile(this);
 675   }
 676 #endif
 677   CompileWrapper cw(this);
 678 
 679   if (CITimeVerbose) {
 680     tty->print(" ");
 681     target->holder()->name()->print();
 682     tty->print(".");
 683     target->print_short_name();
 684     tty->print("  ");
 685   }
 686   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 687   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 688 
 689 #ifndef PRODUCT
 690   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 691   if (!print_opto_assembly) {
 692     bool print_assembly = directive->PrintAssemblyOption;
 693     if (print_assembly && !Disassembler::can_decode()) {
 694       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 695       print_opto_assembly = true;
 696     }
 697   }
 698   set_print_assembly(print_opto_assembly);
 699   set_parsed_irreducible_loop(false);
 700 
 701   if (directive->ReplayInlineOption) {
 702     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 703   }
 704 #endif
 705   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 706   set_print_intrinsics(directive->PrintIntrinsicsOption);
 707   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 708 
 709   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 710     // Make sure the method being compiled gets its own MDO,
 711     // so we can at least track the decompile_count().
 712     // Need MDO to record RTM code generation state.
 713     method()->ensure_method_data();
 714   }
 715 
 716   Init(::AliasLevel);
 717 
 718 
 719   print_compile_messages();
 720 
 721   _ilt = InlineTree::build_inline_tree_root();
 722 
 723   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 724   assert(num_alias_types() >= AliasIdxRaw, "");
 725 
 726 #define MINIMUM_NODE_HASH  1023
 727   // Node list that Iterative GVN will start with
 728   Unique_Node_List for_igvn(comp_arena());
 729   set_for_igvn(&for_igvn);
 730 
 731   // GVN that will be run immediately on new nodes
 732   uint estimated_size = method()->code_size()*4+64;
 733   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 734   PhaseGVN gvn(node_arena(), estimated_size);
 735   set_initial_gvn(&gvn);
 736 
 737   print_inlining_init();
 738   { // Scope for timing the parser
 739     TracePhase tp("parse", &timers[_t_parser]);
 740 
 741     // Put top into the hash table ASAP.
 742     initial_gvn()->transform_no_reclaim(top());
 743 
 744     // Set up tf(), start(), and find a CallGenerator.
 745     CallGenerator* cg = NULL;
 746     if (is_osr_compilation()) {
 747       const TypeTuple *domain = StartOSRNode::osr_domain();
 748       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 749       init_tf(TypeFunc::make(domain, range));
 750       StartNode* s = new StartOSRNode(root(), domain);
 751       initial_gvn()->set_type_bottom(s);
 752       init_start(s);
 753       cg = CallGenerator::for_osr(method(), entry_bci());
 754     } else {
 755       // Normal case.
 756       init_tf(TypeFunc::make(method()));
 757       StartNode* s = new StartNode(root(), tf()->domain());
 758       initial_gvn()->set_type_bottom(s);
 759       init_start(s);
 760       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 761         // With java.lang.ref.reference.get() we must go through the
 762         // intrinsic when G1 is enabled - even when get() is the root
 763         // method of the compile - so that, if necessary, the value in
 764         // the referent field of the reference object gets recorded by
 765         // the pre-barrier code.
 766         // Specifically, if G1 is enabled, the value in the referent
 767         // field is recorded by the G1 SATB pre barrier. This will
 768         // result in the referent being marked live and the reference
 769         // object removed from the list of discovered references during
 770         // reference processing.
 771         cg = find_intrinsic(method(), false);
 772       }
 773       if (cg == NULL) {
 774         float past_uses = method()->interpreter_invocation_count();
 775         float expected_uses = past_uses;
 776         cg = CallGenerator::for_inline(method(), expected_uses);
 777       }
 778     }
 779     if (failing())  return;
 780     if (cg == NULL) {
 781       record_method_not_compilable("cannot parse method");
 782       return;
 783     }
 784     JVMState* jvms = build_start_state(start(), tf());
 785     if ((jvms = cg->generate(jvms)) == NULL) {
 786       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 787         record_method_not_compilable("method parse failed");
 788       }
 789       return;
 790     }
 791     GraphKit kit(jvms);
 792 
 793     if (!kit.stopped()) {
 794       // Accept return values, and transfer control we know not where.
 795       // This is done by a special, unique ReturnNode bound to root.
 796       return_values(kit.jvms());
 797     }
 798 
 799     if (kit.has_exceptions()) {
 800       // Any exceptions that escape from this call must be rethrown
 801       // to whatever caller is dynamically above us on the stack.
 802       // This is done by a special, unique RethrowNode bound to root.
 803       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 804     }
 805 
 806     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 807 
 808     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 809       inline_string_calls(true);
 810     }
 811 
 812     if (failing())  return;
 813 
 814     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 815 
 816     // Remove clutter produced by parsing.
 817     if (!failing()) {
 818       ResourceMark rm;
 819       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 820     }
 821   }
 822 
 823   // Note:  Large methods are capped off in do_one_bytecode().
 824   if (failing())  return;
 825 
 826   // After parsing, node notes are no longer automagic.
 827   // They must be propagated by register_new_node_with_optimizer(),
 828   // clone(), or the like.
 829   set_default_node_notes(NULL);
 830 
 831   for (;;) {
 832     int successes = Inline_Warm();
 833     if (failing())  return;
 834     if (successes == 0)  break;
 835   }
 836 
 837   // Drain the list.
 838   Finish_Warm();
 839 #ifndef PRODUCT
 840   if (_printer && _printer->should_print(1)) {
 841     _printer->print_inlining();
 842   }
 843 #endif
 844 
 845   if (failing())  return;
 846   NOT_PRODUCT( verify_graph_edges(); )
 847 
 848   // Now optimize
 849   Optimize();
 850   if (failing())  return;
 851   NOT_PRODUCT( verify_graph_edges(); )
 852 
 853 #ifndef PRODUCT
 854   if (PrintIdeal) {
 855     ttyLocker ttyl;  // keep the following output all in one block
 856     // This output goes directly to the tty, not the compiler log.
 857     // To enable tools to match it up with the compilation activity,
 858     // be sure to tag this tty output with the compile ID.
 859     if (xtty != NULL) {
 860       xtty->head("ideal compile_id='%d'%s", compile_id(),
 861                  is_osr_compilation()    ? " compile_kind='osr'" :
 862                  "");
 863     }
 864     root()->dump(9999);
 865     if (xtty != NULL) {
 866       xtty->tail("ideal");
 867     }
 868   }
 869 #endif
 870 
 871   NOT_PRODUCT( verify_barriers(); )
 872 
 873   // Dump compilation data to replay it.
 874   if (directive->DumpReplayOption) {
 875     env()->dump_replay_data(_compile_id);
 876   }
 877   if (directive->DumpInlineOption && (ilt() != NULL)) {
 878     env()->dump_inline_data(_compile_id);
 879   }
 880 
 881   // Now that we know the size of all the monitors we can add a fixed slot
 882   // for the original deopt pc.
 883 
 884   _orig_pc_slot =  fixed_slots();
 885   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 886   set_fixed_slots(next_slot);
 887 
 888   // Compute when to use implicit null checks. Used by matching trap based
 889   // nodes and NullCheck optimization.
 890   set_allowed_deopt_reasons();
 891 
 892   // Now generate code
 893   Code_Gen();
 894   if (failing())  return;
 895 
 896   // Check if we want to skip execution of all compiled code.
 897   {
 898 #ifndef PRODUCT
 899     if (OptoNoExecute) {
 900       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 901       return;
 902     }
 903 #endif
 904     TracePhase tp("install_code", &timers[_t_registerMethod]);
 905 
 906     if (is_osr_compilation()) {
 907       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 908       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 909     } else {
 910       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 911       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 912     }
 913 
 914     env()->register_method(_method, _entry_bci,
 915                            &_code_offsets,
 916                            _orig_pc_slot_offset_in_bytes,
 917                            code_buffer(),
 918                            frame_size_in_words(), _oop_map_set,
 919                            &_handler_table, &_inc_table,
 920                            compiler,
 921                            has_unsafe_access(),
 922                            SharedRuntime::is_wide_vector(max_vector_size()),
 923                            rtm_state()
 924                            );
 925 
 926     if (log() != NULL) // Print code cache state into compiler log
 927       log()->code_cache_state();
 928   }
 929 }
 930 
 931 //------------------------------Compile----------------------------------------
 932 // Compile a runtime stub
 933 Compile::Compile( ciEnv* ci_env,
 934                   TypeFunc_generator generator,
 935                   address stub_function,
 936                   const char *stub_name,
 937                   int is_fancy_jump,
 938                   bool pass_tls,
 939                   bool save_arg_registers,
 940                   bool return_pc,
 941                   DirectiveSet* directive)
 942   : Phase(Compiler),
 943     _env(ci_env),
 944     _directive(directive),
 945     _log(ci_env->log()),
 946     _compile_id(0),
 947     _save_argument_registers(save_arg_registers),
 948     _method(NULL),
 949     _stub_name(stub_name),
 950     _stub_function(stub_function),
 951     _stub_entry_point(NULL),
 952     _entry_bci(InvocationEntryBci),
 953     _initial_gvn(NULL),
 954     _for_igvn(NULL),
 955     _warm_calls(NULL),
 956     _orig_pc_slot(0),
 957     _orig_pc_slot_offset_in_bytes(0),
 958     _subsume_loads(true),
 959     _do_escape_analysis(false),
 960     _eliminate_boxing(false),
 961     _failure_reason(NULL),
 962     _code_buffer("Compile::Fill_buffer"),
 963     _has_method_handle_invokes(false),
 964     _mach_constant_base_node(NULL),
 965     _node_bundling_limit(0),
 966     _node_bundling_base(NULL),
 967     _java_calls(0),
 968     _inner_loops(0),
 969 #ifndef PRODUCT
 970     _trace_opto_output(TraceOptoOutput),
 971     _in_dump_cnt(0),
 972     _printer(NULL),
 973 #endif
 974     _comp_arena(mtCompiler),
 975     _node_arena(mtCompiler),
 976     _old_arena(mtCompiler),
 977     _Compile_types(mtCompiler),
 978     _dead_node_list(comp_arena()),
 979     _dead_node_count(0),
 980     _congraph(NULL),
 981     _replay_inline_data(NULL),
 982     _number_of_mh_late_inlines(0),
 983     _inlining_progress(false),
 984     _inlining_incrementally(false),
 985     _print_inlining_list(NULL),
 986     _print_inlining_stream(NULL),
 987     _print_inlining_idx(0),
 988     _print_inlining_output(NULL),
 989     _allowed_reasons(0),
 990     _interpreter_frame_size(0),
 991     _max_node_limit(MaxNodeLimit) {
 992   C = this;
 993 
 994   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 995   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 996 
 997 #ifndef PRODUCT
 998   set_print_assembly(PrintFrameConverterAssembly);
 999   set_parsed_irreducible_loop(false);
1000 #endif
1001   set_has_irreducible_loop(false); // no loops
1002 
1003   CompileWrapper cw(this);
1004   Init(/*AliasLevel=*/ 0);
1005   init_tf((*generator)());
1006 
1007   {
1008     // The following is a dummy for the sake of GraphKit::gen_stub
1009     Unique_Node_List for_igvn(comp_arena());
1010     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1011     PhaseGVN gvn(Thread::current()->resource_area(),255);
1012     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1013     gvn.transform_no_reclaim(top());
1014 
1015     GraphKit kit;
1016     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1017   }
1018 
1019   NOT_PRODUCT( verify_graph_edges(); )
1020   Code_Gen();
1021   if (failing())  return;
1022 
1023 
1024   // Entry point will be accessed using compile->stub_entry_point();
1025   if (code_buffer() == NULL) {
1026     Matcher::soft_match_failure();
1027   } else {
1028     if (PrintAssembly && (WizardMode || Verbose))
1029       tty->print_cr("### Stub::%s", stub_name);
1030 
1031     if (!failing()) {
1032       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1033 
1034       // Make the NMethod
1035       // For now we mark the frame as never safe for profile stackwalking
1036       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1037                                                       code_buffer(),
1038                                                       CodeOffsets::frame_never_safe,
1039                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1040                                                       frame_size_in_words(),
1041                                                       _oop_map_set,
1042                                                       save_arg_registers);
1043       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1044 
1045       _stub_entry_point = rs->entry_point();
1046     }
1047   }
1048 }
1049 
1050 //------------------------------Init-------------------------------------------
1051 // Prepare for a single compilation
1052 void Compile::Init(int aliaslevel) {
1053   _unique  = 0;
1054   _regalloc = NULL;
1055 
1056   _tf      = NULL;  // filled in later
1057   _top     = NULL;  // cached later
1058   _matcher = NULL;  // filled in later
1059   _cfg     = NULL;  // filled in later
1060 
1061   set_24_bit_selection_and_mode(Use24BitFP, false);
1062 
1063   _node_note_array = NULL;
1064   _default_node_notes = NULL;
1065   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1066 
1067   _immutable_memory = NULL; // filled in at first inquiry
1068 
1069   // Globally visible Nodes
1070   // First set TOP to NULL to give safe behavior during creation of RootNode
1071   set_cached_top_node(NULL);
1072   set_root(new RootNode());
1073   // Now that you have a Root to point to, create the real TOP
1074   set_cached_top_node( new ConNode(Type::TOP) );
1075   set_recent_alloc(NULL, NULL);
1076 
1077   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1078   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1079   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1080   env()->set_dependencies(new Dependencies(env()));
1081 
1082   _fixed_slots = 0;
1083   set_has_split_ifs(false);
1084   set_has_loops(has_method() && method()->has_loops()); // first approximation
1085   set_has_stringbuilder(false);
1086   set_has_boxed_value(false);
1087   _trap_can_recompile = false;  // no traps emitted yet
1088   _major_progress = true; // start out assuming good things will happen
1089   set_has_unsafe_access(false);
1090   set_max_vector_size(0);
1091   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1092   set_decompile_count(0);
1093 
1094   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1095   set_num_loop_opts(LoopOptsCount);
1096   set_do_inlining(Inline);
1097   set_max_inline_size(MaxInlineSize);
1098   set_freq_inline_size(FreqInlineSize);
1099   set_do_scheduling(OptoScheduling);
1100   set_do_count_invocations(false);
1101   set_do_method_data_update(false);
1102 
1103   set_do_vector_loop(false);
1104 
1105   if (AllowVectorizeOnDemand) {
1106     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1107       set_do_vector_loop(true);
1108       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1109     } else if (has_method() && method()->name() != 0 &&
1110                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1111       set_do_vector_loop(true);
1112     }
1113   }
1114   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1115   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1116 
1117   set_age_code(has_method() && method()->profile_aging());
1118   set_rtm_state(NoRTM); // No RTM lock eliding by default
1119   _max_node_limit = _directive->MaxNodeLimitOption;
1120 
1121 #if INCLUDE_RTM_OPT
1122   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1123     int rtm_state = method()->method_data()->rtm_state();
1124     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1125       // Don't generate RTM lock eliding code.
1126       set_rtm_state(NoRTM);
1127     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1128       // Generate RTM lock eliding code without abort ratio calculation code.
1129       set_rtm_state(UseRTM);
1130     } else if (UseRTMDeopt) {
1131       // Generate RTM lock eliding code and include abort ratio calculation
1132       // code if UseRTMDeopt is on.
1133       set_rtm_state(ProfileRTM);
1134     }
1135   }
1136 #endif
1137   if (debug_info()->recording_non_safepoints()) {
1138     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1139                         (comp_arena(), 8, 0, NULL));
1140     set_default_node_notes(Node_Notes::make(this));
1141   }
1142 
1143   // // -- Initialize types before each compile --
1144   // // Update cached type information
1145   // if( _method && _method->constants() )
1146   //   Type::update_loaded_types(_method, _method->constants());
1147 
1148   // Init alias_type map.
1149   if (!_do_escape_analysis && aliaslevel == 3)
1150     aliaslevel = 2;  // No unique types without escape analysis
1151   _AliasLevel = aliaslevel;
1152   const int grow_ats = 16;
1153   _max_alias_types = grow_ats;
1154   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1155   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1156   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1157   {
1158     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1159   }
1160   // Initialize the first few types.
1161   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1162   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1163   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1164   _num_alias_types = AliasIdxRaw+1;
1165   // Zero out the alias type cache.
1166   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1167   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1168   probe_alias_cache(NULL)->_index = AliasIdxTop;
1169 
1170   _intrinsics = NULL;
1171   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1172   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1173   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1174   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1175   register_library_intrinsics();
1176 }
1177 
1178 //---------------------------init_start----------------------------------------
1179 // Install the StartNode on this compile object.
1180 void Compile::init_start(StartNode* s) {
1181   if (failing())
1182     return; // already failing
1183   assert(s == start(), "");
1184 }
1185 
1186 /**
1187  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1188  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1189  * the ideal graph.
1190  */
1191 StartNode* Compile::start() const {
1192   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1193   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1194     Node* start = root()->fast_out(i);
1195     if (start->is_Start()) {
1196       return start->as_Start();
1197     }
1198   }
1199   fatal("Did not find Start node!");
1200   return NULL;
1201 }
1202 
1203 //-------------------------------immutable_memory-------------------------------------
1204 // Access immutable memory
1205 Node* Compile::immutable_memory() {
1206   if (_immutable_memory != NULL) {
1207     return _immutable_memory;
1208   }
1209   StartNode* s = start();
1210   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1211     Node *p = s->fast_out(i);
1212     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1213       _immutable_memory = p;
1214       return _immutable_memory;
1215     }
1216   }
1217   ShouldNotReachHere();
1218   return NULL;
1219 }
1220 
1221 //----------------------set_cached_top_node------------------------------------
1222 // Install the cached top node, and make sure Node::is_top works correctly.
1223 void Compile::set_cached_top_node(Node* tn) {
1224   if (tn != NULL)  verify_top(tn);
1225   Node* old_top = _top;
1226   _top = tn;
1227   // Calling Node::setup_is_top allows the nodes the chance to adjust
1228   // their _out arrays.
1229   if (_top != NULL)     _top->setup_is_top();
1230   if (old_top != NULL)  old_top->setup_is_top();
1231   assert(_top == NULL || top()->is_top(), "");
1232 }
1233 
1234 #ifdef ASSERT
1235 uint Compile::count_live_nodes_by_graph_walk() {
1236   Unique_Node_List useful(comp_arena());
1237   // Get useful node list by walking the graph.
1238   identify_useful_nodes(useful);
1239   return useful.size();
1240 }
1241 
1242 void Compile::print_missing_nodes() {
1243 
1244   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1245   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1246     return;
1247   }
1248 
1249   // This is an expensive function. It is executed only when the user
1250   // specifies VerifyIdealNodeCount option or otherwise knows the
1251   // additional work that needs to be done to identify reachable nodes
1252   // by walking the flow graph and find the missing ones using
1253   // _dead_node_list.
1254 
1255   Unique_Node_List useful(comp_arena());
1256   // Get useful node list by walking the graph.
1257   identify_useful_nodes(useful);
1258 
1259   uint l_nodes = C->live_nodes();
1260   uint l_nodes_by_walk = useful.size();
1261 
1262   if (l_nodes != l_nodes_by_walk) {
1263     if (_log != NULL) {
1264       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1265       _log->stamp();
1266       _log->end_head();
1267     }
1268     VectorSet& useful_member_set = useful.member_set();
1269     int last_idx = l_nodes_by_walk;
1270     for (int i = 0; i < last_idx; i++) {
1271       if (useful_member_set.test(i)) {
1272         if (_dead_node_list.test(i)) {
1273           if (_log != NULL) {
1274             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1275           }
1276           if (PrintIdealNodeCount) {
1277             // Print the log message to tty
1278               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1279               useful.at(i)->dump();
1280           }
1281         }
1282       }
1283       else if (! _dead_node_list.test(i)) {
1284         if (_log != NULL) {
1285           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1286         }
1287         if (PrintIdealNodeCount) {
1288           // Print the log message to tty
1289           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1290         }
1291       }
1292     }
1293     if (_log != NULL) {
1294       _log->tail("mismatched_nodes");
1295     }
1296   }
1297 }
1298 void Compile::record_modified_node(Node* n) {
1299   if (_modified_nodes != NULL && !_inlining_incrementally &&
1300       n->outcnt() != 0 && !n->is_Con()) {
1301     _modified_nodes->push(n);
1302   }
1303 }
1304 
1305 void Compile::remove_modified_node(Node* n) {
1306   if (_modified_nodes != NULL) {
1307     _modified_nodes->remove(n);
1308   }
1309 }
1310 #endif
1311 
1312 #ifndef PRODUCT
1313 void Compile::verify_top(Node* tn) const {
1314   if (tn != NULL) {
1315     assert(tn->is_Con(), "top node must be a constant");
1316     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1317     assert(tn->in(0) != NULL, "must have live top node");
1318   }
1319 }
1320 #endif
1321 
1322 
1323 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1324 
1325 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1326   guarantee(arr != NULL, "");
1327   int num_blocks = arr->length();
1328   if (grow_by < num_blocks)  grow_by = num_blocks;
1329   int num_notes = grow_by * _node_notes_block_size;
1330   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1331   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1332   while (num_notes > 0) {
1333     arr->append(notes);
1334     notes     += _node_notes_block_size;
1335     num_notes -= _node_notes_block_size;
1336   }
1337   assert(num_notes == 0, "exact multiple, please");
1338 }
1339 
1340 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1341   if (source == NULL || dest == NULL)  return false;
1342 
1343   if (dest->is_Con())
1344     return false;               // Do not push debug info onto constants.
1345 
1346 #ifdef ASSERT
1347   // Leave a bread crumb trail pointing to the original node:
1348   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1349     dest->set_debug_orig(source);
1350   }
1351 #endif
1352 
1353   if (node_note_array() == NULL)
1354     return false;               // Not collecting any notes now.
1355 
1356   // This is a copy onto a pre-existing node, which may already have notes.
1357   // If both nodes have notes, do not overwrite any pre-existing notes.
1358   Node_Notes* source_notes = node_notes_at(source->_idx);
1359   if (source_notes == NULL || source_notes->is_clear())  return false;
1360   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1361   if (dest_notes == NULL || dest_notes->is_clear()) {
1362     return set_node_notes_at(dest->_idx, source_notes);
1363   }
1364 
1365   Node_Notes merged_notes = (*source_notes);
1366   // The order of operations here ensures that dest notes will win...
1367   merged_notes.update_from(dest_notes);
1368   return set_node_notes_at(dest->_idx, &merged_notes);
1369 }
1370 
1371 
1372 //--------------------------allow_range_check_smearing-------------------------
1373 // Gating condition for coalescing similar range checks.
1374 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1375 // single covering check that is at least as strong as any of them.
1376 // If the optimization succeeds, the simplified (strengthened) range check
1377 // will always succeed.  If it fails, we will deopt, and then give up
1378 // on the optimization.
1379 bool Compile::allow_range_check_smearing() const {
1380   // If this method has already thrown a range-check,
1381   // assume it was because we already tried range smearing
1382   // and it failed.
1383   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1384   return !already_trapped;
1385 }
1386 
1387 
1388 //------------------------------flatten_alias_type-----------------------------
1389 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1390   int offset = tj->offset();
1391   TypePtr::PTR ptr = tj->ptr();
1392 
1393   // Known instance (scalarizable allocation) alias only with itself.
1394   bool is_known_inst = tj->isa_oopptr() != NULL &&
1395                        tj->is_oopptr()->is_known_instance();
1396 
1397   // Process weird unsafe references.
1398   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1399     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1400     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1401     tj = TypeOopPtr::BOTTOM;
1402     ptr = tj->ptr();
1403     offset = tj->offset();
1404   }
1405 
1406   // Array pointers need some flattening
1407   const TypeAryPtr *ta = tj->isa_aryptr();
1408   if (ta && ta->is_stable()) {
1409     // Erase stability property for alias analysis.
1410     tj = ta = ta->cast_to_stable(false);
1411   }
1412   if( ta && is_known_inst ) {
1413     if ( offset != Type::OffsetBot &&
1414          offset > arrayOopDesc::length_offset_in_bytes() ) {
1415       offset = Type::OffsetBot; // Flatten constant access into array body only
1416       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1417     }
1418   } else if( ta && _AliasLevel >= 2 ) {
1419     // For arrays indexed by constant indices, we flatten the alias
1420     // space to include all of the array body.  Only the header, klass
1421     // and array length can be accessed un-aliased.
1422     if( offset != Type::OffsetBot ) {
1423       if( ta->const_oop() ) { // MethodData* or Method*
1424         offset = Type::OffsetBot;   // Flatten constant access into array body
1425         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1426       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1427         // range is OK as-is.
1428         tj = ta = TypeAryPtr::RANGE;
1429       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1430         tj = TypeInstPtr::KLASS; // all klass loads look alike
1431         ta = TypeAryPtr::RANGE; // generic ignored junk
1432         ptr = TypePtr::BotPTR;
1433       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1434         tj = TypeInstPtr::MARK;
1435         ta = TypeAryPtr::RANGE; // generic ignored junk
1436         ptr = TypePtr::BotPTR;
1437       } else {                  // Random constant offset into array body
1438         offset = Type::OffsetBot;   // Flatten constant access into array body
1439         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1440       }
1441     }
1442     // Arrays of fixed size alias with arrays of unknown size.
1443     if (ta->size() != TypeInt::POS) {
1444       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1445       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1446     }
1447     // Arrays of known objects become arrays of unknown objects.
1448     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1449       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1450       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1451     }
1452     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1453       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1454       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1455     }
1456     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1457     // cannot be distinguished by bytecode alone.
1458     if (ta->elem() == TypeInt::BOOL) {
1459       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1460       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1461       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1462     }
1463     // During the 2nd round of IterGVN, NotNull castings are removed.
1464     // Make sure the Bottom and NotNull variants alias the same.
1465     // Also, make sure exact and non-exact variants alias the same.
1466     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1467       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1468     }
1469   }
1470 
1471   // Oop pointers need some flattening
1472   const TypeInstPtr *to = tj->isa_instptr();
1473   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1474     ciInstanceKlass *k = to->klass()->as_instance_klass();
1475     if( ptr == TypePtr::Constant ) {
1476       if (to->klass() != ciEnv::current()->Class_klass() ||
1477           offset < k->size_helper() * wordSize) {
1478         // No constant oop pointers (such as Strings); they alias with
1479         // unknown strings.
1480         assert(!is_known_inst, "not scalarizable allocation");
1481         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1482       }
1483     } else if( is_known_inst ) {
1484       tj = to; // Keep NotNull and klass_is_exact for instance type
1485     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1486       // During the 2nd round of IterGVN, NotNull castings are removed.
1487       // Make sure the Bottom and NotNull variants alias the same.
1488       // Also, make sure exact and non-exact variants alias the same.
1489       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1490     }
1491     if (to->speculative() != NULL) {
1492       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1493     }
1494     // Canonicalize the holder of this field
1495     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1496       // First handle header references such as a LoadKlassNode, even if the
1497       // object's klass is unloaded at compile time (4965979).
1498       if (!is_known_inst) { // Do it only for non-instance types
1499         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1500       }
1501     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1502       // Static fields are in the space above the normal instance
1503       // fields in the java.lang.Class instance.
1504       if (to->klass() != ciEnv::current()->Class_klass()) {
1505         to = NULL;
1506         tj = TypeOopPtr::BOTTOM;
1507         offset = tj->offset();
1508       }
1509     } else {
1510       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1511       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1512         if( is_known_inst ) {
1513           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1514         } else {
1515           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1516         }
1517       }
1518     }
1519   }
1520 
1521   // Klass pointers to object array klasses need some flattening
1522   const TypeKlassPtr *tk = tj->isa_klassptr();
1523   if( tk ) {
1524     // If we are referencing a field within a Klass, we need
1525     // to assume the worst case of an Object.  Both exact and
1526     // inexact types must flatten to the same alias class so
1527     // use NotNull as the PTR.
1528     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1529 
1530       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1531                                    TypeKlassPtr::OBJECT->klass(),
1532                                    offset);
1533     }
1534 
1535     ciKlass* klass = tk->klass();
1536     if( klass->is_obj_array_klass() ) {
1537       ciKlass* k = TypeAryPtr::OOPS->klass();
1538       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1539         k = TypeInstPtr::BOTTOM->klass();
1540       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1541     }
1542 
1543     // Check for precise loads from the primary supertype array and force them
1544     // to the supertype cache alias index.  Check for generic array loads from
1545     // the primary supertype array and also force them to the supertype cache
1546     // alias index.  Since the same load can reach both, we need to merge
1547     // these 2 disparate memories into the same alias class.  Since the
1548     // primary supertype array is read-only, there's no chance of confusion
1549     // where we bypass an array load and an array store.
1550     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1551     if (offset == Type::OffsetBot ||
1552         (offset >= primary_supers_offset &&
1553          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1554         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1555       offset = in_bytes(Klass::secondary_super_cache_offset());
1556       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1557     }
1558   }
1559 
1560   // Flatten all Raw pointers together.
1561   if (tj->base() == Type::RawPtr)
1562     tj = TypeRawPtr::BOTTOM;
1563 
1564   if (tj->base() == Type::AnyPtr)
1565     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1566 
1567   // Flatten all to bottom for now
1568   switch( _AliasLevel ) {
1569   case 0:
1570     tj = TypePtr::BOTTOM;
1571     break;
1572   case 1:                       // Flatten to: oop, static, field or array
1573     switch (tj->base()) {
1574     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1575     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1576     case Type::AryPtr:   // do not distinguish arrays at all
1577     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1578     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1579     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1580     default: ShouldNotReachHere();
1581     }
1582     break;
1583   case 2:                       // No collapsing at level 2; keep all splits
1584   case 3:                       // No collapsing at level 3; keep all splits
1585     break;
1586   default:
1587     Unimplemented();
1588   }
1589 
1590   offset = tj->offset();
1591   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1592 
1593   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1594           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1595           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1596           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1597           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1598           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1599           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1600           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1601   assert( tj->ptr() != TypePtr::TopPTR &&
1602           tj->ptr() != TypePtr::AnyNull &&
1603           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1604 //    assert( tj->ptr() != TypePtr::Constant ||
1605 //            tj->base() == Type::RawPtr ||
1606 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1607 
1608   return tj;
1609 }
1610 
1611 void Compile::AliasType::Init(int i, const TypePtr* at) {
1612   _index = i;
1613   _adr_type = at;
1614   _field = NULL;
1615   _element = NULL;
1616   _is_rewritable = true; // default
1617   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1618   if (atoop != NULL && atoop->is_known_instance()) {
1619     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1620     _general_index = Compile::current()->get_alias_index(gt);
1621   } else {
1622     _general_index = 0;
1623   }
1624 }
1625 
1626 BasicType Compile::AliasType::basic_type() const {
1627   if (element() != NULL) {
1628     const Type* element = adr_type()->is_aryptr()->elem();
1629     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1630   } if (field() != NULL) {
1631     return field()->layout_type();
1632   } else {
1633     return T_ILLEGAL; // unknown
1634   }
1635 }
1636 
1637 //---------------------------------print_on------------------------------------
1638 #ifndef PRODUCT
1639 void Compile::AliasType::print_on(outputStream* st) {
1640   if (index() < 10)
1641         st->print("@ <%d> ", index());
1642   else  st->print("@ <%d>",  index());
1643   st->print(is_rewritable() ? "   " : " RO");
1644   int offset = adr_type()->offset();
1645   if (offset == Type::OffsetBot)
1646         st->print(" +any");
1647   else  st->print(" +%-3d", offset);
1648   st->print(" in ");
1649   adr_type()->dump_on(st);
1650   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1651   if (field() != NULL && tjp) {
1652     if (tjp->klass()  != field()->holder() ||
1653         tjp->offset() != field()->offset_in_bytes()) {
1654       st->print(" != ");
1655       field()->print();
1656       st->print(" ***");
1657     }
1658   }
1659 }
1660 
1661 void print_alias_types() {
1662   Compile* C = Compile::current();
1663   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1664   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1665     C->alias_type(idx)->print_on(tty);
1666     tty->cr();
1667   }
1668 }
1669 #endif
1670 
1671 
1672 //----------------------------probe_alias_cache--------------------------------
1673 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1674   intptr_t key = (intptr_t) adr_type;
1675   key ^= key >> logAliasCacheSize;
1676   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1677 }
1678 
1679 
1680 //-----------------------------grow_alias_types--------------------------------
1681 void Compile::grow_alias_types() {
1682   const int old_ats  = _max_alias_types; // how many before?
1683   const int new_ats  = old_ats;          // how many more?
1684   const int grow_ats = old_ats+new_ats;  // how many now?
1685   _max_alias_types = grow_ats;
1686   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1687   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1688   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1689   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1690 }
1691 
1692 
1693 //--------------------------------find_alias_type------------------------------
1694 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1695   if (_AliasLevel == 0)
1696     return alias_type(AliasIdxBot);
1697 
1698   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1699   if (ace->_adr_type == adr_type) {
1700     return alias_type(ace->_index);
1701   }
1702 
1703   // Handle special cases.
1704   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1705   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1706 
1707   // Do it the slow way.
1708   const TypePtr* flat = flatten_alias_type(adr_type);
1709 
1710 #ifdef ASSERT
1711   {
1712     ResourceMark rm;
1713     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1714            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1715     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1716            Type::str(adr_type));
1717     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1718       const TypeOopPtr* foop = flat->is_oopptr();
1719       // Scalarizable allocations have exact klass always.
1720       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1721       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1722       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1723              Type::str(foop), Type::str(xoop));
1724     }
1725   }
1726 #endif
1727 
1728   int idx = AliasIdxTop;
1729   for (int i = 0; i < num_alias_types(); i++) {
1730     if (alias_type(i)->adr_type() == flat) {
1731       idx = i;
1732       break;
1733     }
1734   }
1735 
1736   if (idx == AliasIdxTop) {
1737     if (no_create)  return NULL;
1738     // Grow the array if necessary.
1739     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1740     // Add a new alias type.
1741     idx = _num_alias_types++;
1742     _alias_types[idx]->Init(idx, flat);
1743     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1744     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1745     if (flat->isa_instptr()) {
1746       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1747           && flat->is_instptr()->klass() == env()->Class_klass())
1748         alias_type(idx)->set_rewritable(false);
1749     }
1750     if (flat->isa_aryptr()) {
1751 #ifdef ASSERT
1752       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1753       // (T_BYTE has the weakest alignment and size restrictions...)
1754       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1755 #endif
1756       if (flat->offset() == TypePtr::OffsetBot) {
1757         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1758       }
1759     }
1760     if (flat->isa_klassptr()) {
1761       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1762         alias_type(idx)->set_rewritable(false);
1763       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1764         alias_type(idx)->set_rewritable(false);
1765       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1766         alias_type(idx)->set_rewritable(false);
1767       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1768         alias_type(idx)->set_rewritable(false);
1769     }
1770     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1771     // but the base pointer type is not distinctive enough to identify
1772     // references into JavaThread.)
1773 
1774     // Check for final fields.
1775     const TypeInstPtr* tinst = flat->isa_instptr();
1776     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1777       ciField* field;
1778       if (tinst->const_oop() != NULL &&
1779           tinst->klass() == ciEnv::current()->Class_klass() &&
1780           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1781         // static field
1782         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1783         field = k->get_field_by_offset(tinst->offset(), true);
1784       } else {
1785         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1786         field = k->get_field_by_offset(tinst->offset(), false);
1787       }
1788       assert(field == NULL ||
1789              original_field == NULL ||
1790              (field->holder() == original_field->holder() &&
1791               field->offset() == original_field->offset() &&
1792               field->is_static() == original_field->is_static()), "wrong field?");
1793       // Set field() and is_rewritable() attributes.
1794       if (field != NULL)  alias_type(idx)->set_field(field);
1795     }
1796   }
1797 
1798   // Fill the cache for next time.
1799   ace->_adr_type = adr_type;
1800   ace->_index    = idx;
1801   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1802 
1803   // Might as well try to fill the cache for the flattened version, too.
1804   AliasCacheEntry* face = probe_alias_cache(flat);
1805   if (face->_adr_type == NULL) {
1806     face->_adr_type = flat;
1807     face->_index    = idx;
1808     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1809   }
1810 
1811   return alias_type(idx);
1812 }
1813 
1814 
1815 Compile::AliasType* Compile::alias_type(ciField* field) {
1816   const TypeOopPtr* t;
1817   if (field->is_static())
1818     t = TypeInstPtr::make(field->holder()->java_mirror());
1819   else
1820     t = TypeOopPtr::make_from_klass_raw(field->holder());
1821   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1822   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1823   return atp;
1824 }
1825 
1826 
1827 //------------------------------have_alias_type--------------------------------
1828 bool Compile::have_alias_type(const TypePtr* adr_type) {
1829   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1830   if (ace->_adr_type == adr_type) {
1831     return true;
1832   }
1833 
1834   // Handle special cases.
1835   if (adr_type == NULL)             return true;
1836   if (adr_type == TypePtr::BOTTOM)  return true;
1837 
1838   return find_alias_type(adr_type, true, NULL) != NULL;
1839 }
1840 
1841 //-----------------------------must_alias--------------------------------------
1842 // True if all values of the given address type are in the given alias category.
1843 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1844   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1845   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1846   if (alias_idx == AliasIdxTop)         return false; // the empty category
1847   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1848 
1849   // the only remaining possible overlap is identity
1850   int adr_idx = get_alias_index(adr_type);
1851   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1852   assert(adr_idx == alias_idx ||
1853          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1854           && adr_type                       != TypeOopPtr::BOTTOM),
1855          "should not be testing for overlap with an unsafe pointer");
1856   return adr_idx == alias_idx;
1857 }
1858 
1859 //------------------------------can_alias--------------------------------------
1860 // True if any values of the given address type are in the given alias category.
1861 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1862   if (alias_idx == AliasIdxTop)         return false; // the empty category
1863   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1864   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1865   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1866 
1867   // the only remaining possible overlap is identity
1868   int adr_idx = get_alias_index(adr_type);
1869   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1870   return adr_idx == alias_idx;
1871 }
1872 
1873 
1874 
1875 //---------------------------pop_warm_call-------------------------------------
1876 WarmCallInfo* Compile::pop_warm_call() {
1877   WarmCallInfo* wci = _warm_calls;
1878   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1879   return wci;
1880 }
1881 
1882 //----------------------------Inline_Warm--------------------------------------
1883 int Compile::Inline_Warm() {
1884   // If there is room, try to inline some more warm call sites.
1885   // %%% Do a graph index compaction pass when we think we're out of space?
1886   if (!InlineWarmCalls)  return 0;
1887 
1888   int calls_made_hot = 0;
1889   int room_to_grow   = NodeCountInliningCutoff - unique();
1890   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1891   int amount_grown   = 0;
1892   WarmCallInfo* call;
1893   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1894     int est_size = (int)call->size();
1895     if (est_size > (room_to_grow - amount_grown)) {
1896       // This one won't fit anyway.  Get rid of it.
1897       call->make_cold();
1898       continue;
1899     }
1900     call->make_hot();
1901     calls_made_hot++;
1902     amount_grown   += est_size;
1903     amount_to_grow -= est_size;
1904   }
1905 
1906   if (calls_made_hot > 0)  set_major_progress();
1907   return calls_made_hot;
1908 }
1909 
1910 
1911 //----------------------------Finish_Warm--------------------------------------
1912 void Compile::Finish_Warm() {
1913   if (!InlineWarmCalls)  return;
1914   if (failing())  return;
1915   if (warm_calls() == NULL)  return;
1916 
1917   // Clean up loose ends, if we are out of space for inlining.
1918   WarmCallInfo* call;
1919   while ((call = pop_warm_call()) != NULL) {
1920     call->make_cold();
1921   }
1922 }
1923 
1924 //---------------------cleanup_loop_predicates-----------------------
1925 // Remove the opaque nodes that protect the predicates so that all unused
1926 // checks and uncommon_traps will be eliminated from the ideal graph
1927 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1928   if (predicate_count()==0) return;
1929   for (int i = predicate_count(); i > 0; i--) {
1930     Node * n = predicate_opaque1_node(i-1);
1931     assert(n->Opcode() == Op_Opaque1, "must be");
1932     igvn.replace_node(n, n->in(1));
1933   }
1934   assert(predicate_count()==0, "should be clean!");
1935 }
1936 
1937 void Compile::add_range_check_cast(Node* n) {
1938   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1939   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1940   _range_check_casts->append(n);
1941 }
1942 
1943 // Remove all range check dependent CastIINodes.
1944 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1945   for (int i = range_check_cast_count(); i > 0; i--) {
1946     Node* cast = range_check_cast_node(i-1);
1947     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1948     igvn.replace_node(cast, cast->in(1));
1949   }
1950   assert(range_check_cast_count() == 0, "should be empty");
1951 }
1952 
1953 // StringOpts and late inlining of string methods
1954 void Compile::inline_string_calls(bool parse_time) {
1955   {
1956     // remove useless nodes to make the usage analysis simpler
1957     ResourceMark rm;
1958     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1959   }
1960 
1961   {
1962     ResourceMark rm;
1963     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1964     PhaseStringOpts pso(initial_gvn(), for_igvn());
1965     print_method(PHASE_AFTER_STRINGOPTS, 3);
1966   }
1967 
1968   // now inline anything that we skipped the first time around
1969   if (!parse_time) {
1970     _late_inlines_pos = _late_inlines.length();
1971   }
1972 
1973   while (_string_late_inlines.length() > 0) {
1974     CallGenerator* cg = _string_late_inlines.pop();
1975     cg->do_late_inline();
1976     if (failing())  return;
1977   }
1978   _string_late_inlines.trunc_to(0);
1979 }
1980 
1981 // Late inlining of boxing methods
1982 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1983   if (_boxing_late_inlines.length() > 0) {
1984     assert(has_boxed_value(), "inconsistent");
1985 
1986     PhaseGVN* gvn = initial_gvn();
1987     set_inlining_incrementally(true);
1988 
1989     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1990     for_igvn()->clear();
1991     gvn->replace_with(&igvn);
1992 
1993     _late_inlines_pos = _late_inlines.length();
1994 
1995     while (_boxing_late_inlines.length() > 0) {
1996       CallGenerator* cg = _boxing_late_inlines.pop();
1997       cg->do_late_inline();
1998       if (failing())  return;
1999     }
2000     _boxing_late_inlines.trunc_to(0);
2001 
2002     {
2003       ResourceMark rm;
2004       PhaseRemoveUseless pru(gvn, for_igvn());
2005     }
2006 
2007     igvn = PhaseIterGVN(gvn);
2008     igvn.optimize();
2009 
2010     set_inlining_progress(false);
2011     set_inlining_incrementally(false);
2012   }
2013 }
2014 
2015 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2016   assert(IncrementalInline, "incremental inlining should be on");
2017   PhaseGVN* gvn = initial_gvn();
2018 
2019   set_inlining_progress(false);
2020   for_igvn()->clear();
2021   gvn->replace_with(&igvn);
2022 
2023   {
2024     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2025     int i = 0;
2026     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2027       CallGenerator* cg = _late_inlines.at(i);
2028       _late_inlines_pos = i+1;
2029       cg->do_late_inline();
2030       if (failing())  return;
2031     }
2032     int j = 0;
2033     for (; i < _late_inlines.length(); i++, j++) {
2034       _late_inlines.at_put(j, _late_inlines.at(i));
2035     }
2036     _late_inlines.trunc_to(j);
2037   }
2038 
2039   {
2040     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2041     ResourceMark rm;
2042     PhaseRemoveUseless pru(gvn, for_igvn());
2043   }
2044 
2045   {
2046     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2047     igvn = PhaseIterGVN(gvn);
2048   }
2049 }
2050 
2051 // Perform incremental inlining until bound on number of live nodes is reached
2052 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2053   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2054 
2055   PhaseGVN* gvn = initial_gvn();
2056 
2057   set_inlining_incrementally(true);
2058   set_inlining_progress(true);
2059   uint low_live_nodes = 0;
2060 
2061   while(inlining_progress() && _late_inlines.length() > 0) {
2062 
2063     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2064       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2065         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2066         // PhaseIdealLoop is expensive so we only try it once we are
2067         // out of live nodes and we only try it again if the previous
2068         // helped got the number of nodes down significantly
2069         PhaseIdealLoop ideal_loop( igvn, false, true );
2070         if (failing())  return;
2071         low_live_nodes = live_nodes();
2072         _major_progress = true;
2073       }
2074 
2075       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2076         break;
2077       }
2078     }
2079 
2080     inline_incrementally_one(igvn);
2081 
2082     if (failing())  return;
2083 
2084     {
2085       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2086       igvn.optimize();
2087     }
2088 
2089     if (failing())  return;
2090   }
2091 
2092   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2093 
2094   if (_string_late_inlines.length() > 0) {
2095     assert(has_stringbuilder(), "inconsistent");
2096     for_igvn()->clear();
2097     initial_gvn()->replace_with(&igvn);
2098 
2099     inline_string_calls(false);
2100 
2101     if (failing())  return;
2102 
2103     {
2104       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2105       ResourceMark rm;
2106       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2107     }
2108 
2109     {
2110       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2111       igvn = PhaseIterGVN(gvn);
2112       igvn.optimize();
2113     }
2114   }
2115 
2116   set_inlining_incrementally(false);
2117 }
2118 
2119 
2120 //------------------------------Optimize---------------------------------------
2121 // Given a graph, optimize it.
2122 void Compile::Optimize() {
2123   TracePhase tp("optimizer", &timers[_t_optimizer]);
2124 
2125 #ifndef PRODUCT
2126   if (_directive->BreakAtCompileOption) {
2127     BREAKPOINT;
2128   }
2129 
2130 #endif
2131 
2132   ResourceMark rm;
2133   int          loop_opts_cnt;
2134 
2135   print_inlining_reinit();
2136 
2137   NOT_PRODUCT( verify_graph_edges(); )
2138 
2139   print_method(PHASE_AFTER_PARSING);
2140 
2141  {
2142   // Iterative Global Value Numbering, including ideal transforms
2143   // Initialize IterGVN with types and values from parse-time GVN
2144   PhaseIterGVN igvn(initial_gvn());
2145 #ifdef ASSERT
2146   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2147 #endif
2148   {
2149     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2150     igvn.optimize();
2151   }
2152 
2153   print_method(PHASE_ITER_GVN1, 2);
2154 
2155   if (failing())  return;
2156 
2157   inline_incrementally(igvn);
2158 
2159   print_method(PHASE_INCREMENTAL_INLINE, 2);
2160 
2161   if (failing())  return;
2162 
2163   if (eliminate_boxing()) {
2164     // Inline valueOf() methods now.
2165     inline_boxing_calls(igvn);
2166 
2167     if (AlwaysIncrementalInline) {
2168       inline_incrementally(igvn);
2169     }
2170 
2171     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2172 
2173     if (failing())  return;
2174   }
2175 
2176   // Remove the speculative part of types and clean up the graph from
2177   // the extra CastPP nodes whose only purpose is to carry them. Do
2178   // that early so that optimizations are not disrupted by the extra
2179   // CastPP nodes.
2180   remove_speculative_types(igvn);
2181 
2182   // No more new expensive nodes will be added to the list from here
2183   // so keep only the actual candidates for optimizations.
2184   cleanup_expensive_nodes(igvn);
2185 
2186   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2187     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2188     initial_gvn()->replace_with(&igvn);
2189     for_igvn()->clear();
2190     Unique_Node_List new_worklist(C->comp_arena());
2191     {
2192       ResourceMark rm;
2193       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2194     }
2195     set_for_igvn(&new_worklist);
2196     igvn = PhaseIterGVN(initial_gvn());
2197     igvn.optimize();
2198   }
2199 
2200   // Perform escape analysis
2201   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2202     if (has_loops()) {
2203       // Cleanup graph (remove dead nodes).
2204       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2205       PhaseIdealLoop ideal_loop( igvn, false, true );
2206       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2207       if (failing())  return;
2208     }
2209     ConnectionGraph::do_analysis(this, &igvn);
2210 
2211     if (failing())  return;
2212 
2213     // Optimize out fields loads from scalar replaceable allocations.
2214     igvn.optimize();
2215     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2216 
2217     if (failing())  return;
2218 
2219     if (congraph() != NULL && macro_count() > 0) {
2220       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2221       PhaseMacroExpand mexp(igvn);
2222       mexp.eliminate_macro_nodes();
2223       igvn.set_delay_transform(false);
2224 
2225       igvn.optimize();
2226       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2227 
2228       if (failing())  return;
2229     }
2230   }
2231 
2232   // Loop transforms on the ideal graph.  Range Check Elimination,
2233   // peeling, unrolling, etc.
2234 
2235   // Set loop opts counter
2236   loop_opts_cnt = num_loop_opts();
2237   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2238     {
2239       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2240       PhaseIdealLoop ideal_loop( igvn, true );
2241       loop_opts_cnt--;
2242       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2243       if (failing())  return;
2244     }
2245     // Loop opts pass if partial peeling occurred in previous pass
2246     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2247       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2248       PhaseIdealLoop ideal_loop( igvn, false );
2249       loop_opts_cnt--;
2250       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2251       if (failing())  return;
2252     }
2253     // Loop opts pass for loop-unrolling before CCP
2254     if(major_progress() && (loop_opts_cnt > 0)) {
2255       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2256       PhaseIdealLoop ideal_loop( igvn, false );
2257       loop_opts_cnt--;
2258       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2259     }
2260     if (!failing()) {
2261       // Verify that last round of loop opts produced a valid graph
2262       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2263       PhaseIdealLoop::verify(igvn);
2264     }
2265   }
2266   if (failing())  return;
2267 
2268   // Conditional Constant Propagation;
2269   PhaseCCP ccp( &igvn );
2270   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2271   {
2272     TracePhase tp("ccp", &timers[_t_ccp]);
2273     ccp.do_transform();
2274   }
2275   print_method(PHASE_CPP1, 2);
2276 
2277   assert( true, "Break here to ccp.dump_old2new_map()");
2278 
2279   // Iterative Global Value Numbering, including ideal transforms
2280   {
2281     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2282     igvn = ccp;
2283     igvn.optimize();
2284   }
2285 
2286   print_method(PHASE_ITER_GVN2, 2);
2287 
2288   if (failing())  return;
2289 
2290   // Loop transforms on the ideal graph.  Range Check Elimination,
2291   // peeling, unrolling, etc.
2292   if(loop_opts_cnt > 0) {
2293     debug_only( int cnt = 0; );
2294     while(major_progress() && (loop_opts_cnt > 0)) {
2295       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2296       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2297       PhaseIdealLoop ideal_loop( igvn, true);
2298       loop_opts_cnt--;
2299       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2300       if (failing())  return;
2301     }
2302   }
2303   // Ensure that major progress is now clear
2304   C->clear_major_progress();
2305 
2306   {
2307     // Verify that all previous optimizations produced a valid graph
2308     // at least to this point, even if no loop optimizations were done.
2309     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2310     PhaseIdealLoop::verify(igvn);
2311   }
2312 
2313   if (range_check_cast_count() > 0) {
2314     // No more loop optimizations. Remove all range check dependent CastIINodes.
2315     C->remove_range_check_casts(igvn);
2316     igvn.optimize();
2317   }
2318 
2319   {
2320     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2321     PhaseMacroExpand  mex(igvn);
2322     if (mex.expand_macro_nodes()) {
2323       assert(failing(), "must bail out w/ explicit message");
2324       return;
2325     }
2326   }
2327 
2328   DEBUG_ONLY( _modified_nodes = NULL; )
2329  } // (End scope of igvn; run destructor if necessary for asserts.)
2330 
2331  process_print_inlining();
2332  // A method with only infinite loops has no edges entering loops from root
2333  {
2334    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2335    if (final_graph_reshaping()) {
2336      assert(failing(), "must bail out w/ explicit message");
2337      return;
2338    }
2339  }
2340 
2341  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2342 }
2343 
2344 
2345 //------------------------------Code_Gen---------------------------------------
2346 // Given a graph, generate code for it
2347 void Compile::Code_Gen() {
2348   if (failing()) {
2349     return;
2350   }
2351 
2352   // Perform instruction selection.  You might think we could reclaim Matcher
2353   // memory PDQ, but actually the Matcher is used in generating spill code.
2354   // Internals of the Matcher (including some VectorSets) must remain live
2355   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2356   // set a bit in reclaimed memory.
2357 
2358   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2359   // nodes.  Mapping is only valid at the root of each matched subtree.
2360   NOT_PRODUCT( verify_graph_edges(); )
2361 
2362   Matcher matcher;
2363   _matcher = &matcher;
2364   {
2365     TracePhase tp("matcher", &timers[_t_matcher]);
2366     matcher.match();
2367   }
2368   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2369   // nodes.  Mapping is only valid at the root of each matched subtree.
2370   NOT_PRODUCT( verify_graph_edges(); )
2371 
2372   // If you have too many nodes, or if matching has failed, bail out
2373   check_node_count(0, "out of nodes matching instructions");
2374   if (failing()) {
2375     return;
2376   }
2377 
2378   // Build a proper-looking CFG
2379   PhaseCFG cfg(node_arena(), root(), matcher);
2380   _cfg = &cfg;
2381   {
2382     TracePhase tp("scheduler", &timers[_t_scheduler]);
2383     bool success = cfg.do_global_code_motion();
2384     if (!success) {
2385       return;
2386     }
2387 
2388     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2389     NOT_PRODUCT( verify_graph_edges(); )
2390     debug_only( cfg.verify(); )
2391   }
2392 
2393   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2394   _regalloc = &regalloc;
2395   {
2396     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2397     // Perform register allocation.  After Chaitin, use-def chains are
2398     // no longer accurate (at spill code) and so must be ignored.
2399     // Node->LRG->reg mappings are still accurate.
2400     _regalloc->Register_Allocate();
2401 
2402     // Bail out if the allocator builds too many nodes
2403     if (failing()) {
2404       return;
2405     }
2406   }
2407 
2408   // Prior to register allocation we kept empty basic blocks in case the
2409   // the allocator needed a place to spill.  After register allocation we
2410   // are not adding any new instructions.  If any basic block is empty, we
2411   // can now safely remove it.
2412   {
2413     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2414     cfg.remove_empty_blocks();
2415     if (do_freq_based_layout()) {
2416       PhaseBlockLayout layout(cfg);
2417     } else {
2418       cfg.set_loop_alignment();
2419     }
2420     cfg.fixup_flow();
2421   }
2422 
2423   // Apply peephole optimizations
2424   if( OptoPeephole ) {
2425     TracePhase tp("peephole", &timers[_t_peephole]);
2426     PhasePeephole peep( _regalloc, cfg);
2427     peep.do_transform();
2428   }
2429 
2430   // Do late expand if CPU requires this.
2431   if (Matcher::require_postalloc_expand) {
2432     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2433     cfg.postalloc_expand(_regalloc);
2434   }
2435 
2436   // Convert Nodes to instruction bits in a buffer
2437   {
2438     TraceTime tp("output", &timers[_t_output], CITime);
2439     Output();
2440   }
2441 
2442   print_method(PHASE_FINAL_CODE);
2443 
2444   // He's dead, Jim.
2445   _cfg     = (PhaseCFG*)0xdeadbeef;
2446   _regalloc = (PhaseChaitin*)0xdeadbeef;
2447 }
2448 
2449 
2450 //------------------------------dump_asm---------------------------------------
2451 // Dump formatted assembly
2452 #ifndef PRODUCT
2453 void Compile::dump_asm(int *pcs, uint pc_limit) {
2454   bool cut_short = false;
2455   tty->print_cr("#");
2456   tty->print("#  ");  _tf->dump();  tty->cr();
2457   tty->print_cr("#");
2458 
2459   // For all blocks
2460   int pc = 0x0;                 // Program counter
2461   char starts_bundle = ' ';
2462   _regalloc->dump_frame();
2463 
2464   Node *n = NULL;
2465   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2466     if (VMThread::should_terminate()) {
2467       cut_short = true;
2468       break;
2469     }
2470     Block* block = _cfg->get_block(i);
2471     if (block->is_connector() && !Verbose) {
2472       continue;
2473     }
2474     n = block->head();
2475     if (pcs && n->_idx < pc_limit) {
2476       tty->print("%3.3x   ", pcs[n->_idx]);
2477     } else {
2478       tty->print("      ");
2479     }
2480     block->dump_head(_cfg);
2481     if (block->is_connector()) {
2482       tty->print_cr("        # Empty connector block");
2483     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2484       tty->print_cr("        # Block is sole successor of call");
2485     }
2486 
2487     // For all instructions
2488     Node *delay = NULL;
2489     for (uint j = 0; j < block->number_of_nodes(); j++) {
2490       if (VMThread::should_terminate()) {
2491         cut_short = true;
2492         break;
2493       }
2494       n = block->get_node(j);
2495       if (valid_bundle_info(n)) {
2496         Bundle* bundle = node_bundling(n);
2497         if (bundle->used_in_unconditional_delay()) {
2498           delay = n;
2499           continue;
2500         }
2501         if (bundle->starts_bundle()) {
2502           starts_bundle = '+';
2503         }
2504       }
2505 
2506       if (WizardMode) {
2507         n->dump();
2508       }
2509 
2510       if( !n->is_Region() &&    // Dont print in the Assembly
2511           !n->is_Phi() &&       // a few noisely useless nodes
2512           !n->is_Proj() &&
2513           !n->is_MachTemp() &&
2514           !n->is_SafePointScalarObject() &&
2515           !n->is_Catch() &&     // Would be nice to print exception table targets
2516           !n->is_MergeMem() &&  // Not very interesting
2517           !n->is_top() &&       // Debug info table constants
2518           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2519           ) {
2520         if (pcs && n->_idx < pc_limit)
2521           tty->print("%3.3x", pcs[n->_idx]);
2522         else
2523           tty->print("   ");
2524         tty->print(" %c ", starts_bundle);
2525         starts_bundle = ' ';
2526         tty->print("\t");
2527         n->format(_regalloc, tty);
2528         tty->cr();
2529       }
2530 
2531       // If we have an instruction with a delay slot, and have seen a delay,
2532       // then back up and print it
2533       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2534         assert(delay != NULL, "no unconditional delay instruction");
2535         if (WizardMode) delay->dump();
2536 
2537         if (node_bundling(delay)->starts_bundle())
2538           starts_bundle = '+';
2539         if (pcs && n->_idx < pc_limit)
2540           tty->print("%3.3x", pcs[n->_idx]);
2541         else
2542           tty->print("   ");
2543         tty->print(" %c ", starts_bundle);
2544         starts_bundle = ' ';
2545         tty->print("\t");
2546         delay->format(_regalloc, tty);
2547         tty->cr();
2548         delay = NULL;
2549       }
2550 
2551       // Dump the exception table as well
2552       if( n->is_Catch() && (Verbose || WizardMode) ) {
2553         // Print the exception table for this offset
2554         _handler_table.print_subtable_for(pc);
2555       }
2556     }
2557 
2558     if (pcs && n->_idx < pc_limit)
2559       tty->print_cr("%3.3x", pcs[n->_idx]);
2560     else
2561       tty->cr();
2562 
2563     assert(cut_short || delay == NULL, "no unconditional delay branch");
2564 
2565   } // End of per-block dump
2566   tty->cr();
2567 
2568   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2569 }
2570 #endif
2571 
2572 //------------------------------Final_Reshape_Counts---------------------------
2573 // This class defines counters to help identify when a method
2574 // may/must be executed using hardware with only 24-bit precision.
2575 struct Final_Reshape_Counts : public StackObj {
2576   int  _call_count;             // count non-inlined 'common' calls
2577   int  _float_count;            // count float ops requiring 24-bit precision
2578   int  _double_count;           // count double ops requiring more precision
2579   int  _java_call_count;        // count non-inlined 'java' calls
2580   int  _inner_loop_count;       // count loops which need alignment
2581   VectorSet _visited;           // Visitation flags
2582   Node_List _tests;             // Set of IfNodes & PCTableNodes
2583 
2584   Final_Reshape_Counts() :
2585     _call_count(0), _float_count(0), _double_count(0),
2586     _java_call_count(0), _inner_loop_count(0),
2587     _visited( Thread::current()->resource_area() ) { }
2588 
2589   void inc_call_count  () { _call_count  ++; }
2590   void inc_float_count () { _float_count ++; }
2591   void inc_double_count() { _double_count++; }
2592   void inc_java_call_count() { _java_call_count++; }
2593   void inc_inner_loop_count() { _inner_loop_count++; }
2594 
2595   int  get_call_count  () const { return _call_count  ; }
2596   int  get_float_count () const { return _float_count ; }
2597   int  get_double_count() const { return _double_count; }
2598   int  get_java_call_count() const { return _java_call_count; }
2599   int  get_inner_loop_count() const { return _inner_loop_count; }
2600 };
2601 
2602 #ifdef ASSERT
2603 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2604   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2605   // Make sure the offset goes inside the instance layout.
2606   return k->contains_field_offset(tp->offset());
2607   // Note that OffsetBot and OffsetTop are very negative.
2608 }
2609 #endif
2610 
2611 // Eliminate trivially redundant StoreCMs and accumulate their
2612 // precedence edges.
2613 void Compile::eliminate_redundant_card_marks(Node* n) {
2614   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2615   if (n->in(MemNode::Address)->outcnt() > 1) {
2616     // There are multiple users of the same address so it might be
2617     // possible to eliminate some of the StoreCMs
2618     Node* mem = n->in(MemNode::Memory);
2619     Node* adr = n->in(MemNode::Address);
2620     Node* val = n->in(MemNode::ValueIn);
2621     Node* prev = n;
2622     bool done = false;
2623     // Walk the chain of StoreCMs eliminating ones that match.  As
2624     // long as it's a chain of single users then the optimization is
2625     // safe.  Eliminating partially redundant StoreCMs would require
2626     // cloning copies down the other paths.
2627     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2628       if (adr == mem->in(MemNode::Address) &&
2629           val == mem->in(MemNode::ValueIn)) {
2630         // redundant StoreCM
2631         if (mem->req() > MemNode::OopStore) {
2632           // Hasn't been processed by this code yet.
2633           n->add_prec(mem->in(MemNode::OopStore));
2634         } else {
2635           // Already converted to precedence edge
2636           for (uint i = mem->req(); i < mem->len(); i++) {
2637             // Accumulate any precedence edges
2638             if (mem->in(i) != NULL) {
2639               n->add_prec(mem->in(i));
2640             }
2641           }
2642           // Everything above this point has been processed.
2643           done = true;
2644         }
2645         // Eliminate the previous StoreCM
2646         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2647         assert(mem->outcnt() == 0, "should be dead");
2648         mem->disconnect_inputs(NULL, this);
2649       } else {
2650         prev = mem;
2651       }
2652       mem = prev->in(MemNode::Memory);
2653     }
2654   }
2655 }
2656 
2657 //------------------------------final_graph_reshaping_impl----------------------
2658 // Implement items 1-5 from final_graph_reshaping below.
2659 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2660 
2661   if ( n->outcnt() == 0 ) return; // dead node
2662   uint nop = n->Opcode();
2663 
2664   // Check for 2-input instruction with "last use" on right input.
2665   // Swap to left input.  Implements item (2).
2666   if( n->req() == 3 &&          // two-input instruction
2667       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2668       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2669       n->in(2)->outcnt() == 1 &&// right use IS a last use
2670       !n->in(2)->is_Con() ) {   // right use is not a constant
2671     // Check for commutative opcode
2672     switch( nop ) {
2673     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2674     case Op_MaxI:  case Op_MinI:
2675     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2676     case Op_AndL:  case Op_XorL:  case Op_OrL:
2677     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2678       // Move "last use" input to left by swapping inputs
2679       n->swap_edges(1, 2);
2680       break;
2681     }
2682     default:
2683       break;
2684     }
2685   }
2686 
2687 #ifdef ASSERT
2688   if( n->is_Mem() ) {
2689     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2690     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2691             // oop will be recorded in oop map if load crosses safepoint
2692             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2693                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2694             "raw memory operations should have control edge");
2695   }
2696 #endif
2697   // Count FPU ops and common calls, implements item (3)
2698   switch( nop ) {
2699   // Count all float operations that may use FPU
2700   case Op_AddF:
2701   case Op_SubF:
2702   case Op_MulF:
2703   case Op_DivF:
2704   case Op_NegF:
2705   case Op_ModF:
2706   case Op_ConvI2F:
2707   case Op_ConF:
2708   case Op_CmpF:
2709   case Op_CmpF3:
2710   // case Op_ConvL2F: // longs are split into 32-bit halves
2711     frc.inc_float_count();
2712     break;
2713 
2714   case Op_ConvF2D:
2715   case Op_ConvD2F:
2716     frc.inc_float_count();
2717     frc.inc_double_count();
2718     break;
2719 
2720   // Count all double operations that may use FPU
2721   case Op_AddD:
2722   case Op_SubD:
2723   case Op_MulD:
2724   case Op_DivD:
2725   case Op_NegD:
2726   case Op_ModD:
2727   case Op_ConvI2D:
2728   case Op_ConvD2I:
2729   // case Op_ConvL2D: // handled by leaf call
2730   // case Op_ConvD2L: // handled by leaf call
2731   case Op_ConD:
2732   case Op_CmpD:
2733   case Op_CmpD3:
2734     frc.inc_double_count();
2735     break;
2736   case Op_Opaque1:              // Remove Opaque Nodes before matching
2737   case Op_Opaque2:              // Remove Opaque Nodes before matching
2738   case Op_Opaque3:
2739     n->subsume_by(n->in(1), this);
2740     break;
2741   case Op_CallStaticJava:
2742   case Op_CallJava:
2743   case Op_CallDynamicJava:
2744     frc.inc_java_call_count(); // Count java call site;
2745   case Op_CallRuntime:
2746   case Op_CallLeaf:
2747   case Op_CallLeafNoFP: {
2748     assert( n->is_Call(), "" );
2749     CallNode *call = n->as_Call();
2750     // Count call sites where the FP mode bit would have to be flipped.
2751     // Do not count uncommon runtime calls:
2752     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2753     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2754     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2755       frc.inc_call_count();   // Count the call site
2756     } else {                  // See if uncommon argument is shared
2757       Node *n = call->in(TypeFunc::Parms);
2758       int nop = n->Opcode();
2759       // Clone shared simple arguments to uncommon calls, item (1).
2760       if( n->outcnt() > 1 &&
2761           !n->is_Proj() &&
2762           nop != Op_CreateEx &&
2763           nop != Op_CheckCastPP &&
2764           nop != Op_DecodeN &&
2765           nop != Op_DecodeNKlass &&
2766           !n->is_Mem() ) {
2767         Node *x = n->clone();
2768         call->set_req( TypeFunc::Parms, x );
2769       }
2770     }
2771     break;
2772   }
2773 
2774   case Op_StoreD:
2775   case Op_LoadD:
2776   case Op_LoadD_unaligned:
2777     frc.inc_double_count();
2778     goto handle_mem;
2779   case Op_StoreF:
2780   case Op_LoadF:
2781     frc.inc_float_count();
2782     goto handle_mem;
2783 
2784   case Op_StoreCM:
2785     {
2786       // Convert OopStore dependence into precedence edge
2787       Node* prec = n->in(MemNode::OopStore);
2788       n->del_req(MemNode::OopStore);
2789       n->add_prec(prec);
2790       eliminate_redundant_card_marks(n);
2791     }
2792 
2793     // fall through
2794 
2795   case Op_StoreB:
2796   case Op_StoreC:
2797   case Op_StorePConditional:
2798   case Op_StoreI:
2799   case Op_StoreL:
2800   case Op_StoreIConditional:
2801   case Op_StoreLConditional:
2802   case Op_CompareAndSwapB:
2803   case Op_CompareAndSwapS:
2804   case Op_CompareAndSwapI:
2805   case Op_CompareAndSwapL:
2806   case Op_CompareAndSwapP:
2807   case Op_CompareAndSwapN:
2808   case Op_WeakCompareAndSwapB:
2809   case Op_WeakCompareAndSwapS:
2810   case Op_WeakCompareAndSwapI:
2811   case Op_WeakCompareAndSwapL:
2812   case Op_WeakCompareAndSwapP:
2813   case Op_WeakCompareAndSwapN:
2814   case Op_CompareAndExchangeB:
2815   case Op_CompareAndExchangeS:
2816   case Op_CompareAndExchangeI:
2817   case Op_CompareAndExchangeL:
2818   case Op_CompareAndExchangeP:
2819   case Op_CompareAndExchangeN:
2820   case Op_GetAndAddS:
2821   case Op_GetAndAddB:
2822   case Op_GetAndAddI:
2823   case Op_GetAndAddL:
2824   case Op_GetAndSetS:
2825   case Op_GetAndSetB:
2826   case Op_GetAndSetI:
2827   case Op_GetAndSetL:
2828   case Op_GetAndSetP:
2829   case Op_GetAndSetN:
2830   case Op_StoreP:
2831   case Op_StoreN:
2832   case Op_StoreNKlass:
2833   case Op_LoadB:
2834   case Op_LoadUB:
2835   case Op_LoadUS:
2836   case Op_LoadI:
2837   case Op_LoadKlass:
2838   case Op_LoadNKlass:
2839   case Op_LoadL:
2840   case Op_LoadL_unaligned:
2841   case Op_LoadPLocked:
2842   case Op_LoadP:
2843   case Op_LoadN:
2844   case Op_LoadRange:
2845   case Op_LoadS: {
2846   handle_mem:
2847 #ifdef ASSERT
2848     if( VerifyOptoOopOffsets ) {
2849       assert( n->is_Mem(), "" );
2850       MemNode *mem  = (MemNode*)n;
2851       // Check to see if address types have grounded out somehow.
2852       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2853       assert( !tp || oop_offset_is_sane(tp), "" );
2854     }
2855 #endif
2856     break;
2857   }
2858 
2859   case Op_AddP: {               // Assert sane base pointers
2860     Node *addp = n->in(AddPNode::Address);
2861     assert( !addp->is_AddP() ||
2862             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2863             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2864             "Base pointers must match (addp %u)", addp->_idx );
2865 #ifdef _LP64
2866     if ((UseCompressedOops || UseCompressedClassPointers) &&
2867         addp->Opcode() == Op_ConP &&
2868         addp == n->in(AddPNode::Base) &&
2869         n->in(AddPNode::Offset)->is_Con()) {
2870       // Use addressing with narrow klass to load with offset on x86.
2871       // On sparc loading 32-bits constant and decoding it have less
2872       // instructions (4) then load 64-bits constant (7).
2873       // Do this transformation here since IGVN will convert ConN back to ConP.
2874       const Type* t = addp->bottom_type();
2875       if (t->isa_oopptr() || t->isa_klassptr()) {
2876         Node* nn = NULL;
2877 
2878         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2879 
2880         // Look for existing ConN node of the same exact type.
2881         Node* r  = root();
2882         uint cnt = r->outcnt();
2883         for (uint i = 0; i < cnt; i++) {
2884           Node* m = r->raw_out(i);
2885           if (m!= NULL && m->Opcode() == op &&
2886               m->bottom_type()->make_ptr() == t) {
2887             nn = m;
2888             break;
2889           }
2890         }
2891         if (nn != NULL) {
2892           // Decode a narrow oop to match address
2893           // [R12 + narrow_oop_reg<<3 + offset]
2894           if (t->isa_oopptr()) {
2895             nn = new DecodeNNode(nn, t);
2896           } else {
2897             nn = new DecodeNKlassNode(nn, t);
2898           }
2899           // Check for succeeding AddP which uses the same Base.
2900           // Otherwise we will run into the assertion above when visiting that guy.
2901           for (uint i = 0; i < n->outcnt(); ++i) {
2902             Node *out_i = n->raw_out(i);
2903             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2904               out_i->set_req(AddPNode::Base, nn);
2905 #ifdef ASSERT
2906               for (uint j = 0; j < out_i->outcnt(); ++j) {
2907                 Node *out_j = out_i->raw_out(j);
2908                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2909                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2910               }
2911 #endif
2912             }
2913           }
2914           n->set_req(AddPNode::Base, nn);
2915           n->set_req(AddPNode::Address, nn);
2916           if (addp->outcnt() == 0) {
2917             addp->disconnect_inputs(NULL, this);
2918           }
2919         }
2920       }
2921     }
2922 #endif
2923     // platform dependent reshaping of the address expression
2924     reshape_address(n->as_AddP());
2925     break;
2926   }
2927 
2928   case Op_CastPP: {
2929     // Remove CastPP nodes to gain more freedom during scheduling but
2930     // keep the dependency they encode as control or precedence edges
2931     // (if control is set already) on memory operations. Some CastPP
2932     // nodes don't have a control (don't carry a dependency): skip
2933     // those.
2934     if (n->in(0) != NULL) {
2935       ResourceMark rm;
2936       Unique_Node_List wq;
2937       wq.push(n);
2938       for (uint next = 0; next < wq.size(); ++next) {
2939         Node *m = wq.at(next);
2940         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2941           Node* use = m->fast_out(i);
2942           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2943             use->ensure_control_or_add_prec(n->in(0));
2944           } else {
2945             switch(use->Opcode()) {
2946             case Op_AddP:
2947             case Op_DecodeN:
2948             case Op_DecodeNKlass:
2949             case Op_CheckCastPP:
2950             case Op_CastPP:
2951               wq.push(use);
2952               break;
2953             }
2954           }
2955         }
2956       }
2957     }
2958     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
2959     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2960       Node* in1 = n->in(1);
2961       const Type* t = n->bottom_type();
2962       Node* new_in1 = in1->clone();
2963       new_in1->as_DecodeN()->set_type(t);
2964 
2965       if (!Matcher::narrow_oop_use_complex_address()) {
2966         //
2967         // x86, ARM and friends can handle 2 adds in addressing mode
2968         // and Matcher can fold a DecodeN node into address by using
2969         // a narrow oop directly and do implicit NULL check in address:
2970         //
2971         // [R12 + narrow_oop_reg<<3 + offset]
2972         // NullCheck narrow_oop_reg
2973         //
2974         // On other platforms (Sparc) we have to keep new DecodeN node and
2975         // use it to do implicit NULL check in address:
2976         //
2977         // decode_not_null narrow_oop_reg, base_reg
2978         // [base_reg + offset]
2979         // NullCheck base_reg
2980         //
2981         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2982         // to keep the information to which NULL check the new DecodeN node
2983         // corresponds to use it as value in implicit_null_check().
2984         //
2985         new_in1->set_req(0, n->in(0));
2986       }
2987 
2988       n->subsume_by(new_in1, this);
2989       if (in1->outcnt() == 0) {
2990         in1->disconnect_inputs(NULL, this);
2991       }
2992     } else {
2993       n->subsume_by(n->in(1), this);
2994       if (n->outcnt() == 0) {
2995         n->disconnect_inputs(NULL, this);
2996       }
2997     }
2998     break;
2999   }
3000 #ifdef _LP64
3001   case Op_CmpP:
3002     // Do this transformation here to preserve CmpPNode::sub() and
3003     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3004     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3005       Node* in1 = n->in(1);
3006       Node* in2 = n->in(2);
3007       if (!in1->is_DecodeNarrowPtr()) {
3008         in2 = in1;
3009         in1 = n->in(2);
3010       }
3011       assert(in1->is_DecodeNarrowPtr(), "sanity");
3012 
3013       Node* new_in2 = NULL;
3014       if (in2->is_DecodeNarrowPtr()) {
3015         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3016         new_in2 = in2->in(1);
3017       } else if (in2->Opcode() == Op_ConP) {
3018         const Type* t = in2->bottom_type();
3019         if (t == TypePtr::NULL_PTR) {
3020           assert(in1->is_DecodeN(), "compare klass to null?");
3021           // Don't convert CmpP null check into CmpN if compressed
3022           // oops implicit null check is not generated.
3023           // This will allow to generate normal oop implicit null check.
3024           if (Matcher::gen_narrow_oop_implicit_null_checks())
3025             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3026           //
3027           // This transformation together with CastPP transformation above
3028           // will generated code for implicit NULL checks for compressed oops.
3029           //
3030           // The original code after Optimize()
3031           //
3032           //    LoadN memory, narrow_oop_reg
3033           //    decode narrow_oop_reg, base_reg
3034           //    CmpP base_reg, NULL
3035           //    CastPP base_reg // NotNull
3036           //    Load [base_reg + offset], val_reg
3037           //
3038           // after these transformations will be
3039           //
3040           //    LoadN memory, narrow_oop_reg
3041           //    CmpN narrow_oop_reg, NULL
3042           //    decode_not_null narrow_oop_reg, base_reg
3043           //    Load [base_reg + offset], val_reg
3044           //
3045           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3046           // since narrow oops can be used in debug info now (see the code in
3047           // final_graph_reshaping_walk()).
3048           //
3049           // At the end the code will be matched to
3050           // on x86:
3051           //
3052           //    Load_narrow_oop memory, narrow_oop_reg
3053           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3054           //    NullCheck narrow_oop_reg
3055           //
3056           // and on sparc:
3057           //
3058           //    Load_narrow_oop memory, narrow_oop_reg
3059           //    decode_not_null narrow_oop_reg, base_reg
3060           //    Load [base_reg + offset], val_reg
3061           //    NullCheck base_reg
3062           //
3063         } else if (t->isa_oopptr()) {
3064           new_in2 = ConNode::make(t->make_narrowoop());
3065         } else if (t->isa_klassptr()) {
3066           new_in2 = ConNode::make(t->make_narrowklass());
3067         }
3068       }
3069       if (new_in2 != NULL) {
3070         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3071         n->subsume_by(cmpN, this);
3072         if (in1->outcnt() == 0) {
3073           in1->disconnect_inputs(NULL, this);
3074         }
3075         if (in2->outcnt() == 0) {
3076           in2->disconnect_inputs(NULL, this);
3077         }
3078       }
3079     }
3080     break;
3081 
3082   case Op_DecodeN:
3083   case Op_DecodeNKlass:
3084     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3085     // DecodeN could be pinned when it can't be fold into
3086     // an address expression, see the code for Op_CastPP above.
3087     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3088     break;
3089 
3090   case Op_EncodeP:
3091   case Op_EncodePKlass: {
3092     Node* in1 = n->in(1);
3093     if (in1->is_DecodeNarrowPtr()) {
3094       n->subsume_by(in1->in(1), this);
3095     } else if (in1->Opcode() == Op_ConP) {
3096       const Type* t = in1->bottom_type();
3097       if (t == TypePtr::NULL_PTR) {
3098         assert(t->isa_oopptr(), "null klass?");
3099         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3100       } else if (t->isa_oopptr()) {
3101         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3102       } else if (t->isa_klassptr()) {
3103         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3104       }
3105     }
3106     if (in1->outcnt() == 0) {
3107       in1->disconnect_inputs(NULL, this);
3108     }
3109     break;
3110   }
3111 
3112   case Op_Proj: {
3113     if (OptimizeStringConcat) {
3114       ProjNode* p = n->as_Proj();
3115       if (p->_is_io_use) {
3116         // Separate projections were used for the exception path which
3117         // are normally removed by a late inline.  If it wasn't inlined
3118         // then they will hang around and should just be replaced with
3119         // the original one.
3120         Node* proj = NULL;
3121         // Replace with just one
3122         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3123           Node *use = i.get();
3124           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3125             proj = use;
3126             break;
3127           }
3128         }
3129         assert(proj != NULL, "must be found");
3130         p->subsume_by(proj, this);
3131       }
3132     }
3133     break;
3134   }
3135 
3136   case Op_Phi:
3137     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3138       // The EncodeP optimization may create Phi with the same edges
3139       // for all paths. It is not handled well by Register Allocator.
3140       Node* unique_in = n->in(1);
3141       assert(unique_in != NULL, "");
3142       uint cnt = n->req();
3143       for (uint i = 2; i < cnt; i++) {
3144         Node* m = n->in(i);
3145         assert(m != NULL, "");
3146         if (unique_in != m)
3147           unique_in = NULL;
3148       }
3149       if (unique_in != NULL) {
3150         n->subsume_by(unique_in, this);
3151       }
3152     }
3153     break;
3154 
3155 #endif
3156 
3157 #ifdef ASSERT
3158   case Op_CastII:
3159     // Verify that all range check dependent CastII nodes were removed.
3160     if (n->isa_CastII()->has_range_check()) {
3161       n->dump(3);
3162       assert(false, "Range check dependent CastII node was not removed");
3163     }
3164     break;
3165 #endif
3166 
3167   case Op_ModI: {
3168     Node* di = NULL;
3169     if (UseDivMod) {
3170       // Check if a%b and a/b both exist
3171       di = n->find_similar(Op_DivI);
3172       if (di) {
3173         // Replace them with a fused divmod if supported
3174         if (Matcher::has_match_rule(Op_DivModI)) {
3175           DivModINode* divmod = DivModINode::make(n);
3176           di->subsume_by(divmod->div_proj(), this);
3177           n->subsume_by(divmod->mod_proj(), this);
3178         } else {
3179           // replace a%b with a-((a/b)*b)
3180           Node* mult = new MulINode(di, di->in(2));
3181           Node* sub  = new SubINode(di->in(1), mult);
3182           n->subsume_by(sub, this);
3183         }
3184       }
3185     }
3186     if (di == NULL) {
3187       // Remove useless control edge in case of not mod-zero.
3188       const Type *t = n->in(2)->bottom_type();
3189       const TypeInt *ti = t->is_int();
3190       if (n->in(0) && (ti->_hi < 0 || ti->_lo > 0)) {
3191         n->set_req(0, NULL);
3192       }
3193     }
3194     break;
3195   }
3196 
3197   case Op_ModL: {
3198     Node* dl = NULL;
3199     if (UseDivMod) {
3200       // Check if a%b and a/b both exist
3201       dl = n->find_similar(Op_DivL);
3202       if (dl) {
3203         // Replace them with a fused divmod if supported
3204         if (Matcher::has_match_rule(Op_DivModL)) {
3205           DivModLNode* divmod = DivModLNode::make(n);
3206           dl->subsume_by(divmod->div_proj(), this);
3207           n->subsume_by(divmod->mod_proj(), this);
3208         } else {
3209           // replace a%b with a-((a/b)*b)
3210           Node* mult = new MulLNode(dl, dl->in(2));
3211           Node* sub  = new SubLNode(dl->in(1), mult);
3212           n->subsume_by(sub, this);
3213         }
3214       }
3215     }
3216     if (dl == NULL) {
3217       // Remove useless control edge in case of not mod-zero.
3218       const Type *t = n->in(2)->bottom_type();
3219       const TypeLong *tl = t->is_long();
3220       if (n->in(0) && (tl->_hi < 0 || tl->_lo > 0)) {
3221         n->set_req(0, NULL);
3222       }
3223     }
3224     break;
3225   }
3226 
3227   case Op_LoadVector:
3228   case Op_StoreVector:
3229     break;
3230 
3231   case Op_AddReductionVI:
3232   case Op_AddReductionVL:
3233   case Op_AddReductionVF:
3234   case Op_AddReductionVD:
3235   case Op_MulReductionVI:
3236   case Op_MulReductionVL:
3237   case Op_MulReductionVF:
3238   case Op_MulReductionVD:
3239     break;
3240 
3241   case Op_PackB:
3242   case Op_PackS:
3243   case Op_PackI:
3244   case Op_PackF:
3245   case Op_PackL:
3246   case Op_PackD:
3247     if (n->req()-1 > 2) {
3248       // Replace many operand PackNodes with a binary tree for matching
3249       PackNode* p = (PackNode*) n;
3250       Node* btp = p->binary_tree_pack(1, n->req());
3251       n->subsume_by(btp, this);
3252     }
3253     break;
3254   case Op_Loop:
3255   case Op_CountedLoop:
3256     if (n->as_Loop()->is_inner_loop()) {
3257       frc.inc_inner_loop_count();
3258     }
3259     break;
3260   case Op_LShiftI:
3261   case Op_RShiftI:
3262   case Op_URShiftI:
3263   case Op_LShiftL:
3264   case Op_RShiftL:
3265   case Op_URShiftL:
3266     if (Matcher::need_masked_shift_count) {
3267       // The cpu's shift instructions don't restrict the count to the
3268       // lower 5/6 bits. We need to do the masking ourselves.
3269       Node* in2 = n->in(2);
3270       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3271       const TypeInt* t = in2->find_int_type();
3272       if (t != NULL && t->is_con()) {
3273         juint shift = t->get_con();
3274         if (shift > mask) { // Unsigned cmp
3275           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3276         }
3277       } else {
3278         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3279           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3280           n->set_req(2, shift);
3281         }
3282       }
3283       if (in2->outcnt() == 0) { // Remove dead node
3284         in2->disconnect_inputs(NULL, this);
3285       }
3286     }
3287     break;
3288   case Op_MemBarStoreStore:
3289   case Op_MemBarRelease:
3290     // Break the link with AllocateNode: it is no longer useful and
3291     // confuses register allocation.
3292     if (n->req() > MemBarNode::Precedent) {
3293       n->set_req(MemBarNode::Precedent, top());
3294     }
3295     break;
3296   case Op_RangeCheck: {
3297     RangeCheckNode* rc = n->as_RangeCheck();
3298     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3299     n->subsume_by(iff, this);
3300     frc._tests.push(iff);
3301     break;
3302   }
3303   case Op_ConvI2L: {
3304     if (!Matcher::convi2l_type_required) {
3305       // Code generation on some platforms doesn't need accurate
3306       // ConvI2L types. Widening the type can help remove redundant
3307       // address computations.
3308       n->as_Type()->set_type(TypeLong::INT);
3309       ResourceMark rm;
3310       Node_List wq;
3311       wq.push(n);
3312       for (uint next = 0; next < wq.size(); next++) {
3313         Node *m = wq.at(next);
3314 
3315         for(;;) {
3316           // Loop over all nodes with identical inputs edges as m
3317           Node* k = m->find_similar(m->Opcode());
3318           if (k == NULL) {
3319             break;
3320           }
3321           // Push their uses so we get a chance to remove node made
3322           // redundant
3323           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3324             Node* u = k->fast_out(i);
3325             assert(!wq.contains(u), "shouldn't process one node several times");
3326             if (u->Opcode() == Op_LShiftL ||
3327                 u->Opcode() == Op_AddL ||
3328                 u->Opcode() == Op_SubL ||
3329                 u->Opcode() == Op_AddP) {
3330               wq.push(u);
3331             }
3332           }
3333           // Replace all nodes with identical edges as m with m
3334           k->subsume_by(m, this);
3335         }
3336       }
3337     }
3338     break;
3339   }
3340   default:
3341     assert( !n->is_Call(), "" );
3342     assert( !n->is_Mem(), "" );
3343     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3344     break;
3345   }
3346 
3347   // Collect CFG split points
3348   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3349     frc._tests.push(n);
3350   }
3351 }
3352 
3353 //------------------------------final_graph_reshaping_walk---------------------
3354 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3355 // requires that the walk visits a node's inputs before visiting the node.
3356 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3357   ResourceArea *area = Thread::current()->resource_area();
3358   Unique_Node_List sfpt(area);
3359 
3360   frc._visited.set(root->_idx); // first, mark node as visited
3361   uint cnt = root->req();
3362   Node *n = root;
3363   uint  i = 0;
3364   while (true) {
3365     if (i < cnt) {
3366       // Place all non-visited non-null inputs onto stack
3367       Node* m = n->in(i);
3368       ++i;
3369       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3370         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3371           // compute worst case interpreter size in case of a deoptimization
3372           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3373 
3374           sfpt.push(m);
3375         }
3376         cnt = m->req();
3377         nstack.push(n, i); // put on stack parent and next input's index
3378         n = m;
3379         i = 0;
3380       }
3381     } else {
3382       // Now do post-visit work
3383       final_graph_reshaping_impl( n, frc );
3384       if (nstack.is_empty())
3385         break;             // finished
3386       n = nstack.node();   // Get node from stack
3387       cnt = n->req();
3388       i = nstack.index();
3389       nstack.pop();        // Shift to the next node on stack
3390     }
3391   }
3392 
3393   // Skip next transformation if compressed oops are not used.
3394   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3395       (!UseCompressedOops && !UseCompressedClassPointers))
3396     return;
3397 
3398   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3399   // It could be done for an uncommon traps or any safepoints/calls
3400   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3401   while (sfpt.size() > 0) {
3402     n = sfpt.pop();
3403     JVMState *jvms = n->as_SafePoint()->jvms();
3404     assert(jvms != NULL, "sanity");
3405     int start = jvms->debug_start();
3406     int end   = n->req();
3407     bool is_uncommon = (n->is_CallStaticJava() &&
3408                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3409     for (int j = start; j < end; j++) {
3410       Node* in = n->in(j);
3411       if (in->is_DecodeNarrowPtr()) {
3412         bool safe_to_skip = true;
3413         if (!is_uncommon ) {
3414           // Is it safe to skip?
3415           for (uint i = 0; i < in->outcnt(); i++) {
3416             Node* u = in->raw_out(i);
3417             if (!u->is_SafePoint() ||
3418                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3419               safe_to_skip = false;
3420             }
3421           }
3422         }
3423         if (safe_to_skip) {
3424           n->set_req(j, in->in(1));
3425         }
3426         if (in->outcnt() == 0) {
3427           in->disconnect_inputs(NULL, this);
3428         }
3429       }
3430     }
3431   }
3432 }
3433 
3434 //------------------------------final_graph_reshaping--------------------------
3435 // Final Graph Reshaping.
3436 //
3437 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3438 //     and not commoned up and forced early.  Must come after regular
3439 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3440 //     inputs to Loop Phis; these will be split by the allocator anyways.
3441 //     Remove Opaque nodes.
3442 // (2) Move last-uses by commutative operations to the left input to encourage
3443 //     Intel update-in-place two-address operations and better register usage
3444 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3445 //     calls canonicalizing them back.
3446 // (3) Count the number of double-precision FP ops, single-precision FP ops
3447 //     and call sites.  On Intel, we can get correct rounding either by
3448 //     forcing singles to memory (requires extra stores and loads after each
3449 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3450 //     clearing the mode bit around call sites).  The mode bit is only used
3451 //     if the relative frequency of single FP ops to calls is low enough.
3452 //     This is a key transform for SPEC mpeg_audio.
3453 // (4) Detect infinite loops; blobs of code reachable from above but not
3454 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3455 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3456 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3457 //     Detection is by looking for IfNodes where only 1 projection is
3458 //     reachable from below or CatchNodes missing some targets.
3459 // (5) Assert for insane oop offsets in debug mode.
3460 
3461 bool Compile::final_graph_reshaping() {
3462   // an infinite loop may have been eliminated by the optimizer,
3463   // in which case the graph will be empty.
3464   if (root()->req() == 1) {
3465     record_method_not_compilable("trivial infinite loop");
3466     return true;
3467   }
3468 
3469   // Expensive nodes have their control input set to prevent the GVN
3470   // from freely commoning them. There's no GVN beyond this point so
3471   // no need to keep the control input. We want the expensive nodes to
3472   // be freely moved to the least frequent code path by gcm.
3473   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3474   for (int i = 0; i < expensive_count(); i++) {
3475     _expensive_nodes->at(i)->set_req(0, NULL);
3476   }
3477 
3478   Final_Reshape_Counts frc;
3479 
3480   // Visit everybody reachable!
3481   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3482   Node_Stack nstack(live_nodes() >> 1);
3483   final_graph_reshaping_walk(nstack, root(), frc);
3484 
3485   // Check for unreachable (from below) code (i.e., infinite loops).
3486   for( uint i = 0; i < frc._tests.size(); i++ ) {
3487     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3488     // Get number of CFG targets.
3489     // Note that PCTables include exception targets after calls.
3490     uint required_outcnt = n->required_outcnt();
3491     if (n->outcnt() != required_outcnt) {
3492       // Check for a few special cases.  Rethrow Nodes never take the
3493       // 'fall-thru' path, so expected kids is 1 less.
3494       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3495         if (n->in(0)->in(0)->is_Call()) {
3496           CallNode *call = n->in(0)->in(0)->as_Call();
3497           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3498             required_outcnt--;      // Rethrow always has 1 less kid
3499           } else if (call->req() > TypeFunc::Parms &&
3500                      call->is_CallDynamicJava()) {
3501             // Check for null receiver. In such case, the optimizer has
3502             // detected that the virtual call will always result in a null
3503             // pointer exception. The fall-through projection of this CatchNode
3504             // will not be populated.
3505             Node *arg0 = call->in(TypeFunc::Parms);
3506             if (arg0->is_Type() &&
3507                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3508               required_outcnt--;
3509             }
3510           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3511                      call->req() > TypeFunc::Parms+1 &&
3512                      call->is_CallStaticJava()) {
3513             // Check for negative array length. In such case, the optimizer has
3514             // detected that the allocation attempt will always result in an
3515             // exception. There is no fall-through projection of this CatchNode .
3516             Node *arg1 = call->in(TypeFunc::Parms+1);
3517             if (arg1->is_Type() &&
3518                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3519               required_outcnt--;
3520             }
3521           }
3522         }
3523       }
3524       // Recheck with a better notion of 'required_outcnt'
3525       if (n->outcnt() != required_outcnt) {
3526         record_method_not_compilable("malformed control flow");
3527         return true;            // Not all targets reachable!
3528       }
3529     }
3530     // Check that I actually visited all kids.  Unreached kids
3531     // must be infinite loops.
3532     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3533       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3534         record_method_not_compilable("infinite loop");
3535         return true;            // Found unvisited kid; must be unreach
3536       }
3537   }
3538 
3539   // If original bytecodes contained a mixture of floats and doubles
3540   // check if the optimizer has made it homogenous, item (3).
3541   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3542       frc.get_float_count() > 32 &&
3543       frc.get_double_count() == 0 &&
3544       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3545     set_24_bit_selection_and_mode( false,  true );
3546   }
3547 
3548   set_java_calls(frc.get_java_call_count());
3549   set_inner_loops(frc.get_inner_loop_count());
3550 
3551   // No infinite loops, no reason to bail out.
3552   return false;
3553 }
3554 
3555 //-----------------------------too_many_traps----------------------------------
3556 // Report if there are too many traps at the current method and bci.
3557 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3558 bool Compile::too_many_traps(ciMethod* method,
3559                              int bci,
3560                              Deoptimization::DeoptReason reason) {
3561   ciMethodData* md = method->method_data();
3562   if (md->is_empty()) {
3563     // Assume the trap has not occurred, or that it occurred only
3564     // because of a transient condition during start-up in the interpreter.
3565     return false;
3566   }
3567   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3568   if (md->has_trap_at(bci, m, reason) != 0) {
3569     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3570     // Also, if there are multiple reasons, or if there is no per-BCI record,
3571     // assume the worst.
3572     if (log())
3573       log()->elem("observe trap='%s' count='%d'",
3574                   Deoptimization::trap_reason_name(reason),
3575                   md->trap_count(reason));
3576     return true;
3577   } else {
3578     // Ignore method/bci and see if there have been too many globally.
3579     return too_many_traps(reason, md);
3580   }
3581 }
3582 
3583 // Less-accurate variant which does not require a method and bci.
3584 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3585                              ciMethodData* logmd) {
3586   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3587     // Too many traps globally.
3588     // Note that we use cumulative trap_count, not just md->trap_count.
3589     if (log()) {
3590       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3591       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3592                   Deoptimization::trap_reason_name(reason),
3593                   mcount, trap_count(reason));
3594     }
3595     return true;
3596   } else {
3597     // The coast is clear.
3598     return false;
3599   }
3600 }
3601 
3602 //--------------------------too_many_recompiles--------------------------------
3603 // Report if there are too many recompiles at the current method and bci.
3604 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3605 // Is not eager to return true, since this will cause the compiler to use
3606 // Action_none for a trap point, to avoid too many recompilations.
3607 bool Compile::too_many_recompiles(ciMethod* method,
3608                                   int bci,
3609                                   Deoptimization::DeoptReason reason) {
3610   ciMethodData* md = method->method_data();
3611   if (md->is_empty()) {
3612     // Assume the trap has not occurred, or that it occurred only
3613     // because of a transient condition during start-up in the interpreter.
3614     return false;
3615   }
3616   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3617   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3618   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3619   Deoptimization::DeoptReason per_bc_reason
3620     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3621   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3622   if ((per_bc_reason == Deoptimization::Reason_none
3623        || md->has_trap_at(bci, m, reason) != 0)
3624       // The trap frequency measure we care about is the recompile count:
3625       && md->trap_recompiled_at(bci, m)
3626       && md->overflow_recompile_count() >= bc_cutoff) {
3627     // Do not emit a trap here if it has already caused recompilations.
3628     // Also, if there are multiple reasons, or if there is no per-BCI record,
3629     // assume the worst.
3630     if (log())
3631       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3632                   Deoptimization::trap_reason_name(reason),
3633                   md->trap_count(reason),
3634                   md->overflow_recompile_count());
3635     return true;
3636   } else if (trap_count(reason) != 0
3637              && decompile_count() >= m_cutoff) {
3638     // Too many recompiles globally, and we have seen this sort of trap.
3639     // Use cumulative decompile_count, not just md->decompile_count.
3640     if (log())
3641       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3642                   Deoptimization::trap_reason_name(reason),
3643                   md->trap_count(reason), trap_count(reason),
3644                   md->decompile_count(), decompile_count());
3645     return true;
3646   } else {
3647     // The coast is clear.
3648     return false;
3649   }
3650 }
3651 
3652 // Compute when not to trap. Used by matching trap based nodes and
3653 // NullCheck optimization.
3654 void Compile::set_allowed_deopt_reasons() {
3655   _allowed_reasons = 0;
3656   if (is_method_compilation()) {
3657     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3658       assert(rs < BitsPerInt, "recode bit map");
3659       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3660         _allowed_reasons |= nth_bit(rs);
3661       }
3662     }
3663   }
3664 }
3665 
3666 #ifndef PRODUCT
3667 //------------------------------verify_graph_edges---------------------------
3668 // Walk the Graph and verify that there is a one-to-one correspondence
3669 // between Use-Def edges and Def-Use edges in the graph.
3670 void Compile::verify_graph_edges(bool no_dead_code) {
3671   if (VerifyGraphEdges) {
3672     ResourceArea *area = Thread::current()->resource_area();
3673     Unique_Node_List visited(area);
3674     // Call recursive graph walk to check edges
3675     _root->verify_edges(visited);
3676     if (no_dead_code) {
3677       // Now make sure that no visited node is used by an unvisited node.
3678       bool dead_nodes = false;
3679       Unique_Node_List checked(area);
3680       while (visited.size() > 0) {
3681         Node* n = visited.pop();
3682         checked.push(n);
3683         for (uint i = 0; i < n->outcnt(); i++) {
3684           Node* use = n->raw_out(i);
3685           if (checked.member(use))  continue;  // already checked
3686           if (visited.member(use))  continue;  // already in the graph
3687           if (use->is_Con())        continue;  // a dead ConNode is OK
3688           // At this point, we have found a dead node which is DU-reachable.
3689           if (!dead_nodes) {
3690             tty->print_cr("*** Dead nodes reachable via DU edges:");
3691             dead_nodes = true;
3692           }
3693           use->dump(2);
3694           tty->print_cr("---");
3695           checked.push(use);  // No repeats; pretend it is now checked.
3696         }
3697       }
3698       assert(!dead_nodes, "using nodes must be reachable from root");
3699     }
3700   }
3701 }
3702 
3703 // Verify GC barriers consistency
3704 // Currently supported:
3705 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3706 void Compile::verify_barriers() {
3707   if (UseG1GC) {
3708     // Verify G1 pre-barriers
3709     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3710 
3711     ResourceArea *area = Thread::current()->resource_area();
3712     Unique_Node_List visited(area);
3713     Node_List worklist(area);
3714     // We're going to walk control flow backwards starting from the Root
3715     worklist.push(_root);
3716     while (worklist.size() > 0) {
3717       Node* x = worklist.pop();
3718       if (x == NULL || x == top()) continue;
3719       if (visited.member(x)) {
3720         continue;
3721       } else {
3722         visited.push(x);
3723       }
3724 
3725       if (x->is_Region()) {
3726         for (uint i = 1; i < x->req(); i++) {
3727           worklist.push(x->in(i));
3728         }
3729       } else {
3730         worklist.push(x->in(0));
3731         // We are looking for the pattern:
3732         //                            /->ThreadLocal
3733         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3734         //              \->ConI(0)
3735         // We want to verify that the If and the LoadB have the same control
3736         // See GraphKit::g1_write_barrier_pre()
3737         if (x->is_If()) {
3738           IfNode *iff = x->as_If();
3739           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3740             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3741             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3742                 && cmp->in(1)->is_Load()) {
3743               LoadNode* load = cmp->in(1)->as_Load();
3744               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3745                   && load->in(2)->in(3)->is_Con()
3746                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3747 
3748                 Node* if_ctrl = iff->in(0);
3749                 Node* load_ctrl = load->in(0);
3750 
3751                 if (if_ctrl != load_ctrl) {
3752                   // Skip possible CProj->NeverBranch in infinite loops
3753                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3754                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3755                     if_ctrl = if_ctrl->in(0)->in(0);
3756                   }
3757                 }
3758                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3759               }
3760             }
3761           }
3762         }
3763       }
3764     }
3765   }
3766 }
3767 
3768 #endif
3769 
3770 // The Compile object keeps track of failure reasons separately from the ciEnv.
3771 // This is required because there is not quite a 1-1 relation between the
3772 // ciEnv and its compilation task and the Compile object.  Note that one
3773 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3774 // to backtrack and retry without subsuming loads.  Other than this backtracking
3775 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3776 // by the logic in C2Compiler.
3777 void Compile::record_failure(const char* reason) {
3778   if (log() != NULL) {
3779     log()->elem("failure reason='%s' phase='compile'", reason);
3780   }
3781   if (_failure_reason == NULL) {
3782     // Record the first failure reason.
3783     _failure_reason = reason;
3784   }
3785 
3786   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3787     C->print_method(PHASE_FAILURE);
3788   }
3789   _root = NULL;  // flush the graph, too
3790 }
3791 
3792 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3793   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3794     _phase_name(name), _dolog(CITimeVerbose)
3795 {
3796   if (_dolog) {
3797     C = Compile::current();
3798     _log = C->log();
3799   } else {
3800     C = NULL;
3801     _log = NULL;
3802   }
3803   if (_log != NULL) {
3804     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3805     _log->stamp();
3806     _log->end_head();
3807   }
3808 }
3809 
3810 Compile::TracePhase::~TracePhase() {
3811 
3812   C = Compile::current();
3813   if (_dolog) {
3814     _log = C->log();
3815   } else {
3816     _log = NULL;
3817   }
3818 
3819 #ifdef ASSERT
3820   if (PrintIdealNodeCount) {
3821     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3822                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3823   }
3824 
3825   if (VerifyIdealNodeCount) {
3826     Compile::current()->print_missing_nodes();
3827   }
3828 #endif
3829 
3830   if (_log != NULL) {
3831     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3832   }
3833 }
3834 
3835 //=============================================================================
3836 // Two Constant's are equal when the type and the value are equal.
3837 bool Compile::Constant::operator==(const Constant& other) {
3838   if (type()          != other.type()         )  return false;
3839   if (can_be_reused() != other.can_be_reused())  return false;
3840   // For floating point values we compare the bit pattern.
3841   switch (type()) {
3842   case T_INT:
3843   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3844   case T_LONG:
3845   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3846   case T_OBJECT:
3847   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3848   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3849   case T_METADATA: return (_v._metadata == other._v._metadata);
3850   default: ShouldNotReachHere();
3851   }
3852   return false;
3853 }
3854 
3855 static int type_to_size_in_bytes(BasicType t) {
3856   switch (t) {
3857   case T_INT:     return sizeof(jint   );
3858   case T_LONG:    return sizeof(jlong  );
3859   case T_FLOAT:   return sizeof(jfloat );
3860   case T_DOUBLE:  return sizeof(jdouble);
3861   case T_METADATA: return sizeof(Metadata*);
3862     // We use T_VOID as marker for jump-table entries (labels) which
3863     // need an internal word relocation.
3864   case T_VOID:
3865   case T_ADDRESS:
3866   case T_OBJECT:  return sizeof(jobject);
3867   }
3868 
3869   ShouldNotReachHere();
3870   return -1;
3871 }
3872 
3873 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3874   // sort descending
3875   if (a->freq() > b->freq())  return -1;
3876   if (a->freq() < b->freq())  return  1;
3877   return 0;
3878 }
3879 
3880 void Compile::ConstantTable::calculate_offsets_and_size() {
3881   // First, sort the array by frequencies.
3882   _constants.sort(qsort_comparator);
3883 
3884 #ifdef ASSERT
3885   // Make sure all jump-table entries were sorted to the end of the
3886   // array (they have a negative frequency).
3887   bool found_void = false;
3888   for (int i = 0; i < _constants.length(); i++) {
3889     Constant con = _constants.at(i);
3890     if (con.type() == T_VOID)
3891       found_void = true;  // jump-tables
3892     else
3893       assert(!found_void, "wrong sorting");
3894   }
3895 #endif
3896 
3897   int offset = 0;
3898   for (int i = 0; i < _constants.length(); i++) {
3899     Constant* con = _constants.adr_at(i);
3900 
3901     // Align offset for type.
3902     int typesize = type_to_size_in_bytes(con->type());
3903     offset = align_size_up(offset, typesize);
3904     con->set_offset(offset);   // set constant's offset
3905 
3906     if (con->type() == T_VOID) {
3907       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3908       offset = offset + typesize * n->outcnt();  // expand jump-table
3909     } else {
3910       offset = offset + typesize;
3911     }
3912   }
3913 
3914   // Align size up to the next section start (which is insts; see
3915   // CodeBuffer::align_at_start).
3916   assert(_size == -1, "already set?");
3917   _size = align_size_up(offset, CodeEntryAlignment);
3918 }
3919 
3920 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3921   MacroAssembler _masm(&cb);
3922   for (int i = 0; i < _constants.length(); i++) {
3923     Constant con = _constants.at(i);
3924     address constant_addr = NULL;
3925     switch (con.type()) {
3926     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3927     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3928     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3929     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3930     case T_OBJECT: {
3931       jobject obj = con.get_jobject();
3932       int oop_index = _masm.oop_recorder()->find_index(obj);
3933       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3934       break;
3935     }
3936     case T_ADDRESS: {
3937       address addr = (address) con.get_jobject();
3938       constant_addr = _masm.address_constant(addr);
3939       break;
3940     }
3941     // We use T_VOID as marker for jump-table entries (labels) which
3942     // need an internal word relocation.
3943     case T_VOID: {
3944       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3945       // Fill the jump-table with a dummy word.  The real value is
3946       // filled in later in fill_jump_table.
3947       address dummy = (address) n;
3948       constant_addr = _masm.address_constant(dummy);
3949       // Expand jump-table
3950       for (uint i = 1; i < n->outcnt(); i++) {
3951         address temp_addr = _masm.address_constant(dummy + i);
3952         assert(temp_addr, "consts section too small");
3953       }
3954       break;
3955     }
3956     case T_METADATA: {
3957       Metadata* obj = con.get_metadata();
3958       int metadata_index = _masm.oop_recorder()->find_index(obj);
3959       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3960       break;
3961     }
3962     default: ShouldNotReachHere();
3963     }
3964     assert(constant_addr, "consts section too small");
3965     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3966             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
3967   }
3968 }
3969 
3970 int Compile::ConstantTable::find_offset(Constant& con) const {
3971   int idx = _constants.find(con);
3972   assert(idx != -1, "constant must be in constant table");
3973   int offset = _constants.at(idx).offset();
3974   assert(offset != -1, "constant table not emitted yet?");
3975   return offset;
3976 }
3977 
3978 void Compile::ConstantTable::add(Constant& con) {
3979   if (con.can_be_reused()) {
3980     int idx = _constants.find(con);
3981     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3982       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3983       return;
3984     }
3985   }
3986   (void) _constants.append(con);
3987 }
3988 
3989 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3990   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3991   Constant con(type, value, b->_freq);
3992   add(con);
3993   return con;
3994 }
3995 
3996 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3997   Constant con(metadata);
3998   add(con);
3999   return con;
4000 }
4001 
4002 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4003   jvalue value;
4004   BasicType type = oper->type()->basic_type();
4005   switch (type) {
4006   case T_LONG:    value.j = oper->constantL(); break;
4007   case T_FLOAT:   value.f = oper->constantF(); break;
4008   case T_DOUBLE:  value.d = oper->constantD(); break;
4009   case T_OBJECT:
4010   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4011   case T_METADATA: return add((Metadata*)oper->constant()); break;
4012   default: guarantee(false, "unhandled type: %s", type2name(type));
4013   }
4014   return add(n, type, value);
4015 }
4016 
4017 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4018   jvalue value;
4019   // We can use the node pointer here to identify the right jump-table
4020   // as this method is called from Compile::Fill_buffer right before
4021   // the MachNodes are emitted and the jump-table is filled (means the
4022   // MachNode pointers do not change anymore).
4023   value.l = (jobject) n;
4024   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4025   add(con);
4026   return con;
4027 }
4028 
4029 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4030   // If called from Compile::scratch_emit_size do nothing.
4031   if (Compile::current()->in_scratch_emit_size())  return;
4032 
4033   assert(labels.is_nonempty(), "must be");
4034   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4035 
4036   // Since MachConstantNode::constant_offset() also contains
4037   // table_base_offset() we need to subtract the table_base_offset()
4038   // to get the plain offset into the constant table.
4039   int offset = n->constant_offset() - table_base_offset();
4040 
4041   MacroAssembler _masm(&cb);
4042   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4043 
4044   for (uint i = 0; i < n->outcnt(); i++) {
4045     address* constant_addr = &jump_table_base[i];
4046     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4047     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4048     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4049   }
4050 }
4051 
4052 //----------------------------static_subtype_check-----------------------------
4053 // Shortcut important common cases when superklass is exact:
4054 // (0) superklass is java.lang.Object (can occur in reflective code)
4055 // (1) subklass is already limited to a subtype of superklass => always ok
4056 // (2) subklass does not overlap with superklass => always fail
4057 // (3) superklass has NO subtypes and we can check with a simple compare.
4058 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4059   if (StressReflectiveCode) {
4060     return SSC_full_test;       // Let caller generate the general case.
4061   }
4062 
4063   if (superk == env()->Object_klass()) {
4064     return SSC_always_true;     // (0) this test cannot fail
4065   }
4066 
4067   ciType* superelem = superk;
4068   if (superelem->is_array_klass())
4069     superelem = superelem->as_array_klass()->base_element_type();
4070 
4071   if (!subk->is_interface()) {  // cannot trust static interface types yet
4072     if (subk->is_subtype_of(superk)) {
4073       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4074     }
4075     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4076         !superk->is_subtype_of(subk)) {
4077       return SSC_always_false;
4078     }
4079   }
4080 
4081   // If casting to an instance klass, it must have no subtypes
4082   if (superk->is_interface()) {
4083     // Cannot trust interfaces yet.
4084     // %%% S.B. superk->nof_implementors() == 1
4085   } else if (superelem->is_instance_klass()) {
4086     ciInstanceKlass* ik = superelem->as_instance_klass();
4087     if (!ik->has_subklass() && !ik->is_interface()) {
4088       if (!ik->is_final()) {
4089         // Add a dependency if there is a chance of a later subclass.
4090         dependencies()->assert_leaf_type(ik);
4091       }
4092       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4093     }
4094   } else {
4095     // A primitive array type has no subtypes.
4096     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4097   }
4098 
4099   return SSC_full_test;
4100 }
4101 
4102 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4103 #ifdef _LP64
4104   // The scaled index operand to AddP must be a clean 64-bit value.
4105   // Java allows a 32-bit int to be incremented to a negative
4106   // value, which appears in a 64-bit register as a large
4107   // positive number.  Using that large positive number as an
4108   // operand in pointer arithmetic has bad consequences.
4109   // On the other hand, 32-bit overflow is rare, and the possibility
4110   // can often be excluded, if we annotate the ConvI2L node with
4111   // a type assertion that its value is known to be a small positive
4112   // number.  (The prior range check has ensured this.)
4113   // This assertion is used by ConvI2LNode::Ideal.
4114   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4115   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4116   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4117   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4118 #endif
4119   return idx;
4120 }
4121 
4122 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4123 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4124   if (ctrl != NULL) {
4125     // Express control dependency by a CastII node with a narrow type.
4126     value = new CastIINode(value, itype, false, true /* range check dependency */);
4127     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4128     // node from floating above the range check during loop optimizations. Otherwise, the
4129     // ConvI2L node may be eliminated independently of the range check, causing the data path
4130     // to become TOP while the control path is still there (although it's unreachable).
4131     value->set_req(0, ctrl);
4132     // Save CastII node to remove it after loop optimizations.
4133     phase->C->add_range_check_cast(value);
4134     value = phase->transform(value);
4135   }
4136   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4137   return phase->transform(new ConvI2LNode(value, ltype));
4138 }
4139 
4140 // The message about the current inlining is accumulated in
4141 // _print_inlining_stream and transfered into the _print_inlining_list
4142 // once we know whether inlining succeeds or not. For regular
4143 // inlining, messages are appended to the buffer pointed by
4144 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4145 // a new buffer is added after _print_inlining_idx in the list. This
4146 // way we can update the inlining message for late inlining call site
4147 // when the inlining is attempted again.
4148 void Compile::print_inlining_init() {
4149   if (print_inlining() || print_intrinsics()) {
4150     _print_inlining_stream = new stringStream();
4151     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4152   }
4153 }
4154 
4155 void Compile::print_inlining_reinit() {
4156   if (print_inlining() || print_intrinsics()) {
4157     // Re allocate buffer when we change ResourceMark
4158     _print_inlining_stream = new stringStream();
4159   }
4160 }
4161 
4162 void Compile::print_inlining_reset() {
4163   _print_inlining_stream->reset();
4164 }
4165 
4166 void Compile::print_inlining_commit() {
4167   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4168   // Transfer the message from _print_inlining_stream to the current
4169   // _print_inlining_list buffer and clear _print_inlining_stream.
4170   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4171   print_inlining_reset();
4172 }
4173 
4174 void Compile::print_inlining_push() {
4175   // Add new buffer to the _print_inlining_list at current position
4176   _print_inlining_idx++;
4177   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4178 }
4179 
4180 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4181   return _print_inlining_list->at(_print_inlining_idx);
4182 }
4183 
4184 void Compile::print_inlining_update(CallGenerator* cg) {
4185   if (print_inlining() || print_intrinsics()) {
4186     if (!cg->is_late_inline()) {
4187       if (print_inlining_current().cg() != NULL) {
4188         print_inlining_push();
4189       }
4190       print_inlining_commit();
4191     } else {
4192       if (print_inlining_current().cg() != cg &&
4193           (print_inlining_current().cg() != NULL ||
4194            print_inlining_current().ss()->size() != 0)) {
4195         print_inlining_push();
4196       }
4197       print_inlining_commit();
4198       print_inlining_current().set_cg(cg);
4199     }
4200   }
4201 }
4202 
4203 void Compile::print_inlining_move_to(CallGenerator* cg) {
4204   // We resume inlining at a late inlining call site. Locate the
4205   // corresponding inlining buffer so that we can update it.
4206   if (print_inlining()) {
4207     for (int i = 0; i < _print_inlining_list->length(); i++) {
4208       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4209         _print_inlining_idx = i;
4210         return;
4211       }
4212     }
4213     ShouldNotReachHere();
4214   }
4215 }
4216 
4217 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4218   if (print_inlining()) {
4219     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4220     assert(print_inlining_current().cg() == cg, "wrong entry");
4221     // replace message with new message
4222     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4223     print_inlining_commit();
4224     print_inlining_current().set_cg(cg);
4225   }
4226 }
4227 
4228 void Compile::print_inlining_assert_ready() {
4229   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4230 }
4231 
4232 void Compile::process_print_inlining() {
4233   bool do_print_inlining = print_inlining() || print_intrinsics();
4234   if (do_print_inlining || log() != NULL) {
4235     // Print inlining message for candidates that we couldn't inline
4236     // for lack of space
4237     for (int i = 0; i < _late_inlines.length(); i++) {
4238       CallGenerator* cg = _late_inlines.at(i);
4239       if (!cg->is_mh_late_inline()) {
4240         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4241         if (do_print_inlining) {
4242           cg->print_inlining_late(msg);
4243         }
4244         log_late_inline_failure(cg, msg);
4245       }
4246     }
4247   }
4248   if (do_print_inlining) {
4249     ResourceMark rm;
4250     stringStream ss;
4251     for (int i = 0; i < _print_inlining_list->length(); i++) {
4252       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4253     }
4254     size_t end = ss.size();
4255     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4256     strncpy(_print_inlining_output, ss.base(), end+1);
4257     _print_inlining_output[end] = 0;
4258   }
4259 }
4260 
4261 void Compile::dump_print_inlining() {
4262   if (_print_inlining_output != NULL) {
4263     tty->print_raw(_print_inlining_output);
4264   }
4265 }
4266 
4267 void Compile::log_late_inline(CallGenerator* cg) {
4268   if (log() != NULL) {
4269     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4270                 cg->unique_id());
4271     JVMState* p = cg->call_node()->jvms();
4272     while (p != NULL) {
4273       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4274       p = p->caller();
4275     }
4276     log()->tail("late_inline");
4277   }
4278 }
4279 
4280 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4281   log_late_inline(cg);
4282   if (log() != NULL) {
4283     log()->inline_fail(msg);
4284   }
4285 }
4286 
4287 void Compile::log_inline_id(CallGenerator* cg) {
4288   if (log() != NULL) {
4289     // The LogCompilation tool needs a unique way to identify late
4290     // inline call sites. This id must be unique for this call site in
4291     // this compilation. Try to have it unique across compilations as
4292     // well because it can be convenient when grepping through the log
4293     // file.
4294     // Distinguish OSR compilations from others in case CICountOSR is
4295     // on.
4296     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4297     cg->set_unique_id(id);
4298     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4299   }
4300 }
4301 
4302 void Compile::log_inline_failure(const char* msg) {
4303   if (C->log() != NULL) {
4304     C->log()->inline_fail(msg);
4305   }
4306 }
4307 
4308 
4309 // Dump inlining replay data to the stream.
4310 // Don't change thread state and acquire any locks.
4311 void Compile::dump_inline_data(outputStream* out) {
4312   InlineTree* inl_tree = ilt();
4313   if (inl_tree != NULL) {
4314     out->print(" inline %d", inl_tree->count());
4315     inl_tree->dump_replay_data(out);
4316   }
4317 }
4318 
4319 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4320   if (n1->Opcode() < n2->Opcode())      return -1;
4321   else if (n1->Opcode() > n2->Opcode()) return 1;
4322 
4323   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4324   for (uint i = 1; i < n1->req(); i++) {
4325     if (n1->in(i) < n2->in(i))      return -1;
4326     else if (n1->in(i) > n2->in(i)) return 1;
4327   }
4328 
4329   return 0;
4330 }
4331 
4332 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4333   Node* n1 = *n1p;
4334   Node* n2 = *n2p;
4335 
4336   return cmp_expensive_nodes(n1, n2);
4337 }
4338 
4339 void Compile::sort_expensive_nodes() {
4340   if (!expensive_nodes_sorted()) {
4341     _expensive_nodes->sort(cmp_expensive_nodes);
4342   }
4343 }
4344 
4345 bool Compile::expensive_nodes_sorted() const {
4346   for (int i = 1; i < _expensive_nodes->length(); i++) {
4347     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4348       return false;
4349     }
4350   }
4351   return true;
4352 }
4353 
4354 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4355   if (_expensive_nodes->length() == 0) {
4356     return false;
4357   }
4358 
4359   assert(OptimizeExpensiveOps, "optimization off?");
4360 
4361   // Take this opportunity to remove dead nodes from the list
4362   int j = 0;
4363   for (int i = 0; i < _expensive_nodes->length(); i++) {
4364     Node* n = _expensive_nodes->at(i);
4365     if (!n->is_unreachable(igvn)) {
4366       assert(n->is_expensive(), "should be expensive");
4367       _expensive_nodes->at_put(j, n);
4368       j++;
4369     }
4370   }
4371   _expensive_nodes->trunc_to(j);
4372 
4373   // Then sort the list so that similar nodes are next to each other
4374   // and check for at least two nodes of identical kind with same data
4375   // inputs.
4376   sort_expensive_nodes();
4377 
4378   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4379     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4380       return true;
4381     }
4382   }
4383 
4384   return false;
4385 }
4386 
4387 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4388   if (_expensive_nodes->length() == 0) {
4389     return;
4390   }
4391 
4392   assert(OptimizeExpensiveOps, "optimization off?");
4393 
4394   // Sort to bring similar nodes next to each other and clear the
4395   // control input of nodes for which there's only a single copy.
4396   sort_expensive_nodes();
4397 
4398   int j = 0;
4399   int identical = 0;
4400   int i = 0;
4401   bool modified = false;
4402   for (; i < _expensive_nodes->length()-1; i++) {
4403     assert(j <= i, "can't write beyond current index");
4404     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4405       identical++;
4406       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4407       continue;
4408     }
4409     if (identical > 0) {
4410       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4411       identical = 0;
4412     } else {
4413       Node* n = _expensive_nodes->at(i);
4414       igvn.replace_input_of(n, 0, NULL);
4415       igvn.hash_insert(n);
4416       modified = true;
4417     }
4418   }
4419   if (identical > 0) {
4420     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4421   } else if (_expensive_nodes->length() >= 1) {
4422     Node* n = _expensive_nodes->at(i);
4423     igvn.replace_input_of(n, 0, NULL);
4424     igvn.hash_insert(n);
4425     modified = true;
4426   }
4427   _expensive_nodes->trunc_to(j);
4428   if (modified) {
4429     igvn.optimize();
4430   }
4431 }
4432 
4433 void Compile::add_expensive_node(Node * n) {
4434   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4435   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4436   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4437   if (OptimizeExpensiveOps) {
4438     _expensive_nodes->append(n);
4439   } else {
4440     // Clear control input and let IGVN optimize expensive nodes if
4441     // OptimizeExpensiveOps is off.
4442     n->set_req(0, NULL);
4443   }
4444 }
4445 
4446 /**
4447  * Remove the speculative part of types and clean up the graph
4448  */
4449 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4450   if (UseTypeSpeculation) {
4451     Unique_Node_List worklist;
4452     worklist.push(root());
4453     int modified = 0;
4454     // Go over all type nodes that carry a speculative type, drop the
4455     // speculative part of the type and enqueue the node for an igvn
4456     // which may optimize it out.
4457     for (uint next = 0; next < worklist.size(); ++next) {
4458       Node *n  = worklist.at(next);
4459       if (n->is_Type()) {
4460         TypeNode* tn = n->as_Type();
4461         const Type* t = tn->type();
4462         const Type* t_no_spec = t->remove_speculative();
4463         if (t_no_spec != t) {
4464           bool in_hash = igvn.hash_delete(n);
4465           assert(in_hash, "node should be in igvn hash table");
4466           tn->set_type(t_no_spec);
4467           igvn.hash_insert(n);
4468           igvn._worklist.push(n); // give it a chance to go away
4469           modified++;
4470         }
4471       }
4472       uint max = n->len();
4473       for( uint i = 0; i < max; ++i ) {
4474         Node *m = n->in(i);
4475         if (not_a_node(m))  continue;
4476         worklist.push(m);
4477       }
4478     }
4479     // Drop the speculative part of all types in the igvn's type table
4480     igvn.remove_speculative_types();
4481     if (modified > 0) {
4482       igvn.optimize();
4483     }
4484 #ifdef ASSERT
4485     // Verify that after the IGVN is over no speculative type has resurfaced
4486     worklist.clear();
4487     worklist.push(root());
4488     for (uint next = 0; next < worklist.size(); ++next) {
4489       Node *n  = worklist.at(next);
4490       const Type* t = igvn.type_or_null(n);
4491       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4492       if (n->is_Type()) {
4493         t = n->as_Type()->type();
4494         assert(t == t->remove_speculative(), "no more speculative types");
4495       }
4496       uint max = n->len();
4497       for( uint i = 0; i < max; ++i ) {
4498         Node *m = n->in(i);
4499         if (not_a_node(m))  continue;
4500         worklist.push(m);
4501       }
4502     }
4503     igvn.check_no_speculative_types();
4504 #endif
4505   }
4506 }
4507 
4508 // Auxiliary method to support randomized stressing/fuzzing.
4509 //
4510 // This method can be called the arbitrary number of times, with current count
4511 // as the argument. The logic allows selecting a single candidate from the
4512 // running list of candidates as follows:
4513 //    int count = 0;
4514 //    Cand* selected = null;
4515 //    while(cand = cand->next()) {
4516 //      if (randomized_select(++count)) {
4517 //        selected = cand;
4518 //      }
4519 //    }
4520 //
4521 // Including count equalizes the chances any candidate is "selected".
4522 // This is useful when we don't have the complete list of candidates to choose
4523 // from uniformly. In this case, we need to adjust the randomicity of the
4524 // selection, or else we will end up biasing the selection towards the latter
4525 // candidates.
4526 //
4527 // Quick back-envelope calculation shows that for the list of n candidates
4528 // the equal probability for the candidate to persist as "best" can be
4529 // achieved by replacing it with "next" k-th candidate with the probability
4530 // of 1/k. It can be easily shown that by the end of the run, the
4531 // probability for any candidate is converged to 1/n, thus giving the
4532 // uniform distribution among all the candidates.
4533 //
4534 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4535 #define RANDOMIZED_DOMAIN_POW 29
4536 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4537 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4538 bool Compile::randomized_select(int count) {
4539   assert(count > 0, "only positive");
4540   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4541 }
4542 
4543 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4544 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4545 
4546 void NodeCloneInfo::dump() const {
4547   tty->print(" {%d:%d} ", idx(), gen());
4548 }
4549 
4550 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4551   uint64_t val = value(old->_idx);
4552   NodeCloneInfo cio(val);
4553   assert(val != 0, "old node should be in the map");
4554   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4555   insert(nnn->_idx, cin.get());
4556 #ifndef PRODUCT
4557   if (is_debug()) {
4558     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4559   }
4560 #endif
4561 }
4562 
4563 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4564   NodeCloneInfo cio(value(old->_idx));
4565   if (cio.get() == 0) {
4566     cio.set(old->_idx, 0);
4567     insert(old->_idx, cio.get());
4568 #ifndef PRODUCT
4569     if (is_debug()) {
4570       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4571     }
4572 #endif
4573   }
4574   clone(old, nnn, gen);
4575 }
4576 
4577 int CloneMap::max_gen() const {
4578   int g = 0;
4579   DictI di(_dict);
4580   for(; di.test(); ++di) {
4581     int t = gen(di._key);
4582     if (g < t) {
4583       g = t;
4584 #ifndef PRODUCT
4585       if (is_debug()) {
4586         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4587       }
4588 #endif
4589     }
4590   }
4591   return g;
4592 }
4593 
4594 void CloneMap::dump(node_idx_t key) const {
4595   uint64_t val = value(key);
4596   if (val != 0) {
4597     NodeCloneInfo ni(val);
4598     ni.dump();
4599   }
4600 }