/* * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved. * Use is subject to license terms. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /* ********************************************************************* * * The Original Code is the Elliptic Curve Cryptography library. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Dr Vipul Gupta and * Douglas Stebila , Sun Microsystems Laboratories * * Last Modified Date from the Original Code: April 2015 *********************************************************************** */ #include "mplogic.h" #include "ec.h" #include "ecl.h" #include #ifndef _KERNEL #include #include #ifndef _WIN32 #include #include #endif /* _WIN32 */ #endif #include "ecl-exp.h" #include "mpi.h" #include "ecc_impl.h" #ifdef _KERNEL #define PORT_ZFree(p, l) bzero((p), (l)); kmem_free((p), (l)) #else #ifndef _WIN32 #define PORT_ZFree(p, l) bzero((p), (l)); free((p)) #else #define PORT_ZFree(p, l) memset((p), 0, (l)); free((p)) #endif /* _WIN32 */ #endif /* * Returns true if pointP is the point at infinity, false otherwise */ PRBool ec_point_at_infinity(SECItem *pointP) { unsigned int i; for (i = 1; i < pointP->len; i++) { if (pointP->data[i] != 0x00) return PR_FALSE; } return PR_TRUE; } /* * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for * the curve whose parameters are encoded in params with base point G. */ SECStatus ec_points_mul(const ECParams *params, const mp_int *k1, const mp_int *k2, const SECItem *pointP, SECItem *pointQ, int kmflag) { mp_int Px, Py, Qx, Qy; mp_int Gx, Gy, order, irreducible, a, b; #if 0 /* currently don't support non-named curves */ unsigned int irr_arr[5]; #endif ECGroup *group = NULL; SECStatus rv = SECFailure; mp_err err = MP_OKAY; unsigned int len; #if EC_DEBUG int i; char mpstr[256]; printf("ec_points_mul: params [len=%d]:", params->DEREncoding.len); for (i = 0; i < params->DEREncoding.len; i++) printf("%02x:", params->DEREncoding.data[i]); printf("\n"); if (k1 != NULL) { mp_tohex(k1, mpstr); printf("ec_points_mul: scalar k1: %s\n", mpstr); mp_todecimal(k1, mpstr); printf("ec_points_mul: scalar k1: %s (dec)\n", mpstr); } if (k2 != NULL) { mp_tohex(k2, mpstr); printf("ec_points_mul: scalar k2: %s\n", mpstr); mp_todecimal(k2, mpstr); printf("ec_points_mul: scalar k2: %s (dec)\n", mpstr); } if (pointP != NULL) { printf("ec_points_mul: pointP [len=%d]:", pointP->len); for (i = 0; i < pointP->len; i++) printf("%02x:", pointP->data[i]); printf("\n"); } #endif /* NOTE: We only support uncompressed points for now */ len = (params->fieldID.size + 7) >> 3; if (pointP != NULL) { if ((pointP->data[0] != EC_POINT_FORM_UNCOMPRESSED) || (pointP->len != (2 * len + 1))) { return SECFailure; }; } MP_DIGITS(&Px) = 0; MP_DIGITS(&Py) = 0; MP_DIGITS(&Qx) = 0; MP_DIGITS(&Qy) = 0; MP_DIGITS(&Gx) = 0; MP_DIGITS(&Gy) = 0; MP_DIGITS(&order) = 0; MP_DIGITS(&irreducible) = 0; MP_DIGITS(&a) = 0; MP_DIGITS(&b) = 0; CHECK_MPI_OK( mp_init(&Px, kmflag) ); CHECK_MPI_OK( mp_init(&Py, kmflag) ); CHECK_MPI_OK( mp_init(&Qx, kmflag) ); CHECK_MPI_OK( mp_init(&Qy, kmflag) ); CHECK_MPI_OK( mp_init(&Gx, kmflag) ); CHECK_MPI_OK( mp_init(&Gy, kmflag) ); CHECK_MPI_OK( mp_init(&order, kmflag) ); CHECK_MPI_OK( mp_init(&irreducible, kmflag) ); CHECK_MPI_OK( mp_init(&a, kmflag) ); CHECK_MPI_OK( mp_init(&b, kmflag) ); if ((k2 != NULL) && (pointP != NULL)) { /* Initialize Px and Py */ CHECK_MPI_OK( mp_read_unsigned_octets(&Px, pointP->data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Py, pointP->data + 1 + len, (mp_size) len) ); } /* construct from named params, if possible */ if (params->name != ECCurve_noName) { group = ECGroup_fromName(params->name, kmflag); } #if 0 /* currently don't support non-named curves */ if (group == NULL) { /* Set up mp_ints containing the curve coefficients */ CHECK_MPI_OK( mp_read_unsigned_octets(&Gx, params->base.data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Gy, params->base.data + 1 + len, (mp_size) len) ); SECITEM_TO_MPINT( params->order, &order ); SECITEM_TO_MPINT( params->curve.a, &a ); SECITEM_TO_MPINT( params->curve.b, &b ); if (params->fieldID.type == ec_field_GFp) { SECITEM_TO_MPINT( params->fieldID.u.prime, &irreducible ); group = ECGroup_consGFp(&irreducible, &a, &b, &Gx, &Gy, &order, params->cofactor); } else { SECITEM_TO_MPINT( params->fieldID.u.poly, &irreducible ); irr_arr[0] = params->fieldID.size; irr_arr[1] = params->fieldID.k1; irr_arr[2] = params->fieldID.k2; irr_arr[3] = params->fieldID.k3; irr_arr[4] = 0; group = ECGroup_consGF2m(&irreducible, irr_arr, &a, &b, &Gx, &Gy, &order, params->cofactor); } } #endif if (group == NULL) goto cleanup; if ((k2 != NULL) && (pointP != NULL)) { CHECK_MPI_OK( ECPoints_mul(group, k1, k2, &Px, &Py, &Qx, &Qy) ); } else { CHECK_MPI_OK( ECPoints_mul(group, k1, NULL, NULL, NULL, &Qx, &Qy) ); } /* Construct the SECItem representation of point Q */ pointQ->data[0] = EC_POINT_FORM_UNCOMPRESSED; CHECK_MPI_OK( mp_to_fixlen_octets(&Qx, pointQ->data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_to_fixlen_octets(&Qy, pointQ->data + 1 + len, (mp_size) len) ); rv = SECSuccess; #if EC_DEBUG printf("ec_points_mul: pointQ [len=%d]:", pointQ->len); for (i = 0; i < pointQ->len; i++) printf("%02x:", pointQ->data[i]); printf("\n"); #endif cleanup: ECGroup_free(group); mp_clear(&Px); mp_clear(&Py); mp_clear(&Qx); mp_clear(&Qy); mp_clear(&Gx); mp_clear(&Gy); mp_clear(&order); mp_clear(&irreducible); mp_clear(&a); mp_clear(&b); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* Generates a new EC key pair. The private key is a supplied * value and the public key is the result of performing a scalar * point multiplication of that value with the curve's base point. */ SECStatus ec_NewKey(ECParams *ecParams, ECPrivateKey **privKey, const unsigned char *privKeyBytes, int privKeyLen, int kmflag) { SECStatus rv = SECFailure; PRArenaPool *arena; ECPrivateKey *key; mp_int k; mp_err err = MP_OKAY; int len; #if EC_DEBUG printf("ec_NewKey called\n"); #endif k.dp = (mp_digit)0; if (!ecParams || !privKey || !privKeyBytes || (privKeyLen < 0)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* Initialize an arena for the EC key. */ if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE))) return SECFailure; key = (ECPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(ECPrivateKey), kmflag); if (!key) { PORT_FreeArena(arena, PR_TRUE); return SECFailure; } /* Set the version number (SEC 1 section C.4 says it should be 1) */ SECITEM_AllocItem(arena, &key->version, 1, kmflag); key->version.data[0] = 1; /* Copy all of the fields from the ECParams argument to the * ECParams structure within the private key. */ key->ecParams.arena = arena; key->ecParams.type = ecParams->type; key->ecParams.fieldID.size = ecParams->fieldID.size; key->ecParams.fieldID.type = ecParams->fieldID.type; if (ecParams->fieldID.type == ec_field_GFp) { CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.prime, &ecParams->fieldID.u.prime, kmflag)); } else { CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.poly, &ecParams->fieldID.u.poly, kmflag)); } key->ecParams.fieldID.k1 = ecParams->fieldID.k1; key->ecParams.fieldID.k2 = ecParams->fieldID.k2; key->ecParams.fieldID.k3 = ecParams->fieldID.k3; CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.a, &ecParams->curve.a, kmflag)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.b, &ecParams->curve.b, kmflag)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.seed, &ecParams->curve.seed, kmflag)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.base, &ecParams->base, kmflag)); CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.order, &ecParams->order, kmflag)); key->ecParams.cofactor = ecParams->cofactor; CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.DEREncoding, &ecParams->DEREncoding, kmflag)); key->ecParams.name = ecParams->name; CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curveOID, &ecParams->curveOID, kmflag)); len = (ecParams->fieldID.size + 7) >> 3; SECITEM_AllocItem(arena, &key->publicValue, 2*len + 1, kmflag); len = ecParams->order.len; SECITEM_AllocItem(arena, &key->privateValue, len, kmflag); /* Copy private key */ if (privKeyLen >= len) { memcpy(key->privateValue.data, privKeyBytes, len); } else { memset(key->privateValue.data, 0, (len - privKeyLen)); memcpy(key->privateValue.data + (len - privKeyLen), privKeyBytes, privKeyLen); } /* Compute corresponding public key */ MP_DIGITS(&k) = 0; CHECK_MPI_OK( mp_init(&k, kmflag) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, key->privateValue.data, (mp_size) len) ); rv = ec_points_mul(ecParams, &k, NULL, NULL, &(key->publicValue), kmflag); if (rv != SECSuccess) goto cleanup; *privKey = key; cleanup: mp_clear(&k); if (rv) { PORT_FreeArena(arena, PR_TRUE); } #if EC_DEBUG printf("ec_NewKey returning %s\n", (rv == SECSuccess) ? "success" : "failure"); #endif return rv; } /* Generates a new EC key pair. The private key is a supplied * random value (in seed) and the public key is the result of * performing a scalar point multiplication of that value with * the curve's base point. */ SECStatus EC_NewKeyFromSeed(ECParams *ecParams, ECPrivateKey **privKey, const unsigned char *seed, int seedlen, int kmflag) { SECStatus rv = SECFailure; rv = ec_NewKey(ecParams, privKey, seed, seedlen, kmflag); return rv; } /* Generate a random private key using the algorithm A.4.1 of ANSI X9.62, * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the * random number generator. * * Parameters * - order: a buffer that holds the curve's group order * - len: the length in octets of the order buffer * - random: a buffer of 2 * len random bytes * - randomlen: the length in octets of the random buffer * * Return Value * Returns a buffer of len octets that holds the private key. The caller * is responsible for freeing the buffer with PORT_ZFree. */ static unsigned char * ec_GenerateRandomPrivateKey(const unsigned char *order, int len, const unsigned char *random, int randomlen, int kmflag) { SECStatus rv = SECSuccess; mp_err err; unsigned char *privKeyBytes = NULL; mp_int privKeyVal, order_1, one; MP_DIGITS(&privKeyVal) = 0; MP_DIGITS(&order_1) = 0; MP_DIGITS(&one) = 0; CHECK_MPI_OK( mp_init(&privKeyVal, kmflag) ); CHECK_MPI_OK( mp_init(&order_1, kmflag) ); CHECK_MPI_OK( mp_init(&one, kmflag) ); /* * Reduces the 2*len buffer of random bytes modulo the group order. */ if ((privKeyBytes = PORT_Alloc(2*len, kmflag)) == NULL) goto cleanup; if (randomlen != 2 * len) { randomlen = 2 * len; } /* No need to generate - random bytes are now supplied */ /* CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) );*/ memcpy(privKeyBytes, random, randomlen); CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) ); CHECK_MPI_OK( mp_set_int(&one, 1) ); CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) ); CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) ); CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) ); CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) ); memset(privKeyBytes+len, 0, len); cleanup: mp_clear(&privKeyVal); mp_clear(&order_1); mp_clear(&one); if (err < MP_OKAY) { MP_TO_SEC_ERROR(err); rv = SECFailure; } if (rv != SECSuccess && privKeyBytes) { #ifdef _KERNEL kmem_free(privKeyBytes, 2*len); #else free(privKeyBytes); #endif privKeyBytes = NULL; } return privKeyBytes; } /* Generates a new EC key pair. The private key is a random value and * the public key is the result of performing a scalar point multiplication * of that value with the curve's base point. */ SECStatus EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey, const unsigned char* random, int randomlen, int kmflag) { SECStatus rv = SECFailure; int len; unsigned char *privKeyBytes = NULL; if (!ecParams) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } len = ecParams->order.len; privKeyBytes = ec_GenerateRandomPrivateKey(ecParams->order.data, len, random, randomlen, kmflag); if (privKeyBytes == NULL) goto cleanup; /* generate public key */ CHECK_SEC_OK( ec_NewKey(ecParams, privKey, privKeyBytes, len, kmflag) ); cleanup: if (privKeyBytes) { PORT_ZFree(privKeyBytes, len * 2); } #if EC_DEBUG printf("EC_NewKey returning %s\n", (rv == SECSuccess) ? "success" : "failure"); #endif return rv; } /* Validates an EC public key as described in Section 5.2.2 of * X9.62. The ECDH primitive when used without the cofactor does * not address small subgroup attacks, which may occur when the * public key is not valid. These attacks can be prevented by * validating the public key before using ECDH. */ SECStatus EC_ValidatePublicKey(ECParams *ecParams, SECItem *publicValue, int kmflag) { mp_int Px, Py; ECGroup *group = NULL; SECStatus rv = SECFailure; mp_err err = MP_OKAY; unsigned int len; if (!ecParams || !publicValue) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* NOTE: We only support uncompressed points for now */ len = (ecParams->fieldID.size + 7) >> 3; if (publicValue->data[0] != EC_POINT_FORM_UNCOMPRESSED) { PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM); return SECFailure; } else if (publicValue->len != (2 * len + 1)) { PORT_SetError(SEC_ERROR_BAD_KEY); return SECFailure; } MP_DIGITS(&Px) = 0; MP_DIGITS(&Py) = 0; CHECK_MPI_OK( mp_init(&Px, kmflag) ); CHECK_MPI_OK( mp_init(&Py, kmflag) ); /* Initialize Px and Py */ CHECK_MPI_OK( mp_read_unsigned_octets(&Px, publicValue->data + 1, (mp_size) len) ); CHECK_MPI_OK( mp_read_unsigned_octets(&Py, publicValue->data + 1 + len, (mp_size) len) ); /* construct from named params */ group = ECGroup_fromName(ecParams->name, kmflag); if (group == NULL) { /* * ECGroup_fromName fails if ecParams->name is not a valid * ECCurveName value, or if we run out of memory, or perhaps * for other reasons. Unfortunately if ecParams->name is a * valid ECCurveName value, we don't know what the right error * code should be because ECGroup_fromName doesn't return an * error code to the caller. Set err to MP_UNDEF because * that's what ECGroup_fromName uses internally. */ if ((ecParams->name <= ECCurve_noName) || (ecParams->name >= ECCurve_pastLastCurve)) { err = MP_BADARG; } else { err = MP_UNDEF; } goto cleanup; } /* validate public point */ if ((err = ECPoint_validate(group, &Px, &Py)) < MP_YES) { if (err == MP_NO) { PORT_SetError(SEC_ERROR_BAD_KEY); rv = SECFailure; err = MP_OKAY; /* don't change the error code */ } goto cleanup; } rv = SECSuccess; cleanup: ECGroup_free(group); mp_clear(&Px); mp_clear(&Py); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } return rv; } /* ** Performs an ECDH key derivation by computing the scalar point ** multiplication of privateValue and publicValue (with or without the ** cofactor) and returns the x-coordinate of the resulting elliptic ** curve point in derived secret. If successful, derivedSecret->data ** is set to the address of the newly allocated buffer containing the ** derived secret, and derivedSecret->len is the size of the secret ** produced. It is the caller's responsibility to free the allocated ** buffer containing the derived secret. */ SECStatus ECDH_Derive(SECItem *publicValue, ECParams *ecParams, SECItem *privateValue, PRBool withCofactor, SECItem *derivedSecret, int kmflag) { SECStatus rv = SECFailure; unsigned int len = 0; SECItem pointQ = {siBuffer, NULL, 0}; mp_int k; /* to hold the private value */ mp_int cofactor; mp_err err = MP_OKAY; #if EC_DEBUG int i; #endif if (!publicValue || !ecParams || !privateValue || !derivedSecret) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } if (EC_ValidatePublicKey(ecParams, publicValue, kmflag) != SECSuccess) { return SECFailure; } memset(derivedSecret, 0, sizeof *derivedSecret); len = (ecParams->fieldID.size + 7) >> 3; pointQ.len = 2*len + 1; if ((pointQ.data = PORT_Alloc(2*len + 1, kmflag)) == NULL) goto cleanup; MP_DIGITS(&k) = 0; CHECK_MPI_OK( mp_init(&k, kmflag) ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, privateValue->data, (mp_size) privateValue->len) ); if (withCofactor && (ecParams->cofactor != 1)) { /* multiply k with the cofactor */ MP_DIGITS(&cofactor) = 0; CHECK_MPI_OK( mp_init(&cofactor, kmflag) ); mp_set(&cofactor, ecParams->cofactor); CHECK_MPI_OK( mp_mul(&k, &cofactor, &k) ); } /* Multiply our private key and peer's public point */ if ((ec_points_mul(ecParams, NULL, &k, publicValue, &pointQ, kmflag) != SECSuccess) || ec_point_at_infinity(&pointQ)) goto cleanup; /* Allocate memory for the derived secret and copy * the x co-ordinate of pointQ into it. */ SECITEM_AllocItem(NULL, derivedSecret, len, kmflag); memcpy(derivedSecret->data, pointQ.data + 1, len); rv = SECSuccess; #if EC_DEBUG printf("derived_secret:\n"); for (i = 0; i < derivedSecret->len; i++) printf("%02x:", derivedSecret->data[i]); printf("\n"); #endif cleanup: mp_clear(&k); if (pointQ.data) { PORT_ZFree(pointQ.data, 2*len + 1); } return rv; } /* Computes the ECDSA signature (a concatenation of two values r and s) * on the digest using the given key and the random value kb (used in * computing s). */ SECStatus ECDSA_SignDigestWithSeed(ECPrivateKey *key, SECItem *signature, const SECItem *digest, const unsigned char *kb, const int kblen, int kmflag) { SECStatus rv = SECFailure; mp_int x1; mp_int d, k; /* private key, random integer */ mp_int r, s; /* tuple (r, s) is the signature */ mp_int n; mp_err err = MP_OKAY; ECParams *ecParams = NULL; SECItem kGpoint = { siBuffer, NULL, 0}; int flen = 0; /* length in bytes of the field size */ unsigned olen; /* length in bytes of the base point order */ #if EC_DEBUG char mpstr[256]; #endif /* Initialize MPI integers. */ /* must happen before the first potential call to cleanup */ MP_DIGITS(&x1) = 0; MP_DIGITS(&d) = 0; MP_DIGITS(&k) = 0; MP_DIGITS(&r) = 0; MP_DIGITS(&s) = 0; MP_DIGITS(&n) = 0; /* Check args */ if (!key || !signature || !digest || !kb || (kblen < 0)) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto cleanup; } ecParams = &(key->ecParams); flen = (ecParams->fieldID.size + 7) >> 3; olen = ecParams->order.len; if (signature->data == NULL) { /* a call to get the signature length only */ goto finish; } if (signature->len < 2*olen) { PORT_SetError(SEC_ERROR_OUTPUT_LEN); rv = SECBufferTooSmall; goto cleanup; } CHECK_MPI_OK( mp_init(&x1, kmflag) ); CHECK_MPI_OK( mp_init(&d, kmflag) ); CHECK_MPI_OK( mp_init(&k, kmflag) ); CHECK_MPI_OK( mp_init(&r, kmflag) ); CHECK_MPI_OK( mp_init(&s, kmflag) ); CHECK_MPI_OK( mp_init(&n, kmflag) ); SECITEM_TO_MPINT( ecParams->order, &n ); SECITEM_TO_MPINT( key->privateValue, &d ); CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, kblen) ); /* Make sure k is in the interval [1, n-1] */ if ((mp_cmp_z(&k) <= 0) || (mp_cmp(&k, &n) >= 0)) { #if EC_DEBUG printf("k is outside [1, n-1]\n"); mp_tohex(&k, mpstr); printf("k : %s \n", mpstr); mp_tohex(&n, mpstr); printf("n : %s \n", mpstr); #endif PORT_SetError(SEC_ERROR_NEED_RANDOM); goto cleanup; } /* ** ANSI X9.62, Section 5.3.2, Step 2 ** ** Compute kG */ kGpoint.len = 2*flen + 1; kGpoint.data = PORT_Alloc(2*flen + 1, kmflag); if ((kGpoint.data == NULL) || (ec_points_mul(ecParams, &k, NULL, NULL, &kGpoint, kmflag) != SECSuccess)) goto cleanup; /* ** ANSI X9.62, Section 5.3.3, Step 1 ** ** Extract the x co-ordinate of kG into x1 */ CHECK_MPI_OK( mp_read_unsigned_octets(&x1, kGpoint.data + 1, (mp_size) flen) ); /* ** ANSI X9.62, Section 5.3.3, Step 2 ** ** r = x1 mod n NOTE: n is the order of the curve */ CHECK_MPI_OK( mp_mod(&x1, &n, &r) ); /* ** ANSI X9.62, Section 5.3.3, Step 3 ** ** verify r != 0 */ if (mp_cmp_z(&r) == 0) { PORT_SetError(SEC_ERROR_NEED_RANDOM); goto cleanup; } /* ** ANSI X9.62, Section 5.3.3, Step 4 ** ** s = (k**-1 * (HASH(M) + d*r)) mod n */ SECITEM_TO_MPINT(*digest, &s); /* s = HASH(M) */ /* In the definition of EC signing, digests are truncated * to the length of n in bits. * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ if (digest->len*8 > (unsigned int)ecParams->fieldID.size) { mpl_rsh(&s,&s,digest->len*8 - ecParams->fieldID.size); } #if EC_DEBUG mp_todecimal(&n, mpstr); printf("n : %s (dec)\n", mpstr); mp_todecimal(&d, mpstr); printf("d : %s (dec)\n", mpstr); mp_tohex(&x1, mpstr); printf("x1: %s\n", mpstr); mp_todecimal(&s, mpstr); printf("digest: %s (decimal)\n", mpstr); mp_todecimal(&r, mpstr); printf("r : %s (dec)\n", mpstr); mp_tohex(&r, mpstr); printf("r : %s\n", mpstr); #endif CHECK_MPI_OK( mp_invmod(&k, &n, &k) ); /* k = k**-1 mod n */ CHECK_MPI_OK( mp_mulmod(&d, &r, &n, &d) ); /* d = d * r mod n */ CHECK_MPI_OK( mp_addmod(&s, &d, &n, &s) ); /* s = s + d mod n */ CHECK_MPI_OK( mp_mulmod(&s, &k, &n, &s) ); /* s = s * k mod n */ #if EC_DEBUG mp_todecimal(&s, mpstr); printf("s : %s (dec)\n", mpstr); mp_tohex(&s, mpstr); printf("s : %s\n", mpstr); #endif /* ** ANSI X9.62, Section 5.3.3, Step 5 ** ** verify s != 0 */ if (mp_cmp_z(&s) == 0) { PORT_SetError(SEC_ERROR_NEED_RANDOM); goto cleanup; } /* ** ** Signature is tuple (r, s) */ CHECK_MPI_OK( mp_to_fixlen_octets(&r, signature->data, olen) ); CHECK_MPI_OK( mp_to_fixlen_octets(&s, signature->data + olen, olen) ); finish: signature->len = 2*olen; rv = SECSuccess; err = MP_OKAY; cleanup: mp_clear(&x1); mp_clear(&d); mp_clear(&k); mp_clear(&r); mp_clear(&s); mp_clear(&n); if (kGpoint.data) { PORT_ZFree(kGpoint.data, 2*flen + 1); } if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } #if EC_DEBUG printf("ECDSA signing with seed %s\n", (rv == SECSuccess) ? "succeeded" : "failed"); #endif return rv; } /* ** Computes the ECDSA signature on the digest using the given key ** and a random seed. */ SECStatus ECDSA_SignDigest(ECPrivateKey *key, SECItem *signature, const SECItem *digest, const unsigned char* random, int randomLen, int kmflag) { SECStatus rv = SECFailure; int len; unsigned char *kBytes= NULL; if (!key) { PORT_SetError(SEC_ERROR_INVALID_ARGS); return SECFailure; } /* Generate random value k */ len = key->ecParams.order.len; kBytes = ec_GenerateRandomPrivateKey(key->ecParams.order.data, len, random, randomLen, kmflag); if (kBytes == NULL) goto cleanup; /* Generate ECDSA signature with the specified k value */ rv = ECDSA_SignDigestWithSeed(key, signature, digest, kBytes, len, kmflag); cleanup: if (kBytes) { PORT_ZFree(kBytes, len * 2); } #if EC_DEBUG printf("ECDSA signing %s\n", (rv == SECSuccess) ? "succeeded" : "failed"); #endif return rv; } /* ** Checks the signature on the given digest using the key provided. */ SECStatus ECDSA_VerifyDigest(ECPublicKey *key, const SECItem *signature, const SECItem *digest, int kmflag) { SECStatus rv = SECFailure; mp_int r_, s_; /* tuple (r', s') is received signature) */ mp_int c, u1, u2, v; /* intermediate values used in verification */ mp_int x1; mp_int n; mp_err err = MP_OKAY; ECParams *ecParams = NULL; SECItem pointC = { siBuffer, NULL, 0 }; int slen; /* length in bytes of a half signature (r or s) */ int flen; /* length in bytes of the field size */ unsigned olen; /* length in bytes of the base point order */ #if EC_DEBUG char mpstr[256]; printf("ECDSA verification called\n"); #endif /* Initialize MPI integers. */ /* must happen before the first potential call to cleanup */ MP_DIGITS(&r_) = 0; MP_DIGITS(&s_) = 0; MP_DIGITS(&c) = 0; MP_DIGITS(&u1) = 0; MP_DIGITS(&u2) = 0; MP_DIGITS(&x1) = 0; MP_DIGITS(&v) = 0; MP_DIGITS(&n) = 0; /* Check args */ if (!key || !signature || !digest) { PORT_SetError(SEC_ERROR_INVALID_ARGS); goto cleanup; } ecParams = &(key->ecParams); flen = (ecParams->fieldID.size + 7) >> 3; olen = ecParams->order.len; if (signature->len == 0 || signature->len%2 != 0 || signature->len > 2*olen) { PORT_SetError(SEC_ERROR_INPUT_LEN); goto cleanup; } slen = signature->len/2; SECITEM_AllocItem(NULL, &pointC, 2*flen + 1, kmflag); if (pointC.data == NULL) goto cleanup; CHECK_MPI_OK( mp_init(&r_, kmflag) ); CHECK_MPI_OK( mp_init(&s_, kmflag) ); CHECK_MPI_OK( mp_init(&c, kmflag) ); CHECK_MPI_OK( mp_init(&u1, kmflag) ); CHECK_MPI_OK( mp_init(&u2, kmflag) ); CHECK_MPI_OK( mp_init(&x1, kmflag) ); CHECK_MPI_OK( mp_init(&v, kmflag) ); CHECK_MPI_OK( mp_init(&n, kmflag) ); /* ** Convert received signature (r', s') into MPI integers. */ CHECK_MPI_OK( mp_read_unsigned_octets(&r_, signature->data, slen) ); CHECK_MPI_OK( mp_read_unsigned_octets(&s_, signature->data + slen, slen) ); /* ** ANSI X9.62, Section 5.4.2, Steps 1 and 2 ** ** Verify that 0 < r' < n and 0 < s' < n */ SECITEM_TO_MPINT(ecParams->order, &n); if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 || mp_cmp(&r_, &n) >= 0 || mp_cmp(&s_, &n) >= 0) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); goto cleanup; /* will return rv == SECFailure */ } /* ** ANSI X9.62, Section 5.4.2, Step 3 ** ** c = (s')**-1 mod n */ CHECK_MPI_OK( mp_invmod(&s_, &n, &c) ); /* c = (s')**-1 mod n */ /* ** ANSI X9.62, Section 5.4.2, Step 4 ** ** u1 = ((HASH(M')) * c) mod n */ SECITEM_TO_MPINT(*digest, &u1); /* u1 = HASH(M) */ /* In the definition of EC signing, digests are truncated * to the length of n in bits. * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/ /* u1 = HASH(M') */ if (digest->len*8 > (unsigned int)ecParams->fieldID.size) { mpl_rsh(&u1,&u1,digest->len*8- ecParams->fieldID.size); } #if EC_DEBUG mp_todecimal(&r_, mpstr); printf("r_: %s (dec)\n", mpstr); mp_todecimal(&s_, mpstr); printf("s_: %s (dec)\n", mpstr); mp_todecimal(&c, mpstr); printf("c : %s (dec)\n", mpstr); mp_todecimal(&u1, mpstr); printf("digest: %s (dec)\n", mpstr); #endif CHECK_MPI_OK( mp_mulmod(&u1, &c, &n, &u1) ); /* u1 = u1 * c mod n */ /* ** ANSI X9.62, Section 5.4.2, Step 4 ** ** u2 = ((r') * c) mod n */ CHECK_MPI_OK( mp_mulmod(&r_, &c, &n, &u2) ); /* ** ANSI X9.62, Section 5.4.3, Step 1 ** ** Compute u1*G + u2*Q ** Here, A = u1.G B = u2.Q and C = A + B ** If the result, C, is the point at infinity, reject the signature */ if (ec_points_mul(ecParams, &u1, &u2, &key->publicValue, &pointC, kmflag) != SECSuccess) { rv = SECFailure; goto cleanup; } if (ec_point_at_infinity(&pointC)) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); rv = SECFailure; goto cleanup; } CHECK_MPI_OK( mp_read_unsigned_octets(&x1, pointC.data + 1, flen) ); /* ** ANSI X9.62, Section 5.4.4, Step 2 ** ** v = x1 mod n */ CHECK_MPI_OK( mp_mod(&x1, &n, &v) ); #if EC_DEBUG mp_todecimal(&r_, mpstr); printf("r_: %s (dec)\n", mpstr); mp_todecimal(&v, mpstr); printf("v : %s (dec)\n", mpstr); #endif /* ** ANSI X9.62, Section 5.4.4, Step 3 ** ** Verification: v == r' */ if (mp_cmp(&v, &r_)) { PORT_SetError(SEC_ERROR_BAD_SIGNATURE); rv = SECFailure; /* Signature failed to verify. */ } else { rv = SECSuccess; /* Signature verified. */ } #if EC_DEBUG mp_todecimal(&u1, mpstr); printf("u1: %s (dec)\n", mpstr); mp_todecimal(&u2, mpstr); printf("u2: %s (dec)\n", mpstr); mp_tohex(&x1, mpstr); printf("x1: %s\n", mpstr); mp_todecimal(&v, mpstr); printf("v : %s (dec)\n", mpstr); #endif cleanup: mp_clear(&r_); mp_clear(&s_); mp_clear(&c); mp_clear(&u1); mp_clear(&u2); mp_clear(&x1); mp_clear(&v); mp_clear(&n); if (pointC.data) SECITEM_FreeItem(&pointC, PR_FALSE); if (err) { MP_TO_SEC_ERROR(err); rv = SECFailure; } #if EC_DEBUG printf("ECDSA verification %s\n", (rv == SECSuccess) ? "succeeded" : "failed"); #endif return rv; }