rev 16167 : 8170525: Fix minor issues in awt coding

   1 /*
   2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * Use is subject to license terms.
   4  *
   5  * This library is free software; you can redistribute it and/or
   6  * modify it under the terms of the GNU Lesser General Public
   7  * License as published by the Free Software Foundation; either
   8  * version 2.1 of the License, or (at your option) any later version.
   9  *
  10  * This library is distributed in the hope that it will be useful,
  11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  13  * Lesser General Public License for more details.
  14  *
  15  * You should have received a copy of the GNU Lesser General Public License
  16  * along with this library; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /* *********************************************************************
  25  *
  26  * The Original Code is the elliptic curve math library.
  27  *
  28  * The Initial Developer of the Original Code is
  29  * Sun Microsystems, Inc.
  30  * Portions created by the Initial Developer are Copyright (C) 2003
  31  * the Initial Developer. All Rights Reserved.
  32  *
  33  * Contributor(s):
  34  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
  35  *
  36  *********************************************************************** */
  37 
  38 #include "mpi.h"
  39 #include "mplogic.h"
  40 #include "ecl.h"
  41 #include "ecl-priv.h"
  42 #ifndef _KERNEL
  43 #include <stdlib.h>
  44 #endif
  45 
  46 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
  47  * y).  If x, y = NULL, then P is assumed to be the generator (base point)
  48  * of the group of points on the elliptic curve. Input and output values
  49  * are assumed to be NOT field-encoded. */
  50 mp_err
  51 ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
  52                         const mp_int *py, mp_int *rx, mp_int *ry)
  53 {
  54         mp_err res = MP_OKAY;
  55         mp_int kt;
  56 
  57         ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
  58         MP_DIGITS(&kt) = 0;
  59 
  60         /* want scalar to be less than or equal to group order */
  61         if (mp_cmp(k, &group->order) > 0) {
  62                 MP_CHECKOK(mp_init(&kt, FLAG(k)));
  63                 MP_CHECKOK(mp_mod(k, &group->order, &kt));
  64         } else {
  65                 MP_SIGN(&kt) = MP_ZPOS;
  66                 MP_USED(&kt) = MP_USED(k);
  67                 MP_ALLOC(&kt) = MP_ALLOC(k);
  68                 MP_DIGITS(&kt) = MP_DIGITS(k);
  69         }
  70 
  71         if ((px == NULL) || (py == NULL)) {
  72                 if (group->base_point_mul) {
  73                         MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
  74                 } else {

  75                         MP_CHECKOK(group->
  76                                            point_mul(&kt, &group->genx, &group->geny, rx, ry,
  77                                                                  group));
  78                 }
  79         } else {
  80                 if (group->meth->field_enc) {
  81                         MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
  82                         MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
  83                         MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
  84                 } else {

  85                         MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
  86                 }
  87         }
  88         if (group->meth->field_dec) {
  89                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
  90                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
  91         }
  92 
  93   CLEANUP:
  94         if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
  95                 mp_clear(&kt);
  96         }
  97         return res;
  98 }
  99 
 100 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 101  * k2 * P(x, y), where G is the generator (base point) of the group of
 102  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 103  * Input and output values are assumed to be NOT field-encoded. */
 104 mp_err
 105 ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
 106                                  const mp_int *py, mp_int *rx, mp_int *ry,
 107                                  const ECGroup *group)
 108 {
 109         mp_err res = MP_OKAY;
 110         mp_int sx, sy;
 111 
 112         ARGCHK(group != NULL, MP_BADARG);
 113         ARGCHK(!((k1 == NULL)
 114                          && ((k2 == NULL) || (px == NULL)
 115                                  || (py == NULL))), MP_BADARG);
 116 
 117         /* if some arguments are not defined used ECPoint_mul */
 118         if (k1 == NULL) {
 119                 return ECPoint_mul(group, k2, px, py, rx, ry);
 120         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
 121                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
 122         }
 123 
 124         MP_DIGITS(&sx) = 0;
 125         MP_DIGITS(&sy) = 0;
 126         MP_CHECKOK(mp_init(&sx, FLAG(k1)));
 127         MP_CHECKOK(mp_init(&sy, FLAG(k1)));
 128 
 129         MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
 130         MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
 131 
 132         if (group->meth->field_enc) {
 133                 MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
 134                 MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
 135                 MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
 136                 MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
 137         }
 138 
 139         MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
 140 
 141         if (group->meth->field_dec) {
 142                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
 143                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
 144         }
 145 
 146   CLEANUP:
 147         mp_clear(&sx);
 148         mp_clear(&sy);
 149         return res;
 150 }
 151 
 152 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 153  * k2 * P(x, y), where G is the generator (base point) of the group of
 154  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 155  * Input and output values are assumed to be NOT field-encoded. Uses
 156  * algorithm 15 (simultaneous multiple point multiplication) from Brown,
 157  * Hankerson, Lopez, Menezes. Software Implementation of the NIST
 158  * Elliptic Curves over Prime Fields. */
 159 mp_err
 160 ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
 161                                         const mp_int *py, mp_int *rx, mp_int *ry,
 162                                         const ECGroup *group)
 163 {
 164         mp_err res = MP_OKAY;
 165         mp_int precomp[4][4][2];
 166         const mp_int *a, *b;
 167         int i, j;
 168         int ai, bi, d;
 169 
 170         ARGCHK(group != NULL, MP_BADARG);
 171         ARGCHK(!((k1 == NULL)
 172                          && ((k2 == NULL) || (px == NULL)
 173                                  || (py == NULL))), MP_BADARG);
 174 
 175         /* if some arguments are not defined used ECPoint_mul */
 176         if (k1 == NULL) {
 177                 return ECPoint_mul(group, k2, px, py, rx, ry);
 178         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
 179                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
 180         }
 181 
 182         /* initialize precomputation table */
 183         for (i = 0; i < 4; i++) {
 184                 for (j = 0; j < 4; j++) {
 185                         MP_DIGITS(&precomp[i][j][0]) = 0;
 186                         MP_DIGITS(&precomp[i][j][1]) = 0;
 187                 }
 188         }
 189         for (i = 0; i < 4; i++) {
 190                 for (j = 0; j < 4; j++) {
 191                          MP_CHECKOK( mp_init_size(&precomp[i][j][0],
 192                                          ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
 193                          MP_CHECKOK( mp_init_size(&precomp[i][j][1],
 194                                          ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
 195                 }
 196         }
 197 
 198         /* fill precomputation table */
 199         /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
 200         if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
 201                 a = k2;
 202                 b = k1;
 203                 if (group->meth->field_enc) {
 204                         MP_CHECKOK(group->meth->
 205                                            field_enc(px, &precomp[1][0][0], group->meth));
 206                         MP_CHECKOK(group->meth->
 207                                            field_enc(py, &precomp[1][0][1], group->meth));
 208                 } else {
 209                         MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
 210                         MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
 211                 }
 212                 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
 213                 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
 214         } else {
 215                 a = k1;
 216                 b = k2;
 217                 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
 218                 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
 219                 if (group->meth->field_enc) {
 220                         MP_CHECKOK(group->meth->
 221                                            field_enc(px, &precomp[0][1][0], group->meth));
 222                         MP_CHECKOK(group->meth->
 223                                            field_enc(py, &precomp[0][1][1], group->meth));
 224                 } else {
 225                         MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
 226                         MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
 227                 }
 228         }
 229         /* precompute [*][0][*] */
 230         mp_zero(&precomp[0][0][0]);
 231         mp_zero(&precomp[0][0][1]);
 232         MP_CHECKOK(group->
 233                            point_dbl(&precomp[1][0][0], &precomp[1][0][1],
 234                                                  &precomp[2][0][0], &precomp[2][0][1], group));
 235         MP_CHECKOK(group->
 236                            point_add(&precomp[1][0][0], &precomp[1][0][1],
 237                                                  &precomp[2][0][0], &precomp[2][0][1],
 238                                                  &precomp[3][0][0], &precomp[3][0][1], group));
 239         /* precompute [*][1][*] */
 240         for (i = 1; i < 4; i++) {
 241                 MP_CHECKOK(group->
 242                                    point_add(&precomp[0][1][0], &precomp[0][1][1],
 243                                                          &precomp[i][0][0], &precomp[i][0][1],
 244                                                          &precomp[i][1][0], &precomp[i][1][1], group));
 245         }
 246         /* precompute [*][2][*] */
 247         MP_CHECKOK(group->
 248                            point_dbl(&precomp[0][1][0], &precomp[0][1][1],
 249                                                  &precomp[0][2][0], &precomp[0][2][1], group));
 250         for (i = 1; i < 4; i++) {
 251                 MP_CHECKOK(group->
 252                                    point_add(&precomp[0][2][0], &precomp[0][2][1],
 253                                                          &precomp[i][0][0], &precomp[i][0][1],
 254                                                          &precomp[i][2][0], &precomp[i][2][1], group));
 255         }
 256         /* precompute [*][3][*] */
 257         MP_CHECKOK(group->
 258                            point_add(&precomp[0][1][0], &precomp[0][1][1],
 259                                                  &precomp[0][2][0], &precomp[0][2][1],
 260                                                  &precomp[0][3][0], &precomp[0][3][1], group));
 261         for (i = 1; i < 4; i++) {
 262                 MP_CHECKOK(group->
 263                                    point_add(&precomp[0][3][0], &precomp[0][3][1],
 264                                                          &precomp[i][0][0], &precomp[i][0][1],
 265                                                          &precomp[i][3][0], &precomp[i][3][1], group));
 266         }
 267 
 268         d = (mpl_significant_bits(a) + 1) / 2;
 269 
 270         /* R = inf */
 271         mp_zero(rx);
 272         mp_zero(ry);
 273 
 274         for (i = d - 1; i >= 0; i--) {
 275                 ai = MP_GET_BIT(a, 2 * i + 1);
 276                 ai <<= 1;
 277                 ai |= MP_GET_BIT(a, 2 * i);
 278                 bi = MP_GET_BIT(b, 2 * i + 1);
 279                 bi <<= 1;
 280                 bi |= MP_GET_BIT(b, 2 * i);
 281                 /* R = 2^2 * R */
 282                 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
 283                 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
 284                 /* R = R + (ai * A + bi * B) */
 285                 MP_CHECKOK(group->
 286                                    point_add(rx, ry, &precomp[ai][bi][0],
 287                                                          &precomp[ai][bi][1], rx, ry, group));
 288         }
 289 
 290         if (group->meth->field_dec) {
 291                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
 292                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
 293         }
 294 
 295   CLEANUP:
 296         for (i = 0; i < 4; i++) {
 297                 for (j = 0; j < 4; j++) {
 298                         mp_clear(&precomp[i][j][0]);
 299                         mp_clear(&precomp[i][j][1]);
 300                 }
 301         }
 302         return res;
 303 }
 304 
 305 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 306  * k2 * P(x, y), where G is the generator (base point) of the group of
 307  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 308  * Input and output values are assumed to be NOT field-encoded. */
 309 mp_err
 310 ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
 311                          const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
 312 {
 313         mp_err res = MP_OKAY;
 314         mp_int k1t, k2t;
 315         const mp_int *k1p, *k2p;
 316 
 317         MP_DIGITS(&k1t) = 0;
 318         MP_DIGITS(&k2t) = 0;
 319 
 320         ARGCHK(group != NULL, MP_BADARG);
 321 
 322         /* want scalar to be less than or equal to group order */
 323         if (k1 != NULL) {
 324                 if (mp_cmp(k1, &group->order) >= 0) {
 325                         MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
 326                         MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
 327                         k1p = &k1t;
 328                 } else {
 329                         k1p = k1;
 330                 }
 331         } else {
 332                 k1p = k1;
 333         }
 334         if (k2 != NULL) {
 335                 if (mp_cmp(k2, &group->order) >= 0) {
 336                         MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
 337                         MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
 338                         k2p = &k2t;
 339                 } else {
 340                         k2p = k2;
 341                 }
 342         } else {
 343                 k2p = k2;
 344         }
 345 
 346         /* if points_mul is defined, then use it */
 347         if (group->points_mul) {
 348                 res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
 349         } else {
 350                 res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
 351         }
 352 
 353   CLEANUP:
 354         mp_clear(&k1t);
 355         mp_clear(&k2t);
 356         return res;
 357 }
--- EOF ---