1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <setjmp.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <thread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/filio.h>
  71 # include <sys/utsname.h>
  72 # include <sys/systeminfo.h>
  73 # include <sys/socket.h>
  74 # include <sys/trap.h>
  75 # include <sys/lwp.h>
  76 # include <poll.h>
  77 # include <sys/lwp.h>
  78 # include <procfs.h>     //  see comment in <sys/procfs.h>
  79 
  80 #ifndef AMD64
  81 // QQQ seems useless at this point
  82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  83 #endif // AMD64
  84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  85 
  86 
  87 #define MAX_PATH (2 * K)
  88 
  89 // Minimum usable stack sizes required to get to user code. Space for
  90 // HotSpot guard pages is added later.
  91 #ifdef _LP64
  92 size_t os::Posix::_compiler_thread_min_stack_allowed = 202 * K;
  93 size_t os::Posix::_java_thread_min_stack_allowed = 48 * K;
  94 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
  95 #else
  96 size_t os::Posix::_compiler_thread_min_stack_allowed = 32 * K;
  97 size_t os::Posix::_java_thread_min_stack_allowed = 32 * K;
  98 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
  99 #endif // _LP64
 100 
 101 #ifdef AMD64
 102 #define REG_SP REG_RSP
 103 #define REG_PC REG_RIP
 104 #define REG_FP REG_RBP
 105 #else
 106 #define REG_SP UESP
 107 #define REG_PC EIP
 108 #define REG_FP EBP
 109 // 4900493 counter to prevent runaway LDTR refresh attempt
 110 
 111 static volatile int ldtr_refresh = 0;
 112 // the libthread instruction that faults because of the stale LDTR
 113 
 114 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 115                        };
 116 #endif // AMD64
 117 
 118 char* os::non_memory_address_word() {
 119   // Must never look like an address returned by reserve_memory,
 120   // even in its subfields (as defined by the CPU immediate fields,
 121   // if the CPU splits constants across multiple instructions).
 122   return (char*) -1;
 123 }
 124 
 125 //
 126 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 127 // There are issues with libthread giving out uc_links for different threads
 128 // on the same uc_link chain and bad or circular links.
 129 //
 130 bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
 131   if (valid >= suspect ||
 132       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 133       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 134       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 135     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 136     return false;
 137   }
 138 
 139   if (thread->is_Java_thread()) {
 140     if (!valid_stack_address(thread, (address)suspect)) {
 141       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 142       return false;
 143     }
 144     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 145       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 146       return false;
 147     }
 148   }
 149   return true;
 150 }
 151 
 152 // We will only follow one level of uc_link since there are libthread
 153 // issues with ucontext linking and it is better to be safe and just
 154 // let caller retry later.
 155 const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 156   const ucontext_t *uc) {
 157 
 158   const ucontext_t *retuc = NULL;
 159 
 160   if (uc != NULL) {
 161     if (uc->uc_link == NULL) {
 162       // cannot validate without uc_link so accept current ucontext
 163       retuc = uc;
 164     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 165       // first ucontext is valid so try the next one
 166       uc = uc->uc_link;
 167       if (uc->uc_link == NULL) {
 168         // cannot validate without uc_link so accept current ucontext
 169         retuc = uc;
 170       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 171         // the ucontext one level down is also valid so return it
 172         retuc = uc;
 173       }
 174     }
 175   }
 176   return retuc;
 177 }
 178 
 179 // Assumes ucontext is valid
 180 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
 181   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 182 }
 183 
 184 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
 185   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
 186 }
 187 
 188 // Assumes ucontext is valid
 189 intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
 190   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 191 }
 192 
 193 // Assumes ucontext is valid
 194 intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
 195   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 196 }
 197 
 198 address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
 199   return (address) uc->uc_mcontext.gregs[REG_PC];
 200 }
 201 
 202 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 203 // is currently interrupted by SIGPROF.
 204 //
 205 // The difference between this and os::fetch_frame_from_context() is that
 206 // here we try to skip nested signal frames.
 207 // This method is also used for stack overflow signal handling.
 208 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 209   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 210 
 211   assert(thread != NULL, "just checking");
 212   assert(ret_sp != NULL, "just checking");
 213   assert(ret_fp != NULL, "just checking");
 214 
 215   const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 216   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 217 }
 218 
 219 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 220                     intptr_t** ret_sp, intptr_t** ret_fp) {
 221 
 222   ExtendedPC  epc;
 223   const ucontext_t *uc = (const ucontext_t*)ucVoid;
 224 
 225   if (uc != NULL) {
 226     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 227     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 228     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 229   } else {
 230     // construct empty ExtendedPC for return value checking
 231     epc = ExtendedPC(NULL);
 232     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 233     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 234   }
 235 
 236   return epc;
 237 }
 238 
 239 frame os::fetch_frame_from_context(const void* ucVoid) {
 240   intptr_t* sp;
 241   intptr_t* fp;
 242   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 243   return frame(sp, fp, epc.pc());
 244 }
 245 
 246 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 247   intptr_t* sp;
 248   intptr_t* fp;
 249   ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 250   return frame(sp, fp, epc.pc());
 251 }
 252 
 253 bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 254  address pc = (address) os::Solaris::ucontext_get_pc(uc);
 255   if (Interpreter::contains(pc)) {
 256     // interpreter performs stack banging after the fixed frame header has
 257     // been generated while the compilers perform it before. To maintain
 258     // semantic consistency between interpreted and compiled frames, the
 259     // method returns the Java sender of the current frame.
 260     *fr = os::fetch_frame_from_ucontext(thread, uc);
 261     if (!fr->is_first_java_frame()) {
 262       // get_frame_at_stack_banging_point() is only called when we
 263       // have well defined stacks so java_sender() calls do not need
 264       // to assert safe_for_sender() first.
 265       *fr = fr->java_sender();
 266     }
 267   } else {
 268     // more complex code with compiled code
 269     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 270     CodeBlob* cb = CodeCache::find_blob(pc);
 271     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 272       // Not sure where the pc points to, fallback to default
 273       // stack overflow handling
 274       return false;
 275     } else {
 276       // in compiled code, the stack banging is performed just after the return pc
 277       // has been pushed on the stack
 278       intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
 279       intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
 280       *fr = frame(sp + 1, fp, (address)*sp);
 281       if (!fr->is_java_frame()) {
 282         // See java_sender() comment above.
 283         *fr = fr->java_sender();
 284       }
 285     }
 286   }
 287   assert(fr->is_java_frame(), "Safety check");
 288   return true;
 289 }
 290 
 291 frame os::get_sender_for_C_frame(frame* fr) {
 292   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 293 }
 294 
 295 extern "C" intptr_t *_get_current_sp();  // in .il file
 296 
 297 address os::current_stack_pointer() {
 298   return (address)_get_current_sp();
 299 }
 300 
 301 extern "C" intptr_t *_get_current_fp();  // in .il file
 302 
 303 frame os::current_frame() {
 304   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 305   // fp is for os::current_frame. We want the fp for our caller.
 306   frame myframe((intptr_t*)os::current_stack_pointer(),
 307                 (intptr_t*)fp,
 308                 CAST_FROM_FN_PTR(address, os::current_frame));
 309   frame caller_frame = os::get_sender_for_C_frame(&myframe);
 310 
 311   if (os::is_first_C_frame(&caller_frame)) {
 312     // stack is not walkable
 313     frame ret; // This will be a null useless frame
 314     return ret;
 315   } else {
 316     // return frame for our caller's caller
 317     return os::get_sender_for_C_frame(&caller_frame);
 318   }
 319 }
 320 
 321 #ifndef AMD64
 322 
 323 // Detecting SSE support by OS
 324 // From solaris_i486.s
 325 extern "C" bool sse_check();
 326 extern "C" bool sse_unavailable();
 327 
 328 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 329 static int sse_status = SSE_UNKNOWN;
 330 
 331 
 332 static void  check_for_sse_support() {
 333   if (!VM_Version::supports_sse()) {
 334     sse_status = SSE_NOT_SUPPORTED;
 335     return;
 336   }
 337   // looking for _sse_hw in libc.so, if it does not exist or
 338   // the value (int) is 0, OS has no support for SSE
 339   int *sse_hwp;
 340   void *h;
 341 
 342   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 343     //open failed, presume no support for SSE
 344     sse_status = SSE_NOT_SUPPORTED;
 345     return;
 346   }
 347   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 348     sse_status = SSE_NOT_SUPPORTED;
 349   } else if (*sse_hwp == 0) {
 350     sse_status = SSE_NOT_SUPPORTED;
 351   }
 352   dlclose(h);
 353 
 354   if (sse_status == SSE_UNKNOWN) {
 355     bool (*try_sse)() = (bool (*)())sse_check;
 356     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 357   }
 358 
 359 }
 360 
 361 #endif // AMD64
 362 
 363 bool os::supports_sse() {
 364 #ifdef AMD64
 365   return true;
 366 #else
 367   if (sse_status == SSE_UNKNOWN)
 368     check_for_sse_support();
 369   return sse_status == SSE_SUPPORTED;
 370 #endif // AMD64
 371 }
 372 
 373 bool os::is_allocatable(size_t bytes) {
 374 #ifdef AMD64
 375   return true;
 376 #else
 377 
 378   if (bytes < 2 * G) {
 379     return true;
 380   }
 381 
 382   char* addr = reserve_memory(bytes, NULL);
 383 
 384   if (addr != NULL) {
 385     release_memory(addr, bytes);
 386   }
 387 
 388   return addr != NULL;
 389 #endif // AMD64
 390 
 391 }
 392 
 393 extern "C" JNIEXPORT int
 394 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 395                           int abort_if_unrecognized) {
 396   ucontext_t* uc = (ucontext_t*) ucVoid;
 397 
 398 #ifndef AMD64
 399   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 400     // the SSE instruction faulted. supports_sse() need return false.
 401     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 402     return true;
 403   }
 404 #endif // !AMD64
 405 
 406   Thread* t = Thread::current_or_null_safe();
 407 
 408   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 409   // (no destructors can be run)
 410   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 411 
 412   SignalHandlerMark shm(t);
 413 
 414   if(sig == SIGPIPE || sig == SIGXFSZ) {
 415     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 416       return true;
 417     } else {
 418       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 419       return true;
 420     }
 421   }
 422 
 423   JavaThread* thread = NULL;
 424   VMThread* vmthread = NULL;
 425 
 426   if (os::Solaris::signal_handlers_are_installed) {
 427     if (t != NULL ){
 428       if(t->is_Java_thread()) {
 429         thread = (JavaThread*)t;
 430       }
 431       else if(t->is_VM_thread()){
 432         vmthread = (VMThread *)t;
 433       }
 434     }
 435   }
 436 
 437   if (sig == os::Solaris::SIGasync()) {
 438     if(thread || vmthread){
 439       OSThread::SR_handler(t, uc);
 440       return true;
 441     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 442       return true;
 443     } else {
 444       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 445       // non-java thread
 446       return true;
 447     }
 448   }
 449 
 450   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 451     // can't decode this kind of signal
 452     info = NULL;
 453   } else {
 454     assert(sig == info->si_signo, "bad siginfo");
 455   }
 456 
 457   // decide if this trap can be handled by a stub
 458   address stub = NULL;
 459 
 460   address pc          = NULL;
 461 
 462   //%note os_trap_1
 463   if (info != NULL && uc != NULL && thread != NULL) {
 464     // factor me: getPCfromContext
 465     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 466 
 467     if (StubRoutines::is_safefetch_fault(pc)) {
 468       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 469       return true;
 470     }
 471 
 472     // Handle ALL stack overflow variations here
 473     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 474       address addr = (address) info->si_addr;
 475       if (thread->in_stack_yellow_reserved_zone(addr)) {
 476         if (thread->thread_state() == _thread_in_Java) {
 477           if (thread->in_stack_reserved_zone(addr)) {
 478             frame fr;
 479             if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 480               assert(fr.is_java_frame(), "Must be Java frame");
 481               frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 482               if (activation.sp() != NULL) {
 483                 thread->disable_stack_reserved_zone();
 484                 if (activation.is_interpreted_frame()) {
 485                   thread->set_reserved_stack_activation((address)(
 486                     activation.fp() + frame::interpreter_frame_initial_sp_offset));
 487                 } else {
 488                   thread->set_reserved_stack_activation((address)activation.unextended_sp());
 489                 }
 490                 return true;
 491               }
 492             }
 493           }
 494           // Throw a stack overflow exception.  Guard pages will be reenabled
 495           // while unwinding the stack.
 496           thread->disable_stack_yellow_reserved_zone();
 497           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 498         } else {
 499           // Thread was in the vm or native code.  Return and try to finish.
 500           thread->disable_stack_yellow_reserved_zone();
 501           return true;
 502         }
 503       } else if (thread->in_stack_red_zone(addr)) {
 504         // Fatal red zone violation.  Disable the guard pages and fall through
 505         // to handle_unexpected_exception way down below.
 506         thread->disable_stack_red_zone();
 507         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 508       }
 509     }
 510 
 511     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 512       // Verify that OS save/restore AVX registers.
 513       stub = VM_Version::cpuinfo_cont_addr();
 514     }
 515 
 516     if (thread->thread_state() == _thread_in_vm) {
 517       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 518         address next_pc = Assembler::locate_next_instruction(pc);
 519         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 520       }
 521     }
 522 
 523     if (thread->thread_state() == _thread_in_Java) {
 524       // Support Safepoint Polling
 525       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 526         stub = SharedRuntime::get_poll_stub(pc);
 527       }
 528       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 529         // BugId 4454115: A read from a MappedByteBuffer can fault
 530         // here if the underlying file has been truncated.
 531         // Do not crash the VM in such a case.
 532         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 533         if (cb != NULL) {
 534           CompiledMethod* nm = cb->as_compiled_method_or_null();
 535           if (nm != NULL && nm->has_unsafe_access()) {
 536             address next_pc = Assembler::locate_next_instruction(pc);
 537             stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 538           }
 539         }
 540       }
 541       else
 542       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 543         // integer divide by zero
 544         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 545       }
 546 #ifndef AMD64
 547       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 548         // floating-point divide by zero
 549         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 550       }
 551       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 552         // The encoding of D2I in i486.ad can cause an exception prior
 553         // to the fist instruction if there was an invalid operation
 554         // pending. We want to dismiss that exception. From the win_32
 555         // side it also seems that if it really was the fist causing
 556         // the exception that we do the d2i by hand with different
 557         // rounding. Seems kind of weird. QQQ TODO
 558         // Note that we take the exception at the NEXT floating point instruction.
 559         if (pc[0] == 0xDB) {
 560             assert(pc[0] == 0xDB, "not a FIST opcode");
 561             assert(pc[1] == 0x14, "not a FIST opcode");
 562             assert(pc[2] == 0x24, "not a FIST opcode");
 563             return true;
 564         } else {
 565             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 566             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 567             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 568         }
 569       }
 570       else if (sig == SIGFPE ) {
 571         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 572       }
 573 #endif // !AMD64
 574 
 575         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 576         // to return properly from the handler without this extra stuff on the back side.
 577 
 578       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 579         // Determination of interpreter/vtable stub/compiled code null exception
 580         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 581       }
 582     }
 583 
 584     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 585     // and the heap gets shrunk before the field access.
 586     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 587       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 588       if (addr != (address)-1) {
 589         stub = addr;
 590       }
 591     }
 592 
 593     // Check to see if we caught the safepoint code in the
 594     // process of write protecting the memory serialization page.
 595     // It write enables the page immediately after protecting it
 596     // so we can just return to retry the write.
 597     if ((sig == SIGSEGV) &&
 598         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 599       // Block current thread until the memory serialize page permission restored.
 600       os::block_on_serialize_page_trap();
 601       return true;
 602     }
 603   }
 604 
 605   // Execution protection violation
 606   //
 607   // Preventative code for future versions of Solaris which may
 608   // enable execution protection when running the 32-bit VM on AMD64.
 609   //
 610   // This should be kept as the last step in the triage.  We don't
 611   // have a dedicated trap number for a no-execute fault, so be
 612   // conservative and allow other handlers the first shot.
 613   //
 614   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 615   // this si_code is so generic that it is almost meaningless; and
 616   // the si_code for this condition may change in the future.
 617   // Furthermore, a false-positive should be harmless.
 618   if (UnguardOnExecutionViolation > 0 &&
 619       (sig == SIGSEGV || sig == SIGBUS) &&
 620       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 621     int page_size = os::vm_page_size();
 622     address addr = (address) info->si_addr;
 623     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 624     // Make sure the pc and the faulting address are sane.
 625     //
 626     // If an instruction spans a page boundary, and the page containing
 627     // the beginning of the instruction is executable but the following
 628     // page is not, the pc and the faulting address might be slightly
 629     // different - we still want to unguard the 2nd page in this case.
 630     //
 631     // 15 bytes seems to be a (very) safe value for max instruction size.
 632     bool pc_is_near_addr =
 633       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 634     bool instr_spans_page_boundary =
 635       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 636                        (intptr_t) page_size) > 0);
 637 
 638     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 639       static volatile address last_addr =
 640         (address) os::non_memory_address_word();
 641 
 642       // In conservative mode, don't unguard unless the address is in the VM
 643       if (addr != last_addr &&
 644           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 645 
 646         // Make memory rwx and retry
 647         address page_start =
 648           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 649         bool res = os::protect_memory((char*) page_start, page_size,
 650                                       os::MEM_PROT_RWX);
 651 
 652         log_debug(os)("Execution protection violation "
 653                       "at " INTPTR_FORMAT
 654                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 655                       p2i(page_start), (res ? "success" : "failed"), errno);
 656         stub = pc;
 657 
 658         // Set last_addr so if we fault again at the same address, we don't end
 659         // up in an endless loop.
 660         //
 661         // There are two potential complications here.  Two threads trapping at
 662         // the same address at the same time could cause one of the threads to
 663         // think it already unguarded, and abort the VM.  Likely very rare.
 664         //
 665         // The other race involves two threads alternately trapping at
 666         // different addresses and failing to unguard the page, resulting in
 667         // an endless loop.  This condition is probably even more unlikely than
 668         // the first.
 669         //
 670         // Although both cases could be avoided by using locks or thread local
 671         // last_addr, these solutions are unnecessary complication: this
 672         // handler is a best-effort safety net, not a complete solution.  It is
 673         // disabled by default and should only be used as a workaround in case
 674         // we missed any no-execute-unsafe VM code.
 675 
 676         last_addr = addr;
 677       }
 678     }
 679   }
 680 
 681   if (stub != NULL) {
 682     // save all thread context in case we need to restore it
 683 
 684     if (thread != NULL) thread->set_saved_exception_pc(pc);
 685     // 12/02/99: On Sparc it appears that the full context is also saved
 686     // but as yet, no one looks at or restores that saved context
 687     os::Solaris::ucontext_set_pc(uc, stub);
 688     return true;
 689   }
 690 
 691   // signal-chaining
 692   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 693     return true;
 694   }
 695 
 696 #ifndef AMD64
 697   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 698   // Handle an undefined selector caused by an attempt to assign
 699   // fs in libthread getipriptr(). With the current libthread design every 512
 700   // thread creations the LDT for a private thread data structure is extended
 701   // and thre is a hazard that and another thread attempting a thread creation
 702   // will use a stale LDTR that doesn't reflect the structure's growth,
 703   // causing a GP fault.
 704   // Enforce the probable limit of passes through here to guard against an
 705   // infinite loop if some other move to fs caused the GP fault. Note that
 706   // this loop counter is ultimately a heuristic as it is possible for
 707   // more than one thread to generate this fault at a time in an MP system.
 708   // In the case of the loop count being exceeded or if the poll fails
 709   // just fall through to a fatal error.
 710   // If there is some other source of T_GPFLT traps and the text at EIP is
 711   // unreadable this code will loop infinitely until the stack is exausted.
 712   // The key to diagnosis in this case is to look for the bottom signal handler
 713   // frame.
 714 
 715   if(! IgnoreLibthreadGPFault) {
 716     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 717       const unsigned char *p =
 718                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 719 
 720       // Expected instruction?
 721 
 722       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 723 
 724         Atomic::inc(&ldtr_refresh);
 725 
 726         // Infinite loop?
 727 
 728         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 729 
 730           // No, force scheduling to get a fresh view of the LDTR
 731 
 732           if(poll(NULL, 0, 10) == 0) {
 733 
 734             // Retry the move
 735 
 736             return false;
 737           }
 738         }
 739       }
 740     }
 741   }
 742 #endif // !AMD64
 743 
 744   if (!abort_if_unrecognized) {
 745     // caller wants another chance, so give it to him
 746     return false;
 747   }
 748 
 749   if (!os::Solaris::libjsig_is_loaded) {
 750     struct sigaction oldAct;
 751     sigaction(sig, (struct sigaction *)0, &oldAct);
 752     if (oldAct.sa_sigaction != signalHandler) {
 753       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 754                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 755       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 756     }
 757   }
 758 
 759   if (pc == NULL && uc != NULL) {
 760     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 761   }
 762 
 763   // unmask current signal
 764   sigset_t newset;
 765   sigemptyset(&newset);
 766   sigaddset(&newset, sig);
 767   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 768 
 769   // Determine which sort of error to throw.  Out of swap may signal
 770   // on the thread stack, which could get a mapping error when touched.
 771   address addr = (address) info->si_addr;
 772   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 773     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 774   }
 775 
 776   VMError::report_and_die(t, sig, pc, info, ucVoid);
 777 
 778   ShouldNotReachHere();
 779   return false;
 780 }
 781 
 782 void os::print_context(outputStream *st, const void *context) {
 783   if (context == NULL) return;
 784 
 785   const ucontext_t *uc = (const ucontext_t*)context;
 786   st->print_cr("Registers:");
 787 #ifdef AMD64
 788   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 789   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 790   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 791   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 792   st->cr();
 793   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 794   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 795   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 796   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 797   st->cr();
 798   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 799   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 800   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 801   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 802   st->cr();
 803   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 804   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 805   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 806   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 807   st->cr();
 808   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 809   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 810 #else
 811   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 812   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 813   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 814   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 815   st->cr();
 816   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 817   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 818   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 819   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 820   st->cr();
 821   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 822   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 823 #endif // AMD64
 824   st->cr();
 825   st->cr();
 826 
 827   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 828   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 829   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 830   st->cr();
 831 
 832   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 833   // point to garbage if entry point in an nmethod is corrupted. Leave
 834   // this at the end, and hope for the best.
 835   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 836   address pc = epc.pc();
 837   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 838   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 839 }
 840 
 841 void os::print_register_info(outputStream *st, const void *context) {
 842   if (context == NULL) return;
 843 
 844   const ucontext_t *uc = (const ucontext_t*)context;
 845 
 846   st->print_cr("Register to memory mapping:");
 847   st->cr();
 848 
 849   // this is horrendously verbose but the layout of the registers in the
 850   // context does not match how we defined our abstract Register set, so
 851   // we can't just iterate through the gregs area
 852 
 853   // this is only for the "general purpose" registers
 854 
 855 #ifdef AMD64
 856   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 857   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 858   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 859   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 860   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 861   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 862   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 863   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 864   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 865   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 866   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 867   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 868   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 869   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 870   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 871   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 872 #else
 873   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 874   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 875   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 876   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 877   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 878   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 879   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 880   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 881 #endif
 882 
 883   st->cr();
 884 }
 885 
 886 
 887 #ifdef AMD64
 888 void os::Solaris::init_thread_fpu_state(void) {
 889   // Nothing to do
 890 }
 891 #else
 892 // From solaris_i486.s
 893 extern "C" void fixcw();
 894 
 895 void os::Solaris::init_thread_fpu_state(void) {
 896   // Set fpu to 53 bit precision. This happens too early to use a stub.
 897   fixcw();
 898 }
 899 
 900 // These routines are the initial value of atomic_xchg_entry(),
 901 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 902 // until initialization is complete.
 903 // TODO - replace with .il implementation when compiler supports it.
 904 
 905 typedef jint  xchg_func_t        (jint,  volatile jint*);
 906 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 907 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 908 typedef jint  add_func_t         (jint,  volatile jint*);
 909 
 910 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 911   // try to use the stub:
 912   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 913 
 914   if (func != NULL) {
 915     os::atomic_xchg_func = func;
 916     return (*func)(exchange_value, dest);
 917   }
 918   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 919 
 920   jint old_value = *dest;
 921   *dest = exchange_value;
 922   return old_value;
 923 }
 924 
 925 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 926   // try to use the stub:
 927   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 928 
 929   if (func != NULL) {
 930     os::atomic_cmpxchg_func = func;
 931     return (*func)(exchange_value, dest, compare_value);
 932   }
 933   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 934 
 935   jint old_value = *dest;
 936   if (old_value == compare_value)
 937     *dest = exchange_value;
 938   return old_value;
 939 }
 940 
 941 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 942   // try to use the stub:
 943   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 944 
 945   if (func != NULL) {
 946     os::atomic_cmpxchg_long_func = func;
 947     return (*func)(exchange_value, dest, compare_value);
 948   }
 949   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 950 
 951   jlong old_value = *dest;
 952   if (old_value == compare_value)
 953     *dest = exchange_value;
 954   return old_value;
 955 }
 956 
 957 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 958   // try to use the stub:
 959   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 960 
 961   if (func != NULL) {
 962     os::atomic_add_func = func;
 963     return (*func)(add_value, dest);
 964   }
 965   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 966 
 967   return (*dest) += add_value;
 968 }
 969 
 970 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 971 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 972 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 973 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 974 
 975 extern "C" void _solaris_raw_setup_fpu(address ptr);
 976 void os::setup_fpu() {
 977   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 978   _solaris_raw_setup_fpu(fpu_cntrl);
 979 }
 980 #endif // AMD64
 981 
 982 #ifndef PRODUCT
 983 void os::verify_stack_alignment() {
 984 #ifdef AMD64
 985   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 986 #endif
 987 }
 988 #endif
 989 
 990 int os::extra_bang_size_in_bytes() {
 991   // JDK-8050147 requires the full cache line bang for x86.
 992   return VM_Version::L1_line_size();
 993 }