1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/codeBuffer.hpp"
  28 #include "asm/macroAssembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "gc/shared/cardTableModRefBS.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "registerSaver_s390.hpp"
  41 #include "runtime/biasedLocking.hpp"
  42 #include "runtime/icache.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/objectMonitor.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/stubRoutines.hpp"
  48 #include "utilities/events.hpp"
  49 #include "utilities/macros.hpp"
  50 #if INCLUDE_ALL_GCS
  51 #include "gc/g1/g1CollectedHeap.inline.hpp"
  52 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  53 #include "gc/g1/heapRegion.hpp"
  54 #endif
  55 
  56 #include <ucontext.h>
  57 
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define BIND(label)        bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 // Move 32-bit register if destination and source are different.
  62 void MacroAssembler::lr_if_needed(Register rd, Register rs) {
  63   if (rs != rd) { z_lr(rd, rs); }
  64 }
  65 
  66 // Move register if destination and source are different.
  67 void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
  68   if (rs != rd) { z_lgr(rd, rs); }
  69 }
  70 
  71 // Zero-extend 32-bit register into 64-bit register if destination and source are different.
  72 void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
  73   if (rs != rd) { z_llgfr(rd, rs); }
  74 }
  75 
  76 // Move float register if destination and source are different.
  77 void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
  78   if (rs != rd) { z_ldr(rd, rs); }
  79 }
  80 
  81 // Move integer register if destination and source are different.
  82 // It is assumed that shorter-than-int types are already
  83 // appropriately sign-extended.
  84 void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
  85                                         BasicType src_type) {
  86   assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
  87   assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
  88 
  89   if (dst_type == src_type) {
  90     lgr_if_needed(dst, src); // Just move all 64 bits.
  91     return;
  92   }
  93 
  94   switch (dst_type) {
  95     // Do not support these types for now.
  96     //  case T_BOOLEAN:
  97     case T_BYTE:  // signed byte
  98       switch (src_type) {
  99         case T_INT:
 100           z_lgbr(dst, src);
 101           break;
 102         default:
 103           ShouldNotReachHere();
 104       }
 105       return;
 106 
 107     case T_CHAR:
 108     case T_SHORT:
 109       switch (src_type) {
 110         case T_INT:
 111           if (dst_type == T_CHAR) {
 112             z_llghr(dst, src);
 113           } else {
 114             z_lghr(dst, src);
 115           }
 116           break;
 117         default:
 118           ShouldNotReachHere();
 119       }
 120       return;
 121 
 122     case T_INT:
 123       switch (src_type) {
 124         case T_BOOLEAN:
 125         case T_BYTE:
 126         case T_CHAR:
 127         case T_SHORT:
 128         case T_INT:
 129         case T_LONG:
 130         case T_OBJECT:
 131         case T_ARRAY:
 132         case T_VOID:
 133         case T_ADDRESS:
 134           lr_if_needed(dst, src);
 135           // llgfr_if_needed(dst, src);  // zero-extend (in case we need to find a bug).
 136           return;
 137 
 138         default:
 139           assert(false, "non-integer src type");
 140           return;
 141       }
 142     case T_LONG:
 143       switch (src_type) {
 144         case T_BOOLEAN:
 145         case T_BYTE:
 146         case T_CHAR:
 147         case T_SHORT:
 148         case T_INT:
 149           z_lgfr(dst, src); // sign extension
 150           return;
 151 
 152         case T_LONG:
 153         case T_OBJECT:
 154         case T_ARRAY:
 155         case T_VOID:
 156         case T_ADDRESS:
 157           lgr_if_needed(dst, src);
 158           return;
 159 
 160         default:
 161           assert(false, "non-integer src type");
 162           return;
 163       }
 164       return;
 165     case T_OBJECT:
 166     case T_ARRAY:
 167     case T_VOID:
 168     case T_ADDRESS:
 169       switch (src_type) {
 170         // These types don't make sense to be converted to pointers:
 171         //      case T_BOOLEAN:
 172         //      case T_BYTE:
 173         //      case T_CHAR:
 174         //      case T_SHORT:
 175 
 176         case T_INT:
 177           z_llgfr(dst, src); // zero extension
 178           return;
 179 
 180         case T_LONG:
 181         case T_OBJECT:
 182         case T_ARRAY:
 183         case T_VOID:
 184         case T_ADDRESS:
 185           lgr_if_needed(dst, src);
 186           return;
 187 
 188         default:
 189           assert(false, "non-integer src type");
 190           return;
 191       }
 192       return;
 193     default:
 194       assert(false, "non-integer dst type");
 195       return;
 196   }
 197 }
 198 
 199 // Move float register if destination and source are different.
 200 void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
 201                                          FloatRegister src, BasicType src_type) {
 202   assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
 203   assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
 204   if (dst_type == src_type) {
 205     ldr_if_needed(dst, src); // Just move all 64 bits.
 206   } else {
 207     switch (dst_type) {
 208       case T_FLOAT:
 209         assert(src_type == T_DOUBLE, "invalid float type combination");
 210         z_ledbr(dst, src);
 211         return;
 212       case T_DOUBLE:
 213         assert(src_type == T_FLOAT, "invalid float type combination");
 214         z_ldebr(dst, src);
 215         return;
 216       default:
 217         assert(false, "non-float dst type");
 218         return;
 219     }
 220   }
 221 }
 222 
 223 // Optimized emitter for reg to mem operations.
 224 // Uses modern instructions if running on modern hardware, classic instructions
 225 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 226 // Data register (reg) cannot be used as work register.
 227 //
 228 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 229 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 230 void MacroAssembler::freg2mem_opt(FloatRegister reg,
 231                                   int64_t       disp,
 232                                   Register      index,
 233                                   Register      base,
 234                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 235                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 236                                   Register      scratch) {
 237   index = (index == noreg) ? Z_R0 : index;
 238   if (Displacement::is_shortDisp(disp)) {
 239     (this->*classic)(reg, disp, index, base);
 240   } else {
 241     if (Displacement::is_validDisp(disp)) {
 242       (this->*modern)(reg, disp, index, base);
 243     } else {
 244       if (scratch != Z_R0 && scratch != Z_R1) {
 245         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 246       } else {
 247         if (scratch != Z_R0) {   // scratch == Z_R1
 248           if ((scratch == index) || (index == base)) {
 249             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 250           } else {
 251             add2reg(scratch, disp, base);
 252             (this->*classic)(reg, 0, index, scratch);
 253             if (base == scratch) {
 254               add2reg(base, -disp);  // Restore base.
 255             }
 256           }
 257         } else {   // scratch == Z_R0
 258           z_lgr(scratch, base);
 259           add2reg(base, disp);
 260           (this->*classic)(reg, 0, index, base);
 261           z_lgr(base, scratch);      // Restore base.
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
 269   if (is_double) {
 270     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
 271   } else {
 272     freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
 273   }
 274 }
 275 
 276 // Optimized emitter for mem to reg operations.
 277 // Uses modern instructions if running on modern hardware, classic instructions
 278 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 279 // data register (reg) cannot be used as work register.
 280 //
 281 // Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
 282 // CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
 283 void MacroAssembler::mem2freg_opt(FloatRegister reg,
 284                                   int64_t       disp,
 285                                   Register      index,
 286                                   Register      base,
 287                                   void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
 288                                   void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
 289                                   Register      scratch) {
 290   index = (index == noreg) ? Z_R0 : index;
 291   if (Displacement::is_shortDisp(disp)) {
 292     (this->*classic)(reg, disp, index, base);
 293   } else {
 294     if (Displacement::is_validDisp(disp)) {
 295       (this->*modern)(reg, disp, index, base);
 296     } else {
 297       if (scratch != Z_R0 && scratch != Z_R1) {
 298         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 299       } else {
 300         if (scratch != Z_R0) {   // scratch == Z_R1
 301           if ((scratch == index) || (index == base)) {
 302             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 303           } else {
 304             add2reg(scratch, disp, base);
 305             (this->*classic)(reg, 0, index, scratch);
 306             if (base == scratch) {
 307               add2reg(base, -disp);  // Restore base.
 308             }
 309           }
 310         } else {   // scratch == Z_R0
 311           z_lgr(scratch, base);
 312           add2reg(base, disp);
 313           (this->*classic)(reg, 0, index, base);
 314           z_lgr(base, scratch);      // Restore base.
 315         }
 316       }
 317     }
 318   }
 319 }
 320 
 321 void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
 322   if (is_double) {
 323     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
 324   } else {
 325     mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
 326   }
 327 }
 328 
 329 // Optimized emitter for reg to mem operations.
 330 // Uses modern instructions if running on modern hardware, classic instructions
 331 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 332 // Data register (reg) cannot be used as work register.
 333 //
 334 // Don't rely on register locking, instead pass a scratch register
 335 // (Z_R0 by default)
 336 // CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
 337 void MacroAssembler::reg2mem_opt(Register reg,
 338                                  int64_t  disp,
 339                                  Register index,
 340                                  Register base,
 341                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 342                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
 343                                  Register scratch) {
 344   index = (index == noreg) ? Z_R0 : index;
 345   if (Displacement::is_shortDisp(disp)) {
 346     (this->*classic)(reg, disp, index, base);
 347   } else {
 348     if (Displacement::is_validDisp(disp)) {
 349       (this->*modern)(reg, disp, index, base);
 350     } else {
 351       if (scratch != Z_R0 && scratch != Z_R1) {
 352         (this->*modern)(reg, disp, index, base);      // Will fail with disp out of range.
 353       } else {
 354         if (scratch != Z_R0) {   // scratch == Z_R1
 355           if ((scratch == index) || (index == base)) {
 356             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 357           } else {
 358             add2reg(scratch, disp, base);
 359             (this->*classic)(reg, 0, index, scratch);
 360             if (base == scratch) {
 361               add2reg(base, -disp);  // Restore base.
 362             }
 363           }
 364         } else {   // scratch == Z_R0
 365           if ((scratch == reg) || (scratch == base) || (reg == base)) {
 366             (this->*modern)(reg, disp, index, base);  // Will fail with disp out of range.
 367           } else {
 368             z_lgr(scratch, base);
 369             add2reg(base, disp);
 370             (this->*classic)(reg, 0, index, base);
 371             z_lgr(base, scratch);    // Restore base.
 372           }
 373         }
 374       }
 375     }
 376   }
 377 }
 378 
 379 int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
 380   int store_offset = offset();
 381   if (is_double) {
 382     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
 383   } else {
 384     reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
 385   }
 386   return store_offset;
 387 }
 388 
 389 // Optimized emitter for mem to reg operations.
 390 // Uses modern instructions if running on modern hardware, classic instructions
 391 // otherwise. Prefers (usually shorter) classic instructions if applicable.
 392 // Data register (reg) will be used as work register where possible.
 393 void MacroAssembler::mem2reg_opt(Register reg,
 394                                  int64_t  disp,
 395                                  Register index,
 396                                  Register base,
 397                                  void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
 398                                  void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
 399   index = (index == noreg) ? Z_R0 : index;
 400   if (Displacement::is_shortDisp(disp)) {
 401     (this->*classic)(reg, disp, index, base);
 402   } else {
 403     if (Displacement::is_validDisp(disp)) {
 404       (this->*modern)(reg, disp, index, base);
 405     } else {
 406       if ((reg == index) && (reg == base)) {
 407         z_sllg(reg, reg, 1);
 408         add2reg(reg, disp);
 409         (this->*classic)(reg, 0, noreg, reg);
 410       } else if ((reg == index) && (reg != Z_R0)) {
 411         add2reg(reg, disp);
 412         (this->*classic)(reg, 0, reg, base);
 413       } else if (reg == base) {
 414         add2reg(reg, disp);
 415         (this->*classic)(reg, 0, index, reg);
 416       } else if (reg != Z_R0) {
 417         add2reg(reg, disp, base);
 418         (this->*classic)(reg, 0, index, reg);
 419       } else { // reg == Z_R0 && reg != base here
 420         add2reg(base, disp);
 421         (this->*classic)(reg, 0, index, base);
 422         add2reg(base, -disp);
 423       }
 424     }
 425   }
 426 }
 427 
 428 void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
 429   if (is_double) {
 430     z_lg(reg, a);
 431   } else {
 432     mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
 433   }
 434 }
 435 
 436 void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
 437   mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
 438 }
 439 
 440 void MacroAssembler::and_imm(Register r, long mask,
 441                              Register tmp /* = Z_R0 */,
 442                              bool wide    /* = false */) {
 443   assert(wide || Immediate::is_simm32(mask), "mask value too large");
 444 
 445   if (!wide) {
 446     z_nilf(r, mask);
 447     return;
 448   }
 449 
 450   assert(r != tmp, " need a different temporary register !");
 451   load_const_optimized(tmp, mask);
 452   z_ngr(r, tmp);
 453 }
 454 
 455 // Calculate the 1's complement.
 456 // Note: The condition code is neither preserved nor correctly set by this code!!!
 457 // Note: (wide == false) does not protect the high order half of the target register
 458 //       from alteration. It only serves as optimization hint for 32-bit results.
 459 void MacroAssembler::not_(Register r1, Register r2, bool wide) {
 460 
 461   if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
 462     z_xilf(r1, -1);
 463     if (wide) {
 464       z_xihf(r1, -1);
 465     }
 466   } else { // Distinct src and dst registers.
 467     if (VM_Version::has_DistinctOpnds()) {
 468       load_const_optimized(r1, -1);
 469       z_xgrk(r1, r2, r1);
 470     } else {
 471       if (wide) {
 472         z_lgr(r1, r2);
 473         z_xilf(r1, -1);
 474         z_xihf(r1, -1);
 475       } else {
 476         z_lr(r1, r2);
 477         z_xilf(r1, -1);
 478       }
 479     }
 480   }
 481 }
 482 
 483 unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
 484   assert(lBitPos >=  0,      "zero is  leftmost bit position");
 485   assert(rBitPos <= 63,      "63   is rightmost bit position");
 486   assert(lBitPos <= rBitPos, "inverted selection interval");
 487   return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
 488 }
 489 
 490 // Helper function for the "Rotate_then_<logicalOP>" emitters.
 491 // Rotate src, then mask register contents such that only bits in range survive.
 492 // For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
 493 // For oneBits == true,  all bits not in range are set to 1. Useful for preserving all bits outside range.
 494 // The caller must ensure that the selected range only contains bits with defined value.
 495 void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
 496                                       int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
 497   assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
 498   bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
 499   bool srl4rll = (nRotate <  0) && (-nRotate <= lBitPos);     // Substitute SRL(G) for RLL(G).
 500   //  Pre-determine which parts of dst will be zero after shift/rotate.
 501   bool llZero  =  sll4rll && (nRotate >= 16);
 502   bool lhZero  = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
 503   bool lfZero  = llZero && lhZero;
 504   bool hlZero  = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
 505   bool hhZero  =                                 (srl4rll && (nRotate <= -16));
 506   bool hfZero  = hlZero && hhZero;
 507 
 508   // rotate then mask src operand.
 509   // if oneBits == true,  all bits outside selected range are 1s.
 510   // if oneBits == false, all bits outside selected range are 0s.
 511   if (src32bit) {   // There might be garbage in the upper 32 bits which will get masked away.
 512     if (dst32bit) {
 513       z_rll(dst, src, nRotate);   // Copy and rotate, upper half of reg remains undisturbed.
 514     } else {
 515       if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 516       else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 517       else              { z_rllg(dst, src,  nRotate); }
 518     }
 519   } else {
 520     if      (sll4rll) { z_sllg(dst, src,  nRotate); }
 521     else if (srl4rll) { z_srlg(dst, src, -nRotate); }
 522     else              { z_rllg(dst, src,  nRotate); }
 523   }
 524 
 525   unsigned long  range_mask    = create_mask(lBitPos, rBitPos);
 526   unsigned int   range_mask_h  = (unsigned int)(range_mask >> 32);
 527   unsigned int   range_mask_l  = (unsigned int)range_mask;
 528   unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
 529   unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
 530   unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
 531   unsigned short range_mask_ll = (unsigned short)range_mask;
 532   // Works for z9 and newer H/W.
 533   if (oneBits) {
 534     if ((~range_mask_l) != 0)                { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
 535     if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
 536   } else {
 537     // All bits outside range become 0s
 538     if (((~range_mask_l) != 0) &&              !lfZero) {
 539       z_nilf(dst, range_mask_l);
 540     }
 541     if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
 542       z_nihf(dst, range_mask_h);
 543     }
 544   }
 545 }
 546 
 547 // Rotate src, then insert selected range from rotated src into dst.
 548 // Clear dst before, if requested.
 549 void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
 550                                         int nRotate, bool clear_dst) {
 551   // This version does not depend on src being zero-extended int2long.
 552   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 553   z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
 554 }
 555 
 556 // Rotate src, then and selected range from rotated src into dst.
 557 // Set condition code only if so requested. Otherwise it is unpredictable.
 558 // See performance note in macroAssembler_s390.hpp for important information.
 559 void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
 560                                      int nRotate, bool test_only) {
 561   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 562   // This version does not depend on src being zero-extended int2long.
 563   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 564   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 565 }
 566 
 567 // Rotate src, then or selected range from rotated src into dst.
 568 // Set condition code only if so requested. Otherwise it is unpredictable.
 569 // See performance note in macroAssembler_s390.hpp for important information.
 570 void MacroAssembler::rotate_then_or(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 571                                     int nRotate, bool test_only) {
 572   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 573   // This version does not depend on src being zero-extended int2long.
 574   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 575   z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 576 }
 577 
 578 // Rotate src, then xor selected range from rotated src into dst.
 579 // Set condition code only if so requested. Otherwise it is unpredictable.
 580 // See performance note in macroAssembler_s390.hpp for important information.
 581 void MacroAssembler::rotate_then_xor(Register dst, Register src,  int  lBitPos,  int  rBitPos,
 582                                      int nRotate, bool test_only) {
 583   guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
 584     // This version does not depend on src being zero-extended int2long.
 585   nRotate &= 0x003f;                                       // For risbg, pretend it's an unsigned value.
 586   z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
 587 }
 588 
 589 void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
 590   if (inc.is_register()) {
 591     z_agr(r1, inc.as_register());
 592   } else { // constant
 593     intptr_t imm = inc.as_constant();
 594     add2reg(r1, imm);
 595   }
 596 }
 597 // Helper function to multiply the 64bit contents of a register by a 16bit constant.
 598 // The optimization tries to avoid the mghi instruction, since it uses the FPU for
 599 // calculation and is thus rather slow.
 600 //
 601 // There is no handling for special cases, e.g. cval==0 or cval==1.
 602 //
 603 // Returns len of generated code block.
 604 unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
 605   int block_start = offset();
 606 
 607   bool sign_flip = cval < 0;
 608   cval = sign_flip ? -cval : cval;
 609 
 610   BLOCK_COMMENT("Reg64*Con16 {");
 611 
 612   int bit1 = cval & -cval;
 613   if (bit1 == cval) {
 614     z_sllg(rval, rval, exact_log2(bit1));
 615     if (sign_flip) { z_lcgr(rval, rval); }
 616   } else {
 617     int bit2 = (cval-bit1) & -(cval-bit1);
 618     if ((bit1+bit2) == cval) {
 619       z_sllg(work, rval, exact_log2(bit1));
 620       z_sllg(rval, rval, exact_log2(bit2));
 621       z_agr(rval, work);
 622       if (sign_flip) { z_lcgr(rval, rval); }
 623     } else {
 624       if (sign_flip) { z_mghi(rval, -cval); }
 625       else           { z_mghi(rval,  cval); }
 626     }
 627   }
 628   BLOCK_COMMENT("} Reg64*Con16");
 629 
 630   int block_end = offset();
 631   return block_end - block_start;
 632 }
 633 
 634 // Generic operation r1 := r2 + imm.
 635 //
 636 // Should produce the best code for each supported CPU version.
 637 // r2 == noreg yields r1 := r1 + imm
 638 // imm == 0 emits either no instruction or r1 := r2 !
 639 // NOTES: 1) Don't use this function where fixed sized
 640 //           instruction sequences are required!!!
 641 //        2) Don't use this function if condition code
 642 //           setting is required!
 643 //        3) Despite being declared as int64_t, the parameter imm
 644 //           must be a simm_32 value (= signed 32-bit integer).
 645 void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
 646   assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
 647 
 648   if (r2 == noreg) { r2 = r1; }
 649 
 650   // Handle special case imm == 0.
 651   if (imm == 0) {
 652     lgr_if_needed(r1, r2);
 653     // Nothing else to do.
 654     return;
 655   }
 656 
 657   if (!PreferLAoverADD || (r2 == Z_R0)) {
 658     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 659 
 660     // Can we encode imm in 16 bits signed?
 661     if (Immediate::is_simm16(imm)) {
 662       if (r1 == r2) {
 663         z_aghi(r1, imm);
 664         return;
 665       }
 666       if (distinctOpnds) {
 667         z_aghik(r1, r2, imm);
 668         return;
 669       }
 670       z_lgr(r1, r2);
 671       z_aghi(r1, imm);
 672       return;
 673     }
 674   } else {
 675     // Can we encode imm in 12 bits unsigned?
 676     if (Displacement::is_shortDisp(imm)) {
 677       z_la(r1, imm, r2);
 678       return;
 679     }
 680     // Can we encode imm in 20 bits signed?
 681     if (Displacement::is_validDisp(imm)) {
 682       // Always use LAY instruction, so we don't need the tmp register.
 683       z_lay(r1, imm, r2);
 684       return;
 685     }
 686 
 687   }
 688 
 689   // Can handle it (all possible values) with long immediates.
 690   lgr_if_needed(r1, r2);
 691   z_agfi(r1, imm);
 692 }
 693 
 694 // Generic operation r := b + x + d
 695 //
 696 // Addition of several operands with address generation semantics - sort of:
 697 //  - no restriction on the registers. Any register will do for any operand.
 698 //  - x == noreg: operand will be disregarded.
 699 //  - b == noreg: will use (contents of) result reg as operand (r := r + d).
 700 //  - x == Z_R0:  just disregard
 701 //  - b == Z_R0:  use as operand. This is not address generation semantics!!!
 702 //
 703 // The same restrictions as on add2reg() are valid!!!
 704 void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
 705   assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
 706 
 707   if (x == noreg) { x = Z_R0; }
 708   if (b == noreg) { b = r; }
 709 
 710   // Handle special case x == R0.
 711   if (x == Z_R0) {
 712     // Can simply add the immediate value to the base register.
 713     add2reg(r, d, b);
 714     return;
 715   }
 716 
 717   if (!PreferLAoverADD || (b == Z_R0)) {
 718     bool distinctOpnds = VM_Version::has_DistinctOpnds();
 719     // Handle special case d == 0.
 720     if (d == 0) {
 721       if (b == x)        { z_sllg(r, b, 1); return; }
 722       if (r == x)        { z_agr(r, b);     return; }
 723       if (r == b)        { z_agr(r, x);     return; }
 724       if (distinctOpnds) { z_agrk(r, x, b); return; }
 725       z_lgr(r, b);
 726       z_agr(r, x);
 727     } else {
 728       if (x == b)             { z_sllg(r, x, 1); }
 729       else if (r == x)        { z_agr(r, b); }
 730       else if (r == b)        { z_agr(r, x); }
 731       else if (distinctOpnds) { z_agrk(r, x, b); }
 732       else {
 733         z_lgr(r, b);
 734         z_agr(r, x);
 735       }
 736       add2reg(r, d);
 737     }
 738   } else {
 739     // Can we encode imm in 12 bits unsigned?
 740     if (Displacement::is_shortDisp(d)) {
 741       z_la(r, d, x, b);
 742       return;
 743     }
 744     // Can we encode imm in 20 bits signed?
 745     if (Displacement::is_validDisp(d)) {
 746       z_lay(r, d, x, b);
 747       return;
 748     }
 749     z_la(r, 0, x, b);
 750     add2reg(r, d);
 751   }
 752 }
 753 
 754 // Generic emitter (32bit) for direct memory increment.
 755 // For optimal code, do not specify Z_R0 as temp register.
 756 void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
 757   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 758     z_asi(a, imm);
 759   } else {
 760     z_lgf(tmp, a);
 761     add2reg(tmp, imm);
 762     z_st(tmp, a);
 763   }
 764 }
 765 
 766 void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
 767   if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
 768     z_agsi(a, imm);
 769   } else {
 770     z_lg(tmp, a);
 771     add2reg(tmp, imm);
 772     z_stg(tmp, a);
 773   }
 774 }
 775 
 776 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
 777   switch (size_in_bytes) {
 778     case  8: z_lg(dst, src); break;
 779     case  4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
 780     case  2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
 781     case  1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
 782     default: ShouldNotReachHere();
 783   }
 784 }
 785 
 786 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
 787   switch (size_in_bytes) {
 788     case  8: z_stg(src, dst); break;
 789     case  4: z_st(src, dst); break;
 790     case  2: z_sth(src, dst); break;
 791     case  1: z_stc(src, dst); break;
 792     default: ShouldNotReachHere();
 793   }
 794 }
 795 
 796 // Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
 797 // a high-order summand in register tmp.
 798 //
 799 // return value: <  0: No split required, si20 actually has property uimm12.
 800 //               >= 0: Split performed. Use return value as uimm12 displacement and
 801 //                     tmp as index register.
 802 int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
 803   assert(Immediate::is_simm20(si20_offset), "sanity");
 804   int lg_off = (int)si20_offset &  0x0fff; // Punch out low-order 12 bits, always positive.
 805   int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
 806   assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
 807          !Displacement::is_shortDisp(si20_offset), "unexpected offset values");
 808   assert((lg_off+ll_off) == si20_offset, "offset splitup error");
 809 
 810   Register work = accumulate? Z_R0 : tmp;
 811 
 812   if (fixed_codelen) {          // Len of code = 10 = 4 + 6.
 813     z_lghi(work, ll_off>>12);   // Implicit sign extension.
 814     z_slag(work, work, 12);
 815   } else {                      // Len of code = 0..10.
 816     if (ll_off == 0) { return -1; }
 817     // ll_off has 8 significant bits (at most) plus sign.
 818     if ((ll_off & 0x0000f000) == 0) {    // Non-zero bits only in upper halfbyte.
 819       z_llilh(work, ll_off >> 16);
 820       if (ll_off < 0) {                  // Sign-extension required.
 821         z_lgfr(work, work);
 822       }
 823     } else {
 824       if ((ll_off & 0x000f0000) == 0) {  // Non-zero bits only in lower halfbyte.
 825         z_llill(work, ll_off);
 826       } else {                           // Non-zero bits in both halfbytes.
 827         z_lghi(work, ll_off>>12);        // Implicit sign extension.
 828         z_slag(work, work, 12);
 829       }
 830     }
 831   }
 832   if (accumulate) { z_algr(tmp, work); } // len of code += 4
 833   return lg_off;
 834 }
 835 
 836 void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 837   if (Displacement::is_validDisp(si20)) {
 838     z_ley(t, si20, a);
 839   } else {
 840     // Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
 841     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 842     // pool loads).
 843     bool accumulate    = true;
 844     bool fixed_codelen = true;
 845     Register work;
 846 
 847     if (fixed_codelen) {
 848       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 849     } else {
 850       accumulate = (a == tmp);
 851     }
 852     work = tmp;
 853 
 854     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 855     if (disp12 < 0) {
 856       z_le(t, si20, work);
 857     } else {
 858       if (accumulate) {
 859         z_le(t, disp12, work);
 860       } else {
 861         z_le(t, disp12, work, a);
 862       }
 863     }
 864   }
 865 }
 866 
 867 void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
 868   if (Displacement::is_validDisp(si20)) {
 869     z_ldy(t, si20, a);
 870   } else {
 871     // Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
 872     // does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
 873     // pool loads).
 874     bool accumulate    = true;
 875     bool fixed_codelen = true;
 876     Register work;
 877 
 878     if (fixed_codelen) {
 879       z_lgr(tmp, a);  // Lgr_if_needed not applicable due to fixed_codelen.
 880     } else {
 881       accumulate = (a == tmp);
 882     }
 883     work = tmp;
 884 
 885     int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
 886     if (disp12 < 0) {
 887       z_ld(t, si20, work);
 888     } else {
 889       if (accumulate) {
 890         z_ld(t, disp12, work);
 891       } else {
 892         z_ld(t, disp12, work, a);
 893       }
 894     }
 895   }
 896 }
 897 
 898 // PCrelative TOC access.
 899 // Returns distance (in bytes) from current position to start of consts section.
 900 // Returns 0 (zero) if no consts section exists or if it has size zero.
 901 long MacroAssembler::toc_distance() {
 902   CodeSection* cs = code()->consts();
 903   return (long)((cs != NULL) ? cs->start()-pc() : 0);
 904 }
 905 
 906 // Implementation on x86/sparc assumes that constant and instruction section are
 907 // adjacent, but this doesn't hold. Two special situations may occur, that we must
 908 // be able to handle:
 909 //   1. const section may be located apart from the inst section.
 910 //   2. const section may be empty
 911 // In both cases, we use the const section's start address to compute the "TOC",
 912 // this seems to occur only temporarily; in the final step we always seem to end up
 913 // with the pc-relatice variant.
 914 //
 915 // PC-relative offset could be +/-2**32 -> use long for disp
 916 // Furthermore: makes no sense to have special code for
 917 // adjacent const and inst sections.
 918 void MacroAssembler::load_toc(Register Rtoc) {
 919   // Simply use distance from start of const section (should be patched in the end).
 920   long disp = toc_distance();
 921 
 922   RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
 923   relocate(rspec);
 924   z_larl(Rtoc, RelAddr::pcrel_off32(disp));  // Offset is in halfwords.
 925 }
 926 
 927 // PCrelative TOC access.
 928 // Load from anywhere pcrelative (with relocation of load instr)
 929 void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
 930   address          pc             = this->pc();
 931   ptrdiff_t        total_distance = dataLocation - pc;
 932   RelocationHolder rspec          = internal_word_Relocation::spec(dataLocation);
 933 
 934   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 935   assert(total_distance != 0, "sanity");
 936 
 937   // Some extra safety net.
 938   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 939     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "too far away");
 940   }
 941 
 942   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 943   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 944 }
 945 
 946 
 947 // PCrelative TOC access.
 948 // Load from anywhere pcrelative (with relocation of load instr)
 949 // loaded addr has to be relocated when added to constant pool.
 950 void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
 951   address          pc             = this->pc();
 952   ptrdiff_t        total_distance = addrLocation - pc;
 953   RelocationHolder rspec          = internal_word_Relocation::spec(addrLocation);
 954 
 955   assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
 956 
 957   // Some extra safety net.
 958   if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
 959     guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "too far away");
 960   }
 961 
 962   (this)->relocate(rspec, relocInfo::pcrel_addr_format);
 963   z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
 964 }
 965 
 966 // Generic operation: load a value from memory and test.
 967 // CondCode indicates the sign (<0, ==0, >0) of the loaded value.
 968 void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
 969   z_lb(dst, a);
 970   z_ltr(dst, dst);
 971 }
 972 
 973 void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
 974   int64_t disp = a.disp20();
 975   if (Displacement::is_shortDisp(disp)) {
 976     z_lh(dst, a);
 977   } else if (Displacement::is_longDisp(disp)) {
 978     z_lhy(dst, a);
 979   } else {
 980     guarantee(false, "displacement out of range");
 981   }
 982   z_ltr(dst, dst);
 983 }
 984 
 985 void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
 986   z_lt(dst, a);
 987 }
 988 
 989 void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
 990   z_ltgf(dst, a);
 991 }
 992 
 993 void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
 994   z_ltg(dst, a);
 995 }
 996 
 997 // Test a bit in memory.
 998 void MacroAssembler::testbit(const Address &a, unsigned int bit) {
 999   assert(a.index() == noreg, "no index reg allowed in testbit");
1000   if (bit <= 7) {
1001     z_tm(a.disp() + 3, a.base(), 1 << bit);
1002   } else if (bit <= 15) {
1003     z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
1004   } else if (bit <= 23) {
1005     z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
1006   } else if (bit <= 31) {
1007     z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
1008   } else {
1009     ShouldNotReachHere();
1010   }
1011 }
1012 
1013 // Test a bit in a register. Result is reflected in CC.
1014 void MacroAssembler::testbit(Register r, unsigned int bitPos) {
1015   if (bitPos < 16) {
1016     z_tmll(r, 1U<<bitPos);
1017   } else if (bitPos < 32) {
1018     z_tmlh(r, 1U<<(bitPos-16));
1019   } else if (bitPos < 48) {
1020     z_tmhl(r, 1U<<(bitPos-32));
1021   } else if (bitPos < 64) {
1022     z_tmhh(r, 1U<<(bitPos-48));
1023   } else {
1024     ShouldNotReachHere();
1025   }
1026 }
1027 
1028 // Clear a register, i.e. load const zero into reg.
1029 // Return len (in bytes) of generated instruction(s).
1030 // whole_reg: Clear 64 bits if true, 32 bits otherwise.
1031 // set_cc:    Use instruction that sets the condition code, if true.
1032 int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
1033   unsigned int start_off = offset();
1034   if (whole_reg) {
1035     set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
1036   } else {  // Only 32bit register.
1037     set_cc ? z_xr(r, r) : z_lhi(r, 0);
1038   }
1039   return offset() - start_off;
1040 }
1041 
1042 #ifdef ASSERT
1043 int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
1044   switch (pattern_len) {
1045     case 1:
1046       pattern = (pattern & 0x000000ff)  | ((pattern & 0x000000ff)<<8);
1047     case 2:
1048       pattern = (pattern & 0x0000ffff)  | ((pattern & 0x0000ffff)<<16);
1049     case 4:
1050       pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
1051     case 8:
1052       return load_const_optimized_rtn_len(r, pattern, true);
1053       break;
1054     default:
1055       guarantee(false, "preset_reg: bad len");
1056   }
1057   return 0;
1058 }
1059 #endif
1060 
1061 // addr: Address descriptor of memory to clear index register will not be used !
1062 // size: Number of bytes to clear.
1063 //    !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
1064 //    !!! Use store_const() instead                  !!!
1065 void MacroAssembler::clear_mem(const Address& addr, unsigned size) {
1066   guarantee(size <= 256, "MacroAssembler::clear_mem: size too large");
1067 
1068   if (size == 1) {
1069     z_mvi(addr, 0);
1070     return;
1071   }
1072 
1073   switch (size) {
1074     case 2: z_mvhhi(addr, 0);
1075       return;
1076     case 4: z_mvhi(addr, 0);
1077       return;
1078     case 8: z_mvghi(addr, 0);
1079       return;
1080     default: ; // Fallthru to xc.
1081   }
1082 
1083   z_xc(addr, size, addr);
1084 }
1085 
1086 void MacroAssembler::align(int modulus) {
1087   while (offset() % modulus != 0) z_nop();
1088 }
1089 
1090 // Special version for non-relocateable code if required alignment
1091 // is larger than CodeEntryAlignment.
1092 void MacroAssembler::align_address(int modulus) {
1093   while ((uintptr_t)pc() % modulus != 0) z_nop();
1094 }
1095 
1096 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1097                                          Register temp_reg,
1098                                          int64_t extra_slot_offset) {
1099   // On Z, we can have index and disp in an Address. So don't call argument_offset,
1100   // which issues an unnecessary add instruction.
1101   int stackElementSize = Interpreter::stackElementSize;
1102   int64_t offset = extra_slot_offset * stackElementSize;
1103   const Register argbase = Z_esp;
1104   if (arg_slot.is_constant()) {
1105     offset += arg_slot.as_constant() * stackElementSize;
1106     return Address(argbase, offset);
1107   }
1108   // else
1109   assert(temp_reg != noreg, "must specify");
1110   assert(temp_reg != Z_ARG1, "base and index are conflicting");
1111   z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
1112   return Address(argbase, temp_reg, offset);
1113 }
1114 
1115 
1116 //===================================================================
1117 //===   START   C O N S T A N T S   I N   C O D E   S T R E A M   ===
1118 //===================================================================
1119 //===            P A T CH A B L E   C O N S T A N T S             ===
1120 //===================================================================
1121 
1122 
1123 //---------------------------------------------------
1124 //  Load (patchable) constant into register
1125 //---------------------------------------------------
1126 
1127 
1128 // Load absolute address (and try to optimize).
1129 //   Note: This method is usable only for position-fixed code,
1130 //         referring to a position-fixed target location.
1131 //         If not so, relocations and patching must be used.
1132 void MacroAssembler::load_absolute_address(Register d, address addr) {
1133   assert(addr != NULL, "should not happen");
1134   BLOCK_COMMENT("load_absolute_address:");
1135   if (addr == NULL) {
1136     z_larl(d, pc()); // Dummy emit for size calc.
1137     return;
1138   }
1139 
1140   if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
1141     z_larl(d, addr);
1142     return;
1143   }
1144 
1145   load_const_optimized(d, (long)addr);
1146 }
1147 
1148 // Load a 64bit constant.
1149 // Patchable code sequence, but not atomically patchable.
1150 // Make sure to keep code size constant -> no value-dependent optimizations.
1151 // Do not kill condition code.
1152 void MacroAssembler::load_const(Register t, long x) {
1153   Assembler::z_iihf(t, (int)(x >> 32));
1154   Assembler::z_iilf(t, (int)(x & 0xffffffff));
1155 }
1156 
1157 // Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
1158 // Patchable code sequence, but not atomically patchable.
1159 // Make sure to keep code size constant -> no value-dependent optimizations.
1160 // Do not kill condition code.
1161 void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
1162   if (sign_extend) { Assembler::z_lgfi(t, x); }
1163   else             { Assembler::z_llilf(t, x); }
1164 }
1165 
1166 // Load narrow oop constant, no decompression.
1167 void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
1168   assert(UseCompressedOops, "must be on to call this method");
1169   load_const_32to64(t, a, false /*sign_extend*/);
1170 }
1171 
1172 // Load narrow klass constant, compression required.
1173 void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
1174   assert(UseCompressedClassPointers, "must be on to call this method");
1175   narrowKlass encoded_k = Klass::encode_klass(k);
1176   load_const_32to64(t, encoded_k, false /*sign_extend*/);
1177 }
1178 
1179 //------------------------------------------------------
1180 //  Compare (patchable) constant with register.
1181 //------------------------------------------------------
1182 
1183 // Compare narrow oop in reg with narrow oop constant, no decompression.
1184 void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
1185   assert(UseCompressedOops, "must be on to call this method");
1186 
1187   Assembler::z_clfi(oop1, oop2);
1188 }
1189 
1190 // Compare narrow oop in reg with narrow oop constant, no decompression.
1191 void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
1192   assert(UseCompressedClassPointers, "must be on to call this method");
1193   narrowKlass encoded_k = Klass::encode_klass(klass2);
1194 
1195   Assembler::z_clfi(klass1, encoded_k);
1196 }
1197 
1198 //----------------------------------------------------------
1199 //  Check which kind of load_constant we have here.
1200 //----------------------------------------------------------
1201 
1202 // Detection of CPU version dependent load_const sequence.
1203 // The detection is valid only for code sequences generated by load_const,
1204 // not load_const_optimized.
1205 bool MacroAssembler::is_load_const(address a) {
1206   unsigned long inst1, inst2;
1207   unsigned int  len1,  len2;
1208 
1209   len1 = get_instruction(a, &inst1);
1210   len2 = get_instruction(a + len1, &inst2);
1211 
1212   return is_z_iihf(inst1) && is_z_iilf(inst2);
1213 }
1214 
1215 // Detection of CPU version dependent load_const_32to64 sequence.
1216 // Mostly used for narrow oops and narrow Klass pointers.
1217 // The detection is valid only for code sequences generated by load_const_32to64.
1218 bool MacroAssembler::is_load_const_32to64(address pos) {
1219   unsigned long inst1, inst2;
1220   unsigned int len1;
1221 
1222   len1 = get_instruction(pos, &inst1);
1223   return is_z_llilf(inst1);
1224 }
1225 
1226 // Detection of compare_immediate_narrow sequence.
1227 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1228 bool MacroAssembler::is_compare_immediate32(address pos) {
1229   return is_equal(pos, CLFI_ZOPC, RIL_MASK);
1230 }
1231 
1232 // Detection of compare_immediate_narrow sequence.
1233 // The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
1234 bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
1235   return is_compare_immediate32(pos);
1236   }
1237 
1238 // Detection of compare_immediate_narrow sequence.
1239 // The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
1240 bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
1241   return is_compare_immediate32(pos);
1242 }
1243 
1244 //-----------------------------------
1245 //  patch the load_constant
1246 //-----------------------------------
1247 
1248 // CPU-version dependend patching of load_const.
1249 void MacroAssembler::patch_const(address a, long x) {
1250   assert(is_load_const(a), "not a load of a constant");
1251   set_imm32((address)a, (int) ((x >> 32) & 0xffffffff));
1252   set_imm32((address)(a + 6), (int)(x & 0xffffffff));
1253 }
1254 
1255 // Patching the value of CPU version dependent load_const_32to64 sequence.
1256 // The passed ptr MUST be in compressed format!
1257 int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
1258   assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
1259 
1260   set_imm32(pos, np);
1261   return 6;
1262 }
1263 
1264 // Patching the value of CPU version dependent compare_immediate_narrow sequence.
1265 // The passed ptr MUST be in compressed format!
1266 int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
1267   assert(is_compare_immediate32(pos), "not a compressed ptr compare");
1268 
1269   set_imm32(pos, np);
1270   return 6;
1271 }
1272 
1273 // Patching the immediate value of CPU version dependent load_narrow_oop sequence.
1274 // The passed ptr must NOT be in compressed format!
1275 int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
1276   assert(UseCompressedOops, "Can only patch compressed oops");
1277 
1278   narrowOop no = oopDesc::encode_heap_oop(o);
1279   return patch_load_const_32to64(pos, no);
1280 }
1281 
1282 // Patching the immediate value of CPU version dependent load_narrow_klass sequence.
1283 // The passed ptr must NOT be in compressed format!
1284 int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
1285   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1286 
1287   narrowKlass nk = Klass::encode_klass(k);
1288   return patch_load_const_32to64(pos, nk);
1289 }
1290 
1291 // Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
1292 // The passed ptr must NOT be in compressed format!
1293 int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
1294   assert(UseCompressedOops, "Can only patch compressed oops");
1295 
1296   narrowOop no = oopDesc::encode_heap_oop(o);
1297   return patch_compare_immediate_32(pos, no);
1298 }
1299 
1300 // Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
1301 // The passed ptr must NOT be in compressed format!
1302 int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
1303   assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
1304 
1305   narrowKlass nk = Klass::encode_klass(k);
1306   return patch_compare_immediate_32(pos, nk);
1307 }
1308 
1309 //------------------------------------------------------------------------
1310 //  Extract the constant from a load_constant instruction stream.
1311 //------------------------------------------------------------------------
1312 
1313 // Get constant from a load_const sequence.
1314 long MacroAssembler::get_const(address a) {
1315   assert(is_load_const(a), "not a load of a constant");
1316   unsigned long x;
1317   x =  (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
1318   x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
1319   return (long) x;
1320 }
1321 
1322 //--------------------------------------
1323 //  Store a constant in memory.
1324 //--------------------------------------
1325 
1326 // General emitter to move a constant to memory.
1327 // The store is atomic.
1328 //  o Address must be given in RS format (no index register)
1329 //  o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
1330 //  o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
1331 //  o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
1332 //  o Memory slot must be at least as wide as constant, will assert otherwise.
1333 //  o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
1334 int MacroAssembler::store_const(const Address &dest, long imm,
1335                                 unsigned int lm, unsigned int lc,
1336                                 Register scratch) {
1337   int64_t  disp = dest.disp();
1338   Register base = dest.base();
1339   assert(!dest.has_index(), "not supported");
1340   assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory   length not supported");
1341   assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
1342   assert(lm>=lc, "memory slot too small");
1343   assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
1344   assert(Displacement::is_validDisp(disp), "displacement out of range");
1345 
1346   bool is_shortDisp = Displacement::is_shortDisp(disp);
1347   int store_offset = -1;
1348 
1349   // For target len == 1 it's easy.
1350   if (lm == 1) {
1351     store_offset = offset();
1352     if (is_shortDisp) {
1353       z_mvi(disp, base, imm);
1354       return store_offset;
1355     } else {
1356       z_mviy(disp, base, imm);
1357       return store_offset;
1358     }
1359   }
1360 
1361   // All the "good stuff" takes an unsigned displacement.
1362   if (is_shortDisp) {
1363     // NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
1364 
1365     store_offset = offset();
1366     switch (lm) {
1367       case 2:  // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
1368         z_mvhhi(disp, base, imm);
1369         return store_offset;
1370       case 4:
1371         if (Immediate::is_simm16(imm)) {
1372           z_mvhi(disp, base, imm);
1373           return store_offset;
1374         }
1375         break;
1376       case 8:
1377         if (Immediate::is_simm16(imm)) {
1378           z_mvghi(disp, base, imm);
1379           return store_offset;
1380         }
1381         break;
1382       default:
1383         ShouldNotReachHere();
1384         break;
1385     }
1386   }
1387 
1388   //  Can't optimize, so load value and store it.
1389   guarantee(scratch != noreg, " need a scratch register here !");
1390   if (imm != 0) {
1391     load_const_optimized(scratch, imm);  // Preserves CC anyway.
1392   } else {
1393     // Leave CC alone!!
1394     (void) clear_reg(scratch, true, false); // Indicate unused result.
1395   }
1396 
1397   store_offset = offset();
1398   if (is_shortDisp) {
1399     switch (lm) {
1400       case 2:
1401         z_sth(scratch, disp, Z_R0, base);
1402         return store_offset;
1403       case 4:
1404         z_st(scratch, disp, Z_R0, base);
1405         return store_offset;
1406       case 8:
1407         z_stg(scratch, disp, Z_R0, base);
1408         return store_offset;
1409       default:
1410         ShouldNotReachHere();
1411         break;
1412     }
1413   } else {
1414     switch (lm) {
1415       case 2:
1416         z_sthy(scratch, disp, Z_R0, base);
1417         return store_offset;
1418       case 4:
1419         z_sty(scratch, disp, Z_R0, base);
1420         return store_offset;
1421       case 8:
1422         z_stg(scratch, disp, Z_R0, base);
1423         return store_offset;
1424       default:
1425         ShouldNotReachHere();
1426         break;
1427     }
1428   }
1429   return -1; // should not reach here
1430 }
1431 
1432 //===================================================================
1433 //===       N O T   P A T CH A B L E   C O N S T A N T S          ===
1434 //===================================================================
1435 
1436 // Load constant x into register t with a fast instrcution sequence
1437 // depending on the bits in x. Preserves CC under all circumstances.
1438 int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
1439   if (x == 0) {
1440     int len;
1441     if (emit) {
1442       len = clear_reg(t, true, false);
1443     } else {
1444       len = 4;
1445     }
1446     return len;
1447   }
1448 
1449   if (Immediate::is_simm16(x)) {
1450     if (emit) { z_lghi(t, x); }
1451     return 4;
1452   }
1453 
1454   // 64 bit value: | part1 | part2 | part3 | part4 |
1455   // At least one part is not zero!
1456   int part1 = ((x >> 32) & 0xffff0000) >> 16;
1457   int part2 = (x >> 32) & 0x0000ffff;
1458   int part3 = (x & 0xffff0000) >> 16;
1459   int part4 = (x & 0x0000ffff);
1460 
1461   // Lower word only (unsigned).
1462   if ((part1 == 0) && (part2 == 0)) {
1463     if (part3 == 0) {
1464       if (emit) z_llill(t, part4);
1465       return 4;
1466     }
1467     if (part4 == 0) {
1468       if (emit) z_llilh(t, part3);
1469       return 4;
1470     }
1471     if (emit) z_llilf(t, (int)(x & 0xffffffff));
1472     return 6;
1473   }
1474 
1475   // Upper word only.
1476   if ((part3 == 0) && (part4 == 0)) {
1477     if (part1 == 0) {
1478       if (emit) z_llihl(t, part2);
1479       return 4;
1480     }
1481     if (part2 == 0) {
1482       if (emit) z_llihh(t, part1);
1483       return 4;
1484     }
1485     if (emit) z_llihf(t, (int)(x >> 32));
1486     return 6;
1487   }
1488 
1489   // Lower word only (signed).
1490   if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
1491     if (emit) z_lgfi(t, (int)(x & 0xffffffff));
1492     return 6;
1493   }
1494 
1495   int len = 0;
1496 
1497   if ((part1 == 0) || (part2 == 0)) {
1498     if (part1 == 0) {
1499       if (emit) z_llihl(t, part2);
1500       len += 4;
1501     } else {
1502       if (emit) z_llihh(t, part1);
1503       len += 4;
1504     }
1505   } else {
1506     if (emit) z_llihf(t, (int)(x >> 32));
1507     len += 6;
1508   }
1509 
1510   if ((part3 == 0) || (part4 == 0)) {
1511     if (part3 == 0) {
1512       if (emit) z_iill(t, part4);
1513       len += 4;
1514     } else {
1515       if (emit) z_iilh(t, part3);
1516       len += 4;
1517     }
1518   } else {
1519     if (emit) z_iilf(t, (int)(x & 0xffffffff));
1520     len += 6;
1521   }
1522   return len;
1523 }
1524 
1525 //=====================================================================
1526 //===     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1527 //=====================================================================
1528 
1529 // Note: In the worst case, one of the scratch registers is destroyed!!!
1530 void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1531   // Right operand is constant.
1532   if (x2.is_constant()) {
1533     jlong value = x2.as_constant();
1534     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
1535     return;
1536   }
1537 
1538   // Right operand is in register.
1539   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
1540 }
1541 
1542 // Note: In the worst case, one of the scratch registers is destroyed!!!
1543 void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1544   // Right operand is constant.
1545   if (x2.is_constant()) {
1546     jlong value = x2.as_constant();
1547     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
1548     return;
1549   }
1550 
1551   // Right operand is in register.
1552   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
1553 }
1554 
1555 // Note: In the worst case, one of the scratch registers is destroyed!!!
1556 void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1557   // Right operand is constant.
1558   if (x2.is_constant()) {
1559     jlong value = x2.as_constant();
1560     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
1561     return;
1562   }
1563 
1564   // Right operand is in register.
1565   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
1566 }
1567 
1568 void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
1569   // Right operand is constant.
1570   if (x2.is_constant()) {
1571     jlong value = x2.as_constant();
1572     compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
1573     return;
1574   }
1575 
1576   // Right operand is in register.
1577   compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
1578 }
1579 
1580 // Generate an optimal branch to the branch target.
1581 // Optimal means that a relative branch (brc or brcl) is used if the
1582 // branch distance is short enough. Loading the target address into a
1583 // register and branching via reg is used as fallback only.
1584 //
1585 // Used registers:
1586 //   Z_R1 - work reg. Holds branch target address.
1587 //          Used in fallback case only.
1588 //
1589 // This version of branch_optimized is good for cases where the target address is known
1590 // and constant, i.e. is never changed (no relocation, no patching).
1591 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
1592   address branch_origin = pc();
1593 
1594   if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1595     z_brc(cond, branch_addr);
1596   } else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
1597     z_brcl(cond, branch_addr);
1598   } else {
1599     load_const_optimized(Z_R1, branch_addr);  // CC must not get killed by load_const_optimized.
1600     z_bcr(cond, Z_R1);
1601   }
1602 }
1603 
1604 // This version of branch_optimized is good for cases where the target address
1605 // is potentially not yet known at the time the code is emitted.
1606 //
1607 // One very common case is a branch to an unbound label which is handled here.
1608 // The caller might know (or hope) that the branch distance is short enough
1609 // to be encoded in a 16bit relative address. In this case he will pass a
1610 // NearLabel branch_target.
1611 // Care must be taken with unbound labels. Each call to target(label) creates
1612 // an entry in the patch queue for that label to patch all references of the label
1613 // once it gets bound. Those recorded patch locations must be patchable. Otherwise,
1614 // an assertion fires at patch time.
1615 void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
1616   if (branch_target.is_bound()) {
1617     address branch_addr = target(branch_target);
1618     branch_optimized(cond, branch_addr);
1619   } else {
1620     z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
1621   }
1622 }
1623 
1624 // Generate an optimal compare and branch to the branch target.
1625 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1626 // branch distance is short enough. Loading the target address into a
1627 // register and branching via reg is used as fallback only.
1628 //
1629 // Input:
1630 //   r1 - left compare operand
1631 //   r2 - right compare operand
1632 void MacroAssembler::compare_and_branch_optimized(Register r1,
1633                                                   Register r2,
1634                                                   Assembler::branch_condition cond,
1635                                                   address  branch_addr,
1636                                                   bool     len64,
1637                                                   bool     has_sign) {
1638   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1639 
1640   address branch_origin = pc();
1641   if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
1642     switch (casenum) {
1643       case 0: z_crj( r1, r2, cond, branch_addr); break;
1644       case 1: z_clrj (r1, r2, cond, branch_addr); break;
1645       case 2: z_cgrj(r1, r2, cond, branch_addr); break;
1646       case 3: z_clgrj(r1, r2, cond, branch_addr); break;
1647       default: ShouldNotReachHere(); break;
1648     }
1649   } else {
1650     switch (casenum) {
1651       case 0: z_cr( r1, r2); break;
1652       case 1: z_clr(r1, r2); break;
1653       case 2: z_cgr(r1, r2); break;
1654       case 3: z_clgr(r1, r2); break;
1655       default: ShouldNotReachHere(); break;
1656     }
1657     branch_optimized(cond, branch_addr);
1658   }
1659 }
1660 
1661 // Generate an optimal compare and branch to the branch target.
1662 // Optimal means that a relative branch (clgij, brc or brcl) is used if the
1663 // branch distance is short enough. Loading the target address into a
1664 // register and branching via reg is used as fallback only.
1665 //
1666 // Input:
1667 //   r1 - left compare operand (in register)
1668 //   x2 - right compare operand (immediate)
1669 void MacroAssembler::compare_and_branch_optimized(Register r1,
1670                                                   jlong    x2,
1671                                                   Assembler::branch_condition cond,
1672                                                   Label&   branch_target,
1673                                                   bool     len64,
1674                                                   bool     has_sign) {
1675   address      branch_origin = pc();
1676   bool         x2_imm8       = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
1677   bool         is_RelAddr16  = (branch_target.is_bound() &&
1678                                 RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
1679   unsigned int casenum       = (len64?2:0)+(has_sign?0:1);
1680 
1681   if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
1682     switch (casenum) {
1683       case 0: z_cij( r1, x2, cond, branch_target); break;
1684       case 1: z_clij(r1, x2, cond, branch_target); break;
1685       case 2: z_cgij(r1, x2, cond, branch_target); break;
1686       case 3: z_clgij(r1, x2, cond, branch_target); break;
1687       default: ShouldNotReachHere(); break;
1688     }
1689     return;
1690   }
1691 
1692   if (x2 == 0) {
1693     switch (casenum) {
1694       case 0: z_ltr(r1, r1); break;
1695       case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1696       case 2: z_ltgr(r1, r1); break;
1697       case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
1698       default: ShouldNotReachHere(); break;
1699     }
1700   } else {
1701     if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
1702       switch (casenum) {
1703         case 0: z_chi(r1, x2); break;
1704         case 1: z_chi(r1, x2); break; // positive immediate < 2**15
1705         case 2: z_cghi(r1, x2); break;
1706         case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
1707         default: break;
1708       }
1709     } else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
1710       switch (casenum) {
1711         case 0: z_cfi( r1, x2); break;
1712         case 1: z_clfi(r1, x2); break;
1713         case 2: z_cgfi(r1, x2); break;
1714         case 3: z_clgfi(r1, x2); break;
1715         default: ShouldNotReachHere(); break;
1716       }
1717     } else {
1718       // No instruction with immediate operand possible, so load into register.
1719       Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
1720       load_const_optimized(scratch, x2);
1721       switch (casenum) {
1722         case 0: z_cr( r1, scratch); break;
1723         case 1: z_clr(r1, scratch); break;
1724         case 2: z_cgr(r1, scratch); break;
1725         case 3: z_clgr(r1, scratch); break;
1726         default: ShouldNotReachHere(); break;
1727       }
1728     }
1729   }
1730   branch_optimized(cond, branch_target);
1731 }
1732 
1733 // Generate an optimal compare and branch to the branch target.
1734 // Optimal means that a relative branch (clgrj, brc or brcl) is used if the
1735 // branch distance is short enough. Loading the target address into a
1736 // register and branching via reg is used as fallback only.
1737 //
1738 // Input:
1739 //   r1 - left compare operand
1740 //   r2 - right compare operand
1741 void MacroAssembler::compare_and_branch_optimized(Register r1,
1742                                                   Register r2,
1743                                                   Assembler::branch_condition cond,
1744                                                   Label&   branch_target,
1745                                                   bool     len64,
1746                                                   bool     has_sign) {
1747   unsigned int casenum = (len64?2:0)+(has_sign?0:1);
1748 
1749   if (branch_target.is_bound()) {
1750     address branch_addr = target(branch_target);
1751     compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
1752   } else {
1753     {
1754       switch (casenum) {
1755         case 0: z_cr( r1, r2); break;
1756         case 1: z_clr(r1, r2); break;
1757         case 2: z_cgr(r1, r2); break;
1758         case 3: z_clgr(r1, r2); break;
1759         default: ShouldNotReachHere(); break;
1760       }
1761       branch_optimized(cond, branch_target);
1762     }
1763   }
1764 }
1765 
1766 //===========================================================================
1767 //===   END     H I G H E R   L E V E L   B R A N C H   E M I T T E R S   ===
1768 //===========================================================================
1769 
1770 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
1771   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1772   int index = oop_recorder()->allocate_metadata_index(obj);
1773   RelocationHolder rspec = metadata_Relocation::spec(index);
1774   return AddressLiteral((address)obj, rspec);
1775 }
1776 
1777 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
1778   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1779   int index = oop_recorder()->find_index(obj);
1780   RelocationHolder rspec = metadata_Relocation::spec(index);
1781   return AddressLiteral((address)obj, rspec);
1782 }
1783 
1784 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1785   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1786   int oop_index = oop_recorder()->allocate_oop_index(obj);
1787   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1788 }
1789 
1790 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1791   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1792   int oop_index = oop_recorder()->find_index(obj);
1793   return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
1794 }
1795 
1796 // NOTE: destroys r
1797 void MacroAssembler::c2bool(Register r, Register t) {
1798   z_lcr(t, r);   // t = -r
1799   z_or(r, t);    // r = -r OR r
1800   z_srl(r, 31);  // Yields 0 if r was 0, 1 otherwise.
1801 }
1802 
1803 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
1804                                                       Register tmp,
1805                                                       int offset) {
1806   intptr_t value = *delayed_value_addr;
1807   if (value != 0) {
1808     return RegisterOrConstant(value + offset);
1809   }
1810 
1811   BLOCK_COMMENT("delayed_value {");
1812   // Load indirectly to solve generation ordering problem.
1813   load_absolute_address(tmp, (address) delayed_value_addr); // tmp = a;
1814   z_lg(tmp, 0, tmp);                   // tmp = *tmp;
1815 
1816 #ifdef ASSERT
1817   NearLabel L;
1818   compare64_and_branch(tmp, (intptr_t)0L, Assembler::bcondNotEqual, L);
1819   z_illtrap();
1820   bind(L);
1821 #endif
1822 
1823   if (offset != 0) {
1824     z_agfi(tmp, offset);               // tmp = tmp + offset;
1825   }
1826 
1827   BLOCK_COMMENT("} delayed_value");
1828   return RegisterOrConstant(tmp);
1829 }
1830 
1831 // Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
1832 // and return the resulting instruction.
1833 // Dest_pos and inst_pos are 32 bit only. These parms can only designate
1834 // relative positions.
1835 // Use correct argument types. Do not pre-calculate distance.
1836 unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
1837   int c = 0;
1838   unsigned long patched_inst = 0;
1839   if (is_call_pcrelative_short(inst) ||
1840       is_branch_pcrelative_short(inst) ||
1841       is_branchoncount_pcrelative_short(inst) ||
1842       is_branchonindex32_pcrelative_short(inst)) {
1843     c = 1;
1844     int m = fmask(15, 0);    // simm16(-1, 16, 32);
1845     int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
1846     patched_inst = (inst & ~m) | v;
1847   } else if (is_compareandbranch_pcrelative_short(inst)) {
1848     c = 2;
1849     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1850     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1851     patched_inst = (inst & ~m) | v;
1852   } else if (is_branchonindex64_pcrelative_short(inst)) {
1853     c = 3;
1854     long m = fmask(31, 16);  // simm16(-1, 16, 48);
1855     long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
1856     patched_inst = (inst & ~m) | v;
1857   } else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
1858     c = 4;
1859     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1860     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1861     patched_inst = (inst & ~m) | v;
1862   } else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
1863     c = 5;
1864     long m = fmask(31, 0);  // simm32(-1, 16, 48);
1865     long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
1866     patched_inst = (inst & ~m) | v;
1867   } else {
1868     print_dbg_msg(tty, inst, "not a relative branch", 0);
1869     dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
1870     ShouldNotReachHere();
1871   }
1872 
1873   long new_off = get_pcrel_offset(patched_inst);
1874   if (new_off != (dest_pos-inst_pos)) {
1875     tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
1876     print_dbg_msg(tty, inst,         "<- original instruction: branch patching error", 0);
1877     print_dbg_msg(tty, patched_inst, "<- patched  instruction: branch patching error", 0);
1878 #ifdef LUCY_DBG
1879     VM_Version::z_SIGSEGV();
1880 #endif
1881     ShouldNotReachHere();
1882   }
1883   return patched_inst;
1884 }
1885 
1886 // Only called when binding labels (share/vm/asm/assembler.cpp)
1887 // Pass arguments as intended. Do not pre-calculate distance.
1888 void MacroAssembler::pd_patch_instruction(address branch, address target) {
1889   unsigned long stub_inst;
1890   int           inst_len = get_instruction(branch, &stub_inst);
1891 
1892   set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
1893 }
1894 
1895 
1896 // Extract relative address (aka offset).
1897 // inv_simm16 works for 4-byte instructions only.
1898 // compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
1899 long MacroAssembler::get_pcrel_offset(unsigned long inst) {
1900 
1901   if (MacroAssembler::is_pcrelative_short(inst)) {
1902     if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
1903       return RelAddr::inv_pcrel_off16(inv_simm16(inst));
1904     } else {
1905       return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
1906     }
1907   }
1908 
1909   if (MacroAssembler::is_pcrelative_long(inst)) {
1910     return RelAddr::inv_pcrel_off32(inv_simm32(inst));
1911   }
1912 
1913   print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
1914 #ifdef LUCY_DBG
1915   VM_Version::z_SIGSEGV();
1916 #else
1917   ShouldNotReachHere();
1918 #endif
1919   return -1;
1920 }
1921 
1922 long MacroAssembler::get_pcrel_offset(address pc) {
1923   unsigned long inst;
1924   unsigned int  len = get_instruction(pc, &inst);
1925 
1926 #ifdef ASSERT
1927   long offset;
1928   if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
1929     offset = get_pcrel_offset(inst);
1930   } else {
1931     offset = -1;
1932   }
1933 
1934   if (offset == -1) {
1935     dump_code_range(tty, pc, 32, "not a pcrelative instruction");
1936 #ifdef LUCY_DBG
1937     VM_Version::z_SIGSEGV();
1938 #else
1939     ShouldNotReachHere();
1940 #endif
1941   }
1942   return offset;
1943 #else
1944   return get_pcrel_offset(inst);
1945 #endif // ASSERT
1946 }
1947 
1948 // Get target address from pc-relative instructions.
1949 address MacroAssembler::get_target_addr_pcrel(address pc) {
1950   assert(is_pcrelative_long(pc), "not a pcrelative instruction");
1951   return pc + get_pcrel_offset(pc);
1952 }
1953 
1954 // Patch pc relative load address.
1955 void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
1956   unsigned long inst;
1957   // Offset is +/- 2**32 -> use long.
1958   ptrdiff_t distance = con - pc;
1959 
1960   get_instruction(pc, &inst);
1961 
1962   if (is_pcrelative_short(inst)) {
1963     *(short *)(pc+2) = RelAddr::pcrel_off16(con, pc);  // Instructions are at least 2-byte aligned, no test required.
1964 
1965     // Some extra safety net.
1966     if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
1967       print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
1968       dump_code_range(tty, pc, 32, "distance out of range (16bit)");
1969       guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
1970     }
1971     return;
1972   }
1973 
1974   if (is_pcrelative_long(inst)) {
1975     *(int *)(pc+2)   = RelAddr::pcrel_off32(con, pc);
1976 
1977     // Some Extra safety net.
1978     if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
1979       print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
1980       dump_code_range(tty, pc, 32, "distance out of range (32bit)");
1981       guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
1982     }
1983     return;
1984   }
1985 
1986   guarantee(false, "not a pcrelative instruction to patch!");
1987 }
1988 
1989 // "Current PC" here means the address just behind the basr instruction.
1990 address MacroAssembler::get_PC(Register result) {
1991   z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
1992   return pc();
1993 }
1994 
1995 // Get current PC + offset.
1996 // Offset given in bytes, must be even!
1997 // "Current PC" here means the address of the larl instruction plus the given offset.
1998 address MacroAssembler::get_PC(Register result, int64_t offset) {
1999   address here = pc();
2000   z_larl(result, offset/2); // Save target instruction address in result.
2001   return here + offset;
2002 }
2003 
2004 // Resize_frame with SP(new) = SP(old) - [offset].
2005 void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
2006 {
2007   assert_different_registers(offset, fp, Z_SP);
2008   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2009 
2010   z_sgr(Z_SP, offset);
2011   z_stg(fp, _z_abi(callers_sp), Z_SP);
2012 }
2013 
2014 // Resize_frame with SP(new) = [addr].
2015 void MacroAssembler::resize_frame_absolute(Register addr, Register fp, bool load_fp) {
2016   assert_different_registers(addr, fp, Z_SP);
2017   if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
2018 
2019   if (addr != Z_R0) {
2020     // Minimize stalls by not using Z_SP immediately after update.
2021     z_stg(fp, _z_abi(callers_sp), addr);
2022     z_lgr(Z_SP, addr);
2023   } else {
2024     z_lgr(Z_SP, addr);
2025     z_stg(fp, _z_abi(callers_sp), Z_SP);
2026   }
2027 }
2028 
2029 // Resize_frame with SP(new) = SP(old) + offset.
2030 void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
2031   assert_different_registers(fp, Z_SP);
2032   if (load_fp) z_lg(fp, _z_abi(callers_sp), Z_SP);
2033 
2034   if (Displacement::is_validDisp((int)_z_abi(callers_sp) + offset.constant_or_zero())) {
2035     // Minimize stalls by first using, then updating Z_SP.
2036     // Do that only if we have a small positive offset or if ExtImm are available.
2037     z_stg(fp, Address(Z_SP, offset, _z_abi(callers_sp)));
2038     add64(Z_SP, offset);
2039   } else {
2040     add64(Z_SP, offset);
2041     z_stg(fp, _z_abi(callers_sp), Z_SP);
2042   }
2043 }
2044 
2045 void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
2046 #ifdef ASSERT
2047   assert_different_registers(bytes, old_sp, Z_SP);
2048   if (!copy_sp) {
2049     z_cgr(old_sp, Z_SP);
2050     asm_assert_eq("[old_sp]!=[Z_SP]", 0x211);
2051   }
2052 #endif
2053   if (copy_sp) { z_lgr(old_sp, Z_SP); }
2054   if (bytes_with_inverted_sign) {
2055     z_stg(old_sp, 0, bytes, Z_SP);
2056     add2reg_with_index(Z_SP, 0, bytes, Z_SP);
2057   } else {
2058     z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
2059     z_stg(old_sp, 0, Z_SP);
2060   }
2061 }
2062 
2063 unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
2064   long offset = Assembler::align(bytes, frame::alignment_in_bytes);
2065 
2066   if (Displacement::is_validDisp(-offset)) {
2067     // Minimize stalls by first using, then updating Z_SP.
2068     // Do that only if we have ExtImm available.
2069     z_stg(Z_SP, -offset, Z_SP);
2070     add2reg(Z_SP, -offset);
2071   } else {
2072     if (scratch != Z_R0 && scratch != Z_R1) {
2073       z_stg(Z_SP, -offset, Z_SP);
2074       add2reg(Z_SP, -offset);
2075     } else {   // scratch == Z_R0 || scratch == Z_R1
2076       z_lgr(scratch, Z_SP);
2077       add2reg(Z_SP, -offset);
2078       z_stg(scratch, 0, Z_SP);
2079     }
2080   }
2081   return offset;
2082 }
2083 
2084 // Push a frame of size `bytes' plus abi160 on top.
2085 unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
2086   BLOCK_COMMENT("push_frame_abi160 {");
2087   unsigned int res = push_frame(bytes + frame::z_abi_160_size);
2088   BLOCK_COMMENT("} push_frame_abi160");
2089   return res;
2090 }
2091 
2092 // Pop current C frame.
2093 void MacroAssembler::pop_frame() {
2094   BLOCK_COMMENT("pop_frame:");
2095   Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
2096 }
2097 
2098 void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
2099   if (allow_relocation) {
2100     call_c(entry_point);
2101   } else {
2102     call_c_static(entry_point);
2103   }
2104 }
2105 
2106 void MacroAssembler::call_VM_leaf_base(address entry_point) {
2107   bool allow_relocation = true;
2108   call_VM_leaf_base(entry_point, allow_relocation);
2109 }
2110 
2111 void MacroAssembler::call_VM_base(Register oop_result,
2112                                   Register last_java_sp,
2113                                   address  entry_point,
2114                                   bool     allow_relocation,
2115                                   bool     check_exceptions) { // Defaults to true.
2116   // Allow_relocation indicates, if true, that the generated code shall
2117   // be fit for code relocation or referenced data relocation. In other
2118   // words: all addresses must be considered variable. PC-relative addressing
2119   // is not possible then.
2120   // On the other hand, if (allow_relocation == false), addresses and offsets
2121   // may be considered stable, enabling us to take advantage of some PC-relative
2122   // addressing tweaks. These might improve performance and reduce code size.
2123 
2124   // Determine last_java_sp register.
2125   if (!last_java_sp->is_valid()) {
2126     last_java_sp = Z_SP;  // Load Z_SP as SP.
2127   }
2128 
2129   set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
2130 
2131   // ARG1 must hold thread address.
2132   z_lgr(Z_ARG1, Z_thread);
2133 
2134   address return_pc = NULL;
2135   if (allow_relocation) {
2136     return_pc = call_c(entry_point);
2137   } else {
2138     return_pc = call_c_static(entry_point);
2139   }
2140 
2141   reset_last_Java_frame(allow_relocation);
2142 
2143   // C++ interp handles this in the interpreter.
2144   check_and_handle_popframe(Z_thread);
2145   check_and_handle_earlyret(Z_thread);
2146 
2147   // Check for pending exceptions.
2148   if (check_exceptions) {
2149     // Check for pending exceptions (java_thread is set upon return).
2150     load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
2151 
2152     // This used to conditionally jump to forward_exception however it is
2153     // possible if we relocate that the branch will not reach. So we must jump
2154     // around so we can always reach.
2155 
2156     Label ok;
2157     z_bre(ok); // Bcondequal is the same as bcondZero.
2158     call_stub(StubRoutines::forward_exception_entry());
2159     bind(ok);
2160   }
2161 
2162   // Get oop result if there is one and reset the value in the thread.
2163   if (oop_result->is_valid()) {
2164     get_vm_result(oop_result);
2165   }
2166 
2167   _last_calls_return_pc = return_pc;  // Wipe out other (error handling) calls.
2168 }
2169 
2170 void MacroAssembler::call_VM_base(Register oop_result,
2171                                   Register last_java_sp,
2172                                   address  entry_point,
2173                                   bool     check_exceptions) { // Defaults to true.
2174   bool allow_relocation = true;
2175   call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
2176 }
2177 
2178 // VM calls without explicit last_java_sp.
2179 
2180 void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2181   // Call takes possible detour via InterpreterMacroAssembler.
2182   call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
2183 }
2184 
2185 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2186   // Z_ARG1 is reserved for the thread.
2187   lgr_if_needed(Z_ARG2, arg_1);
2188   call_VM(oop_result, entry_point, check_exceptions);
2189 }
2190 
2191 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2192   // Z_ARG1 is reserved for the thread.
2193   lgr_if_needed(Z_ARG2, arg_1);
2194   assert(arg_2 != Z_ARG2, "smashed argument");
2195   lgr_if_needed(Z_ARG3, arg_2);
2196   call_VM(oop_result, entry_point, check_exceptions);
2197 }
2198 
2199 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2200                              Register arg_3, bool check_exceptions) {
2201   // Z_ARG1 is reserved for the thread.
2202   lgr_if_needed(Z_ARG2, arg_1);
2203   assert(arg_2 != Z_ARG2, "smashed argument");
2204   lgr_if_needed(Z_ARG3, arg_2);
2205   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2206   lgr_if_needed(Z_ARG4, arg_3);
2207   call_VM(oop_result, entry_point, check_exceptions);
2208 }
2209 
2210 // VM static calls without explicit last_java_sp.
2211 
2212 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
2213   // Call takes possible detour via InterpreterMacroAssembler.
2214   call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
2215 }
2216 
2217 void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
2218                                     Register arg_3, bool check_exceptions) {
2219   // Z_ARG1 is reserved for the thread.
2220   lgr_if_needed(Z_ARG2, arg_1);
2221   assert(arg_2 != Z_ARG2, "smashed argument");
2222   lgr_if_needed(Z_ARG3, arg_2);
2223   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2224   lgr_if_needed(Z_ARG4, arg_3);
2225   call_VM_static(oop_result, entry_point, check_exceptions);
2226 }
2227 
2228 // VM calls with explicit last_java_sp.
2229 
2230 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
2231   // Call takes possible detour via InterpreterMacroAssembler.
2232   call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
2233 }
2234 
2235 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
2236    // Z_ARG1 is reserved for the thread.
2237    lgr_if_needed(Z_ARG2, arg_1);
2238    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2239 }
2240 
2241 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2242                              Register arg_2, bool check_exceptions) {
2243    // Z_ARG1 is reserved for the thread.
2244    lgr_if_needed(Z_ARG2, arg_1);
2245    assert(arg_2 != Z_ARG2, "smashed argument");
2246    lgr_if_needed(Z_ARG3, arg_2);
2247    call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2248 }
2249 
2250 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
2251                              Register arg_2, Register arg_3, bool check_exceptions) {
2252   // Z_ARG1 is reserved for the thread.
2253   lgr_if_needed(Z_ARG2, arg_1);
2254   assert(arg_2 != Z_ARG2, "smashed argument");
2255   lgr_if_needed(Z_ARG3, arg_2);
2256   assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
2257   lgr_if_needed(Z_ARG4, arg_3);
2258   call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
2259 }
2260 
2261 // VM leaf calls.
2262 
2263 void MacroAssembler::call_VM_leaf(address entry_point) {
2264   // Call takes possible detour via InterpreterMacroAssembler.
2265   call_VM_leaf_base(entry_point, true);
2266 }
2267 
2268 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
2269   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2270   call_VM_leaf(entry_point);
2271 }
2272 
2273 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
2274   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2275   assert(arg_2 != Z_ARG1, "smashed argument");
2276   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2277   call_VM_leaf(entry_point);
2278 }
2279 
2280 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2281   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2282   assert(arg_2 != Z_ARG1, "smashed argument");
2283   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2284   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2285   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2286   call_VM_leaf(entry_point);
2287 }
2288 
2289 // Static VM leaf calls.
2290 // Really static VM leaf calls are never patched.
2291 
2292 void MacroAssembler::call_VM_leaf_static(address entry_point) {
2293   // Call takes possible detour via InterpreterMacroAssembler.
2294   call_VM_leaf_base(entry_point, false);
2295 }
2296 
2297 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
2298   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2299   call_VM_leaf_static(entry_point);
2300 }
2301 
2302 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
2303   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2304   assert(arg_2 != Z_ARG1, "smashed argument");
2305   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2306   call_VM_leaf_static(entry_point);
2307 }
2308 
2309 void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
2310   if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
2311   assert(arg_2 != Z_ARG1, "smashed argument");
2312   if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
2313   assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
2314   if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
2315   call_VM_leaf_static(entry_point);
2316 }
2317 
2318 // Don't use detour via call_c(reg).
2319 address MacroAssembler::call_c(address function_entry) {
2320   load_const(Z_R1, function_entry);
2321   return call(Z_R1);
2322 }
2323 
2324 // Variant for really static (non-relocatable) calls which are never patched.
2325 address MacroAssembler::call_c_static(address function_entry) {
2326   load_absolute_address(Z_R1, function_entry);
2327 #if 0 // def ASSERT
2328   // Verify that call site did not move.
2329   load_const_optimized(Z_R0, function_entry);
2330   z_cgr(Z_R1, Z_R0);
2331   z_brc(bcondEqual, 3);
2332   z_illtrap(0xba);
2333 #endif
2334   return call(Z_R1);
2335 }
2336 
2337 address MacroAssembler::call_c_opt(address function_entry) {
2338   bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
2339   _last_calls_return_pc = success ? pc() : NULL;
2340   return _last_calls_return_pc;
2341 }
2342 
2343 // Identify a call_far_patchable instruction: LARL + LG + BASR
2344 //
2345 //    nop                   ; optionally, if required for alignment
2346 //    lgrl rx,A(TOC entry)  ; PC-relative access into constant pool
2347 //    basr Z_R14,rx         ; end of this instruction must be aligned to a word boundary
2348 //
2349 // Code pattern will eventually get patched into variant2 (see below for detection code).
2350 //
2351 bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
2352   address iaddr = instruction_addr;
2353 
2354   // Check for the actual load instruction.
2355   if (!is_load_const_from_toc(iaddr)) { return false; }
2356   iaddr += load_const_from_toc_size();
2357 
2358   // Check for the call (BASR) instruction, finally.
2359   assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
2360   return is_call_byregister(iaddr);
2361 }
2362 
2363 // Identify a call_far_patchable instruction: BRASL
2364 //
2365 // Code pattern to suits atomic patching:
2366 //    nop                       ; Optionally, if required for alignment.
2367 //    nop    ...                ; Multiple filler nops to compensate for size difference (variant0 is longer).
2368 //    nop                       ; For code pattern detection: Prepend each BRASL with a nop.
2369 //    brasl  Z_R14,<reladdr>    ; End of code must be 4-byte aligned !
2370 bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
2371   const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
2372 
2373   // Check for correct number of leading nops.
2374   address iaddr;
2375   for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
2376     if (!is_z_nop(iaddr)) { return false; }
2377   }
2378   assert(iaddr == call_addr, "sanity");
2379 
2380   // --> Check for call instruction.
2381   if (is_call_far_pcrelative(call_addr)) {
2382     assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
2383     return true;
2384   }
2385 
2386   return false;
2387 }
2388 
2389 // Emit a NOT mt-safely patchable 64 bit absolute call.
2390 // If toc_offset == -2, then the destination of the call (= target) is emitted
2391 //                      to the constant pool and a runtime_call relocation is added
2392 //                      to the code buffer.
2393 // If toc_offset != -2, target must already be in the constant pool at
2394 //                      _ctableStart+toc_offset (a caller can retrieve toc_offset
2395 //                      from the runtime_call relocation).
2396 // Special handling of emitting to scratch buffer when there is no constant pool.
2397 // Slightly changed code pattern. We emit an additional nop if we would
2398 // not end emitting at a word aligned address. This is to ensure
2399 // an atomically patchable displacement in brasl instructions.
2400 //
2401 // A call_far_patchable comes in different flavors:
2402 //  - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
2403 //  - LGRL(CP) / BR          (address in constant pool, pc-relative accesss)
2404 //  - BRASL                  (relative address of call target coded in instruction)
2405 // All flavors occupy the same amount of space. Length differences are compensated
2406 // by leading nops, such that the instruction sequence always ends at the same
2407 // byte offset. This is required to keep the return offset constant.
2408 // Furthermore, the return address (the end of the instruction sequence) is forced
2409 // to be on a 4-byte boundary. This is required for atomic patching, should we ever
2410 // need to patch the call target of the BRASL flavor.
2411 // RETURN value: false, if no constant pool entry could be allocated, true otherwise.
2412 bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
2413   // Get current pc and ensure word alignment for end of instr sequence.
2414   const address start_pc = pc();
2415   const intptr_t       start_off = offset();
2416   assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
2417   const ptrdiff_t      dist      = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
2418   const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
2419   const bool emit_relative_call  = !emit_target_to_pool &&
2420                                    RelAddr::is_in_range_of_RelAddr32(dist) &&
2421                                    ReoptimizeCallSequences &&
2422                                    !code_section()->scratch_emit();
2423 
2424   if (emit_relative_call) {
2425     // Add padding to get the same size as below.
2426     const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
2427     unsigned int current_padding;
2428     for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
2429     assert(current_padding == padding, "sanity");
2430 
2431     // relative call: len = 2(nop) + 6 (brasl)
2432     // CodeBlob resize cannot occur in this case because
2433     // this call is emitted into pre-existing space.
2434     z_nop(); // Prepend each BRASL with a nop.
2435     z_brasl(Z_R14, target);
2436   } else {
2437     // absolute call: Get address from TOC.
2438     // len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
2439     if (emit_target_to_pool) {
2440       // When emitting the call for the first time, we do not need to use
2441       // the pc-relative version. It will be patched anyway, when the code
2442       // buffer is copied.
2443       // Relocation is not needed when !ReoptimizeCallSequences.
2444       relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
2445       AddressLiteral dest(target, rt);
2446       // Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
2447       // inst_mark(). Reset if possible.
2448       bool reset_mark = (inst_mark() == pc());
2449       tocOffset = store_oop_in_toc(dest);
2450       if (reset_mark) { set_inst_mark(); }
2451       if (tocOffset == -1) {
2452         return false; // Couldn't create constant pool entry.
2453       }
2454     }
2455     assert(offset() == start_off, "emit no code before this point!");
2456 
2457     address tocPos = pc() + tocOffset;
2458     if (emit_target_to_pool) {
2459       tocPos = code()->consts()->start() + tocOffset;
2460     }
2461     load_long_pcrelative(Z_R14, tocPos);
2462     z_basr(Z_R14, Z_R14);
2463   }
2464 
2465 #ifdef ASSERT
2466   // Assert that we can identify the emitted call.
2467   assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
2468   assert(offset() == start_off+call_far_patchable_size(), "wrong size");
2469 
2470   if (emit_target_to_pool) {
2471     assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
2472            "wrong encoding of dest address");
2473   }
2474 #endif
2475   return true; // success
2476 }
2477 
2478 // Identify a call_far_patchable instruction.
2479 // For more detailed information see header comment of call_far_patchable.
2480 bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
2481   return is_call_far_patchable_variant2_at(instruction_addr)  || // short version: BRASL
2482          is_call_far_patchable_variant0_at(instruction_addr);    // long version LARL + LG + BASR
2483 }
2484 
2485 // Does the call_far_patchable instruction use a pc-relative encoding
2486 // of the call destination?
2487 bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
2488   // Variant 2 is pc-relative.
2489   return is_call_far_patchable_variant2_at(instruction_addr);
2490 }
2491 
2492 bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
2493   // Prepend each BRASL with a nop.
2494   return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size());  // Match at position after one nop required.
2495 }
2496 
2497 // Set destination address of a call_far_patchable instruction.
2498 void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
2499   ResourceMark rm;
2500 
2501   // Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
2502   int code_size = MacroAssembler::call_far_patchable_size();
2503   CodeBuffer buf(instruction_addr, code_size);
2504   MacroAssembler masm(&buf);
2505   masm.call_far_patchable(dest, tocOffset);
2506   ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
2507 }
2508 
2509 // Get dest address of a call_far_patchable instruction.
2510 address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
2511   // Dynamic TOC: absolute address in constant pool.
2512   // Check variant2 first, it is more frequent.
2513 
2514   // Relative address encoded in call instruction.
2515   if (is_call_far_patchable_variant2_at(instruction_addr)) {
2516     return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
2517 
2518   // Absolute address in constant pool.
2519   } else if (is_call_far_patchable_variant0_at(instruction_addr)) {
2520     address iaddr = instruction_addr;
2521 
2522     long    tocOffset = get_load_const_from_toc_offset(iaddr);
2523     address tocLoc    = iaddr + tocOffset;
2524     return *(address *)(tocLoc);
2525   } else {
2526     fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
2527     fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
2528             *(unsigned long*)instruction_addr,
2529             *(unsigned long*)(instruction_addr+8),
2530             call_far_patchable_size());
2531     Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
2532     ShouldNotReachHere();
2533     return NULL;
2534   }
2535 }
2536 
2537 void MacroAssembler::align_call_far_patchable(address pc) {
2538   if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
2539 }
2540 
2541 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2542 }
2543 
2544 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2545 }
2546 
2547 // Read from the polling page.
2548 // Use TM or TMY instruction, depending on read offset.
2549 //   offset = 0: Use TM, safepoint polling.
2550 //   offset < 0: Use TMY, profiling safepoint polling.
2551 void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
2552   if (Immediate::is_uimm12(offset)) {
2553     z_tm(offset, polling_page_address, mask_safepoint);
2554   } else {
2555     z_tmy(offset, polling_page_address, mask_profiling);
2556   }
2557 }
2558 
2559 // Check whether z_instruction is a read access to the polling page
2560 // which was emitted by load_from_polling_page(..).
2561 bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
2562   unsigned long z_instruction;
2563   unsigned int  ilen = get_instruction(instr_loc, &z_instruction);
2564 
2565   if (ilen == 2) { return false; } // It's none of the allowed instructions.
2566 
2567   if (ilen == 4) {
2568     if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
2569 
2570     int ms = inv_mask(z_instruction,8,32);  // mask
2571     int ra = inv_reg(z_instruction,16,32);  // base register
2572     int ds = inv_uimm12(z_instruction);     // displacement
2573 
2574     if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
2575       return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
2576     }
2577 
2578   } else { /* if (ilen == 6) */
2579 
2580     assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
2581 
2582     if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
2583 
2584     int ms = inv_mask(z_instruction,8,48);  // mask
2585     int ra = inv_reg(z_instruction,16,48);  // base register
2586     int ds = inv_simm20(z_instruction);     // displacement
2587   }
2588 
2589   return true;
2590 }
2591 
2592 // Extract poll address from instruction and ucontext.
2593 address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
2594   assert(ucontext != NULL, "must have ucontext");
2595   ucontext_t* uc = (ucontext_t*) ucontext;
2596   unsigned long z_instruction;
2597   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2598 
2599   if (ilen == 4 && is_z_tm(z_instruction)) {
2600     int ra = inv_reg(z_instruction, 16, 32);  // base register
2601     int ds = inv_uimm12(z_instruction);       // displacement
2602     address addr = (address)uc->uc_mcontext.gregs[ra];
2603     return addr + ds;
2604   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2605     int ra = inv_reg(z_instruction, 16, 48);  // base register
2606     int ds = inv_simm20(z_instruction);       // displacement
2607     address addr = (address)uc->uc_mcontext.gregs[ra];
2608     return addr + ds;
2609   }
2610 
2611   ShouldNotReachHere();
2612   return NULL;
2613 }
2614 
2615 // Extract poll register from instruction.
2616 uint MacroAssembler::get_poll_register(address instr_loc) {
2617   unsigned long z_instruction;
2618   unsigned int ilen = get_instruction(instr_loc, &z_instruction);
2619 
2620   if (ilen == 4 && is_z_tm(z_instruction)) {
2621     return (uint)inv_reg(z_instruction, 16, 32);  // base register
2622   } else if (ilen == 6 && is_z_tmy(z_instruction)) {
2623     return (uint)inv_reg(z_instruction, 16, 48);  // base register
2624   }
2625 
2626   ShouldNotReachHere();
2627   return 0;
2628 }
2629 
2630 bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
2631   ShouldNotCallThis();
2632   return false;
2633 }
2634 
2635 // Write serialization page so VM thread can do a pseudo remote membar
2636 // We use the current thread pointer to calculate a thread specific
2637 // offset to write to within the page. This minimizes bus traffic
2638 // due to cache line collision.
2639 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
2640   assert_different_registers(tmp1, tmp2);
2641   z_sllg(tmp2, thread, os::get_serialize_page_shift_count());
2642   load_const_optimized(tmp1, (long) os::get_memory_serialize_page());
2643 
2644   int mask = os::get_serialize_page_mask();
2645   if (Immediate::is_uimm16(mask)) {
2646     z_nill(tmp2, mask);
2647     z_llghr(tmp2, tmp2);
2648   } else {
2649     z_nilf(tmp2, mask);
2650     z_llgfr(tmp2, tmp2);
2651   }
2652 
2653   z_release();
2654   z_st(Z_R0, 0, tmp2, tmp1);
2655 }
2656 
2657 // Don't rely on register locking, always use Z_R1 as scratch register instead.
2658 void MacroAssembler::bang_stack_with_offset(int offset) {
2659   // Stack grows down, caller passes positive offset.
2660   assert(offset > 0, "must bang with positive offset");
2661   if (Displacement::is_validDisp(-offset)) {
2662     z_tmy(-offset, Z_SP, mask_stackbang);
2663   } else {
2664     add2reg(Z_R1, -offset, Z_SP);    // Do not destroy Z_SP!!!
2665     z_tm(0, Z_R1, mask_stackbang);  // Just banging.
2666   }
2667 }
2668 
2669 void MacroAssembler::reserved_stack_check(Register return_pc) {
2670   // Test if reserved zone needs to be enabled.
2671   Label no_reserved_zone_enabling;
2672   BLOCK_COMMENT("reserved_stack_check {");
2673 
2674   z_cg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
2675   z_brnh(no_reserved_zone_enabling);
2676 
2677   // Enable reserved zone again, throw stack overflow exception.
2678   lgr_if_needed(Z_R14, return_pc);
2679   save_return_pc();
2680   push_frame_abi160(0);
2681   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
2682   pop_frame();
2683   restore_return_pc();
2684 
2685   load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
2686   // Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
2687   z_br(Z_R1);
2688 
2689   should_not_reach_here();
2690 
2691   bind(no_reserved_zone_enabling);
2692   BLOCK_COMMENT("} reserved_stack_check");
2693 }
2694 
2695 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
2696 void MacroAssembler::tlab_allocate(Register obj,
2697                                    Register var_size_in_bytes,
2698                                    int con_size_in_bytes,
2699                                    Register t1,
2700                                    Label& slow_case) {
2701   assert_different_registers(obj, var_size_in_bytes, t1);
2702   Register end = t1;
2703   Register thread = Z_thread;
2704 
2705   z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
2706   if (var_size_in_bytes == noreg) {
2707     z_lay(end, Address(obj, con_size_in_bytes));
2708   } else {
2709     z_lay(end, Address(obj, var_size_in_bytes));
2710   }
2711   z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
2712   branch_optimized(bcondHigh, slow_case);
2713 
2714   // Update the tlab top pointer.
2715   z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
2716 
2717   // Recover var_size_in_bytes if necessary.
2718   if (var_size_in_bytes == end) {
2719     z_sgr(var_size_in_bytes, obj);
2720   }
2721 }
2722 
2723 // Emitter for interface method lookup.
2724 //   input: recv_klass, intf_klass, itable_index
2725 //   output: method_result
2726 //   kills: itable_index, temp1_reg, Z_R0, Z_R1
2727 // TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
2728 // If the register is still not needed then, remove it.
2729 void MacroAssembler::lookup_interface_method(Register           recv_klass,
2730                                              Register           intf_klass,
2731                                              RegisterOrConstant itable_index,
2732                                              Register           method_result,
2733                                              Register           temp1_reg,
2734                                              Register           temp2_reg,
2735                                              Label&             no_such_interface) {
2736 
2737   const Register vtable_len = temp1_reg;    // Used to compute itable_entry_addr.
2738   const Register itable_entry_addr = Z_R1_scratch;
2739   const Register itable_interface = Z_R0_scratch;
2740 
2741   BLOCK_COMMENT("lookup_interface_method {");
2742 
2743   // Load start of itable entries into itable_entry_addr.
2744   z_llgf(vtable_len, Address(recv_klass, InstanceKlass::vtable_length_offset()));
2745   z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
2746 
2747   // Loop over all itable entries until desired interfaceOop(Rinterface) found.
2748   const int vtable_base_offset = in_bytes(InstanceKlass::vtable_start_offset());
2749 
2750   add2reg_with_index(itable_entry_addr,
2751                      vtable_base_offset + itableOffsetEntry::interface_offset_in_bytes(),
2752                      recv_klass, vtable_len);
2753 
2754   const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
2755   Label     search;
2756 
2757   bind(search);
2758 
2759   // Handle IncompatibleClassChangeError.
2760   // If the entry is NULL then we've reached the end of the table
2761   // without finding the expected interface, so throw an exception.
2762   load_and_test_long(itable_interface, Address(itable_entry_addr));
2763   z_bre(no_such_interface);
2764 
2765   add2reg(itable_entry_addr, itable_offset_search_inc);
2766   z_cgr(itable_interface, intf_klass);
2767   z_brne(search);
2768 
2769   // Entry found and itable_entry_addr points to it, get offset of vtable for interface.
2770 
2771   const int vtable_offset_offset = (itableOffsetEntry::offset_offset_in_bytes() -
2772                                     itableOffsetEntry::interface_offset_in_bytes()) -
2773                                    itable_offset_search_inc;
2774 
2775   // Compute itableMethodEntry and get method and entry point
2776   // we use addressing with index and displacement, since the formula
2777   // for computing the entry's offset has a fixed and a dynamic part,
2778   // the latter depending on the matched interface entry and on the case,
2779   // that the itable index has been passed as a register, not a constant value.
2780   int method_offset = itableMethodEntry::method_offset_in_bytes();
2781                            // Fixed part (displacement), common operand.
2782   Register itable_offset;  // Dynamic part (index register).
2783 
2784   if (itable_index.is_register()) {
2785      // Compute the method's offset in that register, for the formula, see the
2786      // else-clause below.
2787      itable_offset = itable_index.as_register();
2788 
2789      z_sllg(itable_offset, itable_offset, exact_log2(itableMethodEntry::size() * wordSize));
2790      z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
2791   } else {
2792     itable_offset = Z_R1_scratch;
2793     // Displacement increases.
2794     method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
2795 
2796     // Load index from itable.
2797     z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
2798   }
2799 
2800   // Finally load the method's oop.
2801   z_lg(method_result, method_offset, itable_offset, recv_klass);
2802   BLOCK_COMMENT("} lookup_interface_method");
2803 }
2804 
2805 // Lookup for virtual method invocation.
2806 void MacroAssembler::lookup_virtual_method(Register           recv_klass,
2807                                            RegisterOrConstant vtable_index,
2808                                            Register           method_result) {
2809   assert_different_registers(recv_klass, vtable_index.register_or_noreg());
2810   assert(vtableEntry::size() * wordSize == wordSize,
2811          "else adjust the scaling in the code below");
2812 
2813   BLOCK_COMMENT("lookup_virtual_method {");
2814 
2815   const int base = in_bytes(Klass::vtable_start_offset());
2816 
2817   if (vtable_index.is_constant()) {
2818     // Load with base + disp.
2819     Address vtable_entry_addr(recv_klass,
2820                               vtable_index.as_constant() * wordSize +
2821                               base +
2822                               vtableEntry::method_offset_in_bytes());
2823 
2824     z_lg(method_result, vtable_entry_addr);
2825   } else {
2826     // Shift index properly and load with base + index + disp.
2827     Register vindex = vtable_index.as_register();
2828     Address  vtable_entry_addr(recv_klass, vindex,
2829                                base + vtableEntry::method_offset_in_bytes());
2830 
2831     z_sllg(vindex, vindex, exact_log2(wordSize));
2832     z_lg(method_result, vtable_entry_addr);
2833   }
2834   BLOCK_COMMENT("} lookup_virtual_method");
2835 }
2836 
2837 // Factor out code to call ic_miss_handler.
2838 // Generate code to call the inline cache miss handler.
2839 //
2840 // In most cases, this code will be generated out-of-line.
2841 // The method parameters are intended to provide some variability.
2842 //   ICM          - Label which has to be bound to the start of useful code (past any traps).
2843 //   trapMarker   - Marking byte for the generated illtrap instructions (if any).
2844 //                  Any value except 0x00 is supported.
2845 //                  = 0x00 - do not generate illtrap instructions.
2846 //                         use nops to fill ununsed space.
2847 //   requiredSize - required size of the generated code. If the actually
2848 //                  generated code is smaller, use padding instructions to fill up.
2849 //                  = 0 - no size requirement, no padding.
2850 //   scratch      - scratch register to hold branch target address.
2851 //
2852 //  The method returns the code offset of the bound label.
2853 unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
2854   intptr_t startOffset = offset();
2855 
2856   // Prevent entry at content_begin().
2857   if (trapMarker != 0) {
2858     z_illtrap(trapMarker);
2859   }
2860 
2861   // Load address of inline cache miss code into scratch register
2862   // and branch to cache miss handler.
2863   BLOCK_COMMENT("IC miss handler {");
2864   BIND(ICM);
2865   unsigned int   labelOffset = offset();
2866   AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
2867 
2868   load_const_optimized(scratch, icmiss);
2869   z_br(scratch);
2870 
2871   // Fill unused space.
2872   if (requiredSize > 0) {
2873     while ((offset() - startOffset) < requiredSize) {
2874       if (trapMarker == 0) {
2875         z_nop();
2876       } else {
2877         z_illtrap(trapMarker);
2878       }
2879     }
2880   }
2881   BLOCK_COMMENT("} IC miss handler");
2882   return labelOffset;
2883 }
2884 
2885 void MacroAssembler::nmethod_UEP(Label& ic_miss) {
2886   Register ic_reg       = as_Register(Matcher::inline_cache_reg_encode());
2887   int      klass_offset = oopDesc::klass_offset_in_bytes();
2888   if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
2889     if (VM_Version::has_CompareBranch()) {
2890       z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
2891     } else {
2892       z_ltgr(Z_ARG1, Z_ARG1);
2893       z_bre(ic_miss);
2894     }
2895   }
2896   // Compare cached class against klass from receiver.
2897   compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
2898   z_brne(ic_miss);
2899 }
2900 
2901 void MacroAssembler::check_klass_subtype_fast_path(Register   sub_klass,
2902                                                    Register   super_klass,
2903                                                    Register   temp1_reg,
2904                                                    Label*     L_success,
2905                                                    Label*     L_failure,
2906                                                    Label*     L_slow_path,
2907                                                    RegisterOrConstant super_check_offset) {
2908 
2909   const int sc_offset  = in_bytes(Klass::secondary_super_cache_offset());
2910   const int sco_offset = in_bytes(Klass::super_check_offset_offset());
2911 
2912   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
2913   bool need_slow_path = (must_load_sco ||
2914                          super_check_offset.constant_or_zero() == sc_offset);
2915 
2916   // Input registers must not overlap.
2917   assert_different_registers(sub_klass, super_klass, temp1_reg);
2918   if (super_check_offset.is_register()) {
2919     assert_different_registers(sub_klass, super_klass,
2920                                super_check_offset.as_register());
2921   } else if (must_load_sco) {
2922     assert(temp1_reg != noreg, "supply either a temp or a register offset");
2923   }
2924 
2925   const Register Rsuper_check_offset = temp1_reg;
2926 
2927   NearLabel L_fallthrough;
2928   int label_nulls = 0;
2929   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2930   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2931   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2932   assert(label_nulls <= 1 ||
2933          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2934          "at most one NULL in the batch, usually");
2935 
2936   BLOCK_COMMENT("check_klass_subtype_fast_path {");
2937   // If the pointers are equal, we are done (e.g., String[] elements).
2938   // This self-check enables sharing of secondary supertype arrays among
2939   // non-primary types such as array-of-interface. Otherwise, each such
2940   // type would need its own customized SSA.
2941   // We move this check to the front of the fast path because many
2942   // type checks are in fact trivially successful in this manner,
2943   // so we get a nicely predicted branch right at the start of the check.
2944   compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
2945 
2946   // Check the supertype display, which is uint.
2947   if (must_load_sco) {
2948     z_llgf(Rsuper_check_offset, sco_offset, super_klass);
2949     super_check_offset = RegisterOrConstant(Rsuper_check_offset);
2950   }
2951   Address super_check_addr(sub_klass, super_check_offset, 0);
2952   z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
2953 
2954   // This check has worked decisively for primary supers.
2955   // Secondary supers are sought in the super_cache ('super_cache_addr').
2956   // (Secondary supers are interfaces and very deeply nested subtypes.)
2957   // This works in the same check above because of a tricky aliasing
2958   // between the super_cache and the primary super display elements.
2959   // (The 'super_check_addr' can address either, as the case requires.)
2960   // Note that the cache is updated below if it does not help us find
2961   // what we need immediately.
2962   // So if it was a primary super, we can just fail immediately.
2963   // Otherwise, it's the slow path for us (no success at this point).
2964 
2965   // Hacked jmp, which may only be used just before L_fallthrough.
2966 #define final_jmp(label)                                                \
2967   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
2968   else                            { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
2969 
2970   if (super_check_offset.is_register()) {
2971     branch_optimized(Assembler::bcondEqual, *L_success);
2972     z_cfi(super_check_offset.as_register(), sc_offset);
2973     if (L_failure == &L_fallthrough) {
2974       branch_optimized(Assembler::bcondEqual, *L_slow_path);
2975     } else {
2976       branch_optimized(Assembler::bcondNotEqual, *L_failure);
2977       final_jmp(*L_slow_path);
2978     }
2979   } else if (super_check_offset.as_constant() == sc_offset) {
2980     // Need a slow path; fast failure is impossible.
2981     if (L_slow_path == &L_fallthrough) {
2982       branch_optimized(Assembler::bcondEqual, *L_success);
2983     } else {
2984       branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
2985       final_jmp(*L_success);
2986     }
2987   } else {
2988     // No slow path; it's a fast decision.
2989     if (L_failure == &L_fallthrough) {
2990       branch_optimized(Assembler::bcondEqual, *L_success);
2991     } else {
2992       branch_optimized(Assembler::bcondNotEqual, *L_failure);
2993       final_jmp(*L_success);
2994     }
2995   }
2996 
2997   bind(L_fallthrough);
2998 #undef local_brc
2999 #undef final_jmp
3000   BLOCK_COMMENT("} check_klass_subtype_fast_path");
3001   // fallthru (to slow path)
3002 }
3003 
3004 void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
3005                                                    Register Rsuperklass,
3006                                                    Register Rarray_ptr,  // tmp
3007                                                    Register Rlength,     // tmp
3008                                                    Label* L_success,
3009                                                    Label* L_failure) {
3010   // Input registers must not overlap.
3011   // Also check for R1 which is explicitely used here.
3012   assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
3013   NearLabel L_fallthrough, L_loop;
3014   int label_nulls = 0;
3015   if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
3016   if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
3017   assert(label_nulls <= 1, "at most one NULL in the batch");
3018 
3019   const int ss_offset = in_bytes(Klass::secondary_supers_offset());
3020   const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
3021 
3022   const int length_offset = Array<Klass*>::length_offset_in_bytes();
3023   const int base_offset   = Array<Klass*>::base_offset_in_bytes();
3024 
3025   // Hacked jmp, which may only be used just before L_fallthrough.
3026 #define final_jmp(label)                                                \
3027   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
3028   else                            branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
3029 
3030   NearLabel loop_iterate, loop_count, match;
3031 
3032   BLOCK_COMMENT("check_klass_subtype_slow_path {");
3033   z_lg(Rarray_ptr, ss_offset, Rsubklass);
3034 
3035   load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
3036   branch_optimized(Assembler::bcondZero, *L_failure);
3037 
3038   // Oops in table are NO MORE compressed.
3039   z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
3040   z_bre(match);                               // Shortcut for array length = 1.
3041 
3042   // No match yet, so we must walk the array's elements.
3043   z_lngfr(Rlength, Rlength);
3044   z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
3045   z_llill(Z_R1, BytesPerWord);               // Set increment/end index.
3046   add2reg(Rlength, 2 * BytesPerWord);        // start index  = -(n-2)*BytesPerWord
3047   z_slgr(Rarray_ptr, Rlength);               // start addr: +=  (n-2)*BytesPerWord
3048   z_bru(loop_count);
3049 
3050   BIND(loop_iterate);
3051   z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
3052   z_bre(match);
3053   BIND(loop_count);
3054   z_brxlg(Rlength, Z_R1, loop_iterate);
3055 
3056   // Rsuperklass not found among secondary super classes -> failure.
3057   branch_optimized(Assembler::bcondAlways, *L_failure);
3058 
3059   // Got a hit. Return success (zero result). Set cache.
3060   // Cache load doesn't happen here. For speed it is directly emitted by the compiler.
3061 
3062   BIND(match);
3063 
3064   z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
3065 
3066   final_jmp(*L_success);
3067 
3068   // Exit to the surrounding code.
3069   BIND(L_fallthrough);
3070 #undef local_brc
3071 #undef final_jmp
3072   BLOCK_COMMENT("} check_klass_subtype_slow_path");
3073 }
3074 
3075 // Emitter for combining fast and slow path.
3076 void MacroAssembler::check_klass_subtype(Register sub_klass,
3077                                          Register super_klass,
3078                                          Register temp1_reg,
3079                                          Register temp2_reg,
3080                                          Label&   L_success) {
3081   NearLabel failure;
3082   BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
3083   check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
3084                                 &L_success, &failure, NULL);
3085   check_klass_subtype_slow_path(sub_klass, super_klass,
3086                                 temp1_reg, temp2_reg, &L_success, NULL);
3087   BIND(failure);
3088   BLOCK_COMMENT("} check_klass_subtype");
3089 }
3090 
3091 // Increment a counter at counter_address when the eq condition code is
3092 // set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
3093 void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
3094   Label l;
3095   z_brne(l);
3096   load_const(tmp1_reg, counter_address);
3097   add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
3098   z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
3099   bind(l);
3100 }
3101 
3102 // Semantics are dependent on the slow_case label:
3103 //   If the slow_case label is not NULL, failure to biased-lock the object
3104 //   transfers control to the location of the slow_case label. If the
3105 //   object could be biased-locked, control is transferred to the done label.
3106 //   The condition code is unpredictable.
3107 //
3108 //   If the slow_case label is NULL, failure to biased-lock the object results
3109 //   in a transfer of control to the done label with a condition code of not_equal.
3110 //   If the biased-lock could be successfully obtained, control is transfered to
3111 //   the done label with a condition code of equal.
3112 //   It is mandatory to react on the condition code At the done label.
3113 //
3114 void MacroAssembler::biased_locking_enter(Register  obj_reg,
3115                                           Register  mark_reg,
3116                                           Register  temp_reg,
3117                                           Register  temp2_reg,    // May be Z_RO!
3118                                           Label    &done,
3119                                           Label    *slow_case) {
3120   assert(UseBiasedLocking, "why call this otherwise?");
3121   assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
3122 
3123   Label cas_label; // Try, if implemented, CAS locking. Fall thru to slow path otherwise.
3124 
3125   BLOCK_COMMENT("biased_locking_enter {");
3126 
3127   // Biased locking
3128   // See whether the lock is currently biased toward our thread and
3129   // whether the epoch is still valid.
3130   // Note that the runtime guarantees sufficient alignment of JavaThread
3131   // pointers to allow age to be placed into low bits.
3132   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
3133          "biased locking makes assumptions about bit layout");
3134   z_lr(temp_reg, mark_reg);
3135   z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
3136   z_chi(temp_reg, markOopDesc::biased_lock_pattern);
3137   z_brne(cas_label);  // Try cas if object is not biased, i.e. cannot be biased locked.
3138 
3139   load_prototype_header(temp_reg, obj_reg);
3140   load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
3141 
3142   z_ogr(temp_reg, Z_thread);
3143   z_xgr(temp_reg, mark_reg);
3144   z_ngr(temp_reg, temp2_reg);
3145   if (PrintBiasedLockingStatistics) {
3146     increment_counter_eq((address) BiasedLocking::biased_lock_entry_count_addr(), mark_reg, temp2_reg);
3147     // Restore mark_reg.
3148     z_lg(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
3149   }
3150   branch_optimized(Assembler::bcondEqual, done);  // Biased lock obtained, return success.
3151 
3152   Label try_revoke_bias;
3153   Label try_rebias;
3154   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3155 
3156   //----------------------------------------------------------------------------
3157   // At this point we know that the header has the bias pattern and
3158   // that we are not the bias owner in the current epoch. We need to
3159   // figure out more details about the state of the header in order to
3160   // know what operations can be legally performed on the object's
3161   // header.
3162 
3163   // If the low three bits in the xor result aren't clear, that means
3164   // the prototype header is no longer biased and we have to revoke
3165   // the bias on this object.
3166   z_tmll(temp_reg, markOopDesc::biased_lock_mask_in_place);
3167   z_brnaz(try_revoke_bias);
3168 
3169   // Biasing is still enabled for this data type. See whether the
3170   // epoch of the current bias is still valid, meaning that the epoch
3171   // bits of the mark word are equal to the epoch bits of the
3172   // prototype header. (Note that the prototype header's epoch bits
3173   // only change at a safepoint.) If not, attempt to rebias the object
3174   // toward the current thread. Note that we must be absolutely sure
3175   // that the current epoch is invalid in order to do this because
3176   // otherwise the manipulations it performs on the mark word are
3177   // illegal.
3178   z_tmll(temp_reg, markOopDesc::epoch_mask_in_place);
3179   z_brnaz(try_rebias);
3180 
3181   //----------------------------------------------------------------------------
3182   // The epoch of the current bias is still valid but we know nothing
3183   // about the owner; it might be set or it might be clear. Try to
3184   // acquire the bias of the object using an atomic operation. If this
3185   // fails we will go in to the runtime to revoke the object's bias.
3186   // Note that we first construct the presumed unbiased header so we
3187   // don't accidentally blow away another thread's valid bias.
3188   z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place |
3189          markOopDesc::epoch_mask_in_place);
3190   z_lgr(temp_reg, Z_thread);
3191   z_llgfr(mark_reg, mark_reg);
3192   z_ogr(temp_reg, mark_reg);
3193 
3194   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3195 
3196   z_csg(mark_reg, temp_reg, 0, obj_reg);
3197 
3198   // If the biasing toward our thread failed, this means that
3199   // another thread succeeded in biasing it toward itself and we
3200   // need to revoke that bias. The revocation will occur in the
3201   // interpreter runtime in the slow case.
3202 
3203   if (PrintBiasedLockingStatistics) {
3204     increment_counter_eq((address) BiasedLocking::anonymously_biased_lock_entry_count_addr(),
3205                          temp_reg, temp2_reg);
3206   }
3207   if (slow_case != NULL) {
3208     branch_optimized(Assembler::bcondNotEqual, *slow_case); // Biased lock not obtained, need to go the long way.
3209   }
3210   branch_optimized(Assembler::bcondAlways, done);           // Biased lock status given in condition code.
3211 
3212   //----------------------------------------------------------------------------
3213   bind(try_rebias);
3214   // At this point we know the epoch has expired, meaning that the
3215   // current "bias owner", if any, is actually invalid. Under these
3216   // circumstances _only_, we are allowed to use the current header's
3217   // value as the comparison value when doing the cas to acquire the
3218   // bias in the current epoch. In other words, we allow transfer of
3219   // the bias from one thread to another directly in this situation.
3220 
3221   z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
3222   load_prototype_header(temp_reg, obj_reg);
3223   z_llgfr(mark_reg, mark_reg);
3224 
3225   z_ogr(temp_reg, Z_thread);
3226 
3227   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3228 
3229   z_csg(mark_reg, temp_reg, 0, obj_reg);
3230 
3231   // If the biasing toward our thread failed, this means that
3232   // another thread succeeded in biasing it toward itself and we
3233   // need to revoke that bias. The revocation will occur in the
3234   // interpreter runtime in the slow case.
3235 
3236   if (PrintBiasedLockingStatistics) {
3237     increment_counter_eq((address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg, temp2_reg);
3238   }
3239   if (slow_case != NULL) {
3240     branch_optimized(Assembler::bcondNotEqual, *slow_case);  // Biased lock not obtained, need to go the long way.
3241   }
3242   z_bru(done);           // Biased lock status given in condition code.
3243 
3244   //----------------------------------------------------------------------------
3245   bind(try_revoke_bias);
3246   // The prototype mark in the klass doesn't have the bias bit set any
3247   // more, indicating that objects of this data type are not supposed
3248   // to be biased any more. We are going to try to reset the mark of
3249   // this object to the prototype value and fall through to the
3250   // CAS-based locking scheme. Note that if our CAS fails, it means
3251   // that another thread raced us for the privilege of revoking the
3252   // bias of this particular object, so it's okay to continue in the
3253   // normal locking code.
3254   load_prototype_header(temp_reg, obj_reg);
3255 
3256   assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
3257 
3258   z_csg(mark_reg, temp_reg, 0, obj_reg);
3259 
3260   // Fall through to the normal CAS-based lock, because no matter what
3261   // the result of the above CAS, some thread must have succeeded in
3262   // removing the bias bit from the object's header.
3263   if (PrintBiasedLockingStatistics) {
3264     // z_cgr(mark_reg, temp2_reg);
3265     increment_counter_eq((address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg, temp2_reg);
3266   }
3267 
3268   bind(cas_label);
3269   BLOCK_COMMENT("} biased_locking_enter");
3270 }
3271 
3272 void MacroAssembler::biased_locking_exit(Register mark_addr, Register temp_reg, Label& done) {
3273   // Check for biased locking unlock case, which is a no-op
3274   // Note: we do not have to check the thread ID for two reasons.
3275   // First, the interpreter checks for IllegalMonitorStateException at
3276   // a higher level. Second, if the bias was revoked while we held the
3277   // lock, the object could not be rebiased toward another thread, so
3278   // the bias bit would be clear.
3279   BLOCK_COMMENT("biased_locking_exit {");
3280 
3281   z_lg(temp_reg, 0, mark_addr);
3282   z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
3283 
3284   z_chi(temp_reg, markOopDesc::biased_lock_pattern);
3285   z_bre(done);
3286   BLOCK_COMMENT("} biased_locking_exit");
3287 }
3288 
3289 void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3290   Register displacedHeader = temp1;
3291   Register currentHeader = temp1;
3292   Register temp = temp2;
3293   NearLabel done, object_has_monitor;
3294 
3295   BLOCK_COMMENT("compiler_fast_lock_object {");
3296 
3297   // Load markOop from oop into mark.
3298   z_lg(displacedHeader, 0, oop);
3299 
3300   if (try_bias) {
3301     biased_locking_enter(oop, displacedHeader, temp, Z_R0, done);
3302   }
3303 
3304   // Handle existing monitor.
3305   if ((EmitSync & 0x01) == 0) {
3306     // The object has an existing monitor iff (mark & monitor_value) != 0.
3307     guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
3308     z_lr(temp, displacedHeader);
3309     z_nill(temp, markOopDesc::monitor_value);
3310     z_brne(object_has_monitor);
3311   }
3312 
3313   // Set mark to markOop | markOopDesc::unlocked_value.
3314   z_oill(displacedHeader, markOopDesc::unlocked_value);
3315 
3316   // Load Compare Value application register.
3317 
3318   // Initialize the box (must happen before we update the object mark).
3319   z_stg(displacedHeader, BasicLock::displaced_header_offset_in_bytes(), box);
3320 
3321   // Memory Fence (in cmpxchgd)
3322   // Compare object markOop with mark and if equal exchange scratch1 with object markOop.
3323 
3324   // If the compare-and-swap succeeded, then we found an unlocked object and we
3325   // have now locked it.
3326   z_csg(displacedHeader, box, 0, oop);
3327   assert(currentHeader==displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
3328   z_bre(done);
3329 
3330   // We did not see an unlocked object so try the fast recursive case.
3331 
3332   z_sgr(currentHeader, Z_SP);
3333   load_const_optimized(temp, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
3334 
3335   z_ngr(currentHeader, temp);
3336   //   z_brne(done);
3337   //   z_release();
3338   z_stg(currentHeader/*==0 or not 0*/, BasicLock::displaced_header_offset_in_bytes(), box);
3339 
3340   z_bru(done);
3341 
3342   if ((EmitSync & 0x01) == 0) {
3343     Register zero = temp;
3344     Register monitor_tagged = displacedHeader; // Tagged with markOopDesc::monitor_value.
3345     bind(object_has_monitor);
3346     // The object's monitor m is unlocked iff m->owner == NULL,
3347     // otherwise m->owner may contain a thread or a stack address.
3348     //
3349     // Try to CAS m->owner from NULL to current thread.
3350     z_lghi(zero, 0);
3351     // If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
3352     z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
3353     // Store a non-null value into the box.
3354     z_stg(box, BasicLock::displaced_header_offset_in_bytes(), box);
3355 #ifdef ASSERT
3356       z_brne(done);
3357       // We've acquired the monitor, check some invariants.
3358       // Invariant 1: _recursions should be 0.
3359       asm_assert_mem8_is_zero(OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions), monitor_tagged,
3360                               "monitor->_recursions should be 0", -1);
3361       z_ltgr(zero, zero); // Set CR=EQ.
3362 #endif
3363   }
3364   bind(done);
3365 
3366   BLOCK_COMMENT("} compiler_fast_lock_object");
3367   // If locking was successful, CR should indicate 'EQ'.
3368   // The compiler or the native wrapper generates a branch to the runtime call
3369   // _complete_monitor_locking_Java.
3370 }
3371 
3372 void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
3373   Register displacedHeader = temp1;
3374   Register currentHeader = temp2;
3375   Register temp = temp1;
3376   Register monitor = temp2;
3377 
3378   Label done, object_has_monitor;
3379 
3380   BLOCK_COMMENT("compiler_fast_unlock_object {");
3381 
3382   if (try_bias) {
3383     biased_locking_exit(oop, currentHeader, done);
3384   }
3385 
3386   // Find the lock address and load the displaced header from the stack.
3387   // if the displaced header is zero, we have a recursive unlock.
3388   load_and_test_long(displacedHeader, Address(box, BasicLock::displaced_header_offset_in_bytes()));
3389   z_bre(done);
3390 
3391   // Handle existing monitor.
3392   if ((EmitSync & 0x02) == 0) {
3393     // The object has an existing monitor iff (mark & monitor_value) != 0.
3394     z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);
3395     guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
3396     z_nill(currentHeader, markOopDesc::monitor_value);
3397     z_brne(object_has_monitor);
3398   }
3399 
3400   // Check if it is still a light weight lock, this is true if we see
3401   // the stack address of the basicLock in the markOop of the object
3402   // copy box to currentHeader such that csg does not kill it.
3403   z_lgr(currentHeader, box);
3404   z_csg(currentHeader, displacedHeader, 0, oop);
3405   z_bru(done); // Csg sets CR as desired.
3406 
3407   // Handle existing monitor.
3408   if ((EmitSync & 0x02) == 0) {
3409     bind(object_has_monitor);
3410     z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);    // CurrentHeader is tagged with monitor_value set.
3411     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
3412     z_brne(done);
3413     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
3414     z_brne(done);
3415     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
3416     z_brne(done);
3417     load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
3418     z_brne(done);
3419     z_release();
3420     z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
3421   }
3422 
3423   bind(done);
3424 
3425   BLOCK_COMMENT("} compiler_fast_unlock_object");
3426   // flag == EQ indicates success
3427   // flag == NE indicates failure
3428 }
3429 
3430 // Write to card table for modification at store_addr - register is destroyed afterwards.
3431 void MacroAssembler::card_write_barrier_post(Register store_addr, Register tmp) {
3432   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
3433   assert(bs->kind() == BarrierSet::CardTableForRS ||
3434          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
3435   assert_different_registers(store_addr, tmp);
3436   z_srlg(store_addr, store_addr, CardTableModRefBS::card_shift);
3437   load_absolute_address(tmp, (address)bs->byte_map_base);
3438   z_agr(store_addr, tmp);
3439   z_mvi(0, store_addr, 0); // Store byte 0.
3440 }
3441 
3442 #if INCLUDE_ALL_GCS
3443 
3444 //------------------------------------------------------
3445 // General G1 pre-barrier generator.
3446 // Purpose: record the previous value if it is not null.
3447 // All non-tmps are preserved.
3448 //------------------------------------------------------
3449 void MacroAssembler::g1_write_barrier_pre(Register           Robj,
3450                                           RegisterOrConstant offset,
3451                                           Register           Rpre_val,      // Ideally, this is a non-volatile register.
3452                                           Register           Rval,          // Will be preserved.
3453                                           Register           Rtmp1,         // If Rpre_val is volatile, either Rtmp1
3454                                           Register           Rtmp2,         // or Rtmp2 has to be non-volatile..
3455                                           bool               pre_val_needed // Save Rpre_val across runtime call, caller uses it.
3456                                        ) {
3457   Label callRuntime, filtered;
3458   const int active_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
3459   const int buffer_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf());
3460   const int index_offset  = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index());
3461   assert_different_registers(Rtmp1, Rtmp2, Z_R0_scratch); // None of the Rtmp<i> must be Z_R0!!
3462 
3463   BLOCK_COMMENT("g1_write_barrier_pre {");
3464 
3465   // Is marking active?
3466   // Note: value is loaded for test purposes only. No further use here.
3467   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3468     load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
3469   } else {
3470     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3471     load_and_test_byte(Rtmp1, Address(Z_thread, active_offset));
3472   }
3473   z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently.
3474 
3475   // Do we need to load the previous value into Rpre_val?
3476   if (Robj != noreg) {
3477     // Load the previous value...
3478     Register ixReg = offset.is_register() ? offset.register_or_noreg() : Z_R0;
3479     if (UseCompressedOops) {
3480       z_llgf(Rpre_val, offset.constant_or_zero(), ixReg, Robj);
3481     } else {
3482       z_lg(Rpre_val, offset.constant_or_zero(), ixReg, Robj);
3483     }
3484   }
3485   assert(Rpre_val != noreg, "must have a real register");
3486 
3487   // Is the previous value NULL?
3488   // Note: pre_val is loaded, decompressed and stored (directly or via runtime call).
3489   //       Register contents is preserved across runtime call if caller requests to do so.
3490   z_ltgr(Rpre_val, Rpre_val);
3491   z_bre(filtered); // previous value is NULL, so we don't need to record it.
3492 
3493   // Decode the oop now. We know it's not NULL.
3494   if (Robj != noreg && UseCompressedOops) {
3495     oop_decoder(Rpre_val, Rpre_val, /*maybeNULL=*/false);
3496   }
3497 
3498   // OK, it's not filtered, so we'll need to call enqueue.
3499 
3500   // We can store the original value in the thread's buffer
3501   // only if index > 0. Otherwise, we need runtime to handle.
3502   // (The index field is typed as size_t.)
3503   Register Rbuffer = Rtmp1, Rindex = Rtmp2;
3504 
3505   z_lg(Rbuffer, buffer_offset, Z_thread);
3506 
3507   load_and_test_long(Rindex, Address(Z_thread, index_offset));
3508   z_bre(callRuntime); // If index == 0, goto runtime.
3509 
3510   add2reg(Rindex, -wordSize); // Decrement index.
3511   z_stg(Rindex, index_offset, Z_thread);
3512 
3513   // Record the previous value.
3514   z_stg(Rpre_val, 0, Rbuffer, Rindex);
3515   z_bru(filtered);  // We are done.
3516 
3517   Rbuffer = noreg;  // end of life
3518   Rindex  = noreg;  // end of life
3519 
3520   bind(callRuntime);
3521 
3522   // Save Rpre_val (result) over runtime call.
3523   // Requires Rtmp1, Rtmp2, or Rpre_val to be non-volatile.
3524   Register Rpre_save = Rpre_val;
3525   if (pre_val_needed && Rpre_val->is_volatile()) {
3526     guarantee(!Rtmp1->is_volatile() || !Rtmp2->is_volatile(), "oops!");
3527     Rpre_save = !Rtmp1->is_volatile() ? Rtmp1 : Rtmp2;
3528   }
3529   lgr_if_needed(Rpre_save, Rpre_val);
3530 
3531   // Preserve inputs by spilling them into the top frame.
3532   if (Robj != noreg && Robj->is_volatile()) {
3533     z_stg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
3534   }
3535   if (offset.is_register() && offset.as_register()->is_volatile()) {
3536     Register Roff = offset.as_register();
3537     z_stg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
3538   }
3539   if (Rval != noreg && Rval->is_volatile()) {
3540     z_stg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
3541   }
3542 
3543   // Push frame to protect top frame with return pc and spilled register values.
3544   save_return_pc();
3545   push_frame_abi160(0); // Will use Z_R0 as tmp on old CPUs.
3546 
3547   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, Z_thread);
3548 
3549   pop_frame();
3550   restore_return_pc();
3551 
3552   // Restore spilled values.
3553   if (Robj != noreg && Robj->is_volatile()) {
3554     z_lg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
3555   }
3556   if (offset.is_register() && offset.as_register()->is_volatile()) {
3557     Register Roff = offset.as_register();
3558     z_lg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
3559   }
3560   if (Rval != noreg && Rval->is_volatile()) {
3561     z_lg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
3562   }
3563 
3564   // Restore Rpre_val (result) after runtime call.
3565   lgr_if_needed(Rpre_val, Rpre_save);
3566 
3567   bind(filtered);
3568   BLOCK_COMMENT("} g1_write_barrier_pre");
3569 }
3570 
3571 // General G1 post-barrier generator.
3572 // Purpose: Store cross-region card.
3573 void MacroAssembler::g1_write_barrier_post(Register Rstore_addr,
3574                                            Register Rnew_val,
3575                                            Register Rtmp1,
3576                                            Register Rtmp2,
3577                                            Register Rtmp3) {
3578   Label callRuntime, filtered;
3579 
3580   assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2); // Most probably, Rnew_val == Rtmp3.
3581 
3582   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
3583   assert(bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
3584 
3585   BLOCK_COMMENT("g1_write_barrier_post {");
3586 
3587   // Does store cross heap regions?
3588   // It does if the two addresses specify different grain addresses.
3589   if (G1RSBarrierRegionFilter) {
3590     if (VM_Version::has_DistinctOpnds()) {
3591       z_xgrk(Rtmp1, Rstore_addr, Rnew_val);
3592     } else {
3593       z_lgr(Rtmp1, Rstore_addr);
3594       z_xgr(Rtmp1, Rnew_val);
3595     }
3596     z_srag(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
3597     z_bre(filtered);
3598   }
3599 
3600   // Crosses regions, storing NULL?
3601 #ifdef ASSERT
3602   z_ltgr(Rnew_val, Rnew_val);
3603   asm_assert_ne("null oop not allowed (G1)", 0x255); // TODO: also on z? Checked by caller on PPC64, so following branch is obsolete:
3604   z_bre(filtered);  // Safety net: don't break if we have a NULL oop.
3605 #endif
3606   Rnew_val = noreg; // end of lifetime
3607 
3608   // Storing region crossing non-NULL, is card already dirty?
3609   assert(sizeof(*bs->byte_map_base) == sizeof(jbyte), "adjust this code");
3610   assert_different_registers(Rtmp1, Rtmp2, Rtmp3);
3611   // Make sure not to use Z_R0 for any of these registers.
3612   Register Rcard_addr = (Rtmp1 != Z_R0_scratch) ? Rtmp1 : Rtmp3;
3613   Register Rbase      = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp3;
3614 
3615   // calculate address of card
3616   load_const_optimized(Rbase, (address)bs->byte_map_base);        // Card table base.
3617   z_srlg(Rcard_addr, Rstore_addr, CardTableModRefBS::card_shift); // Index into card table.
3618   add2reg_with_index(Rcard_addr, 0, Rcard_addr, Rbase);           // Explicit calculation needed for cli.
3619   Rbase = noreg; // end of lifetime
3620 
3621   // Filter young.
3622   assert((unsigned int)G1SATBCardTableModRefBS::g1_young_card_val() <= 255, "otherwise check this code");
3623   z_cli(0, Rcard_addr, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3624   z_bre(filtered);
3625 
3626   // Check the card value. If dirty, we're done.
3627   // This also avoids false sharing of the (already dirty) card.
3628   z_sync(); // Required to support concurrent cleaning.
3629   assert((unsigned int)CardTableModRefBS::dirty_card_val() <= 255, "otherwise check this code");
3630   z_cli(0, Rcard_addr, CardTableModRefBS::dirty_card_val()); // Reload after membar.
3631   z_bre(filtered);
3632 
3633   // Storing a region crossing, non-NULL oop, card is clean.
3634   // Dirty card and log.
3635   z_mvi(0, Rcard_addr, CardTableModRefBS::dirty_card_val());
3636 
3637   Register Rcard_addr_x = Rcard_addr;
3638   Register Rqueue_index = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp1;
3639   Register Rqueue_buf   = (Rtmp3 != Z_R0_scratch) ? Rtmp3 : Rtmp1;
3640   const int qidx_off    = in_bytes(JavaThread::dirty_card_queue_offset() + SATBMarkQueue::byte_offset_of_index());
3641   const int qbuf_off    = in_bytes(JavaThread::dirty_card_queue_offset() + SATBMarkQueue::byte_offset_of_buf());
3642   if ((Rcard_addr == Rqueue_buf) || (Rcard_addr == Rqueue_index)) {
3643     Rcard_addr_x = Z_R0_scratch;  // Register shortage. We have to use Z_R0.
3644   }
3645   lgr_if_needed(Rcard_addr_x, Rcard_addr);
3646 
3647   load_and_test_long(Rqueue_index, Address(Z_thread, qidx_off));
3648   z_bre(callRuntime); // Index == 0 then jump to runtime.
3649 
3650   z_lg(Rqueue_buf, qbuf_off, Z_thread);
3651 
3652   add2reg(Rqueue_index, -wordSize); // Decrement index.
3653   z_stg(Rqueue_index, qidx_off, Z_thread);
3654 
3655   z_stg(Rcard_addr_x, 0, Rqueue_index, Rqueue_buf); // Store card.
3656   z_bru(filtered);
3657 
3658   bind(callRuntime);
3659 
3660   // TODO: do we need a frame? Introduced to be on the safe side.
3661   bool needs_frame = true;
3662 
3663   // VM call need frame to access(write) O register.
3664   if (needs_frame) {
3665     save_return_pc();
3666     push_frame_abi160(0); // Will use Z_R0 as tmp on old CPUs.
3667   }
3668 
3669   // Save the live input values.
3670   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr_x, Z_thread);
3671 
3672   if (needs_frame) {
3673     pop_frame();
3674     restore_return_pc();
3675   }
3676 
3677   bind(filtered);
3678 
3679   BLOCK_COMMENT("} g1_write_barrier_post");
3680 }
3681 #endif // INCLUDE_ALL_GCS
3682 
3683 // Last_Java_sp must comply to the rules in frame_s390.hpp.
3684 void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
3685   BLOCK_COMMENT("set_last_Java_frame {");
3686 
3687   // Always set last_Java_pc and flags first because once last_Java_sp
3688   // is visible has_last_Java_frame is true and users will look at the
3689   // rest of the fields. (Note: flags should always be zero before we
3690   // get here so doesn't need to be set.)
3691 
3692   // Verify that last_Java_pc was zeroed on return to Java.
3693   if (allow_relocation) {
3694     asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
3695                             Z_thread,
3696                             "last_Java_pc not zeroed before leaving Java",
3697                             0x200);
3698   } else {
3699     asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
3700                                    Z_thread,
3701                                    "last_Java_pc not zeroed before leaving Java",
3702                                    0x200);
3703   }
3704 
3705   // When returning from calling out from Java mode the frame anchor's
3706   // last_Java_pc will always be set to NULL. It is set here so that
3707   // if we are doing a call to native (not VM) that we capture the
3708   // known pc and don't have to rely on the native call having a
3709   // standard frame linkage where we can find the pc.
3710   if (last_Java_pc!=noreg) {
3711     z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
3712   }
3713 
3714   // This membar release is not required on z/Architecture, since the sequence of stores
3715   // in maintained. Nevertheless, we leave it in to document the required ordering.
3716   // The implementation of z_release() should be empty.
3717   // z_release();
3718 
3719   z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
3720   BLOCK_COMMENT("} set_last_Java_frame");
3721 }
3722 
3723 void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
3724   BLOCK_COMMENT("reset_last_Java_frame {");
3725 
3726   if (allow_relocation) {
3727     asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
3728                                Z_thread,
3729                                "SP was not set, still zero",
3730                                0x202);
3731   } else {
3732     asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
3733                                       Z_thread,
3734                                       "SP was not set, still zero",
3735                                       0x202);
3736   }
3737 
3738   // _last_Java_sp = 0
3739   // Clearing storage must be atomic here, so don't use clear_mem()!
3740   store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
3741 
3742   // _last_Java_pc = 0
3743   store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
3744 
3745   BLOCK_COMMENT("} reset_last_Java_frame");
3746   return;
3747 }
3748 
3749 void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
3750   assert_different_registers(sp, tmp1);
3751 
3752   // We cannot trust that code generated by the C++ compiler saves R14
3753   // to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
3754   // z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
3755   // Therefore we load the PC into tmp1 and let set_last_Java_frame() save
3756   // it into the frame anchor.
3757   get_PC(tmp1);
3758   set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
3759 }
3760 
3761 void MacroAssembler::set_thread_state(JavaThreadState new_state) {
3762   z_release();
3763 
3764   assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
3765   assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
3766   store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
3767 }
3768 
3769 void MacroAssembler::get_vm_result(Register oop_result) {
3770   verify_thread();
3771 
3772   z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3773   clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
3774 
3775   verify_oop(oop_result);
3776 }
3777 
3778 void MacroAssembler::get_vm_result_2(Register result) {
3779   verify_thread();
3780 
3781   z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
3782   clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
3783 }
3784 
3785 // We require that C code which does not return a value in vm_result will
3786 // leave it undisturbed.
3787 void MacroAssembler::set_vm_result(Register oop_result) {
3788   z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
3789 }
3790 
3791 // Explicit null checks (used for method handle code).
3792 void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
3793   if (!ImplicitNullChecks) {
3794     NearLabel ok;
3795 
3796     compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
3797 
3798     // We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
3799     address exception_entry = Interpreter::throw_NullPointerException_entry();
3800     load_absolute_address(reg, exception_entry);
3801     z_br(reg);
3802 
3803     bind(ok);
3804   } else {
3805     if (needs_explicit_null_check((intptr_t)offset)) {
3806       // Provoke OS NULL exception if reg = NULL by
3807       // accessing M[reg] w/o changing any registers.
3808       z_lg(tmp, 0, reg);
3809     }
3810     // else
3811       // Nothing to do, (later) access of M[reg + offset]
3812       // will provoke OS NULL exception if reg = NULL.
3813   }
3814 }
3815 
3816 //-------------------------------------
3817 //  Compressed Klass Pointers
3818 //-------------------------------------
3819 
3820 // Klass oop manipulations if compressed.
3821 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3822   Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
3823   address  base    = Universe::narrow_klass_base();
3824   int      shift   = Universe::narrow_klass_shift();
3825   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3826 
3827   BLOCK_COMMENT("cKlass encoder {");
3828 
3829 #ifdef ASSERT
3830   Label ok;
3831   z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
3832   z_brc(Assembler::bcondAllZero, ok);
3833   // The plain disassembler does not recognize illtrap. It instead displays
3834   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3835   // the proper beginning of the next instruction.
3836   z_illtrap(0xee);
3837   z_illtrap(0xee);
3838   bind(ok);
3839 #endif
3840 
3841   if (base != NULL) {
3842     unsigned int base_h = ((unsigned long)base)>>32;
3843     unsigned int base_l = (unsigned int)((unsigned long)base);
3844     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3845       lgr_if_needed(dst, current);
3846       z_aih(dst, -((int)base_h));     // Base has no set bits in lower half.
3847     } else if ((base_h == 0) && (base_l != 0)) {
3848       lgr_if_needed(dst, current);
3849       z_agfi(dst, -(int)base_l);
3850     } else {
3851       load_const(Z_R0, base);
3852       lgr_if_needed(dst, current);
3853       z_sgr(dst, Z_R0);
3854     }
3855     current = dst;
3856   }
3857   if (shift != 0) {
3858     assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
3859     z_srlg(dst, current, shift);
3860     current = dst;
3861   }
3862   lgr_if_needed(dst, current); // Move may be required (if neither base nor shift != 0).
3863 
3864   BLOCK_COMMENT("} cKlass encoder");
3865 }
3866 
3867 // This function calculates the size of the code generated by
3868 //   decode_klass_not_null(register dst, Register src)
3869 // when (Universe::heap() != NULL). Hence, if the instructions
3870 // it generates change, then this method needs to be updated.
3871 int MacroAssembler::instr_size_for_decode_klass_not_null() {
3872   address  base    = Universe::narrow_klass_base();
3873   int shift_size   = Universe::narrow_klass_shift() == 0 ? 0 : 6; /* sllg */
3874   int addbase_size = 0;
3875   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3876 
3877   if (base != NULL) {
3878     unsigned int base_h = ((unsigned long)base)>>32;
3879     unsigned int base_l = (unsigned int)((unsigned long)base);
3880     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3881       addbase_size += 6; /* aih */
3882     } else if ((base_h == 0) && (base_l != 0)) {
3883       addbase_size += 6; /* algfi */
3884     } else {
3885       addbase_size += load_const_size();
3886       addbase_size += 4; /* algr */
3887     }
3888   }
3889 #ifdef ASSERT
3890   addbase_size += 10;
3891   addbase_size += 2; // Extra sigill.
3892 #endif
3893   return addbase_size + shift_size;
3894 }
3895 
3896 // !!! If the instructions that get generated here change
3897 //     then function instr_size_for_decode_klass_not_null()
3898 //     needs to get updated.
3899 // This variant of decode_klass_not_null() must generate predictable code!
3900 // The code must only depend on globally known parameters.
3901 void MacroAssembler::decode_klass_not_null(Register dst) {
3902   address  base    = Universe::narrow_klass_base();
3903   int      shift   = Universe::narrow_klass_shift();
3904   int      beg_off = offset();
3905   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3906 
3907   BLOCK_COMMENT("cKlass decoder (const size) {");
3908 
3909   if (shift != 0) { // Shift required?
3910     z_sllg(dst, dst, shift);
3911   }
3912   if (base != NULL) {
3913     unsigned int base_h = ((unsigned long)base)>>32;
3914     unsigned int base_l = (unsigned int)((unsigned long)base);
3915     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3916       z_aih(dst, base_h);     // Base has no set bits in lower half.
3917     } else if ((base_h == 0) && (base_l != 0)) {
3918       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3919     } else {
3920       load_const(Z_R0, base); // Base has set bits everywhere.
3921       z_algr(dst, Z_R0);
3922     }
3923   }
3924 
3925 #ifdef ASSERT
3926   Label ok;
3927   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3928   z_brc(Assembler::bcondAllZero, ok);
3929   // The plain disassembler does not recognize illtrap. It instead displays
3930   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3931   // the proper beginning of the next instruction.
3932   z_illtrap(0xd1);
3933   z_illtrap(0xd1);
3934   bind(ok);
3935 #endif
3936   assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
3937 
3938   BLOCK_COMMENT("} cKlass decoder (const size)");
3939 }
3940 
3941 // This variant of decode_klass_not_null() is for cases where
3942 //  1) the size of the generated instructions may vary
3943 //  2) the result is (potentially) stored in a register different from the source.
3944 void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3945   address base  = Universe::narrow_klass_base();
3946   int     shift = Universe::narrow_klass_shift();
3947   assert(UseCompressedClassPointers, "only for compressed klass ptrs");
3948 
3949   BLOCK_COMMENT("cKlass decoder {");
3950 
3951   if (src == noreg) src = dst;
3952 
3953   if (shift != 0) { // Shift or at least move required?
3954     z_sllg(dst, src, shift);
3955   } else {
3956     lgr_if_needed(dst, src);
3957   }
3958 
3959   if (base != NULL) {
3960     unsigned int base_h = ((unsigned long)base)>>32;
3961     unsigned int base_l = (unsigned int)((unsigned long)base);
3962     if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
3963       z_aih(dst, base_h);     // Base has not set bits in lower half.
3964     } else if ((base_h == 0) && (base_l != 0)) {
3965       z_algfi(dst, base_l);   // Base has no set bits in upper half.
3966     } else {
3967       load_const_optimized(Z_R0, base); // Base has set bits everywhere.
3968       z_algr(dst, Z_R0);
3969     }
3970   }
3971 
3972 #ifdef ASSERT
3973   Label ok;
3974   z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
3975   z_brc(Assembler::bcondAllZero, ok);
3976   // The plain disassembler does not recognize illtrap. It instead displays
3977   // a 32-bit value. Issueing two illtraps assures the disassembler finds
3978   // the proper beginning of the next instruction.
3979   z_illtrap(0xd2);
3980   z_illtrap(0xd2);
3981   bind(ok);
3982 #endif
3983   BLOCK_COMMENT("} cKlass decoder");
3984 }
3985 
3986 void MacroAssembler::load_klass(Register klass, Address mem) {
3987   if (UseCompressedClassPointers) {
3988     z_llgf(klass, mem);
3989     // Attention: no null check here!
3990     decode_klass_not_null(klass);
3991   } else {
3992     z_lg(klass, mem);
3993   }
3994 }
3995 
3996 void MacroAssembler::load_klass(Register klass, Register src_oop) {
3997   if (UseCompressedClassPointers) {
3998     z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
3999     // Attention: no null check here!
4000     decode_klass_not_null(klass);
4001   } else {
4002     z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
4003   }
4004 }
4005 
4006 void MacroAssembler::load_prototype_header(Register Rheader, Register Rsrc_oop) {
4007   assert_different_registers(Rheader, Rsrc_oop);
4008   load_klass(Rheader, Rsrc_oop);
4009   z_lg(Rheader, Address(Rheader, Klass::prototype_header_offset()));
4010 }
4011 
4012 void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
4013   if (UseCompressedClassPointers) {
4014     assert_different_registers(dst_oop, klass, Z_R0);
4015     if (ck == noreg) ck = klass;
4016     encode_klass_not_null(ck, klass);
4017     z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
4018   } else {
4019     z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
4020   }
4021 }
4022 
4023 void MacroAssembler::store_klass_gap(Register s, Register d) {
4024   if (UseCompressedClassPointers) {
4025     assert(s != d, "not enough registers");
4026     z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
4027   }
4028 }
4029 
4030 // Compare klass ptr in memory against klass ptr in register.
4031 //
4032 // Rop1            - klass in register, always uncompressed.
4033 // disp            - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
4034 // Rbase           - Base address of cKlass in memory.
4035 // maybeNULL       - True if Rop1 possibly is a NULL.
4036 void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL) {
4037 
4038   BLOCK_COMMENT("compare klass ptr {");
4039 
4040   if (UseCompressedClassPointers) {
4041     const int shift = Universe::narrow_klass_shift();
4042     address   base  = Universe::narrow_klass_base();
4043 
4044     assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
4045     assert_different_registers(Rop1, Z_R0);
4046     assert_different_registers(Rop1, Rbase, Z_R1);
4047 
4048     // First encode register oop and then compare with cOop in memory.
4049     // This sequence saves an unnecessary cOop load and decode.
4050     if (base == NULL) {
4051       if (shift == 0) {
4052         z_cl(Rop1, disp, Rbase);     // Unscaled
4053       } else {
4054         z_srlg(Z_R0, Rop1, shift);   // ZeroBased
4055         z_cl(Z_R0, disp, Rbase);
4056       }
4057     } else {                         // HeapBased
4058 #ifdef ASSERT
4059       bool     used_R0 = true;
4060       bool     used_R1 = true;
4061 #endif
4062       Register current = Rop1;
4063       Label    done;
4064 
4065       if (maybeNULL) {       // NULL ptr must be preserved!
4066         z_ltgr(Z_R0, current);
4067         z_bre(done);
4068         current = Z_R0;
4069       }
4070 
4071       unsigned int base_h = ((unsigned long)base)>>32;
4072       unsigned int base_l = (unsigned int)((unsigned long)base);
4073       if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
4074         lgr_if_needed(Z_R0, current);
4075         z_aih(Z_R0, -((int)base_h));     // Base has no set bits in lower half.
4076       } else if ((base_h == 0) && (base_l != 0)) {
4077         lgr_if_needed(Z_R0, current);
4078         z_agfi(Z_R0, -(int)base_l);
4079       } else {
4080         int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
4081         add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
4082       }
4083 
4084       if (shift != 0) {
4085         z_srlg(Z_R0, Z_R0, shift);
4086       }
4087       bind(done);
4088       z_cl(Z_R0, disp, Rbase);
4089 #ifdef ASSERT
4090       if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
4091       if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
4092 #endif
4093     }
4094   } else {
4095     z_clg(Rop1, disp, Z_R0, Rbase);
4096   }
4097   BLOCK_COMMENT("} compare klass ptr");
4098 }
4099 
4100 //---------------------------
4101 //  Compressed oops
4102 //---------------------------
4103 
4104 void MacroAssembler::encode_heap_oop(Register oop) {
4105   oop_encoder(oop, oop, true /*maybe null*/);
4106 }
4107 
4108 void MacroAssembler::encode_heap_oop_not_null(Register oop) {
4109   oop_encoder(oop, oop, false /*not null*/);
4110 }
4111 
4112 // Called with something derived from the oop base. e.g. oop_base>>3.
4113 int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
4114   unsigned int oop_base_ll = ((unsigned int)(oop_base >>  0)) & 0xffff;
4115   unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
4116   unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
4117   unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
4118   unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
4119                                + (oop_base_lh == 0 ? 0:1)
4120                                + (oop_base_hl == 0 ? 0:1)
4121                                + (oop_base_hh == 0 ? 0:1);
4122 
4123   assert(oop_base != 0, "This is for HeapBased cOops only");
4124 
4125   if (n_notzero_parts != 1) { //  Check if oop_base is just a few pages shy of a power of 2.
4126     uint64_t pow2_offset = 0x10000 - oop_base_ll;
4127     if (pow2_offset < 0x8000) {  // This might not be necessary.
4128       uint64_t oop_base2 = oop_base + pow2_offset;
4129 
4130       oop_base_ll = ((unsigned int)(oop_base2 >>  0)) & 0xffff;
4131       oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
4132       oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
4133       oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
4134       n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
4135                         (oop_base_lh == 0 ? 0:1) +
4136                         (oop_base_hl == 0 ? 0:1) +
4137                         (oop_base_hh == 0 ? 0:1);
4138       if (n_notzero_parts == 1) {
4139         assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
4140         return -pow2_offset;
4141       }
4142     }
4143   }
4144   return 0;
4145 }
4146 
4147 // If base address is offset from a straight power of two by just a few pages,
4148 // return this offset to the caller for a possible later composite add.
4149 // TODO/FIX: will only work correctly for 4k pages.
4150 int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
4151   int pow2_offset = get_oop_base_pow2_offset(oop_base);
4152 
4153   load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
4154 
4155   return pow2_offset;
4156 }
4157 
4158 int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
4159   int offset = get_oop_base(Rbase, oop_base);
4160   z_lcgr(Rbase, Rbase);
4161   return -offset;
4162 }
4163 
4164 // Compare compressed oop in memory against oop in register.
4165 // Rop1            - Oop in register.
4166 // disp            - Offset of cOop in memory.
4167 // Rbase           - Base address of cOop in memory.
4168 // maybeNULL       - True if Rop1 possibly is a NULL.
4169 // maybeNULLtarget - Branch target for Rop1 == NULL, if flow control shall NOT continue with compare instruction.
4170 void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybeNULL) {
4171   Register Rbase  = mem.baseOrR0();
4172   Register Rindex = mem.indexOrR0();
4173   int64_t  disp   = mem.disp();
4174 
4175   const int shift = Universe::narrow_oop_shift();
4176   address   base  = Universe::narrow_oop_base();
4177 
4178   assert(UseCompressedOops, "must be on to call this method");
4179   assert(Universe::heap() != NULL, "java heap must be initialized to call this method");
4180   assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4181   assert_different_registers(Rop1, Z_R0);
4182   assert_different_registers(Rop1, Rbase, Z_R1);
4183   assert_different_registers(Rop1, Rindex, Z_R1);
4184 
4185   BLOCK_COMMENT("compare heap oop {");
4186 
4187   // First encode register oop and then compare with cOop in memory.
4188   // This sequence saves an unnecessary cOop load and decode.
4189   if (base == NULL) {
4190     if (shift == 0) {
4191       z_cl(Rop1, disp, Rindex, Rbase);  // Unscaled
4192     } else {
4193       z_srlg(Z_R0, Rop1, shift);        // ZeroBased
4194       z_cl(Z_R0, disp, Rindex, Rbase);
4195     }
4196   } else {                              // HeapBased
4197 #ifdef ASSERT
4198     bool  used_R0 = true;
4199     bool  used_R1 = true;
4200 #endif
4201     Label done;
4202     int   pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
4203 
4204     if (maybeNULL) {       // NULL ptr must be preserved!
4205       z_ltgr(Z_R0, Rop1);
4206       z_bre(done);
4207     }
4208 
4209     add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
4210     z_srlg(Z_R0, Z_R0, shift);
4211 
4212     bind(done);
4213     z_cl(Z_R0, disp, Rindex, Rbase);
4214 #ifdef ASSERT
4215     if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
4216     if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
4217 #endif
4218   }
4219   BLOCK_COMMENT("} compare heap oop");
4220 }
4221 
4222 // Load heap oop and decompress, if necessary.
4223 void  MacroAssembler::load_heap_oop(Register dest, const Address &a) {
4224   if (UseCompressedOops) {
4225     z_llgf(dest, a.disp(), a.indexOrR0(), a.baseOrR0());
4226     oop_decoder(dest, dest, true);
4227   } else {
4228     z_lg(dest, a.disp(), a.indexOrR0(), a.baseOrR0());
4229   }
4230 }
4231 
4232 // Load heap oop and decompress, if necessary.
4233 void MacroAssembler::load_heap_oop(Register dest, int64_t disp, Register base) {
4234   if (UseCompressedOops) {
4235     z_llgf(dest, disp, base);
4236     oop_decoder(dest, dest, true);
4237   } else {
4238     z_lg(dest, disp, base);
4239   }
4240 }
4241 
4242 // Load heap oop and decompress, if necessary.
4243 void MacroAssembler::load_heap_oop_not_null(Register dest, int64_t disp, Register base) {
4244   if (UseCompressedOops) {
4245     z_llgf(dest, disp, base);
4246     oop_decoder(dest, dest, false);
4247   } else {
4248     z_lg(dest, disp, base);
4249   }
4250 }
4251 
4252 // Compress, if necessary, and store oop to heap.
4253 void MacroAssembler::store_heap_oop(Register Roop, RegisterOrConstant offset, Register base) {
4254   Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
4255   if (UseCompressedOops) {
4256     assert_different_registers(Roop, offset.register_or_noreg(), base);
4257     encode_heap_oop(Roop);
4258     z_st(Roop, offset.constant_or_zero(), Ridx, base);
4259   } else {
4260     z_stg(Roop, offset.constant_or_zero(), Ridx, base);
4261   }
4262 }
4263 
4264 // Compress, if necessary, and store oop to heap. Oop is guaranteed to be not NULL.
4265 void MacroAssembler::store_heap_oop_not_null(Register Roop, RegisterOrConstant offset, Register base) {
4266   Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
4267   if (UseCompressedOops) {
4268     assert_different_registers(Roop, offset.register_or_noreg(), base);
4269     encode_heap_oop_not_null(Roop);
4270     z_st(Roop, offset.constant_or_zero(), Ridx, base);
4271   } else {
4272     z_stg(Roop, offset.constant_or_zero(), Ridx, base);
4273   }
4274 }
4275 
4276 // Store NULL oop to heap.
4277 void MacroAssembler::store_heap_oop_null(Register zero, RegisterOrConstant offset, Register base) {
4278   Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
4279   if (UseCompressedOops) {
4280     z_st(zero, offset.constant_or_zero(), Ridx, base);
4281   } else {
4282     z_stg(zero, offset.constant_or_zero(), Ridx, base);
4283   }
4284 }
4285 
4286 //-------------------------------------------------
4287 // Encode compressed oop. Generally usable encoder.
4288 //-------------------------------------------------
4289 // Rsrc - contains regular oop on entry. It remains unchanged.
4290 // Rdst - contains compressed oop on exit.
4291 // Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
4292 //
4293 // Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
4294 // Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
4295 //
4296 // only32bitValid is set, if later code only uses the lower 32 bits. In this
4297 // case we must not fix the upper 32 bits.
4298 void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
4299                                  Register Rbase, int pow2_offset, bool only32bitValid) {
4300 
4301   const address oop_base  = Universe::narrow_oop_base();
4302   const int     oop_shift = Universe::narrow_oop_shift();
4303   const bool    disjoint  = Universe::narrow_oop_base_disjoint();
4304 
4305   assert(UseCompressedOops, "must be on to call this method");
4306   assert(Universe::heap() != NULL, "java heap must be initialized to call this encoder");
4307   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
4308 
4309   if (disjoint || (oop_base == NULL)) {
4310     BLOCK_COMMENT("cOop encoder zeroBase {");
4311     if (oop_shift == 0) {
4312       if (oop_base != NULL && !only32bitValid) {
4313         z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
4314       } else {
4315         lgr_if_needed(Rdst, Rsrc);
4316       }
4317     } else {
4318       z_srlg(Rdst, Rsrc, oop_shift);
4319       if (oop_base != NULL && !only32bitValid) {
4320         z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4321       }
4322     }
4323     BLOCK_COMMENT("} cOop encoder zeroBase");
4324     return;
4325   }
4326 
4327   bool used_R0 = false;
4328   bool used_R1 = false;
4329 
4330   BLOCK_COMMENT("cOop encoder general {");
4331   assert_different_registers(Rdst, Z_R1);
4332   assert_different_registers(Rsrc, Rbase);
4333   if (maybeNULL) {
4334     Label done;
4335     // We reorder shifting and subtracting, so that we can compare
4336     // and shift in parallel:
4337     //
4338     // cycle 0:  potential LoadN, base = <const>
4339     // cycle 1:  base = !base     dst = src >> 3,    cmp cr = (src != 0)
4340     // cycle 2:  if (cr) br,      dst = dst + base + offset
4341 
4342     // Get oop_base components.
4343     if (pow2_offset == -1) {
4344       if (Rdst == Rbase) {
4345         if (Rdst == Z_R1 || Rsrc == Z_R1) {
4346           Rbase = Z_R0;
4347           used_R0 = true;
4348         } else {
4349           Rdst = Z_R1;
4350           used_R1 = true;
4351         }
4352       }
4353       if (Rbase == Z_R1) {
4354         used_R1 = true;
4355       }
4356       pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
4357     }
4358     assert_different_registers(Rdst, Rbase);
4359 
4360     // Check for NULL oop (must be left alone) and shift.
4361     if (oop_shift != 0) {  // Shift out alignment bits
4362       if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
4363         z_srag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4364       } else {
4365         z_srlg(Rdst, Rsrc, oop_shift);
4366         z_ltgr(Rsrc, Rsrc);  // This is the recommended way of testing for zero.
4367         // This probably is faster, as it does not write a register. No!
4368         // z_cghi(Rsrc, 0);
4369       }
4370     } else {
4371       z_ltgr(Rdst, Rsrc);   // Move NULL to result register.
4372     }
4373     z_bre(done);
4374 
4375     // Subtract oop_base components.
4376     if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
4377       z_algr(Rdst, Rbase);
4378       if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
4379     } else {
4380       add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
4381     }
4382     if (!only32bitValid) {
4383       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4384     }
4385     bind(done);
4386 
4387   } else {  // not null
4388     // Get oop_base components.
4389     if (pow2_offset == -1) {
4390       pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
4391     }
4392 
4393     // Subtract oop_base components and shift.
4394     if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
4395       // Don't use lay instruction.
4396       if (Rdst == Rsrc) {
4397         z_algr(Rdst, Rbase);
4398       } else {
4399         lgr_if_needed(Rdst, Rbase);
4400         z_algr(Rdst, Rsrc);
4401       }
4402       if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
4403     } else {
4404       add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
4405     }
4406     if (oop_shift != 0) {   // Shift out alignment bits.
4407       z_srlg(Rdst, Rdst, oop_shift);
4408     }
4409     if (!only32bitValid) {
4410       z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
4411     }
4412   }
4413 #ifdef ASSERT
4414   if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
4415   if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
4416 #endif
4417   BLOCK_COMMENT("} cOop encoder general");
4418 }
4419 
4420 //-------------------------------------------------
4421 // decode compressed oop. Generally usable decoder.
4422 //-------------------------------------------------
4423 // Rsrc - contains compressed oop on entry.
4424 // Rdst - contains regular oop on exit.
4425 // Rdst and Rsrc may indicate same register.
4426 // Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
4427 // Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
4428 // Rbase - register to use for the base
4429 // pow2_offset - offset of base to nice value. If -1, base must be loaded.
4430 // For performance, it is good to
4431 //  - avoid Z_R0 for any of the argument registers.
4432 //  - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
4433 //  - avoid Z_R1 for Rdst if Rdst == Rbase.
4434 void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL, Register Rbase, int pow2_offset) {
4435 
4436   const address oop_base  = Universe::narrow_oop_base();
4437   const int     oop_shift = Universe::narrow_oop_shift();
4438   const bool    disjoint  = Universe::narrow_oop_base_disjoint();
4439 
4440   assert(UseCompressedOops, "must be on to call this method");
4441   assert(Universe::heap() != NULL, "java heap must be initialized to call this decoder");
4442   assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
4443          "cOop encoder detected bad shift");
4444 
4445   // cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
4446 
4447   if (oop_base != NULL) {
4448     unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
4449     unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
4450     unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
4451     if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
4452       BLOCK_COMMENT("cOop decoder disjointBase {");
4453       // We do not need to load the base. Instead, we can install the upper bits
4454       // with an OR instead of an ADD.
4455       Label done;
4456 
4457       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4458       if (maybeNULL) {  // NULL ptr must be preserved!
4459         z_slag(Rdst, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4460         z_bre(done);
4461       } else {
4462         z_sllg(Rdst, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4463       }
4464       if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
4465         z_oihf(Rdst, oop_base_hf);
4466       } else if (oop_base_hl != 0) {
4467         z_oihl(Rdst, oop_base_hl);
4468       } else {
4469         assert(oop_base_hh != 0, "not heapbased mode");
4470         z_oihh(Rdst, oop_base_hh);
4471       }
4472       bind(done);
4473       BLOCK_COMMENT("} cOop decoder disjointBase");
4474     } else {
4475       BLOCK_COMMENT("cOop decoder general {");
4476       // There are three decode steps:
4477       //   scale oop offset (shift left)
4478       //   get base (in reg) and pow2_offset (constant)
4479       //   add base, pow2_offset, and oop offset
4480       // The following register overlap situations may exist:
4481       // Rdst == Rsrc,  Rbase any other
4482       //   not a problem. Scaling in-place leaves Rbase undisturbed.
4483       //   Loading Rbase does not impact the scaled offset.
4484       // Rdst == Rbase, Rsrc  any other
4485       //   scaling would destroy a possibly preloaded Rbase. Loading Rbase
4486       //   would destroy the scaled offset.
4487       //   Remedy: use Rdst_tmp if Rbase has been preloaded.
4488       //           use Rbase_tmp if base has to be loaded.
4489       // Rsrc == Rbase, Rdst  any other
4490       //   Only possible without preloaded Rbase.
4491       //   Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
4492       // Rsrc == Rbase, Rdst == Rbase
4493       //   Only possible without preloaded Rbase.
4494       //   Loading Rbase would destroy compressed oop. Scaling in-place is ok.
4495       //   Remedy: use Rbase_tmp.
4496       //
4497       Label    done;
4498       Register Rdst_tmp       = Rdst;
4499       Register Rbase_tmp      = Rbase;
4500       bool     used_R0        = false;
4501       bool     used_R1        = false;
4502       bool     base_preloaded = pow2_offset >= 0;
4503       guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
4504       assert(oop_shift != 0, "room for optimization");
4505 
4506       // Check if we need to use scratch registers.
4507       if (Rdst == Rbase) {
4508         assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
4509         if (Rdst != Rsrc) {
4510           if (base_preloaded) { Rdst_tmp  = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4511           else                { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
4512         } else {
4513           Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
4514         }
4515       }
4516       if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
4517 
4518       // Scale oop and check for NULL.
4519       // Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
4520       if (maybeNULL) {  // NULL ptr must be preserved!
4521         z_slag(Rdst_tmp, Rsrc, oop_shift);  // Arithmetic shift sets the condition code.
4522         z_bre(done);
4523       } else {
4524         z_sllg(Rdst_tmp, Rsrc, oop_shift);  // Logical shift leaves condition code alone.
4525       }
4526 
4527       // Get oop_base components.
4528       if (!base_preloaded) {
4529         pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
4530       }
4531 
4532       // Add up all components.
4533       if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
4534         z_algr(Rdst_tmp, Rbase_tmp);
4535         if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
4536       } else {
4537         add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
4538       }
4539 
4540       bind(done);
4541       lgr_if_needed(Rdst, Rdst_tmp);
4542 #ifdef ASSERT
4543       if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
4544       if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
4545 #endif
4546       BLOCK_COMMENT("} cOop decoder general");
4547     }
4548   } else {
4549     BLOCK_COMMENT("cOop decoder zeroBase {");
4550     if (oop_shift == 0) {
4551       lgr_if_needed(Rdst, Rsrc);
4552     } else {
4553       z_sllg(Rdst, Rsrc, oop_shift);
4554     }
4555     BLOCK_COMMENT("} cOop decoder zeroBase");
4556   }
4557 }
4558 
4559 void MacroAssembler::load_mirror(Register mirror, Register method) {
4560   mem2reg_opt(mirror, Address(method, Method::const_offset()));
4561   mem2reg_opt(mirror, Address(mirror, ConstMethod::constants_offset()));
4562   mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
4563   mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
4564 }
4565 
4566 //---------------------------------------------------------------
4567 //---  Operations on arrays.
4568 //---------------------------------------------------------------
4569 
4570 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4571 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4572 // work registers anyway.
4573 // Actually, only r0, r1, and r5 are killed.
4574 unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register src_addr, Register src_len) {
4575   // Src_addr is evenReg.
4576   // Src_len is odd_Reg.
4577 
4578   int      block_start = offset();
4579   Register tmp_reg  = src_len; // Holds target instr addr for EX.
4580   Register dst_len  = Z_R1;    // Holds dst len  for MVCLE.
4581   Register dst_addr = Z_R0;    // Holds dst addr for MVCLE.
4582 
4583   Label doXC, doMVCLE, done;
4584 
4585   BLOCK_COMMENT("Clear_Array {");
4586 
4587   // Check for zero len and convert to long.
4588   z_ltgfr(src_len, cnt_arg);      // Remember casted value for doSTG case.
4589   z_bre(done);                    // Nothing to do if len == 0.
4590 
4591   // Prefetch data to be cleared.
4592   if (VM_Version::has_Prefetch()) {
4593     z_pfd(0x02,   0, Z_R0, base_pointer_arg);
4594     z_pfd(0x02, 256, Z_R0, base_pointer_arg);
4595   }
4596 
4597   z_sllg(dst_len, src_len, 3);    // #bytes to clear.
4598   z_cghi(src_len, 32);            // Check for len <= 256 bytes (<=32 DW).
4599   z_brnh(doXC);                   // If so, use executed XC to clear.
4600 
4601   // MVCLE: initialize long arrays (general case).
4602   bind(doMVCLE);
4603   z_lgr(dst_addr, base_pointer_arg);
4604   clear_reg(src_len, true, false); // Src len of MVCLE is zero.
4605 
4606   MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
4607   z_bru(done);
4608 
4609   // XC: initialize short arrays.
4610   Label XC_template; // Instr template, never exec directly!
4611     bind(XC_template);
4612     z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
4613 
4614   bind(doXC);
4615     add2reg(dst_len, -1);             // Get #bytes-1 for EXECUTE.
4616     if (VM_Version::has_ExecuteExtensions()) {
4617       z_exrl(dst_len, XC_template);   // Execute XC with var. len.
4618     } else {
4619       z_larl(tmp_reg, XC_template);
4620       z_ex(dst_len,0,Z_R0,tmp_reg);   // Execute XC with var. len.
4621     }
4622     // z_bru(done);      // fallthru
4623 
4624   bind(done);
4625 
4626   BLOCK_COMMENT("} Clear_Array");
4627 
4628   int block_end = offset();
4629   return block_end - block_start;
4630 }
4631 
4632 // Compiler ensures base is doubleword aligned and cnt is count of doublewords.
4633 // Emitter does not KILL any arguments nor work registers.
4634 // Emitter generates up to 16 XC instructions, depending on the array length.
4635 unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
4636   int  block_start    = offset();
4637   int  off;
4638   int  lineSize_Bytes = AllocatePrefetchStepSize;
4639   int  lineSize_DW    = AllocatePrefetchStepSize>>LogBytesPerWord;
4640   bool doPrefetch     = VM_Version::has_Prefetch();
4641   int  XC_maxlen      = 256;
4642   int  numXCInstr     = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
4643 
4644   BLOCK_COMMENT("Clear_Array_Const {");
4645   assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
4646 
4647   // Do less prefetching for very short arrays.
4648   if (numXCInstr > 0) {
4649     // Prefetch only some cache lines, then begin clearing.
4650     if (doPrefetch) {
4651       if (cnt*BytesPerWord <= lineSize_Bytes/4) {  // If less than 1/4 of a cache line to clear,
4652         z_pfd(0x02, 0, Z_R0, base);                // prefetch just the first cache line.
4653       } else {
4654         assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
4655         for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
4656           z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
4657         }
4658       }
4659     }
4660 
4661     for (off=0; off<(numXCInstr-1); off++) {
4662       z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
4663 
4664       // Prefetch some cache lines in advance.
4665       if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
4666         z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
4667       }
4668     }
4669     if (off*XC_maxlen < cnt*BytesPerWord) {
4670       z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
4671     }
4672   }
4673   BLOCK_COMMENT("} Clear_Array_Const");
4674 
4675   int block_end = offset();
4676   return block_end - block_start;
4677 }
4678 
4679 // Compiler ensures base is doubleword aligned and cnt is #doublewords.
4680 // Emitter does not KILL cnt and base arguments, since they need to be copied to
4681 // work registers anyway.
4682 // Actually, only r0, r1, r4, and r5 (which are work registers) are killed.
4683 //
4684 // For very large arrays, exploit MVCLE H/W support.
4685 // MVCLE instruction automatically exploits H/W-optimized page mover.
4686 // - Bytes up to next page boundary are cleared with a series of XC to self.
4687 // - All full pages are cleared with the page mover H/W assist.
4688 // - Remaining bytes are again cleared by a series of XC to self.
4689 //
4690 unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register src_addr, Register src_len) {
4691   // Src_addr is evenReg.
4692   // Src_len is odd_Reg.
4693 
4694   int      block_start = offset();
4695   Register dst_len  = Z_R1;      // Holds dst len  for MVCLE.
4696   Register dst_addr = Z_R0;      // Holds dst addr for MVCLE.
4697 
4698   BLOCK_COMMENT("Clear_Array_Const_Big {");
4699 
4700   // Get len to clear.
4701   load_const_optimized(dst_len, (long)cnt*8L);  // in Bytes = #DW*8
4702 
4703   // Prepare other args to MVCLE.
4704   z_lgr(dst_addr, base_pointer_arg);
4705   // Indicate unused result.
4706   (void) clear_reg(src_len, true, false);  // Src len of MVCLE is zero.
4707 
4708   // Clear.
4709   MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
4710   BLOCK_COMMENT("} Clear_Array_Const_Big");
4711 
4712   int block_end = offset();
4713   return block_end - block_start;
4714 }
4715 
4716 // Allocator.
4717 unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
4718                                                            Register cnt_reg,
4719                                                            Register tmp1_reg, Register tmp2_reg) {
4720   // Tmp1 is oddReg.
4721   // Tmp2 is evenReg.
4722 
4723   int block_start = offset();
4724   Label doMVC, doMVCLE, done, MVC_template;
4725 
4726   BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
4727 
4728   // Check for zero len and convert to long.
4729   z_ltgfr(cnt_reg, cnt_reg);      // Remember casted value for doSTG case.
4730   z_bre(done);                    // Nothing to do if len == 0.
4731 
4732   z_sllg(Z_R1, cnt_reg, 3);       // Dst len in bytes. calc early to have the result ready.
4733 
4734   z_cghi(cnt_reg, 32);            // Check for len <= 256 bytes (<=32 DW).
4735   z_brnh(doMVC);                  // If so, use executed MVC to clear.
4736 
4737   bind(doMVCLE);                  // A lot of data (more than 256 bytes).
4738   // Prep dest reg pair.
4739   z_lgr(Z_R0, dst_reg);           // dst addr
4740   // Dst len already in Z_R1.
4741   // Prep src reg pair.
4742   z_lgr(tmp2_reg, src_reg);       // src addr
4743   z_lgr(tmp1_reg, Z_R1);          // Src len same as dst len.
4744 
4745   // Do the copy.
4746   move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
4747   z_bru(done);                         // All done.
4748 
4749   bind(MVC_template);             // Just some data (not more than 256 bytes).
4750   z_mvc(0, 0, dst_reg, 0, src_reg);
4751 
4752   bind(doMVC);
4753 
4754   if (VM_Version::has_ExecuteExtensions()) {
4755     add2reg(Z_R1, -1);
4756   } else {
4757     add2reg(tmp1_reg, -1, Z_R1);
4758     z_larl(Z_R1, MVC_template);
4759   }
4760 
4761   if (VM_Version::has_Prefetch()) {
4762     z_pfd(1,  0,Z_R0,src_reg);
4763     z_pfd(2,  0,Z_R0,dst_reg);
4764     //    z_pfd(1,256,Z_R0,src_reg);    // Assume very short copy.
4765     //    z_pfd(2,256,Z_R0,dst_reg);
4766   }
4767 
4768   if (VM_Version::has_ExecuteExtensions()) {
4769     z_exrl(Z_R1, MVC_template);
4770   } else {
4771     z_ex(tmp1_reg, 0, Z_R0, Z_R1);
4772   }
4773 
4774   bind(done);
4775 
4776   BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
4777 
4778   int block_end = offset();
4779   return block_end - block_start;
4780 }
4781 
4782 //------------------------------------------------------
4783 //   Special String Intrinsics. Implementation
4784 //------------------------------------------------------
4785 
4786 // Intrinsics for CompactStrings
4787 
4788 // Compress char[] to byte[]. odd_reg contains cnt. Kills dst. Early clobber: result
4789 // The result is the number of characters copied before the first incompatible character was found.
4790 // If tmp2 is provided and the compression fails, the compression stops exactly at this point and the result is precise.
4791 //
4792 // Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
4793 // - Different number of characters may have been written to dead array (if tmp2 not provided).
4794 // - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
4795 unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register odd_reg,
4796                                              Register even_reg, Register tmp, Register tmp2) {
4797   int block_start = offset();
4798   Label Lloop1, Lloop2, Lslow, Ldone;
4799   const Register addr2 = dst, ind1 = result, mask = tmp;
4800   const bool precise = (tmp2 != noreg);
4801 
4802   BLOCK_COMMENT("string_compress {");
4803 
4804   z_sll(odd_reg, 1);       // Number of bytes to read. (Must be a positive simm32.)
4805   clear_reg(ind1);         // Index to read.
4806   z_llilf(mask, 0xFF00FF00);
4807   z_ahi(odd_reg, -16);     // Last possible index for fast loop.
4808   z_brl(Lslow);
4809 
4810   // ind1: index, even_reg: index increment, odd_reg: index limit
4811   z_iihf(mask, 0xFF00FF00);
4812   z_lhi(even_reg, 16);
4813 
4814   bind(Lloop1); // 8 Characters per iteration.
4815   z_lg(Z_R0, Address(src, ind1));
4816   z_lg(Z_R1, Address(src, ind1, 8));
4817   if (precise) {
4818     if (VM_Version::has_DistinctOpnds()) {
4819       z_ogrk(tmp2, Z_R0, Z_R1);
4820     } else {
4821       z_lgr(tmp2, Z_R0);
4822       z_ogr(tmp2, Z_R1);
4823     }
4824     z_ngr(tmp2, mask);
4825     z_brne(Lslow);         // Failed fast case, retry slowly.
4826   }
4827   z_stcmh(Z_R0, 5, 0, addr2);
4828   z_stcm(Z_R0, 5, 2, addr2);
4829   if (!precise) { z_ogr(Z_R0, Z_R1); }
4830   z_stcmh(Z_R1, 5, 4, addr2);
4831   z_stcm(Z_R1, 5, 6, addr2);
4832   if (!precise) {
4833     z_ngr(Z_R0, mask);
4834     z_brne(Ldone);         // Failed (more than needed was written).
4835   }
4836   z_aghi(addr2, 8);
4837   z_brxle(ind1, even_reg, Lloop1);
4838 
4839   bind(Lslow);
4840   // Compute index limit and skip if negative.
4841   z_ahi(odd_reg, 16-2);    // Last possible index for slow loop.
4842   z_lhi(even_reg, 2);
4843   z_cr(ind1, odd_reg);
4844   z_brh(Ldone);
4845 
4846   bind(Lloop2); // 1 Character per iteration.
4847   z_llh(Z_R0, Address(src, ind1));
4848   z_tmll(Z_R0, 0xFF00);
4849   z_brnaz(Ldone);          // Failed slow case: Return number of written characters.
4850   z_stc(Z_R0, Address(addr2));
4851   z_aghi(addr2, 1);
4852   z_brxle(ind1, even_reg, Lloop2);
4853 
4854   bind(Ldone);             // result = ind1 = 2*cnt
4855   z_srl(ind1, 1);
4856 
4857   BLOCK_COMMENT("} string_compress");
4858 
4859   return offset() - block_start;
4860 }
4861 
4862 // Inflate byte[] to char[].
4863 unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
4864   int block_start = offset();
4865 
4866   BLOCK_COMMENT("string_inflate {");
4867 
4868   Register stop_char = Z_R0;
4869   Register table     = Z_R1;
4870   Register src_addr  = tmp;
4871 
4872   assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
4873   assert(dst->encoding()%2 == 0, "must be even reg");
4874   assert(cnt->encoding()%2 == 1, "must be odd reg");
4875   assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
4876 
4877   StubRoutines::zarch::generate_load_trot_table_addr(this, table);  // kills Z_R0 (if ASSERT)
4878   clear_reg(stop_char);  // Stop character. Not used here, but initialized to have a defined value.
4879   lgr_if_needed(src_addr, src);
4880   z_llgfr(cnt, cnt);     // # src characters, must be a positive simm32.
4881 
4882   translate_ot(dst, src_addr, /* mask = */ 0x0001);
4883 
4884   BLOCK_COMMENT("} string_inflate");
4885 
4886   return offset() - block_start;
4887 }
4888 
4889 // Inflate byte[] to char[]. odd_reg contains cnt. Kills src.
4890 unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register odd_reg,
4891                                             Register even_reg, Register tmp) {
4892   int block_start = offset();
4893 
4894   BLOCK_COMMENT("string_inflate {");
4895 
4896   Label Lloop1, Lloop2, Lslow, Ldone;
4897   const Register addr1 = src, ind2 = tmp;
4898 
4899   z_sll(odd_reg, 1);       // Number of bytes to write. (Must be a positive simm32.)
4900   clear_reg(ind2);         // Index to write.
4901   z_ahi(odd_reg, -16);     // Last possible index for fast loop.
4902   z_brl(Lslow);
4903 
4904   // ind2: index, even_reg: index increment, odd_reg: index limit
4905   clear_reg(Z_R0);
4906   clear_reg(Z_R1);
4907   z_lhi(even_reg, 16);
4908 
4909   bind(Lloop1); // 8 Characters per iteration.
4910   z_icmh(Z_R0, 5, 0, addr1);
4911   z_icmh(Z_R1, 5, 4, addr1);
4912   z_icm(Z_R0, 5, 2, addr1);
4913   z_icm(Z_R1, 5, 6, addr1);
4914   z_aghi(addr1, 8);
4915   z_stg(Z_R0, Address(dst, ind2));
4916   z_stg(Z_R1, Address(dst, ind2, 8));
4917   z_brxle(ind2, even_reg, Lloop1);
4918 
4919   bind(Lslow);
4920   // Compute index limit and skip if negative.
4921   z_ahi(odd_reg, 16-2);    // Last possible index for slow loop.
4922   z_lhi(even_reg, 2);
4923   z_cr(ind2, odd_reg);
4924   z_brh(Ldone);
4925 
4926   bind(Lloop2); // 1 Character per iteration.
4927   z_llc(Z_R0, Address(addr1));
4928   z_sth(Z_R0, Address(dst, ind2));
4929   z_aghi(addr1, 1);
4930   z_brxle(ind2, even_reg, Lloop2);
4931 
4932   bind(Ldone);
4933 
4934   BLOCK_COMMENT("} string_inflate");
4935 
4936   return offset() - block_start;
4937 }
4938 
4939 // Kills src.
4940 unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
4941                                            Register odd_reg, Register even_reg, Register tmp) {
4942   int block_start = offset();
4943   Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
4944   const Register addr = src, mask = tmp;
4945 
4946   BLOCK_COMMENT("has_negatives {");
4947 
4948   z_llgfr(Z_R1, cnt);      // Number of bytes to read. (Must be a positive simm32.)
4949   z_llilf(mask, 0x80808080);
4950   z_lhi(result, 1);        // Assume true.
4951   // Last possible addr for fast loop.
4952   z_lay(odd_reg, -16, Z_R1, src);
4953   z_chi(cnt, 16);
4954   z_brl(Lslow);
4955 
4956   // ind1: index, even_reg: index increment, odd_reg: index limit
4957   z_iihf(mask, 0x80808080);
4958   z_lghi(even_reg, 16);
4959 
4960   bind(Lloop1); // 16 bytes per iteration.
4961   z_lg(Z_R0, Address(addr));
4962   z_lg(Z_R1, Address(addr, 8));
4963   z_ogr(Z_R0, Z_R1);
4964   z_ngr(Z_R0, mask);
4965   z_brne(Ldone);           // If found return 1.
4966   z_brxlg(addr, even_reg, Lloop1);
4967 
4968   bind(Lslow);
4969   z_aghi(odd_reg, 16-1);   // Last possible addr for slow loop.
4970   z_lghi(even_reg, 1);
4971   z_cgr(addr, odd_reg);
4972   z_brh(Lnotfound);
4973 
4974   bind(Lloop2); // 1 byte per iteration.
4975   z_cli(Address(addr), 0x80);
4976   z_brnl(Ldone);           // If found return 1.
4977   z_brxlg(addr, even_reg, Lloop2);
4978 
4979   bind(Lnotfound);
4980   z_lhi(result, 0);
4981 
4982   bind(Ldone);
4983 
4984   BLOCK_COMMENT("} has_negatives");
4985 
4986   return offset() - block_start;
4987 }
4988 
4989 // kill: cnt1, cnt2, odd_reg, even_reg; early clobber: result
4990 unsigned int MacroAssembler::string_compare(Register str1, Register str2,
4991                                             Register cnt1, Register cnt2,
4992                                             Register odd_reg, Register even_reg, Register result, int ae) {
4993   int block_start = offset();
4994 
4995   assert_different_registers(str1, cnt1, cnt2, odd_reg, even_reg, result);
4996   assert_different_registers(str2, cnt1, cnt2, odd_reg, even_reg, result);
4997 
4998   // If strings are equal up to min length, return the length difference.
4999   const Register diff = result, // Pre-set result with length difference.
5000                  min  = cnt1,   // min number of bytes
5001                  tmp  = cnt2;
5002 
5003   // Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
5004   // we interchange str1 and str2 in the UL case and negate the result.
5005   // Like this, str1 is always latin1 encoded, except for the UU case.
5006   // In addition, we need 0 (or sign which is 0) extend when using 64 bit register.
5007   const bool used_as_LU = (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL);
5008 
5009   BLOCK_COMMENT("string_compare {");
5010 
5011   if (used_as_LU) {
5012     z_srl(cnt2, 1);
5013   }
5014 
5015   // See if the lengths are different, and calculate min in cnt1.
5016   // Save diff in case we need it for a tie-breaker.
5017 
5018   // diff = cnt1 - cnt2
5019   if (VM_Version::has_DistinctOpnds()) {
5020     z_srk(diff, cnt1, cnt2);
5021   } else {
5022     z_lr(diff, cnt1);
5023     z_sr(diff, cnt2);
5024   }
5025   if (str1 != str2) {
5026     if (VM_Version::has_LoadStoreConditional()) {
5027       z_locr(min, cnt2, Assembler::bcondHigh);
5028     } else {
5029       Label Lskip;
5030       z_brl(Lskip);    // min ok if cnt1 < cnt2
5031       z_lr(min, cnt2); // min = cnt2
5032       bind(Lskip);
5033     }
5034   }
5035 
5036   if (ae == StrIntrinsicNode::UU) {
5037     z_sra(diff, 1);
5038   }
5039   if (str1 != str2) {
5040     Label Ldone;
5041     if (used_as_LU) {
5042       // Loop which searches the first difference character by character.
5043       Label Lloop;
5044       const Register ind1 = Z_R1,
5045                      ind2 = min;
5046       int stride1 = 1, stride2 = 2; // See comment above.
5047 
5048       // ind1: index, even_reg: index increment, odd_reg: index limit
5049       z_llilf(ind1, (unsigned int)(-stride1));
5050       z_lhi(even_reg, stride1);
5051       add2reg(odd_reg, -stride1, min);
5052       clear_reg(ind2); // kills min
5053 
5054       bind(Lloop);
5055       z_brxh(ind1, even_reg, Ldone);
5056       z_llc(tmp, Address(str1, ind1));
5057       z_llh(Z_R0, Address(str2, ind2));
5058       z_ahi(ind2, stride2);
5059       z_sr(tmp, Z_R0);
5060       z_bre(Lloop);
5061 
5062       z_lr(result, tmp);
5063 
5064     } else {
5065       // Use clcle in fast loop (only for same encoding).
5066       z_lgr(Z_R0, str1);
5067       z_lgr(even_reg, str2);
5068       z_llgfr(Z_R1, min);
5069       z_llgfr(odd_reg, min);
5070 
5071       if (ae == StrIntrinsicNode::LL) {
5072         compare_long_ext(Z_R0, even_reg, 0);
5073       } else {
5074         compare_long_uni(Z_R0, even_reg, 0);
5075       }
5076       z_bre(Ldone);
5077       z_lgr(Z_R1, Z_R0);
5078       if (ae == StrIntrinsicNode::LL) {
5079         z_llc(Z_R0, Address(even_reg));
5080         z_llc(result, Address(Z_R1));
5081       } else {
5082         z_llh(Z_R0, Address(even_reg));
5083         z_llh(result, Address(Z_R1));
5084       }
5085       z_sr(result, Z_R0);
5086     }
5087 
5088     // Otherwise, return the difference between the first mismatched chars.
5089     bind(Ldone);
5090   }
5091 
5092   if (ae == StrIntrinsicNode::UL) {
5093     z_lcr(result, result); // Negate result (see note above).
5094   }
5095 
5096   BLOCK_COMMENT("} string_compare");
5097 
5098   return offset() - block_start;
5099 }
5100 
5101 unsigned int MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2, Register limit,
5102                                           Register odd_reg, Register even_reg, Register result, bool is_byte) {
5103   int block_start = offset();
5104 
5105   BLOCK_COMMENT("array_equals {");
5106 
5107   assert_different_registers(ary1, limit, odd_reg, even_reg);
5108   assert_different_registers(ary2, limit, odd_reg, even_reg);
5109 
5110   Label Ldone, Ldone_true, Ldone_false, Lclcle, CLC_template;
5111   int base_offset = 0;
5112 
5113   if (ary1 != ary2) {
5114     if (is_array_equ) {
5115       base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
5116 
5117       // Return true if the same array.
5118       compareU64_and_branch(ary1, ary2, Assembler::bcondEqual, Ldone_true);
5119 
5120       // Return false if one of them is NULL.
5121       compareU64_and_branch(ary1, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5122       compareU64_and_branch(ary2, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
5123 
5124       // Load the lengths of arrays.
5125       z_llgf(odd_reg, Address(ary1, arrayOopDesc::length_offset_in_bytes()));
5126 
5127       // Return false if the two arrays are not equal length.
5128       z_c(odd_reg, Address(ary2, arrayOopDesc::length_offset_in_bytes()));
5129       z_brne(Ldone_false);
5130 
5131       // string len in bytes (right operand)
5132       if (!is_byte) {
5133         z_chi(odd_reg, 128);
5134         z_sll(odd_reg, 1); // preserves flags
5135         z_brh(Lclcle);
5136       } else {
5137         compareU32_and_branch(odd_reg, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5138       }
5139     } else {
5140       z_llgfr(odd_reg, limit); // Need to zero-extend prior to using the value.
5141       compareU32_and_branch(limit, (intptr_t)256, Assembler::bcondHigh, Lclcle);
5142     }
5143 
5144 
5145     // Use clc instruction for up to 256 bytes.
5146     {
5147       Register str1_reg = ary1,
5148           str2_reg = ary2;
5149       if (is_array_equ) {
5150         str1_reg = Z_R1;
5151         str2_reg = even_reg;
5152         add2reg(str1_reg, base_offset, ary1); // string addr (left operand)
5153         add2reg(str2_reg, base_offset, ary2); // string addr (right operand)
5154       }
5155       z_ahi(odd_reg, -1); // Clc uses decremented limit. Also compare result to 0.
5156       z_brl(Ldone_true);
5157       // Note: We could jump to the template if equal.
5158 
5159       assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5160       z_exrl(odd_reg, CLC_template);
5161       z_bre(Ldone_true);
5162       // fall through
5163 
5164       bind(Ldone_false);
5165       clear_reg(result);
5166       z_bru(Ldone);
5167 
5168       bind(CLC_template);
5169       z_clc(0, 0, str1_reg, 0, str2_reg);
5170     }
5171 
5172     // Use clcle instruction.
5173     {
5174       bind(Lclcle);
5175       add2reg(even_reg, base_offset, ary2); // string addr (right operand)
5176       add2reg(Z_R0, base_offset, ary1);     // string addr (left operand)
5177 
5178       z_lgr(Z_R1, odd_reg); // string len in bytes (left operand)
5179       if (is_byte) {
5180         compare_long_ext(Z_R0, even_reg, 0);
5181       } else {
5182         compare_long_uni(Z_R0, even_reg, 0);
5183       }
5184       z_lghi(result, 0); // Preserve flags.
5185       z_brne(Ldone);
5186     }
5187   }
5188   // fall through
5189 
5190   bind(Ldone_true);
5191   z_lghi(result, 1); // All characters are equal.
5192   bind(Ldone);
5193 
5194   BLOCK_COMMENT("} array_equals");
5195 
5196   return offset() - block_start;
5197 }
5198 
5199 // kill: haycnt, needlecnt, odd_reg, even_reg; early clobber: result
5200 unsigned int MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
5201                                             Register needle, Register needlecnt, int needlecntval,
5202                                             Register odd_reg, Register even_reg, int ae) {
5203   int block_start = offset();
5204 
5205   // Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
5206   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5207   const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
5208   const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
5209   Label L_needle1, L_Found, L_NotFound;
5210 
5211   BLOCK_COMMENT("string_indexof {");
5212 
5213   if (needle == haystack) {
5214     z_lhi(result, 0);
5215   } else {
5216 
5217   // Load first character of needle (R0 used by search_string instructions).
5218   if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); }
5219 
5220   // Compute last haystack addr to use if no match gets found.
5221   if (needlecnt != noreg) { // variable needlecnt
5222     z_ahi(needlecnt, -1); // Remaining characters after first one.
5223     z_sr(haycnt, needlecnt); // Compute index succeeding last element to compare.
5224     if (n_csize == 2) { z_sll(needlecnt, 1); } // In bytes.
5225   } else { // constant needlecnt
5226     assert((needlecntval & 0x7fff) == needlecntval, "must be positive simm16 immediate");
5227     // Compute index succeeding last element to compare.
5228     if (needlecntval != 1) { z_ahi(haycnt, 1 - needlecntval); }
5229   }
5230 
5231   z_llgfr(haycnt, haycnt); // Clear high half.
5232   z_lgr(result, haystack); // Final result will be computed from needle start pointer.
5233   if (h_csize == 2) { z_sll(haycnt, 1); } // Scale to number of bytes.
5234   z_agr(haycnt, haystack); // Point to address succeeding last element (haystack+scale*(haycnt-needlecnt+1)).
5235 
5236   if (h_csize != n_csize) {
5237     assert(ae == StrIntrinsicNode::UL, "Invalid encoding");
5238 
5239     if (needlecnt != noreg || needlecntval != 1) {
5240       if (needlecnt != noreg) {
5241         compare32_and_branch(needlecnt, (intptr_t)0, Assembler::bcondEqual, L_needle1);
5242       }
5243 
5244       // Main Loop: UL version (now we have at least 2 characters).
5245       Label L_OuterLoop, L_InnerLoop, L_Skip;
5246       bind(L_OuterLoop); // Search for 1st 2 characters.
5247       z_lgr(Z_R1, haycnt);
5248       MacroAssembler::search_string_uni(Z_R1, result);
5249       z_brc(Assembler::bcondNotFound, L_NotFound);
5250       z_lgr(result, Z_R1);
5251 
5252       z_lghi(Z_R1, n_csize);
5253       z_lghi(even_reg, h_csize);
5254       bind(L_InnerLoop);
5255       z_llgc(odd_reg, Address(needle, Z_R1));
5256       z_ch(odd_reg, Address(result, even_reg));
5257       z_brne(L_Skip);
5258       if (needlecnt != noreg) { z_cr(Z_R1, needlecnt); } else { z_chi(Z_R1, needlecntval - 1); }
5259       z_brnl(L_Found);
5260       z_aghi(Z_R1, n_csize);
5261       z_aghi(even_reg, h_csize);
5262       z_bru(L_InnerLoop);
5263 
5264       bind(L_Skip);
5265       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5266       z_bru(L_OuterLoop);
5267     }
5268 
5269   } else {
5270     const intptr_t needle_bytes = (n_csize == 2) ? ((needlecntval - 1) << 1) : (needlecntval - 1);
5271     Label L_clcle;
5272 
5273     if (needlecnt != noreg || (needlecntval != 1 && needle_bytes <= 256)) {
5274       if (needlecnt != noreg) {
5275         compare32_and_branch(needlecnt, 256, Assembler::bcondHigh, L_clcle);
5276         z_ahi(needlecnt, -1); // remaining bytes -1 (for CLC)
5277         z_brl(L_needle1);
5278       }
5279 
5280       // Main Loop: clc version (now we have at least 2 characters).
5281       Label L_OuterLoop, CLC_template;
5282       bind(L_OuterLoop); // Search for 1st 2 characters.
5283       z_lgr(Z_R1, haycnt);
5284       if (h_csize == 1) {
5285         MacroAssembler::search_string(Z_R1, result);
5286       } else {
5287         MacroAssembler::search_string_uni(Z_R1, result);
5288       }
5289       z_brc(Assembler::bcondNotFound, L_NotFound);
5290       z_lgr(result, Z_R1);
5291 
5292       if (needlecnt != noreg) {
5293         assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
5294         z_exrl(needlecnt, CLC_template);
5295       } else {
5296         z_clc(h_csize, needle_bytes -1, Z_R1, n_csize, needle);
5297       }
5298       z_bre(L_Found);
5299       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5300       z_bru(L_OuterLoop);
5301 
5302       if (needlecnt != noreg) {
5303         bind(CLC_template);
5304         z_clc(h_csize, 0, Z_R1, n_csize, needle);
5305       }
5306     }
5307 
5308     if (needlecnt != noreg || needle_bytes > 256) {
5309       bind(L_clcle);
5310 
5311       // Main Loop: clcle version (now we have at least 256 bytes).
5312       Label L_OuterLoop, CLC_template;
5313       bind(L_OuterLoop); // Search for 1st 2 characters.
5314       z_lgr(Z_R1, haycnt);
5315       if (h_csize == 1) {
5316         MacroAssembler::search_string(Z_R1, result);
5317       } else {
5318         MacroAssembler::search_string_uni(Z_R1, result);
5319       }
5320       z_brc(Assembler::bcondNotFound, L_NotFound);
5321 
5322       add2reg(Z_R0, n_csize, needle);
5323       add2reg(even_reg, h_csize, Z_R1);
5324       z_lgr(result, Z_R1);
5325       if (needlecnt != noreg) {
5326         z_llgfr(Z_R1, needlecnt); // needle len in bytes (left operand)
5327         z_llgfr(odd_reg, needlecnt);
5328       } else {
5329         load_const_optimized(Z_R1, needle_bytes);
5330         if (Immediate::is_simm16(needle_bytes)) { z_lghi(odd_reg, needle_bytes); } else { z_lgr(odd_reg, Z_R1); }
5331       }
5332       if (h_csize == 1) {
5333         compare_long_ext(Z_R0, even_reg, 0);
5334       } else {
5335         compare_long_uni(Z_R0, even_reg, 0);
5336       }
5337       z_bre(L_Found);
5338 
5339       if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); } // Reload.
5340       z_aghi(result, h_csize); // This is the new address we want to use for comparing.
5341       z_bru(L_OuterLoop);
5342     }
5343   }
5344 
5345   if (needlecnt != noreg || needlecntval == 1) {
5346     bind(L_needle1);
5347 
5348     // Single needle character version.
5349     if (h_csize == 1) {
5350       MacroAssembler::search_string(haycnt, result);
5351     } else {
5352       MacroAssembler::search_string_uni(haycnt, result);
5353     }
5354     z_lgr(result, haycnt);
5355     z_brc(Assembler::bcondFound, L_Found);
5356   }
5357 
5358   bind(L_NotFound);
5359   add2reg(result, -1, haystack); // Return -1.
5360 
5361   bind(L_Found); // Return index (or -1 in fallthrough case).
5362   z_sgr(result, haystack);
5363   if (h_csize == 2) { z_srag(result, result, exact_log2(sizeof(jchar))); }
5364   }
5365   BLOCK_COMMENT("} string_indexof");
5366 
5367   return offset() - block_start;
5368 }
5369 
5370 // early clobber: result
5371 unsigned int MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
5372                                                  Register needle, jchar needleChar, Register odd_reg, Register even_reg, bool is_byte) {
5373   int block_start = offset();
5374 
5375   BLOCK_COMMENT("string_indexof_char {");
5376 
5377   if (needle == haystack) {
5378     z_lhi(result, 0);
5379   } else {
5380 
5381   Label Ldone;
5382 
5383   z_llgfr(odd_reg, haycnt);  // Preset loop ctr/searchrange end.
5384   if (needle == noreg) {
5385     load_const_optimized(Z_R0, (unsigned long)needleChar);
5386   } else {
5387     if (is_byte) {
5388       z_llgcr(Z_R0, needle); // First (and only) needle char.
5389     } else {
5390       z_llghr(Z_R0, needle); // First (and only) needle char.
5391     }
5392   }
5393 
5394   if (!is_byte) {
5395     z_agr(odd_reg, odd_reg); // Calc #bytes to be processed with SRSTU.
5396   }
5397 
5398   z_lgr(even_reg, haystack); // haystack addr
5399   z_agr(odd_reg, haystack);  // First char after range end.
5400   z_lghi(result, -1);
5401 
5402   if (is_byte) {
5403     MacroAssembler::search_string(odd_reg, even_reg);
5404   } else {
5405     MacroAssembler::search_string_uni(odd_reg, even_reg);
5406   }
5407   z_brc(Assembler::bcondNotFound, Ldone);
5408   if (is_byte) {
5409     if (VM_Version::has_DistinctOpnds()) {
5410       z_sgrk(result, odd_reg, haystack);
5411     } else {
5412       z_sgr(odd_reg, haystack);
5413       z_lgr(result, odd_reg);
5414     }
5415   } else {
5416     z_slgr(odd_reg, haystack);
5417     z_srlg(result, odd_reg, exact_log2(sizeof(jchar)));
5418   }
5419 
5420   bind(Ldone);
5421   }
5422   BLOCK_COMMENT("} string_indexof_char");
5423 
5424   return offset() - block_start;
5425 }
5426 
5427 
5428 //-------------------------------------------------
5429 //   Constants (scalar and oop) in constant pool
5430 //-------------------------------------------------
5431 
5432 // Add a non-relocated constant to the CP.
5433 int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
5434   long    value  = val.value();
5435   address tocPos = long_constant(value);
5436 
5437   if (tocPos != NULL) {
5438     int tocOffset = (int)(tocPos - code()->consts()->start());
5439     return tocOffset;
5440   }
5441   // Address_constant returned NULL, so no constant entry has been created.
5442   // In that case, we return a "fatal" offset, just in case that subsequently
5443   // generated access code is executed.
5444   return -1;
5445 }
5446 
5447 // Returns the TOC offset where the address is stored.
5448 // Add a relocated constant to the CP.
5449 int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
5450   // Use RelocationHolder::none for the constant pool entry.
5451   // Otherwise we will end up with a failing NativeCall::verify(x),
5452   // where x is the address of the constant pool entry.
5453   address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
5454 
5455   if (tocPos != NULL) {
5456     int              tocOffset = (int)(tocPos - code()->consts()->start());
5457     RelocationHolder rsp = oop.rspec();
5458     Relocation      *rel = rsp.reloc();
5459 
5460     // Store toc_offset in relocation, used by call_far_patchable.
5461     if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
5462       ((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
5463     }
5464     // Relocate at the load's pc.
5465     relocate(rsp);
5466 
5467     return tocOffset;
5468   }
5469   // Address_constant returned NULL, so no constant entry has been created
5470   // in that case, we return a "fatal" offset, just in case that subsequently
5471   // generated access code is executed.
5472   return -1;
5473 }
5474 
5475 bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5476   int     tocOffset = store_const_in_toc(a);
5477   if (tocOffset == -1) return false;
5478   address tocPos    = tocOffset + code()->consts()->start();
5479   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5480 
5481   load_long_pcrelative(dst, tocPos);
5482   return true;
5483 }
5484 
5485 bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
5486   int     tocOffset = store_oop_in_toc(a);
5487   if (tocOffset == -1) return false;
5488   address tocPos    = tocOffset + code()->consts()->start();
5489   assert((address)code()->consts()->start() != NULL, "Please add CP address");
5490 
5491   load_addr_pcrelative(dst, tocPos);
5492   return true;
5493 }
5494 
5495 // If the instruction sequence at the given pc is a load_const_from_toc
5496 // sequence, return the value currently stored at the referenced position
5497 // in the TOC.
5498 intptr_t MacroAssembler::get_const_from_toc(address pc) {
5499 
5500   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5501 
5502   long    offset  = get_load_const_from_toc_offset(pc);
5503   address dataLoc = NULL;
5504   if (is_load_const_from_toc_pcrelative(pc)) {
5505     dataLoc = pc + offset;
5506   } else {
5507     CodeBlob* cb = CodeCache::find_blob_unsafe(pc);   // Else we get assertion if nmethod is zombie.
5508     assert(cb && cb->is_nmethod(), "sanity");
5509     nmethod* nm = (nmethod*)cb;
5510     dataLoc = nm->ctable_begin() + offset;
5511   }
5512   return *(intptr_t *)dataLoc;
5513 }
5514 
5515 // If the instruction sequence at the given pc is a load_const_from_toc
5516 // sequence, copy the passed-in new_data value into the referenced
5517 // position in the TOC.
5518 void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
5519   assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
5520 
5521   long    offset = MacroAssembler::get_load_const_from_toc_offset(pc);
5522   address dataLoc = NULL;
5523   if (is_load_const_from_toc_pcrelative(pc)) {
5524     dataLoc = pc+offset;
5525   } else {
5526     nmethod* nm = CodeCache::find_nmethod(pc);
5527     assert((cb == NULL) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
5528     dataLoc = nm->ctable_begin() + offset;
5529   }
5530   if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
5531     *(unsigned long *)dataLoc = new_data;
5532   }
5533 }
5534 
5535 // Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
5536 // site. Verify by calling is_load_const_from_toc() before!!
5537 // Offset is +/- 2**32 -> use long.
5538 long MacroAssembler::get_load_const_from_toc_offset(address a) {
5539   assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
5540   //  expected code sequence:
5541   //    z_lgrl(t, simm32);    len = 6
5542   unsigned long inst;
5543   unsigned int  len = get_instruction(a, &inst);
5544   return get_pcrel_offset(inst);
5545 }
5546 
5547 //**********************************************************************************
5548 //  inspection of generated instruction sequences for a particular pattern
5549 //**********************************************************************************
5550 
5551 bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
5552 #ifdef ASSERT
5553   unsigned long inst;
5554   unsigned int  len = get_instruction(a+2, &inst);
5555   if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
5556     const int range = 128;
5557     Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
5558     VM_Version::z_SIGSEGV();
5559   }
5560 #endif
5561   // expected code sequence:
5562   //   z_lgrl(t, relAddr32);    len = 6
5563   //TODO: verify accessed data is in CP, if possible.
5564   return is_load_pcrelative_long(a);  // TODO: might be too general. Currently, only lgrl is used.
5565 }
5566 
5567 bool MacroAssembler::is_load_const_from_toc_call(address a) {
5568   return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
5569 }
5570 
5571 bool MacroAssembler::is_load_const_call(address a) {
5572   return is_load_const(a) && is_call_byregister(a + load_const_size());
5573 }
5574 
5575 //-------------------------------------------------
5576 //   Emitters for some really CICS instructions
5577 //-------------------------------------------------
5578 
5579 void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
5580   assert(dst->encoding()%2==0, "must be an even/odd register pair");
5581   assert(src->encoding()%2==0, "must be an even/odd register pair");
5582   assert(pad<256, "must be a padding BYTE");
5583 
5584   Label retry;
5585   bind(retry);
5586   Assembler::z_mvcle(dst, src, pad);
5587   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5588 }
5589 
5590 void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
5591   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
5592   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
5593   assert(pad<256, "must be a padding BYTE");
5594 
5595   Label retry;
5596   bind(retry);
5597   Assembler::z_clcle(left, right, pad, Z_R0);
5598   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5599 }
5600 
5601 void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
5602   assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
5603   assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
5604   assert(pad<=0xfff, "must be a padding HALFWORD");
5605   assert(VM_Version::has_ETF2(), "instruction must be available");
5606 
5607   Label retry;
5608   bind(retry);
5609   Assembler::z_clclu(left, right, pad, Z_R0);
5610   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5611 }
5612 
5613 void MacroAssembler::search_string(Register end, Register start) {
5614   assert(end->encoding() != 0, "end address must not be in R0");
5615   assert(start->encoding() != 0, "start address must not be in R0");
5616 
5617   Label retry;
5618   bind(retry);
5619   Assembler::z_srst(end, start);
5620   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5621 }
5622 
5623 void MacroAssembler::search_string_uni(Register end, Register start) {
5624   assert(end->encoding() != 0, "end address must not be in R0");
5625   assert(start->encoding() != 0, "start address must not be in R0");
5626   assert(VM_Version::has_ETF3(), "instruction must be available");
5627 
5628   Label retry;
5629   bind(retry);
5630   Assembler::z_srstu(end, start);
5631   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5632 }
5633 
5634 void MacroAssembler::kmac(Register srcBuff) {
5635   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
5636   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
5637 
5638   Label retry;
5639   bind(retry);
5640   Assembler::z_kmac(Z_R0, srcBuff);
5641   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5642 }
5643 
5644 void MacroAssembler::kimd(Register srcBuff) {
5645   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
5646   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
5647 
5648   Label retry;
5649   bind(retry);
5650   Assembler::z_kimd(Z_R0, srcBuff);
5651   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5652 }
5653 
5654 void MacroAssembler::klmd(Register srcBuff) {
5655   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
5656   assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
5657 
5658   Label retry;
5659   bind(retry);
5660   Assembler::z_klmd(Z_R0, srcBuff);
5661   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5662 }
5663 
5664 void MacroAssembler::km(Register dstBuff, Register srcBuff) {
5665   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
5666   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
5667   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
5668   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
5669   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
5670 
5671   Label retry;
5672   bind(retry);
5673   Assembler::z_km(dstBuff, srcBuff);
5674   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5675 }
5676 
5677 void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
5678   // DstBuff and srcBuff are allowed to be the same register (encryption in-place).
5679   // DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
5680   assert(srcBuff->encoding()     != 0, "src buffer address can't be in Z_R0");
5681   assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
5682   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
5683 
5684   Label retry;
5685   bind(retry);
5686   Assembler::z_kmc(dstBuff, srcBuff);
5687   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5688 }
5689 
5690 void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
5691   assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
5692 
5693   Label retry;
5694   bind(retry);
5695   Assembler::z_cksm(crcBuff, srcBuff);
5696   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5697 }
5698 
5699 void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
5700   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
5701   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
5702 
5703   Label retry;
5704   bind(retry);
5705   Assembler::z_troo(r1, r2, m3);
5706   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5707 }
5708 
5709 void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
5710   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
5711   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
5712 
5713   Label retry;
5714   bind(retry);
5715   Assembler::z_trot(r1, r2, m3);
5716   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5717 }
5718 
5719 void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
5720   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
5721   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
5722 
5723   Label retry;
5724   bind(retry);
5725   Assembler::z_trto(r1, r2, m3);
5726   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5727 }
5728 
5729 void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
5730   assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
5731   assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
5732 
5733   Label retry;
5734   bind(retry);
5735   Assembler::z_trtt(r1, r2, m3);
5736   Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
5737 }
5738 
5739 void MacroAssembler::generate_safepoint_check(Label& slow_path, Register scratch, bool may_relocate) {
5740   if (scratch == noreg) scratch = Z_R1;
5741   address Astate = SafepointSynchronize::address_of_state();
5742   BLOCK_COMMENT("safepoint check:");
5743 
5744   if (may_relocate) {
5745     ptrdiff_t total_distance = Astate - this->pc();
5746     if (RelAddr::is_in_range_of_RelAddr32(total_distance)) {
5747       RelocationHolder rspec = external_word_Relocation::spec(Astate);
5748       (this)->relocate(rspec, relocInfo::pcrel_addr_format);
5749       load_absolute_address(scratch, Astate);
5750     } else {
5751       load_const_optimized(scratch, Astate);
5752     }
5753   } else {
5754     load_absolute_address(scratch, Astate);
5755   }
5756   z_cli(/*SafepointSynchronize::sz_state()*/4-1, scratch, SafepointSynchronize::_not_synchronized);
5757   z_brne(slow_path);
5758 }
5759 
5760 
5761 void MacroAssembler::generate_type_profiling(const Register Rdata,
5762                                              const Register Rreceiver_klass,
5763                                              const Register Rwanted_receiver_klass,
5764                                              const Register Rmatching_row,
5765                                              bool is_virtual_call) {
5766   const int row_size = in_bytes(ReceiverTypeData::receiver_offset(1)) -
5767                        in_bytes(ReceiverTypeData::receiver_offset(0));
5768   const int num_rows = ReceiverTypeData::row_limit();
5769   NearLabel found_free_row;
5770   NearLabel do_increment;
5771   NearLabel found_no_slot;
5772 
5773   BLOCK_COMMENT("type profiling {");
5774 
5775   // search for:
5776   //    a) The type given in Rwanted_receiver_klass.
5777   //    b) The *first* empty row.
5778 
5779   // First search for a) only, just running over b) with no regard.
5780   // This is possible because
5781   //    wanted_receiver_class == receiver_class  &&  wanted_receiver_class == 0
5782   // is never true (receiver_class can't be zero).
5783   for (int row_num = 0; row_num < num_rows; row_num++) {
5784     // Row_offset should be a well-behaved positive number. The generated code relies
5785     // on that wrt constant code size. Add2reg can handle all row_offset values, but
5786     // will have to vary generated code size.
5787     int row_offset = in_bytes(ReceiverTypeData::receiver_offset(row_num));
5788     assert(Displacement::is_shortDisp(row_offset), "Limitation of generated code");
5789 
5790     // Is Rwanted_receiver_klass in this row?
5791     if (VM_Version::has_CompareBranch()) {
5792       z_lg(Rwanted_receiver_klass, row_offset, Z_R0, Rdata);
5793       // Rmatching_row = Rdata + row_offset;
5794       add2reg(Rmatching_row, row_offset, Rdata);
5795       // if (*row_recv == (intptr_t) receiver_klass) goto fill_existing_slot;
5796       compare64_and_branch(Rwanted_receiver_klass, Rreceiver_klass, Assembler::bcondEqual, do_increment);
5797     } else {
5798       add2reg(Rmatching_row, row_offset, Rdata);
5799       z_cg(Rreceiver_klass, row_offset, Z_R0, Rdata);
5800       z_bre(do_increment);
5801     }
5802   }
5803 
5804   // Now that we did not find a match, let's search for b).
5805 
5806   // We could save the first calculation of Rmatching_row if we woud search for a) in reverse order.
5807   // We would then end up here with Rmatching_row containing the value for row_num == 0.
5808   // We would not see much benefit, if any at all, because the CPU can schedule
5809   // two instructions together with a branch anyway.
5810   for (int row_num = 0; row_num < num_rows; row_num++) {
5811     int row_offset = in_bytes(ReceiverTypeData::receiver_offset(row_num));
5812 
5813     // Has this row a zero receiver_klass, i.e. is it empty?
5814     if (VM_Version::has_CompareBranch()) {
5815       z_lg(Rwanted_receiver_klass, row_offset, Z_R0, Rdata);
5816       // Rmatching_row = Rdata + row_offset
5817       add2reg(Rmatching_row, row_offset, Rdata);
5818       // if (*row_recv == (intptr_t) 0) goto found_free_row
5819       compare64_and_branch(Rwanted_receiver_klass, (intptr_t)0, Assembler::bcondEqual, found_free_row);
5820     } else {
5821       add2reg(Rmatching_row, row_offset, Rdata);
5822       load_and_test_long(Rwanted_receiver_klass, Address(Rdata, row_offset));
5823       z_bre(found_free_row);  // zero -> Found a free row.
5824     }
5825   }
5826 
5827   // No match, no empty row found.
5828   // Increment total counter to indicate polymorphic case.
5829   if (is_virtual_call) {
5830     add2mem_64(Address(Rdata, CounterData::count_offset()), 1, Rmatching_row);
5831   }
5832   z_bru(found_no_slot);
5833 
5834   // Here we found an empty row, but we have not found Rwanted_receiver_klass.
5835   // Rmatching_row holds the address to the first empty row.
5836   bind(found_free_row);
5837   // Store receiver_klass into empty slot.
5838   z_stg(Rreceiver_klass, 0, Z_R0, Rmatching_row);
5839 
5840   // Increment the counter of Rmatching_row.
5841   bind(do_increment);
5842   ByteSize counter_offset = ReceiverTypeData::receiver_count_offset(0) - ReceiverTypeData::receiver_offset(0);
5843   add2mem_64(Address(Rmatching_row, counter_offset), 1, Rdata);
5844 
5845   bind(found_no_slot);
5846 
5847   BLOCK_COMMENT("} type profiling");
5848 }
5849 
5850 //---------------------------------------
5851 // Helpers for Intrinsic Emitters
5852 //---------------------------------------
5853 
5854 /**
5855  * uint32_t crc;
5856  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
5857  */
5858 void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
5859   assert_different_registers(crc, table, tmp);
5860   assert_different_registers(val, table);
5861   if (crc == val) {      // Must rotate first to use the unmodified value.
5862     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
5863     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
5864   } else {
5865     z_srl(crc, 8);       // Unsigned shift, clear leftmost 8 bits.
5866     rotate_then_insert(tmp, val, 56-2, 63-2, 2, true);  // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
5867   }
5868   z_x(crc, Address(table, tmp, 0));
5869 }
5870 
5871 /**
5872  * uint32_t crc;
5873  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
5874  */
5875 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
5876   fold_byte_crc32(crc, crc, table, tmp);
5877 }
5878 
5879 /**
5880  * Emits code to update CRC-32 with a byte value according to constants in table.
5881  *
5882  * @param [in,out]crc Register containing the crc.
5883  * @param [in]val     Register containing the byte to fold into the CRC.
5884  * @param [in]table   Register containing the table of crc constants.
5885  *
5886  * uint32_t crc;
5887  * val = crc_table[(val ^ crc) & 0xFF];
5888  * crc = val ^ (crc >> 8);
5889  */
5890 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
5891   z_xr(val, crc);
5892   fold_byte_crc32(crc, val, table, val);
5893 }
5894 
5895 
5896 /**
5897  * @param crc   register containing existing CRC (32-bit)
5898  * @param buf   register pointing to input byte buffer (byte*)
5899  * @param len   register containing number of bytes
5900  * @param table register pointing to CRC table
5901  */
5902 void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
5903                                            Register data, bool invertCRC) {
5904   assert_different_registers(crc, buf, len, table, data);
5905 
5906   Label L_mainLoop, L_done;
5907   const int mainLoop_stepping = 1;
5908 
5909   // Process all bytes in a single-byte loop.
5910   z_ltr(len, len);
5911   z_brnh(L_done);
5912 
5913   if (invertCRC) {
5914     not_(crc, noreg, false); // ~c
5915   }
5916 
5917   bind(L_mainLoop);
5918     z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
5919     add2reg(buf, mainLoop_stepping);        // Advance buffer position.
5920     update_byte_crc32(crc, data, table);
5921     z_brct(len, L_mainLoop);                // Iterate.
5922 
5923   if (invertCRC) {
5924     not_(crc, noreg, false); // ~c
5925   }
5926 
5927   bind(L_done);
5928 }
5929 
5930 /**
5931  * Emits code to update CRC-32 with a 4-byte value according to constants in table.
5932  * Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
5933  *
5934  */
5935 void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
5936                                         Register t0,  Register t1,  Register t2,    Register t3) {
5937   // This is what we implement (the DOBIG4 part):
5938   //
5939   // #define DOBIG4 c ^= *++buf4; \
5940   //         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
5941   //             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
5942   // #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
5943   const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
5944   const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
5945   const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
5946   const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
5947 
5948   // XOR crc with next four bytes of buffer.
5949   lgr_if_needed(t0, crc);
5950   z_x(t0, Address(buf, bufDisp));
5951   if (bufInc != 0) {
5952     add2reg(buf, bufInc);
5953   }
5954 
5955   // Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
5956   rotate_then_insert(t3, t0, 56-2, 63-2, 2,    true);  // ((c >>  0) & 0xff) << 2
5957   rotate_then_insert(t2, t0, 56-2, 63-2, 2-8,  true);  // ((c >>  8) & 0xff) << 2
5958   rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true);  // ((c >> 16) & 0xff) << 2
5959   rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true);  // ((c >> 24) & 0xff) << 2
5960 
5961   // Load pre-calculated table values.
5962   // Use columns 4..7 for big-endian.
5963   z_ly(t3, Address(table, t3, (intptr_t)ix0));
5964   z_ly(t2, Address(table, t2, (intptr_t)ix1));
5965   z_ly(t1, Address(table, t1, (intptr_t)ix2));
5966   z_ly(t0, Address(table, t0, (intptr_t)ix3));
5967 
5968   // Calculate new crc from table values.
5969   z_xr(t2, t3);
5970   z_xr(t0, t1);
5971   z_xr(t0, t2);  // Now crc contains the final checksum value.
5972   lgr_if_needed(crc, t0);
5973 }
5974 
5975 /**
5976  * @param crc   register containing existing CRC (32-bit)
5977  * @param buf   register pointing to input byte buffer (byte*)
5978  * @param len   register containing number of bytes
5979  * @param table register pointing to CRC table
5980  *
5981  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
5982  */
5983 void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
5984                                         Register t0,  Register t1,  Register t2,  Register t3) {
5985   assert_different_registers(crc, buf, len, table);
5986 
5987   Label L_mainLoop, L_tail;
5988   Register  data = t0;
5989   Register  ctr  = Z_R0;
5990   const int mainLoop_stepping = 8;
5991   const int tailLoop_stepping = 1;
5992   const int log_stepping      = exact_log2(mainLoop_stepping);
5993 
5994   // Don't test for len <= 0 here. This pathological case should not occur anyway.
5995   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
5996   // The situation itself is detected and handled correctly by the conditional branches
5997   // following aghi(len, -stepping) and aghi(len, +stepping).
5998 
5999   not_(crc, noreg, false);             // 1s complement of crc
6000 
6001 #if 0
6002   {
6003     // Pre-mainLoop alignment did not show any positive effect on performance.
6004     // We leave the code in for reference. Maybe the vector instructions in z13 depend on alignment.
6005 
6006     z_cghi(len, mainLoop_stepping);    // Alignment is useless for short data streams.
6007     z_brnh(L_tail);
6008 
6009     // Align buf to word (4-byte) boundary.
6010     z_lcr(ctr, buf);
6011     rotate_then_insert(ctr, ctr, 62, 63, 0, true); // TODO: should set cc
6012     z_sgfr(len, ctr);                  // Remaining len after alignment.
6013 
6014     update_byteLoop_crc32(crc, buf, ctr, table, data, false);
6015   }
6016 #endif
6017 
6018   // Check for short (<mainLoop_stepping bytes) buffer.
6019   z_srag(ctr, len, log_stepping);
6020   z_brnh(L_tail);
6021 
6022   z_lrvr(crc, crc);             // Revert byte order because we are dealing with big-endian data.
6023   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
6024 
6025   BIND(L_mainLoop);
6026     update_1word_crc32(crc, buf, table, 0, 0, crc, t1, t2, t3);
6027     update_1word_crc32(crc, buf, table, 4, mainLoop_stepping, crc, t1, t2, t3);
6028     z_brct(ctr, L_mainLoop);    // Iterate.
6029 
6030   z_lrvr(crc, crc);        // Revert byte order back to original.
6031 
6032   // Process last few (<8) bytes of buffer.
6033   BIND(L_tail);
6034   update_byteLoop_crc32(crc, buf, len, table, data, false);
6035 
6036   not_(crc, noreg, false); // 1s complement of crc
6037 }
6038 
6039 /**
6040  * @param crc   register containing existing CRC (32-bit)
6041  * @param buf   register pointing to input byte buffer (byte*)
6042  * @param len   register containing number of bytes
6043  * @param table register pointing to CRC table
6044  *
6045  * uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
6046  */
6047 void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
6048                                         Register t0,  Register t1,  Register t2,  Register t3) {
6049   assert_different_registers(crc, buf, len, table);
6050 
6051   Label L_mainLoop, L_tail;
6052   Register  data = t0;
6053   Register  ctr  = Z_R0;
6054   const int mainLoop_stepping = 4;
6055   const int log_stepping      = exact_log2(mainLoop_stepping);
6056 
6057   // Don't test for len <= 0 here. This pathological case should not occur anyway.
6058   // Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
6059   // The situation itself is detected and handled correctly by the conditional branches
6060   // following aghi(len, -stepping) and aghi(len, +stepping).
6061 
6062   not_(crc, noreg, false); // 1s complement of crc
6063 
6064   // Check for short (<4 bytes) buffer.
6065   z_srag(ctr, len, log_stepping);
6066   z_brnh(L_tail);
6067 
6068   z_lrvr(crc, crc);          // Revert byte order because we are dealing with big-endian data.
6069   rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
6070 
6071   BIND(L_mainLoop);
6072     update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
6073     z_brct(ctr, L_mainLoop); // Iterate.
6074   z_lrvr(crc, crc);          // Revert byte order back to original.
6075 
6076   // Process last few (<8) bytes of buffer.
6077   BIND(L_tail);
6078   update_byteLoop_crc32(crc, buf, len, table, data, false);
6079 
6080   not_(crc, noreg, false); // 1s complement of crc
6081 }
6082 
6083 /**
6084  * @param crc   register containing existing CRC (32-bit)
6085  * @param buf   register pointing to input byte buffer (byte*)
6086  * @param len   register containing number of bytes
6087  * @param table register pointing to CRC table
6088  */
6089 void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
6090                                         Register t0,  Register t1,  Register t2,  Register t3) {
6091   assert_different_registers(crc, buf, len, table);
6092   Register data = t0;
6093 
6094   update_byteLoop_crc32(crc, buf, len, table, data, true);
6095 }
6096 
6097 void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp) {
6098   assert_different_registers(crc, buf, len, table, tmp);
6099 
6100   not_(crc, noreg, false); // ~c
6101 
6102   z_llgc(tmp, Address(buf, (intptr_t)0));  // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
6103   update_byte_crc32(crc, tmp, table);
6104 
6105   not_(crc, noreg, false); // ~c
6106 }
6107 
6108 //
6109 // Code for BigInteger::multiplyToLen() intrinsic.
6110 //
6111 
6112 // dest_lo += src1 + src2
6113 // dest_hi += carry1 + carry2
6114 // Z_R7 is destroyed !
6115 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
6116                                      Register src1, Register src2) {
6117   clear_reg(Z_R7);
6118   z_algr(dest_lo, src1);
6119   z_alcgr(dest_hi, Z_R7);
6120   z_algr(dest_lo, src2);
6121   z_alcgr(dest_hi, Z_R7);
6122 }
6123 
6124 // Multiply 64 bit by 64 bit first loop.
6125 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
6126                                            Register x_xstart,
6127                                            Register y, Register y_idx,
6128                                            Register z,
6129                                            Register carry,
6130                                            Register product,
6131                                            Register idx, Register kdx) {
6132   // jlong carry, x[], y[], z[];
6133   // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
6134   //   huge_128 product = y[idx] * x[xstart] + carry;
6135   //   z[kdx] = (jlong)product;
6136   //   carry  = (jlong)(product >>> 64);
6137   // }
6138   // z[xstart] = carry;
6139 
6140   Label L_first_loop, L_first_loop_exit;
6141   Label L_one_x, L_one_y, L_multiply;
6142 
6143   z_aghi(xstart, -1);
6144   z_brl(L_one_x);   // Special case: length of x is 1.
6145 
6146   // Load next two integers of x.
6147   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6148   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6149 
6150 
6151   bind(L_first_loop);
6152 
6153   z_aghi(idx, -1);
6154   z_brl(L_first_loop_exit);
6155   z_aghi(idx, -1);
6156   z_brl(L_one_y);
6157 
6158   // Load next two integers of y.
6159   z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
6160   mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
6161 
6162 
6163   bind(L_multiply);
6164 
6165   Register multiplicand = product->successor();
6166   Register product_low = multiplicand;
6167 
6168   lgr_if_needed(multiplicand, x_xstart);
6169   z_mlgr(product, y_idx);     // multiplicand * y_idx -> product::multiplicand
6170   clear_reg(Z_R7);
6171   z_algr(product_low, carry); // Add carry to result.
6172   z_alcgr(product, Z_R7);     // Add carry of the last addition.
6173   add2reg(kdx, -2);
6174 
6175   // Store result.
6176   z_sllg(Z_R7, kdx, LogBytesPerInt);
6177   reg2mem_opt(product_low, Address(z, Z_R7, 0));
6178   lgr_if_needed(carry, product);
6179   z_bru(L_first_loop);
6180 
6181 
6182   bind(L_one_y); // Load one 32 bit portion of y as (0,value).
6183 
6184   clear_reg(y_idx);
6185   mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
6186   z_bru(L_multiply);
6187 
6188 
6189   bind(L_one_x); // Load one 32 bit portion of x as (0,value).
6190 
6191   clear_reg(x_xstart);
6192   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6193   z_bru(L_first_loop);
6194 
6195   bind(L_first_loop_exit);
6196 }
6197 
6198 // Multiply 64 bit by 64 bit and add 128 bit.
6199 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
6200                                             Register z,
6201                                             Register yz_idx, Register idx,
6202                                             Register carry, Register product,
6203                                             int offset) {
6204   // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
6205   // z[kdx] = (jlong)product;
6206 
6207   Register multiplicand = product->successor();
6208   Register product_low = multiplicand;
6209 
6210   z_sllg(Z_R7, idx, LogBytesPerInt);
6211   mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
6212 
6213   lgr_if_needed(multiplicand, x_xstart);
6214   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6215   mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
6216 
6217   add2_with_carry(product, product_low, carry, yz_idx);
6218 
6219   z_sllg(Z_R7, idx, LogBytesPerInt);
6220   reg2mem_opt(product_low, Address(z, Z_R7, offset));
6221 
6222 }
6223 
6224 // Multiply 128 bit by 128 bit. Unrolled inner loop.
6225 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
6226                                              Register y, Register z,
6227                                              Register yz_idx, Register idx,
6228                                              Register jdx,
6229                                              Register carry, Register product,
6230                                              Register carry2) {
6231   // jlong carry, x[], y[], z[];
6232   // int kdx = ystart+1;
6233   // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
6234   //   huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
6235   //   z[kdx+idx+1] = (jlong)product;
6236   //   jlong carry2 = (jlong)(product >>> 64);
6237   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
6238   //   z[kdx+idx] = (jlong)product;
6239   //   carry = (jlong)(product >>> 64);
6240   // }
6241   // idx += 2;
6242   // if (idx > 0) {
6243   //   product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
6244   //   z[kdx+idx] = (jlong)product;
6245   //   carry = (jlong)(product >>> 64);
6246   // }
6247 
6248   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
6249 
6250   // scale the index
6251   lgr_if_needed(jdx, idx);
6252   and_imm(jdx, 0xfffffffffffffffcL);
6253   rshift(jdx, 2);
6254 
6255 
6256   bind(L_third_loop);
6257 
6258   z_aghi(jdx, -1);
6259   z_brl(L_third_loop_exit);
6260   add2reg(idx, -4);
6261 
6262   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
6263   lgr_if_needed(carry2, product);
6264 
6265   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
6266   lgr_if_needed(carry, product);
6267   z_bru(L_third_loop);
6268 
6269 
6270   bind(L_third_loop_exit);  // Handle any left-over operand parts.
6271 
6272   and_imm(idx, 0x3);
6273   z_brz(L_post_third_loop_done);
6274 
6275   Label L_check_1;
6276 
6277   z_aghi(idx, -2);
6278   z_brl(L_check_1);
6279 
6280   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
6281   lgr_if_needed(carry, product);
6282 
6283 
6284   bind(L_check_1);
6285 
6286   add2reg(idx, 0x2);
6287   and_imm(idx, 0x1);
6288   z_aghi(idx, -1);
6289   z_brl(L_post_third_loop_done);
6290 
6291   Register   multiplicand = product->successor();
6292   Register   product_low = multiplicand;
6293 
6294   z_sllg(Z_R7, idx, LogBytesPerInt);
6295   clear_reg(yz_idx);
6296   mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
6297   lgr_if_needed(multiplicand, x_xstart);
6298   z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
6299   clear_reg(yz_idx);
6300   mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
6301 
6302   add2_with_carry(product, product_low, yz_idx, carry);
6303 
6304   z_sllg(Z_R7, idx, LogBytesPerInt);
6305   reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
6306   rshift(product_low, 32);
6307 
6308   lshift(product, 32);
6309   z_ogr(product_low, product);
6310   lgr_if_needed(carry, product_low);
6311 
6312   bind(L_post_third_loop_done);
6313 }
6314 
6315 void MacroAssembler::multiply_to_len(Register x, Register xlen,
6316                                      Register y, Register ylen,
6317                                      Register z,
6318                                      Register tmp1, Register tmp2,
6319                                      Register tmp3, Register tmp4,
6320                                      Register tmp5) {
6321   ShortBranchVerifier sbv(this);
6322 
6323   assert_different_registers(x, xlen, y, ylen, z,
6324                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
6325   assert_different_registers(x, xlen, y, ylen, z,
6326                              tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
6327 
6328   z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6329 
6330   // In openJdk, we store the argument as 32-bit value to slot.
6331   Address zlen(Z_SP, _z_abi(remaining_cargs));  // Int in long on big endian.
6332 
6333   const Register idx = tmp1;
6334   const Register kdx = tmp2;
6335   const Register xstart = tmp3;
6336 
6337   const Register y_idx = tmp4;
6338   const Register carry = tmp5;
6339   const Register product  = Z_R0_scratch;
6340   const Register x_xstart = Z_R8;
6341 
6342   // First Loop.
6343   //
6344   //   final static long LONG_MASK = 0xffffffffL;
6345   //   int xstart = xlen - 1;
6346   //   int ystart = ylen - 1;
6347   //   long carry = 0;
6348   //   for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
6349   //     long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
6350   //     z[kdx] = (int)product;
6351   //     carry = product >>> 32;
6352   //   }
6353   //   z[xstart] = (int)carry;
6354   //
6355 
6356   lgr_if_needed(idx, ylen);  // idx = ylen
6357   z_llgf(kdx, zlen);         // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
6358   clear_reg(carry);          // carry = 0
6359 
6360   Label L_done;
6361 
6362   lgr_if_needed(xstart, xlen);
6363   z_aghi(xstart, -1);
6364   z_brl(L_done);
6365 
6366   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
6367 
6368   NearLabel L_second_loop;
6369   compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
6370 
6371   NearLabel L_carry;
6372   z_aghi(kdx, -1);
6373   z_brz(L_carry);
6374 
6375   // Store lower 32 bits of carry.
6376   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6377   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6378   rshift(carry, 32);
6379   z_aghi(kdx, -1);
6380 
6381 
6382   bind(L_carry);
6383 
6384   // Store upper 32 bits of carry.
6385   z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
6386   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6387 
6388   // Second and third (nested) loops.
6389   //
6390   // for (int i = xstart-1; i >= 0; i--) { // Second loop
6391   //   carry = 0;
6392   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
6393   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
6394   //                    (z[k] & LONG_MASK) + carry;
6395   //     z[k] = (int)product;
6396   //     carry = product >>> 32;
6397   //   }
6398   //   z[i] = (int)carry;
6399   // }
6400   //
6401   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
6402 
6403   const Register jdx = tmp1;
6404 
6405   bind(L_second_loop);
6406 
6407   clear_reg(carry);           // carry = 0;
6408   lgr_if_needed(jdx, ylen);   // j = ystart+1
6409 
6410   z_aghi(xstart, -1);         // i = xstart-1;
6411   z_brl(L_done);
6412 
6413   // Use free slots in the current stackframe instead of push/pop.
6414   Address zsave(Z_SP, _z_abi(carg_1));
6415   reg2mem_opt(z, zsave);
6416 
6417 
6418   Label L_last_x;
6419 
6420   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6421   load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
6422   z_aghi(xstart, -1);                           // i = xstart-1;
6423   z_brl(L_last_x);
6424 
6425   z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
6426   mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
6427 
6428 
6429   Label L_third_loop_prologue;
6430 
6431   bind(L_third_loop_prologue);
6432 
6433   Address xsave(Z_SP, _z_abi(carg_2));
6434   Address xlensave(Z_SP, _z_abi(carg_3));
6435   Address ylensave(Z_SP, _z_abi(carg_4));
6436 
6437   reg2mem_opt(x, xsave);
6438   reg2mem_opt(xstart, xlensave);
6439   reg2mem_opt(ylen, ylensave);
6440 
6441 
6442   multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
6443 
6444   mem2reg_opt(z, zsave);
6445   mem2reg_opt(x, xsave);
6446   mem2reg_opt(xlen, xlensave);   // This is the decrement of the loop counter!
6447   mem2reg_opt(ylen, ylensave);
6448 
6449   add2reg(tmp3, 1, xlen);
6450   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6451   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6452   z_aghi(tmp3, -1);
6453   z_brl(L_done);
6454 
6455   rshift(carry, 32);
6456   z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
6457   reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
6458   z_bru(L_second_loop);
6459 
6460   // Next infrequent code is moved outside loops.
6461   bind(L_last_x);
6462 
6463   clear_reg(x_xstart);
6464   mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
6465   z_bru(L_third_loop_prologue);
6466 
6467   bind(L_done);
6468 
6469   z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
6470 }
6471 
6472 #ifndef PRODUCT
6473 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
6474 void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
6475   Label ok;
6476   if (check_equal) {
6477     z_bre(ok);
6478   } else {
6479     z_brne(ok);
6480   }
6481   stop(msg, id);
6482   bind(ok);
6483 }
6484 
6485 // Assert if CC indicates "low".
6486 void MacroAssembler::asm_assert_low(const char *msg, int id) {
6487   Label ok;
6488   z_brnl(ok);
6489   stop(msg, id);
6490   bind(ok);
6491 }
6492 
6493 // Assert if CC indicates "high".
6494 void MacroAssembler::asm_assert_high(const char *msg, int id) {
6495   Label ok;
6496   z_brnh(ok);
6497   stop(msg, id);
6498   bind(ok);
6499 }
6500 
6501 // Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false)
6502 // generate non-relocatable code.
6503 void MacroAssembler::asm_assert_static(bool check_equal, const char *msg, int id) {
6504   Label ok;
6505   if (check_equal) { z_bre(ok); }
6506   else             { z_brne(ok); }
6507   stop_static(msg, id);
6508   bind(ok);
6509 }
6510 
6511 void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
6512                                           Register mem_base, const char* msg, int id) {
6513   switch (size) {
6514     case 4:
6515       load_and_test_int(Z_R0, Address(mem_base, mem_offset));
6516       break;
6517     case 8:
6518       load_and_test_long(Z_R0,  Address(mem_base, mem_offset));
6519       break;
6520     default:
6521       ShouldNotReachHere();
6522   }
6523   if (allow_relocation) { asm_assert(check_equal, msg, id); }
6524   else                  { asm_assert_static(check_equal, msg, id); }
6525 }
6526 
6527 // Check the condition
6528 //   expected_size == FP - SP
6529 // after transformation:
6530 //   expected_size - FP + SP == 0
6531 // Destroys Register expected_size if no tmp register is passed.
6532 void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
6533   if (tmp == noreg) {
6534     tmp = expected_size;
6535   } else {
6536     if (tmp != expected_size) {
6537       z_lgr(tmp, expected_size);
6538     }
6539     z_algr(tmp, Z_SP);
6540     z_slg(tmp, 0, Z_R0, Z_SP);
6541     asm_assert_eq(msg, id);
6542   }
6543 }
6544 #endif // !PRODUCT
6545 
6546 void MacroAssembler::verify_thread() {
6547   if (VerifyThread) {
6548     unimplemented("", 117);
6549   }
6550 }
6551 
6552 // Plausibility check for oops.
6553 void MacroAssembler::verify_oop(Register oop, const char* msg) {
6554   if (!VerifyOops) return;
6555 
6556   BLOCK_COMMENT("verify_oop {");
6557   Register tmp = Z_R0;
6558   unsigned int nbytes_save = 6 *8;
6559   address entry = StubRoutines::verify_oop_subroutine_entry_address();
6560   save_return_pc();
6561   push_frame_abi160(nbytes_save);
6562   z_stmg(Z_R0, Z_R5, 160, Z_SP);
6563 
6564   z_lgr(Z_ARG2, oop);
6565   load_const(Z_ARG1, (address) msg);
6566   load_const(Z_R1, entry);
6567   z_lg(Z_R1, 0, Z_R1);
6568   call_c(Z_R1);
6569 
6570   z_lmg(Z_R0, Z_R5, 160, Z_SP);
6571   pop_frame();
6572 
6573   restore_return_pc();
6574   BLOCK_COMMENT("} verify_oop ");
6575 }
6576 
6577 const char* MacroAssembler::stop_types[] = {
6578   "stop",
6579   "untested",
6580   "unimplemented",
6581   "shouldnotreachhere"
6582 };
6583 
6584 static void stop_on_request(const char* tp, const char* msg) {
6585   tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
6586   guarantee(false, "Z assembly code requires stop: %s", msg);
6587 }
6588 
6589 void MacroAssembler::stop(int type, const char* msg, int id) {
6590   BLOCK_COMMENT(err_msg("stop: %s {", msg));
6591 
6592   // Setup arguments.
6593   load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
6594   load_const(Z_ARG2, (void*) msg);
6595   get_PC(Z_R14); // Following code pushes a frame without entering a new function. Use current pc as return address.
6596   save_return_pc();    // Saves return pc Z_R14.
6597   push_frame_abi160(0);
6598   call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6599   // The plain disassembler does not recognize illtrap. It instead displays
6600   // a 32-bit value. Issueing two illtraps assures the disassembler finds
6601   // the proper beginning of the next instruction.
6602   z_illtrap(); // Illegal instruction.
6603   z_illtrap(); // Illegal instruction.
6604 
6605   BLOCK_COMMENT(" } stop");
6606 }
6607 
6608 // Special version of stop() for code size reduction.
6609 // Reuses the previously generated call sequence, if any.
6610 // Generates the call sequence on its own, if necessary.
6611 // Note: This code will work only in non-relocatable code!
6612 //       The relative address of the data elements (arg1, arg2) must not change.
6613 //       The reentry point must not move relative to it's users. This prerequisite
6614 //       should be given for "hand-written" code, if all chain calls are in the same code blob.
6615 //       Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
6616 address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
6617   BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==NULL?"init":"cont", allow_relocation?"reloc ":"static", msg));
6618 
6619   // Setup arguments.
6620   if (allow_relocation) {
6621     // Relocatable version (for comparison purposes). Remove after some time.
6622     load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
6623     load_const(Z_ARG2, (void*) msg);
6624   } else {
6625     load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
6626     load_absolute_address(Z_ARG2, (address)msg);
6627   }
6628   if ((reentry != NULL) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
6629     BLOCK_COMMENT("branch to reentry point:");
6630     z_brc(bcondAlways, reentry);
6631   } else {
6632     BLOCK_COMMENT("reentry point:");
6633     reentry = pc();      // Re-entry point for subsequent stop calls.
6634     save_return_pc();    // Saves return pc Z_R14.
6635     push_frame_abi160(0);
6636     if (allow_relocation) {
6637       reentry = NULL;    // Prevent reentry if code relocation is allowed.
6638       call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6639     } else {
6640       call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
6641     }
6642     z_illtrap(); // Illegal instruction as emergency stop, should the above call return.
6643   }
6644   BLOCK_COMMENT(" } stop_chain");
6645 
6646   return reentry;
6647 }
6648 
6649 // Special version of stop() for code size reduction.
6650 // Assumes constant relative addresses for data and runtime call.
6651 void MacroAssembler::stop_static(int type, const char* msg, int id) {
6652   stop_chain(NULL, type, msg, id, false);
6653 }
6654 
6655 void MacroAssembler::stop_subroutine() {
6656   unimplemented("stop_subroutine", 710);
6657 }
6658 
6659 // Prints msg to stdout from within generated code..
6660 void MacroAssembler::warn(const char* msg) {
6661   RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
6662   load_absolute_address(Z_R1, (address) warning);
6663   load_absolute_address(Z_ARG1, (address) msg);
6664   (void) call(Z_R1);
6665   RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
6666 }
6667 
6668 #ifndef PRODUCT
6669 
6670 // Write pattern 0x0101010101010101 in region [low-before, high+after].
6671 void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
6672   if (!ZapEmptyStackFields) return;
6673   BLOCK_COMMENT("zap memory region {");
6674   load_const_optimized(val, 0x0101010101010101);
6675   int size = before + after;
6676   if (low == high && size < 5 && size > 0) {
6677     int offset = -before*BytesPerWord;
6678     for (int i = 0; i < size; ++i) {
6679       z_stg(val, Address(low, offset));
6680       offset +=(1*BytesPerWord);
6681     }
6682   } else {
6683     add2reg(addr, -before*BytesPerWord, low);
6684     if (after) {
6685 #ifdef ASSERT
6686       jlong check = after * BytesPerWord;
6687       assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
6688 #endif
6689       add2reg(high, after * BytesPerWord);
6690     }
6691     NearLabel loop;
6692     bind(loop);
6693     z_stg(val, Address(addr));
6694     add2reg(addr, 8);
6695     compare64_and_branch(addr, high, bcondNotHigh, loop);
6696     if (after) {
6697       add2reg(high, -after * BytesPerWord);
6698     }
6699   }
6700   BLOCK_COMMENT("} zap memory region");
6701 }
6702 #endif // !PRODUCT
6703 
6704 SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
6705   _masm = masm;
6706   _masm->load_absolute_address(_rscratch, (address)flag_addr);
6707   _masm->load_and_test_int(_rscratch, Address(_rscratch));
6708   if (value) {
6709     _masm->z_brne(_label); // Skip if true, i.e. != 0.
6710   } else {
6711     _masm->z_bre(_label);  // Skip if false, i.e. == 0.
6712   }
6713 }
6714 
6715 SkipIfEqual::~SkipIfEqual() {
6716   _masm->bind(_label);
6717 }