1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/interpreterRuntime.hpp"
  41 #include "logging/log.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/klass.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "prims/forte.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/vframe.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/dtrace.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/hashtable.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 
  76 // Shared stub locations
  77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  83 address             SharedRuntime::_resolve_static_call_entry;
  84 
  85 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  89 
  90 #ifdef COMPILER2
  91 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  92 #endif // COMPILER2
  93 
  94 
  95 //----------------------------generate_stubs-----------------------------------
  96 void SharedRuntime::generate_stubs() {
  97   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  98   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  99   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 100   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 101   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 102   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 103   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 104 
 105 #if COMPILER2_OR_JVMCI
 106   // Vectors are generated only by C2 and JVMCI.
 107   bool support_wide = is_wide_vector(MaxVectorSize);
 108   if (support_wide) {
 109     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 110   }
 111 #endif // COMPILER2_OR_JVMCI
 112   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 113   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 114 
 115   generate_deopt_blob();
 116 
 117 #ifdef COMPILER2
 118   generate_uncommon_trap_blob();
 119 #endif // COMPILER2
 120 }
 121 
 122 #include <math.h>
 123 
 124 // Implementation of SharedRuntime
 125 
 126 #ifndef PRODUCT
 127 // For statistics
 128 int SharedRuntime::_ic_miss_ctr = 0;
 129 int SharedRuntime::_wrong_method_ctr = 0;
 130 int SharedRuntime::_resolve_static_ctr = 0;
 131 int SharedRuntime::_resolve_virtual_ctr = 0;
 132 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 133 int SharedRuntime::_implicit_null_throws = 0;
 134 int SharedRuntime::_implicit_div0_throws = 0;
 135 int SharedRuntime::_throw_null_ctr = 0;
 136 
 137 int SharedRuntime::_nof_normal_calls = 0;
 138 int SharedRuntime::_nof_optimized_calls = 0;
 139 int SharedRuntime::_nof_inlined_calls = 0;
 140 int SharedRuntime::_nof_megamorphic_calls = 0;
 141 int SharedRuntime::_nof_static_calls = 0;
 142 int SharedRuntime::_nof_inlined_static_calls = 0;
 143 int SharedRuntime::_nof_interface_calls = 0;
 144 int SharedRuntime::_nof_optimized_interface_calls = 0;
 145 int SharedRuntime::_nof_inlined_interface_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 147 int SharedRuntime::_nof_removable_exceptions = 0;
 148 
 149 int SharedRuntime::_new_instance_ctr=0;
 150 int SharedRuntime::_new_array_ctr=0;
 151 int SharedRuntime::_multi1_ctr=0;
 152 int SharedRuntime::_multi2_ctr=0;
 153 int SharedRuntime::_multi3_ctr=0;
 154 int SharedRuntime::_multi4_ctr=0;
 155 int SharedRuntime::_multi5_ctr=0;
 156 int SharedRuntime::_mon_enter_stub_ctr=0;
 157 int SharedRuntime::_mon_exit_stub_ctr=0;
 158 int SharedRuntime::_mon_enter_ctr=0;
 159 int SharedRuntime::_mon_exit_ctr=0;
 160 int SharedRuntime::_partial_subtype_ctr=0;
 161 int SharedRuntime::_jbyte_array_copy_ctr=0;
 162 int SharedRuntime::_jshort_array_copy_ctr=0;
 163 int SharedRuntime::_jint_array_copy_ctr=0;
 164 int SharedRuntime::_jlong_array_copy_ctr=0;
 165 int SharedRuntime::_oop_array_copy_ctr=0;
 166 int SharedRuntime::_checkcast_array_copy_ctr=0;
 167 int SharedRuntime::_unsafe_array_copy_ctr=0;
 168 int SharedRuntime::_generic_array_copy_ctr=0;
 169 int SharedRuntime::_slow_array_copy_ctr=0;
 170 int SharedRuntime::_find_handler_ctr=0;
 171 int SharedRuntime::_rethrow_ctr=0;
 172 
 173 int     SharedRuntime::_ICmiss_index                    = 0;
 174 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 175 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 176 
 177 
 178 void SharedRuntime::trace_ic_miss(address at) {
 179   for (int i = 0; i < _ICmiss_index; i++) {
 180     if (_ICmiss_at[i] == at) {
 181       _ICmiss_count[i]++;
 182       return;
 183     }
 184   }
 185   int index = _ICmiss_index++;
 186   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 187   _ICmiss_at[index] = at;
 188   _ICmiss_count[index] = 1;
 189 }
 190 
 191 void SharedRuntime::print_ic_miss_histogram() {
 192   if (ICMissHistogram) {
 193     tty->print_cr("IC Miss Histogram:");
 194     int tot_misses = 0;
 195     for (int i = 0; i < _ICmiss_index; i++) {
 196       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 197       tot_misses += _ICmiss_count[i];
 198     }
 199     tty->print_cr("Total IC misses: %7d", tot_misses);
 200   }
 201 }
 202 #endif // PRODUCT
 203 
 204 #if INCLUDE_ALL_GCS
 205 
 206 // G1 write-barrier pre: executed before a pointer store.
 207 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 208   if (orig == NULL) {
 209     assert(false, "should be optimized out");
 210     return;
 211   }
 212   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 213   // store the original value that was in the field reference
 214   thread->satb_mark_queue().enqueue(orig);
 215 JRT_END
 216 
 217 // G1 write-barrier post: executed after a pointer store.
 218 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 219   thread->dirty_card_queue().enqueue(card_addr);
 220 JRT_END
 221 
 222 #endif // INCLUDE_ALL_GCS
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 226   return x * y;
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return x;
 233   } else {
 234     return x / y;
 235   }
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return 0;
 242   } else {
 243     return x % y;
 244   }
 245 JRT_END
 246 
 247 
 248 const juint  float_sign_mask  = 0x7FFFFFFF;
 249 const juint  float_infinity   = 0x7F800000;
 250 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 251 const julong double_infinity  = CONST64(0x7FF0000000000000);
 252 
 253 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 254 #ifdef _WIN64
 255   // 64-bit Windows on amd64 returns the wrong values for
 256   // infinity operands.
 257   union { jfloat f; juint i; } xbits, ybits;
 258   xbits.f = x;
 259   ybits.f = y;
 260   // x Mod Infinity == x unless x is infinity
 261   if (((xbits.i & float_sign_mask) != float_infinity) &&
 262        ((ybits.i & float_sign_mask) == float_infinity) ) {
 263     return x;
 264   }
 265   return ((jfloat)fmod_winx64((double)x, (double)y));
 266 #else
 267   return ((jfloat)fmod((double)x,(double)y));
 268 #endif
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 273 #ifdef _WIN64
 274   union { jdouble d; julong l; } xbits, ybits;
 275   xbits.d = x;
 276   ybits.d = y;
 277   // x Mod Infinity == x unless x is infinity
 278   if (((xbits.l & double_sign_mask) != double_infinity) &&
 279        ((ybits.l & double_sign_mask) == double_infinity) ) {
 280     return x;
 281   }
 282   return ((jdouble)fmod_winx64((double)x, (double)y));
 283 #else
 284   return ((jdouble)fmod((double)x,(double)y));
 285 #endif
 286 JRT_END
 287 
 288 #ifdef __SOFTFP__
 289 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 322   return (jfloat)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 334   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 338   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 342   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 // Functions to return the opposite of the aeabi functions for nan.
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 // Intrinsics make gcc generate code for these.
 383 float  SharedRuntime::fneg(float f)   {
 384   return -f;
 385 }
 386 
 387 double SharedRuntime::dneg(double f)  {
 388   return -f;
 389 }
 390 
 391 #endif // __SOFTFP__
 392 
 393 #if defined(__SOFTFP__) || defined(E500V2)
 394 // Intrinsics make gcc generate code for these.
 395 double SharedRuntime::dabs(double f)  {
 396   return (f <= (double)0.0) ? (double)0.0 - f : f;
 397 }
 398 
 399 #endif
 400 
 401 #if defined(__SOFTFP__) || defined(PPC)
 402 double SharedRuntime::dsqrt(double f) {
 403   return sqrt(f);
 404 }
 405 #endif
 406 
 407 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jfloat) max_jint)
 411     return max_jint;
 412   if (x <= (jfloat) min_jint)
 413     return min_jint;
 414   return (jint) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jfloat) max_jlong)
 422     return max_jlong;
 423   if (x <= (jfloat) min_jlong)
 424     return min_jlong;
 425   return (jlong) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jdouble) max_jint)
 433     return max_jint;
 434   if (x <= (jdouble) min_jint)
 435     return min_jint;
 436   return (jint) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 441   if (g_isnan(x))
 442     return 0;
 443   if (x >= (jdouble) max_jlong)
 444     return max_jlong;
 445   if (x <= (jdouble) min_jlong)
 446     return min_jlong;
 447   return (jlong) x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 452   return (jfloat)x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 462   return (jdouble)x;
 463 JRT_END
 464 
 465 // Exception handling across interpreter/compiler boundaries
 466 //
 467 // exception_handler_for_return_address(...) returns the continuation address.
 468 // The continuation address is the entry point of the exception handler of the
 469 // previous frame depending on the return address.
 470 
 471 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 472   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 473   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 474 
 475   // Reset method handle flag.
 476   thread->set_is_method_handle_return(false);
 477 
 478 #if INCLUDE_JVMCI
 479   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 480   // and other exception handler continuations do not read it
 481   thread->set_exception_pc(NULL);
 482 #endif // INCLUDE_JVMCI
 483 
 484   // The fastest case first
 485   CodeBlob* blob = CodeCache::find_blob(return_address);
 486   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 487   if (nm != NULL) {
 488     // Set flag if return address is a method handle call site.
 489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 490     // native nmethods don't have exception handlers
 491     assert(!nm->is_native_method(), "no exception handler");
 492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 493     if (nm->is_deopt_pc(return_address)) {
 494       // If we come here because of a stack overflow, the stack may be
 495       // unguarded. Reguard the stack otherwise if we return to the
 496       // deopt blob and the stack bang causes a stack overflow we
 497       // crash.
 498       bool guard_pages_enabled = thread->stack_guards_enabled();
 499       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 500       if (thread->reserved_stack_activation() != thread->stack_base()) {
 501         thread->set_reserved_stack_activation(thread->stack_base());
 502       }
 503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 504       return SharedRuntime::deopt_blob()->unpack_with_exception();
 505     } else {
 506       return nm->exception_begin();
 507     }
 508   }
 509 
 510   // Entry code
 511   if (StubRoutines::returns_to_call_stub(return_address)) {
 512     return StubRoutines::catch_exception_entry();
 513   }
 514   // Interpreted code
 515   if (Interpreter::contains(return_address)) {
 516     return Interpreter::rethrow_exception_entry();
 517   }
 518 
 519   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 520   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 521 
 522 #ifndef PRODUCT
 523   { ResourceMark rm;
 524     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 525     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 526     tty->print_cr("b) other problem");
 527   }
 528 #endif // PRODUCT
 529 
 530   ShouldNotReachHere();
 531   return NULL;
 532 }
 533 
 534 
 535 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 536   return raw_exception_handler_for_return_address(thread, return_address);
 537 JRT_END
 538 
 539 
 540 address SharedRuntime::get_poll_stub(address pc) {
 541   address stub;
 542   // Look up the code blob
 543   CodeBlob *cb = CodeCache::find_blob(pc);
 544 
 545   // Should be an nmethod
 546   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 547 
 548   // Look up the relocation information
 549   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 550     "safepoint polling: type must be poll");
 551 
 552 #ifdef ASSERT
 553   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 554     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 555     Disassembler::decode(cb);
 556     fatal("Only polling locations are used for safepoint");
 557   }
 558 #endif
 559 
 560   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 561   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 562   if (at_poll_return) {
 563     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 564            "polling page return stub not created yet");
 565     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 566   } else if (has_wide_vectors) {
 567     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 568            "polling page vectors safepoint stub not created yet");
 569     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 570   } else {
 571     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 572            "polling page safepoint stub not created yet");
 573     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 574   }
 575   log_debug(safepoint)("... found polling page %s exception at pc = "
 576                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 577                        at_poll_return ? "return" : "loop",
 578                        (intptr_t)pc, (intptr_t)stub);
 579   return stub;
 580 }
 581 
 582 
 583 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 584   assert(caller.is_interpreted_frame(), "");
 585   int args_size = ArgumentSizeComputer(sig).size() + 1;
 586   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 587   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 588   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 589   return result;
 590 }
 591 
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 594   if (JvmtiExport::can_post_on_exceptions()) {
 595     vframeStream vfst(thread, true);
 596     methodHandle method = methodHandle(thread, vfst.method());
 597     address bcp = method()->bcp_from(vfst.bci());
 598     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 599   }
 600   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 601 }
 602 
 603 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 604   Handle h_exception = Exceptions::new_exception(thread, name, message);
 605   throw_and_post_jvmti_exception(thread, h_exception);
 606 }
 607 
 608 // The interpreter code to call this tracing function is only
 609 // called/generated when UL is on for redefine, class and has the right level
 610 // and tags. Since obsolete methods are never compiled, we don't have
 611 // to modify the compilers to generate calls to this function.
 612 //
 613 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 614     JavaThread* thread, Method* method))
 615   if (method->is_obsolete()) {
 616     // We are calling an obsolete method, but this is not necessarily
 617     // an error. Our method could have been redefined just after we
 618     // fetched the Method* from the constant pool.
 619     ResourceMark rm;
 620     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 629   assert(cm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632 #if INCLUDE_JVMCI
 633   if (cm->is_compiled_by_jvmci()) {
 634     // lookup exception handler for this pc
 635     int catch_pco = ret_pc - cm->code_begin();
 636     ExceptionHandlerTable table(cm);
 637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 638     if (t != NULL) {
 639       return cm->code_begin() + t->pco();
 640     } else {
 641       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 642     }
 643   }
 644 #endif // INCLUDE_JVMCI
 645 
 646   nmethod* nm = cm->as_nmethod();
 647   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 648   // determine handler bci, if any
 649   EXCEPTION_MARK;
 650 
 651   int handler_bci = -1;
 652   int scope_depth = 0;
 653   if (!force_unwind) {
 654     int bci = sd->bci();
 655     bool recursive_exception = false;
 656     do {
 657       bool skip_scope_increment = false;
 658       // exception handler lookup
 659       Klass* ek = exception->klass();
 660       methodHandle mh(THREAD, sd->method());
 661       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 662       if (HAS_PENDING_EXCEPTION) {
 663         recursive_exception = true;
 664         // We threw an exception while trying to find the exception handler.
 665         // Transfer the new exception to the exception handle which will
 666         // be set into thread local storage, and do another lookup for an
 667         // exception handler for this exception, this time starting at the
 668         // BCI of the exception handler which caused the exception to be
 669         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 670         // argument to ensure that the correct exception is thrown (4870175).
 671         recursive_exception_occurred = true;
 672         exception = Handle(THREAD, PENDING_EXCEPTION);
 673         CLEAR_PENDING_EXCEPTION;
 674         if (handler_bci >= 0) {
 675           bci = handler_bci;
 676           handler_bci = -1;
 677           skip_scope_increment = true;
 678         }
 679       }
 680       else {
 681         recursive_exception = false;
 682       }
 683       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 684         sd = sd->sender();
 685         if (sd != NULL) {
 686           bci = sd->bci();
 687         }
 688         ++scope_depth;
 689       }
 690     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 691   }
 692 
 693   // found handling method => lookup exception handler
 694   int catch_pco = ret_pc - nm->code_begin();
 695 
 696   ExceptionHandlerTable table(nm);
 697   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 698   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 699     // Allow abbreviated catch tables.  The idea is to allow a method
 700     // to materialize its exceptions without committing to the exact
 701     // routing of exceptions.  In particular this is needed for adding
 702     // a synthetic handler to unlock monitors when inlining
 703     // synchronized methods since the unlock path isn't represented in
 704     // the bytecodes.
 705     t = table.entry_for(catch_pco, -1, 0);
 706   }
 707 
 708 #ifdef COMPILER1
 709   if (t == NULL && nm->is_compiled_by_c1()) {
 710     assert(nm->unwind_handler_begin() != NULL, "");
 711     return nm->unwind_handler_begin();
 712   }
 713 #endif
 714 
 715   if (t == NULL) {
 716     ttyLocker ttyl;
 717     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 718     tty->print_cr("   Exception:");
 719     exception->print();
 720     tty->cr();
 721     tty->print_cr(" Compiled exception table :");
 722     table.print();
 723     nm->print_code();
 724     guarantee(false, "missing exception handler");
 725     return NULL;
 726   }
 727 
 728   return nm->code_begin() + t->pco();
 729 }
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 732   // These errors occur only at call sites
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 737   // These errors occur only at call sites
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 750   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 751   // cache sites (when the callee activation is not yet set up) so we are at a call site
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 756   throw_StackOverflowError_common(thread, false);
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 760   throw_StackOverflowError_common(thread, true);
 761 JRT_END
 762 
 763 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 764   // We avoid using the normal exception construction in this case because
 765   // it performs an upcall to Java, and we're already out of stack space.
 766   Thread* THREAD = thread;
 767   Klass* k = SystemDictionary::StackOverflowError_klass();
 768   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 769   if (delayed) {
 770     java_lang_Throwable::set_message(exception_oop,
 771                                      Universe::delayed_stack_overflow_error_message());
 772   }
 773   Handle exception (thread, exception_oop);
 774   if (StackTraceInThrowable) {
 775     java_lang_Throwable::fill_in_stack_trace(exception);
 776   }
 777   // Increment counter for hs_err file reporting
 778   Atomic::inc(&Exceptions::_stack_overflow_errors);
 779   throw_and_post_jvmti_exception(thread, exception);
 780 }
 781 
 782 #if INCLUDE_JVMCI
 783 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 784   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 785   thread->set_jvmci_implicit_exception_pc(pc);
 786   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 787   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 788 }
 789 #endif // INCLUDE_JVMCI
 790 
 791 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 792                                                            address pc,
 793                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 794 {
 795   address target_pc = NULL;
 796 
 797   if (Interpreter::contains(pc)) {
 798 #ifdef CC_INTERP
 799     // C++ interpreter doesn't throw implicit exceptions
 800     ShouldNotReachHere();
 801 #else
 802     switch (exception_kind) {
 803       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 804       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 805       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 806       default:                      ShouldNotReachHere();
 807     }
 808 #endif // !CC_INTERP
 809   } else {
 810     switch (exception_kind) {
 811       case STACK_OVERFLOW: {
 812         // Stack overflow only occurs upon frame setup; the callee is
 813         // going to be unwound. Dispatch to a shared runtime stub
 814         // which will cause the StackOverflowError to be fabricated
 815         // and processed.
 816         // Stack overflow should never occur during deoptimization:
 817         // the compiled method bangs the stack by as much as the
 818         // interpreter would need in case of a deoptimization. The
 819         // deoptimization blob and uncommon trap blob bang the stack
 820         // in a debug VM to verify the correctness of the compiled
 821         // method stack banging.
 822         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 823         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 824         return StubRoutines::throw_StackOverflowError_entry();
 825       }
 826 
 827       case IMPLICIT_NULL: {
 828         if (VtableStubs::contains(pc)) {
 829           // We haven't yet entered the callee frame. Fabricate an
 830           // exception and begin dispatching it in the caller. Since
 831           // the caller was at a call site, it's safe to destroy all
 832           // caller-saved registers, as these entry points do.
 833           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 834 
 835           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 836           if (vt_stub == NULL) return NULL;
 837 
 838           if (vt_stub->is_abstract_method_error(pc)) {
 839             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 840             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 841             // Instead of throwing the abstract method error here directly, we re-resolve
 842             // and will throw the AbstractMethodError during resolve. As a result, we'll
 843             // get a more detailed error message.
 844             return SharedRuntime::get_handle_wrong_method_stub();
 845           } else {
 846             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 847             // Assert that the signal comes from the expected location in stub code.
 848             assert(vt_stub->is_null_pointer_exception(pc),
 849                    "obtained signal from unexpected location in stub code");
 850             return StubRoutines::throw_NullPointerException_at_call_entry();
 851           }
 852         } else {
 853           CodeBlob* cb = CodeCache::find_blob(pc);
 854 
 855           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 856           if (cb == NULL) return NULL;
 857 
 858           // Exception happened in CodeCache. Must be either:
 859           // 1. Inline-cache check in C2I handler blob,
 860           // 2. Inline-cache check in nmethod, or
 861           // 3. Implicit null exception in nmethod
 862 
 863           if (!cb->is_compiled()) {
 864             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 865             if (!is_in_blob) {
 866               // Allow normal crash reporting to handle this
 867               return NULL;
 868             }
 869             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 870             // There is no handler here, so we will simply unwind.
 871             return StubRoutines::throw_NullPointerException_at_call_entry();
 872           }
 873 
 874           // Otherwise, it's a compiled method.  Consult its exception handlers.
 875           CompiledMethod* cm = (CompiledMethod*)cb;
 876           if (cm->inlinecache_check_contains(pc)) {
 877             // exception happened inside inline-cache check code
 878             // => the nmethod is not yet active (i.e., the frame
 879             // is not set up yet) => use return address pushed by
 880             // caller => don't push another return address
 881             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 882             return StubRoutines::throw_NullPointerException_at_call_entry();
 883           }
 884 
 885           if (cm->method()->is_method_handle_intrinsic()) {
 886             // exception happened inside MH dispatch code, similar to a vtable stub
 887             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 888             return StubRoutines::throw_NullPointerException_at_call_entry();
 889           }
 890 
 891 #ifndef PRODUCT
 892           _implicit_null_throws++;
 893 #endif
 894 #if INCLUDE_JVMCI
 895           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 896             // If there's no PcDesc then we'll die way down inside of
 897             // deopt instead of just getting normal error reporting,
 898             // so only go there if it will succeed.
 899             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 900           } else {
 901 #endif // INCLUDE_JVMCI
 902           assert (cm->is_nmethod(), "Expect nmethod");
 903           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 904 #if INCLUDE_JVMCI
 905           }
 906 #endif // INCLUDE_JVMCI
 907           // If there's an unexpected fault, target_pc might be NULL,
 908           // in which case we want to fall through into the normal
 909           // error handling code.
 910         }
 911 
 912         break; // fall through
 913       }
 914 
 915 
 916       case IMPLICIT_DIVIDE_BY_ZERO: {
 917         CompiledMethod* cm = CodeCache::find_compiled(pc);
 918         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 919 #ifndef PRODUCT
 920         _implicit_div0_throws++;
 921 #endif
 922 #if INCLUDE_JVMCI
 923         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 924           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 925         } else {
 926 #endif // INCLUDE_JVMCI
 927         target_pc = cm->continuation_for_implicit_exception(pc);
 928 #if INCLUDE_JVMCI
 929         }
 930 #endif // INCLUDE_JVMCI
 931         // If there's an unexpected fault, target_pc might be NULL,
 932         // in which case we want to fall through into the normal
 933         // error handling code.
 934         break; // fall through
 935       }
 936 
 937       default: ShouldNotReachHere();
 938     }
 939 
 940     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 941 
 942     if (exception_kind == IMPLICIT_NULL) {
 943 #ifndef PRODUCT
 944       // for AbortVMOnException flag
 945       Exceptions::debug_check_abort("java.lang.NullPointerException");
 946 #endif //PRODUCT
 947       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 948     } else {
 949 #ifndef PRODUCT
 950       // for AbortVMOnException flag
 951       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 952 #endif //PRODUCT
 953       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 954     }
 955     return target_pc;
 956   }
 957 
 958   ShouldNotReachHere();
 959   return NULL;
 960 }
 961 
 962 
 963 /**
 964  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 965  * installed in the native function entry of all native Java methods before
 966  * they get linked to their actual native methods.
 967  *
 968  * \note
 969  * This method actually never gets called!  The reason is because
 970  * the interpreter's native entries call NativeLookup::lookup() which
 971  * throws the exception when the lookup fails.  The exception is then
 972  * caught and forwarded on the return from NativeLookup::lookup() call
 973  * before the call to the native function.  This might change in the future.
 974  */
 975 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 976 {
 977   // We return a bad value here to make sure that the exception is
 978   // forwarded before we look at the return value.
 979   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 980 }
 981 JNI_END
 982 
 983 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 984   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 985 }
 986 
 987 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 988 #if INCLUDE_JVMCI
 989   if (!obj->klass()->has_finalizer()) {
 990     return;
 991   }
 992 #endif // INCLUDE_JVMCI
 993   assert(oopDesc::is_oop(obj), "must be a valid oop");
 994   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 995   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 996 JRT_END
 997 
 998 
 999 jlong SharedRuntime::get_java_tid(Thread* thread) {
1000   if (thread != NULL) {
1001     if (thread->is_Java_thread()) {
1002       oop obj = ((JavaThread*)thread)->threadObj();
1003       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1004     }
1005   }
1006   return 0;
1007 }
1008 
1009 /**
1010  * This function ought to be a void function, but cannot be because
1011  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1012  * 6254741.  Once that is fixed we can remove the dummy return value.
1013  */
1014 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1015   return dtrace_object_alloc_base(Thread::current(), o, size);
1016 }
1017 
1018 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1019   assert(DTraceAllocProbes, "wrong call");
1020   Klass* klass = o->klass();
1021   Symbol* name = klass->name();
1022   HOTSPOT_OBJECT_ALLOC(
1023                    get_java_tid(thread),
1024                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1025   return 0;
1026 }
1027 
1028 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1029     JavaThread* thread, Method* method))
1030   assert(DTraceMethodProbes, "wrong call");
1031   Symbol* kname = method->klass_name();
1032   Symbol* name = method->name();
1033   Symbol* sig = method->signature();
1034   HOTSPOT_METHOD_ENTRY(
1035       get_java_tid(thread),
1036       (char *) kname->bytes(), kname->utf8_length(),
1037       (char *) name->bytes(), name->utf8_length(),
1038       (char *) sig->bytes(), sig->utf8_length());
1039   return 0;
1040 JRT_END
1041 
1042 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1043     JavaThread* thread, Method* method))
1044   assert(DTraceMethodProbes, "wrong call");
1045   Symbol* kname = method->klass_name();
1046   Symbol* name = method->name();
1047   Symbol* sig = method->signature();
1048   HOTSPOT_METHOD_RETURN(
1049       get_java_tid(thread),
1050       (char *) kname->bytes(), kname->utf8_length(),
1051       (char *) name->bytes(), name->utf8_length(),
1052       (char *) sig->bytes(), sig->utf8_length());
1053   return 0;
1054 JRT_END
1055 
1056 
1057 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1058 // for a call current in progress, i.e., arguments has been pushed on stack
1059 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1060 // vtable updates, etc.  Caller frame must be compiled.
1061 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1062   ResourceMark rm(THREAD);
1063 
1064   // last java frame on stack (which includes native call frames)
1065   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1066 
1067   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1068 }
1069 
1070 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1071   CompiledMethod* caller = vfst.nm();
1072 
1073   nmethodLocker caller_lock(caller);
1074 
1075   address pc = vfst.frame_pc();
1076   { // Get call instruction under lock because another thread may be busy patching it.
1077     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1078     return caller->attached_method_before_pc(pc);
1079   }
1080   return NULL;
1081 }
1082 
1083 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1084 // for a call current in progress, i.e., arguments has been pushed on stack
1085 // but callee has not been invoked yet.  Caller frame must be compiled.
1086 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1087                                               vframeStream& vfst,
1088                                               Bytecodes::Code& bc,
1089                                               CallInfo& callinfo, TRAPS) {
1090   Handle receiver;
1091   Handle nullHandle;  //create a handy null handle for exception returns
1092 
1093   assert(!vfst.at_end(), "Java frame must exist");
1094 
1095   // Find caller and bci from vframe
1096   methodHandle caller(THREAD, vfst.method());
1097   int          bci   = vfst.bci();
1098 
1099   Bytecode_invoke bytecode(caller, bci);
1100   int bytecode_index = bytecode.index();
1101 
1102   methodHandle attached_method = extract_attached_method(vfst);
1103   if (attached_method.not_null()) {
1104     methodHandle callee = bytecode.static_target(CHECK_NH);
1105     vmIntrinsics::ID id = callee->intrinsic_id();
1106     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1107     // it attaches statically resolved method to the call site.
1108     if (MethodHandles::is_signature_polymorphic(id) &&
1109         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1110       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1111 
1112       // Adjust invocation mode according to the attached method.
1113       switch (bc) {
1114         case Bytecodes::_invokeinterface:
1115           if (!attached_method->method_holder()->is_interface()) {
1116             bc = Bytecodes::_invokevirtual;
1117           }
1118           break;
1119         case Bytecodes::_invokehandle:
1120           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1121             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1122                                               : Bytecodes::_invokevirtual;
1123           }
1124           break;
1125         default:
1126           break;
1127       }
1128     }
1129   } else {
1130     bc = bytecode.invoke_code();
1131   }
1132 
1133   bool has_receiver = bc != Bytecodes::_invokestatic &&
1134                       bc != Bytecodes::_invokedynamic &&
1135                       bc != Bytecodes::_invokehandle;
1136 
1137   // Find receiver for non-static call
1138   if (has_receiver) {
1139     // This register map must be update since we need to find the receiver for
1140     // compiled frames. The receiver might be in a register.
1141     RegisterMap reg_map2(thread);
1142     frame stubFrame   = thread->last_frame();
1143     // Caller-frame is a compiled frame
1144     frame callerFrame = stubFrame.sender(&reg_map2);
1145 
1146     if (attached_method.is_null()) {
1147       methodHandle callee = bytecode.static_target(CHECK_NH);
1148       if (callee.is_null()) {
1149         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1150       }
1151     }
1152 
1153     // Retrieve from a compiled argument list
1154     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1155 
1156     if (receiver.is_null()) {
1157       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1158     }
1159   }
1160 
1161   // Resolve method
1162   if (attached_method.not_null()) {
1163     // Parameterized by attached method.
1164     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1165   } else {
1166     // Parameterized by bytecode.
1167     constantPoolHandle constants(THREAD, caller->constants());
1168     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1169   }
1170 
1171 #ifdef ASSERT
1172   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1173   if (has_receiver) {
1174     assert(receiver.not_null(), "should have thrown exception");
1175     Klass* receiver_klass = receiver->klass();
1176     Klass* rk = NULL;
1177     if (attached_method.not_null()) {
1178       // In case there's resolved method attached, use its holder during the check.
1179       rk = attached_method->method_holder();
1180     } else {
1181       // Klass is already loaded.
1182       constantPoolHandle constants(THREAD, caller->constants());
1183       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1184     }
1185     Klass* static_receiver_klass = rk;
1186     methodHandle callee = callinfo.selected_method();
1187     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1188            "actual receiver must be subclass of static receiver klass");
1189     if (receiver_klass->is_instance_klass()) {
1190       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1191         tty->print_cr("ERROR: Klass not yet initialized!!");
1192         receiver_klass->print();
1193       }
1194       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1195     }
1196   }
1197 #endif
1198 
1199   return receiver;
1200 }
1201 
1202 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1203   ResourceMark rm(THREAD);
1204   // We need first to check if any Java activations (compiled, interpreted)
1205   // exist on the stack since last JavaCall.  If not, we need
1206   // to get the target method from the JavaCall wrapper.
1207   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1208   methodHandle callee_method;
1209   if (vfst.at_end()) {
1210     // No Java frames were found on stack since we did the JavaCall.
1211     // Hence the stack can only contain an entry_frame.  We need to
1212     // find the target method from the stub frame.
1213     RegisterMap reg_map(thread, false);
1214     frame fr = thread->last_frame();
1215     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1216     fr = fr.sender(&reg_map);
1217     assert(fr.is_entry_frame(), "must be");
1218     // fr is now pointing to the entry frame.
1219     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1220   } else {
1221     Bytecodes::Code bc;
1222     CallInfo callinfo;
1223     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1224     callee_method = callinfo.selected_method();
1225   }
1226   assert(callee_method()->is_method(), "must be");
1227   return callee_method;
1228 }
1229 
1230 // Resolves a call.
1231 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1232                                            bool is_virtual,
1233                                            bool is_optimized, TRAPS) {
1234   methodHandle callee_method;
1235   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1236   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1237     int retry_count = 0;
1238     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1239            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1240       // If has a pending exception then there is no need to re-try to
1241       // resolve this method.
1242       // If the method has been redefined, we need to try again.
1243       // Hack: we have no way to update the vtables of arrays, so don't
1244       // require that java.lang.Object has been updated.
1245 
1246       // It is very unlikely that method is redefined more than 100 times
1247       // in the middle of resolve. If it is looping here more than 100 times
1248       // means then there could be a bug here.
1249       guarantee((retry_count++ < 100),
1250                 "Could not resolve to latest version of redefined method");
1251       // method is redefined in the middle of resolve so re-try.
1252       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1253     }
1254   }
1255   return callee_method;
1256 }
1257 
1258 // Resolves a call.  The compilers generate code for calls that go here
1259 // and are patched with the real destination of the call.
1260 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1261                                            bool is_virtual,
1262                                            bool is_optimized, TRAPS) {
1263 
1264   ResourceMark rm(thread);
1265   RegisterMap cbl_map(thread, false);
1266   frame caller_frame = thread->last_frame().sender(&cbl_map);
1267 
1268   CodeBlob* caller_cb = caller_frame.cb();
1269   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1270   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1271 
1272   // make sure caller is not getting deoptimized
1273   // and removed before we are done with it.
1274   // CLEANUP - with lazy deopt shouldn't need this lock
1275   nmethodLocker caller_lock(caller_nm);
1276 
1277   // determine call info & receiver
1278   // note: a) receiver is NULL for static calls
1279   //       b) an exception is thrown if receiver is NULL for non-static calls
1280   CallInfo call_info;
1281   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1282   Handle receiver = find_callee_info(thread, invoke_code,
1283                                      call_info, CHECK_(methodHandle()));
1284   methodHandle callee_method = call_info.selected_method();
1285 
1286   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1287          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1288          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1289          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1290          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1291 
1292   assert(caller_nm->is_alive(), "It should be alive");
1293 
1294 #ifndef PRODUCT
1295   // tracing/debugging/statistics
1296   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1297                 (is_virtual) ? (&_resolve_virtual_ctr) :
1298                                (&_resolve_static_ctr);
1299   Atomic::inc(addr);
1300 
1301   if (TraceCallFixup) {
1302     ResourceMark rm(thread);
1303     tty->print("resolving %s%s (%s) call to",
1304       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1305       Bytecodes::name(invoke_code));
1306     callee_method->print_short_name(tty);
1307     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1308                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1309   }
1310 #endif
1311 
1312   // JSR 292 key invariant:
1313   // If the resolved method is a MethodHandle invoke target, the call
1314   // site must be a MethodHandle call site, because the lambda form might tail-call
1315   // leaving the stack in a state unknown to either caller or callee
1316   // TODO detune for now but we might need it again
1317 //  assert(!callee_method->is_compiled_lambda_form() ||
1318 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1319 
1320   // Compute entry points. This might require generation of C2I converter
1321   // frames, so we cannot be holding any locks here. Furthermore, the
1322   // computation of the entry points is independent of patching the call.  We
1323   // always return the entry-point, but we only patch the stub if the call has
1324   // not been deoptimized.  Return values: For a virtual call this is an
1325   // (cached_oop, destination address) pair. For a static call/optimized
1326   // virtual this is just a destination address.
1327 
1328   StaticCallInfo static_call_info;
1329   CompiledICInfo virtual_call_info;
1330 
1331   // Make sure the callee nmethod does not get deoptimized and removed before
1332   // we are done patching the code.
1333   CompiledMethod* callee = callee_method->code();
1334 
1335   if (callee != NULL) {
1336     assert(callee->is_compiled(), "must be nmethod for patching");
1337   }
1338 
1339   if (callee != NULL && !callee->is_in_use()) {
1340     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1341     callee = NULL;
1342   }
1343   nmethodLocker nl_callee(callee);
1344 #ifdef ASSERT
1345   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1346 #endif
1347 
1348   bool is_nmethod = caller_nm->is_nmethod();
1349 
1350   if (is_virtual) {
1351     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1352     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1353     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1354     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1355                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1356                      CHECK_(methodHandle()));
1357   } else {
1358     // static call
1359     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1360   }
1361 
1362   // grab lock, check for deoptimization and potentially patch caller
1363   {
1364     MutexLocker ml_patch(CompiledIC_lock);
1365 
1366     // Lock blocks for safepoint during which both nmethods can change state.
1367 
1368     // Now that we are ready to patch if the Method* was redefined then
1369     // don't update call site and let the caller retry.
1370     // Don't update call site if callee nmethod was unloaded or deoptimized.
1371     // Don't update call site if callee nmethod was replaced by an other nmethod
1372     // which may happen when multiply alive nmethod (tiered compilation)
1373     // will be supported.
1374     if (!callee_method->is_old() &&
1375         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1376 #ifdef ASSERT
1377       // We must not try to patch to jump to an already unloaded method.
1378       if (dest_entry_point != 0) {
1379         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1380         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1381                "should not call unloaded nmethod");
1382       }
1383 #endif
1384       if (is_virtual) {
1385         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1386         if (inline_cache->is_clean()) {
1387           inline_cache->set_to_monomorphic(virtual_call_info);
1388         }
1389       } else {
1390         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1391         if (ssc->is_clean()) ssc->set(static_call_info);
1392       }
1393     }
1394 
1395   } // unlock CompiledIC_lock
1396 
1397   return callee_method;
1398 }
1399 
1400 
1401 // Inline caches exist only in compiled code
1402 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1403 #ifdef ASSERT
1404   RegisterMap reg_map(thread, false);
1405   frame stub_frame = thread->last_frame();
1406   assert(stub_frame.is_runtime_frame(), "sanity check");
1407   frame caller_frame = stub_frame.sender(&reg_map);
1408   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1409 #endif /* ASSERT */
1410 
1411   methodHandle callee_method;
1412   JRT_BLOCK
1413     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1414     // Return Method* through TLS
1415     thread->set_vm_result_2(callee_method());
1416   JRT_BLOCK_END
1417   // return compiled code entry point after potential safepoints
1418   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1419   return callee_method->verified_code_entry();
1420 JRT_END
1421 
1422 
1423 // Handle call site that has been made non-entrant
1424 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1425   // 6243940 We might end up in here if the callee is deoptimized
1426   // as we race to call it.  We don't want to take a safepoint if
1427   // the caller was interpreted because the caller frame will look
1428   // interpreted to the stack walkers and arguments are now
1429   // "compiled" so it is much better to make this transition
1430   // invisible to the stack walking code. The i2c path will
1431   // place the callee method in the callee_target. It is stashed
1432   // there because if we try and find the callee by normal means a
1433   // safepoint is possible and have trouble gc'ing the compiled args.
1434   RegisterMap reg_map(thread, false);
1435   frame stub_frame = thread->last_frame();
1436   assert(stub_frame.is_runtime_frame(), "sanity check");
1437   frame caller_frame = stub_frame.sender(&reg_map);
1438 
1439   if (caller_frame.is_interpreted_frame() ||
1440       caller_frame.is_entry_frame()) {
1441     Method* callee = thread->callee_target();
1442     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1443     thread->set_vm_result_2(callee);
1444     thread->set_callee_target(NULL);
1445     return callee->get_c2i_entry();
1446   }
1447 
1448   // Must be compiled to compiled path which is safe to stackwalk
1449   methodHandle callee_method;
1450   JRT_BLOCK
1451     // Force resolving of caller (if we called from compiled frame)
1452     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1453     thread->set_vm_result_2(callee_method());
1454   JRT_BLOCK_END
1455   // return compiled code entry point after potential safepoints
1456   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1457   return callee_method->verified_code_entry();
1458 JRT_END
1459 
1460 // Handle abstract method call
1461 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1462   // Verbose error message for AbstractMethodError.
1463   // Get the called method from the invoke bytecode.
1464   vframeStream vfst(thread, true);
1465   assert(!vfst.at_end(), "Java frame must exist");
1466   methodHandle caller(vfst.method());
1467   Bytecode_invoke invoke(caller, vfst.bci());
1468   DEBUG_ONLY( invoke.verify(); )
1469 
1470   // Find the compiled caller frame.
1471   RegisterMap reg_map(thread);
1472   frame stubFrame = thread->last_frame();
1473   assert(stubFrame.is_runtime_frame(), "must be");
1474   frame callerFrame = stubFrame.sender(&reg_map);
1475   assert(callerFrame.is_compiled_frame(), "must be");
1476 
1477   // Install exception and return forward entry.
1478   JRT_BLOCK
1479     methodHandle callee = invoke.static_target(thread);
1480     assert(!callee.is_null() && invoke.has_receiver(), "or we should not be here");
1481     oop recv = callerFrame.retrieve_receiver(&reg_map);
1482     LinkResolver::throw_abstract_method_error(callee, recv->klass(), thread);
1483   JRT_BLOCK_END
1484   return StubRoutines::forward_exception_entry();
1485 JRT_END
1486 
1487 
1488 // resolve a static call and patch code
1489 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1490   methodHandle callee_method;
1491   JRT_BLOCK
1492     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1493     thread->set_vm_result_2(callee_method());
1494   JRT_BLOCK_END
1495   // return compiled code entry point after potential safepoints
1496   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1497   return callee_method->verified_code_entry();
1498 JRT_END
1499 
1500 
1501 // resolve virtual call and update inline cache to monomorphic
1502 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1503   methodHandle callee_method;
1504   JRT_BLOCK
1505     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1506     thread->set_vm_result_2(callee_method());
1507   JRT_BLOCK_END
1508   // return compiled code entry point after potential safepoints
1509   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1510   return callee_method->verified_code_entry();
1511 JRT_END
1512 
1513 
1514 // Resolve a virtual call that can be statically bound (e.g., always
1515 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1516 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1517   methodHandle callee_method;
1518   JRT_BLOCK
1519     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1520     thread->set_vm_result_2(callee_method());
1521   JRT_BLOCK_END
1522   // return compiled code entry point after potential safepoints
1523   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1524   return callee_method->verified_code_entry();
1525 JRT_END
1526 
1527 
1528 
1529 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1530   ResourceMark rm(thread);
1531   CallInfo call_info;
1532   Bytecodes::Code bc;
1533 
1534   // receiver is NULL for static calls. An exception is thrown for NULL
1535   // receivers for non-static calls
1536   Handle receiver = find_callee_info(thread, bc, call_info,
1537                                      CHECK_(methodHandle()));
1538   // Compiler1 can produce virtual call sites that can actually be statically bound
1539   // If we fell thru to below we would think that the site was going megamorphic
1540   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1541   // we'd try and do a vtable dispatch however methods that can be statically bound
1542   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1543   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1544   // plain ic_miss) and the site will be converted to an optimized virtual call site
1545   // never to miss again. I don't believe C2 will produce code like this but if it
1546   // did this would still be the correct thing to do for it too, hence no ifdef.
1547   //
1548   if (call_info.resolved_method()->can_be_statically_bound()) {
1549     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1550     if (TraceCallFixup) {
1551       RegisterMap reg_map(thread, false);
1552       frame caller_frame = thread->last_frame().sender(&reg_map);
1553       ResourceMark rm(thread);
1554       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1555       callee_method->print_short_name(tty);
1556       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1557       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1558     }
1559     return callee_method;
1560   }
1561 
1562   methodHandle callee_method = call_info.selected_method();
1563 
1564   bool should_be_mono = false;
1565 
1566 #ifndef PRODUCT
1567   Atomic::inc(&_ic_miss_ctr);
1568 
1569   // Statistics & Tracing
1570   if (TraceCallFixup) {
1571     ResourceMark rm(thread);
1572     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1573     callee_method->print_short_name(tty);
1574     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1575   }
1576 
1577   if (ICMissHistogram) {
1578     MutexLocker m(VMStatistic_lock);
1579     RegisterMap reg_map(thread, false);
1580     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1581     // produce statistics under the lock
1582     trace_ic_miss(f.pc());
1583   }
1584 #endif
1585 
1586   // install an event collector so that when a vtable stub is created the
1587   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1588   // event can't be posted when the stub is created as locks are held
1589   // - instead the event will be deferred until the event collector goes
1590   // out of scope.
1591   JvmtiDynamicCodeEventCollector event_collector;
1592 
1593   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1594   { MutexLocker ml_patch (CompiledIC_lock);
1595     RegisterMap reg_map(thread, false);
1596     frame caller_frame = thread->last_frame().sender(&reg_map);
1597     CodeBlob* cb = caller_frame.cb();
1598     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1599     if (cb->is_compiled()) {
1600       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1601       bool should_be_mono = false;
1602       if (inline_cache->is_optimized()) {
1603         if (TraceCallFixup) {
1604           ResourceMark rm(thread);
1605           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1606           callee_method->print_short_name(tty);
1607           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1608         }
1609         should_be_mono = true;
1610       } else if (inline_cache->is_icholder_call()) {
1611         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1612         if (ic_oop != NULL) {
1613 
1614           if (receiver()->klass() == ic_oop->holder_klass()) {
1615             // This isn't a real miss. We must have seen that compiled code
1616             // is now available and we want the call site converted to a
1617             // monomorphic compiled call site.
1618             // We can't assert for callee_method->code() != NULL because it
1619             // could have been deoptimized in the meantime
1620             if (TraceCallFixup) {
1621               ResourceMark rm(thread);
1622               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1623               callee_method->print_short_name(tty);
1624               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1625             }
1626             should_be_mono = true;
1627           }
1628         }
1629       }
1630 
1631       if (should_be_mono) {
1632 
1633         // We have a path that was monomorphic but was going interpreted
1634         // and now we have (or had) a compiled entry. We correct the IC
1635         // by using a new icBuffer.
1636         CompiledICInfo info;
1637         Klass* receiver_klass = receiver()->klass();
1638         inline_cache->compute_monomorphic_entry(callee_method,
1639                                                 receiver_klass,
1640                                                 inline_cache->is_optimized(),
1641                                                 false, caller_nm->is_nmethod(),
1642                                                 info, CHECK_(methodHandle()));
1643         inline_cache->set_to_monomorphic(info);
1644       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1645         // Potential change to megamorphic
1646         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1647         if (!successful) {
1648           inline_cache->set_to_clean();
1649         }
1650       } else {
1651         // Either clean or megamorphic
1652       }
1653     } else {
1654       fatal("Unimplemented");
1655     }
1656   } // Release CompiledIC_lock
1657 
1658   return callee_method;
1659 }
1660 
1661 //
1662 // Resets a call-site in compiled code so it will get resolved again.
1663 // This routines handles both virtual call sites, optimized virtual call
1664 // sites, and static call sites. Typically used to change a call sites
1665 // destination from compiled to interpreted.
1666 //
1667 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1668   ResourceMark rm(thread);
1669   RegisterMap reg_map(thread, false);
1670   frame stub_frame = thread->last_frame();
1671   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1672   frame caller = stub_frame.sender(&reg_map);
1673 
1674   // Do nothing if the frame isn't a live compiled frame.
1675   // nmethod could be deoptimized by the time we get here
1676   // so no update to the caller is needed.
1677 
1678   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1679 
1680     address pc = caller.pc();
1681 
1682     // Check for static or virtual call
1683     bool is_static_call = false;
1684     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1685 
1686     // Default call_addr is the location of the "basic" call.
1687     // Determine the address of the call we a reresolving. With
1688     // Inline Caches we will always find a recognizable call.
1689     // With Inline Caches disabled we may or may not find a
1690     // recognizable call. We will always find a call for static
1691     // calls and for optimized virtual calls. For vanilla virtual
1692     // calls it depends on the state of the UseInlineCaches switch.
1693     //
1694     // With Inline Caches disabled we can get here for a virtual call
1695     // for two reasons:
1696     //   1 - calling an abstract method. The vtable for abstract methods
1697     //       will run us thru handle_wrong_method and we will eventually
1698     //       end up in the interpreter to throw the ame.
1699     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1700     //       call and between the time we fetch the entry address and
1701     //       we jump to it the target gets deoptimized. Similar to 1
1702     //       we will wind up in the interprter (thru a c2i with c2).
1703     //
1704     address call_addr = NULL;
1705     {
1706       // Get call instruction under lock because another thread may be
1707       // busy patching it.
1708       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1709       // Location of call instruction
1710       call_addr = caller_nm->call_instruction_address(pc);
1711     }
1712     // Make sure nmethod doesn't get deoptimized and removed until
1713     // this is done with it.
1714     // CLEANUP - with lazy deopt shouldn't need this lock
1715     nmethodLocker nmlock(caller_nm);
1716 
1717     if (call_addr != NULL) {
1718       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1719       int ret = iter.next(); // Get item
1720       if (ret) {
1721         assert(iter.addr() == call_addr, "must find call");
1722         if (iter.type() == relocInfo::static_call_type) {
1723           is_static_call = true;
1724         } else {
1725           assert(iter.type() == relocInfo::virtual_call_type ||
1726                  iter.type() == relocInfo::opt_virtual_call_type
1727                 , "unexpected relocInfo. type");
1728         }
1729       } else {
1730         assert(!UseInlineCaches, "relocation info. must exist for this address");
1731       }
1732 
1733       // Cleaning the inline cache will force a new resolve. This is more robust
1734       // than directly setting it to the new destination, since resolving of calls
1735       // is always done through the same code path. (experience shows that it
1736       // leads to very hard to track down bugs, if an inline cache gets updated
1737       // to a wrong method). It should not be performance critical, since the
1738       // resolve is only done once.
1739 
1740       bool is_nmethod = caller_nm->is_nmethod();
1741       MutexLocker ml(CompiledIC_lock);
1742       if (is_static_call) {
1743         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1744         ssc->set_to_clean();
1745       } else {
1746         // compiled, dispatched call (which used to call an interpreted method)
1747         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1748         inline_cache->set_to_clean();
1749       }
1750     }
1751   }
1752 
1753   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1754 
1755 
1756 #ifndef PRODUCT
1757   Atomic::inc(&_wrong_method_ctr);
1758 
1759   if (TraceCallFixup) {
1760     ResourceMark rm(thread);
1761     tty->print("handle_wrong_method reresolving call to");
1762     callee_method->print_short_name(tty);
1763     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1764   }
1765 #endif
1766 
1767   return callee_method;
1768 }
1769 
1770 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1771   // The faulting unsafe accesses should be changed to throw the error
1772   // synchronously instead. Meanwhile the faulting instruction will be
1773   // skipped over (effectively turning it into a no-op) and an
1774   // asynchronous exception will be raised which the thread will
1775   // handle at a later point. If the instruction is a load it will
1776   // return garbage.
1777 
1778   // Request an async exception.
1779   thread->set_pending_unsafe_access_error();
1780 
1781   // Return address of next instruction to execute.
1782   return next_pc;
1783 }
1784 
1785 #ifdef ASSERT
1786 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1787                                                                 const BasicType* sig_bt,
1788                                                                 const VMRegPair* regs) {
1789   ResourceMark rm;
1790   const int total_args_passed = method->size_of_parameters();
1791   const VMRegPair*    regs_with_member_name = regs;
1792         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1793 
1794   const int member_arg_pos = total_args_passed - 1;
1795   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1796   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1797 
1798   const bool is_outgoing = method->is_method_handle_intrinsic();
1799   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1800 
1801   for (int i = 0; i < member_arg_pos; i++) {
1802     VMReg a =    regs_with_member_name[i].first();
1803     VMReg b = regs_without_member_name[i].first();
1804     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1805   }
1806   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1807 }
1808 #endif
1809 
1810 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1811   if (destination != entry_point) {
1812     CodeBlob* callee = CodeCache::find_blob(destination);
1813     // callee == cb seems weird. It means calling interpreter thru stub.
1814     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1815       // static call or optimized virtual
1816       if (TraceCallFixup) {
1817         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1818         moop->print_short_name(tty);
1819         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1820       }
1821       return true;
1822     } else {
1823       if (TraceCallFixup) {
1824         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1825         moop->print_short_name(tty);
1826         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1827       }
1828       // assert is too strong could also be resolve destinations.
1829       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1830     }
1831   } else {
1832     if (TraceCallFixup) {
1833       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1834       moop->print_short_name(tty);
1835       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1836     }
1837   }
1838   return false;
1839 }
1840 
1841 // ---------------------------------------------------------------------------
1842 // We are calling the interpreter via a c2i. Normally this would mean that
1843 // we were called by a compiled method. However we could have lost a race
1844 // where we went int -> i2c -> c2i and so the caller could in fact be
1845 // interpreted. If the caller is compiled we attempt to patch the caller
1846 // so he no longer calls into the interpreter.
1847 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1848   Method* moop(method);
1849 
1850   address entry_point = moop->from_compiled_entry_no_trampoline();
1851 
1852   // It's possible that deoptimization can occur at a call site which hasn't
1853   // been resolved yet, in which case this function will be called from
1854   // an nmethod that has been patched for deopt and we can ignore the
1855   // request for a fixup.
1856   // Also it is possible that we lost a race in that from_compiled_entry
1857   // is now back to the i2c in that case we don't need to patch and if
1858   // we did we'd leap into space because the callsite needs to use
1859   // "to interpreter" stub in order to load up the Method*. Don't
1860   // ask me how I know this...
1861 
1862   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1863   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1864     return;
1865   }
1866 
1867   // The check above makes sure this is a nmethod.
1868   CompiledMethod* nm = cb->as_compiled_method_or_null();
1869   assert(nm, "must be");
1870 
1871   // Get the return PC for the passed caller PC.
1872   address return_pc = caller_pc + frame::pc_return_offset;
1873 
1874   // There is a benign race here. We could be attempting to patch to a compiled
1875   // entry point at the same time the callee is being deoptimized. If that is
1876   // the case then entry_point may in fact point to a c2i and we'd patch the
1877   // call site with the same old data. clear_code will set code() to NULL
1878   // at the end of it. If we happen to see that NULL then we can skip trying
1879   // to patch. If we hit the window where the callee has a c2i in the
1880   // from_compiled_entry and the NULL isn't present yet then we lose the race
1881   // and patch the code with the same old data. Asi es la vida.
1882 
1883   if (moop->code() == NULL) return;
1884 
1885   if (nm->is_in_use()) {
1886 
1887     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1888     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1889     if (NativeCall::is_call_before(return_pc)) {
1890       ResourceMark mark;
1891       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1892       //
1893       // bug 6281185. We might get here after resolving a call site to a vanilla
1894       // virtual call. Because the resolvee uses the verified entry it may then
1895       // see compiled code and attempt to patch the site by calling us. This would
1896       // then incorrectly convert the call site to optimized and its downhill from
1897       // there. If you're lucky you'll get the assert in the bugid, if not you've
1898       // just made a call site that could be megamorphic into a monomorphic site
1899       // for the rest of its life! Just another racing bug in the life of
1900       // fixup_callers_callsite ...
1901       //
1902       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1903       iter.next();
1904       assert(iter.has_current(), "must have a reloc at java call site");
1905       relocInfo::relocType typ = iter.reloc()->type();
1906       if (typ != relocInfo::static_call_type &&
1907            typ != relocInfo::opt_virtual_call_type &&
1908            typ != relocInfo::static_stub_type) {
1909         return;
1910       }
1911       address destination = call->destination();
1912       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1913         call->set_destination_mt_safe(entry_point);
1914       }
1915     }
1916   }
1917 IRT_END
1918 
1919 
1920 // same as JVM_Arraycopy, but called directly from compiled code
1921 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1922                                                 oopDesc* dest, jint dest_pos,
1923                                                 jint length,
1924                                                 JavaThread* thread)) {
1925 #ifndef PRODUCT
1926   _slow_array_copy_ctr++;
1927 #endif
1928   // Check if we have null pointers
1929   if (src == NULL || dest == NULL) {
1930     THROW(vmSymbols::java_lang_NullPointerException());
1931   }
1932   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1933   // even though the copy_array API also performs dynamic checks to ensure
1934   // that src and dest are truly arrays (and are conformable).
1935   // The copy_array mechanism is awkward and could be removed, but
1936   // the compilers don't call this function except as a last resort,
1937   // so it probably doesn't matter.
1938   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1939                                         (arrayOopDesc*)dest, dest_pos,
1940                                         length, thread);
1941 }
1942 JRT_END
1943 
1944 // The caller of generate_class_cast_message() (or one of its callers)
1945 // must use a ResourceMark in order to correctly free the result.
1946 char* SharedRuntime::generate_class_cast_message(
1947     JavaThread* thread, Klass* caster_klass) {
1948 
1949   // Get target class name from the checkcast instruction
1950   vframeStream vfst(thread, true);
1951   assert(!vfst.at_end(), "Java frame must exist");
1952   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1953   constantPoolHandle cpool(thread, vfst.method()->constants());
1954   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1955   Symbol* target_klass_name = NULL;
1956   if (target_klass == NULL) {
1957     // This klass should be resolved, but just in case, get the name in the klass slot.
1958     target_klass_name = cpool->klass_name_at(cc.index());
1959   }
1960   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1961 }
1962 
1963 
1964 // The caller of generate_class_cast_message() (or one of its callers)
1965 // must use a ResourceMark in order to correctly free the result.
1966 char* SharedRuntime::generate_class_cast_message(
1967     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1968 
1969   const char* caster_name = caster_klass->class_loader_and_module_name();
1970 
1971   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1972   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1973                                                    target_klass->class_loader_and_module_name();
1974 
1975   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
1976 
1977   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1978   if (message == NULL) {
1979     // Shouldn't happen, but don't cause even more problems if it does
1980     message = const_cast<char*>(caster_klass->external_name());
1981   } else {
1982     jio_snprintf(message,
1983                  msglen,
1984                  "%s cannot be cast to %s",
1985                  caster_name,
1986                  target_name);
1987   }
1988   return message;
1989 }
1990 
1991 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1992   (void) JavaThread::current()->reguard_stack();
1993 JRT_END
1994 
1995 
1996 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1997 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1998   // Disable ObjectSynchronizer::quick_enter() in default config
1999   // on AARCH64 and ARM until JDK-8153107 is resolved.
2000   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2001       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2002       !SafepointSynchronize::is_synchronizing()) {
2003     // Only try quick_enter() if we're not trying to reach a safepoint
2004     // so that the calling thread reaches the safepoint more quickly.
2005     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2006   }
2007   // NO_ASYNC required because an async exception on the state transition destructor
2008   // would leave you with the lock held and it would never be released.
2009   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2010   // and the model is that an exception implies the method failed.
2011   JRT_BLOCK_NO_ASYNC
2012   oop obj(_obj);
2013   if (PrintBiasedLockingStatistics) {
2014     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2015   }
2016   Handle h_obj(THREAD, obj);
2017   if (UseBiasedLocking) {
2018     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2019     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2020   } else {
2021     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2022   }
2023   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2024   JRT_BLOCK_END
2025 JRT_END
2026 
2027 // Handles the uncommon cases of monitor unlocking in compiled code
2028 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2029    oop obj(_obj);
2030   assert(JavaThread::current() == THREAD, "invariant");
2031   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2032   // testing was unable to ever fire the assert that guarded it so I have removed it.
2033   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2034 #undef MIGHT_HAVE_PENDING
2035 #ifdef MIGHT_HAVE_PENDING
2036   // Save and restore any pending_exception around the exception mark.
2037   // While the slow_exit must not throw an exception, we could come into
2038   // this routine with one set.
2039   oop pending_excep = NULL;
2040   const char* pending_file;
2041   int pending_line;
2042   if (HAS_PENDING_EXCEPTION) {
2043     pending_excep = PENDING_EXCEPTION;
2044     pending_file  = THREAD->exception_file();
2045     pending_line  = THREAD->exception_line();
2046     CLEAR_PENDING_EXCEPTION;
2047   }
2048 #endif /* MIGHT_HAVE_PENDING */
2049 
2050   {
2051     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2052     EXCEPTION_MARK;
2053     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2054   }
2055 
2056 #ifdef MIGHT_HAVE_PENDING
2057   if (pending_excep != NULL) {
2058     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2059   }
2060 #endif /* MIGHT_HAVE_PENDING */
2061 JRT_END
2062 
2063 #ifndef PRODUCT
2064 
2065 void SharedRuntime::print_statistics() {
2066   ttyLocker ttyl;
2067   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2068 
2069   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2070 
2071   SharedRuntime::print_ic_miss_histogram();
2072 
2073   if (CountRemovableExceptions) {
2074     if (_nof_removable_exceptions > 0) {
2075       Unimplemented(); // this counter is not yet incremented
2076       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2077     }
2078   }
2079 
2080   // Dump the JRT_ENTRY counters
2081   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2082   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2083   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2084   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2085   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2086   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2087   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2088 
2089   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2090   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2091   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2092   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2093   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2094 
2095   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2096   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2097   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2098   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2099   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2100   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2101   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2102   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2103   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2104   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2105   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2106   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2107   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2108   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2109   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2110   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2111 
2112   AdapterHandlerLibrary::print_statistics();
2113 
2114   if (xtty != NULL)  xtty->tail("statistics");
2115 }
2116 
2117 inline double percent(int x, int y) {
2118   return 100.0 * x / MAX2(y, 1);
2119 }
2120 
2121 class MethodArityHistogram {
2122  public:
2123   enum { MAX_ARITY = 256 };
2124  private:
2125   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2126   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2127   static int _max_arity;                      // max. arity seen
2128   static int _max_size;                       // max. arg size seen
2129 
2130   static void add_method_to_histogram(nmethod* nm) {
2131     Method* m = nm->method();
2132     ArgumentCount args(m->signature());
2133     int arity   = args.size() + (m->is_static() ? 0 : 1);
2134     int argsize = m->size_of_parameters();
2135     arity   = MIN2(arity, MAX_ARITY-1);
2136     argsize = MIN2(argsize, MAX_ARITY-1);
2137     int count = nm->method()->compiled_invocation_count();
2138     _arity_histogram[arity]  += count;
2139     _size_histogram[argsize] += count;
2140     _max_arity = MAX2(_max_arity, arity);
2141     _max_size  = MAX2(_max_size, argsize);
2142   }
2143 
2144   void print_histogram_helper(int n, int* histo, const char* name) {
2145     const int N = MIN2(5, n);
2146     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2147     double sum = 0;
2148     double weighted_sum = 0;
2149     int i;
2150     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2151     double rest = sum;
2152     double percent = sum / 100;
2153     for (i = 0; i <= N; i++) {
2154       rest -= histo[i];
2155       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2156     }
2157     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2158     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2159   }
2160 
2161   void print_histogram() {
2162     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2163     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2164     tty->print_cr("\nSame for parameter size (in words):");
2165     print_histogram_helper(_max_size, _size_histogram, "size");
2166     tty->cr();
2167   }
2168 
2169  public:
2170   MethodArityHistogram() {
2171     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2172     _max_arity = _max_size = 0;
2173     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2174     CodeCache::nmethods_do(add_method_to_histogram);
2175     print_histogram();
2176   }
2177 };
2178 
2179 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2180 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2181 int MethodArityHistogram::_max_arity;
2182 int MethodArityHistogram::_max_size;
2183 
2184 void SharedRuntime::print_call_statistics(int comp_total) {
2185   tty->print_cr("Calls from compiled code:");
2186   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2187   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2188   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2189   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2190   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2191   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2192   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2193   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2194   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2195   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2196   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2197   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2198   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2199   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2200   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2201   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2202   tty->cr();
2203   tty->print_cr("Note 1: counter updates are not MT-safe.");
2204   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2205   tty->print_cr("        %% in nested categories are relative to their category");
2206   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2207   tty->cr();
2208 
2209   MethodArityHistogram h;
2210 }
2211 #endif
2212 
2213 
2214 // A simple wrapper class around the calling convention information
2215 // that allows sharing of adapters for the same calling convention.
2216 class AdapterFingerPrint : public CHeapObj<mtCode> {
2217  private:
2218   enum {
2219     _basic_type_bits = 4,
2220     _basic_type_mask = right_n_bits(_basic_type_bits),
2221     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2222     _compact_int_count = 3
2223   };
2224   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2225   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2226 
2227   union {
2228     int  _compact[_compact_int_count];
2229     int* _fingerprint;
2230   } _value;
2231   int _length; // A negative length indicates the fingerprint is in the compact form,
2232                // Otherwise _value._fingerprint is the array.
2233 
2234   // Remap BasicTypes that are handled equivalently by the adapters.
2235   // These are correct for the current system but someday it might be
2236   // necessary to make this mapping platform dependent.
2237   static int adapter_encoding(BasicType in) {
2238     switch (in) {
2239       case T_BOOLEAN:
2240       case T_BYTE:
2241       case T_SHORT:
2242       case T_CHAR:
2243         // There are all promoted to T_INT in the calling convention
2244         return T_INT;
2245 
2246       case T_OBJECT:
2247       case T_ARRAY:
2248         // In other words, we assume that any register good enough for
2249         // an int or long is good enough for a managed pointer.
2250 #ifdef _LP64
2251         return T_LONG;
2252 #else
2253         return T_INT;
2254 #endif
2255 
2256       case T_INT:
2257       case T_LONG:
2258       case T_FLOAT:
2259       case T_DOUBLE:
2260       case T_VOID:
2261         return in;
2262 
2263       default:
2264         ShouldNotReachHere();
2265         return T_CONFLICT;
2266     }
2267   }
2268 
2269  public:
2270   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2271     // The fingerprint is based on the BasicType signature encoded
2272     // into an array of ints with eight entries per int.
2273     int* ptr;
2274     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2275     if (len <= _compact_int_count) {
2276       assert(_compact_int_count == 3, "else change next line");
2277       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2278       // Storing the signature encoded as signed chars hits about 98%
2279       // of the time.
2280       _length = -len;
2281       ptr = _value._compact;
2282     } else {
2283       _length = len;
2284       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2285       ptr = _value._fingerprint;
2286     }
2287 
2288     // Now pack the BasicTypes with 8 per int
2289     int sig_index = 0;
2290     for (int index = 0; index < len; index++) {
2291       int value = 0;
2292       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2293         int bt = ((sig_index < total_args_passed)
2294                   ? adapter_encoding(sig_bt[sig_index++])
2295                   : 0);
2296         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2297         value = (value << _basic_type_bits) | bt;
2298       }
2299       ptr[index] = value;
2300     }
2301   }
2302 
2303   ~AdapterFingerPrint() {
2304     if (_length > 0) {
2305       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2306     }
2307   }
2308 
2309   int value(int index) {
2310     if (_length < 0) {
2311       return _value._compact[index];
2312     }
2313     return _value._fingerprint[index];
2314   }
2315   int length() {
2316     if (_length < 0) return -_length;
2317     return _length;
2318   }
2319 
2320   bool is_compact() {
2321     return _length <= 0;
2322   }
2323 
2324   unsigned int compute_hash() {
2325     int hash = 0;
2326     for (int i = 0; i < length(); i++) {
2327       int v = value(i);
2328       hash = (hash << 8) ^ v ^ (hash >> 5);
2329     }
2330     return (unsigned int)hash;
2331   }
2332 
2333   const char* as_string() {
2334     stringStream st;
2335     st.print("0x");
2336     for (int i = 0; i < length(); i++) {
2337       st.print("%08x", value(i));
2338     }
2339     return st.as_string();
2340   }
2341 
2342   bool equals(AdapterFingerPrint* other) {
2343     if (other->_length != _length) {
2344       return false;
2345     }
2346     if (_length < 0) {
2347       assert(_compact_int_count == 3, "else change next line");
2348       return _value._compact[0] == other->_value._compact[0] &&
2349              _value._compact[1] == other->_value._compact[1] &&
2350              _value._compact[2] == other->_value._compact[2];
2351     } else {
2352       for (int i = 0; i < _length; i++) {
2353         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2354           return false;
2355         }
2356       }
2357     }
2358     return true;
2359   }
2360 };
2361 
2362 
2363 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2364 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2365   friend class AdapterHandlerTableIterator;
2366 
2367  private:
2368 
2369 #ifndef PRODUCT
2370   static int _lookups; // number of calls to lookup
2371   static int _buckets; // number of buckets checked
2372   static int _equals;  // number of buckets checked with matching hash
2373   static int _hits;    // number of successful lookups
2374   static int _compact; // number of equals calls with compact signature
2375 #endif
2376 
2377   AdapterHandlerEntry* bucket(int i) {
2378     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2379   }
2380 
2381  public:
2382   AdapterHandlerTable()
2383     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2384 
2385   // Create a new entry suitable for insertion in the table
2386   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2387     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2388     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2389     if (DumpSharedSpaces) {
2390       ((CDSAdapterHandlerEntry*)entry)->init();
2391     }
2392     return entry;
2393   }
2394 
2395   // Insert an entry into the table
2396   void add(AdapterHandlerEntry* entry) {
2397     int index = hash_to_index(entry->hash());
2398     add_entry(index, entry);
2399   }
2400 
2401   void free_entry(AdapterHandlerEntry* entry) {
2402     entry->deallocate();
2403     BasicHashtable<mtCode>::free_entry(entry);
2404   }
2405 
2406   // Find a entry with the same fingerprint if it exists
2407   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2408     NOT_PRODUCT(_lookups++);
2409     AdapterFingerPrint fp(total_args_passed, sig_bt);
2410     unsigned int hash = fp.compute_hash();
2411     int index = hash_to_index(hash);
2412     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2413       NOT_PRODUCT(_buckets++);
2414       if (e->hash() == hash) {
2415         NOT_PRODUCT(_equals++);
2416         if (fp.equals(e->fingerprint())) {
2417 #ifndef PRODUCT
2418           if (fp.is_compact()) _compact++;
2419           _hits++;
2420 #endif
2421           return e;
2422         }
2423       }
2424     }
2425     return NULL;
2426   }
2427 
2428 #ifndef PRODUCT
2429   void print_statistics() {
2430     ResourceMark rm;
2431     int longest = 0;
2432     int empty = 0;
2433     int total = 0;
2434     int nonempty = 0;
2435     for (int index = 0; index < table_size(); index++) {
2436       int count = 0;
2437       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2438         count++;
2439       }
2440       if (count != 0) nonempty++;
2441       if (count == 0) empty++;
2442       if (count > longest) longest = count;
2443       total += count;
2444     }
2445     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2446                   empty, longest, total, total / (double)nonempty);
2447     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2448                   _lookups, _buckets, _equals, _hits, _compact);
2449   }
2450 #endif
2451 };
2452 
2453 
2454 #ifndef PRODUCT
2455 
2456 int AdapterHandlerTable::_lookups;
2457 int AdapterHandlerTable::_buckets;
2458 int AdapterHandlerTable::_equals;
2459 int AdapterHandlerTable::_hits;
2460 int AdapterHandlerTable::_compact;
2461 
2462 #endif
2463 
2464 class AdapterHandlerTableIterator : public StackObj {
2465  private:
2466   AdapterHandlerTable* _table;
2467   int _index;
2468   AdapterHandlerEntry* _current;
2469 
2470   void scan() {
2471     while (_index < _table->table_size()) {
2472       AdapterHandlerEntry* a = _table->bucket(_index);
2473       _index++;
2474       if (a != NULL) {
2475         _current = a;
2476         return;
2477       }
2478     }
2479   }
2480 
2481  public:
2482   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2483     scan();
2484   }
2485   bool has_next() {
2486     return _current != NULL;
2487   }
2488   AdapterHandlerEntry* next() {
2489     if (_current != NULL) {
2490       AdapterHandlerEntry* result = _current;
2491       _current = _current->next();
2492       if (_current == NULL) scan();
2493       return result;
2494     } else {
2495       return NULL;
2496     }
2497   }
2498 };
2499 
2500 
2501 // ---------------------------------------------------------------------------
2502 // Implementation of AdapterHandlerLibrary
2503 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2504 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2505 const int AdapterHandlerLibrary_size = 16*K;
2506 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2507 
2508 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2509   // Should be called only when AdapterHandlerLibrary_lock is active.
2510   if (_buffer == NULL) // Initialize lazily
2511       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2512   return _buffer;
2513 }
2514 
2515 extern "C" void unexpected_adapter_call() {
2516   ShouldNotCallThis();
2517 }
2518 
2519 void AdapterHandlerLibrary::initialize() {
2520   if (_adapters != NULL) return;
2521   _adapters = new AdapterHandlerTable();
2522 
2523   // Create a special handler for abstract methods.  Abstract methods
2524   // are never compiled so an i2c entry is somewhat meaningless, but
2525   // throw AbstractMethodError just in case.
2526   // Pass wrong_method_abstract for the c2i transitions to return
2527   // AbstractMethodError for invalid invocations.
2528   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2529   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2530                                                               StubRoutines::throw_AbstractMethodError_entry(),
2531                                                               wrong_method_abstract, wrong_method_abstract);
2532 }
2533 
2534 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2535                                                       address i2c_entry,
2536                                                       address c2i_entry,
2537                                                       address c2i_unverified_entry) {
2538   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2539 }
2540 
2541 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2542   AdapterHandlerEntry* entry = get_adapter0(method);
2543   if (method->is_shared()) {
2544     // See comments around Method::link_method()
2545     MutexLocker mu(AdapterHandlerLibrary_lock);
2546     if (method->adapter() == NULL) {
2547       method->update_adapter_trampoline(entry);
2548     }
2549     address trampoline = method->from_compiled_entry();
2550     if (*(int*)trampoline == 0) {
2551       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2552       MacroAssembler _masm(&buffer);
2553       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2554       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2555 
2556       if (PrintInterpreter) {
2557         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2558       }
2559     }
2560   }
2561 
2562   return entry;
2563 }
2564 
2565 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2566   // Use customized signature handler.  Need to lock around updates to
2567   // the AdapterHandlerTable (it is not safe for concurrent readers
2568   // and a single writer: this could be fixed if it becomes a
2569   // problem).
2570 
2571   ResourceMark rm;
2572 
2573   NOT_PRODUCT(int insts_size);
2574   AdapterBlob* new_adapter = NULL;
2575   AdapterHandlerEntry* entry = NULL;
2576   AdapterFingerPrint* fingerprint = NULL;
2577   {
2578     MutexLocker mu(AdapterHandlerLibrary_lock);
2579     // make sure data structure is initialized
2580     initialize();
2581 
2582     if (method->is_abstract()) {
2583       return _abstract_method_handler;
2584     }
2585 
2586     // Fill in the signature array, for the calling-convention call.
2587     int total_args_passed = method->size_of_parameters(); // All args on stack
2588 
2589     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2590     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2591     int i = 0;
2592     if (!method->is_static())  // Pass in receiver first
2593       sig_bt[i++] = T_OBJECT;
2594     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2595       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2596       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2597         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2598     }
2599     assert(i == total_args_passed, "");
2600 
2601     // Lookup method signature's fingerprint
2602     entry = _adapters->lookup(total_args_passed, sig_bt);
2603 
2604 #ifdef ASSERT
2605     AdapterHandlerEntry* shared_entry = NULL;
2606     // Start adapter sharing verification only after the VM is booted.
2607     if (VerifyAdapterSharing && (entry != NULL)) {
2608       shared_entry = entry;
2609       entry = NULL;
2610     }
2611 #endif
2612 
2613     if (entry != NULL) {
2614       return entry;
2615     }
2616 
2617     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2618     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2619 
2620     // Make a C heap allocated version of the fingerprint to store in the adapter
2621     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2622 
2623     // StubRoutines::code2() is initialized after this function can be called. As a result,
2624     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2625     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2626     // stub that ensure that an I2C stub is called from an interpreter frame.
2627     bool contains_all_checks = StubRoutines::code2() != NULL;
2628 
2629     // Create I2C & C2I handlers
2630     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2631     if (buf != NULL) {
2632       CodeBuffer buffer(buf);
2633       short buffer_locs[20];
2634       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2635                                              sizeof(buffer_locs)/sizeof(relocInfo));
2636 
2637       MacroAssembler _masm(&buffer);
2638       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2639                                                      total_args_passed,
2640                                                      comp_args_on_stack,
2641                                                      sig_bt,
2642                                                      regs,
2643                                                      fingerprint);
2644 #ifdef ASSERT
2645       if (VerifyAdapterSharing) {
2646         if (shared_entry != NULL) {
2647           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2648           // Release the one just created and return the original
2649           _adapters->free_entry(entry);
2650           return shared_entry;
2651         } else  {
2652           entry->save_code(buf->code_begin(), buffer.insts_size());
2653         }
2654       }
2655 #endif
2656 
2657       new_adapter = AdapterBlob::create(&buffer);
2658       NOT_PRODUCT(insts_size = buffer.insts_size());
2659     }
2660     if (new_adapter == NULL) {
2661       // CodeCache is full, disable compilation
2662       // Ought to log this but compile log is only per compile thread
2663       // and we're some non descript Java thread.
2664       return NULL; // Out of CodeCache space
2665     }
2666     entry->relocate(new_adapter->content_begin());
2667 #ifndef PRODUCT
2668     // debugging suppport
2669     if (PrintAdapterHandlers || PrintStubCode) {
2670       ttyLocker ttyl;
2671       entry->print_adapter_on(tty);
2672       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2673                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2674                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2675       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2676       if (Verbose || PrintStubCode) {
2677         address first_pc = entry->base_address();
2678         if (first_pc != NULL) {
2679           Disassembler::decode(first_pc, first_pc + insts_size);
2680           tty->cr();
2681         }
2682       }
2683     }
2684 #endif
2685     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2686     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2687     if (contains_all_checks || !VerifyAdapterCalls) {
2688       _adapters->add(entry);
2689     }
2690   }
2691   // Outside of the lock
2692   if (new_adapter != NULL) {
2693     char blob_id[256];
2694     jio_snprintf(blob_id,
2695                  sizeof(blob_id),
2696                  "%s(%s)@" PTR_FORMAT,
2697                  new_adapter->name(),
2698                  fingerprint->as_string(),
2699                  new_adapter->content_begin());
2700     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2701 
2702     if (JvmtiExport::should_post_dynamic_code_generated()) {
2703       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2704     }
2705   }
2706   return entry;
2707 }
2708 
2709 address AdapterHandlerEntry::base_address() {
2710   address base = _i2c_entry;
2711   if (base == NULL)  base = _c2i_entry;
2712   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2713   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2714   return base;
2715 }
2716 
2717 void AdapterHandlerEntry::relocate(address new_base) {
2718   address old_base = base_address();
2719   assert(old_base != NULL, "");
2720   ptrdiff_t delta = new_base - old_base;
2721   if (_i2c_entry != NULL)
2722     _i2c_entry += delta;
2723   if (_c2i_entry != NULL)
2724     _c2i_entry += delta;
2725   if (_c2i_unverified_entry != NULL)
2726     _c2i_unverified_entry += delta;
2727   assert(base_address() == new_base, "");
2728 }
2729 
2730 
2731 void AdapterHandlerEntry::deallocate() {
2732   delete _fingerprint;
2733 #ifdef ASSERT
2734   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2735 #endif
2736 }
2737 
2738 
2739 #ifdef ASSERT
2740 // Capture the code before relocation so that it can be compared
2741 // against other versions.  If the code is captured after relocation
2742 // then relative instructions won't be equivalent.
2743 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2744   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2745   _saved_code_length = length;
2746   memcpy(_saved_code, buffer, length);
2747 }
2748 
2749 
2750 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2751   if (length != _saved_code_length) {
2752     return false;
2753   }
2754 
2755   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2756 }
2757 #endif
2758 
2759 
2760 /**
2761  * Create a native wrapper for this native method.  The wrapper converts the
2762  * Java-compiled calling convention to the native convention, handles
2763  * arguments, and transitions to native.  On return from the native we transition
2764  * back to java blocking if a safepoint is in progress.
2765  */
2766 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2767   ResourceMark rm;
2768   nmethod* nm = NULL;
2769 
2770   assert(method->is_native(), "must be native");
2771   assert(method->is_method_handle_intrinsic() ||
2772          method->has_native_function(), "must have something valid to call!");
2773 
2774   {
2775     // Perform the work while holding the lock, but perform any printing outside the lock
2776     MutexLocker mu(AdapterHandlerLibrary_lock);
2777     // See if somebody beat us to it
2778     if (method->code() != NULL) {
2779       return;
2780     }
2781 
2782     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2783     assert(compile_id > 0, "Must generate native wrapper");
2784 
2785 
2786     ResourceMark rm;
2787     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2788     if (buf != NULL) {
2789       CodeBuffer buffer(buf);
2790       double locs_buf[20];
2791       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2792       MacroAssembler _masm(&buffer);
2793 
2794       // Fill in the signature array, for the calling-convention call.
2795       const int total_args_passed = method->size_of_parameters();
2796 
2797       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2798       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2799       int i=0;
2800       if (!method->is_static())  // Pass in receiver first
2801         sig_bt[i++] = T_OBJECT;
2802       SignatureStream ss(method->signature());
2803       for (; !ss.at_return_type(); ss.next()) {
2804         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2805         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2806           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2807       }
2808       assert(i == total_args_passed, "");
2809       BasicType ret_type = ss.type();
2810 
2811       // Now get the compiled-Java layout as input (or output) arguments.
2812       // NOTE: Stubs for compiled entry points of method handle intrinsics
2813       // are just trampolines so the argument registers must be outgoing ones.
2814       const bool is_outgoing = method->is_method_handle_intrinsic();
2815       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2816 
2817       // Generate the compiled-to-native wrapper code
2818       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2819 
2820       if (nm != NULL) {
2821         method->set_code(method, nm);
2822 
2823         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2824         if (directive->PrintAssemblyOption) {
2825           nm->print_code();
2826         }
2827         DirectivesStack::release(directive);
2828       }
2829     }
2830   } // Unlock AdapterHandlerLibrary_lock
2831 
2832 
2833   // Install the generated code.
2834   if (nm != NULL) {
2835     const char *msg = method->is_static() ? "(static)" : "";
2836     CompileTask::print_ul(nm, msg);
2837     if (PrintCompilation) {
2838       ttyLocker ttyl;
2839       CompileTask::print(tty, nm, msg);
2840     }
2841     nm->post_compiled_method_load_event();
2842   }
2843 }
2844 
2845 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2846   assert(thread == JavaThread::current(), "must be");
2847   // The code is about to enter a JNI lazy critical native method and
2848   // _needs_gc is true, so if this thread is already in a critical
2849   // section then just return, otherwise this thread should block
2850   // until needs_gc has been cleared.
2851   if (thread->in_critical()) {
2852     return;
2853   }
2854   // Lock and unlock a critical section to give the system a chance to block
2855   GCLocker::lock_critical(thread);
2856   GCLocker::unlock_critical(thread);
2857 JRT_END
2858 
2859 // -------------------------------------------------------------------------
2860 // Java-Java calling convention
2861 // (what you use when Java calls Java)
2862 
2863 //------------------------------name_for_receiver----------------------------------
2864 // For a given signature, return the VMReg for parameter 0.
2865 VMReg SharedRuntime::name_for_receiver() {
2866   VMRegPair regs;
2867   BasicType sig_bt = T_OBJECT;
2868   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2869   // Return argument 0 register.  In the LP64 build pointers
2870   // take 2 registers, but the VM wants only the 'main' name.
2871   return regs.first();
2872 }
2873 
2874 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2875   // This method is returning a data structure allocating as a
2876   // ResourceObject, so do not put any ResourceMarks in here.
2877   char *s = sig->as_C_string();
2878   int len = (int)strlen(s);
2879   s++; len--;                   // Skip opening paren
2880 
2881   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2882   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2883   int cnt = 0;
2884   if (has_receiver) {
2885     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2886   }
2887 
2888   while (*s != ')') {          // Find closing right paren
2889     switch (*s++) {            // Switch on signature character
2890     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2891     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2892     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2893     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2894     case 'I': sig_bt[cnt++] = T_INT;     break;
2895     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2896     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2897     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2898     case 'V': sig_bt[cnt++] = T_VOID;    break;
2899     case 'L':                   // Oop
2900       while (*s++ != ';');   // Skip signature
2901       sig_bt[cnt++] = T_OBJECT;
2902       break;
2903     case '[': {                 // Array
2904       do {                      // Skip optional size
2905         while (*s >= '0' && *s <= '9') s++;
2906       } while (*s++ == '[');   // Nested arrays?
2907       // Skip element type
2908       if (s[-1] == 'L')
2909         while (*s++ != ';'); // Skip signature
2910       sig_bt[cnt++] = T_ARRAY;
2911       break;
2912     }
2913     default : ShouldNotReachHere();
2914     }
2915   }
2916 
2917   if (has_appendix) {
2918     sig_bt[cnt++] = T_OBJECT;
2919   }
2920 
2921   assert(cnt < 256, "grow table size");
2922 
2923   int comp_args_on_stack;
2924   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2925 
2926   // the calling convention doesn't count out_preserve_stack_slots so
2927   // we must add that in to get "true" stack offsets.
2928 
2929   if (comp_args_on_stack) {
2930     for (int i = 0; i < cnt; i++) {
2931       VMReg reg1 = regs[i].first();
2932       if (reg1->is_stack()) {
2933         // Yuck
2934         reg1 = reg1->bias(out_preserve_stack_slots());
2935       }
2936       VMReg reg2 = regs[i].second();
2937       if (reg2->is_stack()) {
2938         // Yuck
2939         reg2 = reg2->bias(out_preserve_stack_slots());
2940       }
2941       regs[i].set_pair(reg2, reg1);
2942     }
2943   }
2944 
2945   // results
2946   *arg_size = cnt;
2947   return regs;
2948 }
2949 
2950 // OSR Migration Code
2951 //
2952 // This code is used convert interpreter frames into compiled frames.  It is
2953 // called from very start of a compiled OSR nmethod.  A temp array is
2954 // allocated to hold the interesting bits of the interpreter frame.  All
2955 // active locks are inflated to allow them to move.  The displaced headers and
2956 // active interpreter locals are copied into the temp buffer.  Then we return
2957 // back to the compiled code.  The compiled code then pops the current
2958 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2959 // copies the interpreter locals and displaced headers where it wants.
2960 // Finally it calls back to free the temp buffer.
2961 //
2962 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2963 
2964 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2965 
2966   //
2967   // This code is dependent on the memory layout of the interpreter local
2968   // array and the monitors. On all of our platforms the layout is identical
2969   // so this code is shared. If some platform lays the their arrays out
2970   // differently then this code could move to platform specific code or
2971   // the code here could be modified to copy items one at a time using
2972   // frame accessor methods and be platform independent.
2973 
2974   frame fr = thread->last_frame();
2975   assert(fr.is_interpreted_frame(), "");
2976   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2977 
2978   // Figure out how many monitors are active.
2979   int active_monitor_count = 0;
2980   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2981        kptr < fr.interpreter_frame_monitor_begin();
2982        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2983     if (kptr->obj() != NULL) active_monitor_count++;
2984   }
2985 
2986   // QQQ we could place number of active monitors in the array so that compiled code
2987   // could double check it.
2988 
2989   Method* moop = fr.interpreter_frame_method();
2990   int max_locals = moop->max_locals();
2991   // Allocate temp buffer, 1 word per local & 2 per active monitor
2992   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
2993   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2994 
2995   // Copy the locals.  Order is preserved so that loading of longs works.
2996   // Since there's no GC I can copy the oops blindly.
2997   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2998   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2999                        (HeapWord*)&buf[0],
3000                        max_locals);
3001 
3002   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3003   int i = max_locals;
3004   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3005        kptr2 < fr.interpreter_frame_monitor_begin();
3006        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3007     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3008       BasicLock *lock = kptr2->lock();
3009       // Inflate so the displaced header becomes position-independent
3010       if (lock->displaced_header()->is_unlocked())
3011         ObjectSynchronizer::inflate_helper(kptr2->obj());
3012       // Now the displaced header is free to move
3013       buf[i++] = (intptr_t)lock->displaced_header();
3014       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3015     }
3016   }
3017   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3018 
3019   return buf;
3020 JRT_END
3021 
3022 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3023   FREE_C_HEAP_ARRAY(intptr_t, buf);
3024 JRT_END
3025 
3026 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3027   AdapterHandlerTableIterator iter(_adapters);
3028   while (iter.has_next()) {
3029     AdapterHandlerEntry* a = iter.next();
3030     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3031   }
3032   return false;
3033 }
3034 
3035 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3036   AdapterHandlerTableIterator iter(_adapters);
3037   while (iter.has_next()) {
3038     AdapterHandlerEntry* a = iter.next();
3039     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3040       st->print("Adapter for signature: ");
3041       a->print_adapter_on(tty);
3042       return;
3043     }
3044   }
3045   assert(false, "Should have found handler");
3046 }
3047 
3048 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3049   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3050                p2i(this), fingerprint()->as_string(),
3051                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3052 
3053 }
3054 
3055 #if INCLUDE_CDS
3056 
3057 void CDSAdapterHandlerEntry::init() {
3058   assert(DumpSharedSpaces, "used during dump time only");
3059   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3060   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3061 };
3062 
3063 #endif // INCLUDE_CDS
3064 
3065 
3066 #ifndef PRODUCT
3067 
3068 void AdapterHandlerLibrary::print_statistics() {
3069   _adapters->print_statistics();
3070 }
3071 
3072 #endif /* PRODUCT */
3073 
3074 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3075   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3076   if (thread->stack_reserved_zone_disabled()) {
3077   thread->enable_stack_reserved_zone();
3078   }
3079   thread->set_reserved_stack_activation(thread->stack_base());
3080 JRT_END
3081 
3082 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3083   ResourceMark rm(thread);
3084   frame activation;
3085   CompiledMethod* nm = NULL;
3086   int count = 1;
3087 
3088   assert(fr.is_java_frame(), "Must start on Java frame");
3089 
3090   while (true) {
3091     Method* method = NULL;
3092     bool found = false;
3093     if (fr.is_interpreted_frame()) {
3094       method = fr.interpreter_frame_method();
3095       if (method != NULL && method->has_reserved_stack_access()) {
3096         found = true;
3097       }
3098     } else {
3099       CodeBlob* cb = fr.cb();
3100       if (cb != NULL && cb->is_compiled()) {
3101         nm = cb->as_compiled_method();
3102         method = nm->method();
3103         // scope_desc_near() must be used, instead of scope_desc_at() because on
3104         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3105         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3106           method = sd->method();
3107           if (method != NULL && method->has_reserved_stack_access()) {
3108             found = true;
3109       }
3110     }
3111       }
3112     }
3113     if (found) {
3114       activation = fr;
3115       warning("Potentially dangerous stack overflow in "
3116               "ReservedStackAccess annotated method %s [%d]",
3117               method->name_and_sig_as_C_string(), count++);
3118       EventReservedStackActivation event;
3119       if (event.should_commit()) {
3120         event.set_method(method);
3121         event.commit();
3122       }
3123     }
3124     if (fr.is_first_java_frame()) {
3125       break;
3126     } else {
3127       fr = fr.java_sender();
3128     }
3129   }
3130   return activation;
3131 }
3132 
3133 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3134   // After any safepoint, just before going back to compiled code,
3135   // we inform the GC that we will be doing initializing writes to
3136   // this object in the future without emitting card-marks, so
3137   // GC may take any compensating steps.
3138 
3139   oop new_obj = thread->vm_result();
3140   if (new_obj == NULL) return;
3141 
3142   BarrierSet *bs = Universe::heap()->barrier_set();
3143   bs->on_slowpath_allocation_exit(thread, new_obj);
3144 }