1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_sparc.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "logging/log.hpp"
  30 #include "oops/arrayOop.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/methodCounters.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiThreadState.hpp"
  37 #include "runtime/basicLock.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/safepointMechanism.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/thread.inline.hpp"
  43 #include "utilities/align.hpp"
  44 
  45 // Implementation of InterpreterMacroAssembler
  46 
  47 // This file specializes the assember with interpreter-specific macros
  48 
  49 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
  50 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
  51 
  52 void InterpreterMacroAssembler::jump_to_entry(address entry) {
  53   assert(entry, "Entry must have been generated by now");
  54   AddressLiteral al(entry);
  55   jump_to(al, G3_scratch);
  56   delayed()->nop();
  57 }
  58 
  59 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
  60   // Note: this algorithm is also used by C1's OSR entry sequence.
  61   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
  62   assert_different_registers(args_size, locals_size);
  63   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
  64   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
  65   // Use br/mov combination because it works on both V8 and V9 and is
  66   // faster.
  67   Label skip_move;
  68   br(Assembler::negative, true, Assembler::pt, skip_move);
  69   delayed()->mov(G0, delta);
  70   bind(skip_move);
  71   align_up(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
  72   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
  73 }
  74 
  75 // Dispatch code executed in the prolog of a bytecode which does not do it's
  76 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
  77 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  78   assert_not_delayed();
  79   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
  80   // dispatch table to use
  81   AddressLiteral tbl(Interpreter::dispatch_table(state));
  82   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
  83   set(tbl, G3_scratch);                                 // compute addr of table
  84   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
  85 }
  86 
  87 
  88 // Dispatch code executed in the epilog of a bytecode which does not do it's
  89 // own dispatch. The dispatch address in IdispatchAddress is used for the
  90 // dispatch.
  91 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  92   assert_not_delayed();
  93   verify_FPU(1, state);
  94   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  95   jmp( IdispatchAddress, 0 );
  96   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
  97   else                delayed()->nop();
  98 }
  99 
 100 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
 101   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 102   assert_not_delayed();
 103   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 104   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, true, generate_poll);
 105 }
 106 
 107 
 108 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
 109   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
 110   assert_not_delayed();
 111   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
 112   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
 113 }
 114 
 115 
 116 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 117   // load current bytecode
 118   assert_not_delayed();
 119   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
 120   dispatch_base(state, table);
 121 }
 122 
 123 
 124 void InterpreterMacroAssembler::call_VM_leaf_base(
 125   Register java_thread,
 126   address  entry_point,
 127   int      number_of_arguments
 128 ) {
 129   if (!java_thread->is_valid())
 130     java_thread = L7_thread_cache;
 131   // super call
 132   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
 133 }
 134 
 135 
 136 void InterpreterMacroAssembler::call_VM_base(
 137   Register        oop_result,
 138   Register        java_thread,
 139   Register        last_java_sp,
 140   address         entry_point,
 141   int             number_of_arguments,
 142   bool            check_exception
 143 ) {
 144   if (!java_thread->is_valid())
 145     java_thread = L7_thread_cache;
 146   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
 147   // takes responsibility for setting its own thread-state on call-out.
 148   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
 149 
 150   //save_bcp();                                  // save bcp
 151   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
 152   //restore_bcp();                               // restore bcp
 153   //restore_locals();                            // restore locals pointer
 154 }
 155 
 156 
 157 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 158   if (JvmtiExport::can_pop_frame()) {
 159     Label L;
 160 
 161     // Check the "pending popframe condition" flag in the current thread
 162     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
 163 
 164     // Initiate popframe handling only if it is not already being processed.  If the flag
 165     // has the popframe_processing bit set, it means that this code is called *during* popframe
 166     // handling - we don't want to reenter.
 167     btst(JavaThread::popframe_pending_bit, scratch_reg);
 168     br(zero, false, pt, L);
 169     delayed()->nop();
 170     btst(JavaThread::popframe_processing_bit, scratch_reg);
 171     br(notZero, false, pt, L);
 172     delayed()->nop();
 173 
 174     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 175     // address of the same-named entrypoint in the generated interpreter code.
 176     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 177 
 178     // Jump to Interpreter::_remove_activation_preserving_args_entry
 179     jmpl(O0, G0, G0);
 180     delayed()->nop();
 181     bind(L);
 182   }
 183 }
 184 
 185 
 186 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 187   Register thr_state = G4_scratch;
 188   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 189   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
 190   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
 191   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
 192   switch (state) {
 193   case ltos: ld_long(val_addr, Otos_l);                   break;
 194   case atos: ld_ptr(oop_addr, Otos_l);
 195              st_ptr(G0, oop_addr);                        break;
 196   case btos:                                           // fall through
 197   case ztos:                                           // fall through
 198   case ctos:                                           // fall through
 199   case stos:                                           // fall through
 200   case itos: ld(val_addr, Otos_l1);                       break;
 201   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
 202   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
 203   case vtos: /* nothing to do */                          break;
 204   default  : ShouldNotReachHere();
 205   }
 206   // Clean up tos value in the jvmti thread state
 207   or3(G0, ilgl, G3_scratch);
 208   stw(G3_scratch, tos_addr);
 209   st_long(G0, val_addr);
 210   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 211 }
 212 
 213 
 214 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 215   if (JvmtiExport::can_force_early_return()) {
 216     Label L;
 217     Register thr_state = G3_scratch;
 218     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
 219     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
 220 
 221     // Initiate earlyret handling only if it is not already being processed.
 222     // If the flag has the earlyret_processing bit set, it means that this code
 223     // is called *during* earlyret handling - we don't want to reenter.
 224     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
 225     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
 226 
 227     // Call Interpreter::remove_activation_early_entry() to get the address of the
 228     // same-named entrypoint in the generated interpreter code
 229     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
 230     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
 231 
 232     // Jump to Interpreter::_remove_activation_early_entry
 233     jmpl(O0, G0, G0);
 234     delayed()->nop();
 235     bind(L);
 236   }
 237 }
 238 
 239 
 240 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
 241   mov(arg_1, O0);
 242   mov(arg_2, O1);
 243   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
 244 }
 245 
 246 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
 247   assert_not_delayed();
 248   dispatch_Lbyte_code(state, table);
 249 }
 250 
 251 
 252 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
 253   dispatch_base(state, Interpreter::normal_table(state));
 254 }
 255 
 256 
 257 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 258   dispatch_base(state, Interpreter::dispatch_table(state));
 259 }
 260 
 261 
 262 // common code to dispatch and dispatch_only
 263 // dispatch value in Lbyte_code and increment Lbcp
 264 
 265 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify, bool generate_poll) {
 266   verify_FPU(1, state);
 267   // %%%%% maybe implement +VerifyActivationFrameSize here
 268   //verify_thread(); //too slow; we will just verify on method entry & exit
 269   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 270   // dispatch table to use
 271   AddressLiteral tbl(table);
 272   Label dispatch;
 273 
 274   if (SafepointMechanism::uses_thread_local_poll() && generate_poll) {
 275     AddressLiteral sfpt_tbl(Interpreter::safept_table(state));
 276     Label no_safepoint;
 277 
 278     if (tbl.value() != sfpt_tbl.value()) {
 279       ldx(Address(G2_thread, Thread::polling_page_offset()), G3_scratch, 0);
 280       // Armed page has poll_bit set, if poll bit is cleared just continue.
 281       and3(G3_scratch, SafepointMechanism::poll_bit(), G3_scratch);
 282 
 283       br_null_short(G3_scratch, Assembler::pt, no_safepoint);
 284       set(sfpt_tbl, G3_scratch);
 285       ba_short(dispatch);
 286     }
 287     bind(no_safepoint);
 288   }
 289 
 290   set(tbl, G3_scratch);                               // compute addr of table
 291   bind(dispatch);
 292   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
 293   ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
 294   jmp( G3_scratch, 0 );
 295   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
 296   else                delayed()->nop();
 297 }
 298 
 299 
 300 // Helpers for expression stack
 301 
 302 // Longs and doubles are Category 2 computational types in the
 303 // JVM specification (section 3.11.1) and take 2 expression stack or
 304 // local slots.
 305 // Aligning them on 32 bit with tagged stacks is hard because the code generated
 306 // for the dup* bytecodes depends on what types are already on the stack.
 307 // If the types are split into the two stack/local slots, that is much easier
 308 // (and we can use 0 for non-reference tags).
 309 
 310 // Known good alignment in _LP64 but unknown otherwise
 311 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
 312   assert_not_delayed();
 313 
 314   ldf(FloatRegisterImpl::D, r1, offset, d);
 315 }
 316 
 317 // Known good alignment in _LP64 but unknown otherwise
 318 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
 319   assert_not_delayed();
 320 
 321   stf(FloatRegisterImpl::D, d, r1, offset);
 322   // store something more useful here
 323   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
 324 }
 325 
 326 
 327 // Known good alignment in _LP64 but unknown otherwise
 328 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
 329   assert_not_delayed();
 330   ldx(r1, offset, rd);
 331 }
 332 
 333 // Known good alignment in _LP64 but unknown otherwise
 334 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
 335   assert_not_delayed();
 336 
 337   stx(l, r1, offset);
 338   // store something more useful here
 339   stx(G0, r1, offset+Interpreter::stackElementSize);
 340 }
 341 
 342 void InterpreterMacroAssembler::pop_i(Register r) {
 343   assert_not_delayed();
 344   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 345   inc(Lesp, Interpreter::stackElementSize);
 346   debug_only(verify_esp(Lesp));
 347 }
 348 
 349 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
 350   assert_not_delayed();
 351   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 352   inc(Lesp, Interpreter::stackElementSize);
 353   debug_only(verify_esp(Lesp));
 354 }
 355 
 356 void InterpreterMacroAssembler::pop_l(Register r) {
 357   assert_not_delayed();
 358   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
 359   inc(Lesp, 2*Interpreter::stackElementSize);
 360   debug_only(verify_esp(Lesp));
 361 }
 362 
 363 
 364 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
 365   assert_not_delayed();
 366   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
 367   inc(Lesp, Interpreter::stackElementSize);
 368   debug_only(verify_esp(Lesp));
 369 }
 370 
 371 
 372 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
 373   assert_not_delayed();
 374   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
 375   inc(Lesp, 2*Interpreter::stackElementSize);
 376   debug_only(verify_esp(Lesp));
 377 }
 378 
 379 
 380 void InterpreterMacroAssembler::push_i(Register r) {
 381   assert_not_delayed();
 382   debug_only(verify_esp(Lesp));
 383   st(r, Lesp, 0);
 384   dec(Lesp, Interpreter::stackElementSize);
 385 }
 386 
 387 void InterpreterMacroAssembler::push_ptr(Register r) {
 388   assert_not_delayed();
 389   st_ptr(r, Lesp, 0);
 390   dec(Lesp, Interpreter::stackElementSize);
 391 }
 392 
 393 // remember: our convention for longs in SPARC is:
 394 // O0 (Otos_l1) has high-order part in first word,
 395 // O1 (Otos_l2) has low-order part in second word
 396 
 397 void InterpreterMacroAssembler::push_l(Register r) {
 398   assert_not_delayed();
 399   debug_only(verify_esp(Lesp));
 400   // Longs are stored in memory-correct order, even if unaligned.
 401   int offset = -Interpreter::stackElementSize;
 402   store_unaligned_long(r, Lesp, offset);
 403   dec(Lesp, 2 * Interpreter::stackElementSize);
 404 }
 405 
 406 
 407 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 408   assert_not_delayed();
 409   debug_only(verify_esp(Lesp));
 410   stf(FloatRegisterImpl::S, f, Lesp, 0);
 411   dec(Lesp, Interpreter::stackElementSize);
 412 }
 413 
 414 
 415 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
 416   assert_not_delayed();
 417   debug_only(verify_esp(Lesp));
 418   // Longs are stored in memory-correct order, even if unaligned.
 419   int offset = -Interpreter::stackElementSize;
 420   store_unaligned_double(d, Lesp, offset);
 421   dec(Lesp, 2 * Interpreter::stackElementSize);
 422 }
 423 
 424 
 425 void InterpreterMacroAssembler::push(TosState state) {
 426   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 427   switch (state) {
 428     case atos: push_ptr();            break;
 429     case btos:                        // fall through
 430     case ztos:                        // fall through
 431     case ctos:                        // fall through
 432     case stos:                        // fall through
 433     case itos: push_i();              break;
 434     case ltos: push_l();              break;
 435     case ftos: push_f();              break;
 436     case dtos: push_d();              break;
 437     case vtos: /* nothing to do */    break;
 438     default  : ShouldNotReachHere();
 439   }
 440 }
 441 
 442 
 443 void InterpreterMacroAssembler::pop(TosState state) {
 444   switch (state) {
 445     case atos: pop_ptr();            break;
 446     case btos:                       // fall through
 447     case ztos:                       // fall through
 448     case ctos:                       // fall through
 449     case stos:                       // fall through
 450     case itos: pop_i();              break;
 451     case ltos: pop_l();              break;
 452     case ftos: pop_f();              break;
 453     case dtos: pop_d();              break;
 454     case vtos: /* nothing to do */   break;
 455     default  : ShouldNotReachHere();
 456   }
 457   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 458 }
 459 
 460 
 461 // Helpers for swap and dup
 462 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 463   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
 464 }
 465 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 466   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
 467 }
 468 
 469 
 470 void InterpreterMacroAssembler::load_receiver(Register param_count,
 471                                               Register recv) {
 472   sll(param_count, Interpreter::logStackElementSize, param_count);
 473   ld_ptr(Lesp, param_count, recv);  // gets receiver oop
 474 }
 475 
 476 void InterpreterMacroAssembler::empty_expression_stack() {
 477   // Reset Lesp.
 478   sub( Lmonitors, wordSize, Lesp );
 479 
 480   // Reset SP by subtracting more space from Lesp.
 481   Label done;
 482   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
 483 
 484   // A native does not need to do this, since its callee does not change SP.
 485   ld(Lmethod, Method::access_flags_offset(), Gframe_size);  // Load access flags.
 486   btst(JVM_ACC_NATIVE, Gframe_size);
 487   br(Assembler::notZero, false, Assembler::pt, done);
 488   delayed()->nop();
 489 
 490   // Compute max expression stack+register save area
 491   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
 492   lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size);  // Load max stack.
 493   add(Gframe_size, frame::memory_parameter_word_sp_offset+Method::extra_stack_entries(), Gframe_size );
 494 
 495   //
 496   // now set up a stack frame with the size computed above
 497   //
 498   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
 499   sll( Gframe_size, LogBytesPerWord, Gframe_size );
 500   sub( Lesp, Gframe_size, Gframe_size );
 501   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
 502   debug_only(verify_sp(Gframe_size, G4_scratch));
 503   sub(Gframe_size, STACK_BIAS, Gframe_size );
 504   mov(Gframe_size, SP);
 505 
 506   bind(done);
 507 }
 508 
 509 
 510 #ifdef ASSERT
 511 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
 512   Label Bad, OK;
 513 
 514   // Saved SP must be aligned.
 515   btst(2*BytesPerWord-1, Rsp);
 516   br(Assembler::notZero, false, Assembler::pn, Bad);
 517   delayed()->nop();
 518 
 519   // Saved SP, plus register window size, must not be above FP.
 520   add(Rsp, frame::register_save_words * wordSize, Rtemp);
 521   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
 522   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
 523 
 524   // Saved SP must not be ridiculously below current SP.
 525   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
 526   set(maxstack, Rtemp);
 527   sub(SP, Rtemp, Rtemp);
 528   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
 529   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
 530 
 531   ba_short(OK);
 532 
 533   bind(Bad);
 534   stop("on return to interpreted call, restored SP is corrupted");
 535 
 536   bind(OK);
 537 }
 538 
 539 
 540 void InterpreterMacroAssembler::verify_esp(Register Resp) {
 541   // about to read or write Resp[0]
 542   // make sure it is not in the monitors or the register save area
 543   Label OK1, OK2;
 544 
 545   cmp(Resp, Lmonitors);
 546   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
 547   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
 548   stop("too many pops:  Lesp points into monitor area");
 549   bind(OK1);
 550   sub(Resp, STACK_BIAS, Resp);
 551   cmp(Resp, SP);
 552   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
 553   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
 554   stop("too many pushes:  Lesp points into register window");
 555   bind(OK2);
 556 }
 557 #endif // ASSERT
 558 
 559 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 560 // do the call. Centralized so that all interpreter calls will do the same actions.
 561 // If jvmti single stepping is on for a thread we must not call compiled code.
 562 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
 563 
 564   // Assume we want to go compiled if available
 565 
 566   ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
 567 
 568   if (JvmtiExport::can_post_interpreter_events()) {
 569     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 570     // compiled code in threads for which the event is enabled.  Check here for
 571     // interp_only_mode if these events CAN be enabled.
 572     verify_thread();
 573     Label skip_compiled_code;
 574 
 575     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
 576     ld(interp_only, scratch);
 577     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
 578     delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
 579     bind(skip_compiled_code);
 580   }
 581 
 582   // the i2c_adapters need Method* in G5_method (right? %%%)
 583   // do the call
 584 #ifdef ASSERT
 585   {
 586     Label ok;
 587     br_notnull_short(target, Assembler::pt, ok);
 588     stop("null entry point");
 589     bind(ok);
 590   }
 591 #endif // ASSERT
 592 
 593   // Adjust Rret first so Llast_SP can be same as Rret
 594   add(Rret, -frame::pc_return_offset, O7);
 595   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
 596   // Record SP so we can remove any stack space allocated by adapter transition
 597   jmp(target, 0);
 598   delayed()->mov(SP, Llast_SP);
 599 }
 600 
 601 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
 602   assert_not_delayed();
 603 
 604   Label not_taken;
 605   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
 606   else             br (cc, false, Assembler::pn, not_taken);
 607   delayed()->nop();
 608 
 609   TemplateTable::branch(false,false);
 610 
 611   bind(not_taken);
 612 
 613   profile_not_taken_branch(G3_scratch);
 614 }
 615 
 616 
 617 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
 618                                   int         bcp_offset,
 619                                   Register    Rtmp,
 620                                   Register    Rdst,
 621                                   signedOrNot is_signed,
 622                                   setCCOrNot  should_set_CC ) {
 623   assert(Rtmp != Rdst, "need separate temp register");
 624   assert_not_delayed();
 625   switch (is_signed) {
 626    default: ShouldNotReachHere();
 627 
 628    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
 629    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
 630   }
 631   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
 632   sll( Rdst, BitsPerByte, Rdst);
 633   switch (should_set_CC ) {
 634    default: ShouldNotReachHere();
 635 
 636    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
 637    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
 638   }
 639 }
 640 
 641 
 642 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
 643                                   int        bcp_offset,
 644                                   Register   Rtmp,
 645                                   Register   Rdst,
 646                                   setCCOrNot should_set_CC ) {
 647   assert(Rtmp != Rdst, "need separate temp register");
 648   assert_not_delayed();
 649   add( Lbcp, bcp_offset, Rtmp);
 650   andcc( Rtmp, 3, G0);
 651   Label aligned;
 652   switch (should_set_CC ) {
 653    default: ShouldNotReachHere();
 654 
 655    case      set_CC: break;
 656    case dont_set_CC: break;
 657   }
 658 
 659   br(Assembler::zero, true, Assembler::pn, aligned);
 660   delayed()->ldsw(Rtmp, 0, Rdst);
 661 
 662   ldub(Lbcp, bcp_offset + 3, Rdst);
 663   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
 664   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
 665   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
 666   or3(Rtmp, Rdst, Rdst );
 667 
 668   bind(aligned);
 669   if (should_set_CC == set_CC) tst(Rdst);
 670 }
 671 
 672 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
 673                                                        int bcp_offset, size_t index_size) {
 674   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 675   if (index_size == sizeof(u2)) {
 676     get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
 677   } else if (index_size == sizeof(u4)) {
 678     get_4_byte_integer_at_bcp(bcp_offset, temp, index);
 679     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 680     xor3(index, -1, index);  // convert to plain index
 681   } else if (index_size == sizeof(u1)) {
 682     ldub(Lbcp, bcp_offset, index);
 683   } else {
 684     ShouldNotReachHere();
 685   }
 686 }
 687 
 688 
 689 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
 690                                                            int bcp_offset, size_t index_size) {
 691   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 692   assert_different_registers(cache, tmp);
 693   assert_not_delayed();
 694   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
 695   // convert from field index to ConstantPoolCacheEntry index and from
 696   // word index to byte offset
 697   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 698   add(LcpoolCache, tmp, cache);
 699 }
 700 
 701 
 702 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 703                                                                         Register temp,
 704                                                                         Register bytecode,
 705                                                                         int byte_no,
 706                                                                         int bcp_offset,
 707                                                                         size_t index_size) {
 708   get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
 709   ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
 710   const int shift_count = (1 + byte_no) * BitsPerByte;
 711   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 712          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 713          "correct shift count");
 714   srl(bytecode, shift_count, bytecode);
 715   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 716   and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
 717 }
 718 
 719 
 720 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 721                                                                int bcp_offset, size_t index_size) {
 722   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 723   assert_different_registers(cache, tmp);
 724   assert_not_delayed();
 725   if (index_size == sizeof(u2)) {
 726     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
 727   } else {
 728     ShouldNotReachHere();  // other sizes not supported here
 729   }
 730               // convert from field index to ConstantPoolCacheEntry index
 731               // and from word index to byte offset
 732   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
 733               // skip past the header
 734   add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
 735               // construct pointer to cache entry
 736   add(LcpoolCache, tmp, cache);
 737 }
 738 
 739 
 740 // Load object from cpool->resolved_references(index)
 741 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 742                                            Register result, Register index) {
 743   assert_different_registers(result, index);
 744   assert_not_delayed();
 745   // convert from field index to resolved_references() index and from
 746   // word index to byte offset. Since this is a java object, it can be compressed
 747   Register tmp = index;  // reuse
 748   sll(index, LogBytesPerHeapOop, tmp);
 749   get_constant_pool(result);
 750   // load pointer for resolved_references[] objArray
 751   ld_ptr(result, ConstantPool::cache_offset_in_bytes(), result);
 752   ld_ptr(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
 753   resolve_oop_handle(result);
 754   // Add in the index
 755   add(result, tmp, result);
 756   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp);
 757 }
 758 
 759 
 760 // load cpool->resolved_klass_at(index)
 761 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool,
 762                                            Register Roffset, Register Rklass) {
 763   // int value = *this_cp->int_at_addr(which);
 764   // int resolved_klass_index = extract_low_short_from_int(value);
 765   //
 766   // Because SPARC is big-endian, the low_short is at (cpool->int_at_addr(which) + 2 bytes)
 767   add(Roffset, Rcpool, Roffset);
 768   lduh(Roffset, sizeof(ConstantPool) + 2, Roffset);  // Roffset = resolved_klass_index
 769 
 770   Register Rresolved_klasses = Rklass;
 771   ld_ptr(Rcpool, ConstantPool::resolved_klasses_offset_in_bytes(), Rresolved_klasses);
 772   sll(Roffset, LogBytesPerWord, Roffset);
 773   add(Roffset, Array<Klass*>::base_offset_in_bytes(), Roffset);
 774   ld_ptr(Rresolved_klasses, Roffset, Rklass);
 775 }
 776 
 777 
 778 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 779 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
 780 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 781                                                   Register Rsuper_klass,
 782                                                   Register Rtmp1,
 783                                                   Register Rtmp2,
 784                                                   Register Rtmp3,
 785                                                   Label &ok_is_subtype ) {
 786   Label not_subtype;
 787 
 788   // Profile the not-null value's klass.
 789   profile_typecheck(Rsub_klass, Rtmp1);
 790 
 791   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
 792                                 Rtmp1, Rtmp2,
 793                                 &ok_is_subtype, &not_subtype, NULL);
 794 
 795   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
 796                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
 797                                 &ok_is_subtype, NULL);
 798 
 799   bind(not_subtype);
 800   profile_typecheck_failed(Rtmp1);
 801 }
 802 
 803 // Separate these two to allow for delay slot in middle
 804 // These are used to do a test and full jump to exception-throwing code.
 805 
 806 // %%%%% Could possibly reoptimize this by testing to see if could use
 807 // a single conditional branch (i.e. if span is small enough.
 808 // If you go that route, than get rid of the split and give up
 809 // on the delay-slot hack.
 810 
 811 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
 812                                                     Label&    ok ) {
 813   assert_not_delayed();
 814   br(ok_condition, true, pt, ok);
 815   // DELAY SLOT
 816 }
 817 
 818 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
 819                                                     Label&    ok ) {
 820   assert_not_delayed();
 821   bp( ok_condition, true, Assembler::xcc, pt, ok);
 822   // DELAY SLOT
 823 }
 824 
 825 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
 826                                                   Label&    ok ) {
 827   assert_not_delayed();
 828   brx(ok_condition, true, pt, ok);
 829   // DELAY SLOT
 830 }
 831 
 832 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
 833                                                 Register Rscratch,
 834                                                 Label&   ok ) {
 835   assert(throw_entry_point != NULL, "entry point must be generated by now");
 836   AddressLiteral dest(throw_entry_point);
 837   jump_to(dest, Rscratch);
 838   delayed()->nop();
 839   bind(ok);
 840 }
 841 
 842 
 843 // And if you cannot use the delay slot, here is a shorthand:
 844 
 845 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
 846                                                   address   throw_entry_point,
 847                                                   Register  Rscratch ) {
 848   Label ok;
 849   if (ok_condition != never) {
 850     throw_if_not_1_icc( ok_condition, ok);
 851     delayed()->nop();
 852   }
 853   throw_if_not_2( throw_entry_point, Rscratch, ok);
 854 }
 855 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
 856                                                   address   throw_entry_point,
 857                                                   Register  Rscratch ) {
 858   Label ok;
 859   if (ok_condition != never) {
 860     throw_if_not_1_xcc( ok_condition, ok);
 861     delayed()->nop();
 862   }
 863   throw_if_not_2( throw_entry_point, Rscratch, ok);
 864 }
 865 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
 866                                                 address   throw_entry_point,
 867                                                 Register  Rscratch ) {
 868   Label ok;
 869   if (ok_condition != never) {
 870     throw_if_not_1_x( ok_condition, ok);
 871     delayed()->nop();
 872   }
 873   throw_if_not_2( throw_entry_point, Rscratch, ok);
 874 }
 875 
 876 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
 877 // Note: res is still shy of address by array offset into object.
 878 
 879 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
 880   assert_not_delayed();
 881 
 882   verify_oop(array);
 883   // sign extend since tos (index) can be a 32bit value
 884   sra(index, G0, index);
 885 
 886   // check array
 887   Label ptr_ok;
 888   tst(array);
 889   throw_if_not_1_x( notZero, ptr_ok );
 890   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
 891   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
 892 
 893   Label index_ok;
 894   cmp(index, tmp);
 895   throw_if_not_1_icc( lessUnsigned, index_ok );
 896   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
 897   else                  delayed()->add(array, index, res); // addr - const offset in index
 898   // convention: move aberrant index into G3_scratch for exception message
 899   mov(index, G3_scratch);
 900   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
 901 
 902   // add offset if didn't do it in delay slot
 903   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
 904 }
 905 
 906 
 907 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 908   assert_not_delayed();
 909 
 910   // pop array
 911   pop_ptr(array);
 912 
 913   // check array
 914   index_check_without_pop(array, index, index_shift, tmp, res);
 915 }
 916 
 917 
 918 void InterpreterMacroAssembler::get_const(Register Rdst) {
 919   ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
 920 }
 921 
 922 
 923 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 924   get_const(Rdst);
 925   ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 926 }
 927 
 928 
 929 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 930   get_constant_pool(Rdst);
 931   ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 932 }
 933 
 934 
 935 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 936   get_constant_pool(Rcpool);
 937   ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
 938 }
 939 
 940 
 941 // unlock if synchronized method
 942 //
 943 // Unlock the receiver if this is a synchronized method.
 944 // Unlock any Java monitors from syncronized blocks.
 945 //
 946 // If there are locked Java monitors
 947 //    If throw_monitor_exception
 948 //       throws IllegalMonitorStateException
 949 //    Else if install_monitor_exception
 950 //       installs IllegalMonitorStateException
 951 //    Else
 952 //       no error processing
 953 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 954                                                               bool throw_monitor_exception,
 955                                                               bool install_monitor_exception) {
 956   Label unlocked, unlock, no_unlock;
 957 
 958   // get the value of _do_not_unlock_if_synchronized into G1_scratch
 959   const Address do_not_unlock_if_synchronized(G2_thread,
 960     JavaThread::do_not_unlock_if_synchronized_offset());
 961   ldbool(do_not_unlock_if_synchronized, G1_scratch);
 962   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
 963 
 964   // check if synchronized method
 965   const Address access_flags(Lmethod, Method::access_flags_offset());
 966   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
 967   push(state); // save tos
 968   ld(access_flags, G3_scratch); // Load access flags.
 969   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
 970   br(zero, false, pt, unlocked);
 971   delayed()->nop();
 972 
 973   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 974   // is set.
 975   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
 976   delayed()->nop();
 977 
 978   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 979   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 980 
 981   //Intel: if (throw_monitor_exception) ... else ...
 982   // Entry already unlocked, need to throw exception
 983   //...
 984 
 985   // pass top-most monitor elem
 986   add( top_most_monitor(), O1 );
 987 
 988   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
 989   br_notnull_short(G3_scratch, pt, unlock);
 990 
 991   if (throw_monitor_exception) {
 992     // Entry already unlocked need to throw an exception
 993     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 994     should_not_reach_here();
 995   } else {
 996     // Monitor already unlocked during a stack unroll.
 997     // If requested, install an illegal_monitor_state_exception.
 998     // Continue with stack unrolling.
 999     if (install_monitor_exception) {
1000       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1001     }
1002     ba_short(unlocked);
1003   }
1004 
1005   bind(unlock);
1006 
1007   unlock_object(O1);
1008 
1009   bind(unlocked);
1010 
1011   // I0, I1: Might contain return value
1012 
1013   // Check that all monitors are unlocked
1014   { Label loop, exception, entry, restart;
1015 
1016     Register Rmptr   = O0;
1017     Register Rtemp   = O1;
1018     Register Rlimit  = Lmonitors;
1019     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
1020     assert( (delta & LongAlignmentMask) == 0,
1021             "sizeof BasicObjectLock must be even number of doublewords");
1022 
1023     #ifdef ASSERT
1024     add(top_most_monitor(), Rmptr, delta);
1025     { Label L;
1026       // ensure that Rmptr starts out above (or at) Rlimit
1027       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1028       stop("monitor stack has negative size");
1029       bind(L);
1030     }
1031     #endif
1032     bind(restart);
1033     ba(entry);
1034     delayed()->
1035     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
1036 
1037     // Entry is still locked, need to throw exception
1038     bind(exception);
1039     if (throw_monitor_exception) {
1040       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
1041       should_not_reach_here();
1042     } else {
1043       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
1044       // Unlock does not block, so don't have to worry about the frame
1045       unlock_object(Rmptr);
1046       if (install_monitor_exception) {
1047         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
1048       }
1049       ba_short(restart);
1050     }
1051 
1052     bind(loop);
1053     cmp(Rtemp, G0);                             // check if current entry is used
1054     brx(Assembler::notEqual, false, pn, exception);
1055     delayed()->
1056     dec(Rmptr, delta);                          // otherwise advance to next entry
1057     #ifdef ASSERT
1058     { Label L;
1059       // ensure that Rmptr has not somehow stepped below Rlimit
1060       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
1061       stop("ran off the end of the monitor stack");
1062       bind(L);
1063     }
1064     #endif
1065     bind(entry);
1066     cmp(Rmptr, Rlimit);                         // check if bottom reached
1067     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
1068     delayed()->
1069     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
1070   }
1071 
1072   bind(no_unlock);
1073   pop(state);
1074   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1075 }
1076 
1077 void InterpreterMacroAssembler::narrow(Register result) {
1078 
1079   ld_ptr(Address(Lmethod, Method::const_offset()), G3_scratch);
1080   ldub(G3_scratch, in_bytes(ConstMethod::result_type_offset()), G3_scratch);
1081 
1082   Label notBool, notByte, notChar, done;
1083 
1084   // common case first
1085   cmp(G3_scratch, T_INT);
1086   br(Assembler::equal, true, pn, done);
1087   delayed()->nop();
1088 
1089   cmp(G3_scratch, T_BOOLEAN);
1090   br(Assembler::notEqual, true, pn, notBool);
1091   delayed()->cmp(G3_scratch, T_BYTE);
1092   and3(result, 1, result);
1093   ba(done);
1094   delayed()->nop();
1095 
1096   bind(notBool);
1097   // cmp(G3_scratch, T_BYTE);
1098   br(Assembler::notEqual, true, pn, notByte);
1099   delayed()->cmp(G3_scratch, T_CHAR);
1100   sll(result, 24, result);
1101   sra(result, 24, result);
1102   ba(done);
1103   delayed()->nop();
1104 
1105   bind(notByte);
1106   // cmp(G3_scratch, T_CHAR);
1107   sll(result, 16, result);
1108   br(Assembler::notEqual, true, pn, done);
1109   delayed()->sra(result, 16, result);
1110   // sll(result, 16, result);
1111   srl(result, 16, result);
1112 
1113   // bind(notChar);
1114   // must be short, instructions already executed in delay slot
1115   // sll(result, 16, result);
1116   // sra(result, 16, result);
1117 
1118   bind(done);
1119 }
1120 
1121 // remove activation
1122 //
1123 // Unlock the receiver if this is a synchronized method.
1124 // Unlock any Java monitors from syncronized blocks.
1125 // Remove the activation from the stack.
1126 //
1127 // If there are locked Java monitors
1128 //    If throw_monitor_exception
1129 //       throws IllegalMonitorStateException
1130 //    Else if install_monitor_exception
1131 //       installs IllegalMonitorStateException
1132 //    Else
1133 //       no error processing
1134 void InterpreterMacroAssembler::remove_activation(TosState state,
1135                                                   bool throw_monitor_exception,
1136                                                   bool install_monitor_exception) {
1137 
1138   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
1139 
1140   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
1141   notify_method_exit(false, state, NotifyJVMTI);
1142 
1143   if (StackReservedPages > 0) {
1144     // testing if Stack Reserved Area needs to be re-enabled
1145     Label no_reserved_zone_enabling;
1146     ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G3_scratch);
1147     cmp_and_brx_short(SP, G3_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
1148 
1149     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
1150     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError), G2_thread);
1151     should_not_reach_here();
1152 
1153     bind(no_reserved_zone_enabling);
1154   }
1155 
1156   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
1157   verify_thread();
1158 
1159   // return tos
1160   assert(Otos_l1 == Otos_i, "adjust code below");
1161   switch (state) {
1162   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
1163   case btos:                                      // fall through
1164   case ztos:                                      // fall through
1165   case ctos:
1166   case stos:                                      // fall through
1167   case atos:                                      // fall through
1168   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
1169   case ftos:                                      // fall through
1170   case dtos:                                      // fall through
1171   case vtos: /* nothing to do */                     break;
1172   default  : ShouldNotReachHere();
1173   }
1174 }
1175 
1176 // Lock object
1177 //
1178 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
1179 //            it must be initialized with the object to lock
1180 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
1181   if (UseHeavyMonitors) {
1182     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1183   }
1184   else {
1185     Register obj_reg = Object;
1186     Register mark_reg = G4_scratch;
1187     Register temp_reg = G1_scratch;
1188     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
1189     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1190     Label    done;
1191 
1192     Label slow_case;
1193 
1194     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
1195 
1196     // load markOop from object into mark_reg
1197     ld_ptr(mark_addr, mark_reg);
1198 
1199     if (UseBiasedLocking) {
1200       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
1201     }
1202 
1203     // get the address of basicLock on stack that will be stored in the object
1204     // we need a temporary register here as we do not want to clobber lock_reg
1205     // (cas clobbers the destination register)
1206     mov(lock_reg, temp_reg);
1207     // set mark reg to be (markOop of object | UNLOCK_VALUE)
1208     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
1209     // initialize the box  (Must happen before we update the object mark!)
1210     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1211     // compare and exchange object_addr, markOop | 1, stack address of basicLock
1212     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1213     cas_ptr(mark_addr.base(), mark_reg, temp_reg);
1214 
1215     // if the compare and exchange succeeded we are done (we saw an unlocked object)
1216     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
1217 
1218     // We did not see an unlocked object so try the fast recursive case
1219 
1220     // Check if owner is self by comparing the value in the markOop of object
1221     // with the stack pointer
1222     sub(temp_reg, SP, temp_reg);
1223     sub(temp_reg, STACK_BIAS, temp_reg);
1224     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
1225 
1226     // Composite "andcc" test:
1227     // (a) %sp -vs- markword proximity check, and,
1228     // (b) verify mark word LSBs == 0 (Stack-locked).
1229     //
1230     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
1231     // Note that the page size used for %sp proximity testing is arbitrary and is
1232     // unrelated to the actual MMU page size.  We use a 'logical' page size of
1233     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
1234     // field of the andcc instruction.
1235     andcc (temp_reg, 0xFFFFF003, G0) ;
1236 
1237     // if condition is true we are done and hence we can store 0 in the displaced
1238     // header indicating it is a recursive lock and be done
1239     brx(Assembler::zero, true, Assembler::pt, done);
1240     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
1241 
1242     // none of the above fast optimizations worked so we have to get into the
1243     // slow case of monitor enter
1244     bind(slow_case);
1245     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
1246 
1247     bind(done);
1248   }
1249 }
1250 
1251 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
1252 //
1253 // Argument - lock_reg points to the BasicObjectLock for lock
1254 // Throw IllegalMonitorException if object is not locked by current thread
1255 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1256   if (UseHeavyMonitors) {
1257     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1258   } else {
1259     Register obj_reg = G3_scratch;
1260     Register mark_reg = G4_scratch;
1261     Register displaced_header_reg = G1_scratch;
1262     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
1263     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
1264     Label    done;
1265 
1266     if (UseBiasedLocking) {
1267       // load the object out of the BasicObjectLock
1268       ld_ptr(lockobj_addr, obj_reg);
1269       biased_locking_exit(mark_addr, mark_reg, done, true);
1270       st_ptr(G0, lockobj_addr);  // free entry
1271     }
1272 
1273     // Test first if we are in the fast recursive case
1274     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
1275     ld_ptr(lock_addr, displaced_header_reg);
1276     br_null(displaced_header_reg, true, Assembler::pn, done);
1277     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1278 
1279     // See if it is still a light weight lock, if so we just unlock
1280     // the object and we are done
1281 
1282     if (!UseBiasedLocking) {
1283       // load the object out of the BasicObjectLock
1284       ld_ptr(lockobj_addr, obj_reg);
1285     }
1286 
1287     // we have the displaced header in displaced_header_reg
1288     // we expect to see the stack address of the basicLock in case the
1289     // lock is still a light weight lock (lock_reg)
1290     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
1291     cas_ptr(mark_addr.base(), lock_reg, displaced_header_reg);
1292     cmp(lock_reg, displaced_header_reg);
1293     brx(Assembler::equal, true, Assembler::pn, done);
1294     delayed()->st_ptr(G0, lockobj_addr);  // free entry
1295 
1296     // The lock has been converted into a heavy lock and hence
1297     // we need to get into the slow case
1298 
1299     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1300 
1301     bind(done);
1302   }
1303 }
1304 
1305 // Get the method data pointer from the Method* and set the
1306 // specified register to its value.
1307 
1308 void InterpreterMacroAssembler::set_method_data_pointer() {
1309   assert(ProfileInterpreter, "must be profiling interpreter");
1310   Label get_continue;
1311 
1312   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1313   test_method_data_pointer(get_continue);
1314   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1315   bind(get_continue);
1316 }
1317 
1318 // Set the method data pointer for the current bcp.
1319 
1320 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1321   assert(ProfileInterpreter, "must be profiling interpreter");
1322   Label zero_continue;
1323 
1324   // Test MDO to avoid the call if it is NULL.
1325   ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
1326   test_method_data_pointer(zero_continue);
1327   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
1328   add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
1329   add(ImethodDataPtr, O0, ImethodDataPtr);
1330   bind(zero_continue);
1331 }
1332 
1333 // Test ImethodDataPtr.  If it is null, continue at the specified label
1334 
1335 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1336   assert(ProfileInterpreter, "must be profiling interpreter");
1337   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
1338 }
1339 
1340 void InterpreterMacroAssembler::verify_method_data_pointer() {
1341   assert(ProfileInterpreter, "must be profiling interpreter");
1342 #ifdef ASSERT
1343   Label verify_continue;
1344   test_method_data_pointer(verify_continue);
1345 
1346   // If the mdp is valid, it will point to a DataLayout header which is
1347   // consistent with the bcp.  The converse is highly probable also.
1348   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
1349   ld_ptr(Lmethod, Method::const_offset(), O5);
1350   add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
1351   add(G3_scratch, O5, G3_scratch);
1352   cmp(Lbcp, G3_scratch);
1353   brx(Assembler::equal, false, Assembler::pt, verify_continue);
1354 
1355   Register temp_reg = O5;
1356   delayed()->mov(ImethodDataPtr, temp_reg);
1357   // %%% should use call_VM_leaf here?
1358   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
1359   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
1360   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
1361   stf(FloatRegisterImpl::D, Ftos_d, d_save);
1362   mov(temp_reg->after_save(), O2);
1363   save_thread(L7_thread_cache);
1364   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
1365   delayed()->nop();
1366   restore_thread(L7_thread_cache);
1367   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
1368   restore();
1369   bind(verify_continue);
1370 #endif // ASSERT
1371 }
1372 
1373 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1374                                                                 Register method_counters,
1375                                                                 Register Rtmp,
1376                                                                 Label &profile_continue) {
1377   assert(ProfileInterpreter, "must be profiling interpreter");
1378   // Control will flow to "profile_continue" if the counter is less than the
1379   // limit or if we call profile_method()
1380 
1381   Label done;
1382 
1383   // if no method data exists, and the counter is high enough, make one
1384   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
1385 
1386   // Test to see if we should create a method data oop
1387   Address profile_limit(method_counters, MethodCounters::interpreter_profile_limit_offset());
1388   ld(profile_limit, Rtmp);
1389   cmp(invocation_count, Rtmp);
1390   // Use long branches because call_VM() code and following code generated by
1391   // test_backedge_count_for_osr() is large in debug VM.
1392   br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
1393   delayed()->nop();
1394 
1395   // Build it now.
1396   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1397   set_method_data_pointer_for_bcp();
1398   ba(profile_continue);
1399   delayed()->nop();
1400   bind(done);
1401 }
1402 
1403 // Store a value at some constant offset from the method data pointer.
1404 
1405 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1406   assert(ProfileInterpreter, "must be profiling interpreter");
1407   st_ptr(value, ImethodDataPtr, constant);
1408 }
1409 
1410 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
1411                                                       Register bumped_count,
1412                                                       bool decrement) {
1413   assert(ProfileInterpreter, "must be profiling interpreter");
1414 
1415   // Load the counter.
1416   ld_ptr(counter, bumped_count);
1417 
1418   if (decrement) {
1419     // Decrement the register.  Set condition codes.
1420     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
1421 
1422     // If the decrement causes the counter to overflow, stay negative
1423     Label L;
1424     brx(Assembler::negative, true, Assembler::pn, L);
1425 
1426     // Store the decremented counter, if it is still negative.
1427     delayed()->st_ptr(bumped_count, counter);
1428     bind(L);
1429   } else {
1430     // Increment the register.  Set carry flag.
1431     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
1432 
1433     // If the increment causes the counter to overflow, pull back by 1.
1434     assert(DataLayout::counter_increment == 1, "subc works");
1435     subc(bumped_count, G0, bumped_count);
1436 
1437     // Store the incremented counter.
1438     st_ptr(bumped_count, counter);
1439   }
1440 }
1441 
1442 // Increment the value at some constant offset from the method data pointer.
1443 
1444 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1445                                                       Register bumped_count,
1446                                                       bool decrement) {
1447   // Locate the counter at a fixed offset from the mdp:
1448   Address counter(ImethodDataPtr, constant);
1449   increment_mdp_data_at(counter, bumped_count, decrement);
1450 }
1451 
1452 // Increment the value at some non-fixed (reg + constant) offset from
1453 // the method data pointer.
1454 
1455 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1456                                                       int constant,
1457                                                       Register bumped_count,
1458                                                       Register scratch2,
1459                                                       bool decrement) {
1460   // Add the constant to reg to get the offset.
1461   add(ImethodDataPtr, reg, scratch2);
1462   Address counter(scratch2, constant);
1463   increment_mdp_data_at(counter, bumped_count, decrement);
1464 }
1465 
1466 // Set a flag value at the current method data pointer position.
1467 // Updates a single byte of the header, to avoid races with other header bits.
1468 
1469 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1470                                                 Register scratch) {
1471   assert(ProfileInterpreter, "must be profiling interpreter");
1472   // Load the data header
1473   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
1474 
1475   // Set the flag
1476   or3(scratch, flag_constant, scratch);
1477 
1478   // Store the modified header.
1479   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
1480 }
1481 
1482 // Test the location at some offset from the method data pointer.
1483 // If it is not equal to value, branch to the not_equal_continue Label.
1484 // Set condition codes to match the nullness of the loaded value.
1485 
1486 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1487                                                  Register value,
1488                                                  Label& not_equal_continue,
1489                                                  Register scratch) {
1490   assert(ProfileInterpreter, "must be profiling interpreter");
1491   ld_ptr(ImethodDataPtr, offset, scratch);
1492   cmp(value, scratch);
1493   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
1494   delayed()->tst(scratch);
1495 }
1496 
1497 // Update the method data pointer by the displacement located at some fixed
1498 // offset from the method data pointer.
1499 
1500 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1501                                                      Register scratch) {
1502   assert(ProfileInterpreter, "must be profiling interpreter");
1503   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
1504   add(ImethodDataPtr, scratch, ImethodDataPtr);
1505 }
1506 
1507 // Update the method data pointer by the displacement located at the
1508 // offset (reg + offset_of_disp).
1509 
1510 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1511                                                      int offset_of_disp,
1512                                                      Register scratch) {
1513   assert(ProfileInterpreter, "must be profiling interpreter");
1514   add(reg, offset_of_disp, scratch);
1515   ld_ptr(ImethodDataPtr, scratch, scratch);
1516   add(ImethodDataPtr, scratch, ImethodDataPtr);
1517 }
1518 
1519 // Update the method data pointer by a simple constant displacement.
1520 
1521 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1522   assert(ProfileInterpreter, "must be profiling interpreter");
1523   add(ImethodDataPtr, constant, ImethodDataPtr);
1524 }
1525 
1526 // Update the method data pointer for a _ret bytecode whose target
1527 // was not among our cached targets.
1528 
1529 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1530                                                    Register return_bci) {
1531   assert(ProfileInterpreter, "must be profiling interpreter");
1532   push(state);
1533   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
1534   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1535   ld_ptr(l_tmp, return_bci);
1536   pop(state);
1537 }
1538 
1539 // Count a taken branch in the bytecodes.
1540 
1541 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1542   if (ProfileInterpreter) {
1543     Label profile_continue;
1544 
1545     // If no method data exists, go to profile_continue.
1546     test_method_data_pointer(profile_continue);
1547 
1548     // We are taking a branch.  Increment the taken count.
1549     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
1550 
1551     // The method data pointer needs to be updated to reflect the new target.
1552     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1553     bind (profile_continue);
1554   }
1555 }
1556 
1557 
1558 // Count a not-taken branch in the bytecodes.
1559 
1560 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
1561   if (ProfileInterpreter) {
1562     Label profile_continue;
1563 
1564     // If no method data exists, go to profile_continue.
1565     test_method_data_pointer(profile_continue);
1566 
1567     // We are taking a branch.  Increment the not taken count.
1568     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
1569 
1570     // The method data pointer needs to be updated to correspond to the
1571     // next bytecode.
1572     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1573     bind (profile_continue);
1574   }
1575 }
1576 
1577 
1578 // Count a non-virtual call in the bytecodes.
1579 
1580 void InterpreterMacroAssembler::profile_call(Register scratch) {
1581   if (ProfileInterpreter) {
1582     Label profile_continue;
1583 
1584     // If no method data exists, go to profile_continue.
1585     test_method_data_pointer(profile_continue);
1586 
1587     // We are making a call.  Increment the count.
1588     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1589 
1590     // The method data pointer needs to be updated to reflect the new target.
1591     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1592     bind (profile_continue);
1593   }
1594 }
1595 
1596 
1597 // Count a final call in the bytecodes.
1598 
1599 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
1600   if (ProfileInterpreter) {
1601     Label profile_continue;
1602 
1603     // If no method data exists, go to profile_continue.
1604     test_method_data_pointer(profile_continue);
1605 
1606     // We are making a call.  Increment the count.
1607     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1608 
1609     // The method data pointer needs to be updated to reflect the new target.
1610     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1611     bind (profile_continue);
1612   }
1613 }
1614 
1615 
1616 // Count a virtual call in the bytecodes.
1617 
1618 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1619                                                      Register scratch,
1620                                                      bool receiver_can_be_null) {
1621   if (ProfileInterpreter) {
1622     Label profile_continue;
1623 
1624     // If no method data exists, go to profile_continue.
1625     test_method_data_pointer(profile_continue);
1626 
1627 
1628     Label skip_receiver_profile;
1629     if (receiver_can_be_null) {
1630       Label not_null;
1631       br_notnull_short(receiver, Assembler::pt, not_null);
1632       // We are making a call.  Increment the count for null receiver.
1633       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1634       ba_short(skip_receiver_profile);
1635       bind(not_null);
1636     }
1637 
1638     // Record the receiver type.
1639     record_klass_in_profile(receiver, scratch, true);
1640     bind(skip_receiver_profile);
1641 
1642     // The method data pointer needs to be updated to reflect the new target.
1643 #if INCLUDE_JVMCI
1644     if (MethodProfileWidth == 0) {
1645       update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1646     }
1647 #else
1648     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1649 #endif
1650     bind(profile_continue);
1651   }
1652 }
1653 
1654 #if INCLUDE_JVMCI
1655 void InterpreterMacroAssembler::profile_called_method(Register method, Register scratch) {
1656   assert_different_registers(method, scratch);
1657   if (ProfileInterpreter && MethodProfileWidth > 0) {
1658     Label profile_continue;
1659 
1660     // If no method data exists, go to profile_continue.
1661     test_method_data_pointer(profile_continue);
1662 
1663     Label done;
1664     record_item_in_profile_helper(method, scratch, 0, done, MethodProfileWidth,
1665       &VirtualCallData::method_offset, &VirtualCallData::method_count_offset, in_bytes(VirtualCallData::nonprofiled_receiver_count_offset()));
1666     bind(done);
1667 
1668     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1669     bind(profile_continue);
1670   }
1671 }
1672 #endif // INCLUDE_JVMCI
1673 
1674 void InterpreterMacroAssembler::record_klass_in_profile_helper(Register receiver, Register scratch,
1675                                                                Label& done, bool is_virtual_call) {
1676   if (TypeProfileWidth == 0) {
1677     if (is_virtual_call) {
1678       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1679     }
1680 #if INCLUDE_JVMCI
1681     else if (EnableJVMCI) {
1682       increment_mdp_data_at(in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()), scratch);
1683     }
1684 #endif
1685   } else {
1686     int non_profiled_offset = -1;
1687     if (is_virtual_call) {
1688       non_profiled_offset = in_bytes(CounterData::count_offset());
1689     }
1690 #if INCLUDE_JVMCI
1691     else if (EnableJVMCI) {
1692       non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1693     }
1694 #endif
1695 
1696     record_item_in_profile_helper(receiver, scratch, 0, done, TypeProfileWidth,
1697       &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1698   }
1699 }
1700 
1701 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item,
1702                                           Register scratch, int start_row, Label& done, int total_rows,
1703                                           OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1704                                           int non_profiled_offset) {
1705   int last_row = total_rows - 1;
1706   assert(start_row <= last_row, "must be work left to do");
1707   // Test this row for both the item and for null.
1708   // Take any of three different outcomes:
1709   //   1. found item => increment count and goto done
1710   //   2. found null => keep looking for case 1, maybe allocate this cell
1711   //   3. found something else => keep looking for cases 1 and 2
1712   // Case 3 is handled by a recursive call.
1713   for (int row = start_row; row <= last_row; row++) {
1714     Label next_test;
1715     bool test_for_null_also = (row == start_row);
1716 
1717     // See if the item is item[n].
1718     int item_offset = in_bytes(item_offset_fn(row));
1719     test_mdp_data_at(item_offset, item, next_test, scratch);
1720     // delayed()->tst(scratch);
1721 
1722     // The receiver is item[n].  Increment count[n].
1723     int count_offset = in_bytes(item_count_offset_fn(row));
1724     increment_mdp_data_at(count_offset, scratch);
1725     ba_short(done);
1726     bind(next_test);
1727 
1728     if (test_for_null_also) {
1729       Label found_null;
1730       // Failed the equality check on item[n]...  Test for null.
1731       if (start_row == last_row) {
1732         // The only thing left to do is handle the null case.
1733         if (non_profiled_offset >= 0) {
1734           brx(Assembler::zero, false, Assembler::pn, found_null);
1735           delayed()->nop();
1736           // Item did not match any saved item and there is no empty row for it.
1737           // Increment total counter to indicate polymorphic case.
1738           increment_mdp_data_at(non_profiled_offset, scratch);
1739           ba_short(done);
1740           bind(found_null);
1741         } else {
1742           brx(Assembler::notZero, false, Assembler::pt, done);
1743           delayed()->nop();
1744         }
1745         break;
1746       }
1747       // Since null is rare, make it be the branch-taken case.
1748       brx(Assembler::zero, false, Assembler::pn, found_null);
1749       delayed()->nop();
1750 
1751       // Put all the "Case 3" tests here.
1752       record_item_in_profile_helper(item, scratch, start_row + 1, done, total_rows,
1753         item_offset_fn, item_count_offset_fn, non_profiled_offset);
1754 
1755       // Found a null.  Keep searching for a matching item,
1756       // but remember that this is an empty (unused) slot.
1757       bind(found_null);
1758     }
1759   }
1760 
1761   // In the fall-through case, we found no matching item, but we
1762   // observed the item[start_row] is NULL.
1763 
1764   // Fill in the item field and increment the count.
1765   int item_offset = in_bytes(item_offset_fn(start_row));
1766   set_mdp_data_at(item_offset, item);
1767   int count_offset = in_bytes(item_count_offset_fn(start_row));
1768   mov(DataLayout::counter_increment, scratch);
1769   set_mdp_data_at(count_offset, scratch);
1770   if (start_row > 0) {
1771     ba_short(done);
1772   }
1773 }
1774 
1775 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1776                                                         Register scratch, bool is_virtual_call) {
1777   assert(ProfileInterpreter, "must be profiling");
1778   Label done;
1779 
1780   record_klass_in_profile_helper(receiver, scratch, done, is_virtual_call);
1781 
1782   bind (done);
1783 }
1784 
1785 
1786 // Count a ret in the bytecodes.
1787 
1788 void InterpreterMacroAssembler::profile_ret(TosState state,
1789                                             Register return_bci,
1790                                             Register scratch) {
1791   if (ProfileInterpreter) {
1792     Label profile_continue;
1793     uint row;
1794 
1795     // If no method data exists, go to profile_continue.
1796     test_method_data_pointer(profile_continue);
1797 
1798     // Update the total ret count.
1799     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
1800 
1801     for (row = 0; row < RetData::row_limit(); row++) {
1802       Label next_test;
1803 
1804       // See if return_bci is equal to bci[n]:
1805       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
1806                        return_bci, next_test, scratch);
1807 
1808       // return_bci is equal to bci[n].  Increment the count.
1809       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
1810 
1811       // The method data pointer needs to be updated to reflect the new target.
1812       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
1813       ba_short(profile_continue);
1814       bind(next_test);
1815     }
1816 
1817     update_mdp_for_ret(state, return_bci);
1818 
1819     bind (profile_continue);
1820   }
1821 }
1822 
1823 // Profile an unexpected null in the bytecodes.
1824 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
1825   if (ProfileInterpreter) {
1826     Label profile_continue;
1827 
1828     // If no method data exists, go to profile_continue.
1829     test_method_data_pointer(profile_continue);
1830 
1831     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
1832 
1833     // The method data pointer needs to be updated.
1834     int mdp_delta = in_bytes(BitData::bit_data_size());
1835     if (TypeProfileCasts) {
1836       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1837     }
1838     update_mdp_by_constant(mdp_delta);
1839 
1840     bind (profile_continue);
1841   }
1842 }
1843 
1844 void InterpreterMacroAssembler::profile_typecheck(Register klass,
1845                                                   Register scratch) {
1846   if (ProfileInterpreter) {
1847     Label profile_continue;
1848 
1849     // If no method data exists, go to profile_continue.
1850     test_method_data_pointer(profile_continue);
1851 
1852     int mdp_delta = in_bytes(BitData::bit_data_size());
1853     if (TypeProfileCasts) {
1854       mdp_delta = in_bytes(ReceiverTypeData::receiver_type_data_size());
1855 
1856       // Record the object type.
1857       record_klass_in_profile(klass, scratch, false);
1858     }
1859 
1860     // The method data pointer needs to be updated.
1861     update_mdp_by_constant(mdp_delta);
1862 
1863     bind (profile_continue);
1864   }
1865 }
1866 
1867 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
1868   if (ProfileInterpreter && TypeProfileCasts) {
1869     Label profile_continue;
1870 
1871     // If no method data exists, go to profile_continue.
1872     test_method_data_pointer(profile_continue);
1873 
1874     int count_offset = in_bytes(CounterData::count_offset());
1875     // Back up the address, since we have already bumped the mdp.
1876     count_offset -= in_bytes(ReceiverTypeData::receiver_type_data_size());
1877 
1878     // *Decrement* the counter.  We expect to see zero or small negatives.
1879     increment_mdp_data_at(count_offset, scratch, true);
1880 
1881     bind (profile_continue);
1882   }
1883 }
1884 
1885 // Count the default case of a switch construct.
1886 
1887 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
1888   if (ProfileInterpreter) {
1889     Label profile_continue;
1890 
1891     // If no method data exists, go to profile_continue.
1892     test_method_data_pointer(profile_continue);
1893 
1894     // Update the default case count
1895     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1896                           scratch);
1897 
1898     // The method data pointer needs to be updated.
1899     update_mdp_by_offset(
1900                     in_bytes(MultiBranchData::default_displacement_offset()),
1901                     scratch);
1902 
1903     bind (profile_continue);
1904   }
1905 }
1906 
1907 // Count the index'th case of a switch construct.
1908 
1909 void InterpreterMacroAssembler::profile_switch_case(Register index,
1910                                                     Register scratch,
1911                                                     Register scratch2,
1912                                                     Register scratch3) {
1913   if (ProfileInterpreter) {
1914     Label profile_continue;
1915 
1916     // If no method data exists, go to profile_continue.
1917     test_method_data_pointer(profile_continue);
1918 
1919     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1920     set(in_bytes(MultiBranchData::per_case_size()), scratch);
1921     smul(index, scratch, scratch);
1922     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
1923 
1924     // Update the case count
1925     increment_mdp_data_at(scratch,
1926                           in_bytes(MultiBranchData::relative_count_offset()),
1927                           scratch2,
1928                           scratch3);
1929 
1930     // The method data pointer needs to be updated.
1931     update_mdp_by_offset(scratch,
1932                      in_bytes(MultiBranchData::relative_displacement_offset()),
1933                      scratch2);
1934 
1935     bind (profile_continue);
1936   }
1937 }
1938 
1939 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
1940   Label not_null, do_nothing, do_update;
1941 
1942   assert_different_registers(obj, mdo_addr.base(), tmp);
1943 
1944   verify_oop(obj);
1945 
1946   ld_ptr(mdo_addr, tmp);
1947 
1948   br_notnull_short(obj, pt, not_null);
1949   or3(tmp, TypeEntries::null_seen, tmp);
1950   ba_short(do_update);
1951 
1952   bind(not_null);
1953   load_klass(obj, obj);
1954 
1955   xor3(obj, tmp, obj);
1956   btst(TypeEntries::type_klass_mask, obj);
1957   // klass seen before, nothing to do. The unknown bit may have been
1958   // set already but no need to check.
1959   brx(zero, false, pt, do_nothing);
1960   delayed()->
1961 
1962   btst(TypeEntries::type_unknown, obj);
1963   // already unknown. Nothing to do anymore.
1964   brx(notZero, false, pt, do_nothing);
1965   delayed()->
1966 
1967   btst(TypeEntries::type_mask, tmp);
1968   brx(zero, true, pt, do_update);
1969   // first time here. Set profile type.
1970   delayed()->or3(tmp, obj, tmp);
1971 
1972   // different than before. Cannot keep accurate profile.
1973   or3(tmp, TypeEntries::type_unknown, tmp);
1974 
1975   bind(do_update);
1976   // update profile
1977   st_ptr(tmp, mdo_addr);
1978 
1979   bind(do_nothing);
1980 }
1981 
1982 void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1983   if (!ProfileInterpreter) {
1984     return;
1985   }
1986 
1987   assert_different_registers(callee, tmp1, tmp2, ImethodDataPtr);
1988 
1989   if (MethodData::profile_arguments() || MethodData::profile_return()) {
1990     Label profile_continue;
1991 
1992     test_method_data_pointer(profile_continue);
1993 
1994     int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1995 
1996     ldub(ImethodDataPtr, in_bytes(DataLayout::tag_offset()) - off_to_start, tmp1);
1997     cmp_and_br_short(tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag, notEqual, pn, profile_continue);
1998 
1999     if (MethodData::profile_arguments()) {
2000       Label done;
2001       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
2002       add(ImethodDataPtr, off_to_args, ImethodDataPtr);
2003 
2004       for (int i = 0; i < TypeProfileArgsLimit; i++) {
2005         if (i > 0 || MethodData::profile_return()) {
2006           // If return value type is profiled we may have no argument to profile
2007           ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2008           sub(tmp1, i*TypeStackSlotEntries::per_arg_count(), tmp1);
2009           cmp_and_br_short(tmp1, TypeStackSlotEntries::per_arg_count(), less, pn, done);
2010         }
2011         ld_ptr(Address(callee, Method::const_offset()), tmp1);
2012         lduh(Address(tmp1, ConstMethod::size_of_parameters_offset()), tmp1);
2013         // stack offset o (zero based) from the start of the argument
2014         // list, for n arguments translates into offset n - o - 1 from
2015         // the end of the argument list. But there's an extra slot at
2016         // the stop of the stack. So the offset is n - o from Lesp.
2017         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, tmp2);
2018         sub(tmp1, tmp2, tmp1);
2019 
2020         // Can't use MacroAssembler::argument_address() which needs Gargs to be set up
2021         sll(tmp1, Interpreter::logStackElementSize, tmp1);
2022         ld_ptr(Lesp, tmp1, tmp1);
2023 
2024         Address mdo_arg_addr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
2025         profile_obj_type(tmp1, mdo_arg_addr, tmp2);
2026 
2027         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
2028         add(ImethodDataPtr, to_add, ImethodDataPtr);
2029         off_to_args += to_add;
2030       }
2031 
2032       if (MethodData::profile_return()) {
2033         ld_ptr(ImethodDataPtr, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, tmp1);
2034         sub(tmp1, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count(), tmp1);
2035       }
2036 
2037       bind(done);
2038 
2039       if (MethodData::profile_return()) {
2040         // We're right after the type profile for the last
2041         // argument. tmp1 is the number of cells left in the
2042         // CallTypeData/VirtualCallTypeData to reach its end. Non null
2043         // if there's a return to profile.
2044         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
2045         sll(tmp1, exact_log2(DataLayout::cell_size), tmp1);
2046         add(ImethodDataPtr, tmp1, ImethodDataPtr);
2047       }
2048     } else {
2049       assert(MethodData::profile_return(), "either profile call args or call ret");
2050       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
2051     }
2052 
2053     // mdp points right after the end of the
2054     // CallTypeData/VirtualCallTypeData, right after the cells for the
2055     // return value type if there's one.
2056 
2057     bind(profile_continue);
2058   }
2059 }
2060 
2061 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
2062   assert_different_registers(ret, tmp1, tmp2);
2063   if (ProfileInterpreter && MethodData::profile_return()) {
2064     Label profile_continue, done;
2065 
2066     test_method_data_pointer(profile_continue);
2067 
2068     if (MethodData::profile_return_jsr292_only()) {
2069       assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
2070 
2071       // If we don't profile all invoke bytecodes we must make sure
2072       // it's a bytecode we indeed profile. We can't go back to the
2073       // begining of the ProfileData we intend to update to check its
2074       // type because we're right after it and we don't known its
2075       // length.
2076       Label do_profile;
2077       ldub(Lbcp, 0, tmp1);
2078       cmp_and_br_short(tmp1, Bytecodes::_invokedynamic, equal, pn, do_profile);
2079       cmp(tmp1, Bytecodes::_invokehandle);
2080       br(equal, false, pn, do_profile);
2081       delayed()->lduh(Lmethod, Method::intrinsic_id_offset_in_bytes(), tmp1);
2082       cmp_and_br_short(tmp1, vmIntrinsics::_compiledLambdaForm, notEqual, pt, profile_continue);
2083 
2084       bind(do_profile);
2085     }
2086 
2087     Address mdo_ret_addr(ImethodDataPtr, -in_bytes(ReturnTypeEntry::size()));
2088     mov(ret, tmp1);
2089     profile_obj_type(tmp1, mdo_ret_addr, tmp2);
2090 
2091     bind(profile_continue);
2092   }
2093 }
2094 
2095 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2096   if (ProfileInterpreter && MethodData::profile_parameters()) {
2097     Label profile_continue, done;
2098 
2099     test_method_data_pointer(profile_continue);
2100 
2101     // Load the offset of the area within the MDO used for
2102     // parameters. If it's negative we're not profiling any parameters.
2103     lduw(ImethodDataPtr, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), tmp1);
2104     cmp_and_br_short(tmp1, 0, less, pn, profile_continue);
2105 
2106     // Compute a pointer to the area for parameters from the offset
2107     // and move the pointer to the slot for the last
2108     // parameters. Collect profiling from last parameter down.
2109     // mdo start + parameters offset + array length - 1
2110 
2111     // Pointer to the parameter area in the MDO
2112     Register mdp = tmp1;
2113     add(ImethodDataPtr, tmp1, mdp);
2114 
2115     // offset of the current profile entry to update
2116     Register entry_offset = tmp2;
2117     // entry_offset = array len in number of cells
2118     ld_ptr(mdp, ArrayData::array_len_offset(), entry_offset);
2119 
2120     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
2121     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
2122 
2123     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
2124     sub(entry_offset, TypeStackSlotEntries::per_arg_count() - (off_base / DataLayout::cell_size), entry_offset);
2125     // entry_offset in bytes
2126     sll(entry_offset, exact_log2(DataLayout::cell_size), entry_offset);
2127 
2128     Label loop;
2129     bind(loop);
2130 
2131     // load offset on the stack from the slot for this parameter
2132     ld_ptr(mdp, entry_offset, tmp3);
2133     sll(tmp3,Interpreter::logStackElementSize, tmp3);
2134     neg(tmp3);
2135     // read the parameter from the local area
2136     ld_ptr(Llocals, tmp3, tmp3);
2137 
2138     // make entry_offset now point to the type field for this parameter
2139     int type_base = in_bytes(ParametersTypeData::type_offset(0));
2140     assert(type_base > off_base, "unexpected");
2141     add(entry_offset, type_base - off_base, entry_offset);
2142 
2143     // profile the parameter
2144     Address arg_type(mdp, entry_offset);
2145     profile_obj_type(tmp3, arg_type, tmp4);
2146 
2147     // go to next parameter
2148     sub(entry_offset, TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base), entry_offset);
2149     cmp_and_br_short(entry_offset, off_base, greaterEqual, pt, loop);
2150 
2151     bind(profile_continue);
2152   }
2153 }
2154 
2155 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
2156 
2157 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
2158                                                       Register Rtemp,
2159                                                       Register Rtemp2 ) {
2160 
2161   Register Rlimit = Lmonitors;
2162   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2163   assert( (delta & LongAlignmentMask) == 0,
2164           "sizeof BasicObjectLock must be even number of doublewords");
2165 
2166   sub( SP,        delta, SP);
2167   sub( Lesp,      delta, Lesp);
2168   sub( Lmonitors, delta, Lmonitors);
2169 
2170   if (!stack_is_empty) {
2171 
2172     // must copy stack contents down
2173 
2174     Label start_copying, next;
2175 
2176     // untested("monitor stack expansion");
2177     compute_stack_base(Rtemp);
2178     ba(start_copying);
2179     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
2180 
2181     // note: must copy from low memory upwards
2182     // On entry to loop,
2183     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
2184     // Loop mutates Rtemp
2185 
2186     bind( next);
2187 
2188     st_ptr(Rtemp2, Rtemp, 0);
2189     inc(Rtemp, wordSize);
2190     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
2191 
2192     bind( start_copying );
2193 
2194     brx( notEqual, true, pn, next );
2195     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
2196 
2197     // done copying stack
2198   }
2199 }
2200 
2201 // Locals
2202 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
2203   assert_not_delayed();
2204   sll(index, Interpreter::logStackElementSize, index);
2205   sub(Llocals, index, index);
2206   ld_ptr(index, 0, dst);
2207   // Note:  index must hold the effective address--the iinc template uses it
2208 }
2209 
2210 // Just like access_local_ptr but the tag is a returnAddress
2211 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
2212                                                            Register dst ) {
2213   assert_not_delayed();
2214   sll(index, Interpreter::logStackElementSize, index);
2215   sub(Llocals, index, index);
2216   ld_ptr(index, 0, dst);
2217 }
2218 
2219 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
2220   assert_not_delayed();
2221   sll(index, Interpreter::logStackElementSize, index);
2222   sub(Llocals, index, index);
2223   ld(index, 0, dst);
2224   // Note:  index must hold the effective address--the iinc template uses it
2225 }
2226 
2227 
2228 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
2229   assert_not_delayed();
2230   sll(index, Interpreter::logStackElementSize, index);
2231   sub(Llocals, index, index);
2232   // First half stored at index n+1 (which grows down from Llocals[n])
2233   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
2234 }
2235 
2236 
2237 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
2238   assert_not_delayed();
2239   sll(index, Interpreter::logStackElementSize, index);
2240   sub(Llocals, index, index);
2241   ldf(FloatRegisterImpl::S, index, 0, dst);
2242 }
2243 
2244 
2245 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
2246   assert_not_delayed();
2247   sll(index, Interpreter::logStackElementSize, index);
2248   sub(Llocals, index, index);
2249   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
2250 }
2251 
2252 
2253 #ifdef ASSERT
2254 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
2255   Label L;
2256 
2257   assert(Rindex != Rscratch, "Registers cannot be same");
2258   assert(Rindex != Rscratch1, "Registers cannot be same");
2259   assert(Rlimit != Rscratch, "Registers cannot be same");
2260   assert(Rlimit != Rscratch1, "Registers cannot be same");
2261   assert(Rscratch1 != Rscratch, "Registers cannot be same");
2262 
2263   // untested("reg area corruption");
2264   add(Rindex, offset, Rscratch);
2265   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
2266   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
2267   stop("regsave area is being clobbered");
2268   bind(L);
2269 }
2270 #endif // ASSERT
2271 
2272 
2273 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
2274   assert_not_delayed();
2275   sll(index, Interpreter::logStackElementSize, index);
2276   sub(Llocals, index, index);
2277   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
2278   st(src, index, 0);
2279 }
2280 
2281 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
2282   assert_not_delayed();
2283   sll(index, Interpreter::logStackElementSize, index);
2284   sub(Llocals, index, index);
2285 #ifdef ASSERT
2286   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2287 #endif
2288   st_ptr(src, index, 0);
2289 }
2290 
2291 
2292 
2293 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
2294   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
2295 }
2296 
2297 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
2298   assert_not_delayed();
2299   sll(index, Interpreter::logStackElementSize, index);
2300   sub(Llocals, index, index);
2301 #ifdef ASSERT
2302   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2303 #endif
2304   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
2305 }
2306 
2307 
2308 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
2309   assert_not_delayed();
2310   sll(index, Interpreter::logStackElementSize, index);
2311   sub(Llocals, index, index);
2312 #ifdef ASSERT
2313   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
2314 #endif
2315   stf(FloatRegisterImpl::S, src, index, 0);
2316 }
2317 
2318 
2319 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
2320   assert_not_delayed();
2321   sll(index, Interpreter::logStackElementSize, index);
2322   sub(Llocals, index, index);
2323 #ifdef ASSERT
2324   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
2325 #endif
2326   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
2327 }
2328 
2329 
2330 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
2331   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
2332   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words, WordsPerLong);
2333   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
2334 }
2335 
2336 
2337 Address InterpreterMacroAssembler::top_most_monitor() {
2338   return Address(FP, top_most_monitor_byte_offset());
2339 }
2340 
2341 
2342 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
2343   add( Lesp,      wordSize,                                    Rdest );
2344 }
2345 
2346 void InterpreterMacroAssembler::get_method_counters(Register method,
2347                                                     Register Rcounters,
2348                                                     Label& skip) {
2349   Label has_counters;
2350   Address method_counters(method, in_bytes(Method::method_counters_offset()));
2351   ld_ptr(method_counters, Rcounters);
2352   br_notnull_short(Rcounters, Assembler::pt, has_counters);
2353   call_VM(noreg, CAST_FROM_FN_PTR(address,
2354           InterpreterRuntime::build_method_counters), method);
2355   ld_ptr(method_counters, Rcounters);
2356   br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
2357   delayed()->nop();
2358   bind(has_counters);
2359 }
2360 
2361 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2362   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2363   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2364 
2365   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2366                                  InvocationCounter::counter_offset());
2367   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2368                                  InvocationCounter::counter_offset());
2369   int delta = InvocationCounter::count_increment;
2370 
2371   // Load each counter in a register
2372   ld( inv_counter, Rtmp );
2373   ld( be_counter, Rtmp2 );
2374 
2375   assert( is_simm13( delta ), " delta too large.");
2376 
2377   // Add the delta to the invocation counter and store the result
2378   add( Rtmp, delta, Rtmp );
2379 
2380   // Mask the backedge counter
2381   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2382 
2383   // Store value
2384   st( Rtmp, inv_counter);
2385 
2386   // Add invocation counter + backedge counter
2387   add( Rtmp, Rtmp2, Rtmp);
2388 
2389   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
2390 }
2391 
2392 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
2393   assert(UseCompiler, "incrementing must be useful");
2394   assert_different_registers(Rcounters, Rtmp, Rtmp2);
2395 
2396   Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
2397                                  InvocationCounter::counter_offset());
2398   Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
2399                                  InvocationCounter::counter_offset());
2400 
2401   int delta = InvocationCounter::count_increment;
2402   // Load each counter in a register
2403   ld( be_counter, Rtmp );
2404   ld( inv_counter, Rtmp2 );
2405 
2406   // Add the delta to the backedge counter
2407   add( Rtmp, delta, Rtmp );
2408 
2409   // Mask the invocation counter, add to backedge counter
2410   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
2411 
2412   // and store the result to memory
2413   st( Rtmp, be_counter );
2414 
2415   // Add backedge + invocation counter
2416   add( Rtmp, Rtmp2, Rtmp );
2417 
2418   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
2419 }
2420 
2421 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
2422                                                              Register method_counters,
2423                                                              Register branch_bcp,
2424                                                              Register Rtmp ) {
2425   Label did_not_overflow;
2426   Label overflow_with_error;
2427   assert_different_registers(backedge_count, Rtmp, branch_bcp);
2428   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
2429 
2430   Address limit(method_counters, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()));
2431   ld(limit, Rtmp);
2432   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
2433 
2434   // When ProfileInterpreter is on, the backedge_count comes from the
2435   // MethodData*, which value does not get reset on the call to
2436   // frequency_counter_overflow().  To avoid excessive calls to the overflow
2437   // routine while the method is being compiled, add a second test to make sure
2438   // the overflow function is called only once every overflow_frequency.
2439   if (ProfileInterpreter) {
2440     const int overflow_frequency = 1024;
2441     andcc(backedge_count, overflow_frequency-1, Rtmp);
2442     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
2443     delayed()->nop();
2444   }
2445 
2446   // overflow in loop, pass branch bytecode
2447   set(6,Rtmp);
2448   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
2449 
2450   // Was an OSR adapter generated?
2451   // O0 = osr nmethod
2452   br_null_short(O0, Assembler::pn, overflow_with_error);
2453 
2454   // Has the nmethod been invalidated already?
2455   ldub(O0, nmethod::state_offset(), O2);
2456   cmp_and_br_short(O2, nmethod::in_use, Assembler::notEqual, Assembler::pn, overflow_with_error);
2457 
2458   // migrate the interpreter frame off of the stack
2459 
2460   mov(G2_thread, L7);
2461   // save nmethod
2462   mov(O0, L6);
2463   set_last_Java_frame(SP, noreg);
2464   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
2465   reset_last_Java_frame();
2466   mov(L7, G2_thread);
2467 
2468   // move OSR nmethod to I1
2469   mov(L6, I1);
2470 
2471   // OSR buffer to I0
2472   mov(O0, I0);
2473 
2474   // remove the interpreter frame
2475   restore(I5_savedSP, 0, SP);
2476 
2477   // Jump to the osr code.
2478   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
2479   jmp(O2, G0);
2480   delayed()->nop();
2481 
2482   bind(overflow_with_error);
2483 
2484   bind(did_not_overflow);
2485 }
2486 
2487 
2488 
2489 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
2490   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
2491 }
2492 
2493 
2494 // local helper function for the verify_oop_or_return_address macro
2495 static bool verify_return_address(Method* m, int bci) {
2496 #ifndef PRODUCT
2497   address pc = (address)(m->constMethod())
2498              + in_bytes(ConstMethod::codes_offset()) + bci;
2499   // assume it is a valid return address if it is inside m and is preceded by a jsr
2500   if (!m->contains(pc))                                          return false;
2501   address jsr_pc;
2502   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2503   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2504   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2505   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2506 #endif // PRODUCT
2507   return false;
2508 }
2509 
2510 
2511 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2512   if (!VerifyOops)  return;
2513   // the VM documentation for the astore[_wide] bytecode allows
2514   // the TOS to be not only an oop but also a return address
2515   Label test;
2516   Label skip;
2517   // See if it is an address (in the current method):
2518 
2519   mov(reg, Rtmp);
2520   const int log2_bytecode_size_limit = 16;
2521   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
2522   br_notnull_short( Rtmp, pt, test );
2523 
2524   // %%% should use call_VM_leaf here?
2525   save_frame_and_mov(0, Lmethod, O0, reg, O1);
2526   save_thread(L7_thread_cache);
2527   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
2528   delayed()->nop();
2529   restore_thread(L7_thread_cache);
2530   br_notnull( O0, false, pt, skip );
2531   delayed()->restore();
2532 
2533   // Perform a more elaborate out-of-line call
2534   // Not an address; verify it:
2535   bind(test);
2536   verify_oop(reg);
2537   bind(skip);
2538 }
2539 
2540 
2541 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2542   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
2543 }
2544 
2545 
2546 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
2547 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
2548                                                         int increment, Address mask_addr,
2549                                                         Register scratch1, Register scratch2,
2550                                                         Condition cond, Label *where) {
2551   ld(counter_addr, scratch1);
2552   add(scratch1, increment, scratch1);
2553   ld(mask_addr, scratch2);
2554   andcc(scratch1, scratch2,  G0);
2555   br(cond, false, Assembler::pn, *where);
2556   delayed()->st(scratch1, counter_addr);
2557 }
2558 
2559 // Inline assembly for:
2560 //
2561 // if (thread is in interp_only_mode) {
2562 //   InterpreterRuntime::post_method_entry();
2563 // }
2564 // if (DTraceMethodProbes) {
2565 //   SharedRuntime::dtrace_method_entry(method, receiver);
2566 // }
2567 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2568 //   SharedRuntime::rc_trace_method_entry(method, receiver);
2569 // }
2570 
2571 void InterpreterMacroAssembler::notify_method_entry() {
2572 
2573   // Whenever JVMTI puts a thread in interp_only_mode, method
2574   // entry/exit events are sent for that thread to track stack
2575   // depth.  If it is possible to enter interp_only_mode we add
2576   // the code to check if the event should be sent.
2577   if (JvmtiExport::can_post_interpreter_events()) {
2578     Label L;
2579     Register temp_reg = O5;
2580     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2581     ld(interp_only, temp_reg);
2582     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2583     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
2584     bind(L);
2585   }
2586 
2587   {
2588     Register temp_reg = O5;
2589     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2590     call_VM_leaf(noreg,
2591       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2592       G2_thread, Lmethod);
2593   }
2594 
2595   // RedefineClasses() tracing support for obsolete method entry
2596   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2597     call_VM_leaf(noreg,
2598       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2599       G2_thread, Lmethod);
2600   }
2601 }
2602 
2603 
2604 // Inline assembly for:
2605 //
2606 // if (thread is in interp_only_mode) {
2607 //   // save result
2608 //   InterpreterRuntime::post_method_exit();
2609 //   // restore result
2610 // }
2611 // if (DTraceMethodProbes) {
2612 //   SharedRuntime::dtrace_method_exit(thread, method);
2613 // }
2614 //
2615 // Native methods have their result stored in d_tmp and l_tmp
2616 // Java methods have their result stored in the expression stack
2617 
2618 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
2619                                                    TosState state,
2620                                                    NotifyMethodExitMode mode) {
2621 
2622   // Whenever JVMTI puts a thread in interp_only_mode, method
2623   // entry/exit events are sent for that thread to track stack
2624   // depth.  If it is possible to enter interp_only_mode we add
2625   // the code to check if the event should be sent.
2626   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2627     Label L;
2628     Register temp_reg = O5;
2629     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
2630     ld(interp_only, temp_reg);
2631     cmp_and_br_short(temp_reg, 0, equal, pt, L);
2632 
2633     // Note: frame::interpreter_frame_result has a dependency on how the
2634     // method result is saved across the call to post_method_exit. For
2635     // native methods it assumes the result registers are saved to
2636     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
2637     // implementation will need to be updated too.
2638 
2639     save_return_value(state, is_native_method);
2640     call_VM(noreg,
2641             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2642     restore_return_value(state, is_native_method);
2643     bind(L);
2644   }
2645 
2646   {
2647     Register temp_reg = O5;
2648     // Dtrace notification
2649     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
2650     save_return_value(state, is_native_method);
2651     call_VM_leaf(
2652       noreg,
2653       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2654       G2_thread, Lmethod);
2655     restore_return_value(state, is_native_method);
2656   }
2657 }
2658 
2659 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
2660   if (is_native_call) {
2661     stf(FloatRegisterImpl::D, F0, d_tmp);
2662     stx(O0, l_tmp);
2663   } else {
2664     push(state);
2665   }
2666 }
2667 
2668 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
2669   if (is_native_call) {
2670     ldf(FloatRegisterImpl::D, d_tmp, F0);
2671     ldx(l_tmp, O0);
2672   } else {
2673     pop(state);
2674   }
2675 }