1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/extendedPC.hpp"
  56 #include "runtime/globals.hpp"
  57 #include "runtime/interfaceSupport.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/perfMemory.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/runtimeService.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/decoder.hpp"
  77 #include "utilities/defaultStream.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/growableArray.hpp"
  80 #include "utilities/vmError.hpp"
  81 
  82 // put OS-includes here (sorted alphabetically)
  83 #include <errno.h>
  84 #include <fcntl.h>
  85 #include <inttypes.h>
  86 #include <poll.h>
  87 #include <procinfo.h>
  88 #include <pthread.h>
  89 #include <pwd.h>
  90 #include <semaphore.h>
  91 #include <signal.h>
  92 #include <stdint.h>
  93 #include <stdio.h>
  94 #include <string.h>
  95 #include <unistd.h>
  96 #include <sys/ioctl.h>
  97 #include <sys/ipc.h>
  98 #include <sys/mman.h>
  99 #include <sys/resource.h>
 100 #include <sys/select.h>
 101 #include <sys/shm.h>
 102 #include <sys/socket.h>
 103 #include <sys/stat.h>
 104 #include <sys/sysinfo.h>
 105 #include <sys/systemcfg.h>
 106 #include <sys/time.h>
 107 #include <sys/times.h>
 108 #include <sys/types.h>
 109 #include <sys/utsname.h>
 110 #include <sys/vminfo.h>
 111 #include <sys/wait.h>
 112 
 113 // Missing prototypes for various system APIs.
 114 extern "C"
 115 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 116 
 117 #if !defined(_AIXVERSION_610)
 118 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 119 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 120 extern "C" int getargs(procsinfo*, int, char*, int);
 121 #endif
 122 
 123 #define MAX_PATH (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 // for multipage initialization error analysis (in 'g_multipage_error')
 128 #define ERROR_MP_OS_TOO_OLD                          100
 129 #define ERROR_MP_EXTSHM_ACTIVE                       101
 130 #define ERROR_MP_VMGETINFO_FAILED                    102
 131 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 132 
 133 // excerpts from systemcfg.h that might be missing on older os levels
 134 #ifndef PV_5_Compat
 135   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 136 #endif
 137 #ifndef PV_6
 138   #define PV_6 0x100000          /* Power PC 6 */
 139 #endif
 140 #ifndef PV_6_1
 141   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 142 #endif
 143 #ifndef PV_6_Compat
 144   #define PV_6_Compat 0x108000   /* Power PC 6 */
 145 #endif
 146 #ifndef PV_7
 147   #define PV_7 0x200000          /* Power PC 7 */
 148 #endif
 149 #ifndef PV_7_Compat
 150   #define PV_7_Compat 0x208000   /* Power PC 7 */
 151 #endif
 152 #ifndef PV_8
 153   #define PV_8 0x300000          /* Power PC 8 */
 154 #endif
 155 #ifndef PV_8_Compat
 156   #define PV_8_Compat 0x308000   /* Power PC 8 */
 157 #endif
 158 
 159 static address resolve_function_descriptor_to_code_pointer(address p);
 160 
 161 static void vmembk_print_on(outputStream* os);
 162 
 163 ////////////////////////////////////////////////////////////////////////////////
 164 // global variables (for a description see os_aix.hpp)
 165 
 166 julong    os::Aix::_physical_memory = 0;
 167 
 168 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 169 int       os::Aix::_page_size = -1;
 170 
 171 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 172 int       os::Aix::_on_pase = -1;
 173 
 174 // 0 = uninitialized, otherwise 32 bit number:
 175 //  0xVVRRTTSS
 176 //  VV - major version
 177 //  RR - minor version
 178 //  TT - tech level, if known, 0 otherwise
 179 //  SS - service pack, if known, 0 otherwise
 180 uint32_t  os::Aix::_os_version = 0;
 181 
 182 // -1 = uninitialized, 0 - no, 1 - yes
 183 int       os::Aix::_xpg_sus_mode = -1;
 184 
 185 // -1 = uninitialized, 0 - no, 1 - yes
 186 int       os::Aix::_extshm = -1;
 187 
 188 ////////////////////////////////////////////////////////////////////////////////
 189 // local variables
 190 
 191 static volatile jlong max_real_time = 0;
 192 static jlong    initial_time_count = 0;
 193 static int      clock_tics_per_sec = 100;
 194 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 195 static bool     check_signals      = true;
 196 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 197 static sigset_t SR_sigset;
 198 
 199 // Process break recorded at startup.
 200 static address g_brk_at_startup = NULL;
 201 
 202 // This describes the state of multipage support of the underlying
 203 // OS. Note that this is of no interest to the outsize world and
 204 // therefore should not be defined in AIX class.
 205 //
 206 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 207 // latter two (16M "large" resp. 16G "huge" pages) require special
 208 // setup and are normally not available.
 209 //
 210 // AIX supports multiple page sizes per process, for:
 211 //  - Stack (of the primordial thread, so not relevant for us)
 212 //  - Data - data, bss, heap, for us also pthread stacks
 213 //  - Text - text code
 214 //  - shared memory
 215 //
 216 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 217 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 218 //
 219 // For shared memory, page size can be set dynamically via
 220 // shmctl(). Different shared memory regions can have different page
 221 // sizes.
 222 //
 223 // More information can be found at AIBM info center:
 224 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 225 //
 226 static struct {
 227   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 228   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 229   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 230   size_t pthr_stack_pagesize; // stack page size of pthread threads
 231   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 232   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 233   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 234   int error;                  // Error describing if something went wrong at multipage init.
 235 } g_multipage_support = {
 236   (size_t) -1,
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   false, false,
 242   0
 243 };
 244 
 245 // We must not accidentally allocate memory close to the BRK - even if
 246 // that would work - because then we prevent the BRK segment from
 247 // growing which may result in a malloc OOM even though there is
 248 // enough memory. The problem only arises if we shmat() or mmap() at
 249 // a specific wish address, e.g. to place the heap in a
 250 // compressed-oops-friendly way.
 251 static bool is_close_to_brk(address a) {
 252   assert0(g_brk_at_startup != NULL);
 253   if (a >= g_brk_at_startup &&
 254       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 255     return true;
 256   }
 257   return false;
 258 }
 259 
 260 julong os::available_memory() {
 261   return Aix::available_memory();
 262 }
 263 
 264 julong os::Aix::available_memory() {
 265   // Avoid expensive API call here, as returned value will always be null.
 266   if (os::Aix::on_pase()) {
 267     return 0x0LL;
 268   }
 269   os::Aix::meminfo_t mi;
 270   if (os::Aix::get_meminfo(&mi)) {
 271     return mi.real_free;
 272   } else {
 273     return ULONG_MAX;
 274   }
 275 }
 276 
 277 julong os::physical_memory() {
 278   return Aix::physical_memory();
 279 }
 280 
 281 // Return true if user is running as root.
 282 
 283 bool os::have_special_privileges() {
 284   static bool init = false;
 285   static bool privileges = false;
 286   if (!init) {
 287     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 288     init = true;
 289   }
 290   return privileges;
 291 }
 292 
 293 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 294 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 295 static bool my_disclaim64(char* addr, size_t size) {
 296 
 297   if (size == 0) {
 298     return true;
 299   }
 300 
 301   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 302   const unsigned int maxDisclaimSize = 0x40000000;
 303 
 304   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 305   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 306 
 307   char* p = addr;
 308 
 309   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 310     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 311       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 312       return false;
 313     }
 314     p += maxDisclaimSize;
 315   }
 316 
 317   if (lastDisclaimSize > 0) {
 318     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 319       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 320       return false;
 321     }
 322   }
 323 
 324   return true;
 325 }
 326 
 327 // Cpu architecture string
 328 #if defined(PPC32)
 329 static char cpu_arch[] = "ppc";
 330 #elif defined(PPC64)
 331 static char cpu_arch[] = "ppc64";
 332 #else
 333 #error Add appropriate cpu_arch setting
 334 #endif
 335 
 336 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 337 static int checked_vmgetinfo(void *out, int command, int arg) {
 338   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 339     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 340   }
 341   return ::vmgetinfo(out, command, arg);
 342 }
 343 
 344 // Given an address, returns the size of the page backing that address.
 345 size_t os::Aix::query_pagesize(void* addr) {
 346 
 347   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 348     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 349     return 4*K;
 350   }
 351 
 352   vm_page_info pi;
 353   pi.addr = (uint64_t)addr;
 354   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 355     return pi.pagesize;
 356   } else {
 357     assert(false, "vmgetinfo failed to retrieve page size");
 358     return 4*K;
 359   }
 360 }
 361 
 362 void os::Aix::initialize_system_info() {
 363 
 364   // Get the number of online(logical) cpus instead of configured.
 365   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 366   assert(_processor_count > 0, "_processor_count must be > 0");
 367 
 368   // Retrieve total physical storage.
 369   os::Aix::meminfo_t mi;
 370   if (!os::Aix::get_meminfo(&mi)) {
 371     assert(false, "os::Aix::get_meminfo failed.");
 372   }
 373   _physical_memory = (julong) mi.real_total;
 374 }
 375 
 376 // Helper function for tracing page sizes.
 377 static const char* describe_pagesize(size_t pagesize) {
 378   switch (pagesize) {
 379     case 4*K : return "4K";
 380     case 64*K: return "64K";
 381     case 16*M: return "16M";
 382     case 16*G: return "16G";
 383     default:
 384       assert(false, "surprise");
 385       return "??";
 386   }
 387 }
 388 
 389 // Probe OS for multipage support.
 390 // Will fill the global g_multipage_support structure.
 391 // Must be called before calling os::large_page_init().
 392 static void query_multipage_support() {
 393 
 394   guarantee(g_multipage_support.pagesize == -1,
 395             "do not call twice");
 396 
 397   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 398 
 399   // This really would surprise me.
 400   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 401 
 402   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 403   // Default data page size is defined either by linker options (-bdatapsize)
 404   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 405   // default should be 4K.
 406   {
 407     void* p = ::malloc(16*M);
 408     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 409     ::free(p);
 410   }
 411 
 412   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 413   // Note that this is pure curiosity. We do not rely on default page size but set
 414   // our own page size after allocated.
 415   {
 416     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 417     guarantee(shmid != -1, "shmget failed");
 418     void* p = ::shmat(shmid, NULL, 0);
 419     ::shmctl(shmid, IPC_RMID, NULL);
 420     guarantee(p != (void*) -1, "shmat failed");
 421     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 422     ::shmdt(p);
 423   }
 424 
 425   // Before querying the stack page size, make sure we are not running as primordial
 426   // thread (because primordial thread's stack may have different page size than
 427   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 428   // number of reasons so we may just as well guarantee it here.
 429   guarantee0(!os::is_primordial_thread());
 430 
 431   // Query pthread stack page size. Should be the same as data page size because
 432   // pthread stacks are allocated from C-Heap.
 433   {
 434     int dummy = 0;
 435     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 436   }
 437 
 438   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 439   {
 440     address any_function =
 441       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 442     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 443   }
 444 
 445   // Now probe for support of 64K pages and 16M pages.
 446 
 447   // Before OS/400 V6R1, there is no support for pages other than 4K.
 448   if (os::Aix::on_pase_V5R4_or_older()) {
 449     trcVerbose("OS/400 < V6R1 - no large page support.");
 450     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 451     goto query_multipage_support_end;
 452   }
 453 
 454   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 455   {
 456     const int MAX_PAGE_SIZES = 4;
 457     psize_t sizes[MAX_PAGE_SIZES];
 458     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 459     if (num_psizes == -1) {
 460       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 461       trcVerbose("disabling multipage support.");
 462       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 463       goto query_multipage_support_end;
 464     }
 465     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 466     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 467     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 468     for (int i = 0; i < num_psizes; i ++) {
 469       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 470     }
 471 
 472     // Can we use 64K, 16M pages?
 473     for (int i = 0; i < num_psizes; i ++) {
 474       const size_t pagesize = sizes[i];
 475       if (pagesize != 64*K && pagesize != 16*M) {
 476         continue;
 477       }
 478       bool can_use = false;
 479       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 480       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 481         IPC_CREAT | S_IRUSR | S_IWUSR);
 482       guarantee0(shmid != -1); // Should always work.
 483       // Try to set pagesize.
 484       struct shmid_ds shm_buf = { 0 };
 485       shm_buf.shm_pagesize = pagesize;
 486       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 487         const int en = errno;
 488         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 489         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 490           errno);
 491       } else {
 492         // Attach and double check pageisze.
 493         void* p = ::shmat(shmid, NULL, 0);
 494         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 495         guarantee0(p != (void*) -1); // Should always work.
 496         const size_t real_pagesize = os::Aix::query_pagesize(p);
 497         if (real_pagesize != pagesize) {
 498           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 499         } else {
 500           can_use = true;
 501         }
 502         ::shmdt(p);
 503       }
 504       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 505       if (pagesize == 64*K) {
 506         g_multipage_support.can_use_64K_pages = can_use;
 507       } else if (pagesize == 16*M) {
 508         g_multipage_support.can_use_16M_pages = can_use;
 509       }
 510     }
 511 
 512   } // end: check which pages can be used for shared memory
 513 
 514 query_multipage_support_end:
 515 
 516   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 517       describe_pagesize(g_multipage_support.pagesize));
 518   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 519       describe_pagesize(g_multipage_support.datapsize));
 520   trcVerbose("Text page size: %s",
 521       describe_pagesize(g_multipage_support.textpsize));
 522   trcVerbose("Thread stack page size (pthread): %s",
 523       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 524   trcVerbose("Default shared memory page size: %s",
 525       describe_pagesize(g_multipage_support.shmpsize));
 526   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 527       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 528   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 529       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 530   trcVerbose("Multipage error details: %d",
 531       g_multipage_support.error);
 532 
 533   // sanity checks
 534   assert0(g_multipage_support.pagesize == 4*K);
 535   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 536   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 537   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 538   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 539 
 540 }
 541 
 542 void os::init_system_properties_values() {
 543 
 544 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 545 #define EXTENSIONS_DIR  "/lib/ext"
 546 
 547   // Buffer that fits several sprintfs.
 548   // Note that the space for the trailing null is provided
 549   // by the nulls included by the sizeof operator.
 550   const size_t bufsize =
 551     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 552          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 553   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 554 
 555   // sysclasspath, java_home, dll_dir
 556   {
 557     char *pslash;
 558     os::jvm_path(buf, bufsize);
 559 
 560     // Found the full path to libjvm.so.
 561     // Now cut the path to <java_home>/jre if we can.
 562     pslash = strrchr(buf, '/');
 563     if (pslash != NULL) {
 564       *pslash = '\0';            // Get rid of /libjvm.so.
 565     }
 566     pslash = strrchr(buf, '/');
 567     if (pslash != NULL) {
 568       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 569     }
 570     Arguments::set_dll_dir(buf);
 571 
 572     if (pslash != NULL) {
 573       pslash = strrchr(buf, '/');
 574       if (pslash != NULL) {
 575         *pslash = '\0';        // Get rid of /lib.
 576       }
 577     }
 578     Arguments::set_java_home(buf);
 579     set_boot_path('/', ':');
 580   }
 581 
 582   // Where to look for native libraries.
 583 
 584   // On Aix we get the user setting of LIBPATH.
 585   // Eventually, all the library path setting will be done here.
 586   // Get the user setting of LIBPATH.
 587   const char *v = ::getenv("LIBPATH");
 588   const char *v_colon = ":";
 589   if (v == NULL) { v = ""; v_colon = ""; }
 590 
 591   // Concatenate user and invariant part of ld_library_path.
 592   // That's +1 for the colon and +1 for the trailing '\0'.
 593   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 594   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 595   Arguments::set_library_path(ld_library_path);
 596   FREE_C_HEAP_ARRAY(char, ld_library_path);
 597 
 598   // Extensions directories.
 599   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 600   Arguments::set_ext_dirs(buf);
 601 
 602   FREE_C_HEAP_ARRAY(char, buf);
 603 
 604 #undef DEFAULT_LIBPATH
 605 #undef EXTENSIONS_DIR
 606 }
 607 
 608 ////////////////////////////////////////////////////////////////////////////////
 609 // breakpoint support
 610 
 611 void os::breakpoint() {
 612   BREAKPOINT;
 613 }
 614 
 615 extern "C" void breakpoint() {
 616   // use debugger to set breakpoint here
 617 }
 618 
 619 ////////////////////////////////////////////////////////////////////////////////
 620 // signal support
 621 
 622 debug_only(static bool signal_sets_initialized = false);
 623 static sigset_t unblocked_sigs, vm_sigs;
 624 
 625 void os::Aix::signal_sets_init() {
 626   // Should also have an assertion stating we are still single-threaded.
 627   assert(!signal_sets_initialized, "Already initialized");
 628   // Fill in signals that are necessarily unblocked for all threads in
 629   // the VM. Currently, we unblock the following signals:
 630   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 631   //                         by -Xrs (=ReduceSignalUsage));
 632   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 633   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 634   // the dispositions or masks wrt these signals.
 635   // Programs embedding the VM that want to use the above signals for their
 636   // own purposes must, at this time, use the "-Xrs" option to prevent
 637   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 638   // (See bug 4345157, and other related bugs).
 639   // In reality, though, unblocking these signals is really a nop, since
 640   // these signals are not blocked by default.
 641   sigemptyset(&unblocked_sigs);
 642   sigaddset(&unblocked_sigs, SIGILL);
 643   sigaddset(&unblocked_sigs, SIGSEGV);
 644   sigaddset(&unblocked_sigs, SIGBUS);
 645   sigaddset(&unblocked_sigs, SIGFPE);
 646   sigaddset(&unblocked_sigs, SIGTRAP);
 647   sigaddset(&unblocked_sigs, SR_signum);
 648 
 649   if (!ReduceSignalUsage) {
 650    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 651      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 652    }
 653    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 654      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 655    }
 656    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 657      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 658    }
 659   }
 660   // Fill in signals that are blocked by all but the VM thread.
 661   sigemptyset(&vm_sigs);
 662   if (!ReduceSignalUsage)
 663     sigaddset(&vm_sigs, BREAK_SIGNAL);
 664   debug_only(signal_sets_initialized = true);
 665 }
 666 
 667 // These are signals that are unblocked while a thread is running Java.
 668 // (For some reason, they get blocked by default.)
 669 sigset_t* os::Aix::unblocked_signals() {
 670   assert(signal_sets_initialized, "Not initialized");
 671   return &unblocked_sigs;
 672 }
 673 
 674 // These are the signals that are blocked while a (non-VM) thread is
 675 // running Java. Only the VM thread handles these signals.
 676 sigset_t* os::Aix::vm_signals() {
 677   assert(signal_sets_initialized, "Not initialized");
 678   return &vm_sigs;
 679 }
 680 
 681 void os::Aix::hotspot_sigmask(Thread* thread) {
 682 
 683   //Save caller's signal mask before setting VM signal mask
 684   sigset_t caller_sigmask;
 685   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 686 
 687   OSThread* osthread = thread->osthread();
 688   osthread->set_caller_sigmask(caller_sigmask);
 689 
 690   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 691 
 692   if (!ReduceSignalUsage) {
 693     if (thread->is_VM_thread()) {
 694       // Only the VM thread handles BREAK_SIGNAL ...
 695       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 696     } else {
 697       // ... all other threads block BREAK_SIGNAL
 698       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 699     }
 700   }
 701 }
 702 
 703 // retrieve memory information.
 704 // Returns false if something went wrong;
 705 // content of pmi undefined in this case.
 706 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 707 
 708   assert(pmi, "get_meminfo: invalid parameter");
 709 
 710   memset(pmi, 0, sizeof(meminfo_t));
 711 
 712   if (os::Aix::on_pase()) {
 713     // On PASE, use the libo4 porting library.
 714 
 715     unsigned long long virt_total = 0;
 716     unsigned long long real_total = 0;
 717     unsigned long long real_free = 0;
 718     unsigned long long pgsp_total = 0;
 719     unsigned long long pgsp_free = 0;
 720     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 721       pmi->virt_total = virt_total;
 722       pmi->real_total = real_total;
 723       pmi->real_free = real_free;
 724       pmi->pgsp_total = pgsp_total;
 725       pmi->pgsp_free = pgsp_free;
 726       return true;
 727     }
 728     return false;
 729 
 730   } else {
 731 
 732     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 733     // See:
 734     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 735     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 736     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 737     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 738 
 739     perfstat_memory_total_t psmt;
 740     memset (&psmt, '\0', sizeof(psmt));
 741     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 742     if (rc == -1) {
 743       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 744       assert(0, "perfstat_memory_total() failed");
 745       return false;
 746     }
 747 
 748     assert(rc == 1, "perfstat_memory_total() - weird return code");
 749 
 750     // excerpt from
 751     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 752     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 753     // The fields of perfstat_memory_total_t:
 754     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 755     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 756     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 757     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 758     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 759 
 760     pmi->virt_total = psmt.virt_total * 4096;
 761     pmi->real_total = psmt.real_total * 4096;
 762     pmi->real_free = psmt.real_free * 4096;
 763     pmi->pgsp_total = psmt.pgsp_total * 4096;
 764     pmi->pgsp_free = psmt.pgsp_free * 4096;
 765 
 766     return true;
 767 
 768   }
 769 } // end os::Aix::get_meminfo
 770 
 771 //////////////////////////////////////////////////////////////////////////////
 772 // create new thread
 773 
 774 // Thread start routine for all newly created threads
 775 static void *thread_native_entry(Thread *thread) {
 776 
 777   // find out my own stack dimensions
 778   {
 779     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 780     thread->set_stack_base(os::current_stack_base());
 781     thread->set_stack_size(os::current_stack_size());
 782   }
 783 
 784   const pthread_t pthread_id = ::pthread_self();
 785   const tid_t kernel_thread_id = ::thread_self();
 786 
 787   LogTarget(Info, os, thread) lt;
 788   if (lt.is_enabled()) {
 789     address low_address = thread->stack_end();
 790     address high_address = thread->stack_base();
 791     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 792              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 793              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 794              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 795   }
 796 
 797   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 798   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 799   // tools hook pthread_create(). In this case, we may run into problems establishing
 800   // guard pages on those stacks, because the stacks may reside in memory which is not
 801   // protectable (shmated).
 802   if (thread->stack_base() > ::sbrk(0)) {
 803     log_warning(os, thread)("Thread stack not in data segment.");
 804   }
 805 
 806   // Try to randomize the cache line index of hot stack frames.
 807   // This helps when threads of the same stack traces evict each other's
 808   // cache lines. The threads can be either from the same JVM instance, or
 809   // from different JVM instances. The benefit is especially true for
 810   // processors with hyperthreading technology.
 811 
 812   static int counter = 0;
 813   int pid = os::current_process_id();
 814   alloca(((pid ^ counter++) & 7) * 128);
 815 
 816   thread->initialize_thread_current();
 817 
 818   OSThread* osthread = thread->osthread();
 819 
 820   // Thread_id is pthread id.
 821   osthread->set_thread_id(pthread_id);
 822 
 823   // .. but keep kernel thread id too for diagnostics
 824   osthread->set_kernel_thread_id(kernel_thread_id);
 825 
 826   // Initialize signal mask for this thread.
 827   os::Aix::hotspot_sigmask(thread);
 828 
 829   // Initialize floating point control register.
 830   os::Aix::init_thread_fpu_state();
 831 
 832   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 833 
 834   // Call one more level start routine.
 835   thread->run();
 836 
 837   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 838     os::current_thread_id(), (uintx) kernel_thread_id);
 839 
 840   // If a thread has not deleted itself ("delete this") as part of its
 841   // termination sequence, we have to ensure thread-local-storage is
 842   // cleared before we actually terminate. No threads should ever be
 843   // deleted asynchronously with respect to their termination.
 844   if (Thread::current_or_null_safe() != NULL) {
 845     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 846     thread->clear_thread_current();
 847   }
 848 
 849   return 0;
 850 }
 851 
 852 bool os::create_thread(Thread* thread, ThreadType thr_type,
 853                        size_t req_stack_size) {
 854 
 855   assert(thread->osthread() == NULL, "caller responsible");
 856 
 857   // Allocate the OSThread object.
 858   OSThread* osthread = new OSThread(NULL, NULL);
 859   if (osthread == NULL) {
 860     return false;
 861   }
 862 
 863   // Set the correct thread state.
 864   osthread->set_thread_type(thr_type);
 865 
 866   // Initial state is ALLOCATED but not INITIALIZED
 867   osthread->set_state(ALLOCATED);
 868 
 869   thread->set_osthread(osthread);
 870 
 871   // Init thread attributes.
 872   pthread_attr_t attr;
 873   pthread_attr_init(&attr);
 874   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 875 
 876   // Make sure we run in 1:1 kernel-user-thread mode.
 877   if (os::Aix::on_aix()) {
 878     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 879     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 880   }
 881 
 882   // Start in suspended state, and in os::thread_start, wake the thread up.
 883   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 884 
 885   // Calculate stack size if it's not specified by caller.
 886   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 887 
 888   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 889   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 890   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 891   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 892   if (stack_size < 4096 * K) {
 893     stack_size += 64 * K;
 894   }
 895 
 896   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 897   // thread size in attr unchanged. If this is the minimal stack size as set
 898   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 899   // guard pages might not fit on the tiny stack created.
 900   int ret = pthread_attr_setstacksize(&attr, stack_size);
 901   if (ret != 0) {
 902     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 903                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 904                             stack_size / K);
 905   }
 906 
 907   // Save some cycles and a page by disabling OS guard pages where we have our own
 908   // VM guard pages (in java threads). For other threads, keep system default guard
 909   // pages in place.
 910   if (ret == 0 && (thr_type == java_thread || thr_type == compiler_thread)) {
 911     ret = pthread_attr_setguardsize(&attr, 0);
 912   }
 913 
 914   pthread_t tid = 0;
 915   if (ret == 0) {
 916     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 917   }
 918 
 919   if (ret == 0) {
 920     char buf[64];
 921     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 922       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 923   } else {
 924     char buf[64];
 925     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 926       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 927   }
 928 
 929   pthread_attr_destroy(&attr);
 930 
 931   if (ret != 0) {
 932     // Need to clean up stuff we've allocated so far.
 933     thread->set_osthread(NULL);
 934     delete osthread;
 935     return false;
 936   }
 937 
 938   // OSThread::thread_id is the pthread id.
 939   osthread->set_thread_id(tid);
 940 
 941   return true;
 942 }
 943 
 944 /////////////////////////////////////////////////////////////////////////////
 945 // attach existing thread
 946 
 947 // bootstrap the main thread
 948 bool os::create_main_thread(JavaThread* thread) {
 949   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 950   return create_attached_thread(thread);
 951 }
 952 
 953 bool os::create_attached_thread(JavaThread* thread) {
 954 #ifdef ASSERT
 955     thread->verify_not_published();
 956 #endif
 957 
 958   // Allocate the OSThread object
 959   OSThread* osthread = new OSThread(NULL, NULL);
 960 
 961   if (osthread == NULL) {
 962     return false;
 963   }
 964 
 965   const pthread_t pthread_id = ::pthread_self();
 966   const tid_t kernel_thread_id = ::thread_self();
 967 
 968   // OSThread::thread_id is the pthread id.
 969   osthread->set_thread_id(pthread_id);
 970 
 971   // .. but keep kernel thread id too for diagnostics
 972   osthread->set_kernel_thread_id(kernel_thread_id);
 973 
 974   // initialize floating point control register
 975   os::Aix::init_thread_fpu_state();
 976 
 977   // Initial thread state is RUNNABLE
 978   osthread->set_state(RUNNABLE);
 979 
 980   thread->set_osthread(osthread);
 981 
 982   if (UseNUMA) {
 983     int lgrp_id = os::numa_get_group_id();
 984     if (lgrp_id != -1) {
 985       thread->set_lgrp_id(lgrp_id);
 986     }
 987   }
 988 
 989   // initialize signal mask for this thread
 990   // and save the caller's signal mask
 991   os::Aix::hotspot_sigmask(thread);
 992 
 993   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 994     os::current_thread_id(), (uintx) kernel_thread_id);
 995 
 996   return true;
 997 }
 998 
 999 void os::pd_start_thread(Thread* thread) {
1000   int status = pthread_continue_np(thread->osthread()->pthread_id());
1001   assert(status == 0, "thr_continue failed");
1002 }
1003 
1004 // Free OS resources related to the OSThread
1005 void os::free_thread(OSThread* osthread) {
1006   assert(osthread != NULL, "osthread not set");
1007 
1008   // We are told to free resources of the argument thread,
1009   // but we can only really operate on the current thread.
1010   assert(Thread::current()->osthread() == osthread,
1011          "os::free_thread but not current thread");
1012 
1013   // Restore caller's signal mask
1014   sigset_t sigmask = osthread->caller_sigmask();
1015   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1016 
1017   delete osthread;
1018 }
1019 
1020 ////////////////////////////////////////////////////////////////////////////////
1021 // time support
1022 
1023 // Time since start-up in seconds to a fine granularity.
1024 // Used by VMSelfDestructTimer and the MemProfiler.
1025 double os::elapsedTime() {
1026   return (double)(os::elapsed_counter()) * 0.000001;
1027 }
1028 
1029 jlong os::elapsed_counter() {
1030   timeval time;
1031   int status = gettimeofday(&time, NULL);
1032   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1033 }
1034 
1035 jlong os::elapsed_frequency() {
1036   return (1000 * 1000);
1037 }
1038 
1039 bool os::supports_vtime() { return true; }
1040 bool os::enable_vtime()   { return false; }
1041 bool os::vtime_enabled()  { return false; }
1042 
1043 double os::elapsedVTime() {
1044   struct rusage usage;
1045   int retval = getrusage(RUSAGE_THREAD, &usage);
1046   if (retval == 0) {
1047     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1048   } else {
1049     // better than nothing, but not much
1050     return elapsedTime();
1051   }
1052 }
1053 
1054 jlong os::javaTimeMillis() {
1055   timeval time;
1056   int status = gettimeofday(&time, NULL);
1057   assert(status != -1, "aix error at gettimeofday()");
1058   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1059 }
1060 
1061 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1062   timeval time;
1063   int status = gettimeofday(&time, NULL);
1064   assert(status != -1, "aix error at gettimeofday()");
1065   seconds = jlong(time.tv_sec);
1066   nanos = jlong(time.tv_usec) * 1000;
1067 }
1068 
1069 // We use mread_real_time here.
1070 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1071 // it has to be converted to real time. AIX documentations suggests to do
1072 // this unconditionally, so we do it.
1073 //
1074 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1075 //
1076 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1077 // conversion is necessary. However, mread_real_time will not return
1078 // monotonic results but merely matches read_real_time. So we need a tweak
1079 // to ensure monotonic results.
1080 //
1081 // For PASE no public documentation exists, just word by IBM
1082 jlong os::javaTimeNanos() {
1083   timebasestruct_t time;
1084   int rc = mread_real_time(&time, TIMEBASE_SZ);
1085   if (os::Aix::on_pase()) {
1086     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1087     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1088     jlong prev = max_real_time;
1089     if (now <= prev) {
1090       return prev;   // same or retrograde time;
1091     }
1092     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1093     assert(obsv >= prev, "invariant");   // Monotonicity
1094     // If the CAS succeeded then we're done and return "now".
1095     // If the CAS failed and the observed value "obsv" is >= now then
1096     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1097     // some other thread raced this thread and installed a new value, in which case
1098     // we could either (a) retry the entire operation, (b) retry trying to install now
1099     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1100     // we might discard a higher "now" value in deference to a slightly lower but freshly
1101     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1102     // to (a) or (b) -- and greatly reduces coherence traffic.
1103     // We might also condition (c) on the magnitude of the delta between obsv and now.
1104     // Avoiding excessive CAS operations to hot RW locations is critical.
1105     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1106     return (prev == obsv) ? now : obsv;
1107   } else {
1108     if (rc != RTC_POWER) {
1109       rc = time_base_to_time(&time, TIMEBASE_SZ);
1110       assert(rc != -1, "error calling time_base_to_time()");
1111     }
1112     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1113   }
1114 }
1115 
1116 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1117   info_ptr->max_value = ALL_64_BITS;
1118   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1119   info_ptr->may_skip_backward = false;
1120   info_ptr->may_skip_forward = false;
1121   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1122 }
1123 
1124 // Return the real, user, and system times in seconds from an
1125 // arbitrary fixed point in the past.
1126 bool os::getTimesSecs(double* process_real_time,
1127                       double* process_user_time,
1128                       double* process_system_time) {
1129   struct tms ticks;
1130   clock_t real_ticks = times(&ticks);
1131 
1132   if (real_ticks == (clock_t) (-1)) {
1133     return false;
1134   } else {
1135     double ticks_per_second = (double) clock_tics_per_sec;
1136     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1137     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1138     *process_real_time = ((double) real_ticks) / ticks_per_second;
1139 
1140     return true;
1141   }
1142 }
1143 
1144 char * os::local_time_string(char *buf, size_t buflen) {
1145   struct tm t;
1146   time_t long_time;
1147   time(&long_time);
1148   localtime_r(&long_time, &t);
1149   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1150                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1151                t.tm_hour, t.tm_min, t.tm_sec);
1152   return buf;
1153 }
1154 
1155 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1156   return localtime_r(clock, res);
1157 }
1158 
1159 ////////////////////////////////////////////////////////////////////////////////
1160 // runtime exit support
1161 
1162 // Note: os::shutdown() might be called very early during initialization, or
1163 // called from signal handler. Before adding something to os::shutdown(), make
1164 // sure it is async-safe and can handle partially initialized VM.
1165 void os::shutdown() {
1166 
1167   // allow PerfMemory to attempt cleanup of any persistent resources
1168   perfMemory_exit();
1169 
1170   // needs to remove object in file system
1171   AttachListener::abort();
1172 
1173   // flush buffered output, finish log files
1174   ostream_abort();
1175 
1176   // Check for abort hook
1177   abort_hook_t abort_hook = Arguments::abort_hook();
1178   if (abort_hook != NULL) {
1179     abort_hook();
1180   }
1181 }
1182 
1183 // Note: os::abort() might be called very early during initialization, or
1184 // called from signal handler. Before adding something to os::abort(), make
1185 // sure it is async-safe and can handle partially initialized VM.
1186 void os::abort(bool dump_core, void* siginfo, const void* context) {
1187   os::shutdown();
1188   if (dump_core) {
1189 #ifndef PRODUCT
1190     fdStream out(defaultStream::output_fd());
1191     out.print_raw("Current thread is ");
1192     char buf[16];
1193     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1194     out.print_raw_cr(buf);
1195     out.print_raw_cr("Dumping core ...");
1196 #endif
1197     ::abort(); // dump core
1198   }
1199 
1200   ::exit(1);
1201 }
1202 
1203 // Die immediately, no exit hook, no abort hook, no cleanup.
1204 void os::die() {
1205   ::abort();
1206 }
1207 
1208 // This method is a copy of JDK's sysGetLastErrorString
1209 // from src/solaris/hpi/src/system_md.c
1210 
1211 size_t os::lasterror(char *buf, size_t len) {
1212   if (errno == 0) return 0;
1213 
1214   const char *s = os::strerror(errno);
1215   size_t n = ::strlen(s);
1216   if (n >= len) {
1217     n = len - 1;
1218   }
1219   ::strncpy(buf, s, n);
1220   buf[n] = '\0';
1221   return n;
1222 }
1223 
1224 intx os::current_thread_id() {
1225   return (intx)pthread_self();
1226 }
1227 
1228 int os::current_process_id() {
1229   return getpid();
1230 }
1231 
1232 // DLL functions
1233 
1234 const char* os::dll_file_extension() { return ".so"; }
1235 
1236 // This must be hard coded because it's the system's temporary
1237 // directory not the java application's temp directory, ala java.io.tmpdir.
1238 const char* os::get_temp_directory() { return "/tmp"; }
1239 
1240 // Check if addr is inside libjvm.so.
1241 bool os::address_is_in_vm(address addr) {
1242 
1243   // Input could be a real pc or a function pointer literal. The latter
1244   // would be a function descriptor residing in the data segment of a module.
1245   loaded_module_t lm;
1246   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1247     return lm.is_in_vm;
1248   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1249     return lm.is_in_vm;
1250   } else {
1251     return false;
1252   }
1253 
1254 }
1255 
1256 // Resolve an AIX function descriptor literal to a code pointer.
1257 // If the input is a valid code pointer to a text segment of a loaded module,
1258 //   it is returned unchanged.
1259 // If the input is a valid AIX function descriptor, it is resolved to the
1260 //   code entry point.
1261 // If the input is neither a valid function descriptor nor a valid code pointer,
1262 //   NULL is returned.
1263 static address resolve_function_descriptor_to_code_pointer(address p) {
1264 
1265   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1266     // It is a real code pointer.
1267     return p;
1268   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1269     // Pointer to data segment, potential function descriptor.
1270     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1271     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1272       // It is a function descriptor.
1273       return code_entry;
1274     }
1275   }
1276 
1277   return NULL;
1278 }
1279 
1280 bool os::dll_address_to_function_name(address addr, char *buf,
1281                                       int buflen, int *offset,
1282                                       bool demangle) {
1283   if (offset) {
1284     *offset = -1;
1285   }
1286   // Buf is not optional, but offset is optional.
1287   assert(buf != NULL, "sanity check");
1288   buf[0] = '\0';
1289 
1290   // Resolve function ptr literals first.
1291   addr = resolve_function_descriptor_to_code_pointer(addr);
1292   if (!addr) {
1293     return false;
1294   }
1295 
1296   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1297 }
1298 
1299 bool os::dll_address_to_library_name(address addr, char* buf,
1300                                      int buflen, int* offset) {
1301   if (offset) {
1302     *offset = -1;
1303   }
1304   // Buf is not optional, but offset is optional.
1305   assert(buf != NULL, "sanity check");
1306   buf[0] = '\0';
1307 
1308   // Resolve function ptr literals first.
1309   addr = resolve_function_descriptor_to_code_pointer(addr);
1310   if (!addr) {
1311     return false;
1312   }
1313 
1314   return AixSymbols::get_module_name(addr, buf, buflen);
1315 }
1316 
1317 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1318 // for the same architecture as Hotspot is running on.
1319 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1320 
1321   if (ebuf && ebuflen > 0) {
1322     ebuf[0] = '\0';
1323     ebuf[ebuflen - 1] = '\0';
1324   }
1325 
1326   if (!filename || strlen(filename) == 0) {
1327     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1328     return NULL;
1329   }
1330 
1331   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1332   void * result= ::dlopen(filename, RTLD_LAZY);
1333   if (result != NULL) {
1334     // Reload dll cache. Don't do this in signal handling.
1335     LoadedLibraries::reload();
1336     return result;
1337   } else {
1338     // error analysis when dlopen fails
1339     const char* const error_report = ::dlerror();
1340     if (error_report && ebuf && ebuflen > 0) {
1341       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1342                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1343     }
1344   }
1345   return NULL;
1346 }
1347 
1348 void* os::dll_lookup(void* handle, const char* name) {
1349   void* res = dlsym(handle, name);
1350   return res;
1351 }
1352 
1353 void* os::get_default_process_handle() {
1354   return (void*)::dlopen(NULL, RTLD_LAZY);
1355 }
1356 
1357 void os::print_dll_info(outputStream *st) {
1358   st->print_cr("Dynamic libraries:");
1359   LoadedLibraries::print(st);
1360 }
1361 
1362 void os::get_summary_os_info(char* buf, size_t buflen) {
1363   // There might be something more readable than uname results for AIX.
1364   struct utsname name;
1365   uname(&name);
1366   snprintf(buf, buflen, "%s %s", name.release, name.version);
1367 }
1368 
1369 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1370   // Not yet implemented.
1371   return 0;
1372 }
1373 
1374 void os::print_os_info_brief(outputStream* st) {
1375   uint32_t ver = os::Aix::os_version();
1376   st->print_cr("AIX kernel version %u.%u.%u.%u",
1377                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1378 
1379   os::Posix::print_uname_info(st);
1380 
1381   // Linux uses print_libversion_info(st); here.
1382 }
1383 
1384 void os::print_os_info(outputStream* st) {
1385   st->print("OS:");
1386 
1387   st->print("uname:");
1388   struct utsname name;
1389   uname(&name);
1390   st->print(name.sysname); st->print(" ");
1391   st->print(name.nodename); st->print(" ");
1392   st->print(name.release); st->print(" ");
1393   st->print(name.version); st->print(" ");
1394   st->print(name.machine);
1395   st->cr();
1396 
1397   uint32_t ver = os::Aix::os_version();
1398   st->print_cr("AIX kernel version %u.%u.%u.%u",
1399                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1400 
1401   os::Posix::print_rlimit_info(st);
1402 
1403   // load average
1404   st->print("load average:");
1405   double loadavg[3] = {-1.L, -1.L, -1.L};
1406   os::loadavg(loadavg, 3);
1407   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1408   st->cr();
1409 
1410   // print wpar info
1411   libperfstat::wparinfo_t wi;
1412   if (libperfstat::get_wparinfo(&wi)) {
1413     st->print_cr("wpar info");
1414     st->print_cr("name: %s", wi.name);
1415     st->print_cr("id:   %d", wi.wpar_id);
1416     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1417   }
1418 
1419   // print partition info
1420   libperfstat::partitioninfo_t pi;
1421   if (libperfstat::get_partitioninfo(&pi)) {
1422     st->print_cr("partition info");
1423     st->print_cr(" name: %s", pi.name);
1424   }
1425 
1426 }
1427 
1428 void os::print_memory_info(outputStream* st) {
1429 
1430   st->print_cr("Memory:");
1431 
1432   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1433     describe_pagesize(g_multipage_support.pagesize));
1434   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1435     describe_pagesize(g_multipage_support.datapsize));
1436   st->print_cr("  Text page size:                         %s",
1437     describe_pagesize(g_multipage_support.textpsize));
1438   st->print_cr("  Thread stack page size (pthread):       %s",
1439     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1440   st->print_cr("  Default shared memory page size:        %s",
1441     describe_pagesize(g_multipage_support.shmpsize));
1442   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1443     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1444   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1445     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1446   st->print_cr("  Multipage error: %d",
1447     g_multipage_support.error);
1448   st->cr();
1449   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1450 
1451   // print out LDR_CNTRL because it affects the default page sizes
1452   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1453   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1454 
1455   // Print out EXTSHM because it is an unsupported setting.
1456   const char* const extshm = ::getenv("EXTSHM");
1457   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1458   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1459     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1460   }
1461 
1462   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1463   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1464   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1465       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1466   st->cr();
1467 
1468   os::Aix::meminfo_t mi;
1469   if (os::Aix::get_meminfo(&mi)) {
1470     if (os::Aix::on_aix()) {
1471       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1472       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1473       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1474       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1475     } else {
1476       // PASE - Numbers are result of QWCRSSTS; they mean:
1477       // real_total: Sum of all system pools
1478       // real_free: always 0
1479       // pgsp_total: we take the size of the system ASP
1480       // pgsp_free: size of system ASP times percentage of system ASP unused
1481       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1482       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1483       st->print_cr("%% system asp used : %.2f",
1484         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1485     }
1486   }
1487   st->cr();
1488 
1489   // Print program break.
1490   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1491   address brk_now = (address)::sbrk(0);
1492   if (brk_now != (address)-1) {
1493     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1494                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1495   }
1496   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1497   st->cr();
1498 
1499   // Print segments allocated with os::reserve_memory.
1500   st->print_cr("internal virtual memory regions used by vm:");
1501   vmembk_print_on(st);
1502 }
1503 
1504 // Get a string for the cpuinfo that is a summary of the cpu type
1505 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1506   // read _system_configuration.version
1507   switch (_system_configuration.version) {
1508   case PV_8:
1509     strncpy(buf, "Power PC 8", buflen);
1510     break;
1511   case PV_7:
1512     strncpy(buf, "Power PC 7", buflen);
1513     break;
1514   case PV_6_1:
1515     strncpy(buf, "Power PC 6 DD1.x", buflen);
1516     break;
1517   case PV_6:
1518     strncpy(buf, "Power PC 6", buflen);
1519     break;
1520   case PV_5:
1521     strncpy(buf, "Power PC 5", buflen);
1522     break;
1523   case PV_5_2:
1524     strncpy(buf, "Power PC 5_2", buflen);
1525     break;
1526   case PV_5_3:
1527     strncpy(buf, "Power PC 5_3", buflen);
1528     break;
1529   case PV_5_Compat:
1530     strncpy(buf, "PV_5_Compat", buflen);
1531     break;
1532   case PV_6_Compat:
1533     strncpy(buf, "PV_6_Compat", buflen);
1534     break;
1535   case PV_7_Compat:
1536     strncpy(buf, "PV_7_Compat", buflen);
1537     break;
1538   case PV_8_Compat:
1539     strncpy(buf, "PV_8_Compat", buflen);
1540     break;
1541   default:
1542     strncpy(buf, "unknown", buflen);
1543   }
1544 }
1545 
1546 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1547   // Nothing to do beyond of what os::print_cpu_info() does.
1548 }
1549 
1550 static void print_signal_handler(outputStream* st, int sig,
1551                                  char* buf, size_t buflen);
1552 
1553 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1554   st->print_cr("Signal Handlers:");
1555   print_signal_handler(st, SIGSEGV, buf, buflen);
1556   print_signal_handler(st, SIGBUS , buf, buflen);
1557   print_signal_handler(st, SIGFPE , buf, buflen);
1558   print_signal_handler(st, SIGPIPE, buf, buflen);
1559   print_signal_handler(st, SIGXFSZ, buf, buflen);
1560   print_signal_handler(st, SIGILL , buf, buflen);
1561   print_signal_handler(st, SR_signum, buf, buflen);
1562   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1563   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1564   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1565   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1566   print_signal_handler(st, SIGTRAP, buf, buflen);
1567   // We also want to know if someone else adds a SIGDANGER handler because
1568   // that will interfere with OOM killling.
1569   print_signal_handler(st, SIGDANGER, buf, buflen);
1570 }
1571 
1572 static char saved_jvm_path[MAXPATHLEN] = {0};
1573 
1574 // Find the full path to the current module, libjvm.so.
1575 void os::jvm_path(char *buf, jint buflen) {
1576   // Error checking.
1577   if (buflen < MAXPATHLEN) {
1578     assert(false, "must use a large-enough buffer");
1579     buf[0] = '\0';
1580     return;
1581   }
1582   // Lazy resolve the path to current module.
1583   if (saved_jvm_path[0] != 0) {
1584     strcpy(buf, saved_jvm_path);
1585     return;
1586   }
1587 
1588   Dl_info dlinfo;
1589   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1590   assert(ret != 0, "cannot locate libjvm");
1591   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1592   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1593 
1594   if (Arguments::sun_java_launcher_is_altjvm()) {
1595     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1596     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1597     // If "/jre/lib/" appears at the right place in the string, then
1598     // assume we are installed in a JDK and we're done. Otherwise, check
1599     // for a JAVA_HOME environment variable and fix up the path so it
1600     // looks like libjvm.so is installed there (append a fake suffix
1601     // hotspot/libjvm.so).
1602     const char *p = buf + strlen(buf) - 1;
1603     for (int count = 0; p > buf && count < 4; ++count) {
1604       for (--p; p > buf && *p != '/'; --p)
1605         /* empty */ ;
1606     }
1607 
1608     if (strncmp(p, "/jre/lib/", 9) != 0) {
1609       // Look for JAVA_HOME in the environment.
1610       char* java_home_var = ::getenv("JAVA_HOME");
1611       if (java_home_var != NULL && java_home_var[0] != 0) {
1612         char* jrelib_p;
1613         int len;
1614 
1615         // Check the current module name "libjvm.so".
1616         p = strrchr(buf, '/');
1617         if (p == NULL) {
1618           return;
1619         }
1620         assert(strstr(p, "/libjvm") == p, "invalid library name");
1621 
1622         rp = os::Posix::realpath(java_home_var, buf, buflen);
1623         if (rp == NULL) {
1624           return;
1625         }
1626 
1627         // determine if this is a legacy image or modules image
1628         // modules image doesn't have "jre" subdirectory
1629         len = strlen(buf);
1630         assert(len < buflen, "Ran out of buffer room");
1631         jrelib_p = buf + len;
1632         snprintf(jrelib_p, buflen-len, "/jre/lib");
1633         if (0 != access(buf, F_OK)) {
1634           snprintf(jrelib_p, buflen-len, "/lib");
1635         }
1636 
1637         if (0 == access(buf, F_OK)) {
1638           // Use current module name "libjvm.so"
1639           len = strlen(buf);
1640           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1641         } else {
1642           // Go back to path of .so
1643           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1644           if (rp == NULL) {
1645             return;
1646           }
1647         }
1648       }
1649     }
1650   }
1651 
1652   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1653   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1654 }
1655 
1656 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1657   // no prefix required, not even "_"
1658 }
1659 
1660 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1661   // no suffix required
1662 }
1663 
1664 ////////////////////////////////////////////////////////////////////////////////
1665 // sun.misc.Signal support
1666 
1667 static volatile jint sigint_count = 0;
1668 
1669 static void
1670 UserHandler(int sig, void *siginfo, void *context) {
1671   // 4511530 - sem_post is serialized and handled by the manager thread. When
1672   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1673   // don't want to flood the manager thread with sem_post requests.
1674   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1675     return;
1676 
1677   // Ctrl-C is pressed during error reporting, likely because the error
1678   // handler fails to abort. Let VM die immediately.
1679   if (sig == SIGINT && VMError::is_error_reported()) {
1680     os::die();
1681   }
1682 
1683   os::signal_notify(sig);
1684 }
1685 
1686 void* os::user_handler() {
1687   return CAST_FROM_FN_PTR(void*, UserHandler);
1688 }
1689 
1690 extern "C" {
1691   typedef void (*sa_handler_t)(int);
1692   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1693 }
1694 
1695 void* os::signal(int signal_number, void* handler) {
1696   struct sigaction sigAct, oldSigAct;
1697 
1698   sigfillset(&(sigAct.sa_mask));
1699 
1700   // Do not block out synchronous signals in the signal handler.
1701   // Blocking synchronous signals only makes sense if you can really
1702   // be sure that those signals won't happen during signal handling,
1703   // when the blocking applies. Normal signal handlers are lean and
1704   // do not cause signals. But our signal handlers tend to be "risky"
1705   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1706   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1707   // by a SIGILL, which was blocked due to the signal mask. The process
1708   // just hung forever. Better to crash from a secondary signal than to hang.
1709   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1710   sigdelset(&(sigAct.sa_mask), SIGBUS);
1711   sigdelset(&(sigAct.sa_mask), SIGILL);
1712   sigdelset(&(sigAct.sa_mask), SIGFPE);
1713   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1714 
1715   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1716 
1717   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1718 
1719   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1720     // -1 means registration failed
1721     return (void *)-1;
1722   }
1723 
1724   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1725 }
1726 
1727 void os::signal_raise(int signal_number) {
1728   ::raise(signal_number);
1729 }
1730 
1731 //
1732 // The following code is moved from os.cpp for making this
1733 // code platform specific, which it is by its very nature.
1734 //
1735 
1736 // Will be modified when max signal is changed to be dynamic
1737 int os::sigexitnum_pd() {
1738   return NSIG;
1739 }
1740 
1741 // a counter for each possible signal value
1742 static volatile jint pending_signals[NSIG+1] = { 0 };
1743 
1744 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1745 // On AIX, we use sem_init(), sem_post(), sem_wait()
1746 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1747 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1748 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1749 // on AIX, msem_..() calls are suspected of causing problems.
1750 static sem_t sig_sem;
1751 static msemaphore* p_sig_msem = 0;
1752 
1753 static void local_sem_init() {
1754   if (os::Aix::on_aix()) {
1755     int rc = ::sem_init(&sig_sem, 0, 0);
1756     guarantee(rc != -1, "sem_init failed");
1757   } else {
1758     // Memory semaphores must live in shared mem.
1759     guarantee0(p_sig_msem == NULL);
1760     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1761     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1762     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1763   }
1764 }
1765 
1766 static void local_sem_post() {
1767   static bool warn_only_once = false;
1768   if (os::Aix::on_aix()) {
1769     int rc = ::sem_post(&sig_sem);
1770     if (rc == -1 && !warn_only_once) {
1771       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1772       warn_only_once = true;
1773     }
1774   } else {
1775     guarantee0(p_sig_msem != NULL);
1776     int rc = ::msem_unlock(p_sig_msem, 0);
1777     if (rc == -1 && !warn_only_once) {
1778       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1779       warn_only_once = true;
1780     }
1781   }
1782 }
1783 
1784 static void local_sem_wait() {
1785   static bool warn_only_once = false;
1786   if (os::Aix::on_aix()) {
1787     int rc = ::sem_wait(&sig_sem);
1788     if (rc == -1 && !warn_only_once) {
1789       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1790       warn_only_once = true;
1791     }
1792   } else {
1793     guarantee0(p_sig_msem != NULL); // must init before use
1794     int rc = ::msem_lock(p_sig_msem, 0);
1795     if (rc == -1 && !warn_only_once) {
1796       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1797       warn_only_once = true;
1798     }
1799   }
1800 }
1801 
1802 static void jdk_misc_signal_init() {
1803   // Initialize signal structures
1804   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1805 
1806   // Initialize signal semaphore
1807   local_sem_init();
1808 }
1809 
1810 void os::signal_notify(int sig) {
1811   Atomic::inc(&pending_signals[sig]);
1812   local_sem_post();
1813 }
1814 
1815 static int check_pending_signals() {
1816   Atomic::store(0, &sigint_count);
1817   for (;;) {
1818     for (int i = 0; i < NSIG + 1; i++) {
1819       jint n = pending_signals[i];
1820       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1821         return i;
1822       }
1823     }
1824     JavaThread *thread = JavaThread::current();
1825     ThreadBlockInVM tbivm(thread);
1826 
1827     bool threadIsSuspended;
1828     do {
1829       thread->set_suspend_equivalent();
1830       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1831 
1832       local_sem_wait();
1833 
1834       // were we externally suspended while we were waiting?
1835       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1836       if (threadIsSuspended) {
1837         //
1838         // The semaphore has been incremented, but while we were waiting
1839         // another thread suspended us. We don't want to continue running
1840         // while suspended because that would surprise the thread that
1841         // suspended us.
1842         //
1843 
1844         local_sem_post();
1845 
1846         thread->java_suspend_self();
1847       }
1848     } while (threadIsSuspended);
1849   }
1850 }
1851 
1852 int os::signal_wait() {
1853   return check_pending_signals();
1854 }
1855 
1856 ////////////////////////////////////////////////////////////////////////////////
1857 // Virtual Memory
1858 
1859 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1860 
1861 #define VMEM_MAPPED  1
1862 #define VMEM_SHMATED 2
1863 
1864 struct vmembk_t {
1865   int type;         // 1 - mmap, 2 - shmat
1866   char* addr;
1867   size_t size;      // Real size, may be larger than usersize.
1868   size_t pagesize;  // page size of area
1869   vmembk_t* next;
1870 
1871   bool contains_addr(char* p) const {
1872     return p >= addr && p < (addr + size);
1873   }
1874 
1875   bool contains_range(char* p, size_t s) const {
1876     return contains_addr(p) && contains_addr(p + s - 1);
1877   }
1878 
1879   void print_on(outputStream* os) const {
1880     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1881       " bytes, %d %s pages), %s",
1882       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1883       (type == VMEM_SHMATED ? "shmat" : "mmap")
1884     );
1885   }
1886 
1887   // Check that range is a sub range of memory block (or equal to memory block);
1888   // also check that range is fully page aligned to the page size if the block.
1889   void assert_is_valid_subrange(char* p, size_t s) const {
1890     if (!contains_range(p, s)) {
1891       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1892               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1893               p, p + s, addr, addr + size);
1894       guarantee0(false);
1895     }
1896     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1897       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1898               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1899       guarantee0(false);
1900     }
1901   }
1902 };
1903 
1904 static struct {
1905   vmembk_t* first;
1906   MiscUtils::CritSect cs;
1907 } vmem;
1908 
1909 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1910   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1911   assert0(p);
1912   if (p) {
1913     MiscUtils::AutoCritSect lck(&vmem.cs);
1914     p->addr = addr; p->size = size;
1915     p->pagesize = pagesize;
1916     p->type = type;
1917     p->next = vmem.first;
1918     vmem.first = p;
1919   }
1920 }
1921 
1922 static vmembk_t* vmembk_find(char* addr) {
1923   MiscUtils::AutoCritSect lck(&vmem.cs);
1924   for (vmembk_t* p = vmem.first; p; p = p->next) {
1925     if (p->addr <= addr && (p->addr + p->size) > addr) {
1926       return p;
1927     }
1928   }
1929   return NULL;
1930 }
1931 
1932 static void vmembk_remove(vmembk_t* p0) {
1933   MiscUtils::AutoCritSect lck(&vmem.cs);
1934   assert0(p0);
1935   assert0(vmem.first); // List should not be empty.
1936   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1937     if (*pp == p0) {
1938       *pp = p0->next;
1939       ::free(p0);
1940       return;
1941     }
1942   }
1943   assert0(false); // Not found?
1944 }
1945 
1946 static void vmembk_print_on(outputStream* os) {
1947   MiscUtils::AutoCritSect lck(&vmem.cs);
1948   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1949     vmi->print_on(os);
1950     os->cr();
1951   }
1952 }
1953 
1954 // Reserve and attach a section of System V memory.
1955 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1956 // address. Failing that, it will attach the memory anywhere.
1957 // If <requested_addr> is NULL, function will attach the memory anywhere.
1958 //
1959 // <alignment_hint> is being ignored by this function. It is very probable however that the
1960 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1961 // Should this be not enogh, we can put more work into it.
1962 static char* reserve_shmated_memory (
1963   size_t bytes,
1964   char* requested_addr,
1965   size_t alignment_hint) {
1966 
1967   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1968     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1969     bytes, requested_addr, alignment_hint);
1970 
1971   // Either give me wish address or wish alignment but not both.
1972   assert0(!(requested_addr != NULL && alignment_hint != 0));
1973 
1974   // We must prevent anyone from attaching too close to the
1975   // BRK because that may cause malloc OOM.
1976   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1977     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1978       "Will attach anywhere.", requested_addr);
1979     // Act like the OS refused to attach there.
1980     requested_addr = NULL;
1981   }
1982 
1983   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1984   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1985   if (os::Aix::on_pase_V5R4_or_older()) {
1986     ShouldNotReachHere();
1987   }
1988 
1989   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1990   const size_t size = align_up(bytes, 64*K);
1991 
1992   // Reserve the shared segment.
1993   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1994   if (shmid == -1) {
1995     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1996     return NULL;
1997   }
1998 
1999   // Important note:
2000   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
2001   // We must right after attaching it remove it from the system. System V shm segments are global and
2002   // survive the process.
2003   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2004 
2005   struct shmid_ds shmbuf;
2006   memset(&shmbuf, 0, sizeof(shmbuf));
2007   shmbuf.shm_pagesize = 64*K;
2008   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2009     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2010                size / (64*K), errno);
2011     // I want to know if this ever happens.
2012     assert(false, "failed to set page size for shmat");
2013   }
2014 
2015   // Now attach the shared segment.
2016   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2017   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2018   // were not a segment boundary.
2019   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2020   const int errno_shmat = errno;
2021 
2022   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2023   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2024     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2025     assert(false, "failed to remove shared memory segment!");
2026   }
2027 
2028   // Handle shmat error. If we failed to attach, just return.
2029   if (addr == (char*)-1) {
2030     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2031     return NULL;
2032   }
2033 
2034   // Just for info: query the real page size. In case setting the page size did not
2035   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2036   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2037   if (real_pagesize != shmbuf.shm_pagesize) {
2038     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2039   }
2040 
2041   if (addr) {
2042     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2043       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2044   } else {
2045     if (requested_addr != NULL) {
2046       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2047     } else {
2048       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2049     }
2050   }
2051 
2052   // book-keeping
2053   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2054   assert0(is_aligned_to(addr, os::vm_page_size()));
2055 
2056   return addr;
2057 }
2058 
2059 static bool release_shmated_memory(char* addr, size_t size) {
2060 
2061   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2062     addr, addr + size - 1);
2063 
2064   bool rc = false;
2065 
2066   // TODO: is there a way to verify shm size without doing bookkeeping?
2067   if (::shmdt(addr) != 0) {
2068     trcVerbose("error (%d).", errno);
2069   } else {
2070     trcVerbose("ok.");
2071     rc = true;
2072   }
2073   return rc;
2074 }
2075 
2076 static bool uncommit_shmated_memory(char* addr, size_t size) {
2077   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2078     addr, addr + size - 1);
2079 
2080   const bool rc = my_disclaim64(addr, size);
2081 
2082   if (!rc) {
2083     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2084     return false;
2085   }
2086   return true;
2087 }
2088 
2089 ////////////////////////////////  mmap-based routines /////////////////////////////////
2090 
2091 // Reserve memory via mmap.
2092 // If <requested_addr> is given, an attempt is made to attach at the given address.
2093 // Failing that, memory is allocated at any address.
2094 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2095 // allocate at an address aligned with the given alignment. Failing that, memory
2096 // is aligned anywhere.
2097 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2098   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2099     "alignment_hint " UINTX_FORMAT "...",
2100     bytes, requested_addr, alignment_hint);
2101 
2102   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2103   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2104     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2105     return NULL;
2106   }
2107 
2108   // We must prevent anyone from attaching too close to the
2109   // BRK because that may cause malloc OOM.
2110   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2111     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2112       "Will attach anywhere.", requested_addr);
2113     // Act like the OS refused to attach there.
2114     requested_addr = NULL;
2115   }
2116 
2117   // Specify one or the other but not both.
2118   assert0(!(requested_addr != NULL && alignment_hint > 0));
2119 
2120   // In 64K mode, we claim the global page size (os::vm_page_size())
2121   // is 64K. This is one of the few points where that illusion may
2122   // break, because mmap() will always return memory aligned to 4K. So
2123   // we must ensure we only ever return memory aligned to 64k.
2124   if (alignment_hint) {
2125     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2126   } else {
2127     alignment_hint = os::vm_page_size();
2128   }
2129 
2130   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2131   const size_t size = align_up(bytes, os::vm_page_size());
2132 
2133   // alignment: Allocate memory large enough to include an aligned range of the right size and
2134   // cut off the leading and trailing waste pages.
2135   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2136   const size_t extra_size = size + alignment_hint;
2137 
2138   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2139   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2140   int flags = MAP_ANONYMOUS | MAP_SHARED;
2141 
2142   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2143   // it means if wishaddress is given but MAP_FIXED is not set.
2144   //
2145   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2146   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2147   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2148   // get clobbered.
2149   if (requested_addr != NULL) {
2150     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2151       flags |= MAP_FIXED;
2152     }
2153   }
2154 
2155   char* addr = (char*)::mmap(requested_addr, extra_size,
2156       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2157 
2158   if (addr == MAP_FAILED) {
2159     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2160     return NULL;
2161   }
2162 
2163   // Handle alignment.
2164   char* const addr_aligned = align_up(addr, alignment_hint);
2165   const size_t waste_pre = addr_aligned - addr;
2166   char* const addr_aligned_end = addr_aligned + size;
2167   const size_t waste_post = extra_size - waste_pre - size;
2168   if (waste_pre > 0) {
2169     ::munmap(addr, waste_pre);
2170   }
2171   if (waste_post > 0) {
2172     ::munmap(addr_aligned_end, waste_post);
2173   }
2174   addr = addr_aligned;
2175 
2176   if (addr) {
2177     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2178       addr, addr + bytes, bytes);
2179   } else {
2180     if (requested_addr != NULL) {
2181       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2182     } else {
2183       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2184     }
2185   }
2186 
2187   // bookkeeping
2188   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2189 
2190   // Test alignment, see above.
2191   assert0(is_aligned_to(addr, os::vm_page_size()));
2192 
2193   return addr;
2194 }
2195 
2196 static bool release_mmaped_memory(char* addr, size_t size) {
2197   assert0(is_aligned_to(addr, os::vm_page_size()));
2198   assert0(is_aligned_to(size, os::vm_page_size()));
2199 
2200   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2201     addr, addr + size - 1);
2202   bool rc = false;
2203 
2204   if (::munmap(addr, size) != 0) {
2205     trcVerbose("failed (%d)\n", errno);
2206     rc = false;
2207   } else {
2208     trcVerbose("ok.");
2209     rc = true;
2210   }
2211 
2212   return rc;
2213 }
2214 
2215 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2216 
2217   assert0(is_aligned_to(addr, os::vm_page_size()));
2218   assert0(is_aligned_to(size, os::vm_page_size()));
2219 
2220   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2221     addr, addr + size - 1);
2222   bool rc = false;
2223 
2224   // Uncommit mmap memory with msync MS_INVALIDATE.
2225   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2226     trcVerbose("failed (%d)\n", errno);
2227     rc = false;
2228   } else {
2229     trcVerbose("ok.");
2230     rc = true;
2231   }
2232 
2233   return rc;
2234 }
2235 
2236 int os::vm_page_size() {
2237   // Seems redundant as all get out.
2238   assert(os::Aix::page_size() != -1, "must call os::init");
2239   return os::Aix::page_size();
2240 }
2241 
2242 // Aix allocates memory by pages.
2243 int os::vm_allocation_granularity() {
2244   assert(os::Aix::page_size() != -1, "must call os::init");
2245   return os::Aix::page_size();
2246 }
2247 
2248 #ifdef PRODUCT
2249 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2250                                     int err) {
2251   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2252           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2253           os::errno_name(err), err);
2254 }
2255 #endif
2256 
2257 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2258                                   const char* mesg) {
2259   assert(mesg != NULL, "mesg must be specified");
2260   if (!pd_commit_memory(addr, size, exec)) {
2261     // Add extra info in product mode for vm_exit_out_of_memory():
2262     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2263     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2264   }
2265 }
2266 
2267 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2268 
2269   assert(is_aligned_to(addr, os::vm_page_size()),
2270     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2271     p2i(addr), os::vm_page_size());
2272   assert(is_aligned_to(size, os::vm_page_size()),
2273     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2274     size, os::vm_page_size());
2275 
2276   vmembk_t* const vmi = vmembk_find(addr);
2277   guarantee0(vmi);
2278   vmi->assert_is_valid_subrange(addr, size);
2279 
2280   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2281 
2282   if (UseExplicitCommit) {
2283     // AIX commits memory on touch. So, touch all pages to be committed.
2284     for (char* p = addr; p < (addr + size); p += 4*K) {
2285       *p = '\0';
2286     }
2287   }
2288 
2289   return true;
2290 }
2291 
2292 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2293   return pd_commit_memory(addr, size, exec);
2294 }
2295 
2296 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2297                                   size_t alignment_hint, bool exec,
2298                                   const char* mesg) {
2299   // Alignment_hint is ignored on this OS.
2300   pd_commit_memory_or_exit(addr, size, exec, mesg);
2301 }
2302 
2303 bool os::pd_uncommit_memory(char* addr, size_t size) {
2304   assert(is_aligned_to(addr, os::vm_page_size()),
2305     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2306     p2i(addr), os::vm_page_size());
2307   assert(is_aligned_to(size, os::vm_page_size()),
2308     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2309     size, os::vm_page_size());
2310 
2311   // Dynamically do different things for mmap/shmat.
2312   const vmembk_t* const vmi = vmembk_find(addr);
2313   guarantee0(vmi);
2314   vmi->assert_is_valid_subrange(addr, size);
2315 
2316   if (vmi->type == VMEM_SHMATED) {
2317     return uncommit_shmated_memory(addr, size);
2318   } else {
2319     return uncommit_mmaped_memory(addr, size);
2320   }
2321 }
2322 
2323 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2324   // Do not call this; no need to commit stack pages on AIX.
2325   ShouldNotReachHere();
2326   return true;
2327 }
2328 
2329 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2330   // Do not call this; no need to commit stack pages on AIX.
2331   ShouldNotReachHere();
2332   return true;
2333 }
2334 
2335 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2336 }
2337 
2338 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2339 }
2340 
2341 void os::numa_make_global(char *addr, size_t bytes) {
2342 }
2343 
2344 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2345 }
2346 
2347 bool os::numa_topology_changed() {
2348   return false;
2349 }
2350 
2351 size_t os::numa_get_groups_num() {
2352   return 1;
2353 }
2354 
2355 int os::numa_get_group_id() {
2356   return 0;
2357 }
2358 
2359 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2360   if (size > 0) {
2361     ids[0] = 0;
2362     return 1;
2363   }
2364   return 0;
2365 }
2366 
2367 bool os::get_page_info(char *start, page_info* info) {
2368   return false;
2369 }
2370 
2371 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2372   return end;
2373 }
2374 
2375 // Reserves and attaches a shared memory segment.
2376 // Will assert if a wish address is given and could not be obtained.
2377 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2378 
2379   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2380   // thereby clobbering old mappings at that place. That is probably
2381   // not intended, never used and almost certainly an error were it
2382   // ever be used this way (to try attaching at a specified address
2383   // without clobbering old mappings an alternate API exists,
2384   // os::attempt_reserve_memory_at()).
2385   // Instead of mimicking the dangerous coding of the other platforms, here I
2386   // just ignore the request address (release) or assert(debug).
2387   assert0(requested_addr == NULL);
2388 
2389   // Always round to os::vm_page_size(), which may be larger than 4K.
2390   bytes = align_up(bytes, os::vm_page_size());
2391   const size_t alignment_hint0 =
2392     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2393 
2394   // In 4K mode always use mmap.
2395   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2396   if (os::vm_page_size() == 4*K) {
2397     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2398   } else {
2399     if (bytes >= Use64KPagesThreshold) {
2400       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2401     } else {
2402       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2403     }
2404   }
2405 }
2406 
2407 bool os::pd_release_memory(char* addr, size_t size) {
2408 
2409   // Dynamically do different things for mmap/shmat.
2410   vmembk_t* const vmi = vmembk_find(addr);
2411   guarantee0(vmi);
2412 
2413   // Always round to os::vm_page_size(), which may be larger than 4K.
2414   size = align_up(size, os::vm_page_size());
2415   addr = align_up(addr, os::vm_page_size());
2416 
2417   bool rc = false;
2418   bool remove_bookkeeping = false;
2419   if (vmi->type == VMEM_SHMATED) {
2420     // For shmatted memory, we do:
2421     // - If user wants to release the whole range, release the memory (shmdt).
2422     // - If user only wants to release a partial range, uncommit (disclaim) that
2423     //   range. That way, at least, we do not use memory anymore (bust still page
2424     //   table space).
2425     vmi->assert_is_valid_subrange(addr, size);
2426     if (addr == vmi->addr && size == vmi->size) {
2427       rc = release_shmated_memory(addr, size);
2428       remove_bookkeeping = true;
2429     } else {
2430       rc = uncommit_shmated_memory(addr, size);
2431     }
2432   } else {
2433     // User may unmap partial regions but region has to be fully contained.
2434 #ifdef ASSERT
2435     vmi->assert_is_valid_subrange(addr, size);
2436 #endif
2437     rc = release_mmaped_memory(addr, size);
2438     remove_bookkeeping = true;
2439   }
2440 
2441   // update bookkeeping
2442   if (rc && remove_bookkeeping) {
2443     vmembk_remove(vmi);
2444   }
2445 
2446   return rc;
2447 }
2448 
2449 static bool checked_mprotect(char* addr, size_t size, int prot) {
2450 
2451   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2452   // not tell me if protection failed when trying to protect an un-protectable range.
2453   //
2454   // This means if the memory was allocated using shmget/shmat, protection wont work
2455   // but mprotect will still return 0:
2456   //
2457   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2458 
2459   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2460 
2461   if (!rc) {
2462     const char* const s_errno = os::errno_name(errno);
2463     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2464     return false;
2465   }
2466 
2467   // mprotect success check
2468   //
2469   // Mprotect said it changed the protection but can I believe it?
2470   //
2471   // To be sure I need to check the protection afterwards. Try to
2472   // read from protected memory and check whether that causes a segfault.
2473   //
2474   if (!os::Aix::xpg_sus_mode()) {
2475 
2476     if (CanUseSafeFetch32()) {
2477 
2478       const bool read_protected =
2479         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2480          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2481 
2482       if (prot & PROT_READ) {
2483         rc = !read_protected;
2484       } else {
2485         rc = read_protected;
2486       }
2487 
2488       if (!rc) {
2489         if (os::Aix::on_pase()) {
2490           // There is an issue on older PASE systems where mprotect() will return success but the
2491           // memory will not be protected.
2492           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2493           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2494           // a stack. It is an OS error.
2495           //
2496           // A valid strategy is just to try again. This usually works. :-/
2497 
2498           ::usleep(1000);
2499           if (::mprotect(addr, size, prot) == 0) {
2500             const bool read_protected_2 =
2501               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2502               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2503             rc = true;
2504           }
2505         }
2506       }
2507     }
2508   }
2509 
2510   assert(rc == true, "mprotect failed.");
2511 
2512   return rc;
2513 }
2514 
2515 // Set protections specified
2516 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2517   unsigned int p = 0;
2518   switch (prot) {
2519   case MEM_PROT_NONE: p = PROT_NONE; break;
2520   case MEM_PROT_READ: p = PROT_READ; break;
2521   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2522   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2523   default:
2524     ShouldNotReachHere();
2525   }
2526   // is_committed is unused.
2527   return checked_mprotect(addr, size, p);
2528 }
2529 
2530 bool os::guard_memory(char* addr, size_t size) {
2531   return checked_mprotect(addr, size, PROT_NONE);
2532 }
2533 
2534 bool os::unguard_memory(char* addr, size_t size) {
2535   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2536 }
2537 
2538 // Large page support
2539 
2540 static size_t _large_page_size = 0;
2541 
2542 // Enable large page support if OS allows that.
2543 void os::large_page_init() {
2544   return; // Nothing to do. See query_multipage_support and friends.
2545 }
2546 
2547 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2548   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2549   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2550   // so this is not needed.
2551   assert(false, "should not be called on AIX");
2552   return NULL;
2553 }
2554 
2555 bool os::release_memory_special(char* base, size_t bytes) {
2556   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2557   Unimplemented();
2558   return false;
2559 }
2560 
2561 size_t os::large_page_size() {
2562   return _large_page_size;
2563 }
2564 
2565 bool os::can_commit_large_page_memory() {
2566   // Does not matter, we do not support huge pages.
2567   return false;
2568 }
2569 
2570 bool os::can_execute_large_page_memory() {
2571   // Does not matter, we do not support huge pages.
2572   return false;
2573 }
2574 
2575 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2576   assert(file_desc >= 0, "file_desc is not valid");
2577   char* result = NULL;
2578 
2579   // Always round to os::vm_page_size(), which may be larger than 4K.
2580   bytes = align_up(bytes, os::vm_page_size());
2581   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2582 
2583   if (result != NULL) {
2584     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2585       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2586     }
2587   }
2588   return result;
2589 }
2590 
2591 // Reserve memory at an arbitrary address, only if that area is
2592 // available (and not reserved for something else).
2593 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2594   char* addr = NULL;
2595 
2596   // Always round to os::vm_page_size(), which may be larger than 4K.
2597   bytes = align_up(bytes, os::vm_page_size());
2598 
2599   // In 4K mode always use mmap.
2600   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2601   if (os::vm_page_size() == 4*K) {
2602     return reserve_mmaped_memory(bytes, requested_addr, 0);
2603   } else {
2604     if (bytes >= Use64KPagesThreshold) {
2605       return reserve_shmated_memory(bytes, requested_addr, 0);
2606     } else {
2607       return reserve_mmaped_memory(bytes, requested_addr, 0);
2608     }
2609   }
2610 
2611   return addr;
2612 }
2613 
2614 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2615   return ::read(fd, buf, nBytes);
2616 }
2617 
2618 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2619   return ::pread(fd, buf, nBytes, offset);
2620 }
2621 
2622 void os::naked_short_sleep(jlong ms) {
2623   struct timespec req;
2624 
2625   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2626   req.tv_sec = 0;
2627   if (ms > 0) {
2628     req.tv_nsec = (ms % 1000) * 1000000;
2629   }
2630   else {
2631     req.tv_nsec = 1;
2632   }
2633 
2634   nanosleep(&req, NULL);
2635 
2636   return;
2637 }
2638 
2639 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2640 void os::infinite_sleep() {
2641   while (true) {    // sleep forever ...
2642     ::sleep(100);   // ... 100 seconds at a time
2643   }
2644 }
2645 
2646 // Used to convert frequent JVM_Yield() to nops
2647 bool os::dont_yield() {
2648   return DontYieldALot;
2649 }
2650 
2651 void os::naked_yield() {
2652   sched_yield();
2653 }
2654 
2655 ////////////////////////////////////////////////////////////////////////////////
2656 // thread priority support
2657 
2658 // From AIX manpage to pthread_setschedparam
2659 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2660 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2661 //
2662 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2663 // range from 40 to 80, where 40 is the least favored priority and 80
2664 // is the most favored."
2665 //
2666 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2667 // scheduling there; however, this still leaves iSeries.)
2668 //
2669 // We use the same values for AIX and PASE.
2670 int os::java_to_os_priority[CriticalPriority + 1] = {
2671   54,             // 0 Entry should never be used
2672 
2673   55,             // 1 MinPriority
2674   55,             // 2
2675   56,             // 3
2676 
2677   56,             // 4
2678   57,             // 5 NormPriority
2679   57,             // 6
2680 
2681   58,             // 7
2682   58,             // 8
2683   59,             // 9 NearMaxPriority
2684 
2685   60,             // 10 MaxPriority
2686 
2687   60              // 11 CriticalPriority
2688 };
2689 
2690 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2691   if (!UseThreadPriorities) return OS_OK;
2692   pthread_t thr = thread->osthread()->pthread_id();
2693   int policy = SCHED_OTHER;
2694   struct sched_param param;
2695   param.sched_priority = newpri;
2696   int ret = pthread_setschedparam(thr, policy, &param);
2697 
2698   if (ret != 0) {
2699     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2700         (int)thr, newpri, ret, os::errno_name(ret));
2701   }
2702   return (ret == 0) ? OS_OK : OS_ERR;
2703 }
2704 
2705 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2706   if (!UseThreadPriorities) {
2707     *priority_ptr = java_to_os_priority[NormPriority];
2708     return OS_OK;
2709   }
2710   pthread_t thr = thread->osthread()->pthread_id();
2711   int policy = SCHED_OTHER;
2712   struct sched_param param;
2713   int ret = pthread_getschedparam(thr, &policy, &param);
2714   *priority_ptr = param.sched_priority;
2715 
2716   return (ret == 0) ? OS_OK : OS_ERR;
2717 }
2718 
2719 // Hint to the underlying OS that a task switch would not be good.
2720 // Void return because it's a hint and can fail.
2721 void os::hint_no_preempt() {}
2722 
2723 ////////////////////////////////////////////////////////////////////////////////
2724 // suspend/resume support
2725 
2726 //  The low-level signal-based suspend/resume support is a remnant from the
2727 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2728 //  within hotspot. Currently used by JFR's OSThreadSampler
2729 //
2730 //  The remaining code is greatly simplified from the more general suspension
2731 //  code that used to be used.
2732 //
2733 //  The protocol is quite simple:
2734 //  - suspend:
2735 //      - sends a signal to the target thread
2736 //      - polls the suspend state of the osthread using a yield loop
2737 //      - target thread signal handler (SR_handler) sets suspend state
2738 //        and blocks in sigsuspend until continued
2739 //  - resume:
2740 //      - sets target osthread state to continue
2741 //      - sends signal to end the sigsuspend loop in the SR_handler
2742 //
2743 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2744 //  but is checked for NULL in SR_handler as a thread termination indicator.
2745 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2746 //
2747 //  Note that resume_clear_context() and suspend_save_context() are needed
2748 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2749 //  which in part is used by:
2750 //    - Forte Analyzer: AsyncGetCallTrace()
2751 //    - StackBanging: get_frame_at_stack_banging_point()
2752 
2753 static void resume_clear_context(OSThread *osthread) {
2754   osthread->set_ucontext(NULL);
2755   osthread->set_siginfo(NULL);
2756 }
2757 
2758 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2759   osthread->set_ucontext(context);
2760   osthread->set_siginfo(siginfo);
2761 }
2762 
2763 //
2764 // Handler function invoked when a thread's execution is suspended or
2765 // resumed. We have to be careful that only async-safe functions are
2766 // called here (Note: most pthread functions are not async safe and
2767 // should be avoided.)
2768 //
2769 // Note: sigwait() is a more natural fit than sigsuspend() from an
2770 // interface point of view, but sigwait() prevents the signal hander
2771 // from being run. libpthread would get very confused by not having
2772 // its signal handlers run and prevents sigwait()'s use with the
2773 // mutex granting granting signal.
2774 //
2775 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2776 //
2777 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2778   // Save and restore errno to avoid confusing native code with EINTR
2779   // after sigsuspend.
2780   int old_errno = errno;
2781 
2782   Thread* thread = Thread::current_or_null_safe();
2783   assert(thread != NULL, "Missing current thread in SR_handler");
2784 
2785   // On some systems we have seen signal delivery get "stuck" until the signal
2786   // mask is changed as part of thread termination. Check that the current thread
2787   // has not already terminated (via SR_lock()) - else the following assertion
2788   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2789   // destructor has completed.
2790 
2791   if (thread->SR_lock() == NULL) {
2792     return;
2793   }
2794 
2795   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2796 
2797   OSThread* osthread = thread->osthread();
2798 
2799   os::SuspendResume::State current = osthread->sr.state();
2800   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2801     suspend_save_context(osthread, siginfo, context);
2802 
2803     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2804     os::SuspendResume::State state = osthread->sr.suspended();
2805     if (state == os::SuspendResume::SR_SUSPENDED) {
2806       sigset_t suspend_set;  // signals for sigsuspend()
2807 
2808       // get current set of blocked signals and unblock resume signal
2809       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2810       sigdelset(&suspend_set, SR_signum);
2811 
2812       // wait here until we are resumed
2813       while (1) {
2814         sigsuspend(&suspend_set);
2815 
2816         os::SuspendResume::State result = osthread->sr.running();
2817         if (result == os::SuspendResume::SR_RUNNING) {
2818           break;
2819         }
2820       }
2821 
2822     } else if (state == os::SuspendResume::SR_RUNNING) {
2823       // request was cancelled, continue
2824     } else {
2825       ShouldNotReachHere();
2826     }
2827 
2828     resume_clear_context(osthread);
2829   } else if (current == os::SuspendResume::SR_RUNNING) {
2830     // request was cancelled, continue
2831   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2832     // ignore
2833   } else {
2834     ShouldNotReachHere();
2835   }
2836 
2837   errno = old_errno;
2838 }
2839 
2840 static int SR_initialize() {
2841   struct sigaction act;
2842   char *s;
2843   // Get signal number to use for suspend/resume
2844   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2845     int sig = ::strtol(s, 0, 10);
2846     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2847         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2848       SR_signum = sig;
2849     } else {
2850       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2851               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2852     }
2853   }
2854 
2855   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2856         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2857 
2858   sigemptyset(&SR_sigset);
2859   sigaddset(&SR_sigset, SR_signum);
2860 
2861   // Set up signal handler for suspend/resume.
2862   act.sa_flags = SA_RESTART|SA_SIGINFO;
2863   act.sa_handler = (void (*)(int)) SR_handler;
2864 
2865   // SR_signum is blocked by default.
2866   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2867 
2868   if (sigaction(SR_signum, &act, 0) == -1) {
2869     return -1;
2870   }
2871 
2872   // Save signal flag
2873   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2874   return 0;
2875 }
2876 
2877 static int SR_finalize() {
2878   return 0;
2879 }
2880 
2881 static int sr_notify(OSThread* osthread) {
2882   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2883   assert_status(status == 0, status, "pthread_kill");
2884   return status;
2885 }
2886 
2887 // "Randomly" selected value for how long we want to spin
2888 // before bailing out on suspending a thread, also how often
2889 // we send a signal to a thread we want to resume
2890 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2891 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2892 
2893 // returns true on success and false on error - really an error is fatal
2894 // but this seems the normal response to library errors
2895 static bool do_suspend(OSThread* osthread) {
2896   assert(osthread->sr.is_running(), "thread should be running");
2897   // mark as suspended and send signal
2898 
2899   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2900     // failed to switch, state wasn't running?
2901     ShouldNotReachHere();
2902     return false;
2903   }
2904 
2905   if (sr_notify(osthread) != 0) {
2906     // try to cancel, switch to running
2907 
2908     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2909     if (result == os::SuspendResume::SR_RUNNING) {
2910       // cancelled
2911       return false;
2912     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2913       // somehow managed to suspend
2914       return true;
2915     } else {
2916       ShouldNotReachHere();
2917       return false;
2918     }
2919   }
2920 
2921   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2922 
2923   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2924     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2925       os::naked_yield();
2926     }
2927 
2928     // timeout, try to cancel the request
2929     if (n >= RANDOMLY_LARGE_INTEGER) {
2930       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2931       if (cancelled == os::SuspendResume::SR_RUNNING) {
2932         return false;
2933       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2934         return true;
2935       } else {
2936         ShouldNotReachHere();
2937         return false;
2938       }
2939     }
2940   }
2941 
2942   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2943   return true;
2944 }
2945 
2946 static void do_resume(OSThread* osthread) {
2947   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2948 
2949   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2950     // failed to switch to WAKEUP_REQUEST
2951     ShouldNotReachHere();
2952     return;
2953   }
2954 
2955   while (!osthread->sr.is_running()) {
2956     if (sr_notify(osthread) == 0) {
2957       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2958         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2959           os::naked_yield();
2960         }
2961       }
2962     } else {
2963       ShouldNotReachHere();
2964     }
2965   }
2966 
2967   guarantee(osthread->sr.is_running(), "Must be running!");
2968 }
2969 
2970 ///////////////////////////////////////////////////////////////////////////////////
2971 // signal handling (except suspend/resume)
2972 
2973 // This routine may be used by user applications as a "hook" to catch signals.
2974 // The user-defined signal handler must pass unrecognized signals to this
2975 // routine, and if it returns true (non-zero), then the signal handler must
2976 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2977 // routine will never retun false (zero), but instead will execute a VM panic
2978 // routine kill the process.
2979 //
2980 // If this routine returns false, it is OK to call it again. This allows
2981 // the user-defined signal handler to perform checks either before or after
2982 // the VM performs its own checks. Naturally, the user code would be making
2983 // a serious error if it tried to handle an exception (such as a null check
2984 // or breakpoint) that the VM was generating for its own correct operation.
2985 //
2986 // This routine may recognize any of the following kinds of signals:
2987 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2988 // It should be consulted by handlers for any of those signals.
2989 //
2990 // The caller of this routine must pass in the three arguments supplied
2991 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2992 // field of the structure passed to sigaction(). This routine assumes that
2993 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2994 //
2995 // Note that the VM will print warnings if it detects conflicting signal
2996 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2997 //
2998 extern "C" JNIEXPORT int
2999 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
3000 
3001 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
3002 // to be the thing to call; documentation is not terribly clear about whether
3003 // pthread_sigmask also works, and if it does, whether it does the same.
3004 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
3005   const int rc = ::pthread_sigmask(how, set, oset);
3006   // return value semantics differ slightly for error case:
3007   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
3008   // (so, pthread_sigmask is more theadsafe for error handling)
3009   // But success is always 0.
3010   return rc == 0 ? true : false;
3011 }
3012 
3013 // Function to unblock all signals which are, according
3014 // to POSIX, typical program error signals. If they happen while being blocked,
3015 // they typically will bring down the process immediately.
3016 bool unblock_program_error_signals() {
3017   sigset_t set;
3018   ::sigemptyset(&set);
3019   ::sigaddset(&set, SIGILL);
3020   ::sigaddset(&set, SIGBUS);
3021   ::sigaddset(&set, SIGFPE);
3022   ::sigaddset(&set, SIGSEGV);
3023   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
3024 }
3025 
3026 // Renamed from 'signalHandler' to avoid collision with other shared libs.
3027 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
3028   assert(info != NULL && uc != NULL, "it must be old kernel");
3029 
3030   // Never leave program error signals blocked;
3031   // on all our platforms they would bring down the process immediately when
3032   // getting raised while being blocked.
3033   unblock_program_error_signals();
3034 
3035   int orig_errno = errno;  // Preserve errno value over signal handler.
3036   JVM_handle_aix_signal(sig, info, uc, true);
3037   errno = orig_errno;
3038 }
3039 
3040 // This boolean allows users to forward their own non-matching signals
3041 // to JVM_handle_aix_signal, harmlessly.
3042 bool os::Aix::signal_handlers_are_installed = false;
3043 
3044 // For signal-chaining
3045 struct sigaction sigact[NSIG];
3046 sigset_t sigs;
3047 bool os::Aix::libjsig_is_loaded = false;
3048 typedef struct sigaction *(*get_signal_t)(int);
3049 get_signal_t os::Aix::get_signal_action = NULL;
3050 
3051 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3052   struct sigaction *actp = NULL;
3053 
3054   if (libjsig_is_loaded) {
3055     // Retrieve the old signal handler from libjsig
3056     actp = (*get_signal_action)(sig);
3057   }
3058   if (actp == NULL) {
3059     // Retrieve the preinstalled signal handler from jvm
3060     actp = get_preinstalled_handler(sig);
3061   }
3062 
3063   return actp;
3064 }
3065 
3066 static bool call_chained_handler(struct sigaction *actp, int sig,
3067                                  siginfo_t *siginfo, void *context) {
3068   // Call the old signal handler
3069   if (actp->sa_handler == SIG_DFL) {
3070     // It's more reasonable to let jvm treat it as an unexpected exception
3071     // instead of taking the default action.
3072     return false;
3073   } else if (actp->sa_handler != SIG_IGN) {
3074     if ((actp->sa_flags & SA_NODEFER) == 0) {
3075       // automaticlly block the signal
3076       sigaddset(&(actp->sa_mask), sig);
3077     }
3078 
3079     sa_handler_t hand = NULL;
3080     sa_sigaction_t sa = NULL;
3081     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3082     // retrieve the chained handler
3083     if (siginfo_flag_set) {
3084       sa = actp->sa_sigaction;
3085     } else {
3086       hand = actp->sa_handler;
3087     }
3088 
3089     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3090       actp->sa_handler = SIG_DFL;
3091     }
3092 
3093     // try to honor the signal mask
3094     sigset_t oset;
3095     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3096 
3097     // call into the chained handler
3098     if (siginfo_flag_set) {
3099       (*sa)(sig, siginfo, context);
3100     } else {
3101       (*hand)(sig);
3102     }
3103 
3104     // restore the signal mask
3105     pthread_sigmask(SIG_SETMASK, &oset, 0);
3106   }
3107   // Tell jvm's signal handler the signal is taken care of.
3108   return true;
3109 }
3110 
3111 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3112   bool chained = false;
3113   // signal-chaining
3114   if (UseSignalChaining) {
3115     struct sigaction *actp = get_chained_signal_action(sig);
3116     if (actp != NULL) {
3117       chained = call_chained_handler(actp, sig, siginfo, context);
3118     }
3119   }
3120   return chained;
3121 }
3122 
3123 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3124   if (sigismember(&sigs, sig)) {
3125     return &sigact[sig];
3126   }
3127   return NULL;
3128 }
3129 
3130 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3131   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3132   sigact[sig] = oldAct;
3133   sigaddset(&sigs, sig);
3134 }
3135 
3136 // for diagnostic
3137 int sigflags[NSIG];
3138 
3139 int os::Aix::get_our_sigflags(int sig) {
3140   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3141   return sigflags[sig];
3142 }
3143 
3144 void os::Aix::set_our_sigflags(int sig, int flags) {
3145   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3146   if (sig > 0 && sig < NSIG) {
3147     sigflags[sig] = flags;
3148   }
3149 }
3150 
3151 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3152   // Check for overwrite.
3153   struct sigaction oldAct;
3154   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3155 
3156   void* oldhand = oldAct.sa_sigaction
3157     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3158     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3159   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3160       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3161       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3162     if (AllowUserSignalHandlers || !set_installed) {
3163       // Do not overwrite; user takes responsibility to forward to us.
3164       return;
3165     } else if (UseSignalChaining) {
3166       // save the old handler in jvm
3167       save_preinstalled_handler(sig, oldAct);
3168       // libjsig also interposes the sigaction() call below and saves the
3169       // old sigaction on it own.
3170     } else {
3171       fatal("Encountered unexpected pre-existing sigaction handler "
3172             "%#lx for signal %d.", (long)oldhand, sig);
3173     }
3174   }
3175 
3176   struct sigaction sigAct;
3177   sigfillset(&(sigAct.sa_mask));
3178   if (!set_installed) {
3179     sigAct.sa_handler = SIG_DFL;
3180     sigAct.sa_flags = SA_RESTART;
3181   } else {
3182     sigAct.sa_sigaction = javaSignalHandler;
3183     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3184   }
3185   // Save flags, which are set by ours
3186   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3187   sigflags[sig] = sigAct.sa_flags;
3188 
3189   int ret = sigaction(sig, &sigAct, &oldAct);
3190   assert(ret == 0, "check");
3191 
3192   void* oldhand2 = oldAct.sa_sigaction
3193                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3194                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3195   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3196 }
3197 
3198 // install signal handlers for signals that HotSpot needs to
3199 // handle in order to support Java-level exception handling.
3200 void os::Aix::install_signal_handlers() {
3201   if (!signal_handlers_are_installed) {
3202     signal_handlers_are_installed = true;
3203 
3204     // signal-chaining
3205     typedef void (*signal_setting_t)();
3206     signal_setting_t begin_signal_setting = NULL;
3207     signal_setting_t end_signal_setting = NULL;
3208     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3209                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3210     if (begin_signal_setting != NULL) {
3211       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3212                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3213       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3214                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3215       libjsig_is_loaded = true;
3216       assert(UseSignalChaining, "should enable signal-chaining");
3217     }
3218     if (libjsig_is_loaded) {
3219       // Tell libjsig jvm is setting signal handlers.
3220       (*begin_signal_setting)();
3221     }
3222 
3223     ::sigemptyset(&sigs);
3224     set_signal_handler(SIGSEGV, true);
3225     set_signal_handler(SIGPIPE, true);
3226     set_signal_handler(SIGBUS, true);
3227     set_signal_handler(SIGILL, true);
3228     set_signal_handler(SIGFPE, true);
3229     set_signal_handler(SIGTRAP, true);
3230     set_signal_handler(SIGXFSZ, true);
3231 
3232     if (libjsig_is_loaded) {
3233       // Tell libjsig jvm finishes setting signal handlers.
3234       (*end_signal_setting)();
3235     }
3236 
3237     // We don't activate signal checker if libjsig is in place, we trust ourselves
3238     // and if UserSignalHandler is installed all bets are off.
3239     // Log that signal checking is off only if -verbose:jni is specified.
3240     if (CheckJNICalls) {
3241       if (libjsig_is_loaded) {
3242         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3243         check_signals = false;
3244       }
3245       if (AllowUserSignalHandlers) {
3246         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3247         check_signals = false;
3248       }
3249       // Need to initialize check_signal_done.
3250       ::sigemptyset(&check_signal_done);
3251     }
3252   }
3253 }
3254 
3255 static const char* get_signal_handler_name(address handler,
3256                                            char* buf, int buflen) {
3257   int offset;
3258   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3259   if (found) {
3260     // skip directory names
3261     const char *p1, *p2;
3262     p1 = buf;
3263     size_t len = strlen(os::file_separator());
3264     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3265     // The way os::dll_address_to_library_name is implemented on Aix
3266     // right now, it always returns -1 for the offset which is not
3267     // terribly informative.
3268     // Will fix that. For now, omit the offset.
3269     jio_snprintf(buf, buflen, "%s", p1);
3270   } else {
3271     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3272   }
3273   return buf;
3274 }
3275 
3276 static void print_signal_handler(outputStream* st, int sig,
3277                                  char* buf, size_t buflen) {
3278   struct sigaction sa;
3279   sigaction(sig, NULL, &sa);
3280 
3281   st->print("%s: ", os::exception_name(sig, buf, buflen));
3282 
3283   address handler = (sa.sa_flags & SA_SIGINFO)
3284     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3285     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3286 
3287   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3288     st->print("SIG_DFL");
3289   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3290     st->print("SIG_IGN");
3291   } else {
3292     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3293   }
3294 
3295   // Print readable mask.
3296   st->print(", sa_mask[0]=");
3297   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3298 
3299   address rh = VMError::get_resetted_sighandler(sig);
3300   // May be, handler was resetted by VMError?
3301   if (rh != NULL) {
3302     handler = rh;
3303     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3304   }
3305 
3306   // Print textual representation of sa_flags.
3307   st->print(", sa_flags=");
3308   os::Posix::print_sa_flags(st, sa.sa_flags);
3309 
3310   // Check: is it our handler?
3311   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3312       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3313     // It is our signal handler.
3314     // Check for flags, reset system-used one!
3315     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3316       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3317                 os::Aix::get_our_sigflags(sig));
3318     }
3319   }
3320   st->cr();
3321 }
3322 
3323 #define DO_SIGNAL_CHECK(sig) \
3324   if (!sigismember(&check_signal_done, sig)) \
3325     os::Aix::check_signal_handler(sig)
3326 
3327 // This method is a periodic task to check for misbehaving JNI applications
3328 // under CheckJNI, we can add any periodic checks here
3329 
3330 void os::run_periodic_checks() {
3331 
3332   if (check_signals == false) return;
3333 
3334   // SEGV and BUS if overridden could potentially prevent
3335   // generation of hs*.log in the event of a crash, debugging
3336   // such a case can be very challenging, so we absolutely
3337   // check the following for a good measure:
3338   DO_SIGNAL_CHECK(SIGSEGV);
3339   DO_SIGNAL_CHECK(SIGILL);
3340   DO_SIGNAL_CHECK(SIGFPE);
3341   DO_SIGNAL_CHECK(SIGBUS);
3342   DO_SIGNAL_CHECK(SIGPIPE);
3343   DO_SIGNAL_CHECK(SIGXFSZ);
3344   if (UseSIGTRAP) {
3345     DO_SIGNAL_CHECK(SIGTRAP);
3346   }
3347 
3348   // ReduceSignalUsage allows the user to override these handlers
3349   // see comments at the very top and jvm_md.h
3350   if (!ReduceSignalUsage) {
3351     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3352     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3353     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3354     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3355   }
3356 
3357   DO_SIGNAL_CHECK(SR_signum);
3358 }
3359 
3360 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3361 
3362 static os_sigaction_t os_sigaction = NULL;
3363 
3364 void os::Aix::check_signal_handler(int sig) {
3365   char buf[O_BUFLEN];
3366   address jvmHandler = NULL;
3367 
3368   struct sigaction act;
3369   if (os_sigaction == NULL) {
3370     // only trust the default sigaction, in case it has been interposed
3371     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3372     if (os_sigaction == NULL) return;
3373   }
3374 
3375   os_sigaction(sig, (struct sigaction*)NULL, &act);
3376 
3377   address thisHandler = (act.sa_flags & SA_SIGINFO)
3378     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3379     : CAST_FROM_FN_PTR(address, act.sa_handler);
3380 
3381   switch(sig) {
3382   case SIGSEGV:
3383   case SIGBUS:
3384   case SIGFPE:
3385   case SIGPIPE:
3386   case SIGILL:
3387   case SIGXFSZ:
3388     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3389     break;
3390 
3391   case SHUTDOWN1_SIGNAL:
3392   case SHUTDOWN2_SIGNAL:
3393   case SHUTDOWN3_SIGNAL:
3394   case BREAK_SIGNAL:
3395     jvmHandler = (address)user_handler();
3396     break;
3397 
3398   default:
3399     if (sig == SR_signum) {
3400       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3401     } else {
3402       return;
3403     }
3404     break;
3405   }
3406 
3407   if (thisHandler != jvmHandler) {
3408     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3409     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3410     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3411     // No need to check this sig any longer
3412     sigaddset(&check_signal_done, sig);
3413     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3414     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3415       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3416                     exception_name(sig, buf, O_BUFLEN));
3417     }
3418   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3419     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3420     tty->print("expected:");
3421     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3422     tty->cr();
3423     tty->print("  found:");
3424     os::Posix::print_sa_flags(tty, act.sa_flags);
3425     tty->cr();
3426     // No need to check this sig any longer
3427     sigaddset(&check_signal_done, sig);
3428   }
3429 
3430   // Dump all the signal
3431   if (sigismember(&check_signal_done, sig)) {
3432     print_signal_handlers(tty, buf, O_BUFLEN);
3433   }
3434 }
3435 
3436 // To install functions for atexit system call
3437 extern "C" {
3438   static void perfMemory_exit_helper() {
3439     perfMemory_exit();
3440   }
3441 }
3442 
3443 // This is called _before_ the most of global arguments have been parsed.
3444 void os::init(void) {
3445   // This is basic, we want to know if that ever changes.
3446   // (Shared memory boundary is supposed to be a 256M aligned.)
3447   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3448 
3449   // Record process break at startup.
3450   g_brk_at_startup = (address) ::sbrk(0);
3451   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3452 
3453   // First off, we need to know whether we run on AIX or PASE, and
3454   // the OS level we run on.
3455   os::Aix::initialize_os_info();
3456 
3457   // Scan environment (SPEC1170 behaviour, etc).
3458   os::Aix::scan_environment();
3459 
3460   // Probe multipage support.
3461   query_multipage_support();
3462 
3463   // Act like we only have one page size by eliminating corner cases which
3464   // we did not support very well anyway.
3465   // We have two input conditions:
3466   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3467   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3468   //    setting.
3469   //    Data segment page size is important for us because it defines the thread stack page
3470   //    size, which is needed for guard page handling, stack banging etc.
3471   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3472   //    and should be allocated with 64k pages.
3473   //
3474   // So, we do the following:
3475   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3476   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3477   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3478   // 64k          no              --- AIX 5.2 ? ---
3479   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3480 
3481   // We explicitly leave no option to change page size, because only upgrading would work,
3482   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3483 
3484   if (g_multipage_support.datapsize == 4*K) {
3485     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3486     if (g_multipage_support.can_use_64K_pages) {
3487       // .. but we are able to use 64K pages dynamically.
3488       // This would be typical for java launchers which are not linked
3489       // with datapsize=64K (like, any other launcher but our own).
3490       //
3491       // In this case it would be smart to allocate the java heap with 64K
3492       // to get the performance benefit, and to fake 64k pages for the
3493       // data segment (when dealing with thread stacks).
3494       //
3495       // However, leave a possibility to downgrade to 4K, using
3496       // -XX:-Use64KPages.
3497       if (Use64KPages) {
3498         trcVerbose("64K page mode (faked for data segment)");
3499         Aix::_page_size = 64*K;
3500       } else {
3501         trcVerbose("4K page mode (Use64KPages=off)");
3502         Aix::_page_size = 4*K;
3503       }
3504     } else {
3505       // .. and not able to allocate 64k pages dynamically. Here, just
3506       // fall back to 4K paged mode and use mmap for everything.
3507       trcVerbose("4K page mode");
3508       Aix::_page_size = 4*K;
3509       FLAG_SET_ERGO(bool, Use64KPages, false);
3510     }
3511   } else {
3512     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3513     // This normally means that we can allocate 64k pages dynamically.
3514     // (There is one special case where this may be false: EXTSHM=on.
3515     // but we decided to not support that mode).
3516     assert0(g_multipage_support.can_use_64K_pages);
3517     Aix::_page_size = 64*K;
3518     trcVerbose("64K page mode");
3519     FLAG_SET_ERGO(bool, Use64KPages, true);
3520   }
3521 
3522   // For now UseLargePages is just ignored.
3523   FLAG_SET_ERGO(bool, UseLargePages, false);
3524   _page_sizes[0] = 0;
3525 
3526   // debug trace
3527   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3528 
3529   // Next, we need to initialize libo4 and libperfstat libraries.
3530   if (os::Aix::on_pase()) {
3531     os::Aix::initialize_libo4();
3532   } else {
3533     os::Aix::initialize_libperfstat();
3534   }
3535 
3536   // Reset the perfstat information provided by ODM.
3537   if (os::Aix::on_aix()) {
3538     libperfstat::perfstat_reset();
3539   }
3540 
3541   // Now initialze basic system properties. Note that for some of the values we
3542   // need libperfstat etc.
3543   os::Aix::initialize_system_info();
3544 
3545   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3546 
3547   init_random(1234567);
3548 
3549   // _main_thread points to the thread that created/loaded the JVM.
3550   Aix::_main_thread = pthread_self();
3551 
3552   initial_time_count = os::elapsed_counter();
3553 
3554   os::Posix::init();
3555 }
3556 
3557 // This is called _after_ the global arguments have been parsed.
3558 jint os::init_2(void) {
3559 
3560   os::Posix::init_2();
3561 
3562   if (os::Aix::on_pase()) {
3563     trcVerbose("Running on PASE.");
3564   } else {
3565     trcVerbose("Running on AIX (not PASE).");
3566   }
3567 
3568   trcVerbose("processor count: %d", os::_processor_count);
3569   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3570 
3571   // Initially build up the loaded dll map.
3572   LoadedLibraries::reload();
3573   if (Verbose) {
3574     trcVerbose("Loaded Libraries: ");
3575     LoadedLibraries::print(tty);
3576   }
3577 
3578   // initialize suspend/resume support - must do this before signal_sets_init()
3579   if (SR_initialize() != 0) {
3580     perror("SR_initialize failed");
3581     return JNI_ERR;
3582   }
3583 
3584   Aix::signal_sets_init();
3585   Aix::install_signal_handlers();
3586   // Initialize data for jdk.internal.misc.Signal
3587   if (!ReduceSignalUsage) {
3588     jdk_misc_signal_init();
3589   }
3590 
3591   // Check and sets minimum stack sizes against command line options
3592   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3593     return JNI_ERR;
3594   }
3595 
3596   if (UseNUMA) {
3597     UseNUMA = false;
3598     warning("NUMA optimizations are not available on this OS.");
3599   }
3600 
3601   if (MaxFDLimit) {
3602     // Set the number of file descriptors to max. print out error
3603     // if getrlimit/setrlimit fails but continue regardless.
3604     struct rlimit nbr_files;
3605     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3606     if (status != 0) {
3607       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3608     } else {
3609       nbr_files.rlim_cur = nbr_files.rlim_max;
3610       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3611       if (status != 0) {
3612         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3613       }
3614     }
3615   }
3616 
3617   if (PerfAllowAtExitRegistration) {
3618     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3619     // At exit functions can be delayed until process exit time, which
3620     // can be problematic for embedded VM situations. Embedded VMs should
3621     // call DestroyJavaVM() to assure that VM resources are released.
3622 
3623     // Note: perfMemory_exit_helper atexit function may be removed in
3624     // the future if the appropriate cleanup code can be added to the
3625     // VM_Exit VMOperation's doit method.
3626     if (atexit(perfMemory_exit_helper) != 0) {
3627       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3628     }
3629   }
3630 
3631   return JNI_OK;
3632 }
3633 
3634 // Mark the polling page as unreadable
3635 void os::make_polling_page_unreadable(void) {
3636   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3637     fatal("Could not disable polling page");
3638   }
3639 };
3640 
3641 // Mark the polling page as readable
3642 void os::make_polling_page_readable(void) {
3643   // Changed according to os_linux.cpp.
3644   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3645     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3646   }
3647 };
3648 
3649 int os::active_processor_count() {
3650   // User has overridden the number of active processors
3651   if (ActiveProcessorCount > 0) {
3652     log_trace(os)("active_processor_count: "
3653                   "active processor count set by user : %d",
3654                   ActiveProcessorCount);
3655     return ActiveProcessorCount;
3656   }
3657 
3658   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3659   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3660   return online_cpus;
3661 }
3662 
3663 void os::set_native_thread_name(const char *name) {
3664   // Not yet implemented.
3665   return;
3666 }
3667 
3668 bool os::distribute_processes(uint length, uint* distribution) {
3669   // Not yet implemented.
3670   return false;
3671 }
3672 
3673 bool os::bind_to_processor(uint processor_id) {
3674   // Not yet implemented.
3675   return false;
3676 }
3677 
3678 void os::SuspendedThreadTask::internal_do_task() {
3679   if (do_suspend(_thread->osthread())) {
3680     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3681     do_task(context);
3682     do_resume(_thread->osthread());
3683   }
3684 }
3685 
3686 ////////////////////////////////////////////////////////////////////////////////
3687 // debug support
3688 
3689 bool os::find(address addr, outputStream* st) {
3690 
3691   st->print(PTR_FORMAT ": ", addr);
3692 
3693   loaded_module_t lm;
3694   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3695       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3696     st->print_cr("%s", lm.path);
3697     return true;
3698   }
3699 
3700   return false;
3701 }
3702 
3703 ////////////////////////////////////////////////////////////////////////////////
3704 // misc
3705 
3706 // This does not do anything on Aix. This is basically a hook for being
3707 // able to use structured exception handling (thread-local exception filters)
3708 // on, e.g., Win32.
3709 void
3710 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3711                          JavaCallArguments* args, Thread* thread) {
3712   f(value, method, args, thread);
3713 }
3714 
3715 void os::print_statistics() {
3716 }
3717 
3718 bool os::message_box(const char* title, const char* message) {
3719   int i;
3720   fdStream err(defaultStream::error_fd());
3721   for (i = 0; i < 78; i++) err.print_raw("=");
3722   err.cr();
3723   err.print_raw_cr(title);
3724   for (i = 0; i < 78; i++) err.print_raw("-");
3725   err.cr();
3726   err.print_raw_cr(message);
3727   for (i = 0; i < 78; i++) err.print_raw("=");
3728   err.cr();
3729 
3730   char buf[16];
3731   // Prevent process from exiting upon "read error" without consuming all CPU
3732   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3733 
3734   return buf[0] == 'y' || buf[0] == 'Y';
3735 }
3736 
3737 int os::stat(const char *path, struct stat *sbuf) {
3738   char pathbuf[MAX_PATH];
3739   if (strlen(path) > MAX_PATH - 1) {
3740     errno = ENAMETOOLONG;
3741     return -1;
3742   }
3743   os::native_path(strcpy(pathbuf, path));
3744   return ::stat(pathbuf, sbuf);
3745 }
3746 
3747 // Is a (classpath) directory empty?
3748 bool os::dir_is_empty(const char* path) {
3749   DIR *dir = NULL;
3750   struct dirent *ptr;
3751 
3752   dir = opendir(path);
3753   if (dir == NULL) return true;
3754 
3755   /* Scan the directory */
3756   bool result = true;
3757   char buf[sizeof(struct dirent) + MAX_PATH];
3758   while (result && (ptr = ::readdir(dir)) != NULL) {
3759     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3760       result = false;
3761     }
3762   }
3763   closedir(dir);
3764   return result;
3765 }
3766 
3767 // This code originates from JDK's sysOpen and open64_w
3768 // from src/solaris/hpi/src/system_md.c
3769 
3770 int os::open(const char *path, int oflag, int mode) {
3771 
3772   if (strlen(path) > MAX_PATH - 1) {
3773     errno = ENAMETOOLONG;
3774     return -1;
3775   }
3776   int fd;
3777 
3778   fd = ::open64(path, oflag, mode);
3779   if (fd == -1) return -1;
3780 
3781   // If the open succeeded, the file might still be a directory.
3782   {
3783     struct stat64 buf64;
3784     int ret = ::fstat64(fd, &buf64);
3785     int st_mode = buf64.st_mode;
3786 
3787     if (ret != -1) {
3788       if ((st_mode & S_IFMT) == S_IFDIR) {
3789         errno = EISDIR;
3790         ::close(fd);
3791         return -1;
3792       }
3793     } else {
3794       ::close(fd);
3795       return -1;
3796     }
3797   }
3798 
3799   // All file descriptors that are opened in the JVM and not
3800   // specifically destined for a subprocess should have the
3801   // close-on-exec flag set. If we don't set it, then careless 3rd
3802   // party native code might fork and exec without closing all
3803   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3804   // UNIXProcess.c), and this in turn might:
3805   //
3806   // - cause end-of-file to fail to be detected on some file
3807   //   descriptors, resulting in mysterious hangs, or
3808   //
3809   // - might cause an fopen in the subprocess to fail on a system
3810   //   suffering from bug 1085341.
3811   //
3812   // (Yes, the default setting of the close-on-exec flag is a Unix
3813   // design flaw.)
3814   //
3815   // See:
3816   // 1085341: 32-bit stdio routines should support file descriptors >255
3817   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3818   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3819 #ifdef FD_CLOEXEC
3820   {
3821     int flags = ::fcntl(fd, F_GETFD);
3822     if (flags != -1)
3823       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3824   }
3825 #endif
3826 
3827   return fd;
3828 }
3829 
3830 // create binary file, rewriting existing file if required
3831 int os::create_binary_file(const char* path, bool rewrite_existing) {
3832   int oflags = O_WRONLY | O_CREAT;
3833   if (!rewrite_existing) {
3834     oflags |= O_EXCL;
3835   }
3836   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3837 }
3838 
3839 // return current position of file pointer
3840 jlong os::current_file_offset(int fd) {
3841   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3842 }
3843 
3844 // move file pointer to the specified offset
3845 jlong os::seek_to_file_offset(int fd, jlong offset) {
3846   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3847 }
3848 
3849 // This code originates from JDK's sysAvailable
3850 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3851 
3852 int os::available(int fd, jlong *bytes) {
3853   jlong cur, end;
3854   int mode;
3855   struct stat64 buf64;
3856 
3857   if (::fstat64(fd, &buf64) >= 0) {
3858     mode = buf64.st_mode;
3859     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3860       int n;
3861       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3862         *bytes = n;
3863         return 1;
3864       }
3865     }
3866   }
3867   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3868     return 0;
3869   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3870     return 0;
3871   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3872     return 0;
3873   }
3874   *bytes = end - cur;
3875   return 1;
3876 }
3877 
3878 // Map a block of memory.
3879 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3880                         char *addr, size_t bytes, bool read_only,
3881                         bool allow_exec) {
3882   int prot;
3883   int flags = MAP_PRIVATE;
3884 
3885   if (read_only) {
3886     prot = PROT_READ;
3887     flags = MAP_SHARED;
3888   } else {
3889     prot = PROT_READ | PROT_WRITE;
3890     flags = MAP_PRIVATE;
3891   }
3892 
3893   if (allow_exec) {
3894     prot |= PROT_EXEC;
3895   }
3896 
3897   if (addr != NULL) {
3898     flags |= MAP_FIXED;
3899   }
3900 
3901   // Allow anonymous mappings if 'fd' is -1.
3902   if (fd == -1) {
3903     flags |= MAP_ANONYMOUS;
3904   }
3905 
3906   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3907                                      fd, file_offset);
3908   if (mapped_address == MAP_FAILED) {
3909     return NULL;
3910   }
3911   return mapped_address;
3912 }
3913 
3914 // Remap a block of memory.
3915 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3916                           char *addr, size_t bytes, bool read_only,
3917                           bool allow_exec) {
3918   // same as map_memory() on this OS
3919   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3920                         allow_exec);
3921 }
3922 
3923 // Unmap a block of memory.
3924 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3925   return munmap(addr, bytes) == 0;
3926 }
3927 
3928 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3929 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3930 // of a thread.
3931 //
3932 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3933 // the fast estimate available on the platform.
3934 
3935 jlong os::current_thread_cpu_time() {
3936   // return user + sys since the cost is the same
3937   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3938   assert(n >= 0, "negative CPU time");
3939   return n;
3940 }
3941 
3942 jlong os::thread_cpu_time(Thread* thread) {
3943   // consistent with what current_thread_cpu_time() returns
3944   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3945   assert(n >= 0, "negative CPU time");
3946   return n;
3947 }
3948 
3949 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3950   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3951   assert(n >= 0, "negative CPU time");
3952   return n;
3953 }
3954 
3955 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3956   bool error = false;
3957 
3958   jlong sys_time = 0;
3959   jlong user_time = 0;
3960 
3961   // Reimplemented using getthrds64().
3962   //
3963   // Works like this:
3964   // For the thread in question, get the kernel thread id. Then get the
3965   // kernel thread statistics using that id.
3966   //
3967   // This only works of course when no pthread scheduling is used,
3968   // i.e. there is a 1:1 relationship to kernel threads.
3969   // On AIX, see AIXTHREAD_SCOPE variable.
3970 
3971   pthread_t pthtid = thread->osthread()->pthread_id();
3972 
3973   // retrieve kernel thread id for the pthread:
3974   tid64_t tid = 0;
3975   struct __pthrdsinfo pinfo;
3976   // I just love those otherworldly IBM APIs which force me to hand down
3977   // dummy buffers for stuff I dont care for...
3978   char dummy[1];
3979   int dummy_size = sizeof(dummy);
3980   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3981                           dummy, &dummy_size) == 0) {
3982     tid = pinfo.__pi_tid;
3983   } else {
3984     tty->print_cr("pthread_getthrds_np failed.");
3985     error = true;
3986   }
3987 
3988   // retrieve kernel timing info for that kernel thread
3989   if (!error) {
3990     struct thrdentry64 thrdentry;
3991     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3992       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3993       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3994     } else {
3995       tty->print_cr("pthread_getthrds_np failed.");
3996       error = true;
3997     }
3998   }
3999 
4000   if (p_sys_time) {
4001     *p_sys_time = sys_time;
4002   }
4003 
4004   if (p_user_time) {
4005     *p_user_time = user_time;
4006   }
4007 
4008   if (error) {
4009     return false;
4010   }
4011 
4012   return true;
4013 }
4014 
4015 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4016   jlong sys_time;
4017   jlong user_time;
4018 
4019   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
4020     return -1;
4021   }
4022 
4023   return user_sys_cpu_time ? sys_time + user_time : user_time;
4024 }
4025 
4026 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4027   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4028   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4029   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4030   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4031 }
4032 
4033 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4034   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4035   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4036   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4037   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4038 }
4039 
4040 bool os::is_thread_cpu_time_supported() {
4041   return true;
4042 }
4043 
4044 // System loadavg support. Returns -1 if load average cannot be obtained.
4045 // For now just return the system wide load average (no processor sets).
4046 int os::loadavg(double values[], int nelem) {
4047 
4048   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4049   guarantee(values, "argument error");
4050 
4051   if (os::Aix::on_pase()) {
4052 
4053     // AS/400 PASE: use libo4 porting library
4054     double v[3] = { 0.0, 0.0, 0.0 };
4055 
4056     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4057       for (int i = 0; i < nelem; i ++) {
4058         values[i] = v[i];
4059       }
4060       return nelem;
4061     } else {
4062       return -1;
4063     }
4064 
4065   } else {
4066 
4067     // AIX: use libperfstat
4068     libperfstat::cpuinfo_t ci;
4069     if (libperfstat::get_cpuinfo(&ci)) {
4070       for (int i = 0; i < nelem; i++) {
4071         values[i] = ci.loadavg[i];
4072       }
4073     } else {
4074       return -1;
4075     }
4076     return nelem;
4077   }
4078 }
4079 
4080 void os::pause() {
4081   char filename[MAX_PATH];
4082   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4083     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4084   } else {
4085     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4086   }
4087 
4088   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4089   if (fd != -1) {
4090     struct stat buf;
4091     ::close(fd);
4092     while (::stat(filename, &buf) == 0) {
4093       (void)::poll(NULL, 0, 100);
4094     }
4095   } else {
4096     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4097   }
4098 }
4099 
4100 bool os::is_primordial_thread(void) {
4101   if (pthread_self() == (pthread_t)1) {
4102     return true;
4103   } else {
4104     return false;
4105   }
4106 }
4107 
4108 // OS recognitions (PASE/AIX, OS level) call this before calling any
4109 // one of Aix::on_pase(), Aix::os_version() static
4110 void os::Aix::initialize_os_info() {
4111 
4112   assert(_on_pase == -1 && _os_version == 0, "already called.");
4113 
4114   struct utsname uts;
4115   memset(&uts, 0, sizeof(uts));
4116   strcpy(uts.sysname, "?");
4117   if (::uname(&uts) == -1) {
4118     trcVerbose("uname failed (%d)", errno);
4119     guarantee(0, "Could not determine whether we run on AIX or PASE");
4120   } else {
4121     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4122                "node \"%s\" machine \"%s\"\n",
4123                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4124     const int major = atoi(uts.version);
4125     assert(major > 0, "invalid OS version");
4126     const int minor = atoi(uts.release);
4127     assert(minor > 0, "invalid OS release");
4128     _os_version = (major << 24) | (minor << 16);
4129     char ver_str[20] = {0};
4130     char *name_str = "unknown OS";
4131     if (strcmp(uts.sysname, "OS400") == 0) {
4132       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4133       _on_pase = 1;
4134       if (os_version_short() < 0x0504) {
4135         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4136         assert(false, "OS/400 release too old.");
4137       }
4138       name_str = "OS/400 (pase)";
4139       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4140     } else if (strcmp(uts.sysname, "AIX") == 0) {
4141       // We run on AIX. We do not support versions older than AIX 5.3.
4142       _on_pase = 0;
4143       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4144       odmWrapper::determine_os_kernel_version(&_os_version);
4145       if (os_version_short() < 0x0503) {
4146         trcVerbose("AIX release older than AIX 5.3 not supported.");
4147         assert(false, "AIX release too old.");
4148       }
4149       name_str = "AIX";
4150       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4151                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4152     } else {
4153       assert(false, name_str);
4154     }
4155     trcVerbose("We run on %s %s", name_str, ver_str);
4156   }
4157 
4158   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4159 } // end: os::Aix::initialize_os_info()
4160 
4161 // Scan environment for important settings which might effect the VM.
4162 // Trace out settings. Warn about invalid settings and/or correct them.
4163 //
4164 // Must run after os::Aix::initialue_os_info().
4165 void os::Aix::scan_environment() {
4166 
4167   char* p;
4168   int rc;
4169 
4170   // Warn explicity if EXTSHM=ON is used. That switch changes how
4171   // System V shared memory behaves. One effect is that page size of
4172   // shared memory cannot be change dynamically, effectivly preventing
4173   // large pages from working.
4174   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4175   // recommendation is (in OSS notes) to switch it off.
4176   p = ::getenv("EXTSHM");
4177   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4178   if (p && strcasecmp(p, "ON") == 0) {
4179     _extshm = 1;
4180     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4181     if (!AllowExtshm) {
4182       // We allow under certain conditions the user to continue. However, we want this
4183       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4184       // that the VM is not able to allocate 64k pages for the heap.
4185       // We do not want to run with reduced performance.
4186       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4187     }
4188   } else {
4189     _extshm = 0;
4190   }
4191 
4192   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4193   // Not tested, not supported.
4194   //
4195   // Note that it might be worth the trouble to test and to require it, if only to
4196   // get useful return codes for mprotect.
4197   //
4198   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4199   // exec() ? before loading the libjvm ? ....)
4200   p = ::getenv("XPG_SUS_ENV");
4201   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4202   if (p && strcmp(p, "ON") == 0) {
4203     _xpg_sus_mode = 1;
4204     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4205     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4206     // clobber address ranges. If we ever want to support that, we have to do some
4207     // testing first.
4208     guarantee(false, "XPG_SUS_ENV=ON not supported");
4209   } else {
4210     _xpg_sus_mode = 0;
4211   }
4212 
4213   if (os::Aix::on_pase()) {
4214     p = ::getenv("QIBM_MULTI_THREADED");
4215     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4216   }
4217 
4218   p = ::getenv("LDR_CNTRL");
4219   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4220   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4221     if (p && ::strstr(p, "TEXTPSIZE")) {
4222       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4223         "you may experience hangs or crashes on OS/400 V7R1.");
4224     }
4225   }
4226 
4227   p = ::getenv("AIXTHREAD_GUARDPAGES");
4228   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4229 
4230 } // end: os::Aix::scan_environment()
4231 
4232 // PASE: initialize the libo4 library (PASE porting library).
4233 void os::Aix::initialize_libo4() {
4234   guarantee(os::Aix::on_pase(), "OS/400 only.");
4235   if (!libo4::init()) {
4236     trcVerbose("libo4 initialization failed.");
4237     assert(false, "libo4 initialization failed");
4238   } else {
4239     trcVerbose("libo4 initialized.");
4240   }
4241 }
4242 
4243 // AIX: initialize the libperfstat library.
4244 void os::Aix::initialize_libperfstat() {
4245   assert(os::Aix::on_aix(), "AIX only");
4246   if (!libperfstat::init()) {
4247     trcVerbose("libperfstat initialization failed.");
4248     assert(false, "libperfstat initialization failed");
4249   } else {
4250     trcVerbose("libperfstat initialized.");
4251   }
4252 }
4253 
4254 /////////////////////////////////////////////////////////////////////////////
4255 // thread stack
4256 
4257 // Get the current stack base from the OS (actually, the pthread library).
4258 // Note: usually not page aligned.
4259 address os::current_stack_base() {
4260   AixMisc::stackbounds_t bounds;
4261   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4262   guarantee(rc, "Unable to retrieve stack bounds.");
4263   return bounds.base;
4264 }
4265 
4266 // Get the current stack size from the OS (actually, the pthread library).
4267 // Returned size is such that (base - size) is always aligned to page size.
4268 size_t os::current_stack_size() {
4269   AixMisc::stackbounds_t bounds;
4270   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4271   guarantee(rc, "Unable to retrieve stack bounds.");
4272   // Align the returned stack size such that the stack low address
4273   // is aligned to page size (Note: base is usually not and we do not care).
4274   // We need to do this because caller code will assume stack low address is
4275   // page aligned and will place guard pages without checking.
4276   address low = bounds.base - bounds.size;
4277   address low_aligned = (address)align_up(low, os::vm_page_size());
4278   size_t s = bounds.base - low_aligned;
4279   return s;
4280 }
4281 
4282 extern char** environ;
4283 
4284 // Run the specified command in a separate process. Return its exit value,
4285 // or -1 on failure (e.g. can't fork a new process).
4286 // Unlike system(), this function can be called from signal handler. It
4287 // doesn't block SIGINT et al.
4288 int os::fork_and_exec(char* cmd) {
4289   char * argv[4] = {"sh", "-c", cmd, NULL};
4290 
4291   pid_t pid = fork();
4292 
4293   if (pid < 0) {
4294     // fork failed
4295     return -1;
4296 
4297   } else if (pid == 0) {
4298     // child process
4299 
4300     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4301     execve("/usr/bin/sh", argv, environ);
4302 
4303     // execve failed
4304     _exit(-1);
4305 
4306   } else {
4307     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4308     // care about the actual exit code, for now.
4309 
4310     int status;
4311 
4312     // Wait for the child process to exit. This returns immediately if
4313     // the child has already exited. */
4314     while (waitpid(pid, &status, 0) < 0) {
4315       switch (errno) {
4316         case ECHILD: return 0;
4317         case EINTR: break;
4318         default: return -1;
4319       }
4320     }
4321 
4322     if (WIFEXITED(status)) {
4323       // The child exited normally; get its exit code.
4324       return WEXITSTATUS(status);
4325     } else if (WIFSIGNALED(status)) {
4326       // The child exited because of a signal.
4327       // The best value to return is 0x80 + signal number,
4328       // because that is what all Unix shells do, and because
4329       // it allows callers to distinguish between process exit and
4330       // process death by signal.
4331       return 0x80 + WTERMSIG(status);
4332     } else {
4333       // Unknown exit code; pass it through.
4334       return status;
4335     }
4336   }
4337   return -1;
4338 }
4339 
4340 // Get the default path to the core file
4341 // Returns the length of the string
4342 int os::get_core_path(char* buffer, size_t bufferSize) {
4343   const char* p = get_current_directory(buffer, bufferSize);
4344 
4345   if (p == NULL) {
4346     assert(p != NULL, "failed to get current directory");
4347     return 0;
4348   }
4349 
4350   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4351                                                p, current_process_id());
4352 
4353   return strlen(buffer);
4354 }
4355 
4356 #ifndef PRODUCT
4357 void TestReserveMemorySpecial_test() {
4358   // No tests available for this platform
4359 }
4360 #endif
4361 
4362 bool os::start_debugging(char *buf, int buflen) {
4363   int len = (int)strlen(buf);
4364   char *p = &buf[len];
4365 
4366   jio_snprintf(p, buflen -len,
4367                  "\n\n"
4368                  "Do you want to debug the problem?\n\n"
4369                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4370                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4371                  "Otherwise, press RETURN to abort...",
4372                  os::current_process_id(),
4373                  os::current_thread_id(), thread_self());
4374 
4375   bool yes = os::message_box("Unexpected Error", buf);
4376 
4377   if (yes) {
4378     // yes, user asked VM to launch debugger
4379     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4380 
4381     os::fork_and_exec(buf);
4382     yes = false;
4383   }
4384   return yes;
4385 }
4386 
4387 static inline time_t get_mtime(const char* filename) {
4388   struct stat st;
4389   int ret = os::stat(filename, &st);
4390   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4391   return st.st_mtime;
4392 }
4393 
4394 int os::compare_file_modified_times(const char* file1, const char* file2) {
4395   time_t t1 = get_mtime(file1);
4396   time_t t2 = get_mtime(file2);
4397   return t1 - t2;
4398 }