/* * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jvm.h" #include "logging/log.hpp" #include "logging/logFileStreamOutput.hpp" #include "logging/logOutput.hpp" #include "logging/logSelection.hpp" #include "logging/logTagSet.hpp" #include "memory/allocation.inline.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/os.inline.hpp" LogOutput::~LogOutput() { os::free(_config_string); } void LogOutput::describe(outputStream *out) { out->print("%s ", name()); out->print_raw(config_string()); // raw printed because length might exceed O_BUFLEN bool has_decorator = false; char delimiter = ' '; for (size_t d = 0; d < LogDecorators::Count; d++) { LogDecorators::Decorator decorator = static_cast(d); if (decorators().is_decorator(decorator)) { has_decorator = true; out->print("%c%s", delimiter, LogDecorators::name(decorator)); delimiter = ','; } } if (!has_decorator) { out->print(" none"); } } void LogOutput::set_config_string(const char* string) { os::free(_config_string); _config_string = os::strdup(string, mtLogging); _config_string_buffer_size = strlen(_config_string) + 1; } void LogOutput::add_to_config_string(const LogSelection& selection) { if (_config_string_buffer_size < InitialConfigBufferSize) { _config_string_buffer_size = InitialConfigBufferSize; _config_string = REALLOC_C_HEAP_ARRAY(char, _config_string, _config_string_buffer_size, mtLogging); } size_t offset = strlen(_config_string); if (offset > 0) { // Add commas in-between tag and level combinations in the config string _config_string[offset++] = ','; } for (;;) { int ret = selection.describe(_config_string + offset, _config_string_buffer_size - offset); if (ret == -1) { // Double the buffer size and retry _config_string_buffer_size *= 2; _config_string = REALLOC_C_HEAP_ARRAY(char, _config_string, _config_string_buffer_size, mtLogging); continue; } break; }; } static int tag_cmp(const void *a, const void *b) { return static_cast(a) - static_cast(b); } static void sort_tags(LogTagType tags[LogTag::MaxTags]) { size_t ntags = 0; while (tags[ntags] != LogTag::__NO_TAG) { ntags++; } qsort(tags, ntags, sizeof(*tags), tag_cmp); } static const size_t MaxSubsets = 1 << LogTag::MaxTags; // Fill result with all possible subsets of the given tag set. Empty set not included. // For example, if tags is {gc, heap} then the result is {{gc}, {heap}, {gc, heap}}. // (Arguments with default values are intended exclusively for recursive calls.) static void generate_all_subsets_of(LogTagType result[MaxSubsets][LogTag::MaxTags], size_t* result_size, const LogTagType tags[LogTag::MaxTags], LogTagType subset[LogTag::MaxTags] = NULL, const size_t subset_size = 0, const size_t depth = 0) { assert(subset_size <= LogTag::MaxTags, "subset must never have more than MaxTags tags"); assert(depth <= LogTag::MaxTags, "recursion depth overflow"); if (subset == NULL) { assert(*result_size == 0, "outer (non-recursive) call expects result_size to be 0"); // Make subset the first element in the result array initially subset = result[0]; } assert((void*) subset >= &result[0] && (void*) subset <= &result[MaxSubsets - 1], "subset should always point to element in result"); if (depth == LogTag::MaxTags || tags[depth] == LogTag::__NO_TAG) { if (subset_size == 0) { // Ignore empty subset return; } if (subset_size != LogTag::MaxTags) { subset[subset_size] = LogTag::__NO_TAG; } assert(*result_size < MaxSubsets, "subsets overflow"); *result_size += 1; // Bump subset and copy over current state memcpy(result[*result_size], subset, sizeof(*subset) * LogTag::MaxTags); subset = result[*result_size]; return; } // Recurse, excluding the tag of the current depth generate_all_subsets_of(result, result_size, tags, subset, subset_size, depth + 1); // ... and with it included subset[subset_size] = tags[depth]; generate_all_subsets_of(result, result_size, tags, subset, subset_size + 1, depth + 1); } // Generate all possible selections (for the given level) based on the given tag set, // and add them to the selections array (growing it as necessary). static void add_selections(LogSelection** selections, size_t* n_selections, size_t* selections_cap, const LogTagSet& tagset, LogLevelType level) { LogTagType tags[LogTag::MaxTags] = { LogTag::__NO_TAG }; for (size_t i = 0; i < tagset.ntags(); i++) { tags[i] = tagset.tag(i); } size_t n_subsets = 0; LogTagType subsets[MaxSubsets][LogTag::MaxTags]; generate_all_subsets_of(subsets, &n_subsets, tags); for (size_t i = 0; i < n_subsets; i++) { // Always keep tags sorted sort_tags(subsets[i]); // Ignore subsets already represented in selections bool unique = true; for (size_t sel = 0; sel < *n_selections; sel++) { if (level == (*selections)[sel].level() && (*selections)[sel].consists_of(subsets[i])) { unique = false; break; } } if (!unique) { continue; } LogSelection exact_selection(subsets[i], false, level); LogSelection wildcard_selection(subsets[i], true, level); // Check if the two selections match any tag sets bool wildcard_match = false; bool exact_match = false; for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) { if (!wildcard_selection.selects(*ts)) { continue; } wildcard_match = true; if (exact_selection.selects(*ts)) { exact_match = true; } if (exact_match) { break; } } if (!wildcard_match && !exact_match) { continue; } // Ensure there's enough room for both wildcard_match and exact_match if (*n_selections + 2 > *selections_cap) { *selections_cap *= 2; *selections = REALLOC_C_HEAP_ARRAY(LogSelection, *selections, *selections_cap, mtLogging); } // Add found matching selections to the result array if (exact_match) { (*selections)[(*n_selections)++] = exact_selection; } if (wildcard_match) { (*selections)[(*n_selections)++] = wildcard_selection; } } } void LogOutput::update_config_string(const size_t on_level[LogLevel::Count]) { // Find the most common level (MCL) LogLevelType mcl = LogLevel::Off; size_t max = on_level[LogLevel::Off]; for (LogLevelType l = LogLevel::First; l <= LogLevel::Last; l = static_cast(l + 1)) { if (on_level[l] > max) { mcl = l; max = on_level[l]; } } // Always let the first part of each output's config string be "all=" { char buf[64]; jio_snprintf(buf, sizeof(buf), "all=%s", LogLevel::name(mcl)); set_config_string(buf); } // If there are no deviating tag sets, we're done size_t deviating_tagsets = LogTagSet::ntagsets() - max; if (deviating_tagsets == 0) { return; } size_t n_selections = 0; size_t selections_cap = 4 * MaxSubsets; // Start with some reasonably large initial capacity LogSelection* selections = NEW_C_HEAP_ARRAY(LogSelection, selections_cap, mtLogging); size_t n_deviates = 0; const LogTagSet** deviates = NEW_C_HEAP_ARRAY(const LogTagSet*, deviating_tagsets, mtLogging); // Generate all possible selections involving the deviating tag sets for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) { LogLevelType level = ts->level_for(this); if (level == mcl) { continue; } deviates[n_deviates++] = ts; add_selections(&selections, &n_selections, &selections_cap, *ts, level); } // Reduce deviates greedily, using the "best" selection at each step to reduce the number of deviating tag sets while (n_deviates > 0) { size_t prev_deviates = n_deviates; int max_score = 0; guarantee(n_selections > 0, "Cannot find maximal selection."); const LogSelection* best_selection = &selections[0]; for (size_t i = 0; i < n_selections; i++) { // Give the selection a score based on how many deviating tag sets it selects (with correct level) int score = 0; for (size_t d = 0; d < n_deviates; d++) { if (selections[i].selects(*deviates[d]) && deviates[d]->level_for(this) == selections[i].level()) { score++; } } // Ignore selections with lower score than the current best even before subtracting mismatched selections if (score < max_score) { continue; } // Subtract from the score the number of tag sets it selects with an incorrect level for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) { if (selections[i].selects(*ts) && ts->level_for(this) != selections[i].level()) { score--; } } // Pick the selection with the best score, or in the case of a tie, the one with fewest tags if (score > max_score || (score == max_score && selections[i].ntags() < best_selection->ntags())) { max_score = score; best_selection = &selections[i]; } } add_to_config_string(*best_selection); // Remove all deviates that this selection covered for (size_t d = 0; d < n_deviates;) { if (deviates[d]->level_for(this) == best_selection->level() && best_selection->selects(*deviates[d])) { deviates[d] = deviates[--n_deviates]; continue; } d++; } // Add back any new deviates that this selection added (no array growth since removed > added) for (LogTagSet* ts = LogTagSet::first(); ts != NULL; ts = ts->next()) { if (ts->level_for(this) == best_selection->level() || !best_selection->selects(*ts)) { continue; } bool already_added = false; for (size_t dev = 0; dev < n_deviates; dev++) { if (deviates[dev] == ts) { already_added = true; break; } } if (already_added) { continue; } deviates[n_deviates++] = ts; } // Reset the selections and generate a new ones based on the updated deviating tag sets n_selections = 0; for (size_t d = 0; d < n_deviates; d++) { add_selections(&selections, &n_selections, &selections_cap, *deviates[d], deviates[d]->level_for(this)); } assert(n_deviates < deviating_tagsets, "deviating tag set array overflow"); assert(prev_deviates > n_deviates, "number of deviating tag sets must never grow"); } FREE_C_HEAP_ARRAY(LogTagSet*, deviates); FREE_C_HEAP_ARRAY(Selection, selections); }