1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "oops/constMethod.hpp"
  28 #include "oops/method.hpp"
  29 #include "runtime/arguments.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/synchronizer.hpp"
  32 #include "utilities/macros.hpp"
  33 
  34 
  35 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  36   int i = 0;
  37   switch (type) {
  38     case T_BOOLEAN: i = 0; break;
  39     case T_CHAR   : i = 1; break;
  40     case T_BYTE   : i = 2; break;
  41     case T_SHORT  : i = 3; break;
  42     case T_INT    : i = 4; break;
  43     case T_LONG   : i = 5; break;
  44     case T_VOID   : i = 6; break;
  45     case T_FLOAT  : i = 7; break;
  46     case T_DOUBLE : i = 8; break;
  47     case T_OBJECT : i = 9; break;
  48     case T_ARRAY  : i = 9; break;
  49     default       : ShouldNotReachHere();
  50   }
  51   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  52   return i;
  53 }
  54 
  55 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  56   // No special entry points that preclude compilation
  57   return true;
  58 }
  59 
  60 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  61 
  62   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  63   // expression stack, the callee will have callee_extra_locals (so we can account for
  64   // frame extension) and monitor_size for monitors. Basically we need to calculate
  65   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  66   //
  67   //
  68   // The big complicating thing here is that we must ensure that the stack stays properly
  69   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  70   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  71   // the caller so we must ensure that it is properly aligned for our callee.
  72   //
  73   const int rounded_vm_local_words =
  74        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
  75   // callee_locals and max_stack are counts, not the size in frame.
  76   const int locals_size =
  77        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  78   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  79   return (round_to((max_stack_words
  80                    + rounded_vm_local_words
  81                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  82                    // already rounded
  83                    + locals_size + monitor_size);
  84 }
  85 
  86 // How much stack a method top interpreter activation needs in words.
  87 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  88 
  89   // See call_stub code
  90   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  91                                  WordsPerLong);    // 7 + register save area
  92 
  93   // Save space for one monitor to get into the interpreted method in case
  94   // the method is synchronized
  95   int monitor_size    = method->is_synchronized() ?
  96                                 1*frame::interpreter_frame_monitor_size() : 0;
  97   return size_activation_helper(method->max_locals(), method->max_stack(),
  98                                 monitor_size) + call_stub_size;
  99 }
 100 
 101 int AbstractInterpreter::size_activation(int max_stack,
 102                                          int temps,
 103                                          int extra_args,
 104                                          int monitors,
 105                                          int callee_params,
 106                                          int callee_locals,
 107                                          bool is_top_frame) {
 108   // Note: This calculation must exactly parallel the frame setup
 109   // in TemplateInterpreterGenerator::generate_fixed_frame.
 110 
 111   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
 112 
 113   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
 114 
 115   //
 116   // Note: if you look closely this appears to be doing something much different
 117   // than generate_fixed_frame. What is happening is this. On sparc we have to do
 118   // this dance with interpreter_sp_adjustment because the window save area would
 119   // appear just below the bottom (tos) of the caller's java expression stack. Because
 120   // the interpreter want to have the locals completely contiguous generate_fixed_frame
 121   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
 122   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
 123   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
 124   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
 125   // because the oldest frame would have adjust its callers frame and yet that frame
 126   // already exists and isn't part of this array of frames we are unpacking. So at first
 127   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
 128   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
 129   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
 130   // add up. It does seem like it simpler to account for the adjustment here (and remove the
 131   // callee... parameters here). However this would mean that this routine would have to take
 132   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
 133   // and run the calling loop in the reverse order. This would also would appear to mean making
 134   // this code aware of what the interactions are when that initial caller fram was an osr or
 135   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
 136   // there is no sense in messing working code.
 137   //
 138 
 139   int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
 140   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
 141 
 142   int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
 143 
 144   return raw_frame_size;
 145 }
 146 
 147 void AbstractInterpreter::layout_activation(Method* method,
 148                                             int tempcount,
 149                                             int popframe_extra_args,
 150                                             int moncount,
 151                                             int caller_actual_parameters,
 152                                             int callee_param_count,
 153                                             int callee_local_count,
 154                                             frame* caller,
 155                                             frame* interpreter_frame,
 156                                             bool is_top_frame,
 157                                             bool is_bottom_frame) {
 158   // Set up the following variables:
 159   //   - Lmethod
 160   //   - Llocals
 161   //   - Lmonitors (to the indicated number of monitors)
 162   //   - Lesp (to the indicated number of temps)
 163   // The frame caller on entry is a description of the caller of the
 164   // frame we are about to layout. We are guaranteed that we will be
 165   // able to fill in a new interpreter frame as its callee (i.e. the
 166   // stack space is allocated and the amount was determined by an
 167   // earlier call to the size_activation() method).  On return caller
 168   // while describe the interpreter frame we just layed out.
 169 
 170   // The skeleton frame must already look like an interpreter frame
 171   // even if not fully filled out.
 172   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
 173 
 174   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
 175   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
 176   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
 177 
 178   intptr_t* fp = interpreter_frame->fp();
 179 
 180   JavaThread* thread = JavaThread::current();
 181   RegisterMap map(thread, false);
 182   // More verification that skeleton frame is properly walkable
 183   assert(fp == caller->sp(), "fp must match");
 184 
 185   intptr_t* montop     = fp - rounded_vm_local_words;
 186 
 187   // preallocate monitors (cf. __ add_monitor_to_stack)
 188   intptr_t* monitors = montop - monitor_size;
 189 
 190   // preallocate stack space
 191   intptr_t*  esp = monitors - 1 -
 192     (tempcount * Interpreter::stackElementWords) -
 193     popframe_extra_args;
 194 
 195   int local_words = method->max_locals() * Interpreter::stackElementWords;
 196   NEEDS_CLEANUP;
 197   intptr_t* locals;
 198   if (caller->is_interpreted_frame()) {
 199     // Can force the locals area to end up properly overlapping the top of the expression stack.
 200     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
 201     // Note that this computation means we replace size_of_parameters() values from the caller
 202     // interpreter frame's expression stack with our argument locals
 203     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
 204     locals = Lesp_ptr + parm_words;
 205     int delta = local_words - parm_words;
 206     int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
 207     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
 208     if (!is_bottom_frame) {
 209       // Llast_SP is set below for the current frame to SP (with the
 210       // extra space for the callee's locals). Here we adjust
 211       // Llast_SP for the caller's frame, removing the extra space
 212       // for the current method's locals.
 213       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
 214     } else {
 215       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
 216     }
 217   } else {
 218     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
 219     // Don't have Lesp available; lay out locals block in the caller
 220     // adjacent to the register window save area.
 221     //
 222     // Compiled frames do not allocate a varargs area which is why this if
 223     // statement is needed.
 224     //
 225     if (caller->is_compiled_frame()) {
 226       locals = fp + frame::register_save_words + local_words - 1;
 227     } else {
 228       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
 229     }
 230     if (!caller->is_entry_frame()) {
 231       // Caller wants his own SP back
 232       int caller_frame_size = caller->cb()->frame_size();
 233       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
 234     }
 235   }
 236   if (TraceDeoptimization) {
 237     if (caller->is_entry_frame()) {
 238       // make sure I5_savedSP and the entry frames notion of saved SP
 239       // agree.  This assertion duplicate a check in entry frame code
 240       // but catches the failure earlier.
 241       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
 242              "would change callers SP");
 243     }
 244     if (caller->is_entry_frame()) {
 245       tty->print("entry ");
 246     }
 247     if (caller->is_compiled_frame()) {
 248       tty->print("compiled ");
 249       if (caller->is_deoptimized_frame()) {
 250         tty->print("(deopt) ");
 251       }
 252     }
 253     if (caller->is_interpreted_frame()) {
 254       tty->print("interpreted ");
 255     }
 256     tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
 257     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
 258     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
 259     tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
 260     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
 261     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
 262     tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
 263     tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
 264     tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
 265   }
 266 
 267   if (method->max_locals() > 0) {
 268     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
 269     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
 270     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
 271     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
 272   }
 273   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
 274 
 275   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
 276   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
 277   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
 278   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
 279   // Llast_SP will be same as SP as there is no adapter space
 280   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
 281   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
 282   // save the mirror in the interpreter frame
 283   *interpreter_frame->interpreter_frame_mirror_addr() = method->method_holder()->java_mirror();
 284 #ifdef FAST_DISPATCH
 285   *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
 286 #endif
 287 
 288 #ifdef ASSERT
 289   BasicObjectLock* mp = (BasicObjectLock*)monitors;
 290 
 291   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
 292   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
 293   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
 294   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
 295   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
 296 
 297   // check bounds
 298   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
 299   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
 300   assert(lo < monitors && montop <= hi, "monitors in bounds");
 301   assert(lo <= esp && esp < monitors, "esp in bounds");
 302 #endif // ASSERT
 303 }