1 //
   2 // Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 // 64-bit build means 64-bit pointers means hi/lo pairs
 315 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 316                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 317                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 318                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 319 // Lock encodings use G3 and G4 internally
 320 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 321                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 322                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 323                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 324 // Special class for storeP instructions, which can store SP or RPC to TLS.
 325 // It is also used for memory addressing, allowing direct TLS addressing.
 326 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 327                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 328                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 329                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 330 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 331 // We use it to save R_G2 across calls out of Java.
 332 reg_class l7_regP(R_L7H,R_L7);
 333 
 334 // Other special pointer regs
 335 reg_class g1_regP(R_G1H,R_G1);
 336 reg_class g2_regP(R_G2H,R_G2);
 337 reg_class g3_regP(R_G3H,R_G3);
 338 reg_class g4_regP(R_G4H,R_G4);
 339 reg_class g5_regP(R_G5H,R_G5);
 340 reg_class i0_regP(R_I0H,R_I0);
 341 reg_class o0_regP(R_O0H,R_O0);
 342 reg_class o1_regP(R_O1H,R_O1);
 343 reg_class o2_regP(R_O2H,R_O2);
 344 reg_class o7_regP(R_O7H,R_O7);
 345 
 346 
 347 // ----------------------------
 348 // Long Register Classes
 349 // ----------------------------
 350 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 351 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 352 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 353                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 354 // 64-bit, longs in 1 register: use all 64-bit integer registers
 355 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 356                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 357                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 358                   );
 359 
 360 reg_class g1_regL(R_G1H,R_G1);
 361 reg_class g3_regL(R_G3H,R_G3);
 362 reg_class o2_regL(R_O2H,R_O2);
 363 reg_class o7_regL(R_O7H,R_O7);
 364 
 365 // ----------------------------
 366 // Special Class for Condition Code Flags Register
 367 reg_class int_flags(CCR);
 368 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 369 reg_class float_flag0(FCC0);
 370 
 371 
 372 // ----------------------------
 373 // Float Point Register Classes
 374 // ----------------------------
 375 // Skip F30/F31, they are reserved for mem-mem copies
 376 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 377 
 378 // Paired floating point registers--they show up in the same order as the floats,
 379 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 380 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 381                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 382                    /* Use extra V9 double registers; this AD file does not support V8 */
 383                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 384                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 385                    );
 386 
 387 // Paired floating point registers--they show up in the same order as the floats,
 388 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 389 // This class is usable for mis-aligned loads as happen in I2C adapters.
 390 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 391                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 392 %}
 393 
 394 //----------DEFINITION BLOCK---------------------------------------------------
 395 // Define name --> value mappings to inform the ADLC of an integer valued name
 396 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 397 // Format:
 398 //        int_def  <name>         ( <int_value>, <expression>);
 399 // Generated Code in ad_<arch>.hpp
 400 //        #define  <name>   (<expression>)
 401 //        // value == <int_value>
 402 // Generated code in ad_<arch>.cpp adlc_verification()
 403 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 404 //
 405 definitions %{
 406 // The default cost (of an ALU instruction).
 407   int_def DEFAULT_COST      (    100,     100);
 408   int_def HUGE_COST         (1000000, 1000000);
 409 
 410 // Memory refs are twice as expensive as run-of-the-mill.
 411   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 412 
 413 // Branches are even more expensive.
 414   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 415   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 416 %}
 417 
 418 
 419 //----------SOURCE BLOCK-------------------------------------------------------
 420 // This is a block of C++ code which provides values, functions, and
 421 // definitions necessary in the rest of the architecture description
 422 source_hpp %{
 423 // Header information of the source block.
 424 // Method declarations/definitions which are used outside
 425 // the ad-scope can conveniently be defined here.
 426 //
 427 // To keep related declarations/definitions/uses close together,
 428 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 429 
 430 // Must be visible to the DFA in dfa_sparc.cpp
 431 extern bool can_branch_register( Node *bol, Node *cmp );
 432 
 433 extern bool use_block_zeroing(Node* count);
 434 
 435 // Macros to extract hi & lo halves from a long pair.
 436 // G0 is not part of any long pair, so assert on that.
 437 // Prevents accidentally using G1 instead of G0.
 438 #define LONG_HI_REG(x) (x)
 439 #define LONG_LO_REG(x) (x)
 440 
 441 class CallStubImpl {
 442 
 443   //--------------------------------------------------------------
 444   //---<  Used for optimization in Compile::Shorten_branches  >---
 445   //--------------------------------------------------------------
 446 
 447  public:
 448   // Size of call trampoline stub.
 449   static uint size_call_trampoline() {
 450     return 0; // no call trampolines on this platform
 451   }
 452 
 453   // number of relocations needed by a call trampoline stub
 454   static uint reloc_call_trampoline() {
 455     return 0; // no call trampolines on this platform
 456   }
 457 };
 458 
 459 class HandlerImpl {
 460 
 461  public:
 462 
 463   static int emit_exception_handler(CodeBuffer &cbuf);
 464   static int emit_deopt_handler(CodeBuffer& cbuf);
 465 
 466   static uint size_exception_handler() {
 467     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 468   }
 469 
 470   static uint size_deopt_handler() {
 471     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 472   }
 473 };
 474 
 475 %}
 476 
 477 source %{
 478 #define __ _masm.
 479 
 480 // tertiary op of a LoadP or StoreP encoding
 481 #define REGP_OP true
 482 
 483 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 484 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 485 static Register reg_to_register_object(int register_encoding);
 486 
 487 // Used by the DFA in dfa_sparc.cpp.
 488 // Check for being able to use a V9 branch-on-register.  Requires a
 489 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 490 // extended.  Doesn't work following an integer ADD, for example, because of
 491 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 492 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 493 // replace them with zero, which could become sign-extension in a different OS
 494 // release.  There's no obvious reason why an interrupt will ever fill these
 495 // bits with non-zero junk (the registers are reloaded with standard LD
 496 // instructions which either zero-fill or sign-fill).
 497 bool can_branch_register( Node *bol, Node *cmp ) {
 498   if( !BranchOnRegister ) return false;
 499   if( cmp->Opcode() == Op_CmpP )
 500     return true;  // No problems with pointer compares
 501   if( cmp->Opcode() == Op_CmpL )
 502     return true;  // No problems with long compares
 503 
 504   if( !SparcV9RegsHiBitsZero ) return false;
 505   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 506       bol->as_Bool()->_test._test != BoolTest::eq )
 507      return false;
 508 
 509   // Check for comparing against a 'safe' value.  Any operation which
 510   // clears out the high word is safe.  Thus, loads and certain shifts
 511   // are safe, as are non-negative constants.  Any operation which
 512   // preserves zero bits in the high word is safe as long as each of its
 513   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 514   // inputs are safe.  At present, the only important case to recognize
 515   // seems to be loads.  Constants should fold away, and shifts &
 516   // logicals can use the 'cc' forms.
 517   Node *x = cmp->in(1);
 518   if( x->is_Load() ) return true;
 519   if( x->is_Phi() ) {
 520     for( uint i = 1; i < x->req(); i++ )
 521       if( !x->in(i)->is_Load() )
 522         return false;
 523     return true;
 524   }
 525   return false;
 526 }
 527 
 528 bool use_block_zeroing(Node* count) {
 529   // Use BIS for zeroing if count is not constant
 530   // or it is >= BlockZeroingLowLimit.
 531   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 532 }
 533 
 534 // ****************************************************************************
 535 
 536 // REQUIRED FUNCTIONALITY
 537 
 538 // !!!!! Special hack to get all type of calls to specify the byte offset
 539 //       from the start of the call to the point where the return address
 540 //       will point.
 541 //       The "return address" is the address of the call instruction, plus 8.
 542 
 543 int MachCallStaticJavaNode::ret_addr_offset() {
 544   int offset = NativeCall::instruction_size;  // call; delay slot
 545   if (_method_handle_invoke)
 546     offset += 4;  // restore SP
 547   return offset;
 548 }
 549 
 550 int MachCallDynamicJavaNode::ret_addr_offset() {
 551   int vtable_index = this->_vtable_index;
 552   if (vtable_index < 0) {
 553     // must be invalid_vtable_index, not nonvirtual_vtable_index
 554     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 555     return (NativeMovConstReg::instruction_size +
 556            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 557   } else {
 558     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 559     int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
 560     int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
 561     int klass_load_size;
 562     if (UseCompressedClassPointers) {
 563       assert(Universe::heap() != NULL, "java heap should be initialized");
 564       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 565     } else {
 566       klass_load_size = 1*BytesPerInstWord;
 567     }
 568     if (Assembler::is_simm13(v_off)) {
 569       return klass_load_size +
 570              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 571              NativeCall::instruction_size);  // call; delay slot
 572     } else {
 573       return klass_load_size +
 574              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 575              NativeCall::instruction_size);  // call; delay slot
 576     }
 577   }
 578 }
 579 
 580 int MachCallRuntimeNode::ret_addr_offset() {
 581   if (MacroAssembler::is_far_target(entry_point())) {
 582     return NativeFarCall::instruction_size;
 583   } else {
 584     return NativeCall::instruction_size;
 585   }
 586 }
 587 
 588 // Indicate if the safepoint node needs the polling page as an input.
 589 // Since Sparc does not have absolute addressing, it does.
 590 bool SafePointNode::needs_polling_address_input() {
 591   return true;
 592 }
 593 
 594 // emit an interrupt that is caught by the debugger (for debugging compiler)
 595 void emit_break(CodeBuffer &cbuf) {
 596   MacroAssembler _masm(&cbuf);
 597   __ breakpoint_trap();
 598 }
 599 
 600 #ifndef PRODUCT
 601 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 602   st->print("TA");
 603 }
 604 #endif
 605 
 606 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 607   emit_break(cbuf);
 608 }
 609 
 610 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 611   return MachNode::size(ra_);
 612 }
 613 
 614 // Traceable jump
 615 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 616   MacroAssembler _masm(&cbuf);
 617   Register rdest = reg_to_register_object(jump_target);
 618   __ JMP(rdest, 0);
 619   __ delayed()->nop();
 620 }
 621 
 622 // Traceable jump and set exception pc
 623 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 624   MacroAssembler _masm(&cbuf);
 625   Register rdest = reg_to_register_object(jump_target);
 626   __ JMP(rdest, 0);
 627   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 628 }
 629 
 630 void emit_nop(CodeBuffer &cbuf) {
 631   MacroAssembler _masm(&cbuf);
 632   __ nop();
 633 }
 634 
 635 void emit_illtrap(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ illtrap(0);
 638 }
 639 
 640 
 641 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 642   assert(n->rule() != loadUB_rule, "");
 643 
 644   intptr_t offset = 0;
 645   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 646   const Node* addr = n->get_base_and_disp(offset, adr_type);
 647   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 648   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 649   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 650   atype = atype->add_offset(offset);
 651   assert(disp32 == offset, "wrong disp32");
 652   return atype->_offset;
 653 }
 654 
 655 
 656 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 657   assert(n->rule() != loadUB_rule, "");
 658 
 659   intptr_t offset = 0;
 660   Node* addr = n->in(2);
 661   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 662   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 663     Node* a = addr->in(2/*AddPNode::Address*/);
 664     Node* o = addr->in(3/*AddPNode::Offset*/);
 665     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 666     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 667     assert(atype->isa_oop_ptr(), "still an oop");
 668   }
 669   offset = atype->is_ptr()->_offset;
 670   if (offset != Type::OffsetBot)  offset += disp32;
 671   return offset;
 672 }
 673 
 674 static inline jlong replicate_immI(int con, int count, int width) {
 675   // Load a constant replicated "count" times with width "width"
 676   assert(count*width == 8 && width <= 4, "sanity");
 677   int bit_width = width * 8;
 678   jlong val = con;
 679   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 680   for (int i = 0; i < count - 1; i++) {
 681     val |= (val << bit_width);
 682   }
 683   return val;
 684 }
 685 
 686 static inline jlong replicate_immF(float con) {
 687   // Replicate float con 2 times and pack into vector.
 688   int val = *((int*)&con);
 689   jlong lval = val;
 690   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 691   return lval;
 692 }
 693 
 694 // Standard Sparc opcode form2 field breakdown
 695 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 696   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 697   int op = (f30 << 30) |
 698            (f29 << 29) |
 699            (f25 << 25) |
 700            (f22 << 22) |
 701            (f20 << 20) |
 702            (f19 << 19) |
 703            (f0  <<  0);
 704   cbuf.insts()->emit_int32(op);
 705 }
 706 
 707 // Standard Sparc opcode form2 field breakdown
 708 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 709   f0 >>= 10;           // Drop 10 bits
 710   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 711   int op = (f30 << 30) |
 712            (f25 << 25) |
 713            (f22 << 22) |
 714            (f0  <<  0);
 715   cbuf.insts()->emit_int32(op);
 716 }
 717 
 718 // Standard Sparc opcode form3 field breakdown
 719 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 720   int op = (f30 << 30) |
 721            (f25 << 25) |
 722            (f19 << 19) |
 723            (f14 << 14) |
 724            (f5  <<  5) |
 725            (f0  <<  0);
 726   cbuf.insts()->emit_int32(op);
 727 }
 728 
 729 // Standard Sparc opcode form3 field breakdown
 730 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 731   simm13 &= (1<<13)-1; // Mask to 13 bits
 732   int op = (f30 << 30) |
 733            (f25 << 25) |
 734            (f19 << 19) |
 735            (f14 << 14) |
 736            (1   << 13) | // bit to indicate immediate-mode
 737            (simm13<<0);
 738   cbuf.insts()->emit_int32(op);
 739 }
 740 
 741 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 742   simm10 &= (1<<10)-1; // Mask to 10 bits
 743   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 744 }
 745 
 746 #ifdef ASSERT
 747 // Helper function for VerifyOops in emit_form3_mem_reg
 748 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 749   warning("VerifyOops encountered unexpected instruction:");
 750   n->dump(2);
 751   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 752 }
 753 #endif
 754 
 755 
 756 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 757                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 758 
 759 #ifdef ASSERT
 760   // The following code implements the +VerifyOops feature.
 761   // It verifies oop values which are loaded into or stored out of
 762   // the current method activation.  +VerifyOops complements techniques
 763   // like ScavengeALot, because it eagerly inspects oops in transit,
 764   // as they enter or leave the stack, as opposed to ScavengeALot,
 765   // which inspects oops "at rest", in the stack or heap, at safepoints.
 766   // For this reason, +VerifyOops can sometimes detect bugs very close
 767   // to their point of creation.  It can also serve as a cross-check
 768   // on the validity of oop maps, when used toegether with ScavengeALot.
 769 
 770   // It would be good to verify oops at other points, especially
 771   // when an oop is used as a base pointer for a load or store.
 772   // This is presently difficult, because it is hard to know when
 773   // a base address is biased or not.  (If we had such information,
 774   // it would be easy and useful to make a two-argument version of
 775   // verify_oop which unbiases the base, and performs verification.)
 776 
 777   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 778   bool is_verified_oop_base  = false;
 779   bool is_verified_oop_load  = false;
 780   bool is_verified_oop_store = false;
 781   int tmp_enc = -1;
 782   if (VerifyOops && src1_enc != R_SP_enc) {
 783     // classify the op, mainly for an assert check
 784     int st_op = 0, ld_op = 0;
 785     switch (primary) {
 786     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 787     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 788     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 789     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 790     case Assembler::std_op3:  st_op = Op_StoreL; break;
 791     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 792     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 793 
 794     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 795     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 796     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 797     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 798     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 799     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 800     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 801     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 802     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 803     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 804     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 805 
 806     default: ShouldNotReachHere();
 807     }
 808     if (tertiary == REGP_OP) {
 809       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 810       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 811       else                          ShouldNotReachHere();
 812       if (st_op) {
 813         // a store
 814         // inputs are (0:control, 1:memory, 2:address, 3:value)
 815         Node* n2 = n->in(3);
 816         if (n2 != NULL) {
 817           const Type* t = n2->bottom_type();
 818           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 819         }
 820       } else {
 821         // a load
 822         const Type* t = n->bottom_type();
 823         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 824       }
 825     }
 826 
 827     if (ld_op) {
 828       // a Load
 829       // inputs are (0:control, 1:memory, 2:address)
 830       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 831           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 832           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 833           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 834           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 835           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 836           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 837           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 838           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 839           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 841           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 843           !(n->rule() == loadUB_rule)) {
 844         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 845       }
 846     } else if (st_op) {
 847       // a Store
 848       // inputs are (0:control, 1:memory, 2:address, 3:value)
 849       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 850           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 851           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 852           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 853           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 854           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 855           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 856         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 857       }
 858     }
 859 
 860     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 861       Node* addr = n->in(2);
 862       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 863         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 864         if (atype != NULL) {
 865           intptr_t offset = get_offset_from_base(n, atype, disp32);
 866           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 867           if (offset != offset_2) {
 868             get_offset_from_base(n, atype, disp32);
 869             get_offset_from_base_2(n, atype, disp32);
 870           }
 871           assert(offset == offset_2, "different offsets");
 872           if (offset == disp32) {
 873             // we now know that src1 is a true oop pointer
 874             is_verified_oop_base = true;
 875             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 876               if( primary == Assembler::ldd_op3 ) {
 877                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 878               } else {
 879                 tmp_enc = dst_enc;
 880                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 881                 assert(src1_enc != dst_enc, "");
 882               }
 883             }
 884           }
 885           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 886                        || offset == oopDesc::mark_offset_in_bytes())) {
 887                       // loading the mark should not be allowed either, but
 888                       // we don't check this since it conflicts with InlineObjectHash
 889                       // usage of LoadINode to get the mark. We could keep the
 890                       // check if we create a new LoadMarkNode
 891             // but do not verify the object before its header is initialized
 892             ShouldNotReachHere();
 893           }
 894         }
 895       }
 896     }
 897   }
 898 #endif
 899 
 900   uint instr = (Assembler::ldst_op << 30)
 901              | (dst_enc        << 25)
 902              | (primary        << 19)
 903              | (src1_enc       << 14);
 904 
 905   uint index = src2_enc;
 906   int disp = disp32;
 907 
 908   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 909     disp += STACK_BIAS;
 910     // Check that stack offset fits, load into O7 if not
 911     if (!Assembler::is_simm13(disp)) {
 912       MacroAssembler _masm(&cbuf);
 913       __ set(disp, O7);
 914       if (index != R_G0_enc) {
 915         __ add(O7, reg_to_register_object(index), O7);
 916       }
 917       index = R_O7_enc;
 918       disp = 0;
 919     }
 920   }
 921 
 922   if( disp == 0 ) {
 923     // use reg-reg form
 924     // bit 13 is already zero
 925     instr |= index;
 926   } else {
 927     // use reg-imm form
 928     instr |= 0x00002000;          // set bit 13 to one
 929     instr |= disp & 0x1FFF;
 930   }
 931 
 932   cbuf.insts()->emit_int32(instr);
 933 
 934 #ifdef ASSERT
 935   if (VerifyOops) {
 936     MacroAssembler _masm(&cbuf);
 937     if (is_verified_oop_base) {
 938       __ verify_oop(reg_to_register_object(src1_enc));
 939     }
 940     if (is_verified_oop_store) {
 941       __ verify_oop(reg_to_register_object(dst_enc));
 942     }
 943     if (tmp_enc != -1) {
 944       __ mov(O7, reg_to_register_object(tmp_enc));
 945     }
 946     if (is_verified_oop_load) {
 947       __ verify_oop(reg_to_register_object(dst_enc));
 948     }
 949   }
 950 #endif
 951 }
 952 
 953 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, RelocationHolder const& rspec, bool preserve_g2 = false) {
 954   // The method which records debug information at every safepoint
 955   // expects the call to be the first instruction in the snippet as
 956   // it creates a PcDesc structure which tracks the offset of a call
 957   // from the start of the codeBlob. This offset is computed as
 958   // code_end() - code_begin() of the code which has been emitted
 959   // so far.
 960   // In this particular case we have skirted around the problem by
 961   // putting the "mov" instruction in the delay slot but the problem
 962   // may bite us again at some other point and a cleaner/generic
 963   // solution using relocations would be needed.
 964   MacroAssembler _masm(&cbuf);
 965   __ set_inst_mark();
 966 
 967   // We flush the current window just so that there is a valid stack copy
 968   // the fact that the current window becomes active again instantly is
 969   // not a problem there is nothing live in it.
 970 
 971 #ifdef ASSERT
 972   int startpos = __ offset();
 973 #endif /* ASSERT */
 974 
 975   __ call((address)entry_point, rspec);
 976 
 977   if (preserve_g2)   __ delayed()->mov(G2, L7);
 978   else __ delayed()->nop();
 979 
 980   if (preserve_g2)   __ mov(L7, G2);
 981 
 982 #ifdef ASSERT
 983   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 984     // Trash argument dump slots.
 985     __ set(0xb0b8ac0db0b8ac0d, G1);
 986     __ mov(G1, G5);
 987     __ stx(G1, SP, STACK_BIAS + 0x80);
 988     __ stx(G1, SP, STACK_BIAS + 0x88);
 989     __ stx(G1, SP, STACK_BIAS + 0x90);
 990     __ stx(G1, SP, STACK_BIAS + 0x98);
 991     __ stx(G1, SP, STACK_BIAS + 0xA0);
 992     __ stx(G1, SP, STACK_BIAS + 0xA8);
 993   }
 994 #endif /*ASSERT*/
 995 }
 996 
 997 //=============================================================================
 998 // REQUIRED FUNCTIONALITY for encoding
 999 void emit_lo(CodeBuffer &cbuf, int val) {  }
1000 void emit_hi(CodeBuffer &cbuf, int val) {  }
1001 
1002 
1003 //=============================================================================
1004 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1005 
1006 int Compile::ConstantTable::calculate_table_base_offset() const {
1007   if (UseRDPCForConstantTableBase) {
1008     // The table base offset might be less but then it fits into
1009     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1010     return Assembler::min_simm13();
1011   } else {
1012     int offset = -(size() / 2);
1013     if (!Assembler::is_simm13(offset)) {
1014       offset = Assembler::min_simm13();
1015     }
1016     return offset;
1017   }
1018 }
1019 
1020 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1021 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1022   ShouldNotReachHere();
1023 }
1024 
1025 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1026   Compile* C = ra_->C;
1027   Compile::ConstantTable& constant_table = C->constant_table();
1028   MacroAssembler _masm(&cbuf);
1029 
1030   Register r = as_Register(ra_->get_encode(this));
1031   CodeSection* consts_section = __ code()->consts();
1032   int consts_size = consts_section->align_at_start(consts_section->size());
1033   assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1034 
1035   if (UseRDPCForConstantTableBase) {
1036     // For the following RDPC logic to work correctly the consts
1037     // section must be allocated right before the insts section.  This
1038     // assert checks for that.  The layout and the SECT_* constants
1039     // are defined in src/share/vm/asm/codeBuffer.hpp.
1040     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1041     int insts_offset = __ offset();
1042 
1043     // Layout:
1044     //
1045     // |----------- consts section ------------|----------- insts section -----------...
1046     // |------ constant table -----|- padding -|------------------x----
1047     //                                                            \ current PC (RDPC instruction)
1048     // |<------------- consts_size ----------->|<- insts_offset ->|
1049     //                                                            \ table base
1050     // The table base offset is later added to the load displacement
1051     // so it has to be negative.
1052     int table_base_offset = -(consts_size + insts_offset);
1053     int disp;
1054 
1055     // If the displacement from the current PC to the constant table
1056     // base fits into simm13 we set the constant table base to the
1057     // current PC.
1058     if (Assembler::is_simm13(table_base_offset)) {
1059       constant_table.set_table_base_offset(table_base_offset);
1060       disp = 0;
1061     } else {
1062       // Otherwise we set the constant table base offset to the
1063       // maximum negative displacement of load instructions to keep
1064       // the disp as small as possible:
1065       //
1066       // |<------------- consts_size ----------->|<- insts_offset ->|
1067       // |<--------- min_simm13 --------->|<-------- disp --------->|
1068       //                                  \ table base
1069       table_base_offset = Assembler::min_simm13();
1070       constant_table.set_table_base_offset(table_base_offset);
1071       disp = (consts_size + insts_offset) + table_base_offset;
1072     }
1073 
1074     __ rdpc(r);
1075 
1076     if (disp != 0) {
1077       assert(r != O7, "need temporary");
1078       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1079     }
1080   }
1081   else {
1082     // Materialize the constant table base.
1083     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1084     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1085     AddressLiteral base(baseaddr, rspec);
1086     __ set(base, r);
1087   }
1088 }
1089 
1090 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1091   if (UseRDPCForConstantTableBase) {
1092     // This is really the worst case but generally it's only 1 instruction.
1093     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1094   } else {
1095     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1096   }
1097 }
1098 
1099 #ifndef PRODUCT
1100 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1101   char reg[128];
1102   ra_->dump_register(this, reg);
1103   if (UseRDPCForConstantTableBase) {
1104     st->print("RDPC   %s\t! constant table base", reg);
1105   } else {
1106     st->print("SET    &constanttable,%s\t! constant table base", reg);
1107   }
1108 }
1109 #endif
1110 
1111 
1112 //=============================================================================
1113 
1114 #ifndef PRODUCT
1115 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1116   Compile* C = ra_->C;
1117 
1118   for (int i = 0; i < OptoPrologueNops; i++) {
1119     st->print_cr("NOP"); st->print("\t");
1120   }
1121 
1122   if( VerifyThread ) {
1123     st->print_cr("Verify_Thread"); st->print("\t");
1124   }
1125 
1126   size_t framesize = C->frame_size_in_bytes();
1127   int bangsize = C->bang_size_in_bytes();
1128 
1129   // Calls to C2R adapters often do not accept exceptional returns.
1130   // We require that their callers must bang for them.  But be careful, because
1131   // some VM calls (such as call site linkage) can use several kilobytes of
1132   // stack.  But the stack safety zone should account for that.
1133   // See bugs 4446381, 4468289, 4497237.
1134   if (C->need_stack_bang(bangsize)) {
1135     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1136   }
1137 
1138   if (Assembler::is_simm13(-framesize)) {
1139     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1140   } else {
1141     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1142     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1143     st->print   ("SAVE   R_SP,R_G3,R_SP");
1144   }
1145 
1146 }
1147 #endif
1148 
1149 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1150   Compile* C = ra_->C;
1151   MacroAssembler _masm(&cbuf);
1152 
1153   for (int i = 0; i < OptoPrologueNops; i++) {
1154     __ nop();
1155   }
1156 
1157   __ verify_thread();
1158 
1159   size_t framesize = C->frame_size_in_bytes();
1160   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1161   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1162   int bangsize = C->bang_size_in_bytes();
1163 
1164   // Calls to C2R adapters often do not accept exceptional returns.
1165   // We require that their callers must bang for them.  But be careful, because
1166   // some VM calls (such as call site linkage) can use several kilobytes of
1167   // stack.  But the stack safety zone should account for that.
1168   // See bugs 4446381, 4468289, 4497237.
1169   if (C->need_stack_bang(bangsize)) {
1170     __ generate_stack_overflow_check(bangsize);
1171   }
1172 
1173   if (Assembler::is_simm13(-framesize)) {
1174     __ save(SP, -framesize, SP);
1175   } else {
1176     __ sethi(-framesize & ~0x3ff, G3);
1177     __ add(G3, -framesize & 0x3ff, G3);
1178     __ save(SP, G3, SP);
1179   }
1180   C->set_frame_complete( __ offset() );
1181 
1182   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1183     // NOTE: We set the table base offset here because users might be
1184     // emitted before MachConstantBaseNode.
1185     Compile::ConstantTable& constant_table = C->constant_table();
1186     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1187   }
1188 }
1189 
1190 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1191   return MachNode::size(ra_);
1192 }
1193 
1194 int MachPrologNode::reloc() const {
1195   return 10; // a large enough number
1196 }
1197 
1198 //=============================================================================
1199 #ifndef PRODUCT
1200 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1201   Compile* C = ra_->C;
1202 
1203   if(do_polling() && ra_->C->is_method_compilation()) {
1204     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1205     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1206   }
1207 
1208   if(do_polling()) {
1209     if (UseCBCond && !ra_->C->is_method_compilation()) {
1210       st->print("NOP\n\t");
1211     }
1212     st->print("RET\n\t");
1213   }
1214 
1215   st->print("RESTORE");
1216 }
1217 #endif
1218 
1219 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1220   MacroAssembler _masm(&cbuf);
1221   Compile* C = ra_->C;
1222 
1223   __ verify_thread();
1224 
1225   if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
1226     __ reserved_stack_check();
1227   }
1228 
1229   // If this does safepoint polling, then do it here
1230   if(do_polling() && ra_->C->is_method_compilation()) {
1231     AddressLiteral polling_page(os::get_polling_page());
1232     __ sethi(polling_page, L0);
1233     __ relocate(relocInfo::poll_return_type);
1234     __ ld_ptr(L0, 0, G0);
1235   }
1236 
1237   // If this is a return, then stuff the restore in the delay slot
1238   if(do_polling()) {
1239     if (UseCBCond && !ra_->C->is_method_compilation()) {
1240       // Insert extra padding for the case when the epilogue is preceded by
1241       // a cbcond jump, which can't be followed by a CTI instruction
1242       __ nop();
1243     }
1244     __ ret();
1245     __ delayed()->restore();
1246   } else {
1247     __ restore();
1248   }
1249 }
1250 
1251 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1252   return MachNode::size(ra_);
1253 }
1254 
1255 int MachEpilogNode::reloc() const {
1256   return 16; // a large enough number
1257 }
1258 
1259 const Pipeline * MachEpilogNode::pipeline() const {
1260   return MachNode::pipeline_class();
1261 }
1262 
1263 int MachEpilogNode::safepoint_offset() const {
1264   assert( do_polling(), "no return for this epilog node");
1265   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1266 }
1267 
1268 //=============================================================================
1269 
1270 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1271 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1272 static enum RC rc_class( OptoReg::Name reg ) {
1273   if (!OptoReg::is_valid(reg)) return rc_bad;
1274   if (OptoReg::is_stack(reg)) return rc_stack;
1275   VMReg r = OptoReg::as_VMReg(reg);
1276   if (r->is_Register()) return rc_int;
1277   assert(r->is_FloatRegister(), "must be");
1278   return rc_float;
1279 }
1280 
1281 #ifndef PRODUCT
1282 ATTRIBUTE_PRINTF(2, 3)
1283 static void print_helper(outputStream* st, const char* format, ...) {
1284   if (st->position() > 0) {
1285     st->cr();
1286     st->sp();
1287   }
1288   va_list ap;
1289   va_start(ap, format);
1290   st->vprint(format, ap);
1291   va_end(ap);
1292 }
1293 #endif // !PRODUCT
1294 
1295 static void impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool is_load, int offset, int reg, int opcode, const char *op_str, outputStream* st) {
1296   if (cbuf) {
1297     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1298   }
1299 #ifndef PRODUCT
1300   else {
1301     if (is_load) {
1302       print_helper(st, "%s   [R_SP + #%d],R_%s\t! spill", op_str, offset, OptoReg::regname(reg));
1303     } else {
1304       print_helper(st, "%s   R_%s,[R_SP + #%d]\t! spill", op_str, OptoReg::regname(reg), offset);
1305     }
1306   }
1307 #endif
1308 }
1309 
1310 static void impl_mov_helper(CodeBuffer *cbuf, int src, int dst, int op1, int op2, const char *op_str, outputStream* st) {
1311   if (cbuf) {
1312     emit3(*cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src]);
1313   }
1314 #ifndef PRODUCT
1315   else {
1316     print_helper(st, "%s  R_%s,R_%s\t! spill", op_str, OptoReg::regname(src), OptoReg::regname(dst));
1317   }
1318 #endif
1319 }
1320 
1321 static void mach_spill_copy_implementation_helper(const MachNode* mach,
1322                                                   CodeBuffer *cbuf,
1323                                                   PhaseRegAlloc *ra_,
1324                                                   outputStream* st) {
1325   // Get registers to move
1326   OptoReg::Name src_second = ra_->get_reg_second(mach->in(1));
1327   OptoReg::Name src_first  = ra_->get_reg_first(mach->in(1));
1328   OptoReg::Name dst_second = ra_->get_reg_second(mach);
1329   OptoReg::Name dst_first  = ra_->get_reg_first(mach);
1330 
1331   enum RC src_second_rc = rc_class(src_second);
1332   enum RC src_first_rc  = rc_class(src_first);
1333   enum RC dst_second_rc = rc_class(dst_second);
1334   enum RC dst_first_rc  = rc_class(dst_first);
1335 
1336   assert(OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register");
1337 
1338   if (src_first == dst_first && src_second == dst_second) {
1339     return; // Self copy, no move
1340   }
1341 
1342   // --------------------------------------
1343   // Check for mem-mem move.  Load into unused float registers and fall into
1344   // the float-store case.
1345   if (src_first_rc == rc_stack && dst_first_rc == rc_stack) {
1346     int offset = ra_->reg2offset(src_first);
1347     // Further check for aligned-adjacent pair, so we can use a double load
1348     if ((src_first&1) == 0 && src_first+1 == src_second) {
1349       src_second    = OptoReg::Name(R_F31_num);
1350       src_second_rc = rc_float;
1351       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::lddf_op3, "LDDF", st);
1352     } else {
1353       impl_helper(mach, cbuf, ra_, true, offset, R_F30_num, Assembler::ldf_op3, "LDF ", st);
1354     }
1355     src_first    = OptoReg::Name(R_F30_num);
1356     src_first_rc = rc_float;
1357   }
1358 
1359   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1360     int offset = ra_->reg2offset(src_second);
1361     impl_helper(mach, cbuf, ra_, true, offset, R_F31_num, Assembler::ldf_op3, "LDF ", st);
1362     src_second    = OptoReg::Name(R_F31_num);
1363     src_second_rc = rc_float;
1364   }
1365 
1366   // --------------------------------------
1367   // Check for float->int copy; requires a trip through memory
1368   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1369     int offset = frame::register_save_words*wordSize;
1370     if (cbuf) {
1371       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16);
1372       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1373       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1374       emit3_simm13(*cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16);
1375     }
1376 #ifndef PRODUCT
1377     else {
1378       print_helper(st, "SUB    R_SP,16,R_SP");
1379       impl_helper(mach, cbuf, ra_, false, offset, src_first,  Assembler::stf_op3, "STF ", st);
1380       impl_helper(mach, cbuf, ra_,  true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1381       print_helper(st, "ADD    R_SP,16,R_SP");
1382     }
1383 #endif
1384   }
1385 
1386   // Check for float->int copy on T4
1387   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1388     // Further check for aligned-adjacent pair, so we can use a double move
1389     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1390       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mdtox_opf, "MOVDTOX", st);
1391       return;
1392     }
1393     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mstouw_opf, "MOVSTOUW", st);
1394   }
1395   // Check for int->float copy on T4
1396   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1397     // Further check for aligned-adjacent pair, so we can use a double move
1398     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1399       impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mxtod_opf, "MOVXTOD", st);
1400       return;
1401     }
1402     impl_mov_helper(cbuf, src_first, dst_first, Assembler::mftoi_op3, Assembler::mwtos_opf, "MOVWTOS", st);
1403   }
1404 
1405   // --------------------------------------
1406   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1407   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1408   // hardware does the flop for me.  Doubles are always aligned, so no problem
1409   // there.  Misaligned sources only come from native-long-returns (handled
1410   // special below).
1411 
1412   // --------------------------------------
1413   // Check for integer reg-reg copy
1414   if (src_first_rc == rc_int && dst_first_rc == rc_int) {
1415     // Else normal reg-reg copy
1416     assert(src_second != dst_first, "smashed second before evacuating it");
1417     impl_mov_helper(cbuf, src_first, dst_first, Assembler::or_op3, 0, "MOV  ", st);
1418     assert((src_first & 1) == 0 && (dst_first & 1) == 0, "never move second-halves of int registers");
1419     // This moves an aligned adjacent pair.
1420     // See if we are done.
1421     if (src_first + 1 == src_second && dst_first + 1 == dst_second) {
1422       return;
1423     }
1424   }
1425 
1426   // Check for integer store
1427   if (src_first_rc == rc_int && dst_first_rc == rc_stack) {
1428     int offset = ra_->reg2offset(dst_first);
1429     // Further check for aligned-adjacent pair, so we can use a double store
1430     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1431       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stx_op3, "STX ", st);
1432       return;
1433     }
1434     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stw_op3, "STW ", st);
1435   }
1436 
1437   // Check for integer load
1438   if (dst_first_rc == rc_int && src_first_rc == rc_stack) {
1439     int offset = ra_->reg2offset(src_first);
1440     // Further check for aligned-adjacent pair, so we can use a double load
1441     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1442       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldx_op3, "LDX ", st);
1443       return;
1444     }
1445     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lduw_op3, "LDUW", st);
1446   }
1447 
1448   // Check for float reg-reg copy
1449   if (src_first_rc == rc_float && dst_first_rc == rc_float) {
1450     // Further check for aligned-adjacent pair, so we can use a double move
1451     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1452       impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovd_opf, "FMOVD", st);
1453       return;
1454     }
1455     impl_mov_helper(cbuf, src_first, dst_first, Assembler::fpop1_op3, Assembler::fmovs_opf, "FMOVS", st);
1456   }
1457 
1458   // Check for float store
1459   if (src_first_rc == rc_float && dst_first_rc == rc_stack) {
1460     int offset = ra_->reg2offset(dst_first);
1461     // Further check for aligned-adjacent pair, so we can use a double store
1462     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1463       impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stdf_op3, "STDF", st);
1464       return;
1465     }
1466     impl_helper(mach, cbuf, ra_, false, offset, src_first, Assembler::stf_op3, "STF ", st);
1467   }
1468 
1469   // Check for float load
1470   if (dst_first_rc == rc_float && src_first_rc == rc_stack) {
1471     int offset = ra_->reg2offset(src_first);
1472     // Further check for aligned-adjacent pair, so we can use a double load
1473     if ((src_first & 1) == 0 && src_first + 1 == src_second && (dst_first & 1) == 0 && dst_first + 1 == dst_second) {
1474       impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::lddf_op3, "LDDF", st);
1475       return;
1476     }
1477     impl_helper(mach, cbuf, ra_, true, offset, dst_first, Assembler::ldf_op3, "LDF ", st);
1478   }
1479 
1480   // --------------------------------------------------------------------
1481   // Check for hi bits still needing moving.  Only happens for misaligned
1482   // arguments to native calls.
1483   if (src_second == dst_second) {
1484     return; // Self copy; no move
1485   }
1486   assert(src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad");
1487 
1488   Unimplemented();
1489 }
1490 
1491 uint MachSpillCopyNode::implementation(CodeBuffer *cbuf,
1492                                        PhaseRegAlloc *ra_,
1493                                        bool do_size,
1494                                        outputStream* st) const {
1495   assert(!do_size, "not supported");
1496   mach_spill_copy_implementation_helper(this, cbuf, ra_, st);
1497   return 0;
1498 }
1499 
1500 #ifndef PRODUCT
1501 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1502   implementation( NULL, ra_, false, st );
1503 }
1504 #endif
1505 
1506 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1507   implementation( &cbuf, ra_, false, NULL );
1508 }
1509 
1510 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1511   return MachNode::size(ra_);
1512 }
1513 
1514 //=============================================================================
1515 #ifndef PRODUCT
1516 void MachNopNode::format(PhaseRegAlloc *, outputStream *st) const {
1517   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1518 }
1519 #endif
1520 
1521 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *) const {
1522   MacroAssembler _masm(&cbuf);
1523   for (int i = 0; i < _count; i += 1) {
1524     __ nop();
1525   }
1526 }
1527 
1528 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1529   return 4 * _count;
1530 }
1531 
1532 
1533 //=============================================================================
1534 #ifndef PRODUCT
1535 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1536   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1537   int reg = ra_->get_reg_first(this);
1538   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1539 }
1540 #endif
1541 
1542 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1543   MacroAssembler _masm(&cbuf);
1544   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1545   int reg = ra_->get_encode(this);
1546 
1547   if (Assembler::is_simm13(offset)) {
1548      __ add(SP, offset, reg_to_register_object(reg));
1549   } else {
1550      __ set(offset, O7);
1551      __ add(SP, O7, reg_to_register_object(reg));
1552   }
1553 }
1554 
1555 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1556   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1557   assert(ra_ == ra_->C->regalloc(), "sanity");
1558   return ra_->C->scratch_emit_size(this);
1559 }
1560 
1561 //=============================================================================
1562 #ifndef PRODUCT
1563 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1564   st->print_cr("\nUEP:");
1565   if (UseCompressedClassPointers) {
1566     assert(Universe::heap() != NULL, "java heap should be initialized");
1567     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1568     if (Universe::narrow_klass_base() != 0) {
1569       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1570       if (Universe::narrow_klass_shift() != 0) {
1571         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1572       }
1573       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1574       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1575     } else {
1576       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1577     }
1578   } else {
1579     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1580   }
1581   st->print_cr("\tCMP    R_G5,R_G3" );
1582   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1583 }
1584 #endif
1585 
1586 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1587   MacroAssembler _masm(&cbuf);
1588   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1589   Register temp_reg   = G3;
1590   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1591 
1592   // Load klass from receiver
1593   __ load_klass(O0, temp_reg);
1594   // Compare against expected klass
1595   __ cmp(temp_reg, G5_ic_reg);
1596   // Branch to miss code, checks xcc or icc depending
1597   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1598 }
1599 
1600 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1601   return MachNode::size(ra_);
1602 }
1603 
1604 
1605 //=============================================================================
1606 
1607 
1608 // Emit exception handler code.
1609 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1610   Register temp_reg = G3;
1611   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1612   MacroAssembler _masm(&cbuf);
1613 
1614   address base = __ start_a_stub(size_exception_handler());
1615   if (base == NULL) {
1616     ciEnv::current()->record_failure("CodeCache is full");
1617     return 0;  // CodeBuffer::expand failed
1618   }
1619 
1620   int offset = __ offset();
1621 
1622   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1623   __ delayed()->nop();
1624 
1625   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1626 
1627   __ end_a_stub();
1628 
1629   return offset;
1630 }
1631 
1632 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1633   // Can't use any of the current frame's registers as we may have deopted
1634   // at a poll and everything (including G3) can be live.
1635   Register temp_reg = L0;
1636   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1637   MacroAssembler _masm(&cbuf);
1638 
1639   address base = __ start_a_stub(size_deopt_handler());
1640   if (base == NULL) {
1641     ciEnv::current()->record_failure("CodeCache is full");
1642     return 0;  // CodeBuffer::expand failed
1643   }
1644 
1645   int offset = __ offset();
1646   __ save_frame(0);
1647   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1648   __ delayed()->restore();
1649 
1650   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1651 
1652   __ end_a_stub();
1653   return offset;
1654 
1655 }
1656 
1657 // Given a register encoding, produce a Integer Register object
1658 static Register reg_to_register_object(int register_encoding) {
1659   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1660   return as_Register(register_encoding);
1661 }
1662 
1663 // Given a register encoding, produce a single-precision Float Register object
1664 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1665   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1666   return as_SingleFloatRegister(register_encoding);
1667 }
1668 
1669 // Given a register encoding, produce a double-precision Float Register object
1670 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1671   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1672   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1673   return as_DoubleFloatRegister(register_encoding);
1674 }
1675 
1676 const bool Matcher::match_rule_supported(int opcode) {
1677   if (!has_match_rule(opcode))
1678     return false;
1679 
1680   switch (opcode) {
1681   case Op_CountLeadingZerosI:
1682   case Op_CountLeadingZerosL:
1683   case Op_CountTrailingZerosI:
1684   case Op_CountTrailingZerosL:
1685   case Op_PopCountI:
1686   case Op_PopCountL:
1687     if (!UsePopCountInstruction)
1688       return false;
1689   case Op_CompareAndSwapL:
1690   case Op_CompareAndSwapP:
1691     if (!VM_Version::supports_cx8())
1692       return false;
1693     break;
1694   }
1695 
1696   return true;  // Per default match rules are supported.
1697 }
1698 
1699 const bool Matcher::match_rule_supported_vector(int opcode, int vlen) {
1700 
1701   // TODO
1702   // identify extra cases that we might want to provide match rules for
1703   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
1704   bool ret_value = match_rule_supported(opcode);
1705   // Add rules here.
1706 
1707   return ret_value;  // Per default match rules are supported.
1708 }
1709 
1710 const bool Matcher::has_predicated_vectors(void) {
1711   return false;
1712 }
1713 
1714 const int Matcher::float_pressure(int default_pressure_threshold) {
1715   return default_pressure_threshold;
1716 }
1717 
1718 int Matcher::regnum_to_fpu_offset(int regnum) {
1719   return regnum - 32; // The FP registers are in the second chunk
1720 }
1721 
1722 #ifdef ASSERT
1723 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1724 #endif
1725 
1726 // Vector width in bytes
1727 const int Matcher::vector_width_in_bytes(BasicType bt) {
1728   assert(MaxVectorSize == 8, "");
1729   return 8;
1730 }
1731 
1732 // Vector ideal reg
1733 const int Matcher::vector_ideal_reg(int size) {
1734   assert(MaxVectorSize == 8, "");
1735   return Op_RegD;
1736 }
1737 
1738 const int Matcher::vector_shift_count_ideal_reg(int size) {
1739   fatal("vector shift is not supported");
1740   return Node::NotAMachineReg;
1741 }
1742 
1743 // Limits on vector size (number of elements) loaded into vector.
1744 const int Matcher::max_vector_size(const BasicType bt) {
1745   assert(is_java_primitive(bt), "only primitive type vectors");
1746   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1747 }
1748 
1749 const int Matcher::min_vector_size(const BasicType bt) {
1750   return max_vector_size(bt); // Same as max.
1751 }
1752 
1753 // SPARC doesn't support misaligned vectors store/load.
1754 const bool Matcher::misaligned_vectors_ok() {
1755   return false;
1756 }
1757 
1758 // Current (2013) SPARC platforms need to read original key
1759 // to construct decryption expanded key
1760 const bool Matcher::pass_original_key_for_aes() {
1761   return true;
1762 }
1763 
1764 // USII supports fxtof through the whole range of number, USIII doesn't
1765 const bool Matcher::convL2FSupported(void) {
1766   return VM_Version::has_fast_fxtof();
1767 }
1768 
1769 // Is this branch offset short enough that a short branch can be used?
1770 //
1771 // NOTE: If the platform does not provide any short branch variants, then
1772 //       this method should return false for offset 0.
1773 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1774   // The passed offset is relative to address of the branch.
1775   // Don't need to adjust the offset.
1776   return UseCBCond && Assembler::is_simm12(offset);
1777 }
1778 
1779 const bool Matcher::isSimpleConstant64(jlong value) {
1780   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1781   // Depends on optimizations in MacroAssembler::setx.
1782   int hi = (int)(value >> 32);
1783   int lo = (int)(value & ~0);
1784   return (hi == 0) || (hi == -1) || (lo == 0);
1785 }
1786 
1787 // No scaling for the parameter the ClearArray node.
1788 const bool Matcher::init_array_count_is_in_bytes = true;
1789 
1790 // No additional cost for CMOVL.
1791 const int Matcher::long_cmove_cost() { return 0; }
1792 
1793 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1794 const int Matcher::float_cmove_cost() {
1795   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1796 }
1797 
1798 // Does the CPU require late expand (see block.cpp for description of late expand)?
1799 const bool Matcher::require_postalloc_expand = false;
1800 
1801 // Do we need to mask the count passed to shift instructions or does
1802 // the cpu only look at the lower 5/6 bits anyway?
1803 const bool Matcher::need_masked_shift_count = false;
1804 
1805 bool Matcher::narrow_oop_use_complex_address() {
1806   assert(UseCompressedOops, "only for compressed oops code");
1807   return false;
1808 }
1809 
1810 bool Matcher::narrow_klass_use_complex_address() {
1811   assert(UseCompressedClassPointers, "only for compressed klass code");
1812   return false;
1813 }
1814 
1815 bool Matcher::const_oop_prefer_decode() {
1816   // TODO: Check if loading ConP from TOC in heap-based mode is better:
1817   // Prefer ConN+DecodeN over ConP in simple compressed oops mode.
1818   // return Universe::narrow_oop_base() == NULL;
1819   return true;
1820 }
1821 
1822 bool Matcher::const_klass_prefer_decode() {
1823   // TODO: Check if loading ConP from TOC in heap-based mode is better:
1824   // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
1825   // return Universe::narrow_klass_base() == NULL;
1826   return true;
1827 }
1828 
1829 // Is it better to copy float constants, or load them directly from memory?
1830 // Intel can load a float constant from a direct address, requiring no
1831 // extra registers.  Most RISCs will have to materialize an address into a
1832 // register first, so they would do better to copy the constant from stack.
1833 const bool Matcher::rematerialize_float_constants = false;
1834 
1835 // If CPU can load and store mis-aligned doubles directly then no fixup is
1836 // needed.  Else we split the double into 2 integer pieces and move it
1837 // piece-by-piece.  Only happens when passing doubles into C code as the
1838 // Java calling convention forces doubles to be aligned.
1839 const bool Matcher::misaligned_doubles_ok = true;
1840 
1841 // No-op on SPARC.
1842 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1843 }
1844 
1845 // Advertise here if the CPU requires explicit rounding operations
1846 // to implement the UseStrictFP mode.
1847 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1848 
1849 // Are floats converted to double when stored to stack during deoptimization?
1850 // Sparc does not handle callee-save floats.
1851 bool Matcher::float_in_double() { return false; }
1852 
1853 // Do ints take an entire long register or just half?
1854 // Note that we if-def off of _LP64.
1855 // The relevant question is how the int is callee-saved.  In _LP64
1856 // the whole long is written but de-opt'ing will have to extract
1857 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1858 const bool Matcher::int_in_long = true;
1859 
1860 // Return whether or not this register is ever used as an argument.  This
1861 // function is used on startup to build the trampoline stubs in generateOptoStub.
1862 // Registers not mentioned will be killed by the VM call in the trampoline, and
1863 // arguments in those registers not be available to the callee.
1864 bool Matcher::can_be_java_arg( int reg ) {
1865   // Standard sparc 6 args in registers
1866   if( reg == R_I0_num ||
1867       reg == R_I1_num ||
1868       reg == R_I2_num ||
1869       reg == R_I3_num ||
1870       reg == R_I4_num ||
1871       reg == R_I5_num ) return true;
1872   // 64-bit builds can pass 64-bit pointers and longs in
1873   // the high I registers
1874   if( reg == R_I0H_num ||
1875       reg == R_I1H_num ||
1876       reg == R_I2H_num ||
1877       reg == R_I3H_num ||
1878       reg == R_I4H_num ||
1879       reg == R_I5H_num ) return true;
1880 
1881   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1882     return true;
1883   }
1884 
1885   // A few float args in registers
1886   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1887 
1888   return false;
1889 }
1890 
1891 bool Matcher::is_spillable_arg( int reg ) {
1892   return can_be_java_arg(reg);
1893 }
1894 
1895 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1896   // Use hardware SDIVX instruction when it is
1897   // faster than a code which use multiply.
1898   return VM_Version::has_fast_idiv();
1899 }
1900 
1901 // Register for DIVI projection of divmodI
1902 RegMask Matcher::divI_proj_mask() {
1903   ShouldNotReachHere();
1904   return RegMask();
1905 }
1906 
1907 // Register for MODI projection of divmodI
1908 RegMask Matcher::modI_proj_mask() {
1909   ShouldNotReachHere();
1910   return RegMask();
1911 }
1912 
1913 // Register for DIVL projection of divmodL
1914 RegMask Matcher::divL_proj_mask() {
1915   ShouldNotReachHere();
1916   return RegMask();
1917 }
1918 
1919 // Register for MODL projection of divmodL
1920 RegMask Matcher::modL_proj_mask() {
1921   ShouldNotReachHere();
1922   return RegMask();
1923 }
1924 
1925 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
1926   return L7_REGP_mask();
1927 }
1928 
1929 
1930 const bool Matcher::convi2l_type_required = true;
1931 
1932 // Should the Matcher clone shifts on addressing modes, expecting them
1933 // to be subsumed into complex addressing expressions or compute them
1934 // into registers?
1935 bool Matcher::clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
1936   return clone_base_plus_offset_address(m, mstack, address_visited);
1937 }
1938 
1939 void Compile::reshape_address(AddPNode* addp) {
1940 }
1941 
1942 %}
1943 
1944 
1945 // The intptr_t operand types, defined by textual substitution.
1946 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
1947 #define immX      immL
1948 #define immX13    immL13
1949 #define immX13m7  immL13m7
1950 #define iRegX     iRegL
1951 #define g1RegX    g1RegL
1952 
1953 //----------ENCODING BLOCK-----------------------------------------------------
1954 // This block specifies the encoding classes used by the compiler to output
1955 // byte streams.  Encoding classes are parameterized macros used by
1956 // Machine Instruction Nodes in order to generate the bit encoding of the
1957 // instruction.  Operands specify their base encoding interface with the
1958 // interface keyword.  There are currently supported four interfaces,
1959 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
1960 // operand to generate a function which returns its register number when
1961 // queried.   CONST_INTER causes an operand to generate a function which
1962 // returns the value of the constant when queried.  MEMORY_INTER causes an
1963 // operand to generate four functions which return the Base Register, the
1964 // Index Register, the Scale Value, and the Offset Value of the operand when
1965 // queried.  COND_INTER causes an operand to generate six functions which
1966 // return the encoding code (ie - encoding bits for the instruction)
1967 // associated with each basic boolean condition for a conditional instruction.
1968 //
1969 // Instructions specify two basic values for encoding.  Again, a function
1970 // is available to check if the constant displacement is an oop. They use the
1971 // ins_encode keyword to specify their encoding classes (which must be
1972 // a sequence of enc_class names, and their parameters, specified in
1973 // the encoding block), and they use the
1974 // opcode keyword to specify, in order, their primary, secondary, and
1975 // tertiary opcode.  Only the opcode sections which a particular instruction
1976 // needs for encoding need to be specified.
1977 encode %{
1978   enc_class enc_untested %{
1979 #ifdef ASSERT
1980     MacroAssembler _masm(&cbuf);
1981     __ untested("encoding");
1982 #endif
1983   %}
1984 
1985   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
1986     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
1987                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1988   %}
1989 
1990   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
1991     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
1992                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
1993   %}
1994 
1995   enc_class form3_mem_prefetch_read( memory mem ) %{
1996     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
1997                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
1998   %}
1999 
2000   enc_class form3_mem_prefetch_write( memory mem ) %{
2001     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2002                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2003   %}
2004 
2005   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2006     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2007     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2008     guarantee($mem$$index == R_G0_enc, "double index?");
2009     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2010     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2011     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2012     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2013   %}
2014 
2015   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2016     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2017     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2018     guarantee($mem$$index == R_G0_enc, "double index?");
2019     // Load long with 2 instructions
2020     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2021     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2022   %}
2023 
2024   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2025   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2026     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2027     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2028   %}
2029 
2030   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2031     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2032     if( $rs2$$reg != $rd$$reg )
2033       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2034   %}
2035 
2036   // Target lo half of long
2037   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2038     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2039     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2040       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2041   %}
2042 
2043   // Source lo half of long
2044   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2045     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2046     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2047       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2048   %}
2049 
2050   // Target hi half of long
2051   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2052     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2053   %}
2054 
2055   // Source lo half of long, and leave it sign extended.
2056   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2057     // Sign extend low half
2058     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2059   %}
2060 
2061   // Source hi half of long, and leave it sign extended.
2062   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2063     // Shift high half to low half
2064     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2065   %}
2066 
2067   // Source hi half of long
2068   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2069     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2070     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2071       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2072   %}
2073 
2074   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2075     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2076   %}
2077 
2078   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2079     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2080     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2081   %}
2082 
2083   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2084     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2085     // clear if nothing else is happening
2086     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2087     // blt,a,pn done
2088     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2089     // mov dst,-1 in delay slot
2090     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2091   %}
2092 
2093   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2094     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2095   %}
2096 
2097   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2098     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2099   %}
2100 
2101   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2102     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2103   %}
2104 
2105   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2106     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2107   %}
2108 
2109   enc_class move_return_pc_to_o1() %{
2110     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2111   %}
2112 
2113   /* %%% merge with enc_to_bool */
2114   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2115     MacroAssembler _masm(&cbuf);
2116 
2117     Register   src_reg = reg_to_register_object($src$$reg);
2118     Register   dst_reg = reg_to_register_object($dst$$reg);
2119     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2120   %}
2121 
2122   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2123     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2124     MacroAssembler _masm(&cbuf);
2125 
2126     Register   p_reg = reg_to_register_object($p$$reg);
2127     Register   q_reg = reg_to_register_object($q$$reg);
2128     Register   y_reg = reg_to_register_object($y$$reg);
2129     Register tmp_reg = reg_to_register_object($tmp$$reg);
2130 
2131     __ subcc( p_reg, q_reg,   p_reg );
2132     __ add  ( p_reg, y_reg, tmp_reg );
2133     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2134   %}
2135 
2136   enc_class form_d2i_helper(regD src, regF dst) %{
2137     // fcmp %fcc0,$src,$src
2138     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2139     // branch %fcc0 not-nan, predict taken
2140     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2141     // fdtoi $src,$dst
2142     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2143     // fitos $dst,$dst (if nan)
2144     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2145     // clear $dst (if nan)
2146     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2147     // carry on here...
2148   %}
2149 
2150   enc_class form_d2l_helper(regD src, regD dst) %{
2151     // fcmp %fcc0,$src,$src  check for NAN
2152     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2153     // branch %fcc0 not-nan, predict taken
2154     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2155     // fdtox $src,$dst   convert in delay slot
2156     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2157     // fxtod $dst,$dst  (if nan)
2158     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2159     // clear $dst (if nan)
2160     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2161     // carry on here...
2162   %}
2163 
2164   enc_class form_f2i_helper(regF src, regF dst) %{
2165     // fcmps %fcc0,$src,$src
2166     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2167     // branch %fcc0 not-nan, predict taken
2168     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2169     // fstoi $src,$dst
2170     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2171     // fitos $dst,$dst (if nan)
2172     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2173     // clear $dst (if nan)
2174     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2175     // carry on here...
2176   %}
2177 
2178   enc_class form_f2l_helper(regF src, regD dst) %{
2179     // fcmps %fcc0,$src,$src
2180     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2181     // branch %fcc0 not-nan, predict taken
2182     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2183     // fstox $src,$dst
2184     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2185     // fxtod $dst,$dst (if nan)
2186     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2187     // clear $dst (if nan)
2188     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2189     // carry on here...
2190   %}
2191 
2192   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2193   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2194   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2195   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2196 
2197   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2198 
2199   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2200   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2201 
2202   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2203     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2204   %}
2205 
2206   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2207     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2208   %}
2209 
2210   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2211     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2212   %}
2213 
2214   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2215     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2216   %}
2217 
2218   enc_class form3_convI2F(regF rs2, regF rd) %{
2219     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2220   %}
2221 
2222   // Encloding class for traceable jumps
2223   enc_class form_jmpl(g3RegP dest) %{
2224     emit_jmpl(cbuf, $dest$$reg);
2225   %}
2226 
2227   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2228     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2229   %}
2230 
2231   enc_class form2_nop() %{
2232     emit_nop(cbuf);
2233   %}
2234 
2235   enc_class form2_illtrap() %{
2236     emit_illtrap(cbuf);
2237   %}
2238 
2239 
2240   // Compare longs and convert into -1, 0, 1.
2241   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2242     // CMP $src1,$src2
2243     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2244     // blt,a,pn done
2245     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2246     // mov dst,-1 in delay slot
2247     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2248     // bgt,a,pn done
2249     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2250     // mov dst,1 in delay slot
2251     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2252     // CLR    $dst
2253     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2254   %}
2255 
2256   enc_class enc_PartialSubtypeCheck() %{
2257     MacroAssembler _masm(&cbuf);
2258     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2259     __ delayed()->nop();
2260   %}
2261 
2262   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2263     MacroAssembler _masm(&cbuf);
2264     Label* L = $labl$$label;
2265     Assembler::Predict predict_taken =
2266       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2267 
2268     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2269     __ delayed()->nop();
2270   %}
2271 
2272   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2273     MacroAssembler _masm(&cbuf);
2274     Label* L = $labl$$label;
2275     Assembler::Predict predict_taken =
2276       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2277 
2278     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2279     __ delayed()->nop();
2280   %}
2281 
2282   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2283     int op = (Assembler::arith_op << 30) |
2284              ($dst$$reg << 25) |
2285              (Assembler::movcc_op3 << 19) |
2286              (1 << 18) |                    // cc2 bit for 'icc'
2287              ($cmp$$cmpcode << 14) |
2288              (0 << 13) |                    // select register move
2289              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2290              ($src$$reg << 0);
2291     cbuf.insts()->emit_int32(op);
2292   %}
2293 
2294   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2295     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2296     int op = (Assembler::arith_op << 30) |
2297              ($dst$$reg << 25) |
2298              (Assembler::movcc_op3 << 19) |
2299              (1 << 18) |                    // cc2 bit for 'icc'
2300              ($cmp$$cmpcode << 14) |
2301              (1 << 13) |                    // select immediate move
2302              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2303              (simm11 << 0);
2304     cbuf.insts()->emit_int32(op);
2305   %}
2306 
2307   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2308     int op = (Assembler::arith_op << 30) |
2309              ($dst$$reg << 25) |
2310              (Assembler::movcc_op3 << 19) |
2311              (0 << 18) |                    // cc2 bit for 'fccX'
2312              ($cmp$$cmpcode << 14) |
2313              (0 << 13) |                    // select register move
2314              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2315              ($src$$reg << 0);
2316     cbuf.insts()->emit_int32(op);
2317   %}
2318 
2319   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2320     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2321     int op = (Assembler::arith_op << 30) |
2322              ($dst$$reg << 25) |
2323              (Assembler::movcc_op3 << 19) |
2324              (0 << 18) |                    // cc2 bit for 'fccX'
2325              ($cmp$$cmpcode << 14) |
2326              (1 << 13) |                    // select immediate move
2327              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2328              (simm11 << 0);
2329     cbuf.insts()->emit_int32(op);
2330   %}
2331 
2332   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2333     int op = (Assembler::arith_op << 30) |
2334              ($dst$$reg << 25) |
2335              (Assembler::fpop2_op3 << 19) |
2336              (0 << 18) |
2337              ($cmp$$cmpcode << 14) |
2338              (1 << 13) |                    // select register move
2339              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2340              ($primary << 5) |              // select single, double or quad
2341              ($src$$reg << 0);
2342     cbuf.insts()->emit_int32(op);
2343   %}
2344 
2345   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2346     int op = (Assembler::arith_op << 30) |
2347              ($dst$$reg << 25) |
2348              (Assembler::fpop2_op3 << 19) |
2349              (0 << 18) |
2350              ($cmp$$cmpcode << 14) |
2351              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2352              ($primary << 5) |              // select single, double or quad
2353              ($src$$reg << 0);
2354     cbuf.insts()->emit_int32(op);
2355   %}
2356 
2357   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2358   // the condition comes from opcode-field instead of an argument.
2359   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2360     int op = (Assembler::arith_op << 30) |
2361              ($dst$$reg << 25) |
2362              (Assembler::movcc_op3 << 19) |
2363              (1 << 18) |                    // cc2 bit for 'icc'
2364              ($primary << 14) |
2365              (0 << 13) |                    // select register move
2366              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2367              ($src$$reg << 0);
2368     cbuf.insts()->emit_int32(op);
2369   %}
2370 
2371   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2372     int op = (Assembler::arith_op << 30) |
2373              ($dst$$reg << 25) |
2374              (Assembler::movcc_op3 << 19) |
2375              (6 << 16) |                    // cc2 bit for 'xcc'
2376              ($primary << 14) |
2377              (0 << 13) |                    // select register move
2378              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2379              ($src$$reg << 0);
2380     cbuf.insts()->emit_int32(op);
2381   %}
2382 
2383   enc_class Set13( immI13 src, iRegI rd ) %{
2384     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2385   %}
2386 
2387   enc_class SetHi22( immI src, iRegI rd ) %{
2388     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2389   %}
2390 
2391   enc_class Set32( immI src, iRegI rd ) %{
2392     MacroAssembler _masm(&cbuf);
2393     __ set($src$$constant, reg_to_register_object($rd$$reg));
2394   %}
2395 
2396   enc_class call_epilog %{
2397     if( VerifyStackAtCalls ) {
2398       MacroAssembler _masm(&cbuf);
2399       int framesize = ra_->C->frame_size_in_bytes();
2400       Register temp_reg = G3;
2401       __ add(SP, framesize, temp_reg);
2402       __ cmp(temp_reg, FP);
2403       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2404     }
2405   %}
2406 
2407   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2408   // to G1 so the register allocator will not have to deal with the misaligned register
2409   // pair.
2410   enc_class adjust_long_from_native_call %{
2411   %}
2412 
2413   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2414     // CALL directly to the runtime
2415     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2416     emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec(), /*preserve_g2=*/true);
2417   %}
2418 
2419   enc_class preserve_SP %{
2420     MacroAssembler _masm(&cbuf);
2421     __ mov(SP, L7_mh_SP_save);
2422   %}
2423 
2424   enc_class restore_SP %{
2425     MacroAssembler _masm(&cbuf);
2426     __ mov(L7_mh_SP_save, SP);
2427   %}
2428 
2429   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2430     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2431     // who we intended to call.
2432     if (!_method) {
2433       emit_call_reloc(cbuf, $meth$$method, runtime_call_Relocation::spec());
2434     } else {
2435       int method_index = resolved_method_index(cbuf);
2436       RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
2437                                                   : static_call_Relocation::spec(method_index);
2438       emit_call_reloc(cbuf, $meth$$method, rspec);
2439 
2440       // Emit stub for static call.
2441       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2442       if (stub == NULL) {
2443         ciEnv::current()->record_failure("CodeCache is full");
2444         return;
2445       }
2446     }
2447   %}
2448 
2449   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2450     MacroAssembler _masm(&cbuf);
2451     __ set_inst_mark();
2452     int vtable_index = this->_vtable_index;
2453     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2454     if (vtable_index < 0) {
2455       // must be invalid_vtable_index, not nonvirtual_vtable_index
2456       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2457       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2458       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2459       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2460       __ ic_call((address)$meth$$method, /*emit_delay=*/true, resolved_method_index(cbuf));
2461     } else {
2462       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2463       // Just go thru the vtable
2464       // get receiver klass (receiver already checked for non-null)
2465       // If we end up going thru a c2i adapter interpreter expects method in G5
2466       int off = __ offset();
2467       __ load_klass(O0, G3_scratch);
2468       int klass_load_size;
2469       if (UseCompressedClassPointers) {
2470         assert(Universe::heap() != NULL, "java heap should be initialized");
2471         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2472       } else {
2473         klass_load_size = 1*BytesPerInstWord;
2474       }
2475       int entry_offset = in_bytes(Klass::vtable_start_offset()) + vtable_index*vtableEntry::size_in_bytes();
2476       int v_off = entry_offset + vtableEntry::method_offset_in_bytes();
2477       if (Assembler::is_simm13(v_off)) {
2478         __ ld_ptr(G3, v_off, G5_method);
2479       } else {
2480         // Generate 2 instructions
2481         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2482         __ or3(G5_method, v_off & 0x3ff, G5_method);
2483         // ld_ptr, set_hi, set
2484         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2485                "Unexpected instruction size(s)");
2486         __ ld_ptr(G3, G5_method, G5_method);
2487       }
2488       // NOTE: for vtable dispatches, the vtable entry will never be null.
2489       // However it may very well end up in handle_wrong_method if the
2490       // method is abstract for the particular class.
2491       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2492       // jump to target (either compiled code or c2iadapter)
2493       __ jmpl(G3_scratch, G0, O7);
2494       __ delayed()->nop();
2495     }
2496   %}
2497 
2498   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2499     MacroAssembler _masm(&cbuf);
2500 
2501     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2502     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2503                               // we might be calling a C2I adapter which needs it.
2504 
2505     assert(temp_reg != G5_ic_reg, "conflicting registers");
2506     // Load nmethod
2507     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2508 
2509     // CALL to compiled java, indirect the contents of G3
2510     __ set_inst_mark();
2511     __ callr(temp_reg, G0);
2512     __ delayed()->nop();
2513   %}
2514 
2515 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2516     MacroAssembler _masm(&cbuf);
2517     Register Rdividend = reg_to_register_object($src1$$reg);
2518     Register Rdivisor = reg_to_register_object($src2$$reg);
2519     Register Rresult = reg_to_register_object($dst$$reg);
2520 
2521     __ sra(Rdivisor, 0, Rdivisor);
2522     __ sra(Rdividend, 0, Rdividend);
2523     __ sdivx(Rdividend, Rdivisor, Rresult);
2524 %}
2525 
2526 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2527     MacroAssembler _masm(&cbuf);
2528 
2529     Register Rdividend = reg_to_register_object($src1$$reg);
2530     int divisor = $imm$$constant;
2531     Register Rresult = reg_to_register_object($dst$$reg);
2532 
2533     __ sra(Rdividend, 0, Rdividend);
2534     __ sdivx(Rdividend, divisor, Rresult);
2535 %}
2536 
2537 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2538     MacroAssembler _masm(&cbuf);
2539     Register Rsrc1 = reg_to_register_object($src1$$reg);
2540     Register Rsrc2 = reg_to_register_object($src2$$reg);
2541     Register Rdst  = reg_to_register_object($dst$$reg);
2542 
2543     __ sra( Rsrc1, 0, Rsrc1 );
2544     __ sra( Rsrc2, 0, Rsrc2 );
2545     __ mulx( Rsrc1, Rsrc2, Rdst );
2546     __ srlx( Rdst, 32, Rdst );
2547 %}
2548 
2549 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2550     MacroAssembler _masm(&cbuf);
2551     Register Rdividend = reg_to_register_object($src1$$reg);
2552     Register Rdivisor = reg_to_register_object($src2$$reg);
2553     Register Rresult = reg_to_register_object($dst$$reg);
2554     Register Rscratch = reg_to_register_object($scratch$$reg);
2555 
2556     assert(Rdividend != Rscratch, "");
2557     assert(Rdivisor  != Rscratch, "");
2558 
2559     __ sra(Rdividend, 0, Rdividend);
2560     __ sra(Rdivisor, 0, Rdivisor);
2561     __ sdivx(Rdividend, Rdivisor, Rscratch);
2562     __ mulx(Rscratch, Rdivisor, Rscratch);
2563     __ sub(Rdividend, Rscratch, Rresult);
2564 %}
2565 
2566 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2567     MacroAssembler _masm(&cbuf);
2568 
2569     Register Rdividend = reg_to_register_object($src1$$reg);
2570     int divisor = $imm$$constant;
2571     Register Rresult = reg_to_register_object($dst$$reg);
2572     Register Rscratch = reg_to_register_object($scratch$$reg);
2573 
2574     assert(Rdividend != Rscratch, "");
2575 
2576     __ sra(Rdividend, 0, Rdividend);
2577     __ sdivx(Rdividend, divisor, Rscratch);
2578     __ mulx(Rscratch, divisor, Rscratch);
2579     __ sub(Rdividend, Rscratch, Rresult);
2580 %}
2581 
2582 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2583     MacroAssembler _masm(&cbuf);
2584 
2585     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2586     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2587 
2588     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2589 %}
2590 
2591 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2592     MacroAssembler _masm(&cbuf);
2593 
2594     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2595     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2596 
2597     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2598 %}
2599 
2600 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2601     MacroAssembler _masm(&cbuf);
2602 
2603     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2604     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2605 
2606     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2607 %}
2608 
2609 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2610     MacroAssembler _masm(&cbuf);
2611 
2612     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2613     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2614 
2615     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2616 %}
2617 
2618 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2619     MacroAssembler _masm(&cbuf);
2620 
2621     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2622     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2623 
2624     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2625 %}
2626 
2627 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2628     MacroAssembler _masm(&cbuf);
2629 
2630     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2631     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2632 
2633     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2634 %}
2635 
2636 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2637     MacroAssembler _masm(&cbuf);
2638 
2639     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2640     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2641 
2642     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2643 %}
2644 
2645 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2646     MacroAssembler _masm(&cbuf);
2647 
2648     Register Roop  = reg_to_register_object($oop$$reg);
2649     Register Rbox  = reg_to_register_object($box$$reg);
2650     Register Rscratch = reg_to_register_object($scratch$$reg);
2651     Register Rmark =    reg_to_register_object($scratch2$$reg);
2652 
2653     assert(Roop  != Rscratch, "");
2654     assert(Roop  != Rmark, "");
2655     assert(Rbox  != Rscratch, "");
2656     assert(Rbox  != Rmark, "");
2657 
2658     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2659 %}
2660 
2661 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2662     MacroAssembler _masm(&cbuf);
2663 
2664     Register Roop  = reg_to_register_object($oop$$reg);
2665     Register Rbox  = reg_to_register_object($box$$reg);
2666     Register Rscratch = reg_to_register_object($scratch$$reg);
2667     Register Rmark =    reg_to_register_object($scratch2$$reg);
2668 
2669     assert(Roop  != Rscratch, "");
2670     assert(Roop  != Rmark, "");
2671     assert(Rbox  != Rscratch, "");
2672     assert(Rbox  != Rmark, "");
2673 
2674     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2675   %}
2676 
2677   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2678     MacroAssembler _masm(&cbuf);
2679     Register Rmem = reg_to_register_object($mem$$reg);
2680     Register Rold = reg_to_register_object($old$$reg);
2681     Register Rnew = reg_to_register_object($new$$reg);
2682 
2683     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2684     __ cmp( Rold, Rnew );
2685   %}
2686 
2687   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2688     Register Rmem = reg_to_register_object($mem$$reg);
2689     Register Rold = reg_to_register_object($old$$reg);
2690     Register Rnew = reg_to_register_object($new$$reg);
2691 
2692     MacroAssembler _masm(&cbuf);
2693     __ mov(Rnew, O7);
2694     __ casx(Rmem, Rold, O7);
2695     __ cmp( Rold, O7 );
2696   %}
2697 
2698   // raw int cas, used for compareAndSwap
2699   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2700     Register Rmem = reg_to_register_object($mem$$reg);
2701     Register Rold = reg_to_register_object($old$$reg);
2702     Register Rnew = reg_to_register_object($new$$reg);
2703 
2704     MacroAssembler _masm(&cbuf);
2705     __ mov(Rnew, O7);
2706     __ cas(Rmem, Rold, O7);
2707     __ cmp( Rold, O7 );
2708   %}
2709 
2710   // raw int cas without using tmp register for compareAndExchange
2711   enc_class enc_casi_exch( iRegP mem, iRegL old, iRegL new) %{
2712     Register Rmem = reg_to_register_object($mem$$reg);
2713     Register Rold = reg_to_register_object($old$$reg);
2714     Register Rnew = reg_to_register_object($new$$reg);
2715 
2716     MacroAssembler _masm(&cbuf);
2717     __ cas(Rmem, Rold, Rnew);
2718   %}
2719 
2720   // 64-bit cas without using tmp register for compareAndExchange
2721   enc_class enc_casx_exch( iRegP mem, iRegL old, iRegL new) %{
2722     Register Rmem = reg_to_register_object($mem$$reg);
2723     Register Rold = reg_to_register_object($old$$reg);
2724     Register Rnew = reg_to_register_object($new$$reg);
2725 
2726     MacroAssembler _masm(&cbuf);
2727     __ casx(Rmem, Rold, Rnew);
2728   %}
2729 
2730   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2731     Register Rres = reg_to_register_object($res$$reg);
2732 
2733     MacroAssembler _masm(&cbuf);
2734     __ mov(1, Rres);
2735     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2736   %}
2737 
2738   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2739     Register Rres = reg_to_register_object($res$$reg);
2740 
2741     MacroAssembler _masm(&cbuf);
2742     __ mov(1, Rres);
2743     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2744   %}
2745 
2746   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2747     MacroAssembler _masm(&cbuf);
2748     Register Rdst = reg_to_register_object($dst$$reg);
2749     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2750                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2751     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2752                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2753 
2754     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2755     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2756   %}
2757 
2758   enc_class enc_rethrow() %{
2759     cbuf.set_insts_mark();
2760     Register temp_reg = G3;
2761     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
2762     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
2763     MacroAssembler _masm(&cbuf);
2764 #ifdef ASSERT
2765     __ save_frame(0);
2766     AddressLiteral last_rethrow_addrlit(&last_rethrow);
2767     __ sethi(last_rethrow_addrlit, L1);
2768     Address addr(L1, last_rethrow_addrlit.low10());
2769     __ rdpc(L2);
2770     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
2771     __ st_ptr(L2, addr);
2772     __ restore();
2773 #endif
2774     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
2775     __ delayed()->nop();
2776   %}
2777 
2778   enc_class emit_mem_nop() %{
2779     // Generates the instruction LDUXA [o6,g0],#0x82,g0
2780     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
2781   %}
2782 
2783   enc_class emit_fadd_nop() %{
2784     // Generates the instruction FMOVS f31,f31
2785     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
2786   %}
2787 
2788   enc_class emit_br_nop() %{
2789     // Generates the instruction BPN,PN .
2790     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
2791   %}
2792 
2793   enc_class enc_membar_acquire %{
2794     MacroAssembler _masm(&cbuf);
2795     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
2796   %}
2797 
2798   enc_class enc_membar_release %{
2799     MacroAssembler _masm(&cbuf);
2800     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
2801   %}
2802 
2803   enc_class enc_membar_volatile %{
2804     MacroAssembler _masm(&cbuf);
2805     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
2806   %}
2807 
2808 %}
2809 
2810 //----------FRAME--------------------------------------------------------------
2811 // Definition of frame structure and management information.
2812 //
2813 //  S T A C K   L A Y O U T    Allocators stack-slot number
2814 //                             |   (to get allocators register number
2815 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
2816 //  r   CALLER     |        |
2817 //  o     |        +--------+      pad to even-align allocators stack-slot
2818 //  w     V        |  pad0  |        numbers; owned by CALLER
2819 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
2820 //  h     ^        |   in   |  5
2821 //        |        |  args  |  4   Holes in incoming args owned by SELF
2822 //  |     |        |        |  3
2823 //  |     |        +--------+
2824 //  V     |        | old out|      Empty on Intel, window on Sparc
2825 //        |    old |preserve|      Must be even aligned.
2826 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
2827 //        |        |   in   |  3   area for Intel ret address
2828 //     Owned by    |preserve|      Empty on Sparc.
2829 //       SELF      +--------+
2830 //        |        |  pad2  |  2   pad to align old SP
2831 //        |        +--------+  1
2832 //        |        | locks  |  0
2833 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
2834 //        |        |  pad1  | 11   pad to align new SP
2835 //        |        +--------+
2836 //        |        |        | 10
2837 //        |        | spills |  9   spills
2838 //        V        |        |  8   (pad0 slot for callee)
2839 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
2840 //        ^        |  out   |  7
2841 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
2842 //     Owned by    +--------+
2843 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
2844 //        |    new |preserve|      Must be even-aligned.
2845 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
2846 //        |        |        |
2847 //
2848 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
2849 //         known from SELF's arguments and the Java calling convention.
2850 //         Region 6-7 is determined per call site.
2851 // Note 2: If the calling convention leaves holes in the incoming argument
2852 //         area, those holes are owned by SELF.  Holes in the outgoing area
2853 //         are owned by the CALLEE.  Holes should not be nessecary in the
2854 //         incoming area, as the Java calling convention is completely under
2855 //         the control of the AD file.  Doubles can be sorted and packed to
2856 //         avoid holes.  Holes in the outgoing arguments may be necessary for
2857 //         varargs C calling conventions.
2858 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
2859 //         even aligned with pad0 as needed.
2860 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
2861 //         region 6-11 is even aligned; it may be padded out more so that
2862 //         the region from SP to FP meets the minimum stack alignment.
2863 
2864 frame %{
2865   // What direction does stack grow in (assumed to be same for native & Java)
2866   stack_direction(TOWARDS_LOW);
2867 
2868   // These two registers define part of the calling convention
2869   // between compiled code and the interpreter.
2870   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
2871   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
2872 
2873   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
2874   cisc_spilling_operand_name(indOffset);
2875 
2876   // Number of stack slots consumed by a Monitor enter
2877   sync_stack_slots(2);
2878 
2879   // Compiled code's Frame Pointer
2880   frame_pointer(R_SP);
2881 
2882   // Stack alignment requirement
2883   stack_alignment(StackAlignmentInBytes);
2884   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
2885   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
2886 
2887   // Number of stack slots between incoming argument block and the start of
2888   // a new frame.  The PROLOG must add this many slots to the stack.  The
2889   // EPILOG must remove this many slots.
2890   in_preserve_stack_slots(0);
2891 
2892   // Number of outgoing stack slots killed above the out_preserve_stack_slots
2893   // for calls to C.  Supports the var-args backing area for register parms.
2894   // ADLC doesn't support parsing expressions, so I folded the math by hand.
2895   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
2896   varargs_C_out_slots_killed(12);
2897 
2898   // The after-PROLOG location of the return address.  Location of
2899   // return address specifies a type (REG or STACK) and a number
2900   // representing the register number (i.e. - use a register name) or
2901   // stack slot.
2902   return_addr(REG R_I7);          // Ret Addr is in register I7
2903 
2904   // Body of function which returns an OptoRegs array locating
2905   // arguments either in registers or in stack slots for calling
2906   // java
2907   calling_convention %{
2908     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
2909 
2910   %}
2911 
2912   // Body of function which returns an OptoRegs array locating
2913   // arguments either in registers or in stack slots for calling
2914   // C.
2915   c_calling_convention %{
2916     // This is obviously always outgoing
2917     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
2918   %}
2919 
2920   // Location of native (C/C++) and interpreter return values.  This is specified to
2921   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
2922   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
2923   // to and from the register pairs is done by the appropriate call and epilog
2924   // opcodes.  This simplifies the register allocator.
2925   c_return_value %{
2926     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
2927     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
2928     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
2929     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
2930     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
2931     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
2932                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
2933   %}
2934 
2935   // Location of compiled Java return values.  Same as C
2936   return_value %{
2937     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
2938     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
2939     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
2940     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
2941     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
2942     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
2943                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
2944   %}
2945 
2946 %}
2947 
2948 
2949 //----------ATTRIBUTES---------------------------------------------------------
2950 //----------Operand Attributes-------------------------------------------------
2951 op_attrib op_cost(1);          // Required cost attribute
2952 
2953 //----------Instruction Attributes---------------------------------------------
2954 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
2955 ins_attrib ins_size(32);           // Required size attribute (in bits)
2956 
2957 // avoid_back_to_back attribute is an expression that must return
2958 // one of the following values defined in MachNode:
2959 // AVOID_NONE   - instruction can be placed anywhere
2960 // AVOID_BEFORE - instruction cannot be placed after an
2961 //                instruction with MachNode::AVOID_AFTER
2962 // AVOID_AFTER  - the next instruction cannot be the one
2963 //                with MachNode::AVOID_BEFORE
2964 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at
2965 //                          the same time
2966 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
2967 
2968 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
2969                                    // non-matching short branch variant of some
2970                                                             // long branch?
2971 
2972 //----------OPERANDS-----------------------------------------------------------
2973 // Operand definitions must precede instruction definitions for correct parsing
2974 // in the ADLC because operands constitute user defined types which are used in
2975 // instruction definitions.
2976 
2977 //----------Simple Operands----------------------------------------------------
2978 // Immediate Operands
2979 // Integer Immediate: 32-bit
2980 operand immI() %{
2981   match(ConI);
2982 
2983   op_cost(0);
2984   // formats are generated automatically for constants and base registers
2985   format %{ %}
2986   interface(CONST_INTER);
2987 %}
2988 
2989 // Integer Immediate: 0-bit
2990 operand immI0() %{
2991   predicate(n->get_int() == 0);
2992   match(ConI);
2993   op_cost(0);
2994 
2995   format %{ %}
2996   interface(CONST_INTER);
2997 %}
2998 
2999 // Integer Immediate: 5-bit
3000 operand immI5() %{
3001   predicate(Assembler::is_simm5(n->get_int()));
3002   match(ConI);
3003   op_cost(0);
3004   format %{ %}
3005   interface(CONST_INTER);
3006 %}
3007 
3008 // Integer Immediate: 8-bit
3009 operand immI8() %{
3010   predicate(Assembler::is_simm8(n->get_int()));
3011   match(ConI);
3012   op_cost(0);
3013   format %{ %}
3014   interface(CONST_INTER);
3015 %}
3016 
3017 // Integer Immediate: the value 10
3018 operand immI10() %{
3019   predicate(n->get_int() == 10);
3020   match(ConI);
3021   op_cost(0);
3022 
3023   format %{ %}
3024   interface(CONST_INTER);
3025 %}
3026 
3027 // Integer Immediate: 11-bit
3028 operand immI11() %{
3029   predicate(Assembler::is_simm11(n->get_int()));
3030   match(ConI);
3031   op_cost(0);
3032   format %{ %}
3033   interface(CONST_INTER);
3034 %}
3035 
3036 // Integer Immediate: 13-bit
3037 operand immI13() %{
3038   predicate(Assembler::is_simm13(n->get_int()));
3039   match(ConI);
3040   op_cost(0);
3041 
3042   format %{ %}
3043   interface(CONST_INTER);
3044 %}
3045 
3046 // Integer Immediate: 13-bit minus 7
3047 operand immI13m7() %{
3048   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3049   match(ConI);
3050   op_cost(0);
3051 
3052   format %{ %}
3053   interface(CONST_INTER);
3054 %}
3055 
3056 // Integer Immediate: 16-bit
3057 operand immI16() %{
3058   predicate(Assembler::is_simm16(n->get_int()));
3059   match(ConI);
3060   op_cost(0);
3061   format %{ %}
3062   interface(CONST_INTER);
3063 %}
3064 
3065 // Integer Immediate: the values 1-31
3066 operand immI_1_31() %{
3067   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3068   match(ConI);
3069   op_cost(0);
3070 
3071   format %{ %}
3072   interface(CONST_INTER);
3073 %}
3074 
3075 // Integer Immediate: the values 32-63
3076 operand immI_32_63() %{
3077   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3078   match(ConI);
3079   op_cost(0);
3080 
3081   format %{ %}
3082   interface(CONST_INTER);
3083 %}
3084 
3085 // Immediates for special shifts (sign extend)
3086 
3087 // Integer Immediate: the value 16
3088 operand immI_16() %{
3089   predicate(n->get_int() == 16);
3090   match(ConI);
3091   op_cost(0);
3092 
3093   format %{ %}
3094   interface(CONST_INTER);
3095 %}
3096 
3097 // Integer Immediate: the value 24
3098 operand immI_24() %{
3099   predicate(n->get_int() == 24);
3100   match(ConI);
3101   op_cost(0);
3102 
3103   format %{ %}
3104   interface(CONST_INTER);
3105 %}
3106 // Integer Immediate: the value 255
3107 operand immI_255() %{
3108   predicate( n->get_int() == 255 );
3109   match(ConI);
3110   op_cost(0);
3111 
3112   format %{ %}
3113   interface(CONST_INTER);
3114 %}
3115 
3116 // Integer Immediate: the value 65535
3117 operand immI_65535() %{
3118   predicate(n->get_int() == 65535);
3119   match(ConI);
3120   op_cost(0);
3121 
3122   format %{ %}
3123   interface(CONST_INTER);
3124 %}
3125 
3126 // Integer Immediate: the values 0-31
3127 operand immU5() %{
3128   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3129   match(ConI);
3130   op_cost(0);
3131 
3132   format %{ %}
3133   interface(CONST_INTER);
3134 %}
3135 
3136 // Integer Immediate: 6-bit
3137 operand immU6() %{
3138   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3139   match(ConI);
3140   op_cost(0);
3141   format %{ %}
3142   interface(CONST_INTER);
3143 %}
3144 
3145 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3146 operand immU12() %{
3147   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3148   match(ConI);
3149   op_cost(0);
3150 
3151   format %{ %}
3152   interface(CONST_INTER);
3153 %}
3154 
3155 // Integer Immediate non-negative
3156 operand immU31()
3157 %{
3158   predicate(n->get_int() >= 0);
3159   match(ConI);
3160 
3161   op_cost(0);
3162   format %{ %}
3163   interface(CONST_INTER);
3164 %}
3165 
3166 // Long Immediate: the value FF
3167 operand immL_FF() %{
3168   predicate( n->get_long() == 0xFFL );
3169   match(ConL);
3170   op_cost(0);
3171 
3172   format %{ %}
3173   interface(CONST_INTER);
3174 %}
3175 
3176 // Long Immediate: the value FFFF
3177 operand immL_FFFF() %{
3178   predicate( n->get_long() == 0xFFFFL );
3179   match(ConL);
3180   op_cost(0);
3181 
3182   format %{ %}
3183   interface(CONST_INTER);
3184 %}
3185 
3186 // Pointer Immediate: 32 or 64-bit
3187 operand immP() %{
3188   match(ConP);
3189 
3190   op_cost(5);
3191   // formats are generated automatically for constants and base registers
3192   format %{ %}
3193   interface(CONST_INTER);
3194 %}
3195 
3196 // Pointer Immediate: 64-bit
3197 operand immP_set() %{
3198   predicate(!VM_Version::is_niagara_plus());
3199   match(ConP);
3200 
3201   op_cost(5);
3202   // formats are generated automatically for constants and base registers
3203   format %{ %}
3204   interface(CONST_INTER);
3205 %}
3206 
3207 // Pointer Immediate: 64-bit
3208 // From Niagara2 processors on a load should be better than materializing.
3209 operand immP_load() %{
3210   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3211   match(ConP);
3212 
3213   op_cost(5);
3214   // formats are generated automatically for constants and base registers
3215   format %{ %}
3216   interface(CONST_INTER);
3217 %}
3218 
3219 // Pointer Immediate: 64-bit
3220 operand immP_no_oop_cheap() %{
3221   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3222   match(ConP);
3223 
3224   op_cost(5);
3225   // formats are generated automatically for constants and base registers
3226   format %{ %}
3227   interface(CONST_INTER);
3228 %}
3229 
3230 operand immP13() %{
3231   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3232   match(ConP);
3233   op_cost(0);
3234 
3235   format %{ %}
3236   interface(CONST_INTER);
3237 %}
3238 
3239 operand immP0() %{
3240   predicate(n->get_ptr() == 0);
3241   match(ConP);
3242   op_cost(0);
3243 
3244   format %{ %}
3245   interface(CONST_INTER);
3246 %}
3247 
3248 operand immP_poll() %{
3249   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3250   match(ConP);
3251 
3252   // formats are generated automatically for constants and base registers
3253   format %{ %}
3254   interface(CONST_INTER);
3255 %}
3256 
3257 // Pointer Immediate
3258 operand immN()
3259 %{
3260   match(ConN);
3261 
3262   op_cost(10);
3263   format %{ %}
3264   interface(CONST_INTER);
3265 %}
3266 
3267 operand immNKlass()
3268 %{
3269   match(ConNKlass);
3270 
3271   op_cost(10);
3272   format %{ %}
3273   interface(CONST_INTER);
3274 %}
3275 
3276 // NULL Pointer Immediate
3277 operand immN0()
3278 %{
3279   predicate(n->get_narrowcon() == 0);
3280   match(ConN);
3281 
3282   op_cost(0);
3283   format %{ %}
3284   interface(CONST_INTER);
3285 %}
3286 
3287 operand immL() %{
3288   match(ConL);
3289   op_cost(40);
3290   // formats are generated automatically for constants and base registers
3291   format %{ %}
3292   interface(CONST_INTER);
3293 %}
3294 
3295 operand immL0() %{
3296   predicate(n->get_long() == 0L);
3297   match(ConL);
3298   op_cost(0);
3299   // formats are generated automatically for constants and base registers
3300   format %{ %}
3301   interface(CONST_INTER);
3302 %}
3303 
3304 // Integer Immediate: 5-bit
3305 operand immL5() %{
3306   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3307   match(ConL);
3308   op_cost(0);
3309   format %{ %}
3310   interface(CONST_INTER);
3311 %}
3312 
3313 // Long Immediate: 13-bit
3314 operand immL13() %{
3315   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3316   match(ConL);
3317   op_cost(0);
3318 
3319   format %{ %}
3320   interface(CONST_INTER);
3321 %}
3322 
3323 // Long Immediate: 13-bit minus 7
3324 operand immL13m7() %{
3325   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3326   match(ConL);
3327   op_cost(0);
3328 
3329   format %{ %}
3330   interface(CONST_INTER);
3331 %}
3332 
3333 // Long Immediate: low 32-bit mask
3334 operand immL_32bits() %{
3335   predicate(n->get_long() == 0xFFFFFFFFL);
3336   match(ConL);
3337   op_cost(0);
3338 
3339   format %{ %}
3340   interface(CONST_INTER);
3341 %}
3342 
3343 // Long Immediate: cheap (materialize in <= 3 instructions)
3344 operand immL_cheap() %{
3345   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3346   match(ConL);
3347   op_cost(0);
3348 
3349   format %{ %}
3350   interface(CONST_INTER);
3351 %}
3352 
3353 // Long Immediate: expensive (materialize in > 3 instructions)
3354 operand immL_expensive() %{
3355   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3356   match(ConL);
3357   op_cost(0);
3358 
3359   format %{ %}
3360   interface(CONST_INTER);
3361 %}
3362 
3363 // Double Immediate
3364 operand immD() %{
3365   match(ConD);
3366 
3367   op_cost(40);
3368   format %{ %}
3369   interface(CONST_INTER);
3370 %}
3371 
3372 // Double Immediate: +0.0d
3373 operand immD0() %{
3374   predicate(jlong_cast(n->getd()) == 0);
3375   match(ConD);
3376 
3377   op_cost(0);
3378   format %{ %}
3379   interface(CONST_INTER);
3380 %}
3381 
3382 // Float Immediate
3383 operand immF() %{
3384   match(ConF);
3385 
3386   op_cost(20);
3387   format %{ %}
3388   interface(CONST_INTER);
3389 %}
3390 
3391 // Float Immediate: +0.0f
3392 operand immF0() %{
3393   predicate(jint_cast(n->getf()) == 0);
3394   match(ConF);
3395 
3396   op_cost(0);
3397   format %{ %}
3398   interface(CONST_INTER);
3399 %}
3400 
3401 // Integer Register Operands
3402 // Integer Register
3403 operand iRegI() %{
3404   constraint(ALLOC_IN_RC(int_reg));
3405   match(RegI);
3406 
3407   match(notemp_iRegI);
3408   match(g1RegI);
3409   match(o0RegI);
3410   match(iRegIsafe);
3411 
3412   format %{ %}
3413   interface(REG_INTER);
3414 %}
3415 
3416 operand notemp_iRegI() %{
3417   constraint(ALLOC_IN_RC(notemp_int_reg));
3418   match(RegI);
3419 
3420   match(o0RegI);
3421 
3422   format %{ %}
3423   interface(REG_INTER);
3424 %}
3425 
3426 operand o0RegI() %{
3427   constraint(ALLOC_IN_RC(o0_regI));
3428   match(iRegI);
3429 
3430   format %{ %}
3431   interface(REG_INTER);
3432 %}
3433 
3434 // Pointer Register
3435 operand iRegP() %{
3436   constraint(ALLOC_IN_RC(ptr_reg));
3437   match(RegP);
3438 
3439   match(lock_ptr_RegP);
3440   match(g1RegP);
3441   match(g2RegP);
3442   match(g3RegP);
3443   match(g4RegP);
3444   match(i0RegP);
3445   match(o0RegP);
3446   match(o1RegP);
3447   match(l7RegP);
3448 
3449   format %{ %}
3450   interface(REG_INTER);
3451 %}
3452 
3453 operand sp_ptr_RegP() %{
3454   constraint(ALLOC_IN_RC(sp_ptr_reg));
3455   match(RegP);
3456   match(iRegP);
3457 
3458   format %{ %}
3459   interface(REG_INTER);
3460 %}
3461 
3462 operand lock_ptr_RegP() %{
3463   constraint(ALLOC_IN_RC(lock_ptr_reg));
3464   match(RegP);
3465   match(i0RegP);
3466   match(o0RegP);
3467   match(o1RegP);
3468   match(l7RegP);
3469 
3470   format %{ %}
3471   interface(REG_INTER);
3472 %}
3473 
3474 operand g1RegP() %{
3475   constraint(ALLOC_IN_RC(g1_regP));
3476   match(iRegP);
3477 
3478   format %{ %}
3479   interface(REG_INTER);
3480 %}
3481 
3482 operand g2RegP() %{
3483   constraint(ALLOC_IN_RC(g2_regP));
3484   match(iRegP);
3485 
3486   format %{ %}
3487   interface(REG_INTER);
3488 %}
3489 
3490 operand g3RegP() %{
3491   constraint(ALLOC_IN_RC(g3_regP));
3492   match(iRegP);
3493 
3494   format %{ %}
3495   interface(REG_INTER);
3496 %}
3497 
3498 operand g1RegI() %{
3499   constraint(ALLOC_IN_RC(g1_regI));
3500   match(iRegI);
3501 
3502   format %{ %}
3503   interface(REG_INTER);
3504 %}
3505 
3506 operand g3RegI() %{
3507   constraint(ALLOC_IN_RC(g3_regI));
3508   match(iRegI);
3509 
3510   format %{ %}
3511   interface(REG_INTER);
3512 %}
3513 
3514 operand g4RegI() %{
3515   constraint(ALLOC_IN_RC(g4_regI));
3516   match(iRegI);
3517 
3518   format %{ %}
3519   interface(REG_INTER);
3520 %}
3521 
3522 operand g4RegP() %{
3523   constraint(ALLOC_IN_RC(g4_regP));
3524   match(iRegP);
3525 
3526   format %{ %}
3527   interface(REG_INTER);
3528 %}
3529 
3530 operand i0RegP() %{
3531   constraint(ALLOC_IN_RC(i0_regP));
3532   match(iRegP);
3533 
3534   format %{ %}
3535   interface(REG_INTER);
3536 %}
3537 
3538 operand o0RegP() %{
3539   constraint(ALLOC_IN_RC(o0_regP));
3540   match(iRegP);
3541 
3542   format %{ %}
3543   interface(REG_INTER);
3544 %}
3545 
3546 operand o1RegP() %{
3547   constraint(ALLOC_IN_RC(o1_regP));
3548   match(iRegP);
3549 
3550   format %{ %}
3551   interface(REG_INTER);
3552 %}
3553 
3554 operand o2RegP() %{
3555   constraint(ALLOC_IN_RC(o2_regP));
3556   match(iRegP);
3557 
3558   format %{ %}
3559   interface(REG_INTER);
3560 %}
3561 
3562 operand o7RegP() %{
3563   constraint(ALLOC_IN_RC(o7_regP));
3564   match(iRegP);
3565 
3566   format %{ %}
3567   interface(REG_INTER);
3568 %}
3569 
3570 operand l7RegP() %{
3571   constraint(ALLOC_IN_RC(l7_regP));
3572   match(iRegP);
3573 
3574   format %{ %}
3575   interface(REG_INTER);
3576 %}
3577 
3578 operand o7RegI() %{
3579   constraint(ALLOC_IN_RC(o7_regI));
3580   match(iRegI);
3581 
3582   format %{ %}
3583   interface(REG_INTER);
3584 %}
3585 
3586 operand iRegN() %{
3587   constraint(ALLOC_IN_RC(int_reg));
3588   match(RegN);
3589 
3590   format %{ %}
3591   interface(REG_INTER);
3592 %}
3593 
3594 // Long Register
3595 operand iRegL() %{
3596   constraint(ALLOC_IN_RC(long_reg));
3597   match(RegL);
3598 
3599   format %{ %}
3600   interface(REG_INTER);
3601 %}
3602 
3603 operand o2RegL() %{
3604   constraint(ALLOC_IN_RC(o2_regL));
3605   match(iRegL);
3606 
3607   format %{ %}
3608   interface(REG_INTER);
3609 %}
3610 
3611 operand o7RegL() %{
3612   constraint(ALLOC_IN_RC(o7_regL));
3613   match(iRegL);
3614 
3615   format %{ %}
3616   interface(REG_INTER);
3617 %}
3618 
3619 operand g1RegL() %{
3620   constraint(ALLOC_IN_RC(g1_regL));
3621   match(iRegL);
3622 
3623   format %{ %}
3624   interface(REG_INTER);
3625 %}
3626 
3627 operand g3RegL() %{
3628   constraint(ALLOC_IN_RC(g3_regL));
3629   match(iRegL);
3630 
3631   format %{ %}
3632   interface(REG_INTER);
3633 %}
3634 
3635 // Int Register safe
3636 // This is 64bit safe
3637 operand iRegIsafe() %{
3638   constraint(ALLOC_IN_RC(long_reg));
3639 
3640   match(iRegI);
3641 
3642   format %{ %}
3643   interface(REG_INTER);
3644 %}
3645 
3646 // Condition Code Flag Register
3647 operand flagsReg() %{
3648   constraint(ALLOC_IN_RC(int_flags));
3649   match(RegFlags);
3650 
3651   format %{ "ccr" %} // both ICC and XCC
3652   interface(REG_INTER);
3653 %}
3654 
3655 // Condition Code Register, unsigned comparisons.
3656 operand flagsRegU() %{
3657   constraint(ALLOC_IN_RC(int_flags));
3658   match(RegFlags);
3659 
3660   format %{ "icc_U" %}
3661   interface(REG_INTER);
3662 %}
3663 
3664 // Condition Code Register, pointer comparisons.
3665 operand flagsRegP() %{
3666   constraint(ALLOC_IN_RC(int_flags));
3667   match(RegFlags);
3668 
3669   format %{ "xcc_P" %}
3670   interface(REG_INTER);
3671 %}
3672 
3673 // Condition Code Register, long comparisons.
3674 operand flagsRegL() %{
3675   constraint(ALLOC_IN_RC(int_flags));
3676   match(RegFlags);
3677 
3678   format %{ "xcc_L" %}
3679   interface(REG_INTER);
3680 %}
3681 
3682 // Condition Code Register, floating comparisons, unordered same as "less".
3683 operand flagsRegF() %{
3684   constraint(ALLOC_IN_RC(float_flags));
3685   match(RegFlags);
3686   match(flagsRegF0);
3687 
3688   format %{ %}
3689   interface(REG_INTER);
3690 %}
3691 
3692 operand flagsRegF0() %{
3693   constraint(ALLOC_IN_RC(float_flag0));
3694   match(RegFlags);
3695 
3696   format %{ %}
3697   interface(REG_INTER);
3698 %}
3699 
3700 
3701 // Condition Code Flag Register used by long compare
3702 operand flagsReg_long_LTGE() %{
3703   constraint(ALLOC_IN_RC(int_flags));
3704   match(RegFlags);
3705   format %{ "icc_LTGE" %}
3706   interface(REG_INTER);
3707 %}
3708 operand flagsReg_long_EQNE() %{
3709   constraint(ALLOC_IN_RC(int_flags));
3710   match(RegFlags);
3711   format %{ "icc_EQNE" %}
3712   interface(REG_INTER);
3713 %}
3714 operand flagsReg_long_LEGT() %{
3715   constraint(ALLOC_IN_RC(int_flags));
3716   match(RegFlags);
3717   format %{ "icc_LEGT" %}
3718   interface(REG_INTER);
3719 %}
3720 
3721 
3722 operand regD() %{
3723   constraint(ALLOC_IN_RC(dflt_reg));
3724   match(RegD);
3725 
3726   match(regD_low);
3727 
3728   format %{ %}
3729   interface(REG_INTER);
3730 %}
3731 
3732 operand regF() %{
3733   constraint(ALLOC_IN_RC(sflt_reg));
3734   match(RegF);
3735 
3736   format %{ %}
3737   interface(REG_INTER);
3738 %}
3739 
3740 operand regD_low() %{
3741   constraint(ALLOC_IN_RC(dflt_low_reg));
3742   match(regD);
3743 
3744   format %{ %}
3745   interface(REG_INTER);
3746 %}
3747 
3748 // Special Registers
3749 
3750 // Method Register
3751 operand inline_cache_regP(iRegP reg) %{
3752   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
3753   match(reg);
3754   format %{ %}
3755   interface(REG_INTER);
3756 %}
3757 
3758 operand interpreter_method_oop_regP(iRegP reg) %{
3759   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
3760   match(reg);
3761   format %{ %}
3762   interface(REG_INTER);
3763 %}
3764 
3765 
3766 //----------Complex Operands---------------------------------------------------
3767 // Indirect Memory Reference
3768 operand indirect(sp_ptr_RegP reg) %{
3769   constraint(ALLOC_IN_RC(sp_ptr_reg));
3770   match(reg);
3771 
3772   op_cost(100);
3773   format %{ "[$reg]" %}
3774   interface(MEMORY_INTER) %{
3775     base($reg);
3776     index(0x0);
3777     scale(0x0);
3778     disp(0x0);
3779   %}
3780 %}
3781 
3782 // Indirect with simm13 Offset
3783 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
3784   constraint(ALLOC_IN_RC(sp_ptr_reg));
3785   match(AddP reg offset);
3786 
3787   op_cost(100);
3788   format %{ "[$reg + $offset]" %}
3789   interface(MEMORY_INTER) %{
3790     base($reg);
3791     index(0x0);
3792     scale(0x0);
3793     disp($offset);
3794   %}
3795 %}
3796 
3797 // Indirect with simm13 Offset minus 7
3798 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
3799   constraint(ALLOC_IN_RC(sp_ptr_reg));
3800   match(AddP reg offset);
3801 
3802   op_cost(100);
3803   format %{ "[$reg + $offset]" %}
3804   interface(MEMORY_INTER) %{
3805     base($reg);
3806     index(0x0);
3807     scale(0x0);
3808     disp($offset);
3809   %}
3810 %}
3811 
3812 // Note:  Intel has a swapped version also, like this:
3813 //operand indOffsetX(iRegI reg, immP offset) %{
3814 //  constraint(ALLOC_IN_RC(int_reg));
3815 //  match(AddP offset reg);
3816 //
3817 //  op_cost(100);
3818 //  format %{ "[$reg + $offset]" %}
3819 //  interface(MEMORY_INTER) %{
3820 //    base($reg);
3821 //    index(0x0);
3822 //    scale(0x0);
3823 //    disp($offset);
3824 //  %}
3825 //%}
3826 //// However, it doesn't make sense for SPARC, since
3827 // we have no particularly good way to embed oops in
3828 // single instructions.
3829 
3830 // Indirect with Register Index
3831 operand indIndex(iRegP addr, iRegX index) %{
3832   constraint(ALLOC_IN_RC(ptr_reg));
3833   match(AddP addr index);
3834 
3835   op_cost(100);
3836   format %{ "[$addr + $index]" %}
3837   interface(MEMORY_INTER) %{
3838     base($addr);
3839     index($index);
3840     scale(0x0);
3841     disp(0x0);
3842   %}
3843 %}
3844 
3845 //----------Special Memory Operands--------------------------------------------
3846 // Stack Slot Operand - This operand is used for loading and storing temporary
3847 //                      values on the stack where a match requires a value to
3848 //                      flow through memory.
3849 operand stackSlotI(sRegI reg) %{
3850   constraint(ALLOC_IN_RC(stack_slots));
3851   op_cost(100);
3852   //match(RegI);
3853   format %{ "[$reg]" %}
3854   interface(MEMORY_INTER) %{
3855     base(0xE);   // R_SP
3856     index(0x0);
3857     scale(0x0);
3858     disp($reg);  // Stack Offset
3859   %}
3860 %}
3861 
3862 operand stackSlotP(sRegP reg) %{
3863   constraint(ALLOC_IN_RC(stack_slots));
3864   op_cost(100);
3865   //match(RegP);
3866   format %{ "[$reg]" %}
3867   interface(MEMORY_INTER) %{
3868     base(0xE);   // R_SP
3869     index(0x0);
3870     scale(0x0);
3871     disp($reg);  // Stack Offset
3872   %}
3873 %}
3874 
3875 operand stackSlotF(sRegF reg) %{
3876   constraint(ALLOC_IN_RC(stack_slots));
3877   op_cost(100);
3878   //match(RegF);
3879   format %{ "[$reg]" %}
3880   interface(MEMORY_INTER) %{
3881     base(0xE);   // R_SP
3882     index(0x0);
3883     scale(0x0);
3884     disp($reg);  // Stack Offset
3885   %}
3886 %}
3887 operand stackSlotD(sRegD reg) %{
3888   constraint(ALLOC_IN_RC(stack_slots));
3889   op_cost(100);
3890   //match(RegD);
3891   format %{ "[$reg]" %}
3892   interface(MEMORY_INTER) %{
3893     base(0xE);   // R_SP
3894     index(0x0);
3895     scale(0x0);
3896     disp($reg);  // Stack Offset
3897   %}
3898 %}
3899 operand stackSlotL(sRegL reg) %{
3900   constraint(ALLOC_IN_RC(stack_slots));
3901   op_cost(100);
3902   //match(RegL);
3903   format %{ "[$reg]" %}
3904   interface(MEMORY_INTER) %{
3905     base(0xE);   // R_SP
3906     index(0x0);
3907     scale(0x0);
3908     disp($reg);  // Stack Offset
3909   %}
3910 %}
3911 
3912 // Operands for expressing Control Flow
3913 // NOTE:  Label is a predefined operand which should not be redefined in
3914 //        the AD file.  It is generically handled within the ADLC.
3915 
3916 //----------Conditional Branch Operands----------------------------------------
3917 // Comparison Op  - This is the operation of the comparison, and is limited to
3918 //                  the following set of codes:
3919 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
3920 //
3921 // Other attributes of the comparison, such as unsignedness, are specified
3922 // by the comparison instruction that sets a condition code flags register.
3923 // That result is represented by a flags operand whose subtype is appropriate
3924 // to the unsignedness (etc.) of the comparison.
3925 //
3926 // Later, the instruction which matches both the Comparison Op (a Bool) and
3927 // the flags (produced by the Cmp) specifies the coding of the comparison op
3928 // by matching a specific subtype of Bool operand below, such as cmpOpU.
3929 
3930 operand cmpOp() %{
3931   match(Bool);
3932 
3933   format %{ "" %}
3934   interface(COND_INTER) %{
3935     equal(0x1);
3936     not_equal(0x9);
3937     less(0x3);
3938     greater_equal(0xB);
3939     less_equal(0x2);
3940     greater(0xA);
3941     overflow(0x7);
3942     no_overflow(0xF);
3943   %}
3944 %}
3945 
3946 // Comparison Op, unsigned
3947 operand cmpOpU() %{
3948   match(Bool);
3949   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
3950             n->as_Bool()->_test._test != BoolTest::no_overflow);
3951 
3952   format %{ "u" %}
3953   interface(COND_INTER) %{
3954     equal(0x1);
3955     not_equal(0x9);
3956     less(0x5);
3957     greater_equal(0xD);
3958     less_equal(0x4);
3959     greater(0xC);
3960     overflow(0x7);
3961     no_overflow(0xF);
3962   %}
3963 %}
3964 
3965 // Comparison Op, pointer (same as unsigned)
3966 operand cmpOpP() %{
3967   match(Bool);
3968   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
3969             n->as_Bool()->_test._test != BoolTest::no_overflow);
3970 
3971   format %{ "p" %}
3972   interface(COND_INTER) %{
3973     equal(0x1);
3974     not_equal(0x9);
3975     less(0x5);
3976     greater_equal(0xD);
3977     less_equal(0x4);
3978     greater(0xC);
3979     overflow(0x7);
3980     no_overflow(0xF);
3981   %}
3982 %}
3983 
3984 // Comparison Op, branch-register encoding
3985 operand cmpOp_reg() %{
3986   match(Bool);
3987   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
3988             n->as_Bool()->_test._test != BoolTest::no_overflow);
3989 
3990   format %{ "" %}
3991   interface(COND_INTER) %{
3992     equal        (0x1);
3993     not_equal    (0x5);
3994     less         (0x3);
3995     greater_equal(0x7);
3996     less_equal   (0x2);
3997     greater      (0x6);
3998     overflow(0x7); // not supported
3999     no_overflow(0xF); // not supported
4000   %}
4001 %}
4002 
4003 // Comparison Code, floating, unordered same as less
4004 operand cmpOpF() %{
4005   match(Bool);
4006   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4007             n->as_Bool()->_test._test != BoolTest::no_overflow);
4008 
4009   format %{ "fl" %}
4010   interface(COND_INTER) %{
4011     equal(0x9);
4012     not_equal(0x1);
4013     less(0x3);
4014     greater_equal(0xB);
4015     less_equal(0xE);
4016     greater(0x6);
4017 
4018     overflow(0x7); // not supported
4019     no_overflow(0xF); // not supported
4020   %}
4021 %}
4022 
4023 // Used by long compare
4024 operand cmpOp_commute() %{
4025   match(Bool);
4026   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4027             n->as_Bool()->_test._test != BoolTest::no_overflow);
4028 
4029   format %{ "" %}
4030   interface(COND_INTER) %{
4031     equal(0x1);
4032     not_equal(0x9);
4033     less(0xA);
4034     greater_equal(0x2);
4035     less_equal(0xB);
4036     greater(0x3);
4037     overflow(0x7);
4038     no_overflow(0xF);
4039   %}
4040 %}
4041 
4042 //----------OPERAND CLASSES----------------------------------------------------
4043 // Operand Classes are groups of operands that are used to simplify
4044 // instruction definitions by not requiring the AD writer to specify separate
4045 // instructions for every form of operand when the instruction accepts
4046 // multiple operand types with the same basic encoding and format.  The classic
4047 // case of this is memory operands.
4048 opclass memory( indirect, indOffset13, indIndex );
4049 opclass indIndexMemory( indIndex );
4050 
4051 //----------PIPELINE-----------------------------------------------------------
4052 pipeline %{
4053 
4054 //----------ATTRIBUTES---------------------------------------------------------
4055 attributes %{
4056   fixed_size_instructions;           // Fixed size instructions
4057   branch_has_delay_slot;             // Branch has delay slot following
4058   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4059   instruction_unit_size = 4;         // An instruction is 4 bytes long
4060   instruction_fetch_unit_size = 16;  // The processor fetches one line
4061   instruction_fetch_units = 1;       // of 16 bytes
4062 
4063   // List of nop instructions
4064   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4065 %}
4066 
4067 //----------RESOURCES----------------------------------------------------------
4068 // Resources are the functional units available to the machine
4069 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4070 
4071 //----------PIPELINE DESCRIPTION-----------------------------------------------
4072 // Pipeline Description specifies the stages in the machine's pipeline
4073 
4074 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4075 
4076 //----------PIPELINE CLASSES---------------------------------------------------
4077 // Pipeline Classes describe the stages in which input and output are
4078 // referenced by the hardware pipeline.
4079 
4080 // Integer ALU reg-reg operation
4081 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4082     single_instruction;
4083     dst   : E(write);
4084     src1  : R(read);
4085     src2  : R(read);
4086     IALU  : R;
4087 %}
4088 
4089 // Integer ALU reg-reg long operation
4090 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4091     instruction_count(2);
4092     dst   : E(write);
4093     src1  : R(read);
4094     src2  : R(read);
4095     IALU  : R;
4096     IALU  : R;
4097 %}
4098 
4099 // Integer ALU reg-reg long dependent operation
4100 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4101     instruction_count(1); multiple_bundles;
4102     dst   : E(write);
4103     src1  : R(read);
4104     src2  : R(read);
4105     cr    : E(write);
4106     IALU  : R(2);
4107 %}
4108 
4109 // Integer ALU reg-imm operaion
4110 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4111     single_instruction;
4112     dst   : E(write);
4113     src1  : R(read);
4114     IALU  : R;
4115 %}
4116 
4117 // Integer ALU reg-reg operation with condition code
4118 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4119     single_instruction;
4120     dst   : E(write);
4121     cr    : E(write);
4122     src1  : R(read);
4123     src2  : R(read);
4124     IALU  : R;
4125 %}
4126 
4127 // Integer ALU reg-imm operation with condition code
4128 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4129     single_instruction;
4130     dst   : E(write);
4131     cr    : E(write);
4132     src1  : R(read);
4133     IALU  : R;
4134 %}
4135 
4136 // Integer ALU zero-reg operation
4137 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4138     single_instruction;
4139     dst   : E(write);
4140     src2  : R(read);
4141     IALU  : R;
4142 %}
4143 
4144 // Integer ALU zero-reg operation with condition code only
4145 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4146     single_instruction;
4147     cr    : E(write);
4148     src   : R(read);
4149     IALU  : R;
4150 %}
4151 
4152 // Integer ALU reg-reg operation with condition code only
4153 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4154     single_instruction;
4155     cr    : E(write);
4156     src1  : R(read);
4157     src2  : R(read);
4158     IALU  : R;
4159 %}
4160 
4161 // Integer ALU reg-imm operation with condition code only
4162 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4163     single_instruction;
4164     cr    : E(write);
4165     src1  : R(read);
4166     IALU  : R;
4167 %}
4168 
4169 // Integer ALU reg-reg-zero operation with condition code only
4170 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4171     single_instruction;
4172     cr    : E(write);
4173     src1  : R(read);
4174     src2  : R(read);
4175     IALU  : R;
4176 %}
4177 
4178 // Integer ALU reg-imm-zero operation with condition code only
4179 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4180     single_instruction;
4181     cr    : E(write);
4182     src1  : R(read);
4183     IALU  : R;
4184 %}
4185 
4186 // Integer ALU reg-reg operation with condition code, src1 modified
4187 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4188     single_instruction;
4189     cr    : E(write);
4190     src1  : E(write);
4191     src1  : R(read);
4192     src2  : R(read);
4193     IALU  : R;
4194 %}
4195 
4196 // Integer ALU reg-imm operation with condition code, src1 modified
4197 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4198     single_instruction;
4199     cr    : E(write);
4200     src1  : E(write);
4201     src1  : R(read);
4202     IALU  : R;
4203 %}
4204 
4205 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4206     multiple_bundles;
4207     dst   : E(write)+4;
4208     cr    : E(write);
4209     src1  : R(read);
4210     src2  : R(read);
4211     IALU  : R(3);
4212     BR    : R(2);
4213 %}
4214 
4215 // Integer ALU operation
4216 pipe_class ialu_none(iRegI dst) %{
4217     single_instruction;
4218     dst   : E(write);
4219     IALU  : R;
4220 %}
4221 
4222 // Integer ALU reg operation
4223 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4224     single_instruction; may_have_no_code;
4225     dst   : E(write);
4226     src   : R(read);
4227     IALU  : R;
4228 %}
4229 
4230 // Integer ALU reg conditional operation
4231 // This instruction has a 1 cycle stall, and cannot execute
4232 // in the same cycle as the instruction setting the condition
4233 // code. We kludge this by pretending to read the condition code
4234 // 1 cycle earlier, and by marking the functional units as busy
4235 // for 2 cycles with the result available 1 cycle later than
4236 // is really the case.
4237 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4238     single_instruction;
4239     op2_out : C(write);
4240     op1     : R(read);
4241     cr      : R(read);       // This is really E, with a 1 cycle stall
4242     BR      : R(2);
4243     MS      : R(2);
4244 %}
4245 
4246 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4247     instruction_count(1); multiple_bundles;
4248     dst     : C(write)+1;
4249     src     : R(read)+1;
4250     IALU    : R(1);
4251     BR      : E(2);
4252     MS      : E(2);
4253 %}
4254 
4255 // Integer ALU reg operation
4256 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4257     single_instruction; may_have_no_code;
4258     dst   : E(write);
4259     src   : R(read);
4260     IALU  : R;
4261 %}
4262 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4263     single_instruction; may_have_no_code;
4264     dst   : E(write);
4265     src   : R(read);
4266     IALU  : R;
4267 %}
4268 
4269 // Two integer ALU reg operations
4270 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4271     instruction_count(2);
4272     dst   : E(write);
4273     src   : R(read);
4274     A0    : R;
4275     A1    : R;
4276 %}
4277 
4278 // Two integer ALU reg operations
4279 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4280     instruction_count(2); may_have_no_code;
4281     dst   : E(write);
4282     src   : R(read);
4283     A0    : R;
4284     A1    : R;
4285 %}
4286 
4287 // Integer ALU imm operation
4288 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4289     single_instruction;
4290     dst   : E(write);
4291     IALU  : R;
4292 %}
4293 
4294 // Integer ALU reg-reg with carry operation
4295 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4296     single_instruction;
4297     dst   : E(write);
4298     src1  : R(read);
4299     src2  : R(read);
4300     IALU  : R;
4301 %}
4302 
4303 // Integer ALU cc operation
4304 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4305     single_instruction;
4306     dst   : E(write);
4307     cc    : R(read);
4308     IALU  : R;
4309 %}
4310 
4311 // Integer ALU cc / second IALU operation
4312 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4313     instruction_count(1); multiple_bundles;
4314     dst   : E(write)+1;
4315     src   : R(read);
4316     IALU  : R;
4317 %}
4318 
4319 // Integer ALU cc / second IALU operation
4320 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4321     instruction_count(1); multiple_bundles;
4322     dst   : E(write)+1;
4323     p     : R(read);
4324     q     : R(read);
4325     IALU  : R;
4326 %}
4327 
4328 // Integer ALU hi-lo-reg operation
4329 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4330     instruction_count(1); multiple_bundles;
4331     dst   : E(write)+1;
4332     IALU  : R(2);
4333 %}
4334 
4335 // Float ALU hi-lo-reg operation (with temp)
4336 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4337     instruction_count(1); multiple_bundles;
4338     dst   : E(write)+1;
4339     IALU  : R(2);
4340 %}
4341 
4342 // Long Constant
4343 pipe_class loadConL( iRegL dst, immL src ) %{
4344     instruction_count(2); multiple_bundles;
4345     dst   : E(write)+1;
4346     IALU  : R(2);
4347     IALU  : R(2);
4348 %}
4349 
4350 // Pointer Constant
4351 pipe_class loadConP( iRegP dst, immP src ) %{
4352     instruction_count(0); multiple_bundles;
4353     fixed_latency(6);
4354 %}
4355 
4356 // Polling Address
4357 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4358     instruction_count(0); multiple_bundles;
4359     fixed_latency(6);
4360 %}
4361 
4362 // Long Constant small
4363 pipe_class loadConLlo( iRegL dst, immL src ) %{
4364     instruction_count(2);
4365     dst   : E(write);
4366     IALU  : R;
4367     IALU  : R;
4368 %}
4369 
4370 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4371 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4372     instruction_count(1); multiple_bundles;
4373     src   : R(read);
4374     dst   : M(write)+1;
4375     IALU  : R;
4376     MS    : E;
4377 %}
4378 
4379 // Integer ALU nop operation
4380 pipe_class ialu_nop() %{
4381     single_instruction;
4382     IALU  : R;
4383 %}
4384 
4385 // Integer ALU nop operation
4386 pipe_class ialu_nop_A0() %{
4387     single_instruction;
4388     A0    : R;
4389 %}
4390 
4391 // Integer ALU nop operation
4392 pipe_class ialu_nop_A1() %{
4393     single_instruction;
4394     A1    : R;
4395 %}
4396 
4397 // Integer Multiply reg-reg operation
4398 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4399     single_instruction;
4400     dst   : E(write);
4401     src1  : R(read);
4402     src2  : R(read);
4403     MS    : R(5);
4404 %}
4405 
4406 // Integer Multiply reg-imm operation
4407 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4408     single_instruction;
4409     dst   : E(write);
4410     src1  : R(read);
4411     MS    : R(5);
4412 %}
4413 
4414 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4415     single_instruction;
4416     dst   : E(write)+4;
4417     src1  : R(read);
4418     src2  : R(read);
4419     MS    : R(6);
4420 %}
4421 
4422 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4423     single_instruction;
4424     dst   : E(write)+4;
4425     src1  : R(read);
4426     MS    : R(6);
4427 %}
4428 
4429 // Integer Divide reg-reg
4430 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4431     instruction_count(1); multiple_bundles;
4432     dst   : E(write);
4433     temp  : E(write);
4434     src1  : R(read);
4435     src2  : R(read);
4436     temp  : R(read);
4437     MS    : R(38);
4438 %}
4439 
4440 // Integer Divide reg-imm
4441 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4442     instruction_count(1); multiple_bundles;
4443     dst   : E(write);
4444     temp  : E(write);
4445     src1  : R(read);
4446     temp  : R(read);
4447     MS    : R(38);
4448 %}
4449 
4450 // Long Divide
4451 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4452     dst  : E(write)+71;
4453     src1 : R(read);
4454     src2 : R(read)+1;
4455     MS   : R(70);
4456 %}
4457 
4458 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4459     dst  : E(write)+71;
4460     src1 : R(read);
4461     MS   : R(70);
4462 %}
4463 
4464 // Floating Point Add Float
4465 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4466     single_instruction;
4467     dst   : X(write);
4468     src1  : E(read);
4469     src2  : E(read);
4470     FA    : R;
4471 %}
4472 
4473 // Floating Point Add Double
4474 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4475     single_instruction;
4476     dst   : X(write);
4477     src1  : E(read);
4478     src2  : E(read);
4479     FA    : R;
4480 %}
4481 
4482 // Floating Point Conditional Move based on integer flags
4483 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4484     single_instruction;
4485     dst   : X(write);
4486     src   : E(read);
4487     cr    : R(read);
4488     FA    : R(2);
4489     BR    : R(2);
4490 %}
4491 
4492 // Floating Point Conditional Move based on integer flags
4493 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4494     single_instruction;
4495     dst   : X(write);
4496     src   : E(read);
4497     cr    : R(read);
4498     FA    : R(2);
4499     BR    : R(2);
4500 %}
4501 
4502 // Floating Point Multiply Float
4503 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4504     single_instruction;
4505     dst   : X(write);
4506     src1  : E(read);
4507     src2  : E(read);
4508     FM    : R;
4509 %}
4510 
4511 // Floating Point Multiply Double
4512 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4513     single_instruction;
4514     dst   : X(write);
4515     src1  : E(read);
4516     src2  : E(read);
4517     FM    : R;
4518 %}
4519 
4520 // Floating Point Divide Float
4521 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4522     single_instruction;
4523     dst   : X(write);
4524     src1  : E(read);
4525     src2  : E(read);
4526     FM    : R;
4527     FDIV  : C(14);
4528 %}
4529 
4530 // Floating Point Divide Double
4531 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4532     single_instruction;
4533     dst   : X(write);
4534     src1  : E(read);
4535     src2  : E(read);
4536     FM    : R;
4537     FDIV  : C(17);
4538 %}
4539 
4540 // Floating Point Move/Negate/Abs Float
4541 pipe_class faddF_reg(regF dst, regF src) %{
4542     single_instruction;
4543     dst   : W(write);
4544     src   : E(read);
4545     FA    : R(1);
4546 %}
4547 
4548 // Floating Point Move/Negate/Abs Double
4549 pipe_class faddD_reg(regD dst, regD src) %{
4550     single_instruction;
4551     dst   : W(write);
4552     src   : E(read);
4553     FA    : R;
4554 %}
4555 
4556 // Floating Point Convert F->D
4557 pipe_class fcvtF2D(regD dst, regF src) %{
4558     single_instruction;
4559     dst   : X(write);
4560     src   : E(read);
4561     FA    : R;
4562 %}
4563 
4564 // Floating Point Convert I->D
4565 pipe_class fcvtI2D(regD dst, regF src) %{
4566     single_instruction;
4567     dst   : X(write);
4568     src   : E(read);
4569     FA    : R;
4570 %}
4571 
4572 // Floating Point Convert LHi->D
4573 pipe_class fcvtLHi2D(regD dst, regD src) %{
4574     single_instruction;
4575     dst   : X(write);
4576     src   : E(read);
4577     FA    : R;
4578 %}
4579 
4580 // Floating Point Convert L->D
4581 pipe_class fcvtL2D(regD dst, regF src) %{
4582     single_instruction;
4583     dst   : X(write);
4584     src   : E(read);
4585     FA    : R;
4586 %}
4587 
4588 // Floating Point Convert L->F
4589 pipe_class fcvtL2F(regD dst, regF src) %{
4590     single_instruction;
4591     dst   : X(write);
4592     src   : E(read);
4593     FA    : R;
4594 %}
4595 
4596 // Floating Point Convert D->F
4597 pipe_class fcvtD2F(regD dst, regF src) %{
4598     single_instruction;
4599     dst   : X(write);
4600     src   : E(read);
4601     FA    : R;
4602 %}
4603 
4604 // Floating Point Convert I->L
4605 pipe_class fcvtI2L(regD dst, regF src) %{
4606     single_instruction;
4607     dst   : X(write);
4608     src   : E(read);
4609     FA    : R;
4610 %}
4611 
4612 // Floating Point Convert D->F
4613 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4614     instruction_count(1); multiple_bundles;
4615     dst   : X(write)+6;
4616     src   : E(read);
4617     FA    : R;
4618 %}
4619 
4620 // Floating Point Convert D->L
4621 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4622     instruction_count(1); multiple_bundles;
4623     dst   : X(write)+6;
4624     src   : E(read);
4625     FA    : R;
4626 %}
4627 
4628 // Floating Point Convert F->I
4629 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4630     instruction_count(1); multiple_bundles;
4631     dst   : X(write)+6;
4632     src   : E(read);
4633     FA    : R;
4634 %}
4635 
4636 // Floating Point Convert F->L
4637 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4638     instruction_count(1); multiple_bundles;
4639     dst   : X(write)+6;
4640     src   : E(read);
4641     FA    : R;
4642 %}
4643 
4644 // Floating Point Convert I->F
4645 pipe_class fcvtI2F(regF dst, regF src) %{
4646     single_instruction;
4647     dst   : X(write);
4648     src   : E(read);
4649     FA    : R;
4650 %}
4651 
4652 // Floating Point Compare
4653 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4654     single_instruction;
4655     cr    : X(write);
4656     src1  : E(read);
4657     src2  : E(read);
4658     FA    : R;
4659 %}
4660 
4661 // Floating Point Compare
4662 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4663     single_instruction;
4664     cr    : X(write);
4665     src1  : E(read);
4666     src2  : E(read);
4667     FA    : R;
4668 %}
4669 
4670 // Floating Add Nop
4671 pipe_class fadd_nop() %{
4672     single_instruction;
4673     FA  : R;
4674 %}
4675 
4676 // Integer Store to Memory
4677 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4678     single_instruction;
4679     mem   : R(read);
4680     src   : C(read);
4681     MS    : R;
4682 %}
4683 
4684 // Integer Store to Memory
4685 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4686     single_instruction;
4687     mem   : R(read);
4688     src   : C(read);
4689     MS    : R;
4690 %}
4691 
4692 // Integer Store Zero to Memory
4693 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4694     single_instruction;
4695     mem   : R(read);
4696     MS    : R;
4697 %}
4698 
4699 // Special Stack Slot Store
4700 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4701     single_instruction;
4702     stkSlot : R(read);
4703     src     : C(read);
4704     MS      : R;
4705 %}
4706 
4707 // Special Stack Slot Store
4708 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
4709     instruction_count(2); multiple_bundles;
4710     stkSlot : R(read);
4711     src     : C(read);
4712     MS      : R(2);
4713 %}
4714 
4715 // Float Store
4716 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
4717     single_instruction;
4718     mem : R(read);
4719     src : C(read);
4720     MS  : R;
4721 %}
4722 
4723 // Float Store
4724 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
4725     single_instruction;
4726     mem : R(read);
4727     MS  : R;
4728 %}
4729 
4730 // Double Store
4731 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
4732     instruction_count(1);
4733     mem : R(read);
4734     src : C(read);
4735     MS  : R;
4736 %}
4737 
4738 // Double Store
4739 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
4740     single_instruction;
4741     mem : R(read);
4742     MS  : R;
4743 %}
4744 
4745 // Special Stack Slot Float Store
4746 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
4747     single_instruction;
4748     stkSlot : R(read);
4749     src     : C(read);
4750     MS      : R;
4751 %}
4752 
4753 // Special Stack Slot Double Store
4754 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
4755     single_instruction;
4756     stkSlot : R(read);
4757     src     : C(read);
4758     MS      : R;
4759 %}
4760 
4761 // Integer Load (when sign bit propagation not needed)
4762 pipe_class iload_mem(iRegI dst, memory mem) %{
4763     single_instruction;
4764     mem : R(read);
4765     dst : C(write);
4766     MS  : R;
4767 %}
4768 
4769 // Integer Load from stack operand
4770 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
4771     single_instruction;
4772     mem : R(read);
4773     dst : C(write);
4774     MS  : R;
4775 %}
4776 
4777 // Integer Load (when sign bit propagation or masking is needed)
4778 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
4779     single_instruction;
4780     mem : R(read);
4781     dst : M(write);
4782     MS  : R;
4783 %}
4784 
4785 // Float Load
4786 pipe_class floadF_mem(regF dst, memory mem) %{
4787     single_instruction;
4788     mem : R(read);
4789     dst : M(write);
4790     MS  : R;
4791 %}
4792 
4793 // Float Load
4794 pipe_class floadD_mem(regD dst, memory mem) %{
4795     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
4796     mem : R(read);
4797     dst : M(write);
4798     MS  : R;
4799 %}
4800 
4801 // Float Load
4802 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
4803     single_instruction;
4804     stkSlot : R(read);
4805     dst : M(write);
4806     MS  : R;
4807 %}
4808 
4809 // Float Load
4810 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
4811     single_instruction;
4812     stkSlot : R(read);
4813     dst : M(write);
4814     MS  : R;
4815 %}
4816 
4817 // Memory Nop
4818 pipe_class mem_nop() %{
4819     single_instruction;
4820     MS  : R;
4821 %}
4822 
4823 pipe_class sethi(iRegP dst, immI src) %{
4824     single_instruction;
4825     dst  : E(write);
4826     IALU : R;
4827 %}
4828 
4829 pipe_class loadPollP(iRegP poll) %{
4830     single_instruction;
4831     poll : R(read);
4832     MS   : R;
4833 %}
4834 
4835 pipe_class br(Universe br, label labl) %{
4836     single_instruction_with_delay_slot;
4837     BR  : R;
4838 %}
4839 
4840 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
4841     single_instruction_with_delay_slot;
4842     cr    : E(read);
4843     BR    : R;
4844 %}
4845 
4846 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
4847     single_instruction_with_delay_slot;
4848     op1 : E(read);
4849     BR  : R;
4850     MS  : R;
4851 %}
4852 
4853 // Compare and branch
4854 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
4855     instruction_count(2); has_delay_slot;
4856     cr    : E(write);
4857     src1  : R(read);
4858     src2  : R(read);
4859     IALU  : R;
4860     BR    : R;
4861 %}
4862 
4863 // Compare and branch
4864 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
4865     instruction_count(2); has_delay_slot;
4866     cr    : E(write);
4867     src1  : R(read);
4868     IALU  : R;
4869     BR    : R;
4870 %}
4871 
4872 // Compare and branch using cbcond
4873 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
4874     single_instruction;
4875     src1  : E(read);
4876     src2  : E(read);
4877     IALU  : R;
4878     BR    : R;
4879 %}
4880 
4881 // Compare and branch using cbcond
4882 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
4883     single_instruction;
4884     src1  : E(read);
4885     IALU  : R;
4886     BR    : R;
4887 %}
4888 
4889 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
4890     single_instruction_with_delay_slot;
4891     cr    : E(read);
4892     BR    : R;
4893 %}
4894 
4895 pipe_class br_nop() %{
4896     single_instruction;
4897     BR  : R;
4898 %}
4899 
4900 pipe_class simple_call(method meth) %{
4901     instruction_count(2); multiple_bundles; force_serialization;
4902     fixed_latency(100);
4903     BR  : R(1);
4904     MS  : R(1);
4905     A0  : R(1);
4906 %}
4907 
4908 pipe_class compiled_call(method meth) %{
4909     instruction_count(1); multiple_bundles; force_serialization;
4910     fixed_latency(100);
4911     MS  : R(1);
4912 %}
4913 
4914 pipe_class call(method meth) %{
4915     instruction_count(0); multiple_bundles; force_serialization;
4916     fixed_latency(100);
4917 %}
4918 
4919 pipe_class tail_call(Universe ignore, label labl) %{
4920     single_instruction; has_delay_slot;
4921     fixed_latency(100);
4922     BR  : R(1);
4923     MS  : R(1);
4924 %}
4925 
4926 pipe_class ret(Universe ignore) %{
4927     single_instruction; has_delay_slot;
4928     BR  : R(1);
4929     MS  : R(1);
4930 %}
4931 
4932 pipe_class ret_poll(g3RegP poll) %{
4933     instruction_count(3); has_delay_slot;
4934     poll : E(read);
4935     MS   : R;
4936 %}
4937 
4938 // The real do-nothing guy
4939 pipe_class empty( ) %{
4940     instruction_count(0);
4941 %}
4942 
4943 pipe_class long_memory_op() %{
4944     instruction_count(0); multiple_bundles; force_serialization;
4945     fixed_latency(25);
4946     MS  : R(1);
4947 %}
4948 
4949 // Check-cast
4950 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
4951     array : R(read);
4952     match  : R(read);
4953     IALU   : R(2);
4954     BR     : R(2);
4955     MS     : R;
4956 %}
4957 
4958 // Convert FPU flags into +1,0,-1
4959 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
4960     src1  : E(read);
4961     src2  : E(read);
4962     dst   : E(write);
4963     FA    : R;
4964     MS    : R(2);
4965     BR    : R(2);
4966 %}
4967 
4968 // Compare for p < q, and conditionally add y
4969 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
4970     p     : E(read);
4971     q     : E(read);
4972     y     : E(read);
4973     IALU  : R(3)
4974 %}
4975 
4976 // Perform a compare, then move conditionally in a branch delay slot.
4977 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
4978     src2   : E(read);
4979     srcdst : E(read);
4980     IALU   : R;
4981     BR     : R;
4982 %}
4983 
4984 // Define the class for the Nop node
4985 define %{
4986    MachNop = ialu_nop;
4987 %}
4988 
4989 %}
4990 
4991 //----------INSTRUCTIONS-------------------------------------------------------
4992 
4993 //------------Special Stack Slot instructions - no match rules-----------------
4994 instruct stkI_to_regF(regF dst, stackSlotI src) %{
4995   // No match rule to avoid chain rule match.
4996   effect(DEF dst, USE src);
4997   ins_cost(MEMORY_REF_COST);
4998   format %{ "LDF    $src,$dst\t! stkI to regF" %}
4999   opcode(Assembler::ldf_op3);
5000   ins_encode(simple_form3_mem_reg(src, dst));
5001   ins_pipe(floadF_stk);
5002 %}
5003 
5004 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5005   // No match rule to avoid chain rule match.
5006   effect(DEF dst, USE src);
5007   ins_cost(MEMORY_REF_COST);
5008   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5009   opcode(Assembler::lddf_op3);
5010   ins_encode(simple_form3_mem_reg(src, dst));
5011   ins_pipe(floadD_stk);
5012 %}
5013 
5014 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5015   // No match rule to avoid chain rule match.
5016   effect(DEF dst, USE src);
5017   ins_cost(MEMORY_REF_COST);
5018   format %{ "STF    $src,$dst\t! regF to stkI" %}
5019   opcode(Assembler::stf_op3);
5020   ins_encode(simple_form3_mem_reg(dst, src));
5021   ins_pipe(fstoreF_stk_reg);
5022 %}
5023 
5024 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5025   // No match rule to avoid chain rule match.
5026   effect(DEF dst, USE src);
5027   ins_cost(MEMORY_REF_COST);
5028   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5029   opcode(Assembler::stdf_op3);
5030   ins_encode(simple_form3_mem_reg(dst, src));
5031   ins_pipe(fstoreD_stk_reg);
5032 %}
5033 
5034 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5035   effect(DEF dst, USE src);
5036   ins_cost(MEMORY_REF_COST*2);
5037   format %{ "STW    $src,$dst.hi\t! long\n\t"
5038             "STW    R_G0,$dst.lo" %}
5039   opcode(Assembler::stw_op3);
5040   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5041   ins_pipe(lstoreI_stk_reg);
5042 %}
5043 
5044 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5045   // No match rule to avoid chain rule match.
5046   effect(DEF dst, USE src);
5047   ins_cost(MEMORY_REF_COST);
5048   format %{ "STX    $src,$dst\t! regL to stkD" %}
5049   opcode(Assembler::stx_op3);
5050   ins_encode(simple_form3_mem_reg( dst, src ) );
5051   ins_pipe(istore_stk_reg);
5052 %}
5053 
5054 //---------- Chain stack slots between similar types --------
5055 
5056 // Load integer from stack slot
5057 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5058   match(Set dst src);
5059   ins_cost(MEMORY_REF_COST);
5060 
5061   format %{ "LDUW   $src,$dst\t!stk" %}
5062   opcode(Assembler::lduw_op3);
5063   ins_encode(simple_form3_mem_reg( src, dst ) );
5064   ins_pipe(iload_mem);
5065 %}
5066 
5067 // Store integer to stack slot
5068 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5069   match(Set dst src);
5070   ins_cost(MEMORY_REF_COST);
5071 
5072   format %{ "STW    $src,$dst\t!stk" %}
5073   opcode(Assembler::stw_op3);
5074   ins_encode(simple_form3_mem_reg( dst, src ) );
5075   ins_pipe(istore_mem_reg);
5076 %}
5077 
5078 // Load long from stack slot
5079 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5080   match(Set dst src);
5081 
5082   ins_cost(MEMORY_REF_COST);
5083   format %{ "LDX    $src,$dst\t! long" %}
5084   opcode(Assembler::ldx_op3);
5085   ins_encode(simple_form3_mem_reg( src, dst ) );
5086   ins_pipe(iload_mem);
5087 %}
5088 
5089 // Store long to stack slot
5090 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5091   match(Set dst src);
5092 
5093   ins_cost(MEMORY_REF_COST);
5094   format %{ "STX    $src,$dst\t! long" %}
5095   opcode(Assembler::stx_op3);
5096   ins_encode(simple_form3_mem_reg( dst, src ) );
5097   ins_pipe(istore_mem_reg);
5098 %}
5099 
5100 // Load pointer from stack slot, 64-bit encoding
5101 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5102   match(Set dst src);
5103   ins_cost(MEMORY_REF_COST);
5104   format %{ "LDX    $src,$dst\t!ptr" %}
5105   opcode(Assembler::ldx_op3);
5106   ins_encode(simple_form3_mem_reg( src, dst ) );
5107   ins_pipe(iload_mem);
5108 %}
5109 
5110 // Store pointer to stack slot
5111 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5112   match(Set dst src);
5113   ins_cost(MEMORY_REF_COST);
5114   format %{ "STX    $src,$dst\t!ptr" %}
5115   opcode(Assembler::stx_op3);
5116   ins_encode(simple_form3_mem_reg( dst, src ) );
5117   ins_pipe(istore_mem_reg);
5118 %}
5119 
5120 //------------Special Nop instructions for bundling - no match rules-----------
5121 // Nop using the A0 functional unit
5122 instruct Nop_A0() %{
5123   ins_cost(0);
5124 
5125   format %{ "NOP    ! Alu Pipeline" %}
5126   opcode(Assembler::or_op3, Assembler::arith_op);
5127   ins_encode( form2_nop() );
5128   ins_pipe(ialu_nop_A0);
5129 %}
5130 
5131 // Nop using the A1 functional unit
5132 instruct Nop_A1( ) %{
5133   ins_cost(0);
5134 
5135   format %{ "NOP    ! Alu Pipeline" %}
5136   opcode(Assembler::or_op3, Assembler::arith_op);
5137   ins_encode( form2_nop() );
5138   ins_pipe(ialu_nop_A1);
5139 %}
5140 
5141 // Nop using the memory functional unit
5142 instruct Nop_MS( ) %{
5143   ins_cost(0);
5144 
5145   format %{ "NOP    ! Memory Pipeline" %}
5146   ins_encode( emit_mem_nop );
5147   ins_pipe(mem_nop);
5148 %}
5149 
5150 // Nop using the floating add functional unit
5151 instruct Nop_FA( ) %{
5152   ins_cost(0);
5153 
5154   format %{ "NOP    ! Floating Add Pipeline" %}
5155   ins_encode( emit_fadd_nop );
5156   ins_pipe(fadd_nop);
5157 %}
5158 
5159 // Nop using the branch functional unit
5160 instruct Nop_BR( ) %{
5161   ins_cost(0);
5162 
5163   format %{ "NOP    ! Branch Pipeline" %}
5164   ins_encode( emit_br_nop );
5165   ins_pipe(br_nop);
5166 %}
5167 
5168 //----------Load/Store/Move Instructions---------------------------------------
5169 //----------Load Instructions--------------------------------------------------
5170 // Load Byte (8bit signed)
5171 instruct loadB(iRegI dst, memory mem) %{
5172   match(Set dst (LoadB mem));
5173   ins_cost(MEMORY_REF_COST);
5174 
5175   size(4);
5176   format %{ "LDSB   $mem,$dst\t! byte" %}
5177   ins_encode %{
5178     __ ldsb($mem$$Address, $dst$$Register);
5179   %}
5180   ins_pipe(iload_mask_mem);
5181 %}
5182 
5183 // Load Byte (8bit signed) into a Long Register
5184 instruct loadB2L(iRegL dst, memory mem) %{
5185   match(Set dst (ConvI2L (LoadB mem)));
5186   ins_cost(MEMORY_REF_COST);
5187 
5188   size(4);
5189   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5190   ins_encode %{
5191     __ ldsb($mem$$Address, $dst$$Register);
5192   %}
5193   ins_pipe(iload_mask_mem);
5194 %}
5195 
5196 // Load Unsigned Byte (8bit UNsigned) into an int reg
5197 instruct loadUB(iRegI dst, memory mem) %{
5198   match(Set dst (LoadUB mem));
5199   ins_cost(MEMORY_REF_COST);
5200 
5201   size(4);
5202   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5203   ins_encode %{
5204     __ ldub($mem$$Address, $dst$$Register);
5205   %}
5206   ins_pipe(iload_mem);
5207 %}
5208 
5209 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5210 instruct loadUB2L(iRegL dst, memory mem) %{
5211   match(Set dst (ConvI2L (LoadUB mem)));
5212   ins_cost(MEMORY_REF_COST);
5213 
5214   size(4);
5215   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5216   ins_encode %{
5217     __ ldub($mem$$Address, $dst$$Register);
5218   %}
5219   ins_pipe(iload_mem);
5220 %}
5221 
5222 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5223 instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5224   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5225   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5226 
5227   size(2*4);
5228   format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5229             "AND    $dst,right_n_bits($mask, 8),$dst" %}
5230   ins_encode %{
5231     __ ldub($mem$$Address, $dst$$Register);
5232     __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5233   %}
5234   ins_pipe(iload_mem);
5235 %}
5236 
5237 // Load Short (16bit signed)
5238 instruct loadS(iRegI dst, memory mem) %{
5239   match(Set dst (LoadS mem));
5240   ins_cost(MEMORY_REF_COST);
5241 
5242   size(4);
5243   format %{ "LDSH   $mem,$dst\t! short" %}
5244   ins_encode %{
5245     __ ldsh($mem$$Address, $dst$$Register);
5246   %}
5247   ins_pipe(iload_mask_mem);
5248 %}
5249 
5250 // Load Short (16 bit signed) to Byte (8 bit signed)
5251 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5252   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5253   ins_cost(MEMORY_REF_COST);
5254 
5255   size(4);
5256 
5257   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5258   ins_encode %{
5259     __ ldsb($mem$$Address, $dst$$Register, 1);
5260   %}
5261   ins_pipe(iload_mask_mem);
5262 %}
5263 
5264 // Load Short (16bit signed) into a Long Register
5265 instruct loadS2L(iRegL dst, memory mem) %{
5266   match(Set dst (ConvI2L (LoadS mem)));
5267   ins_cost(MEMORY_REF_COST);
5268 
5269   size(4);
5270   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5271   ins_encode %{
5272     __ ldsh($mem$$Address, $dst$$Register);
5273   %}
5274   ins_pipe(iload_mask_mem);
5275 %}
5276 
5277 // Load Unsigned Short/Char (16bit UNsigned)
5278 instruct loadUS(iRegI dst, memory mem) %{
5279   match(Set dst (LoadUS mem));
5280   ins_cost(MEMORY_REF_COST);
5281 
5282   size(4);
5283   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5284   ins_encode %{
5285     __ lduh($mem$$Address, $dst$$Register);
5286   %}
5287   ins_pipe(iload_mem);
5288 %}
5289 
5290 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5291 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5292   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5293   ins_cost(MEMORY_REF_COST);
5294 
5295   size(4);
5296   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5297   ins_encode %{
5298     __ ldsb($mem$$Address, $dst$$Register, 1);
5299   %}
5300   ins_pipe(iload_mask_mem);
5301 %}
5302 
5303 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5304 instruct loadUS2L(iRegL dst, memory mem) %{
5305   match(Set dst (ConvI2L (LoadUS mem)));
5306   ins_cost(MEMORY_REF_COST);
5307 
5308   size(4);
5309   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5310   ins_encode %{
5311     __ lduh($mem$$Address, $dst$$Register);
5312   %}
5313   ins_pipe(iload_mem);
5314 %}
5315 
5316 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5317 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5318   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5319   ins_cost(MEMORY_REF_COST);
5320 
5321   size(4);
5322   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5323   ins_encode %{
5324     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5325   %}
5326   ins_pipe(iload_mem);
5327 %}
5328 
5329 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5330 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5331   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5332   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5333 
5334   size(2*4);
5335   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5336             "AND    $dst,$mask,$dst" %}
5337   ins_encode %{
5338     Register Rdst = $dst$$Register;
5339     __ lduh($mem$$Address, Rdst);
5340     __ and3(Rdst, $mask$$constant, Rdst);
5341   %}
5342   ins_pipe(iload_mem);
5343 %}
5344 
5345 // Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5346 instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5347   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5348   effect(TEMP dst, TEMP tmp);
5349   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5350 
5351   format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5352             "SET    right_n_bits($mask, 16),$tmp\n\t"
5353             "AND    $dst,$tmp,$dst" %}
5354   ins_encode %{
5355     Register Rdst = $dst$$Register;
5356     Register Rtmp = $tmp$$Register;
5357     __ lduh($mem$$Address, Rdst);
5358     __ set($mask$$constant & right_n_bits(16), Rtmp);
5359     __ and3(Rdst, Rtmp, Rdst);
5360   %}
5361   ins_pipe(iload_mem);
5362 %}
5363 
5364 // Load Integer
5365 instruct loadI(iRegI dst, memory mem) %{
5366   match(Set dst (LoadI mem));
5367   ins_cost(MEMORY_REF_COST);
5368 
5369   size(4);
5370   format %{ "LDUW   $mem,$dst\t! int" %}
5371   ins_encode %{
5372     __ lduw($mem$$Address, $dst$$Register);
5373   %}
5374   ins_pipe(iload_mem);
5375 %}
5376 
5377 // Load Integer to Byte (8 bit signed)
5378 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5379   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5380   ins_cost(MEMORY_REF_COST);
5381 
5382   size(4);
5383 
5384   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5385   ins_encode %{
5386     __ ldsb($mem$$Address, $dst$$Register, 3);
5387   %}
5388   ins_pipe(iload_mask_mem);
5389 %}
5390 
5391 // Load Integer to Unsigned Byte (8 bit UNsigned)
5392 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5393   match(Set dst (AndI (LoadI mem) mask));
5394   ins_cost(MEMORY_REF_COST);
5395 
5396   size(4);
5397 
5398   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5399   ins_encode %{
5400     __ ldub($mem$$Address, $dst$$Register, 3);
5401   %}
5402   ins_pipe(iload_mask_mem);
5403 %}
5404 
5405 // Load Integer to Short (16 bit signed)
5406 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5407   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5408   ins_cost(MEMORY_REF_COST);
5409 
5410   size(4);
5411 
5412   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5413   ins_encode %{
5414     __ ldsh($mem$$Address, $dst$$Register, 2);
5415   %}
5416   ins_pipe(iload_mask_mem);
5417 %}
5418 
5419 // Load Integer to Unsigned Short (16 bit UNsigned)
5420 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5421   match(Set dst (AndI (LoadI mem) mask));
5422   ins_cost(MEMORY_REF_COST);
5423 
5424   size(4);
5425 
5426   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5427   ins_encode %{
5428     __ lduh($mem$$Address, $dst$$Register, 2);
5429   %}
5430   ins_pipe(iload_mask_mem);
5431 %}
5432 
5433 // Load Integer into a Long Register
5434 instruct loadI2L(iRegL dst, memory mem) %{
5435   match(Set dst (ConvI2L (LoadI mem)));
5436   ins_cost(MEMORY_REF_COST);
5437 
5438   size(4);
5439   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5440   ins_encode %{
5441     __ ldsw($mem$$Address, $dst$$Register);
5442   %}
5443   ins_pipe(iload_mask_mem);
5444 %}
5445 
5446 // Load Integer with mask 0xFF into a Long Register
5447 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5448   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5449   ins_cost(MEMORY_REF_COST);
5450 
5451   size(4);
5452   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5453   ins_encode %{
5454     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5455   %}
5456   ins_pipe(iload_mem);
5457 %}
5458 
5459 // Load Integer with mask 0xFFFF into a Long Register
5460 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5461   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5462   ins_cost(MEMORY_REF_COST);
5463 
5464   size(4);
5465   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5466   ins_encode %{
5467     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5468   %}
5469   ins_pipe(iload_mem);
5470 %}
5471 
5472 // Load Integer with a 12-bit mask into a Long Register
5473 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5474   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5475   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5476 
5477   size(2*4);
5478   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5479             "AND    $dst,$mask,$dst" %}
5480   ins_encode %{
5481     Register Rdst = $dst$$Register;
5482     __ lduw($mem$$Address, Rdst);
5483     __ and3(Rdst, $mask$$constant, Rdst);
5484   %}
5485   ins_pipe(iload_mem);
5486 %}
5487 
5488 // Load Integer with a 31-bit mask into a Long Register
5489 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5490   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5491   effect(TEMP dst, TEMP tmp);
5492   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5493 
5494   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5495             "SET    $mask,$tmp\n\t"
5496             "AND    $dst,$tmp,$dst" %}
5497   ins_encode %{
5498     Register Rdst = $dst$$Register;
5499     Register Rtmp = $tmp$$Register;
5500     __ lduw($mem$$Address, Rdst);
5501     __ set($mask$$constant, Rtmp);
5502     __ and3(Rdst, Rtmp, Rdst);
5503   %}
5504   ins_pipe(iload_mem);
5505 %}
5506 
5507 // Load Unsigned Integer into a Long Register
5508 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5509   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5510   ins_cost(MEMORY_REF_COST);
5511 
5512   size(4);
5513   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5514   ins_encode %{
5515     __ lduw($mem$$Address, $dst$$Register);
5516   %}
5517   ins_pipe(iload_mem);
5518 %}
5519 
5520 // Load Long - aligned
5521 instruct loadL(iRegL dst, memory mem ) %{
5522   match(Set dst (LoadL mem));
5523   ins_cost(MEMORY_REF_COST);
5524 
5525   size(4);
5526   format %{ "LDX    $mem,$dst\t! long" %}
5527   ins_encode %{
5528     __ ldx($mem$$Address, $dst$$Register);
5529   %}
5530   ins_pipe(iload_mem);
5531 %}
5532 
5533 // Load Long - UNaligned
5534 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5535   match(Set dst (LoadL_unaligned mem));
5536   effect(KILL tmp);
5537   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5538   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5539           "\tLDUW   $mem  ,$dst\n"
5540           "\tSLLX   #32, $dst, $dst\n"
5541           "\tOR     $dst, R_O7, $dst" %}
5542   opcode(Assembler::lduw_op3);
5543   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5544   ins_pipe(iload_mem);
5545 %}
5546 
5547 // Load Range
5548 instruct loadRange(iRegI dst, memory mem) %{
5549   match(Set dst (LoadRange mem));
5550   ins_cost(MEMORY_REF_COST);
5551 
5552   format %{ "LDUW   $mem,$dst\t! range" %}
5553   opcode(Assembler::lduw_op3);
5554   ins_encode(simple_form3_mem_reg( mem, dst ) );
5555   ins_pipe(iload_mem);
5556 %}
5557 
5558 // Load Integer into %f register (for fitos/fitod)
5559 instruct loadI_freg(regF dst, memory mem) %{
5560   match(Set dst (LoadI mem));
5561   ins_cost(MEMORY_REF_COST);
5562 
5563   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5564   opcode(Assembler::ldf_op3);
5565   ins_encode(simple_form3_mem_reg( mem, dst ) );
5566   ins_pipe(floadF_mem);
5567 %}
5568 
5569 // Load Pointer
5570 instruct loadP(iRegP dst, memory mem) %{
5571   match(Set dst (LoadP mem));
5572   ins_cost(MEMORY_REF_COST);
5573   size(4);
5574 
5575   format %{ "LDX    $mem,$dst\t! ptr" %}
5576   ins_encode %{
5577     __ ldx($mem$$Address, $dst$$Register);
5578   %}
5579   ins_pipe(iload_mem);
5580 %}
5581 
5582 // Load Compressed Pointer
5583 instruct loadN(iRegN dst, memory mem) %{
5584   match(Set dst (LoadN mem));
5585   ins_cost(MEMORY_REF_COST);
5586   size(4);
5587 
5588   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5589   ins_encode %{
5590     __ lduw($mem$$Address, $dst$$Register);
5591   %}
5592   ins_pipe(iload_mem);
5593 %}
5594 
5595 // Load Klass Pointer
5596 instruct loadKlass(iRegP dst, memory mem) %{
5597   match(Set dst (LoadKlass mem));
5598   ins_cost(MEMORY_REF_COST);
5599   size(4);
5600 
5601   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5602   ins_encode %{
5603     __ ldx($mem$$Address, $dst$$Register);
5604   %}
5605   ins_pipe(iload_mem);
5606 %}
5607 
5608 // Load narrow Klass Pointer
5609 instruct loadNKlass(iRegN dst, memory mem) %{
5610   match(Set dst (LoadNKlass mem));
5611   ins_cost(MEMORY_REF_COST);
5612   size(4);
5613 
5614   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5615   ins_encode %{
5616     __ lduw($mem$$Address, $dst$$Register);
5617   %}
5618   ins_pipe(iload_mem);
5619 %}
5620 
5621 // Load Double
5622 instruct loadD(regD dst, memory mem) %{
5623   match(Set dst (LoadD mem));
5624   ins_cost(MEMORY_REF_COST);
5625 
5626   format %{ "LDDF   $mem,$dst" %}
5627   opcode(Assembler::lddf_op3);
5628   ins_encode(simple_form3_mem_reg( mem, dst ) );
5629   ins_pipe(floadD_mem);
5630 %}
5631 
5632 // Load Double - UNaligned
5633 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5634   match(Set dst (LoadD_unaligned mem));
5635   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5636   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5637           "\tLDF    $mem+4,$dst.lo\t!" %}
5638   opcode(Assembler::ldf_op3);
5639   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5640   ins_pipe(iload_mem);
5641 %}
5642 
5643 // Load Float
5644 instruct loadF(regF dst, memory mem) %{
5645   match(Set dst (LoadF mem));
5646   ins_cost(MEMORY_REF_COST);
5647 
5648   format %{ "LDF    $mem,$dst" %}
5649   opcode(Assembler::ldf_op3);
5650   ins_encode(simple_form3_mem_reg( mem, dst ) );
5651   ins_pipe(floadF_mem);
5652 %}
5653 
5654 // Load Constant
5655 instruct loadConI( iRegI dst, immI src ) %{
5656   match(Set dst src);
5657   ins_cost(DEFAULT_COST * 3/2);
5658   format %{ "SET    $src,$dst" %}
5659   ins_encode( Set32(src, dst) );
5660   ins_pipe(ialu_hi_lo_reg);
5661 %}
5662 
5663 instruct loadConI13( iRegI dst, immI13 src ) %{
5664   match(Set dst src);
5665 
5666   size(4);
5667   format %{ "MOV    $src,$dst" %}
5668   ins_encode( Set13( src, dst ) );
5669   ins_pipe(ialu_imm);
5670 %}
5671 
5672 instruct loadConP_set(iRegP dst, immP_set con) %{
5673   match(Set dst con);
5674   ins_cost(DEFAULT_COST * 3/2);
5675   format %{ "SET    $con,$dst\t! ptr" %}
5676   ins_encode %{
5677     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
5678       intptr_t val = $con$$constant;
5679     if (constant_reloc == relocInfo::oop_type) {
5680       __ set_oop_constant((jobject) val, $dst$$Register);
5681     } else if (constant_reloc == relocInfo::metadata_type) {
5682       __ set_metadata_constant((Metadata*)val, $dst$$Register);
5683     } else {          // non-oop pointers, e.g. card mark base, heap top
5684       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
5685       __ set(val, $dst$$Register);
5686     }
5687   %}
5688   ins_pipe(loadConP);
5689 %}
5690 
5691 instruct loadConP_load(iRegP dst, immP_load con) %{
5692   match(Set dst con);
5693   ins_cost(MEMORY_REF_COST);
5694   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
5695   ins_encode %{
5696     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5697     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
5698   %}
5699   ins_pipe(loadConP);
5700 %}
5701 
5702 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
5703   match(Set dst con);
5704   ins_cost(DEFAULT_COST * 3/2);
5705   format %{ "SET    $con,$dst\t! non-oop ptr" %}
5706   ins_encode %{
5707     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
5708       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
5709     } else {
5710       __ set($con$$constant, $dst$$Register);
5711     }
5712   %}
5713   ins_pipe(loadConP);
5714 %}
5715 
5716 instruct loadConP0(iRegP dst, immP0 src) %{
5717   match(Set dst src);
5718 
5719   size(4);
5720   format %{ "CLR    $dst\t!ptr" %}
5721   ins_encode %{
5722     __ clr($dst$$Register);
5723   %}
5724   ins_pipe(ialu_imm);
5725 %}
5726 
5727 instruct loadConP_poll(iRegP dst, immP_poll src) %{
5728   match(Set dst src);
5729   ins_cost(DEFAULT_COST);
5730   format %{ "SET    $src,$dst\t!ptr" %}
5731   ins_encode %{
5732     AddressLiteral polling_page(os::get_polling_page());
5733     __ sethi(polling_page, reg_to_register_object($dst$$reg));
5734   %}
5735   ins_pipe(loadConP_poll);
5736 %}
5737 
5738 instruct loadConN0(iRegN dst, immN0 src) %{
5739   match(Set dst src);
5740 
5741   size(4);
5742   format %{ "CLR    $dst\t! compressed NULL ptr" %}
5743   ins_encode %{
5744     __ clr($dst$$Register);
5745   %}
5746   ins_pipe(ialu_imm);
5747 %}
5748 
5749 instruct loadConN(iRegN dst, immN src) %{
5750   match(Set dst src);
5751   ins_cost(DEFAULT_COST * 3/2);
5752   format %{ "SET    $src,$dst\t! compressed ptr" %}
5753   ins_encode %{
5754     Register dst = $dst$$Register;
5755     __ set_narrow_oop((jobject)$src$$constant, dst);
5756   %}
5757   ins_pipe(ialu_hi_lo_reg);
5758 %}
5759 
5760 instruct loadConNKlass(iRegN dst, immNKlass src) %{
5761   match(Set dst src);
5762   ins_cost(DEFAULT_COST * 3/2);
5763   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
5764   ins_encode %{
5765     Register dst = $dst$$Register;
5766     __ set_narrow_klass((Klass*)$src$$constant, dst);
5767   %}
5768   ins_pipe(ialu_hi_lo_reg);
5769 %}
5770 
5771 // Materialize long value (predicated by immL_cheap).
5772 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
5773   match(Set dst con);
5774   effect(KILL tmp);
5775   ins_cost(DEFAULT_COST * 3);
5776   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
5777   ins_encode %{
5778     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
5779   %}
5780   ins_pipe(loadConL);
5781 %}
5782 
5783 // Load long value from constant table (predicated by immL_expensive).
5784 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
5785   match(Set dst con);
5786   ins_cost(MEMORY_REF_COST);
5787   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
5788   ins_encode %{
5789       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
5790     __ ldx($constanttablebase, con_offset, $dst$$Register);
5791   %}
5792   ins_pipe(loadConL);
5793 %}
5794 
5795 instruct loadConL0( iRegL dst, immL0 src ) %{
5796   match(Set dst src);
5797   ins_cost(DEFAULT_COST);
5798   size(4);
5799   format %{ "CLR    $dst\t! long" %}
5800   ins_encode( Set13( src, dst ) );
5801   ins_pipe(ialu_imm);
5802 %}
5803 
5804 instruct loadConL13( iRegL dst, immL13 src ) %{
5805   match(Set dst src);
5806   ins_cost(DEFAULT_COST * 2);
5807 
5808   size(4);
5809   format %{ "MOV    $src,$dst\t! long" %}
5810   ins_encode( Set13( src, dst ) );
5811   ins_pipe(ialu_imm);
5812 %}
5813 
5814 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
5815   match(Set dst con);
5816   effect(KILL tmp);
5817   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
5818   ins_encode %{
5819       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
5820     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
5821   %}
5822   ins_pipe(loadConFD);
5823 %}
5824 
5825 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
5826   match(Set dst con);
5827   effect(KILL tmp);
5828   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
5829   ins_encode %{
5830     // XXX This is a quick fix for 6833573.
5831     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
5832     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
5833     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
5834   %}
5835   ins_pipe(loadConFD);
5836 %}
5837 
5838 // Prefetch instructions for allocation.
5839 // Must be safe to execute with invalid address (cannot fault).
5840 
5841 instruct prefetchAlloc( memory mem ) %{
5842   predicate(AllocatePrefetchInstr == 0);
5843   match( PrefetchAllocation mem );
5844   ins_cost(MEMORY_REF_COST);
5845 
5846   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
5847   opcode(Assembler::prefetch_op3);
5848   ins_encode( form3_mem_prefetch_write( mem ) );
5849   ins_pipe(iload_mem);
5850 %}
5851 
5852 // Use BIS instruction to prefetch for allocation.
5853 // Could fault, need space at the end of TLAB.
5854 instruct prefetchAlloc_bis( iRegP dst ) %{
5855   predicate(AllocatePrefetchInstr == 1);
5856   match( PrefetchAllocation dst );
5857   ins_cost(MEMORY_REF_COST);
5858   size(4);
5859 
5860   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
5861   ins_encode %{
5862     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
5863   %}
5864   ins_pipe(istore_mem_reg);
5865 %}
5866 
5867 // Next code is used for finding next cache line address to prefetch.
5868 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
5869   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
5870   ins_cost(DEFAULT_COST);
5871   size(4);
5872 
5873   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
5874   ins_encode %{
5875     __ and3($src$$Register, $mask$$constant, $dst$$Register);
5876   %}
5877   ins_pipe(ialu_reg_imm);
5878 %}
5879 
5880 //----------Store Instructions-------------------------------------------------
5881 // Store Byte
5882 instruct storeB(memory mem, iRegI src) %{
5883   match(Set mem (StoreB mem src));
5884   ins_cost(MEMORY_REF_COST);
5885 
5886   format %{ "STB    $src,$mem\t! byte" %}
5887   opcode(Assembler::stb_op3);
5888   ins_encode(simple_form3_mem_reg( mem, src ) );
5889   ins_pipe(istore_mem_reg);
5890 %}
5891 
5892 instruct storeB0(memory mem, immI0 src) %{
5893   match(Set mem (StoreB mem src));
5894   ins_cost(MEMORY_REF_COST);
5895 
5896   format %{ "STB    $src,$mem\t! byte" %}
5897   opcode(Assembler::stb_op3);
5898   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5899   ins_pipe(istore_mem_zero);
5900 %}
5901 
5902 instruct storeCM0(memory mem, immI0 src) %{
5903   match(Set mem (StoreCM mem src));
5904   ins_cost(MEMORY_REF_COST);
5905 
5906   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
5907   opcode(Assembler::stb_op3);
5908   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5909   ins_pipe(istore_mem_zero);
5910 %}
5911 
5912 // Store Char/Short
5913 instruct storeC(memory mem, iRegI src) %{
5914   match(Set mem (StoreC mem src));
5915   ins_cost(MEMORY_REF_COST);
5916 
5917   format %{ "STH    $src,$mem\t! short" %}
5918   opcode(Assembler::sth_op3);
5919   ins_encode(simple_form3_mem_reg( mem, src ) );
5920   ins_pipe(istore_mem_reg);
5921 %}
5922 
5923 instruct storeC0(memory mem, immI0 src) %{
5924   match(Set mem (StoreC mem src));
5925   ins_cost(MEMORY_REF_COST);
5926 
5927   format %{ "STH    $src,$mem\t! short" %}
5928   opcode(Assembler::sth_op3);
5929   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5930   ins_pipe(istore_mem_zero);
5931 %}
5932 
5933 // Store Integer
5934 instruct storeI(memory mem, iRegI src) %{
5935   match(Set mem (StoreI mem src));
5936   ins_cost(MEMORY_REF_COST);
5937 
5938   format %{ "STW    $src,$mem" %}
5939   opcode(Assembler::stw_op3);
5940   ins_encode(simple_form3_mem_reg( mem, src ) );
5941   ins_pipe(istore_mem_reg);
5942 %}
5943 
5944 // Store Long
5945 instruct storeL(memory mem, iRegL src) %{
5946   match(Set mem (StoreL mem src));
5947   ins_cost(MEMORY_REF_COST);
5948   format %{ "STX    $src,$mem\t! long" %}
5949   opcode(Assembler::stx_op3);
5950   ins_encode(simple_form3_mem_reg( mem, src ) );
5951   ins_pipe(istore_mem_reg);
5952 %}
5953 
5954 instruct storeI0(memory mem, immI0 src) %{
5955   match(Set mem (StoreI mem src));
5956   ins_cost(MEMORY_REF_COST);
5957 
5958   format %{ "STW    $src,$mem" %}
5959   opcode(Assembler::stw_op3);
5960   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5961   ins_pipe(istore_mem_zero);
5962 %}
5963 
5964 instruct storeL0(memory mem, immL0 src) %{
5965   match(Set mem (StoreL mem src));
5966   ins_cost(MEMORY_REF_COST);
5967 
5968   format %{ "STX    $src,$mem" %}
5969   opcode(Assembler::stx_op3);
5970   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
5971   ins_pipe(istore_mem_zero);
5972 %}
5973 
5974 // Store Integer from float register (used after fstoi)
5975 instruct storeI_Freg(memory mem, regF src) %{
5976   match(Set mem (StoreI mem src));
5977   ins_cost(MEMORY_REF_COST);
5978 
5979   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
5980   opcode(Assembler::stf_op3);
5981   ins_encode(simple_form3_mem_reg( mem, src ) );
5982   ins_pipe(fstoreF_mem_reg);
5983 %}
5984 
5985 // Store Pointer
5986 instruct storeP(memory dst, sp_ptr_RegP src) %{
5987   match(Set dst (StoreP dst src));
5988   ins_cost(MEMORY_REF_COST);
5989 
5990   format %{ "STX    $src,$dst\t! ptr" %}
5991   opcode(Assembler::stx_op3, 0, REGP_OP);
5992   ins_encode( form3_mem_reg( dst, src ) );
5993   ins_pipe(istore_mem_spORreg);
5994 %}
5995 
5996 instruct storeP0(memory dst, immP0 src) %{
5997   match(Set dst (StoreP dst src));
5998   ins_cost(MEMORY_REF_COST);
5999 
6000   format %{ "STX    $src,$dst\t! ptr" %}
6001   opcode(Assembler::stx_op3, 0, REGP_OP);
6002   ins_encode( form3_mem_reg( dst, R_G0 ) );
6003   ins_pipe(istore_mem_zero);
6004 %}
6005 
6006 // Store Compressed Pointer
6007 instruct storeN(memory dst, iRegN src) %{
6008    match(Set dst (StoreN dst src));
6009    ins_cost(MEMORY_REF_COST);
6010    size(4);
6011 
6012    format %{ "STW    $src,$dst\t! compressed ptr" %}
6013    ins_encode %{
6014      Register base = as_Register($dst$$base);
6015      Register index = as_Register($dst$$index);
6016      Register src = $src$$Register;
6017      if (index != G0) {
6018        __ stw(src, base, index);
6019      } else {
6020        __ stw(src, base, $dst$$disp);
6021      }
6022    %}
6023    ins_pipe(istore_mem_spORreg);
6024 %}
6025 
6026 instruct storeNKlass(memory dst, iRegN src) %{
6027    match(Set dst (StoreNKlass dst src));
6028    ins_cost(MEMORY_REF_COST);
6029    size(4);
6030 
6031    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6032    ins_encode %{
6033      Register base = as_Register($dst$$base);
6034      Register index = as_Register($dst$$index);
6035      Register src = $src$$Register;
6036      if (index != G0) {
6037        __ stw(src, base, index);
6038      } else {
6039        __ stw(src, base, $dst$$disp);
6040      }
6041    %}
6042    ins_pipe(istore_mem_spORreg);
6043 %}
6044 
6045 instruct storeN0(memory dst, immN0 src) %{
6046    match(Set dst (StoreN dst src));
6047    ins_cost(MEMORY_REF_COST);
6048    size(4);
6049 
6050    format %{ "STW    $src,$dst\t! compressed ptr" %}
6051    ins_encode %{
6052      Register base = as_Register($dst$$base);
6053      Register index = as_Register($dst$$index);
6054      if (index != G0) {
6055        __ stw(0, base, index);
6056      } else {
6057        __ stw(0, base, $dst$$disp);
6058      }
6059    %}
6060    ins_pipe(istore_mem_zero);
6061 %}
6062 
6063 // Store Double
6064 instruct storeD( memory mem, regD src) %{
6065   match(Set mem (StoreD mem src));
6066   ins_cost(MEMORY_REF_COST);
6067 
6068   format %{ "STDF   $src,$mem" %}
6069   opcode(Assembler::stdf_op3);
6070   ins_encode(simple_form3_mem_reg( mem, src ) );
6071   ins_pipe(fstoreD_mem_reg);
6072 %}
6073 
6074 instruct storeD0( memory mem, immD0 src) %{
6075   match(Set mem (StoreD mem src));
6076   ins_cost(MEMORY_REF_COST);
6077 
6078   format %{ "STX    $src,$mem" %}
6079   opcode(Assembler::stx_op3);
6080   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6081   ins_pipe(fstoreD_mem_zero);
6082 %}
6083 
6084 // Store Float
6085 instruct storeF( memory mem, regF src) %{
6086   match(Set mem (StoreF mem src));
6087   ins_cost(MEMORY_REF_COST);
6088 
6089   format %{ "STF    $src,$mem" %}
6090   opcode(Assembler::stf_op3);
6091   ins_encode(simple_form3_mem_reg( mem, src ) );
6092   ins_pipe(fstoreF_mem_reg);
6093 %}
6094 
6095 instruct storeF0( memory mem, immF0 src) %{
6096   match(Set mem (StoreF mem src));
6097   ins_cost(MEMORY_REF_COST);
6098 
6099   format %{ "STW    $src,$mem\t! storeF0" %}
6100   opcode(Assembler::stw_op3);
6101   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6102   ins_pipe(fstoreF_mem_zero);
6103 %}
6104 
6105 // Convert oop pointer into compressed form
6106 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6107   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6108   match(Set dst (EncodeP src));
6109   format %{ "encode_heap_oop $src, $dst" %}
6110   ins_encode %{
6111     __ encode_heap_oop($src$$Register, $dst$$Register);
6112   %}
6113   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6114   ins_pipe(ialu_reg);
6115 %}
6116 
6117 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6118   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6119   match(Set dst (EncodeP src));
6120   format %{ "encode_heap_oop_not_null $src, $dst" %}
6121   ins_encode %{
6122     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6123   %}
6124   ins_pipe(ialu_reg);
6125 %}
6126 
6127 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6128   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6129             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6130   match(Set dst (DecodeN src));
6131   format %{ "decode_heap_oop $src, $dst" %}
6132   ins_encode %{
6133     __ decode_heap_oop($src$$Register, $dst$$Register);
6134   %}
6135   ins_pipe(ialu_reg);
6136 %}
6137 
6138 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6139   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6140             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6141   match(Set dst (DecodeN src));
6142   format %{ "decode_heap_oop_not_null $src, $dst" %}
6143   ins_encode %{
6144     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6145   %}
6146   ins_pipe(ialu_reg);
6147 %}
6148 
6149 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6150   match(Set dst (EncodePKlass src));
6151   format %{ "encode_klass_not_null $src, $dst" %}
6152   ins_encode %{
6153     __ encode_klass_not_null($src$$Register, $dst$$Register);
6154   %}
6155   ins_pipe(ialu_reg);
6156 %}
6157 
6158 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6159   match(Set dst (DecodeNKlass src));
6160   format %{ "decode_klass_not_null $src, $dst" %}
6161   ins_encode %{
6162     __ decode_klass_not_null($src$$Register, $dst$$Register);
6163   %}
6164   ins_pipe(ialu_reg);
6165 %}
6166 
6167 //----------MemBar Instructions-----------------------------------------------
6168 // Memory barrier flavors
6169 
6170 instruct membar_acquire() %{
6171   match(MemBarAcquire);
6172   match(LoadFence);
6173   ins_cost(4*MEMORY_REF_COST);
6174 
6175   size(0);
6176   format %{ "MEMBAR-acquire" %}
6177   ins_encode( enc_membar_acquire );
6178   ins_pipe(long_memory_op);
6179 %}
6180 
6181 instruct membar_acquire_lock() %{
6182   match(MemBarAcquireLock);
6183   ins_cost(0);
6184 
6185   size(0);
6186   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6187   ins_encode( );
6188   ins_pipe(empty);
6189 %}
6190 
6191 instruct membar_release() %{
6192   match(MemBarRelease);
6193   match(StoreFence);
6194   ins_cost(4*MEMORY_REF_COST);
6195 
6196   size(0);
6197   format %{ "MEMBAR-release" %}
6198   ins_encode( enc_membar_release );
6199   ins_pipe(long_memory_op);
6200 %}
6201 
6202 instruct membar_release_lock() %{
6203   match(MemBarReleaseLock);
6204   ins_cost(0);
6205 
6206   size(0);
6207   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6208   ins_encode( );
6209   ins_pipe(empty);
6210 %}
6211 
6212 instruct membar_volatile() %{
6213   match(MemBarVolatile);
6214   ins_cost(4*MEMORY_REF_COST);
6215 
6216   size(4);
6217   format %{ "MEMBAR-volatile" %}
6218   ins_encode( enc_membar_volatile );
6219   ins_pipe(long_memory_op);
6220 %}
6221 
6222 instruct unnecessary_membar_volatile() %{
6223   match(MemBarVolatile);
6224   predicate(Matcher::post_store_load_barrier(n));
6225   ins_cost(0);
6226 
6227   size(0);
6228   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6229   ins_encode( );
6230   ins_pipe(empty);
6231 %}
6232 
6233 instruct membar_storestore() %{
6234   match(MemBarStoreStore);
6235   ins_cost(0);
6236 
6237   size(0);
6238   format %{ "!MEMBAR-storestore (empty encoding)" %}
6239   ins_encode( );
6240   ins_pipe(empty);
6241 %}
6242 
6243 //----------Register Move Instructions-----------------------------------------
6244 instruct roundDouble_nop(regD dst) %{
6245   match(Set dst (RoundDouble dst));
6246   ins_cost(0);
6247   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6248   ins_encode( );
6249   ins_pipe(empty);
6250 %}
6251 
6252 
6253 instruct roundFloat_nop(regF dst) %{
6254   match(Set dst (RoundFloat dst));
6255   ins_cost(0);
6256   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6257   ins_encode( );
6258   ins_pipe(empty);
6259 %}
6260 
6261 
6262 // Cast Index to Pointer for unsafe natives
6263 instruct castX2P(iRegX src, iRegP dst) %{
6264   match(Set dst (CastX2P src));
6265 
6266   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6267   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6268   ins_pipe(ialu_reg);
6269 %}
6270 
6271 // Cast Pointer to Index for unsafe natives
6272 instruct castP2X(iRegP src, iRegX dst) %{
6273   match(Set dst (CastP2X src));
6274 
6275   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6276   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6277   ins_pipe(ialu_reg);
6278 %}
6279 
6280 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6281   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6282   match(Set stkSlot src);   // chain rule
6283   ins_cost(MEMORY_REF_COST);
6284   format %{ "STDF   $src,$stkSlot\t!stk" %}
6285   opcode(Assembler::stdf_op3);
6286   ins_encode(simple_form3_mem_reg(stkSlot, src));
6287   ins_pipe(fstoreD_stk_reg);
6288 %}
6289 
6290 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6291   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6292   match(Set dst stkSlot);   // chain rule
6293   ins_cost(MEMORY_REF_COST);
6294   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6295   opcode(Assembler::lddf_op3);
6296   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6297   ins_pipe(floadD_stk);
6298 %}
6299 
6300 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6301   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6302   match(Set stkSlot src);   // chain rule
6303   ins_cost(MEMORY_REF_COST);
6304   format %{ "STF   $src,$stkSlot\t!stk" %}
6305   opcode(Assembler::stf_op3);
6306   ins_encode(simple_form3_mem_reg(stkSlot, src));
6307   ins_pipe(fstoreF_stk_reg);
6308 %}
6309 
6310 //----------Conditional Move---------------------------------------------------
6311 // Conditional move
6312 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6313   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6314   ins_cost(150);
6315   format %{ "MOV$cmp $pcc,$src,$dst" %}
6316   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6317   ins_pipe(ialu_reg);
6318 %}
6319 
6320 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6321   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6322   ins_cost(140);
6323   format %{ "MOV$cmp $pcc,$src,$dst" %}
6324   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6325   ins_pipe(ialu_imm);
6326 %}
6327 
6328 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6329   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6330   ins_cost(150);
6331   size(4);
6332   format %{ "MOV$cmp  $icc,$src,$dst" %}
6333   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6334   ins_pipe(ialu_reg);
6335 %}
6336 
6337 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6338   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6339   ins_cost(140);
6340   size(4);
6341   format %{ "MOV$cmp  $icc,$src,$dst" %}
6342   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6343   ins_pipe(ialu_imm);
6344 %}
6345 
6346 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6347   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6348   ins_cost(150);
6349   size(4);
6350   format %{ "MOV$cmp  $icc,$src,$dst" %}
6351   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6352   ins_pipe(ialu_reg);
6353 %}
6354 
6355 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6356   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6357   ins_cost(140);
6358   size(4);
6359   format %{ "MOV$cmp  $icc,$src,$dst" %}
6360   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6361   ins_pipe(ialu_imm);
6362 %}
6363 
6364 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6365   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6366   ins_cost(150);
6367   size(4);
6368   format %{ "MOV$cmp $fcc,$src,$dst" %}
6369   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6370   ins_pipe(ialu_reg);
6371 %}
6372 
6373 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6374   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6375   ins_cost(140);
6376   size(4);
6377   format %{ "MOV$cmp $fcc,$src,$dst" %}
6378   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6379   ins_pipe(ialu_imm);
6380 %}
6381 
6382 // Conditional move for RegN. Only cmov(reg,reg).
6383 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6384   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6385   ins_cost(150);
6386   format %{ "MOV$cmp $pcc,$src,$dst" %}
6387   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6388   ins_pipe(ialu_reg);
6389 %}
6390 
6391 // This instruction also works with CmpN so we don't need cmovNN_reg.
6392 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6393   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6394   ins_cost(150);
6395   size(4);
6396   format %{ "MOV$cmp  $icc,$src,$dst" %}
6397   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6398   ins_pipe(ialu_reg);
6399 %}
6400 
6401 // This instruction also works with CmpN so we don't need cmovNN_reg.
6402 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6403   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6404   ins_cost(150);
6405   size(4);
6406   format %{ "MOV$cmp  $icc,$src,$dst" %}
6407   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6408   ins_pipe(ialu_reg);
6409 %}
6410 
6411 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6412   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6413   ins_cost(150);
6414   size(4);
6415   format %{ "MOV$cmp $fcc,$src,$dst" %}
6416   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6417   ins_pipe(ialu_reg);
6418 %}
6419 
6420 // Conditional move
6421 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6422   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6423   ins_cost(150);
6424   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6425   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6426   ins_pipe(ialu_reg);
6427 %}
6428 
6429 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6430   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6431   ins_cost(140);
6432   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6433   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6434   ins_pipe(ialu_imm);
6435 %}
6436 
6437 // This instruction also works with CmpN so we don't need cmovPN_reg.
6438 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6439   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6440   ins_cost(150);
6441 
6442   size(4);
6443   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6444   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6445   ins_pipe(ialu_reg);
6446 %}
6447 
6448 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6449   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6450   ins_cost(150);
6451 
6452   size(4);
6453   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6454   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6455   ins_pipe(ialu_reg);
6456 %}
6457 
6458 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6459   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6460   ins_cost(140);
6461 
6462   size(4);
6463   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6464   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6465   ins_pipe(ialu_imm);
6466 %}
6467 
6468 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6469   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6470   ins_cost(140);
6471 
6472   size(4);
6473   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6474   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6475   ins_pipe(ialu_imm);
6476 %}
6477 
6478 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6479   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6480   ins_cost(150);
6481   size(4);
6482   format %{ "MOV$cmp $fcc,$src,$dst" %}
6483   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6484   ins_pipe(ialu_imm);
6485 %}
6486 
6487 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6488   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6489   ins_cost(140);
6490   size(4);
6491   format %{ "MOV$cmp $fcc,$src,$dst" %}
6492   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6493   ins_pipe(ialu_imm);
6494 %}
6495 
6496 // Conditional move
6497 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6498   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6499   ins_cost(150);
6500   opcode(0x101);
6501   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6502   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6503   ins_pipe(int_conditional_float_move);
6504 %}
6505 
6506 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6507   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6508   ins_cost(150);
6509 
6510   size(4);
6511   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6512   opcode(0x101);
6513   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6514   ins_pipe(int_conditional_float_move);
6515 %}
6516 
6517 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6518   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6519   ins_cost(150);
6520 
6521   size(4);
6522   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6523   opcode(0x101);
6524   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6525   ins_pipe(int_conditional_float_move);
6526 %}
6527 
6528 // Conditional move,
6529 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6530   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6531   ins_cost(150);
6532   size(4);
6533   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6534   opcode(0x1);
6535   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6536   ins_pipe(int_conditional_double_move);
6537 %}
6538 
6539 // Conditional move
6540 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6541   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6542   ins_cost(150);
6543   size(4);
6544   opcode(0x102);
6545   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6546   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6547   ins_pipe(int_conditional_double_move);
6548 %}
6549 
6550 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6551   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6552   ins_cost(150);
6553 
6554   size(4);
6555   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6556   opcode(0x102);
6557   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6558   ins_pipe(int_conditional_double_move);
6559 %}
6560 
6561 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6562   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6563   ins_cost(150);
6564 
6565   size(4);
6566   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6567   opcode(0x102);
6568   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6569   ins_pipe(int_conditional_double_move);
6570 %}
6571 
6572 // Conditional move,
6573 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
6574   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
6575   ins_cost(150);
6576   size(4);
6577   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
6578   opcode(0x2);
6579   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6580   ins_pipe(int_conditional_double_move);
6581 %}
6582 
6583 // Conditional move
6584 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
6585   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6586   ins_cost(150);
6587   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6588   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6589   ins_pipe(ialu_reg);
6590 %}
6591 
6592 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
6593   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
6594   ins_cost(140);
6595   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
6596   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6597   ins_pipe(ialu_imm);
6598 %}
6599 
6600 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
6601   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6602   ins_cost(150);
6603 
6604   size(4);
6605   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6606   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6607   ins_pipe(ialu_reg);
6608 %}
6609 
6610 
6611 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
6612   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
6613   ins_cost(150);
6614 
6615   size(4);
6616   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
6617   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6618   ins_pipe(ialu_reg);
6619 %}
6620 
6621 
6622 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
6623   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
6624   ins_cost(150);
6625 
6626   size(4);
6627   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
6628   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6629   ins_pipe(ialu_reg);
6630 %}
6631 
6632 
6633 
6634 //----------OS and Locking Instructions----------------------------------------
6635 
6636 // This name is KNOWN by the ADLC and cannot be changed.
6637 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
6638 // for this guy.
6639 instruct tlsLoadP(g2RegP dst) %{
6640   match(Set dst (ThreadLocal));
6641 
6642   size(0);
6643   ins_cost(0);
6644   format %{ "# TLS is in G2" %}
6645   ins_encode( /*empty encoding*/ );
6646   ins_pipe(ialu_none);
6647 %}
6648 
6649 instruct checkCastPP( iRegP dst ) %{
6650   match(Set dst (CheckCastPP dst));
6651 
6652   size(0);
6653   format %{ "# checkcastPP of $dst" %}
6654   ins_encode( /*empty encoding*/ );
6655   ins_pipe(empty);
6656 %}
6657 
6658 
6659 instruct castPP( iRegP dst ) %{
6660   match(Set dst (CastPP dst));
6661   format %{ "# castPP of $dst" %}
6662   ins_encode( /*empty encoding*/ );
6663   ins_pipe(empty);
6664 %}
6665 
6666 instruct castII( iRegI dst ) %{
6667   match(Set dst (CastII dst));
6668   format %{ "# castII of $dst" %}
6669   ins_encode( /*empty encoding*/ );
6670   ins_cost(0);
6671   ins_pipe(empty);
6672 %}
6673 
6674 //----------Arithmetic Instructions--------------------------------------------
6675 // Addition Instructions
6676 // Register Addition
6677 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6678   match(Set dst (AddI src1 src2));
6679 
6680   size(4);
6681   format %{ "ADD    $src1,$src2,$dst" %}
6682   ins_encode %{
6683     __ add($src1$$Register, $src2$$Register, $dst$$Register);
6684   %}
6685   ins_pipe(ialu_reg_reg);
6686 %}
6687 
6688 // Immediate Addition
6689 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6690   match(Set dst (AddI src1 src2));
6691 
6692   size(4);
6693   format %{ "ADD    $src1,$src2,$dst" %}
6694   opcode(Assembler::add_op3, Assembler::arith_op);
6695   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6696   ins_pipe(ialu_reg_imm);
6697 %}
6698 
6699 // Pointer Register Addition
6700 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
6701   match(Set dst (AddP src1 src2));
6702 
6703   size(4);
6704   format %{ "ADD    $src1,$src2,$dst" %}
6705   opcode(Assembler::add_op3, Assembler::arith_op);
6706   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6707   ins_pipe(ialu_reg_reg);
6708 %}
6709 
6710 // Pointer Immediate Addition
6711 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
6712   match(Set dst (AddP src1 src2));
6713 
6714   size(4);
6715   format %{ "ADD    $src1,$src2,$dst" %}
6716   opcode(Assembler::add_op3, Assembler::arith_op);
6717   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6718   ins_pipe(ialu_reg_imm);
6719 %}
6720 
6721 // Long Addition
6722 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6723   match(Set dst (AddL src1 src2));
6724 
6725   size(4);
6726   format %{ "ADD    $src1,$src2,$dst\t! long" %}
6727   opcode(Assembler::add_op3, Assembler::arith_op);
6728   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6729   ins_pipe(ialu_reg_reg);
6730 %}
6731 
6732 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6733   match(Set dst (AddL src1 con));
6734 
6735   size(4);
6736   format %{ "ADD    $src1,$con,$dst" %}
6737   opcode(Assembler::add_op3, Assembler::arith_op);
6738   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6739   ins_pipe(ialu_reg_imm);
6740 %}
6741 
6742 //----------Conditional_store--------------------------------------------------
6743 // Conditional-store of the updated heap-top.
6744 // Used during allocation of the shared heap.
6745 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
6746 
6747 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
6748 instruct loadPLocked(iRegP dst, memory mem) %{
6749   match(Set dst (LoadPLocked mem));
6750   ins_cost(MEMORY_REF_COST);
6751 
6752   format %{ "LDX    $mem,$dst\t! ptr" %}
6753   opcode(Assembler::ldx_op3, 0, REGP_OP);
6754   ins_encode( form3_mem_reg( mem, dst ) );
6755   ins_pipe(iload_mem);
6756 %}
6757 
6758 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
6759   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
6760   effect( KILL newval );
6761   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
6762             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
6763   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
6764   ins_pipe( long_memory_op );
6765 %}
6766 
6767 // Conditional-store of an int value.
6768 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
6769   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
6770   effect( KILL newval );
6771   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6772             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6773   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6774   ins_pipe( long_memory_op );
6775 %}
6776 
6777 // Conditional-store of a long value.
6778 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
6779   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
6780   effect( KILL newval );
6781   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
6782             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
6783   ins_encode( enc_cas(mem_ptr,oldval,newval) );
6784   ins_pipe( long_memory_op );
6785 %}
6786 
6787 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
6788 
6789 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6790   predicate(VM_Version::supports_cx8());
6791   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
6792   match(Set res (WeakCompareAndSwapL mem_ptr (Binary oldval newval)));
6793   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6794   format %{
6795             "MOV    $newval,O7\n\t"
6796             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6797             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6798             "MOV    1,$res\n\t"
6799             "MOVne  xcc,R_G0,$res"
6800   %}
6801   ins_encode( enc_casx(mem_ptr, oldval, newval),
6802               enc_lflags_ne_to_boolean(res) );
6803   ins_pipe( long_memory_op );
6804 %}
6805 
6806 
6807 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6808   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
6809   match(Set res (WeakCompareAndSwapI mem_ptr (Binary oldval newval)));
6810   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6811   format %{
6812             "MOV    $newval,O7\n\t"
6813             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6814             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6815             "MOV    1,$res\n\t"
6816             "MOVne  icc,R_G0,$res"
6817   %}
6818   ins_encode( enc_casi(mem_ptr, oldval, newval),
6819               enc_iflags_ne_to_boolean(res) );
6820   ins_pipe( long_memory_op );
6821 %}
6822 
6823 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6824   predicate(VM_Version::supports_cx8());
6825   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
6826   match(Set res (WeakCompareAndSwapP mem_ptr (Binary oldval newval)));
6827   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6828   format %{
6829             "MOV    $newval,O7\n\t"
6830             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6831             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6832             "MOV    1,$res\n\t"
6833             "MOVne  xcc,R_G0,$res"
6834   %}
6835   ins_encode( enc_casx(mem_ptr, oldval, newval),
6836               enc_lflags_ne_to_boolean(res) );
6837   ins_pipe( long_memory_op );
6838 %}
6839 
6840 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
6841   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
6842   match(Set res (WeakCompareAndSwapN mem_ptr (Binary oldval newval)));
6843   effect( USE mem_ptr, KILL ccr, KILL tmp1);
6844   format %{
6845             "MOV    $newval,O7\n\t"
6846             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
6847             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
6848             "MOV    1,$res\n\t"
6849             "MOVne  icc,R_G0,$res"
6850   %}
6851   ins_encode( enc_casi(mem_ptr, oldval, newval),
6852               enc_iflags_ne_to_boolean(res) );
6853   ins_pipe( long_memory_op );
6854 %}
6855 
6856 instruct compareAndExchangeI(iRegP mem_ptr, iRegI oldval, iRegI newval)
6857 %{
6858   match(Set newval (CompareAndExchangeI mem_ptr (Binary oldval newval)));
6859   effect( USE mem_ptr );
6860 
6861   format %{
6862             "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
6863   %}
6864   ins_encode( enc_casi_exch(mem_ptr, oldval, newval) );
6865   ins_pipe( long_memory_op );
6866 %}
6867 
6868 instruct compareAndExchangeL(iRegP mem_ptr, iRegL oldval, iRegL newval)
6869 %{
6870   match(Set newval (CompareAndExchangeL mem_ptr (Binary oldval newval)));
6871   effect( USE mem_ptr );
6872 
6873   format %{
6874             "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
6875   %}
6876   ins_encode( enc_casx_exch(mem_ptr, oldval, newval) );
6877   ins_pipe( long_memory_op );
6878 %}
6879 
6880 instruct compareAndExchangeP(iRegP mem_ptr, iRegP oldval, iRegP newval)
6881 %{
6882   match(Set newval (CompareAndExchangeP mem_ptr (Binary oldval newval)));
6883   effect( USE mem_ptr );
6884 
6885   format %{
6886             "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
6887   %}
6888   ins_encode( enc_casx_exch(mem_ptr, oldval, newval) );
6889   ins_pipe( long_memory_op );
6890 %}
6891 
6892 instruct compareAndExchangeN(iRegP mem_ptr, iRegN oldval, iRegN newval)
6893 %{
6894   match(Set newval (CompareAndExchangeN mem_ptr (Binary oldval newval)));
6895   effect( USE mem_ptr );
6896 
6897   format %{
6898             "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr] and set $newval=[$mem_ptr]\n\t"
6899   %}
6900   ins_encode( enc_casi_exch(mem_ptr, oldval, newval) );
6901   ins_pipe( long_memory_op );
6902 %}
6903 
6904 instruct xchgI( memory mem, iRegI newval) %{
6905   match(Set newval (GetAndSetI mem newval));
6906   format %{ "SWAP  [$mem],$newval" %}
6907   size(4);
6908   ins_encode %{
6909     __ swap($mem$$Address, $newval$$Register);
6910   %}
6911   ins_pipe( long_memory_op );
6912 %}
6913 
6914 
6915 instruct xchgN( memory mem, iRegN newval) %{
6916   match(Set newval (GetAndSetN mem newval));
6917   format %{ "SWAP  [$mem],$newval" %}
6918   size(4);
6919   ins_encode %{
6920     __ swap($mem$$Address, $newval$$Register);
6921   %}
6922   ins_pipe( long_memory_op );
6923 %}
6924 
6925 //---------------------
6926 // Subtraction Instructions
6927 // Register Subtraction
6928 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6929   match(Set dst (SubI src1 src2));
6930 
6931   size(4);
6932   format %{ "SUB    $src1,$src2,$dst" %}
6933   opcode(Assembler::sub_op3, Assembler::arith_op);
6934   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6935   ins_pipe(ialu_reg_reg);
6936 %}
6937 
6938 // Immediate Subtraction
6939 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
6940   match(Set dst (SubI src1 src2));
6941 
6942   size(4);
6943   format %{ "SUB    $src1,$src2,$dst" %}
6944   opcode(Assembler::sub_op3, Assembler::arith_op);
6945   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
6946   ins_pipe(ialu_reg_imm);
6947 %}
6948 
6949 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
6950   match(Set dst (SubI zero src2));
6951 
6952   size(4);
6953   format %{ "NEG    $src2,$dst" %}
6954   opcode(Assembler::sub_op3, Assembler::arith_op);
6955   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6956   ins_pipe(ialu_zero_reg);
6957 %}
6958 
6959 // Long subtraction
6960 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
6961   match(Set dst (SubL src1 src2));
6962 
6963   size(4);
6964   format %{ "SUB    $src1,$src2,$dst\t! long" %}
6965   opcode(Assembler::sub_op3, Assembler::arith_op);
6966   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
6967   ins_pipe(ialu_reg_reg);
6968 %}
6969 
6970 // Immediate Subtraction
6971 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
6972   match(Set dst (SubL src1 con));
6973 
6974   size(4);
6975   format %{ "SUB    $src1,$con,$dst\t! long" %}
6976   opcode(Assembler::sub_op3, Assembler::arith_op);
6977   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
6978   ins_pipe(ialu_reg_imm);
6979 %}
6980 
6981 // Long negation
6982 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
6983   match(Set dst (SubL zero src2));
6984 
6985   size(4);
6986   format %{ "NEG    $src2,$dst\t! long" %}
6987   opcode(Assembler::sub_op3, Assembler::arith_op);
6988   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
6989   ins_pipe(ialu_zero_reg);
6990 %}
6991 
6992 // Multiplication Instructions
6993 // Integer Multiplication
6994 // Register Multiplication
6995 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
6996   match(Set dst (MulI src1 src2));
6997 
6998   size(4);
6999   format %{ "MULX   $src1,$src2,$dst" %}
7000   opcode(Assembler::mulx_op3, Assembler::arith_op);
7001   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7002   ins_pipe(imul_reg_reg);
7003 %}
7004 
7005 // Immediate Multiplication
7006 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7007   match(Set dst (MulI src1 src2));
7008 
7009   size(4);
7010   format %{ "MULX   $src1,$src2,$dst" %}
7011   opcode(Assembler::mulx_op3, Assembler::arith_op);
7012   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7013   ins_pipe(imul_reg_imm);
7014 %}
7015 
7016 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7017   match(Set dst (MulL src1 src2));
7018   ins_cost(DEFAULT_COST * 5);
7019   size(4);
7020   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7021   opcode(Assembler::mulx_op3, Assembler::arith_op);
7022   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7023   ins_pipe(mulL_reg_reg);
7024 %}
7025 
7026 // Immediate Multiplication
7027 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7028   match(Set dst (MulL src1 src2));
7029   ins_cost(DEFAULT_COST * 5);
7030   size(4);
7031   format %{ "MULX   $src1,$src2,$dst" %}
7032   opcode(Assembler::mulx_op3, Assembler::arith_op);
7033   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7034   ins_pipe(mulL_reg_imm);
7035 %}
7036 
7037 // Integer Division
7038 // Register Division
7039 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7040   match(Set dst (DivI src1 src2));
7041   ins_cost((2+71)*DEFAULT_COST);
7042 
7043   format %{ "SRA     $src2,0,$src2\n\t"
7044             "SRA     $src1,0,$src1\n\t"
7045             "SDIVX   $src1,$src2,$dst" %}
7046   ins_encode( idiv_reg( src1, src2, dst ) );
7047   ins_pipe(sdiv_reg_reg);
7048 %}
7049 
7050 // Immediate Division
7051 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7052   match(Set dst (DivI src1 src2));
7053   ins_cost((2+71)*DEFAULT_COST);
7054 
7055   format %{ "SRA     $src1,0,$src1\n\t"
7056             "SDIVX   $src1,$src2,$dst" %}
7057   ins_encode( idiv_imm( src1, src2, dst ) );
7058   ins_pipe(sdiv_reg_imm);
7059 %}
7060 
7061 //----------Div-By-10-Expansion------------------------------------------------
7062 // Extract hi bits of a 32x32->64 bit multiply.
7063 // Expand rule only, not matched
7064 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7065   effect( DEF dst, USE src1, USE src2 );
7066   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7067             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7068   ins_encode( enc_mul_hi(dst,src1,src2));
7069   ins_pipe(sdiv_reg_reg);
7070 %}
7071 
7072 // Magic constant, reciprocal of 10
7073 instruct loadConI_x66666667(iRegIsafe dst) %{
7074   effect( DEF dst );
7075 
7076   size(8);
7077   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7078   ins_encode( Set32(0x66666667, dst) );
7079   ins_pipe(ialu_hi_lo_reg);
7080 %}
7081 
7082 // Register Shift Right Arithmetic Long by 32-63
7083 instruct sra_31( iRegI dst, iRegI src ) %{
7084   effect( DEF dst, USE src );
7085   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7086   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7087   ins_pipe(ialu_reg_reg);
7088 %}
7089 
7090 // Arithmetic Shift Right by 8-bit immediate
7091 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7092   effect( DEF dst, USE src );
7093   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7094   opcode(Assembler::sra_op3, Assembler::arith_op);
7095   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7096   ins_pipe(ialu_reg_imm);
7097 %}
7098 
7099 // Integer DIV with 10
7100 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7101   match(Set dst (DivI src div));
7102   ins_cost((6+6)*DEFAULT_COST);
7103   expand %{
7104     iRegIsafe tmp1;               // Killed temps;
7105     iRegIsafe tmp2;               // Killed temps;
7106     iRegI tmp3;                   // Killed temps;
7107     iRegI tmp4;                   // Killed temps;
7108     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7109     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7110     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7111     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7112     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7113   %}
7114 %}
7115 
7116 // Register Long Division
7117 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7118   match(Set dst (DivL src1 src2));
7119   ins_cost(DEFAULT_COST*71);
7120   size(4);
7121   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7122   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7123   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7124   ins_pipe(divL_reg_reg);
7125 %}
7126 
7127 // Register Long Division
7128 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7129   match(Set dst (DivL src1 src2));
7130   ins_cost(DEFAULT_COST*71);
7131   size(4);
7132   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7133   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7134   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7135   ins_pipe(divL_reg_imm);
7136 %}
7137 
7138 // Integer Remainder
7139 // Register Remainder
7140 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7141   match(Set dst (ModI src1 src2));
7142   effect( KILL ccr, KILL temp);
7143 
7144   format %{ "SREM   $src1,$src2,$dst" %}
7145   ins_encode( irem_reg(src1, src2, dst, temp) );
7146   ins_pipe(sdiv_reg_reg);
7147 %}
7148 
7149 // Immediate Remainder
7150 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7151   match(Set dst (ModI src1 src2));
7152   effect( KILL ccr, KILL temp);
7153 
7154   format %{ "SREM   $src1,$src2,$dst" %}
7155   ins_encode( irem_imm(src1, src2, dst, temp) );
7156   ins_pipe(sdiv_reg_imm);
7157 %}
7158 
7159 // Register Long Remainder
7160 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7161   effect(DEF dst, USE src1, USE src2);
7162   size(4);
7163   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7164   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7165   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7166   ins_pipe(divL_reg_reg);
7167 %}
7168 
7169 // Register Long Division
7170 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7171   effect(DEF dst, USE src1, USE src2);
7172   size(4);
7173   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7174   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7175   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7176   ins_pipe(divL_reg_imm);
7177 %}
7178 
7179 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7180   effect(DEF dst, USE src1, USE src2);
7181   size(4);
7182   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7183   opcode(Assembler::mulx_op3, Assembler::arith_op);
7184   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7185   ins_pipe(mulL_reg_reg);
7186 %}
7187 
7188 // Immediate Multiplication
7189 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7190   effect(DEF dst, USE src1, USE src2);
7191   size(4);
7192   format %{ "MULX   $src1,$src2,$dst" %}
7193   opcode(Assembler::mulx_op3, Assembler::arith_op);
7194   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7195   ins_pipe(mulL_reg_imm);
7196 %}
7197 
7198 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7199   effect(DEF dst, USE src1, USE src2);
7200   size(4);
7201   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7202   opcode(Assembler::sub_op3, Assembler::arith_op);
7203   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7204   ins_pipe(ialu_reg_reg);
7205 %}
7206 
7207 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7208   effect(DEF dst, USE src1, USE src2);
7209   size(4);
7210   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7211   opcode(Assembler::sub_op3, Assembler::arith_op);
7212   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7213   ins_pipe(ialu_reg_reg);
7214 %}
7215 
7216 // Register Long Remainder
7217 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7218   match(Set dst (ModL src1 src2));
7219   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7220   expand %{
7221     iRegL tmp1;
7222     iRegL tmp2;
7223     divL_reg_reg_1(tmp1, src1, src2);
7224     mulL_reg_reg_1(tmp2, tmp1, src2);
7225     subL_reg_reg_1(dst,  src1, tmp2);
7226   %}
7227 %}
7228 
7229 // Register Long Remainder
7230 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7231   match(Set dst (ModL src1 src2));
7232   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7233   expand %{
7234     iRegL tmp1;
7235     iRegL tmp2;
7236     divL_reg_imm13_1(tmp1, src1, src2);
7237     mulL_reg_imm13_1(tmp2, tmp1, src2);
7238     subL_reg_reg_2  (dst,  src1, tmp2);
7239   %}
7240 %}
7241 
7242 // Integer Shift Instructions
7243 // Register Shift Left
7244 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7245   match(Set dst (LShiftI src1 src2));
7246 
7247   size(4);
7248   format %{ "SLL    $src1,$src2,$dst" %}
7249   opcode(Assembler::sll_op3, Assembler::arith_op);
7250   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7251   ins_pipe(ialu_reg_reg);
7252 %}
7253 
7254 // Register Shift Left Immediate
7255 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7256   match(Set dst (LShiftI src1 src2));
7257 
7258   size(4);
7259   format %{ "SLL    $src1,$src2,$dst" %}
7260   opcode(Assembler::sll_op3, Assembler::arith_op);
7261   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7262   ins_pipe(ialu_reg_imm);
7263 %}
7264 
7265 // Register Shift Left
7266 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7267   match(Set dst (LShiftL src1 src2));
7268 
7269   size(4);
7270   format %{ "SLLX   $src1,$src2,$dst" %}
7271   opcode(Assembler::sllx_op3, Assembler::arith_op);
7272   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7273   ins_pipe(ialu_reg_reg);
7274 %}
7275 
7276 // Register Shift Left Immediate
7277 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7278   match(Set dst (LShiftL src1 src2));
7279 
7280   size(4);
7281   format %{ "SLLX   $src1,$src2,$dst" %}
7282   opcode(Assembler::sllx_op3, Assembler::arith_op);
7283   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7284   ins_pipe(ialu_reg_imm);
7285 %}
7286 
7287 // Register Arithmetic Shift Right
7288 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7289   match(Set dst (RShiftI src1 src2));
7290   size(4);
7291   format %{ "SRA    $src1,$src2,$dst" %}
7292   opcode(Assembler::sra_op3, Assembler::arith_op);
7293   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7294   ins_pipe(ialu_reg_reg);
7295 %}
7296 
7297 // Register Arithmetic Shift Right Immediate
7298 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7299   match(Set dst (RShiftI src1 src2));
7300 
7301   size(4);
7302   format %{ "SRA    $src1,$src2,$dst" %}
7303   opcode(Assembler::sra_op3, Assembler::arith_op);
7304   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7305   ins_pipe(ialu_reg_imm);
7306 %}
7307 
7308 // Register Shift Right Arithmatic Long
7309 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7310   match(Set dst (RShiftL src1 src2));
7311 
7312   size(4);
7313   format %{ "SRAX   $src1,$src2,$dst" %}
7314   opcode(Assembler::srax_op3, Assembler::arith_op);
7315   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7316   ins_pipe(ialu_reg_reg);
7317 %}
7318 
7319 // Register Shift Left Immediate
7320 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7321   match(Set dst (RShiftL src1 src2));
7322 
7323   size(4);
7324   format %{ "SRAX   $src1,$src2,$dst" %}
7325   opcode(Assembler::srax_op3, Assembler::arith_op);
7326   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7327   ins_pipe(ialu_reg_imm);
7328 %}
7329 
7330 // Register Shift Right
7331 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7332   match(Set dst (URShiftI src1 src2));
7333 
7334   size(4);
7335   format %{ "SRL    $src1,$src2,$dst" %}
7336   opcode(Assembler::srl_op3, Assembler::arith_op);
7337   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7338   ins_pipe(ialu_reg_reg);
7339 %}
7340 
7341 // Register Shift Right Immediate
7342 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7343   match(Set dst (URShiftI src1 src2));
7344 
7345   size(4);
7346   format %{ "SRL    $src1,$src2,$dst" %}
7347   opcode(Assembler::srl_op3, Assembler::arith_op);
7348   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7349   ins_pipe(ialu_reg_imm);
7350 %}
7351 
7352 // Register Shift Right
7353 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7354   match(Set dst (URShiftL src1 src2));
7355 
7356   size(4);
7357   format %{ "SRLX   $src1,$src2,$dst" %}
7358   opcode(Assembler::srlx_op3, Assembler::arith_op);
7359   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7360   ins_pipe(ialu_reg_reg);
7361 %}
7362 
7363 // Register Shift Right Immediate
7364 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7365   match(Set dst (URShiftL src1 src2));
7366 
7367   size(4);
7368   format %{ "SRLX   $src1,$src2,$dst" %}
7369   opcode(Assembler::srlx_op3, Assembler::arith_op);
7370   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7371   ins_pipe(ialu_reg_imm);
7372 %}
7373 
7374 // Register Shift Right Immediate with a CastP2X
7375 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7376   match(Set dst (URShiftL (CastP2X src1) src2));
7377   size(4);
7378   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7379   opcode(Assembler::srlx_op3, Assembler::arith_op);
7380   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7381   ins_pipe(ialu_reg_imm);
7382 %}
7383 
7384 
7385 //----------Floating Point Arithmetic Instructions-----------------------------
7386 
7387 //  Add float single precision
7388 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7389   match(Set dst (AddF src1 src2));
7390 
7391   size(4);
7392   format %{ "FADDS  $src1,$src2,$dst" %}
7393   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7394   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7395   ins_pipe(faddF_reg_reg);
7396 %}
7397 
7398 //  Add float double precision
7399 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7400   match(Set dst (AddD src1 src2));
7401 
7402   size(4);
7403   format %{ "FADDD  $src1,$src2,$dst" %}
7404   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7405   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7406   ins_pipe(faddD_reg_reg);
7407 %}
7408 
7409 //  Sub float single precision
7410 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7411   match(Set dst (SubF src1 src2));
7412 
7413   size(4);
7414   format %{ "FSUBS  $src1,$src2,$dst" %}
7415   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7416   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7417   ins_pipe(faddF_reg_reg);
7418 %}
7419 
7420 //  Sub float double precision
7421 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7422   match(Set dst (SubD src1 src2));
7423 
7424   size(4);
7425   format %{ "FSUBD  $src1,$src2,$dst" %}
7426   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7427   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7428   ins_pipe(faddD_reg_reg);
7429 %}
7430 
7431 //  Mul float single precision
7432 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7433   match(Set dst (MulF src1 src2));
7434 
7435   size(4);
7436   format %{ "FMULS  $src1,$src2,$dst" %}
7437   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7438   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7439   ins_pipe(fmulF_reg_reg);
7440 %}
7441 
7442 //  Mul float double precision
7443 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7444   match(Set dst (MulD src1 src2));
7445 
7446   size(4);
7447   format %{ "FMULD  $src1,$src2,$dst" %}
7448   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7449   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7450   ins_pipe(fmulD_reg_reg);
7451 %}
7452 
7453 //  Div float single precision
7454 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7455   match(Set dst (DivF src1 src2));
7456 
7457   size(4);
7458   format %{ "FDIVS  $src1,$src2,$dst" %}
7459   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7460   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7461   ins_pipe(fdivF_reg_reg);
7462 %}
7463 
7464 //  Div float double precision
7465 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7466   match(Set dst (DivD src1 src2));
7467 
7468   size(4);
7469   format %{ "FDIVD  $src1,$src2,$dst" %}
7470   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7471   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7472   ins_pipe(fdivD_reg_reg);
7473 %}
7474 
7475 //  Absolute float double precision
7476 instruct absD_reg(regD dst, regD src) %{
7477   match(Set dst (AbsD src));
7478 
7479   format %{ "FABSd  $src,$dst" %}
7480   ins_encode(fabsd(dst, src));
7481   ins_pipe(faddD_reg);
7482 %}
7483 
7484 //  Absolute float single precision
7485 instruct absF_reg(regF dst, regF src) %{
7486   match(Set dst (AbsF src));
7487 
7488   format %{ "FABSs  $src,$dst" %}
7489   ins_encode(fabss(dst, src));
7490   ins_pipe(faddF_reg);
7491 %}
7492 
7493 instruct negF_reg(regF dst, regF src) %{
7494   match(Set dst (NegF src));
7495 
7496   size(4);
7497   format %{ "FNEGs  $src,$dst" %}
7498   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7499   ins_encode(form3_opf_rs2F_rdF(src, dst));
7500   ins_pipe(faddF_reg);
7501 %}
7502 
7503 instruct negD_reg(regD dst, regD src) %{
7504   match(Set dst (NegD src));
7505 
7506   format %{ "FNEGd  $src,$dst" %}
7507   ins_encode(fnegd(dst, src));
7508   ins_pipe(faddD_reg);
7509 %}
7510 
7511 //  Sqrt float double precision
7512 instruct sqrtF_reg_reg(regF dst, regF src) %{
7513   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7514 
7515   size(4);
7516   format %{ "FSQRTS $src,$dst" %}
7517   ins_encode(fsqrts(dst, src));
7518   ins_pipe(fdivF_reg_reg);
7519 %}
7520 
7521 //  Sqrt float double precision
7522 instruct sqrtD_reg_reg(regD dst, regD src) %{
7523   match(Set dst (SqrtD src));
7524 
7525   size(4);
7526   format %{ "FSQRTD $src,$dst" %}
7527   ins_encode(fsqrtd(dst, src));
7528   ins_pipe(fdivD_reg_reg);
7529 %}
7530 
7531 //----------Logical Instructions-----------------------------------------------
7532 // And Instructions
7533 // Register And
7534 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7535   match(Set dst (AndI src1 src2));
7536 
7537   size(4);
7538   format %{ "AND    $src1,$src2,$dst" %}
7539   opcode(Assembler::and_op3, Assembler::arith_op);
7540   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7541   ins_pipe(ialu_reg_reg);
7542 %}
7543 
7544 // Immediate And
7545 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7546   match(Set dst (AndI src1 src2));
7547 
7548   size(4);
7549   format %{ "AND    $src1,$src2,$dst" %}
7550   opcode(Assembler::and_op3, Assembler::arith_op);
7551   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7552   ins_pipe(ialu_reg_imm);
7553 %}
7554 
7555 // Register And Long
7556 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7557   match(Set dst (AndL src1 src2));
7558 
7559   ins_cost(DEFAULT_COST);
7560   size(4);
7561   format %{ "AND    $src1,$src2,$dst\t! long" %}
7562   opcode(Assembler::and_op3, Assembler::arith_op);
7563   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7564   ins_pipe(ialu_reg_reg);
7565 %}
7566 
7567 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7568   match(Set dst (AndL src1 con));
7569 
7570   ins_cost(DEFAULT_COST);
7571   size(4);
7572   format %{ "AND    $src1,$con,$dst\t! long" %}
7573   opcode(Assembler::and_op3, Assembler::arith_op);
7574   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7575   ins_pipe(ialu_reg_imm);
7576 %}
7577 
7578 // Or Instructions
7579 // Register Or
7580 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7581   match(Set dst (OrI src1 src2));
7582 
7583   size(4);
7584   format %{ "OR     $src1,$src2,$dst" %}
7585   opcode(Assembler::or_op3, Assembler::arith_op);
7586   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7587   ins_pipe(ialu_reg_reg);
7588 %}
7589 
7590 // Immediate Or
7591 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7592   match(Set dst (OrI src1 src2));
7593 
7594   size(4);
7595   format %{ "OR     $src1,$src2,$dst" %}
7596   opcode(Assembler::or_op3, Assembler::arith_op);
7597   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7598   ins_pipe(ialu_reg_imm);
7599 %}
7600 
7601 // Register Or Long
7602 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7603   match(Set dst (OrL src1 src2));
7604 
7605   ins_cost(DEFAULT_COST);
7606   size(4);
7607   format %{ "OR     $src1,$src2,$dst\t! long" %}
7608   opcode(Assembler::or_op3, Assembler::arith_op);
7609   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7610   ins_pipe(ialu_reg_reg);
7611 %}
7612 
7613 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7614   match(Set dst (OrL src1 con));
7615   ins_cost(DEFAULT_COST*2);
7616 
7617   ins_cost(DEFAULT_COST);
7618   size(4);
7619   format %{ "OR     $src1,$con,$dst\t! long" %}
7620   opcode(Assembler::or_op3, Assembler::arith_op);
7621   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7622   ins_pipe(ialu_reg_imm);
7623 %}
7624 
7625 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
7626   match(Set dst (OrL src1 (CastP2X src2)));
7627 
7628   ins_cost(DEFAULT_COST);
7629   size(4);
7630   format %{ "OR     $src1,$src2,$dst\t! long" %}
7631   opcode(Assembler::or_op3, Assembler::arith_op);
7632   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7633   ins_pipe(ialu_reg_reg);
7634 %}
7635 
7636 // Xor Instructions
7637 // Register Xor
7638 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7639   match(Set dst (XorI src1 src2));
7640 
7641   size(4);
7642   format %{ "XOR    $src1,$src2,$dst" %}
7643   opcode(Assembler::xor_op3, Assembler::arith_op);
7644   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7645   ins_pipe(ialu_reg_reg);
7646 %}
7647 
7648 // Immediate Xor
7649 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7650   match(Set dst (XorI src1 src2));
7651 
7652   size(4);
7653   format %{ "XOR    $src1,$src2,$dst" %}
7654   opcode(Assembler::xor_op3, Assembler::arith_op);
7655   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7656   ins_pipe(ialu_reg_imm);
7657 %}
7658 
7659 // Register Xor Long
7660 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7661   match(Set dst (XorL src1 src2));
7662 
7663   ins_cost(DEFAULT_COST);
7664   size(4);
7665   format %{ "XOR    $src1,$src2,$dst\t! long" %}
7666   opcode(Assembler::xor_op3, Assembler::arith_op);
7667   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7668   ins_pipe(ialu_reg_reg);
7669 %}
7670 
7671 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7672   match(Set dst (XorL src1 con));
7673 
7674   ins_cost(DEFAULT_COST);
7675   size(4);
7676   format %{ "XOR    $src1,$con,$dst\t! long" %}
7677   opcode(Assembler::xor_op3, Assembler::arith_op);
7678   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7679   ins_pipe(ialu_reg_imm);
7680 %}
7681 
7682 //----------Convert to Boolean-------------------------------------------------
7683 // Nice hack for 32-bit tests but doesn't work for
7684 // 64-bit pointers.
7685 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
7686   match(Set dst (Conv2B src));
7687   effect( KILL ccr );
7688   ins_cost(DEFAULT_COST*2);
7689   format %{ "CMP    R_G0,$src\n\t"
7690             "ADDX   R_G0,0,$dst" %}
7691   ins_encode( enc_to_bool( src, dst ) );
7692   ins_pipe(ialu_reg_ialu);
7693 %}
7694 
7695 instruct convP2B( iRegI dst, iRegP src ) %{
7696   match(Set dst (Conv2B src));
7697   ins_cost(DEFAULT_COST*2);
7698   format %{ "MOV    $src,$dst\n\t"
7699             "MOVRNZ $src,1,$dst" %}
7700   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
7701   ins_pipe(ialu_clr_and_mover);
7702 %}
7703 
7704 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
7705   match(Set dst (CmpLTMask src zero));
7706   effect(KILL ccr);
7707   size(4);
7708   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
7709   ins_encode %{
7710     __ sra($src$$Register, 31, $dst$$Register);
7711   %}
7712   ins_pipe(ialu_reg_imm);
7713 %}
7714 
7715 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
7716   match(Set dst (CmpLTMask p q));
7717   effect( KILL ccr );
7718   ins_cost(DEFAULT_COST*4);
7719   format %{ "CMP    $p,$q\n\t"
7720             "MOV    #0,$dst\n\t"
7721             "BLT,a  .+8\n\t"
7722             "MOV    #-1,$dst" %}
7723   ins_encode( enc_ltmask(p,q,dst) );
7724   ins_pipe(ialu_reg_reg_ialu);
7725 %}
7726 
7727 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
7728   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
7729   effect(KILL ccr, TEMP tmp);
7730   ins_cost(DEFAULT_COST*3);
7731 
7732   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
7733             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
7734             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
7735   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
7736   ins_pipe(cadd_cmpltmask);
7737 %}
7738 
7739 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
7740   match(Set p (AndI (CmpLTMask p q) y));
7741   effect(KILL ccr);
7742   ins_cost(DEFAULT_COST*3);
7743 
7744   format %{ "CMP  $p,$q\n\t"
7745             "MOV  $y,$p\n\t"
7746             "MOVge G0,$p" %}
7747   ins_encode %{
7748     __ cmp($p$$Register, $q$$Register);
7749     __ mov($y$$Register, $p$$Register);
7750     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
7751   %}
7752   ins_pipe(ialu_reg_reg_ialu);
7753 %}
7754 
7755 //-----------------------------------------------------------------
7756 // Direct raw moves between float and general registers using VIS3.
7757 
7758 //  ins_pipe(faddF_reg);
7759 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
7760   predicate(UseVIS >= 3);
7761   match(Set dst (MoveF2I src));
7762 
7763   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
7764   ins_encode %{
7765     __ movstouw($src$$FloatRegister, $dst$$Register);
7766   %}
7767   ins_pipe(ialu_reg_reg);
7768 %}
7769 
7770 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
7771   predicate(UseVIS >= 3);
7772   match(Set dst (MoveI2F src));
7773 
7774   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
7775   ins_encode %{
7776     __ movwtos($src$$Register, $dst$$FloatRegister);
7777   %}
7778   ins_pipe(ialu_reg_reg);
7779 %}
7780 
7781 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
7782   predicate(UseVIS >= 3);
7783   match(Set dst (MoveD2L src));
7784 
7785   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
7786   ins_encode %{
7787     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
7788   %}
7789   ins_pipe(ialu_reg_reg);
7790 %}
7791 
7792 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
7793   predicate(UseVIS >= 3);
7794   match(Set dst (MoveL2D src));
7795 
7796   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
7797   ins_encode %{
7798     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
7799   %}
7800   ins_pipe(ialu_reg_reg);
7801 %}
7802 
7803 
7804 // Raw moves between float and general registers using stack.
7805 
7806 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
7807   match(Set dst (MoveF2I src));
7808   effect(DEF dst, USE src);
7809   ins_cost(MEMORY_REF_COST);
7810 
7811   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
7812   opcode(Assembler::lduw_op3);
7813   ins_encode(simple_form3_mem_reg( src, dst ) );
7814   ins_pipe(iload_mem);
7815 %}
7816 
7817 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
7818   match(Set dst (MoveI2F src));
7819   effect(DEF dst, USE src);
7820   ins_cost(MEMORY_REF_COST);
7821 
7822   format %{ "LDF    $src,$dst\t! MoveI2F" %}
7823   opcode(Assembler::ldf_op3);
7824   ins_encode(simple_form3_mem_reg(src, dst));
7825   ins_pipe(floadF_stk);
7826 %}
7827 
7828 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
7829   match(Set dst (MoveD2L src));
7830   effect(DEF dst, USE src);
7831   ins_cost(MEMORY_REF_COST);
7832 
7833   format %{ "LDX    $src,$dst\t! MoveD2L" %}
7834   opcode(Assembler::ldx_op3);
7835   ins_encode(simple_form3_mem_reg( src, dst ) );
7836   ins_pipe(iload_mem);
7837 %}
7838 
7839 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
7840   match(Set dst (MoveL2D src));
7841   effect(DEF dst, USE src);
7842   ins_cost(MEMORY_REF_COST);
7843 
7844   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
7845   opcode(Assembler::lddf_op3);
7846   ins_encode(simple_form3_mem_reg(src, dst));
7847   ins_pipe(floadD_stk);
7848 %}
7849 
7850 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
7851   match(Set dst (MoveF2I src));
7852   effect(DEF dst, USE src);
7853   ins_cost(MEMORY_REF_COST);
7854 
7855   format %{ "STF   $src,$dst\t! MoveF2I" %}
7856   opcode(Assembler::stf_op3);
7857   ins_encode(simple_form3_mem_reg(dst, src));
7858   ins_pipe(fstoreF_stk_reg);
7859 %}
7860 
7861 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
7862   match(Set dst (MoveI2F src));
7863   effect(DEF dst, USE src);
7864   ins_cost(MEMORY_REF_COST);
7865 
7866   format %{ "STW    $src,$dst\t! MoveI2F" %}
7867   opcode(Assembler::stw_op3);
7868   ins_encode(simple_form3_mem_reg( dst, src ) );
7869   ins_pipe(istore_mem_reg);
7870 %}
7871 
7872 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
7873   match(Set dst (MoveD2L src));
7874   effect(DEF dst, USE src);
7875   ins_cost(MEMORY_REF_COST);
7876 
7877   format %{ "STDF   $src,$dst\t! MoveD2L" %}
7878   opcode(Assembler::stdf_op3);
7879   ins_encode(simple_form3_mem_reg(dst, src));
7880   ins_pipe(fstoreD_stk_reg);
7881 %}
7882 
7883 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
7884   match(Set dst (MoveL2D src));
7885   effect(DEF dst, USE src);
7886   ins_cost(MEMORY_REF_COST);
7887 
7888   format %{ "STX    $src,$dst\t! MoveL2D" %}
7889   opcode(Assembler::stx_op3);
7890   ins_encode(simple_form3_mem_reg( dst, src ) );
7891   ins_pipe(istore_mem_reg);
7892 %}
7893 
7894 
7895 //----------Arithmetic Conversion Instructions---------------------------------
7896 // The conversions operations are all Alpha sorted.  Please keep it that way!
7897 
7898 instruct convD2F_reg(regF dst, regD src) %{
7899   match(Set dst (ConvD2F src));
7900   size(4);
7901   format %{ "FDTOS  $src,$dst" %}
7902   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
7903   ins_encode(form3_opf_rs2D_rdF(src, dst));
7904   ins_pipe(fcvtD2F);
7905 %}
7906 
7907 
7908 // Convert a double to an int in a float register.
7909 // If the double is a NAN, stuff a zero in instead.
7910 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
7911   effect(DEF dst, USE src, KILL fcc0);
7912   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7913             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7914             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
7915             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7916             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7917       "skip:" %}
7918   ins_encode(form_d2i_helper(src,dst));
7919   ins_pipe(fcvtD2I);
7920 %}
7921 
7922 instruct convD2I_stk(stackSlotI dst, regD src) %{
7923   match(Set dst (ConvD2I src));
7924   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7925   expand %{
7926     regF tmp;
7927     convD2I_helper(tmp, src);
7928     regF_to_stkI(dst, tmp);
7929   %}
7930 %}
7931 
7932 instruct convD2I_reg(iRegI dst, regD src) %{
7933   predicate(UseVIS >= 3);
7934   match(Set dst (ConvD2I src));
7935   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
7936   expand %{
7937     regF tmp;
7938     convD2I_helper(tmp, src);
7939     MoveF2I_reg_reg(dst, tmp);
7940   %}
7941 %}
7942 
7943 
7944 // Convert a double to a long in a double register.
7945 // If the double is a NAN, stuff a zero in instead.
7946 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
7947   effect(DEF dst, USE src, KILL fcc0);
7948   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
7949             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7950             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
7951             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
7952             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
7953       "skip:" %}
7954   ins_encode(form_d2l_helper(src,dst));
7955   ins_pipe(fcvtD2L);
7956 %}
7957 
7958 instruct convD2L_stk(stackSlotL dst, regD src) %{
7959   match(Set dst (ConvD2L src));
7960   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
7961   expand %{
7962     regD tmp;
7963     convD2L_helper(tmp, src);
7964     regD_to_stkL(dst, tmp);
7965   %}
7966 %}
7967 
7968 instruct convD2L_reg(iRegL dst, regD src) %{
7969   predicate(UseVIS >= 3);
7970   match(Set dst (ConvD2L src));
7971   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
7972   expand %{
7973     regD tmp;
7974     convD2L_helper(tmp, src);
7975     MoveD2L_reg_reg(dst, tmp);
7976   %}
7977 %}
7978 
7979 
7980 instruct convF2D_reg(regD dst, regF src) %{
7981   match(Set dst (ConvF2D src));
7982   format %{ "FSTOD  $src,$dst" %}
7983   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
7984   ins_encode(form3_opf_rs2F_rdD(src, dst));
7985   ins_pipe(fcvtF2D);
7986 %}
7987 
7988 
7989 // Convert a float to an int in a float register.
7990 // If the float is a NAN, stuff a zero in instead.
7991 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
7992   effect(DEF dst, USE src, KILL fcc0);
7993   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
7994             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
7995             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
7996             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
7997             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
7998       "skip:" %}
7999   ins_encode(form_f2i_helper(src,dst));
8000   ins_pipe(fcvtF2I);
8001 %}
8002 
8003 instruct convF2I_stk(stackSlotI dst, regF src) %{
8004   match(Set dst (ConvF2I src));
8005   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8006   expand %{
8007     regF tmp;
8008     convF2I_helper(tmp, src);
8009     regF_to_stkI(dst, tmp);
8010   %}
8011 %}
8012 
8013 instruct convF2I_reg(iRegI dst, regF src) %{
8014   predicate(UseVIS >= 3);
8015   match(Set dst (ConvF2I src));
8016   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8017   expand %{
8018     regF tmp;
8019     convF2I_helper(tmp, src);
8020     MoveF2I_reg_reg(dst, tmp);
8021   %}
8022 %}
8023 
8024 
8025 // Convert a float to a long in a float register.
8026 // If the float is a NAN, stuff a zero in instead.
8027 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8028   effect(DEF dst, USE src, KILL fcc0);
8029   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8030             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8031             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8032             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8033             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8034       "skip:" %}
8035   ins_encode(form_f2l_helper(src,dst));
8036   ins_pipe(fcvtF2L);
8037 %}
8038 
8039 instruct convF2L_stk(stackSlotL dst, regF src) %{
8040   match(Set dst (ConvF2L src));
8041   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8042   expand %{
8043     regD tmp;
8044     convF2L_helper(tmp, src);
8045     regD_to_stkL(dst, tmp);
8046   %}
8047 %}
8048 
8049 instruct convF2L_reg(iRegL dst, regF src) %{
8050   predicate(UseVIS >= 3);
8051   match(Set dst (ConvF2L src));
8052   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8053   expand %{
8054     regD tmp;
8055     convF2L_helper(tmp, src);
8056     MoveD2L_reg_reg(dst, tmp);
8057   %}
8058 %}
8059 
8060 
8061 instruct convI2D_helper(regD dst, regF tmp) %{
8062   effect(USE tmp, DEF dst);
8063   format %{ "FITOD  $tmp,$dst" %}
8064   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8065   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8066   ins_pipe(fcvtI2D);
8067 %}
8068 
8069 instruct convI2D_stk(stackSlotI src, regD dst) %{
8070   match(Set dst (ConvI2D src));
8071   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8072   expand %{
8073     regF tmp;
8074     stkI_to_regF(tmp, src);
8075     convI2D_helper(dst, tmp);
8076   %}
8077 %}
8078 
8079 instruct convI2D_reg(regD_low dst, iRegI src) %{
8080   predicate(UseVIS >= 3);
8081   match(Set dst (ConvI2D src));
8082   expand %{
8083     regF tmp;
8084     MoveI2F_reg_reg(tmp, src);
8085     convI2D_helper(dst, tmp);
8086   %}
8087 %}
8088 
8089 instruct convI2D_mem(regD_low dst, memory mem) %{
8090   match(Set dst (ConvI2D (LoadI mem)));
8091   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8092   format %{ "LDF    $mem,$dst\n\t"
8093             "FITOD  $dst,$dst" %}
8094   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8095   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8096   ins_pipe(floadF_mem);
8097 %}
8098 
8099 
8100 instruct convI2F_helper(regF dst, regF tmp) %{
8101   effect(DEF dst, USE tmp);
8102   format %{ "FITOS  $tmp,$dst" %}
8103   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8104   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8105   ins_pipe(fcvtI2F);
8106 %}
8107 
8108 instruct convI2F_stk(regF dst, stackSlotI src) %{
8109   match(Set dst (ConvI2F src));
8110   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8111   expand %{
8112     regF tmp;
8113     stkI_to_regF(tmp,src);
8114     convI2F_helper(dst, tmp);
8115   %}
8116 %}
8117 
8118 instruct convI2F_reg(regF dst, iRegI src) %{
8119   predicate(UseVIS >= 3);
8120   match(Set dst (ConvI2F src));
8121   ins_cost(DEFAULT_COST);
8122   expand %{
8123     regF tmp;
8124     MoveI2F_reg_reg(tmp, src);
8125     convI2F_helper(dst, tmp);
8126   %}
8127 %}
8128 
8129 instruct convI2F_mem( regF dst, memory mem ) %{
8130   match(Set dst (ConvI2F (LoadI mem)));
8131   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8132   format %{ "LDF    $mem,$dst\n\t"
8133             "FITOS  $dst,$dst" %}
8134   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8135   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8136   ins_pipe(floadF_mem);
8137 %}
8138 
8139 
8140 instruct convI2L_reg(iRegL dst, iRegI src) %{
8141   match(Set dst (ConvI2L src));
8142   size(4);
8143   format %{ "SRA    $src,0,$dst\t! int->long" %}
8144   opcode(Assembler::sra_op3, Assembler::arith_op);
8145   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8146   ins_pipe(ialu_reg_reg);
8147 %}
8148 
8149 // Zero-extend convert int to long
8150 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8151   match(Set dst (AndL (ConvI2L src) mask) );
8152   size(4);
8153   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8154   opcode(Assembler::srl_op3, Assembler::arith_op);
8155   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8156   ins_pipe(ialu_reg_reg);
8157 %}
8158 
8159 // Zero-extend long
8160 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8161   match(Set dst (AndL src mask) );
8162   size(4);
8163   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8164   opcode(Assembler::srl_op3, Assembler::arith_op);
8165   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8166   ins_pipe(ialu_reg_reg);
8167 %}
8168 
8169 
8170 //-----------
8171 // Long to Double conversion using V8 opcodes.
8172 // Still useful because cheetah traps and becomes
8173 // amazingly slow for some common numbers.
8174 
8175 // Magic constant, 0x43300000
8176 instruct loadConI_x43300000(iRegI dst) %{
8177   effect(DEF dst);
8178   size(4);
8179   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8180   ins_encode(SetHi22(0x43300000, dst));
8181   ins_pipe(ialu_none);
8182 %}
8183 
8184 // Magic constant, 0x41f00000
8185 instruct loadConI_x41f00000(iRegI dst) %{
8186   effect(DEF dst);
8187   size(4);
8188   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8189   ins_encode(SetHi22(0x41f00000, dst));
8190   ins_pipe(ialu_none);
8191 %}
8192 
8193 // Construct a double from two float halves
8194 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8195   effect(DEF dst, USE src1, USE src2);
8196   size(8);
8197   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8198             "FMOVS  $src2.lo,$dst.lo" %}
8199   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8200   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8201   ins_pipe(faddD_reg_reg);
8202 %}
8203 
8204 // Convert integer in high half of a double register (in the lower half of
8205 // the double register file) to double
8206 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8207   effect(DEF dst, USE src);
8208   size(4);
8209   format %{ "FITOD  $src,$dst" %}
8210   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8211   ins_encode(form3_opf_rs2D_rdD(src, dst));
8212   ins_pipe(fcvtLHi2D);
8213 %}
8214 
8215 // Add float double precision
8216 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8217   effect(DEF dst, USE src1, USE src2);
8218   size(4);
8219   format %{ "FADDD  $src1,$src2,$dst" %}
8220   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8221   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8222   ins_pipe(faddD_reg_reg);
8223 %}
8224 
8225 // Sub float double precision
8226 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8227   effect(DEF dst, USE src1, USE src2);
8228   size(4);
8229   format %{ "FSUBD  $src1,$src2,$dst" %}
8230   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8231   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8232   ins_pipe(faddD_reg_reg);
8233 %}
8234 
8235 // Mul float double precision
8236 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8237   effect(DEF dst, USE src1, USE src2);
8238   size(4);
8239   format %{ "FMULD  $src1,$src2,$dst" %}
8240   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8241   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8242   ins_pipe(fmulD_reg_reg);
8243 %}
8244 
8245 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8246   match(Set dst (ConvL2D src));
8247   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8248 
8249   expand %{
8250     regD_low   tmpsrc;
8251     iRegI      ix43300000;
8252     iRegI      ix41f00000;
8253     stackSlotL lx43300000;
8254     stackSlotL lx41f00000;
8255     regD_low   dx43300000;
8256     regD       dx41f00000;
8257     regD       tmp1;
8258     regD_low   tmp2;
8259     regD       tmp3;
8260     regD       tmp4;
8261 
8262     stkL_to_regD(tmpsrc, src);
8263 
8264     loadConI_x43300000(ix43300000);
8265     loadConI_x41f00000(ix41f00000);
8266     regI_to_stkLHi(lx43300000, ix43300000);
8267     regI_to_stkLHi(lx41f00000, ix41f00000);
8268     stkL_to_regD(dx43300000, lx43300000);
8269     stkL_to_regD(dx41f00000, lx41f00000);
8270 
8271     convI2D_regDHi_regD(tmp1, tmpsrc);
8272     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8273     subD_regD_regD(tmp3, tmp2, dx43300000);
8274     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8275     addD_regD_regD(dst, tmp3, tmp4);
8276   %}
8277 %}
8278 
8279 // Long to Double conversion using fast fxtof
8280 instruct convL2D_helper(regD dst, regD tmp) %{
8281   effect(DEF dst, USE tmp);
8282   size(4);
8283   format %{ "FXTOD  $tmp,$dst" %}
8284   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8285   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8286   ins_pipe(fcvtL2D);
8287 %}
8288 
8289 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8290   predicate(VM_Version::has_fast_fxtof());
8291   match(Set dst (ConvL2D src));
8292   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8293   expand %{
8294     regD tmp;
8295     stkL_to_regD(tmp, src);
8296     convL2D_helper(dst, tmp);
8297   %}
8298 %}
8299 
8300 instruct convL2D_reg(regD dst, iRegL src) %{
8301   predicate(UseVIS >= 3);
8302   match(Set dst (ConvL2D src));
8303   expand %{
8304     regD tmp;
8305     MoveL2D_reg_reg(tmp, src);
8306     convL2D_helper(dst, tmp);
8307   %}
8308 %}
8309 
8310 // Long to Float conversion using fast fxtof
8311 instruct convL2F_helper(regF dst, regD tmp) %{
8312   effect(DEF dst, USE tmp);
8313   size(4);
8314   format %{ "FXTOS  $tmp,$dst" %}
8315   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8316   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8317   ins_pipe(fcvtL2F);
8318 %}
8319 
8320 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8321   match(Set dst (ConvL2F src));
8322   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8323   expand %{
8324     regD tmp;
8325     stkL_to_regD(tmp, src);
8326     convL2F_helper(dst, tmp);
8327   %}
8328 %}
8329 
8330 instruct convL2F_reg(regF dst, iRegL src) %{
8331   predicate(UseVIS >= 3);
8332   match(Set dst (ConvL2F src));
8333   ins_cost(DEFAULT_COST);
8334   expand %{
8335     regD tmp;
8336     MoveL2D_reg_reg(tmp, src);
8337     convL2F_helper(dst, tmp);
8338   %}
8339 %}
8340 
8341 //-----------
8342 
8343 instruct convL2I_reg(iRegI dst, iRegL src) %{
8344   match(Set dst (ConvL2I src));
8345   size(4);
8346   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8347   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8348   ins_pipe(ialu_reg);
8349 %}
8350 
8351 // Register Shift Right Immediate
8352 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8353   match(Set dst (ConvL2I (RShiftL src cnt)));
8354 
8355   size(4);
8356   format %{ "SRAX   $src,$cnt,$dst" %}
8357   opcode(Assembler::srax_op3, Assembler::arith_op);
8358   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8359   ins_pipe(ialu_reg_imm);
8360 %}
8361 
8362 //----------Control Flow Instructions------------------------------------------
8363 // Compare Instructions
8364 // Compare Integers
8365 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8366   match(Set icc (CmpI op1 op2));
8367   effect( DEF icc, USE op1, USE op2 );
8368 
8369   size(4);
8370   format %{ "CMP    $op1,$op2" %}
8371   opcode(Assembler::subcc_op3, Assembler::arith_op);
8372   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8373   ins_pipe(ialu_cconly_reg_reg);
8374 %}
8375 
8376 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8377   match(Set icc (CmpU op1 op2));
8378 
8379   size(4);
8380   format %{ "CMP    $op1,$op2\t! unsigned" %}
8381   opcode(Assembler::subcc_op3, Assembler::arith_op);
8382   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8383   ins_pipe(ialu_cconly_reg_reg);
8384 %}
8385 
8386 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8387   match(Set icc (CmpI op1 op2));
8388   effect( DEF icc, USE op1 );
8389 
8390   size(4);
8391   format %{ "CMP    $op1,$op2" %}
8392   opcode(Assembler::subcc_op3, Assembler::arith_op);
8393   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8394   ins_pipe(ialu_cconly_reg_imm);
8395 %}
8396 
8397 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8398   match(Set icc (CmpI (AndI op1 op2) zero));
8399 
8400   size(4);
8401   format %{ "BTST   $op2,$op1" %}
8402   opcode(Assembler::andcc_op3, Assembler::arith_op);
8403   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8404   ins_pipe(ialu_cconly_reg_reg_zero);
8405 %}
8406 
8407 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8408   match(Set icc (CmpI (AndI op1 op2) zero));
8409 
8410   size(4);
8411   format %{ "BTST   $op2,$op1" %}
8412   opcode(Assembler::andcc_op3, Assembler::arith_op);
8413   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8414   ins_pipe(ialu_cconly_reg_imm_zero);
8415 %}
8416 
8417 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8418   match(Set xcc (CmpL op1 op2));
8419   effect( DEF xcc, USE op1, USE op2 );
8420 
8421   size(4);
8422   format %{ "CMP    $op1,$op2\t\t! long" %}
8423   opcode(Assembler::subcc_op3, Assembler::arith_op);
8424   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8425   ins_pipe(ialu_cconly_reg_reg);
8426 %}
8427 
8428 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8429   match(Set xcc (CmpL op1 con));
8430   effect( DEF xcc, USE op1, USE con );
8431 
8432   size(4);
8433   format %{ "CMP    $op1,$con\t\t! long" %}
8434   opcode(Assembler::subcc_op3, Assembler::arith_op);
8435   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8436   ins_pipe(ialu_cconly_reg_reg);
8437 %}
8438 
8439 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8440   match(Set xcc (CmpL (AndL op1 op2) zero));
8441   effect( DEF xcc, USE op1, USE op2 );
8442 
8443   size(4);
8444   format %{ "BTST   $op1,$op2\t\t! long" %}
8445   opcode(Assembler::andcc_op3, Assembler::arith_op);
8446   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8447   ins_pipe(ialu_cconly_reg_reg);
8448 %}
8449 
8450 // useful for checking the alignment of a pointer:
8451 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8452   match(Set xcc (CmpL (AndL op1 con) zero));
8453   effect( DEF xcc, USE op1, USE con );
8454 
8455   size(4);
8456   format %{ "BTST   $op1,$con\t\t! long" %}
8457   opcode(Assembler::andcc_op3, Assembler::arith_op);
8458   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8459   ins_pipe(ialu_cconly_reg_reg);
8460 %}
8461 
8462 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8463   match(Set icc (CmpU op1 op2));
8464 
8465   size(4);
8466   format %{ "CMP    $op1,$op2\t! unsigned" %}
8467   opcode(Assembler::subcc_op3, Assembler::arith_op);
8468   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8469   ins_pipe(ialu_cconly_reg_imm);
8470 %}
8471 
8472 // Compare Pointers
8473 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8474   match(Set pcc (CmpP op1 op2));
8475 
8476   size(4);
8477   format %{ "CMP    $op1,$op2\t! ptr" %}
8478   opcode(Assembler::subcc_op3, Assembler::arith_op);
8479   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8480   ins_pipe(ialu_cconly_reg_reg);
8481 %}
8482 
8483 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8484   match(Set pcc (CmpP op1 op2));
8485 
8486   size(4);
8487   format %{ "CMP    $op1,$op2\t! ptr" %}
8488   opcode(Assembler::subcc_op3, Assembler::arith_op);
8489   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8490   ins_pipe(ialu_cconly_reg_imm);
8491 %}
8492 
8493 // Compare Narrow oops
8494 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8495   match(Set icc (CmpN op1 op2));
8496 
8497   size(4);
8498   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8499   opcode(Assembler::subcc_op3, Assembler::arith_op);
8500   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8501   ins_pipe(ialu_cconly_reg_reg);
8502 %}
8503 
8504 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8505   match(Set icc (CmpN op1 op2));
8506 
8507   size(4);
8508   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8509   opcode(Assembler::subcc_op3, Assembler::arith_op);
8510   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8511   ins_pipe(ialu_cconly_reg_imm);
8512 %}
8513 
8514 //----------Max and Min--------------------------------------------------------
8515 // Min Instructions
8516 // Conditional move for min
8517 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8518   effect( USE_DEF op2, USE op1, USE icc );
8519 
8520   size(4);
8521   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8522   opcode(Assembler::less);
8523   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8524   ins_pipe(ialu_reg_flags);
8525 %}
8526 
8527 // Min Register with Register.
8528 instruct minI_eReg(iRegI op1, iRegI op2) %{
8529   match(Set op2 (MinI op1 op2));
8530   ins_cost(DEFAULT_COST*2);
8531   expand %{
8532     flagsReg icc;
8533     compI_iReg(icc,op1,op2);
8534     cmovI_reg_lt(op2,op1,icc);
8535   %}
8536 %}
8537 
8538 // Max Instructions
8539 // Conditional move for max
8540 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8541   effect( USE_DEF op2, USE op1, USE icc );
8542   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
8543   opcode(Assembler::greater);
8544   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8545   ins_pipe(ialu_reg_flags);
8546 %}
8547 
8548 // Max Register with Register
8549 instruct maxI_eReg(iRegI op1, iRegI op2) %{
8550   match(Set op2 (MaxI op1 op2));
8551   ins_cost(DEFAULT_COST*2);
8552   expand %{
8553     flagsReg icc;
8554     compI_iReg(icc,op1,op2);
8555     cmovI_reg_gt(op2,op1,icc);
8556   %}
8557 %}
8558 
8559 
8560 //----------Float Compares----------------------------------------------------
8561 // Compare floating, generate condition code
8562 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
8563   match(Set fcc (CmpF src1 src2));
8564 
8565   size(4);
8566   format %{ "FCMPs  $fcc,$src1,$src2" %}
8567   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
8568   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
8569   ins_pipe(faddF_fcc_reg_reg_zero);
8570 %}
8571 
8572 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
8573   match(Set fcc (CmpD src1 src2));
8574 
8575   size(4);
8576   format %{ "FCMPd  $fcc,$src1,$src2" %}
8577   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
8578   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
8579   ins_pipe(faddD_fcc_reg_reg_zero);
8580 %}
8581 
8582 
8583 // Compare floating, generate -1,0,1
8584 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
8585   match(Set dst (CmpF3 src1 src2));
8586   effect(KILL fcc0);
8587   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8588   format %{ "fcmpl  $dst,$src1,$src2" %}
8589   // Primary = float
8590   opcode( true );
8591   ins_encode( floating_cmp( dst, src1, src2 ) );
8592   ins_pipe( floating_cmp );
8593 %}
8594 
8595 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
8596   match(Set dst (CmpD3 src1 src2));
8597   effect(KILL fcc0);
8598   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
8599   format %{ "dcmpl  $dst,$src1,$src2" %}
8600   // Primary = double (not float)
8601   opcode( false );
8602   ins_encode( floating_cmp( dst, src1, src2 ) );
8603   ins_pipe( floating_cmp );
8604 %}
8605 
8606 //----------Branches---------------------------------------------------------
8607 // Jump
8608 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
8609 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
8610   match(Jump switch_val);
8611   effect(TEMP table);
8612 
8613   ins_cost(350);
8614 
8615   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
8616              "LD     [O7 + $switch_val], O7\n\t"
8617              "JUMP   O7" %}
8618   ins_encode %{
8619     // Calculate table address into a register.
8620     Register table_reg;
8621     Register label_reg = O7;
8622     // If we are calculating the size of this instruction don't trust
8623     // zero offsets because they might change when
8624     // MachConstantBaseNode decides to optimize the constant table
8625     // base.
8626     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
8627       table_reg = $constanttablebase;
8628     } else {
8629       table_reg = O7;
8630       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
8631       __ add($constanttablebase, con_offset, table_reg);
8632     }
8633 
8634     // Jump to base address + switch value
8635     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
8636     __ jmp(label_reg, G0);
8637     __ delayed()->nop();
8638   %}
8639   ins_pipe(ialu_reg_reg);
8640 %}
8641 
8642 // Direct Branch.  Use V8 version with longer range.
8643 instruct branch(label labl) %{
8644   match(Goto);
8645   effect(USE labl);
8646 
8647   size(8);
8648   ins_cost(BRANCH_COST);
8649   format %{ "BA     $labl" %}
8650   ins_encode %{
8651     Label* L = $labl$$label;
8652     __ ba(*L);
8653     __ delayed()->nop();
8654   %}
8655   ins_avoid_back_to_back(AVOID_BEFORE);
8656   ins_pipe(br);
8657 %}
8658 
8659 // Direct Branch, short with no delay slot
8660 instruct branch_short(label labl) %{
8661   match(Goto);
8662   predicate(UseCBCond);
8663   effect(USE labl);
8664 
8665   size(4);
8666   ins_cost(BRANCH_COST);
8667   format %{ "BA     $labl\t! short branch" %}
8668   ins_encode %{
8669     Label* L = $labl$$label;
8670     assert(__ use_cbcond(*L), "back to back cbcond");
8671     __ ba_short(*L);
8672   %}
8673   ins_short_branch(1);
8674   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
8675   ins_pipe(cbcond_reg_imm);
8676 %}
8677 
8678 // Conditional Direct Branch
8679 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
8680   match(If cmp icc);
8681   effect(USE labl);
8682 
8683   size(8);
8684   ins_cost(BRANCH_COST);
8685   format %{ "BP$cmp   $icc,$labl" %}
8686   // Prim = bits 24-22, Secnd = bits 31-30
8687   ins_encode( enc_bp( labl, cmp, icc ) );
8688   ins_avoid_back_to_back(AVOID_BEFORE);
8689   ins_pipe(br_cc);
8690 %}
8691 
8692 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
8693   match(If cmp icc);
8694   effect(USE labl);
8695 
8696   ins_cost(BRANCH_COST);
8697   format %{ "BP$cmp  $icc,$labl" %}
8698   // Prim = bits 24-22, Secnd = bits 31-30
8699   ins_encode( enc_bp( labl, cmp, icc ) );
8700   ins_avoid_back_to_back(AVOID_BEFORE);
8701   ins_pipe(br_cc);
8702 %}
8703 
8704 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
8705   match(If cmp pcc);
8706   effect(USE labl);
8707 
8708   size(8);
8709   ins_cost(BRANCH_COST);
8710   format %{ "BP$cmp  $pcc,$labl" %}
8711   ins_encode %{
8712     Label* L = $labl$$label;
8713     Assembler::Predict predict_taken =
8714       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8715 
8716     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
8717     __ delayed()->nop();
8718   %}
8719   ins_avoid_back_to_back(AVOID_BEFORE);
8720   ins_pipe(br_cc);
8721 %}
8722 
8723 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
8724   match(If cmp fcc);
8725   effect(USE labl);
8726 
8727   size(8);
8728   ins_cost(BRANCH_COST);
8729   format %{ "FBP$cmp $fcc,$labl" %}
8730   ins_encode %{
8731     Label* L = $labl$$label;
8732     Assembler::Predict predict_taken =
8733       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8734 
8735     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
8736     __ delayed()->nop();
8737   %}
8738   ins_avoid_back_to_back(AVOID_BEFORE);
8739   ins_pipe(br_fcc);
8740 %}
8741 
8742 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
8743   match(CountedLoopEnd cmp icc);
8744   effect(USE labl);
8745 
8746   size(8);
8747   ins_cost(BRANCH_COST);
8748   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
8749   // Prim = bits 24-22, Secnd = bits 31-30
8750   ins_encode( enc_bp( labl, cmp, icc ) );
8751   ins_avoid_back_to_back(AVOID_BEFORE);
8752   ins_pipe(br_cc);
8753 %}
8754 
8755 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
8756   match(CountedLoopEnd cmp icc);
8757   effect(USE labl);
8758 
8759   size(8);
8760   ins_cost(BRANCH_COST);
8761   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
8762   // Prim = bits 24-22, Secnd = bits 31-30
8763   ins_encode( enc_bp( labl, cmp, icc ) );
8764   ins_avoid_back_to_back(AVOID_BEFORE);
8765   ins_pipe(br_cc);
8766 %}
8767 
8768 // Compare and branch instructions
8769 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
8770   match(If cmp (CmpI op1 op2));
8771   effect(USE labl, KILL icc);
8772 
8773   size(12);
8774   ins_cost(BRANCH_COST);
8775   format %{ "CMP    $op1,$op2\t! int\n\t"
8776             "BP$cmp   $labl" %}
8777   ins_encode %{
8778     Label* L = $labl$$label;
8779     Assembler::Predict predict_taken =
8780       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8781     __ cmp($op1$$Register, $op2$$Register);
8782     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8783     __ delayed()->nop();
8784   %}
8785   ins_pipe(cmp_br_reg_reg);
8786 %}
8787 
8788 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
8789   match(If cmp (CmpI op1 op2));
8790   effect(USE labl, KILL icc);
8791 
8792   size(12);
8793   ins_cost(BRANCH_COST);
8794   format %{ "CMP    $op1,$op2\t! int\n\t"
8795             "BP$cmp   $labl" %}
8796   ins_encode %{
8797     Label* L = $labl$$label;
8798     Assembler::Predict predict_taken =
8799       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8800     __ cmp($op1$$Register, $op2$$constant);
8801     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8802     __ delayed()->nop();
8803   %}
8804   ins_pipe(cmp_br_reg_imm);
8805 %}
8806 
8807 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
8808   match(If cmp (CmpU op1 op2));
8809   effect(USE labl, KILL icc);
8810 
8811   size(12);
8812   ins_cost(BRANCH_COST);
8813   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
8814             "BP$cmp  $labl" %}
8815   ins_encode %{
8816     Label* L = $labl$$label;
8817     Assembler::Predict predict_taken =
8818       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8819     __ cmp($op1$$Register, $op2$$Register);
8820     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8821     __ delayed()->nop();
8822   %}
8823   ins_pipe(cmp_br_reg_reg);
8824 %}
8825 
8826 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
8827   match(If cmp (CmpU op1 op2));
8828   effect(USE labl, KILL icc);
8829 
8830   size(12);
8831   ins_cost(BRANCH_COST);
8832   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
8833             "BP$cmp  $labl" %}
8834   ins_encode %{
8835     Label* L = $labl$$label;
8836     Assembler::Predict predict_taken =
8837       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8838     __ cmp($op1$$Register, $op2$$constant);
8839     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8840     __ delayed()->nop();
8841   %}
8842   ins_pipe(cmp_br_reg_imm);
8843 %}
8844 
8845 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
8846   match(If cmp (CmpL op1 op2));
8847   effect(USE labl, KILL xcc);
8848 
8849   size(12);
8850   ins_cost(BRANCH_COST);
8851   format %{ "CMP    $op1,$op2\t! long\n\t"
8852             "BP$cmp   $labl" %}
8853   ins_encode %{
8854     Label* L = $labl$$label;
8855     Assembler::Predict predict_taken =
8856       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8857     __ cmp($op1$$Register, $op2$$Register);
8858     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
8859     __ delayed()->nop();
8860   %}
8861   ins_pipe(cmp_br_reg_reg);
8862 %}
8863 
8864 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
8865   match(If cmp (CmpL op1 op2));
8866   effect(USE labl, KILL xcc);
8867 
8868   size(12);
8869   ins_cost(BRANCH_COST);
8870   format %{ "CMP    $op1,$op2\t! long\n\t"
8871             "BP$cmp   $labl" %}
8872   ins_encode %{
8873     Label* L = $labl$$label;
8874     Assembler::Predict predict_taken =
8875       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8876     __ cmp($op1$$Register, $op2$$constant);
8877     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
8878     __ delayed()->nop();
8879   %}
8880   ins_pipe(cmp_br_reg_imm);
8881 %}
8882 
8883 // Compare Pointers and branch
8884 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
8885   match(If cmp (CmpP op1 op2));
8886   effect(USE labl, KILL pcc);
8887 
8888   size(12);
8889   ins_cost(BRANCH_COST);
8890   format %{ "CMP    $op1,$op2\t! ptr\n\t"
8891             "B$cmp   $labl" %}
8892   ins_encode %{
8893     Label* L = $labl$$label;
8894     Assembler::Predict predict_taken =
8895       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8896     __ cmp($op1$$Register, $op2$$Register);
8897     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
8898     __ delayed()->nop();
8899   %}
8900   ins_pipe(cmp_br_reg_reg);
8901 %}
8902 
8903 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
8904   match(If cmp (CmpP op1 null));
8905   effect(USE labl, KILL pcc);
8906 
8907   size(12);
8908   ins_cost(BRANCH_COST);
8909   format %{ "CMP    $op1,0\t! ptr\n\t"
8910             "B$cmp   $labl" %}
8911   ins_encode %{
8912     Label* L = $labl$$label;
8913     Assembler::Predict predict_taken =
8914       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8915     __ cmp($op1$$Register, G0);
8916     // bpr() is not used here since it has shorter distance.
8917     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
8918     __ delayed()->nop();
8919   %}
8920   ins_pipe(cmp_br_reg_reg);
8921 %}
8922 
8923 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
8924   match(If cmp (CmpN op1 op2));
8925   effect(USE labl, KILL icc);
8926 
8927   size(12);
8928   ins_cost(BRANCH_COST);
8929   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
8930             "BP$cmp   $labl" %}
8931   ins_encode %{
8932     Label* L = $labl$$label;
8933     Assembler::Predict predict_taken =
8934       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8935     __ cmp($op1$$Register, $op2$$Register);
8936     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8937     __ delayed()->nop();
8938   %}
8939   ins_pipe(cmp_br_reg_reg);
8940 %}
8941 
8942 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
8943   match(If cmp (CmpN op1 null));
8944   effect(USE labl, KILL icc);
8945 
8946   size(12);
8947   ins_cost(BRANCH_COST);
8948   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
8949             "BP$cmp   $labl" %}
8950   ins_encode %{
8951     Label* L = $labl$$label;
8952     Assembler::Predict predict_taken =
8953       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8954     __ cmp($op1$$Register, G0);
8955     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8956     __ delayed()->nop();
8957   %}
8958   ins_pipe(cmp_br_reg_reg);
8959 %}
8960 
8961 // Loop back branch
8962 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
8963   match(CountedLoopEnd cmp (CmpI op1 op2));
8964   effect(USE labl, KILL icc);
8965 
8966   size(12);
8967   ins_cost(BRANCH_COST);
8968   format %{ "CMP    $op1,$op2\t! int\n\t"
8969             "BP$cmp   $labl\t! Loop end" %}
8970   ins_encode %{
8971     Label* L = $labl$$label;
8972     Assembler::Predict predict_taken =
8973       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8974     __ cmp($op1$$Register, $op2$$Register);
8975     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8976     __ delayed()->nop();
8977   %}
8978   ins_pipe(cmp_br_reg_reg);
8979 %}
8980 
8981 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
8982   match(CountedLoopEnd cmp (CmpI op1 op2));
8983   effect(USE labl, KILL icc);
8984 
8985   size(12);
8986   ins_cost(BRANCH_COST);
8987   format %{ "CMP    $op1,$op2\t! int\n\t"
8988             "BP$cmp   $labl\t! Loop end" %}
8989   ins_encode %{
8990     Label* L = $labl$$label;
8991     Assembler::Predict predict_taken =
8992       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
8993     __ cmp($op1$$Register, $op2$$constant);
8994     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
8995     __ delayed()->nop();
8996   %}
8997   ins_pipe(cmp_br_reg_imm);
8998 %}
8999 
9000 // Short compare and branch instructions
9001 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9002   match(If cmp (CmpI op1 op2));
9003   predicate(UseCBCond);
9004   effect(USE labl, KILL icc);
9005 
9006   size(4);
9007   ins_cost(BRANCH_COST);
9008   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9009   ins_encode %{
9010     Label* L = $labl$$label;
9011     assert(__ use_cbcond(*L), "back to back cbcond");
9012     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9013   %}
9014   ins_short_branch(1);
9015   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9016   ins_pipe(cbcond_reg_reg);
9017 %}
9018 
9019 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9020   match(If cmp (CmpI op1 op2));
9021   predicate(UseCBCond);
9022   effect(USE labl, KILL icc);
9023 
9024   size(4);
9025   ins_cost(BRANCH_COST);
9026   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9027   ins_encode %{
9028     Label* L = $labl$$label;
9029     assert(__ use_cbcond(*L), "back to back cbcond");
9030     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9031   %}
9032   ins_short_branch(1);
9033   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9034   ins_pipe(cbcond_reg_imm);
9035 %}
9036 
9037 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9038   match(If cmp (CmpU op1 op2));
9039   predicate(UseCBCond);
9040   effect(USE labl, KILL icc);
9041 
9042   size(4);
9043   ins_cost(BRANCH_COST);
9044   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9045   ins_encode %{
9046     Label* L = $labl$$label;
9047     assert(__ use_cbcond(*L), "back to back cbcond");
9048     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9049   %}
9050   ins_short_branch(1);
9051   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9052   ins_pipe(cbcond_reg_reg);
9053 %}
9054 
9055 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9056   match(If cmp (CmpU op1 op2));
9057   predicate(UseCBCond);
9058   effect(USE labl, KILL icc);
9059 
9060   size(4);
9061   ins_cost(BRANCH_COST);
9062   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9063   ins_encode %{
9064     Label* L = $labl$$label;
9065     assert(__ use_cbcond(*L), "back to back cbcond");
9066     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9067   %}
9068   ins_short_branch(1);
9069   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9070   ins_pipe(cbcond_reg_imm);
9071 %}
9072 
9073 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9074   match(If cmp (CmpL op1 op2));
9075   predicate(UseCBCond);
9076   effect(USE labl, KILL xcc);
9077 
9078   size(4);
9079   ins_cost(BRANCH_COST);
9080   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9081   ins_encode %{
9082     Label* L = $labl$$label;
9083     assert(__ use_cbcond(*L), "back to back cbcond");
9084     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9085   %}
9086   ins_short_branch(1);
9087   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9088   ins_pipe(cbcond_reg_reg);
9089 %}
9090 
9091 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9092   match(If cmp (CmpL op1 op2));
9093   predicate(UseCBCond);
9094   effect(USE labl, KILL xcc);
9095 
9096   size(4);
9097   ins_cost(BRANCH_COST);
9098   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9099   ins_encode %{
9100     Label* L = $labl$$label;
9101     assert(__ use_cbcond(*L), "back to back cbcond");
9102     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9103   %}
9104   ins_short_branch(1);
9105   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9106   ins_pipe(cbcond_reg_imm);
9107 %}
9108 
9109 // Compare Pointers and branch
9110 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9111   match(If cmp (CmpP op1 op2));
9112   predicate(UseCBCond);
9113   effect(USE labl, KILL pcc);
9114 
9115   size(4);
9116   ins_cost(BRANCH_COST);
9117   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9118   ins_encode %{
9119     Label* L = $labl$$label;
9120     assert(__ use_cbcond(*L), "back to back cbcond");
9121     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9122   %}
9123   ins_short_branch(1);
9124   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9125   ins_pipe(cbcond_reg_reg);
9126 %}
9127 
9128 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9129   match(If cmp (CmpP op1 null));
9130   predicate(UseCBCond);
9131   effect(USE labl, KILL pcc);
9132 
9133   size(4);
9134   ins_cost(BRANCH_COST);
9135   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9136   ins_encode %{
9137     Label* L = $labl$$label;
9138     assert(__ use_cbcond(*L), "back to back cbcond");
9139     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9140   %}
9141   ins_short_branch(1);
9142   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9143   ins_pipe(cbcond_reg_reg);
9144 %}
9145 
9146 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9147   match(If cmp (CmpN op1 op2));
9148   predicate(UseCBCond);
9149   effect(USE labl, KILL icc);
9150 
9151   size(4);
9152   ins_cost(BRANCH_COST);
9153   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9154   ins_encode %{
9155     Label* L = $labl$$label;
9156     assert(__ use_cbcond(*L), "back to back cbcond");
9157     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9158   %}
9159   ins_short_branch(1);
9160   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9161   ins_pipe(cbcond_reg_reg);
9162 %}
9163 
9164 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9165   match(If cmp (CmpN op1 null));
9166   predicate(UseCBCond);
9167   effect(USE labl, KILL icc);
9168 
9169   size(4);
9170   ins_cost(BRANCH_COST);
9171   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9172   ins_encode %{
9173     Label* L = $labl$$label;
9174     assert(__ use_cbcond(*L), "back to back cbcond");
9175     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9176   %}
9177   ins_short_branch(1);
9178   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9179   ins_pipe(cbcond_reg_reg);
9180 %}
9181 
9182 // Loop back branch
9183 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9184   match(CountedLoopEnd cmp (CmpI op1 op2));
9185   predicate(UseCBCond);
9186   effect(USE labl, KILL icc);
9187 
9188   size(4);
9189   ins_cost(BRANCH_COST);
9190   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9191   ins_encode %{
9192     Label* L = $labl$$label;
9193     assert(__ use_cbcond(*L), "back to back cbcond");
9194     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9195   %}
9196   ins_short_branch(1);
9197   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9198   ins_pipe(cbcond_reg_reg);
9199 %}
9200 
9201 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9202   match(CountedLoopEnd cmp (CmpI op1 op2));
9203   predicate(UseCBCond);
9204   effect(USE labl, KILL icc);
9205 
9206   size(4);
9207   ins_cost(BRANCH_COST);
9208   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9209   ins_encode %{
9210     Label* L = $labl$$label;
9211     assert(__ use_cbcond(*L), "back to back cbcond");
9212     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9213   %}
9214   ins_short_branch(1);
9215   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9216   ins_pipe(cbcond_reg_imm);
9217 %}
9218 
9219 // Branch-on-register tests all 64 bits.  We assume that values
9220 // in 64-bit registers always remains zero or sign extended
9221 // unless our code munges the high bits.  Interrupts can chop
9222 // the high order bits to zero or sign at any time.
9223 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9224   match(If cmp (CmpI op1 zero));
9225   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9226   effect(USE labl);
9227 
9228   size(8);
9229   ins_cost(BRANCH_COST);
9230   format %{ "BR$cmp   $op1,$labl" %}
9231   ins_encode( enc_bpr( labl, cmp, op1 ) );
9232   ins_avoid_back_to_back(AVOID_BEFORE);
9233   ins_pipe(br_reg);
9234 %}
9235 
9236 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9237   match(If cmp (CmpP op1 null));
9238   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9239   effect(USE labl);
9240 
9241   size(8);
9242   ins_cost(BRANCH_COST);
9243   format %{ "BR$cmp   $op1,$labl" %}
9244   ins_encode( enc_bpr( labl, cmp, op1 ) );
9245   ins_avoid_back_to_back(AVOID_BEFORE);
9246   ins_pipe(br_reg);
9247 %}
9248 
9249 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9250   match(If cmp (CmpL op1 zero));
9251   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9252   effect(USE labl);
9253 
9254   size(8);
9255   ins_cost(BRANCH_COST);
9256   format %{ "BR$cmp   $op1,$labl" %}
9257   ins_encode( enc_bpr( labl, cmp, op1 ) );
9258   ins_avoid_back_to_back(AVOID_BEFORE);
9259   ins_pipe(br_reg);
9260 %}
9261 
9262 
9263 // ============================================================================
9264 // Long Compare
9265 //
9266 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9267 // is tricky.  The flavor of compare used depends on whether we are testing
9268 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9269 // The GE test is the negated LT test.  The LE test can be had by commuting
9270 // the operands (yielding a GE test) and then negating; negate again for the
9271 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9272 // NE test is negated from that.
9273 
9274 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9275 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9276 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9277 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9278 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9279 // foo match ends up with the wrong leaf.  One fix is to not match both
9280 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9281 // both forms beat the trinary form of long-compare and both are very useful
9282 // on Intel which has so few registers.
9283 
9284 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9285   match(If cmp xcc);
9286   effect(USE labl);
9287 
9288   size(8);
9289   ins_cost(BRANCH_COST);
9290   format %{ "BP$cmp   $xcc,$labl" %}
9291   ins_encode %{
9292     Label* L = $labl$$label;
9293     Assembler::Predict predict_taken =
9294       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9295 
9296     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9297     __ delayed()->nop();
9298   %}
9299   ins_avoid_back_to_back(AVOID_BEFORE);
9300   ins_pipe(br_cc);
9301 %}
9302 
9303 // Manifest a CmpL3 result in an integer register.  Very painful.
9304 // This is the test to avoid.
9305 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9306   match(Set dst (CmpL3 src1 src2) );
9307   effect( KILL ccr );
9308   ins_cost(6*DEFAULT_COST);
9309   size(24);
9310   format %{ "CMP    $src1,$src2\t\t! long\n"
9311           "\tBLT,a,pn done\n"
9312           "\tMOV    -1,$dst\t! delay slot\n"
9313           "\tBGT,a,pn done\n"
9314           "\tMOV    1,$dst\t! delay slot\n"
9315           "\tCLR    $dst\n"
9316     "done:"     %}
9317   ins_encode( cmpl_flag(src1,src2,dst) );
9318   ins_pipe(cmpL_reg);
9319 %}
9320 
9321 // Conditional move
9322 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9323   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9324   ins_cost(150);
9325   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9326   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9327   ins_pipe(ialu_reg);
9328 %}
9329 
9330 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9331   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9332   ins_cost(140);
9333   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9334   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9335   ins_pipe(ialu_imm);
9336 %}
9337 
9338 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9339   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9340   ins_cost(150);
9341   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9342   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9343   ins_pipe(ialu_reg);
9344 %}
9345 
9346 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9347   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9348   ins_cost(140);
9349   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9350   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9351   ins_pipe(ialu_imm);
9352 %}
9353 
9354 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9355   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9356   ins_cost(150);
9357   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9358   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9359   ins_pipe(ialu_reg);
9360 %}
9361 
9362 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9363   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9364   ins_cost(150);
9365   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9366   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9367   ins_pipe(ialu_reg);
9368 %}
9369 
9370 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9371   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9372   ins_cost(140);
9373   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9374   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9375   ins_pipe(ialu_imm);
9376 %}
9377 
9378 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9379   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9380   ins_cost(150);
9381   opcode(0x101);
9382   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9383   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9384   ins_pipe(int_conditional_float_move);
9385 %}
9386 
9387 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9388   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9389   ins_cost(150);
9390   opcode(0x102);
9391   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9392   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9393   ins_pipe(int_conditional_float_move);
9394 %}
9395 
9396 // ============================================================================
9397 // Safepoint Instruction
9398 instruct safePoint_poll(iRegP poll) %{
9399   match(SafePoint poll);
9400   effect(USE poll);
9401 
9402   size(4);
9403   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9404   ins_encode %{
9405     __ relocate(relocInfo::poll_type);
9406     __ ld_ptr($poll$$Register, 0, G0);
9407   %}
9408   ins_pipe(loadPollP);
9409 %}
9410 
9411 // ============================================================================
9412 // Call Instructions
9413 // Call Java Static Instruction
9414 instruct CallStaticJavaDirect( method meth ) %{
9415   match(CallStaticJava);
9416   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9417   effect(USE meth);
9418 
9419   size(8);
9420   ins_cost(CALL_COST);
9421   format %{ "CALL,static  ; NOP ==> " %}
9422   ins_encode( Java_Static_Call( meth ), call_epilog );
9423   ins_avoid_back_to_back(AVOID_BEFORE);
9424   ins_pipe(simple_call);
9425 %}
9426 
9427 // Call Java Static Instruction (method handle version)
9428 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9429   match(CallStaticJava);
9430   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9431   effect(USE meth, KILL l7_mh_SP_save);
9432 
9433   size(16);
9434   ins_cost(CALL_COST);
9435   format %{ "CALL,static/MethodHandle" %}
9436   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9437   ins_pipe(simple_call);
9438 %}
9439 
9440 // Call Java Dynamic Instruction
9441 instruct CallDynamicJavaDirect( method meth ) %{
9442   match(CallDynamicJava);
9443   effect(USE meth);
9444 
9445   ins_cost(CALL_COST);
9446   format %{ "SET    (empty),R_G5\n\t"
9447             "CALL,dynamic  ; NOP ==> " %}
9448   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9449   ins_pipe(call);
9450 %}
9451 
9452 // Call Runtime Instruction
9453 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9454   match(CallRuntime);
9455   effect(USE meth, KILL l7);
9456   ins_cost(CALL_COST);
9457   format %{ "CALL,runtime" %}
9458   ins_encode( Java_To_Runtime( meth ),
9459               call_epilog, adjust_long_from_native_call );
9460   ins_avoid_back_to_back(AVOID_BEFORE);
9461   ins_pipe(simple_call);
9462 %}
9463 
9464 // Call runtime without safepoint - same as CallRuntime
9465 instruct CallLeafDirect(method meth, l7RegP l7) %{
9466   match(CallLeaf);
9467   effect(USE meth, KILL l7);
9468   ins_cost(CALL_COST);
9469   format %{ "CALL,runtime leaf" %}
9470   ins_encode( Java_To_Runtime( meth ),
9471               call_epilog,
9472               adjust_long_from_native_call );
9473   ins_avoid_back_to_back(AVOID_BEFORE);
9474   ins_pipe(simple_call);
9475 %}
9476 
9477 // Call runtime without safepoint - same as CallLeaf
9478 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9479   match(CallLeafNoFP);
9480   effect(USE meth, KILL l7);
9481   ins_cost(CALL_COST);
9482   format %{ "CALL,runtime leaf nofp" %}
9483   ins_encode( Java_To_Runtime( meth ),
9484               call_epilog,
9485               adjust_long_from_native_call );
9486   ins_avoid_back_to_back(AVOID_BEFORE);
9487   ins_pipe(simple_call);
9488 %}
9489 
9490 // Tail Call; Jump from runtime stub to Java code.
9491 // Also known as an 'interprocedural jump'.
9492 // Target of jump will eventually return to caller.
9493 // TailJump below removes the return address.
9494 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9495   match(TailCall jump_target method_oop );
9496 
9497   ins_cost(CALL_COST);
9498   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9499   ins_encode(form_jmpl(jump_target));
9500   ins_avoid_back_to_back(AVOID_BEFORE);
9501   ins_pipe(tail_call);
9502 %}
9503 
9504 
9505 // Return Instruction
9506 instruct Ret() %{
9507   match(Return);
9508 
9509   // The epilogue node did the ret already.
9510   size(0);
9511   format %{ "! return" %}
9512   ins_encode();
9513   ins_pipe(empty);
9514 %}
9515 
9516 
9517 // Tail Jump; remove the return address; jump to target.
9518 // TailCall above leaves the return address around.
9519 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9520 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9521 // "restore" before this instruction (in Epilogue), we need to materialize it
9522 // in %i0.
9523 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9524   match( TailJump jump_target ex_oop );
9525   ins_cost(CALL_COST);
9526   format %{ "! discard R_O7\n\t"
9527             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9528   ins_encode(form_jmpl_set_exception_pc(jump_target));
9529   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9530   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9531   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9532   ins_avoid_back_to_back(AVOID_BEFORE);
9533   ins_pipe(tail_call);
9534 %}
9535 
9536 // Create exception oop: created by stack-crawling runtime code.
9537 // Created exception is now available to this handler, and is setup
9538 // just prior to jumping to this handler.  No code emitted.
9539 instruct CreateException( o0RegP ex_oop )
9540 %{
9541   match(Set ex_oop (CreateEx));
9542   ins_cost(0);
9543 
9544   size(0);
9545   // use the following format syntax
9546   format %{ "! exception oop is in R_O0; no code emitted" %}
9547   ins_encode();
9548   ins_pipe(empty);
9549 %}
9550 
9551 
9552 // Rethrow exception:
9553 // The exception oop will come in the first argument position.
9554 // Then JUMP (not call) to the rethrow stub code.
9555 instruct RethrowException()
9556 %{
9557   match(Rethrow);
9558   ins_cost(CALL_COST);
9559 
9560   // use the following format syntax
9561   format %{ "Jmp    rethrow_stub" %}
9562   ins_encode(enc_rethrow);
9563   ins_avoid_back_to_back(AVOID_BEFORE);
9564   ins_pipe(tail_call);
9565 %}
9566 
9567 
9568 // Die now
9569 instruct ShouldNotReachHere( )
9570 %{
9571   match(Halt);
9572   ins_cost(CALL_COST);
9573 
9574   size(4);
9575   // Use the following format syntax
9576   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
9577   ins_encode( form2_illtrap() );
9578   ins_pipe(tail_call);
9579 %}
9580 
9581 // ============================================================================
9582 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
9583 // array for an instance of the superklass.  Set a hidden internal cache on a
9584 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
9585 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
9586 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
9587   match(Set index (PartialSubtypeCheck sub super));
9588   effect( KILL pcc, KILL o7 );
9589   ins_cost(DEFAULT_COST*10);
9590   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
9591   ins_encode( enc_PartialSubtypeCheck() );
9592   ins_avoid_back_to_back(AVOID_BEFORE);
9593   ins_pipe(partial_subtype_check_pipe);
9594 %}
9595 
9596 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
9597   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
9598   effect( KILL idx, KILL o7 );
9599   ins_cost(DEFAULT_COST*10);
9600   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
9601   ins_encode( enc_PartialSubtypeCheck() );
9602   ins_avoid_back_to_back(AVOID_BEFORE);
9603   ins_pipe(partial_subtype_check_pipe);
9604 %}
9605 
9606 
9607 // ============================================================================
9608 // inlined locking and unlocking
9609 
9610 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9611   match(Set pcc (FastLock object box));
9612 
9613   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9614   ins_cost(100);
9615 
9616   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9617   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
9618   ins_pipe(long_memory_op);
9619 %}
9620 
9621 
9622 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
9623   match(Set pcc (FastUnlock object box));
9624   effect(TEMP scratch2, USE_KILL box, KILL scratch);
9625   ins_cost(100);
9626 
9627   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
9628   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
9629   ins_pipe(long_memory_op);
9630 %}
9631 
9632 // The encodings are generic.
9633 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
9634   predicate(!use_block_zeroing(n->in(2)) );
9635   match(Set dummy (ClearArray cnt base));
9636   effect(TEMP temp, KILL ccr);
9637   ins_cost(300);
9638   format %{ "MOV    $cnt,$temp\n"
9639     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
9640     "        BRge   loop\t\t! Clearing loop\n"
9641     "        STX    G0,[$base+$temp]\t! delay slot" %}
9642 
9643   ins_encode %{
9644     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
9645     Register nof_bytes_arg    = $cnt$$Register;
9646     Register nof_bytes_tmp    = $temp$$Register;
9647     Register base_pointer_arg = $base$$Register;
9648 
9649     Label loop;
9650     __ mov(nof_bytes_arg, nof_bytes_tmp);
9651 
9652     // Loop and clear, walking backwards through the array.
9653     // nof_bytes_tmp (if >0) is always the number of bytes to zero
9654     __ bind(loop);
9655     __ deccc(nof_bytes_tmp, 8);
9656     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
9657     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
9658     // %%%% this mini-loop must not cross a cache boundary!
9659   %}
9660   ins_pipe(long_memory_op);
9661 %}
9662 
9663 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
9664   predicate(use_block_zeroing(n->in(2)));
9665   match(Set dummy (ClearArray cnt base));
9666   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
9667   ins_cost(300);
9668   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
9669 
9670   ins_encode %{
9671 
9672     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
9673     Register to    = $base$$Register;
9674     Register count = $cnt$$Register;
9675 
9676     Label Ldone;
9677     __ nop(); // Separate short branches
9678     // Use BIS for zeroing (temp is not used).
9679     __ bis_zeroing(to, count, G0, Ldone);
9680     __ bind(Ldone);
9681 
9682   %}
9683   ins_pipe(long_memory_op);
9684 %}
9685 
9686 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
9687   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
9688   match(Set dummy (ClearArray cnt base));
9689   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
9690   ins_cost(300);
9691   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
9692 
9693   ins_encode %{
9694 
9695     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
9696     Register to    = $base$$Register;
9697     Register count = $cnt$$Register;
9698     Register temp  = $tmp$$Register;
9699 
9700     Label Ldone;
9701     __ nop(); // Separate short branches
9702     // Use BIS for zeroing
9703     __ bis_zeroing(to, count, temp, Ldone);
9704     __ bind(Ldone);
9705 
9706   %}
9707   ins_pipe(long_memory_op);
9708 %}
9709 
9710 instruct string_compareL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9711                          o7RegI tmp, flagsReg ccr) %{
9712   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LL);
9713   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9714   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9715   ins_cost(300);
9716   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9717   ins_encode %{
9718     __ string_compare($str1$$Register, $str2$$Register,
9719                       $cnt1$$Register, $cnt2$$Register,
9720                       $tmp$$Register, $tmp$$Register,
9721                       $result$$Register, StrIntrinsicNode::LL);
9722   %}
9723   ins_pipe(long_memory_op);
9724 %}
9725 
9726 instruct string_compareU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9727                          o7RegI tmp, flagsReg ccr) %{
9728   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UU);
9729   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9730   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
9731   ins_cost(300);
9732   format %{ "String Compare char[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
9733   ins_encode %{
9734     __ string_compare($str1$$Register, $str2$$Register,
9735                       $cnt1$$Register, $cnt2$$Register,
9736                       $tmp$$Register, $tmp$$Register,
9737                       $result$$Register, StrIntrinsicNode::UU);
9738   %}
9739   ins_pipe(long_memory_op);
9740 %}
9741 
9742 instruct string_compareLU(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9743                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
9744   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::LU);
9745   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9746   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
9747   ins_cost(300);
9748   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
9749   ins_encode %{
9750     __ string_compare($str1$$Register, $str2$$Register,
9751                       $cnt1$$Register, $cnt2$$Register,
9752                       $tmp1$$Register, $tmp2$$Register,
9753                       $result$$Register, StrIntrinsicNode::LU);
9754   %}
9755   ins_pipe(long_memory_op);
9756 %}
9757 
9758 instruct string_compareUL(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
9759                           o7RegI tmp1, g1RegI tmp2, flagsReg ccr) %{
9760   predicate(((StrCompNode*)n)->encoding() == StrIntrinsicNode::UL);
9761   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
9762   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp1, KILL tmp2);
9763   ins_cost(300);
9764   format %{ "String Compare byte[] $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp1,$tmp2" %}
9765   ins_encode %{
9766     __ string_compare($str2$$Register, $str1$$Register,
9767                       $cnt2$$Register, $cnt1$$Register,
9768                       $tmp1$$Register, $tmp2$$Register,
9769                       $result$$Register, StrIntrinsicNode::UL);
9770   %}
9771   ins_pipe(long_memory_op);
9772 %}
9773 
9774 instruct string_equalsL(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9775                         o7RegI tmp, flagsReg ccr) %{
9776   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
9777   match(Set result (StrEquals (Binary str1 str2) cnt));
9778   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9779   ins_cost(300);
9780   format %{ "String Equals byte[] $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9781   ins_encode %{
9782     __ array_equals(false, $str1$$Register, $str2$$Register,
9783                     $cnt$$Register, $tmp$$Register,
9784                     $result$$Register, true /* byte */);
9785   %}
9786   ins_pipe(long_memory_op);
9787 %}
9788 
9789 instruct string_equalsU(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
9790                         o7RegI tmp, flagsReg ccr) %{
9791   predicate(((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
9792   match(Set result (StrEquals (Binary str1 str2) cnt));
9793   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
9794   ins_cost(300);
9795   format %{ "String Equals char[]  $str1,$str2,$cnt -> $result   // KILL $tmp" %}
9796   ins_encode %{
9797     __ array_equals(false, $str1$$Register, $str2$$Register,
9798                     $cnt$$Register, $tmp$$Register,
9799                     $result$$Register, false /* byte */);
9800   %}
9801   ins_pipe(long_memory_op);
9802 %}
9803 
9804 instruct array_equalsB(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9805                        o7RegI tmp2, flagsReg ccr) %{
9806   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
9807   match(Set result (AryEq ary1 ary2));
9808   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9809   ins_cost(300);
9810   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9811   ins_encode %{
9812     __ array_equals(true, $ary1$$Register, $ary2$$Register,
9813                     $tmp1$$Register, $tmp2$$Register,
9814                     $result$$Register, true /* byte */);
9815   %}
9816   ins_pipe(long_memory_op);
9817 %}
9818 
9819 instruct array_equalsC(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
9820                        o7RegI tmp2, flagsReg ccr) %{
9821   predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
9822   match(Set result (AryEq ary1 ary2));
9823   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
9824   ins_cost(300);
9825   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
9826   ins_encode %{
9827     __ array_equals(true, $ary1$$Register, $ary2$$Register,
9828                     $tmp1$$Register, $tmp2$$Register,
9829                     $result$$Register, false /* byte */);
9830   %}
9831   ins_pipe(long_memory_op);
9832 %}
9833 
9834 instruct has_negatives(o0RegP pAryR, g3RegI iSizeR, notemp_iRegI resultR,
9835                        iRegL tmp1L, iRegL tmp2L, iRegL tmp3L, iRegL tmp4L,
9836                        flagsReg ccr) 
9837 %{
9838   match(Set resultR (HasNegatives pAryR iSizeR));
9839   effect(TEMP resultR, TEMP tmp1L, TEMP tmp2L, TEMP tmp3L, TEMP tmp4L, USE pAryR, USE iSizeR, KILL ccr);
9840   format %{ "has negatives byte[] $pAryR,$iSizeR -> $resultR // KILL $tmp1L,$tmp2L,$tmp3L,$tmp4L" %}
9841   ins_encode %{
9842     __ has_negatives($pAryR$$Register, $iSizeR$$Register, 
9843                      $resultR$$Register,
9844                      $tmp1L$$Register, $tmp2L$$Register, 
9845                      $tmp3L$$Register, $tmp4L$$Register);
9846   %}
9847   ins_pipe(long_memory_op);
9848 %}
9849 
9850 // char[] to byte[] compression
9851 instruct string_compress(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result, iRegL tmp, flagsReg ccr) %{
9852   predicate(UseVIS < 3);
9853   match(Set result (StrCompressedCopy src (Binary dst len)));
9854   effect(TEMP result, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
9855   ins_cost(300);
9856   format %{ "String Compress $src,$dst,$len -> $result    // KILL $tmp" %}
9857   ins_encode %{
9858     Label Ldone;
9859     __ signx($len$$Register);
9860     __ cmp_zero_and_br(Assembler::zero, $len$$Register, Ldone, false, Assembler::pn);
9861     __ delayed()->mov($len$$Register, $result$$Register); // copy count
9862     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp$$Register, Ldone);
9863     __ bind(Ldone);
9864   %}
9865   ins_pipe(long_memory_op);
9866 %}
9867 
9868 // fast char[] to byte[] compression using VIS instructions
9869 instruct string_compress_fast(o0RegP src, o1RegP dst, g3RegI len, notemp_iRegI result,
9870                               iRegL tmp1, iRegL tmp2, iRegL tmp3, iRegL tmp4,
9871                               regD ftmp1, regD ftmp2, regD ftmp3, flagsReg ccr) %{
9872   predicate(UseVIS >= 3);
9873   match(Set result (StrCompressedCopy src (Binary dst len)));
9874   effect(TEMP result, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
9875   ins_cost(300);
9876   format %{ "String Compress Fast $src,$dst,$len -> $result    // KILL $tmp1,$tmp2,$tmp3,$tmp4,$ftmp1,$ftmp2,$ftmp3" %}
9877   ins_encode %{
9878     Label Ldone;
9879     __ signx($len$$Register);
9880     __ string_compress_16($src$$Register, $dst$$Register, $len$$Register, $result$$Register,
9881                           $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
9882                           $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, Ldone);
9883     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
9884     __ string_compress($src$$Register, $dst$$Register, $len$$Register, $result$$Register, $tmp1$$Register, Ldone);
9885     __ bind(Ldone);
9886   %}
9887   ins_pipe(long_memory_op);
9888 %}
9889 
9890 // byte[] to char[] inflation
9891 instruct string_inflate(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
9892                         iRegL tmp, flagsReg ccr) %{
9893   match(Set dummy (StrInflatedCopy src (Binary dst len)));
9894   effect(TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
9895   ins_cost(300);
9896   format %{ "String Inflate $src,$dst,$len    // KILL $tmp" %}
9897   ins_encode %{
9898     Label Ldone;
9899     __ signx($len$$Register);
9900     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
9901     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
9902     __ bind(Ldone);
9903   %}
9904   ins_pipe(long_memory_op);
9905 %}
9906 
9907 // fast byte[] to char[] inflation using VIS instructions
9908 instruct string_inflate_fast(Universe dummy, o0RegP src, o1RegP dst, g3RegI len,
9909                              iRegL tmp, regD ftmp1, regD ftmp2, regD ftmp3, regD ftmp4, flagsReg ccr) %{
9910   predicate(UseVIS >= 3);
9911   match(Set dummy (StrInflatedCopy src (Binary dst len)));
9912   effect(TEMP tmp, TEMP ftmp1, TEMP ftmp2, TEMP ftmp3, TEMP ftmp4, USE_KILL src, USE_KILL dst, USE_KILL len, KILL ccr);
9913   ins_cost(300);
9914   format %{ "String Inflate Fast $src,$dst,$len    // KILL $tmp,$ftmp1,$ftmp2,$ftmp3,$ftmp4" %}
9915   ins_encode %{
9916     Label Ldone;
9917     __ signx($len$$Register);
9918     __ string_inflate_16($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register,
9919                          $ftmp1$$FloatRegister, $ftmp2$$FloatRegister, $ftmp3$$FloatRegister, $ftmp4$$FloatRegister, Ldone);
9920     __ cmp_and_brx_short($len$$Register, 0, Assembler::equal, Assembler::pn, Ldone);
9921     __ string_inflate($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register, Ldone);
9922     __ bind(Ldone);
9923   %}
9924   ins_pipe(long_memory_op);
9925 %}
9926 
9927 
9928 //---------- Zeros Count Instructions ------------------------------------------
9929 
9930 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
9931   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9932   match(Set dst (CountLeadingZerosI src));
9933   effect(TEMP dst, TEMP tmp, KILL cr);
9934 
9935   // x |= (x >> 1);
9936   // x |= (x >> 2);
9937   // x |= (x >> 4);
9938   // x |= (x >> 8);
9939   // x |= (x >> 16);
9940   // return (WORDBITS - popc(x));
9941   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
9942             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
9943             "OR      $dst,$tmp,$dst\n\t"
9944             "SRL     $dst,2,$tmp\n\t"
9945             "OR      $dst,$tmp,$dst\n\t"
9946             "SRL     $dst,4,$tmp\n\t"
9947             "OR      $dst,$tmp,$dst\n\t"
9948             "SRL     $dst,8,$tmp\n\t"
9949             "OR      $dst,$tmp,$dst\n\t"
9950             "SRL     $dst,16,$tmp\n\t"
9951             "OR      $dst,$tmp,$dst\n\t"
9952             "POPC    $dst,$dst\n\t"
9953             "MOV     32,$tmp\n\t"
9954             "SUB     $tmp,$dst,$dst" %}
9955   ins_encode %{
9956     Register Rdst = $dst$$Register;
9957     Register Rsrc = $src$$Register;
9958     Register Rtmp = $tmp$$Register;
9959     __ srl(Rsrc, 1,    Rtmp);
9960     __ srl(Rsrc, 0,    Rdst);
9961     __ or3(Rdst, Rtmp, Rdst);
9962     __ srl(Rdst, 2,    Rtmp);
9963     __ or3(Rdst, Rtmp, Rdst);
9964     __ srl(Rdst, 4,    Rtmp);
9965     __ or3(Rdst, Rtmp, Rdst);
9966     __ srl(Rdst, 8,    Rtmp);
9967     __ or3(Rdst, Rtmp, Rdst);
9968     __ srl(Rdst, 16,   Rtmp);
9969     __ or3(Rdst, Rtmp, Rdst);
9970     __ popc(Rdst, Rdst);
9971     __ mov(BitsPerInt, Rtmp);
9972     __ sub(Rtmp, Rdst, Rdst);
9973   %}
9974   ins_pipe(ialu_reg);
9975 %}
9976 
9977 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
9978   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
9979   match(Set dst (CountLeadingZerosL src));
9980   effect(TEMP dst, TEMP tmp, KILL cr);
9981 
9982   // x |= (x >> 1);
9983   // x |= (x >> 2);
9984   // x |= (x >> 4);
9985   // x |= (x >> 8);
9986   // x |= (x >> 16);
9987   // x |= (x >> 32);
9988   // return (WORDBITS - popc(x));
9989   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
9990             "OR      $src,$tmp,$dst\n\t"
9991             "SRLX    $dst,2,$tmp\n\t"
9992             "OR      $dst,$tmp,$dst\n\t"
9993             "SRLX    $dst,4,$tmp\n\t"
9994             "OR      $dst,$tmp,$dst\n\t"
9995             "SRLX    $dst,8,$tmp\n\t"
9996             "OR      $dst,$tmp,$dst\n\t"
9997             "SRLX    $dst,16,$tmp\n\t"
9998             "OR      $dst,$tmp,$dst\n\t"
9999             "SRLX    $dst,32,$tmp\n\t"
10000             "OR      $dst,$tmp,$dst\n\t"
10001             "POPC    $dst,$dst\n\t"
10002             "MOV     64,$tmp\n\t"
10003             "SUB     $tmp,$dst,$dst" %}
10004   ins_encode %{
10005     Register Rdst = $dst$$Register;
10006     Register Rsrc = $src$$Register;
10007     Register Rtmp = $tmp$$Register;
10008     __ srlx(Rsrc, 1,    Rtmp);
10009     __ or3( Rsrc, Rtmp, Rdst);
10010     __ srlx(Rdst, 2,    Rtmp);
10011     __ or3( Rdst, Rtmp, Rdst);
10012     __ srlx(Rdst, 4,    Rtmp);
10013     __ or3( Rdst, Rtmp, Rdst);
10014     __ srlx(Rdst, 8,    Rtmp);
10015     __ or3( Rdst, Rtmp, Rdst);
10016     __ srlx(Rdst, 16,   Rtmp);
10017     __ or3( Rdst, Rtmp, Rdst);
10018     __ srlx(Rdst, 32,   Rtmp);
10019     __ or3( Rdst, Rtmp, Rdst);
10020     __ popc(Rdst, Rdst);
10021     __ mov(BitsPerLong, Rtmp);
10022     __ sub(Rtmp, Rdst, Rdst);
10023   %}
10024   ins_pipe(ialu_reg);
10025 %}
10026 
10027 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10028   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10029   match(Set dst (CountTrailingZerosI src));
10030   effect(TEMP dst, KILL cr);
10031 
10032   // return popc(~x & (x - 1));
10033   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10034             "ANDN    $dst,$src,$dst\n\t"
10035             "SRL     $dst,R_G0,$dst\n\t"
10036             "POPC    $dst,$dst" %}
10037   ins_encode %{
10038     Register Rdst = $dst$$Register;
10039     Register Rsrc = $src$$Register;
10040     __ sub(Rsrc, 1, Rdst);
10041     __ andn(Rdst, Rsrc, Rdst);
10042     __ srl(Rdst, G0, Rdst);
10043     __ popc(Rdst, Rdst);
10044   %}
10045   ins_pipe(ialu_reg);
10046 %}
10047 
10048 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10049   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10050   match(Set dst (CountTrailingZerosL src));
10051   effect(TEMP dst, KILL cr);
10052 
10053   // return popc(~x & (x - 1));
10054   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10055             "ANDN    $dst,$src,$dst\n\t"
10056             "POPC    $dst,$dst" %}
10057   ins_encode %{
10058     Register Rdst = $dst$$Register;
10059     Register Rsrc = $src$$Register;
10060     __ sub(Rsrc, 1, Rdst);
10061     __ andn(Rdst, Rsrc, Rdst);
10062     __ popc(Rdst, Rdst);
10063   %}
10064   ins_pipe(ialu_reg);
10065 %}
10066 
10067 
10068 //---------- Population Count Instructions -------------------------------------
10069 
10070 instruct popCountI(iRegIsafe dst, iRegI src) %{
10071   predicate(UsePopCountInstruction);
10072   match(Set dst (PopCountI src));
10073 
10074   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10075             "POPC   $dst, $dst" %}
10076   ins_encode %{
10077     __ srl($src$$Register, G0, $dst$$Register);
10078     __ popc($dst$$Register, $dst$$Register);
10079   %}
10080   ins_pipe(ialu_reg);
10081 %}
10082 
10083 // Note: Long.bitCount(long) returns an int.
10084 instruct popCountL(iRegIsafe dst, iRegL src) %{
10085   predicate(UsePopCountInstruction);
10086   match(Set dst (PopCountL src));
10087 
10088   format %{ "POPC   $src, $dst" %}
10089   ins_encode %{
10090     __ popc($src$$Register, $dst$$Register);
10091   %}
10092   ins_pipe(ialu_reg);
10093 %}
10094 
10095 
10096 // ============================================================================
10097 //------------Bytes reverse--------------------------------------------------
10098 
10099 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10100   match(Set dst (ReverseBytesI src));
10101 
10102   // Op cost is artificially doubled to make sure that load or store
10103   // instructions are preferred over this one which requires a spill
10104   // onto a stack slot.
10105   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10106   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10107 
10108   ins_encode %{
10109     __ set($src$$disp + STACK_BIAS, O7);
10110     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10111   %}
10112   ins_pipe( iload_mem );
10113 %}
10114 
10115 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10116   match(Set dst (ReverseBytesL src));
10117 
10118   // Op cost is artificially doubled to make sure that load or store
10119   // instructions are preferred over this one which requires a spill
10120   // onto a stack slot.
10121   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10122   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10123 
10124   ins_encode %{
10125     __ set($src$$disp + STACK_BIAS, O7);
10126     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10127   %}
10128   ins_pipe( iload_mem );
10129 %}
10130 
10131 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10132   match(Set dst (ReverseBytesUS src));
10133 
10134   // Op cost is artificially doubled to make sure that load or store
10135   // instructions are preferred over this one which requires a spill
10136   // onto a stack slot.
10137   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10138   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10139 
10140   ins_encode %{
10141     // the value was spilled as an int so bias the load
10142     __ set($src$$disp + STACK_BIAS + 2, O7);
10143     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10144   %}
10145   ins_pipe( iload_mem );
10146 %}
10147 
10148 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10149   match(Set dst (ReverseBytesS src));
10150 
10151   // Op cost is artificially doubled to make sure that load or store
10152   // instructions are preferred over this one which requires a spill
10153   // onto a stack slot.
10154   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10155   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10156 
10157   ins_encode %{
10158     // the value was spilled as an int so bias the load
10159     __ set($src$$disp + STACK_BIAS + 2, O7);
10160     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10161   %}
10162   ins_pipe( iload_mem );
10163 %}
10164 
10165 // Load Integer reversed byte order
10166 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10167   match(Set dst (ReverseBytesI (LoadI src)));
10168 
10169   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10170   size(4);
10171   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10172 
10173   ins_encode %{
10174     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10175   %}
10176   ins_pipe(iload_mem);
10177 %}
10178 
10179 // Load Long - aligned and reversed
10180 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10181   match(Set dst (ReverseBytesL (LoadL src)));
10182 
10183   ins_cost(MEMORY_REF_COST);
10184   size(4);
10185   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10186 
10187   ins_encode %{
10188     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10189   %}
10190   ins_pipe(iload_mem);
10191 %}
10192 
10193 // Load unsigned short / char reversed byte order
10194 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10195   match(Set dst (ReverseBytesUS (LoadUS src)));
10196 
10197   ins_cost(MEMORY_REF_COST);
10198   size(4);
10199   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10200 
10201   ins_encode %{
10202     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10203   %}
10204   ins_pipe(iload_mem);
10205 %}
10206 
10207 // Load short reversed byte order
10208 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10209   match(Set dst (ReverseBytesS (LoadS src)));
10210 
10211   ins_cost(MEMORY_REF_COST);
10212   size(4);
10213   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10214 
10215   ins_encode %{
10216     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10217   %}
10218   ins_pipe(iload_mem);
10219 %}
10220 
10221 // Store Integer reversed byte order
10222 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10223   match(Set dst (StoreI dst (ReverseBytesI src)));
10224 
10225   ins_cost(MEMORY_REF_COST);
10226   size(4);
10227   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10228 
10229   ins_encode %{
10230     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10231   %}
10232   ins_pipe(istore_mem_reg);
10233 %}
10234 
10235 // Store Long reversed byte order
10236 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10237   match(Set dst (StoreL dst (ReverseBytesL src)));
10238 
10239   ins_cost(MEMORY_REF_COST);
10240   size(4);
10241   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10242 
10243   ins_encode %{
10244     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10245   %}
10246   ins_pipe(istore_mem_reg);
10247 %}
10248 
10249 // Store unsighed short/char reversed byte order
10250 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10251   match(Set dst (StoreC dst (ReverseBytesUS src)));
10252 
10253   ins_cost(MEMORY_REF_COST);
10254   size(4);
10255   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10256 
10257   ins_encode %{
10258     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10259   %}
10260   ins_pipe(istore_mem_reg);
10261 %}
10262 
10263 // Store short reversed byte order
10264 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10265   match(Set dst (StoreC dst (ReverseBytesS src)));
10266 
10267   ins_cost(MEMORY_REF_COST);
10268   size(4);
10269   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10270 
10271   ins_encode %{
10272     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10273   %}
10274   ins_pipe(istore_mem_reg);
10275 %}
10276 
10277 // ====================VECTOR INSTRUCTIONS=====================================
10278 
10279 // Load Aligned Packed values into a Double Register
10280 instruct loadV8(regD dst, memory mem) %{
10281   predicate(n->as_LoadVector()->memory_size() == 8);
10282   match(Set dst (LoadVector mem));
10283   ins_cost(MEMORY_REF_COST);
10284   size(4);
10285   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10286   ins_encode %{
10287     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10288   %}
10289   ins_pipe(floadD_mem);
10290 %}
10291 
10292 // Store Vector in Double register to memory
10293 instruct storeV8(memory mem, regD src) %{
10294   predicate(n->as_StoreVector()->memory_size() == 8);
10295   match(Set mem (StoreVector mem src));
10296   ins_cost(MEMORY_REF_COST);
10297   size(4);
10298   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10299   ins_encode %{
10300     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10301   %}
10302   ins_pipe(fstoreD_mem_reg);
10303 %}
10304 
10305 // Store Zero into vector in memory
10306 instruct storeV8B_zero(memory mem, immI0 zero) %{
10307   predicate(n->as_StoreVector()->memory_size() == 8);
10308   match(Set mem (StoreVector mem (ReplicateB zero)));
10309   ins_cost(MEMORY_REF_COST);
10310   size(4);
10311   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10312   ins_encode %{
10313     __ stx(G0, $mem$$Address);
10314   %}
10315   ins_pipe(fstoreD_mem_zero);
10316 %}
10317 
10318 instruct storeV4S_zero(memory mem, immI0 zero) %{
10319   predicate(n->as_StoreVector()->memory_size() == 8);
10320   match(Set mem (StoreVector mem (ReplicateS zero)));
10321   ins_cost(MEMORY_REF_COST);
10322   size(4);
10323   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10324   ins_encode %{
10325     __ stx(G0, $mem$$Address);
10326   %}
10327   ins_pipe(fstoreD_mem_zero);
10328 %}
10329 
10330 instruct storeV2I_zero(memory mem, immI0 zero) %{
10331   predicate(n->as_StoreVector()->memory_size() == 8);
10332   match(Set mem (StoreVector mem (ReplicateI zero)));
10333   ins_cost(MEMORY_REF_COST);
10334   size(4);
10335   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10336   ins_encode %{
10337     __ stx(G0, $mem$$Address);
10338   %}
10339   ins_pipe(fstoreD_mem_zero);
10340 %}
10341 
10342 instruct storeV2F_zero(memory mem, immF0 zero) %{
10343   predicate(n->as_StoreVector()->memory_size() == 8);
10344   match(Set mem (StoreVector mem (ReplicateF zero)));
10345   ins_cost(MEMORY_REF_COST);
10346   size(4);
10347   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10348   ins_encode %{
10349     __ stx(G0, $mem$$Address);
10350   %}
10351   ins_pipe(fstoreD_mem_zero);
10352 %}
10353 
10354 // Replicate scalar to packed byte values into Double register
10355 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10356   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10357   match(Set dst (ReplicateB src));
10358   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10359   format %{ "SLLX  $src,56,$tmp\n\t"
10360             "SRLX  $tmp, 8,$tmp2\n\t"
10361             "OR    $tmp,$tmp2,$tmp\n\t"
10362             "SRLX  $tmp,16,$tmp2\n\t"
10363             "OR    $tmp,$tmp2,$tmp\n\t"
10364             "SRLX  $tmp,32,$tmp2\n\t"
10365             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10366             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10367   ins_encode %{
10368     Register Rsrc = $src$$Register;
10369     Register Rtmp = $tmp$$Register;
10370     Register Rtmp2 = $tmp2$$Register;
10371     __ sllx(Rsrc,    56, Rtmp);
10372     __ srlx(Rtmp,     8, Rtmp2);
10373     __ or3 (Rtmp, Rtmp2, Rtmp);
10374     __ srlx(Rtmp,    16, Rtmp2);
10375     __ or3 (Rtmp, Rtmp2, Rtmp);
10376     __ srlx(Rtmp,    32, Rtmp2);
10377     __ or3 (Rtmp, Rtmp2, Rtmp);
10378     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10379   %}
10380   ins_pipe(ialu_reg);
10381 %}
10382 
10383 // Replicate scalar to packed byte values into Double stack
10384 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10385   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10386   match(Set dst (ReplicateB src));
10387   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10388   format %{ "SLLX  $src,56,$tmp\n\t"
10389             "SRLX  $tmp, 8,$tmp2\n\t"
10390             "OR    $tmp,$tmp2,$tmp\n\t"
10391             "SRLX  $tmp,16,$tmp2\n\t"
10392             "OR    $tmp,$tmp2,$tmp\n\t"
10393             "SRLX  $tmp,32,$tmp2\n\t"
10394             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10395             "STX   $tmp,$dst\t! regL to stkD" %}
10396   ins_encode %{
10397     Register Rsrc = $src$$Register;
10398     Register Rtmp = $tmp$$Register;
10399     Register Rtmp2 = $tmp2$$Register;
10400     __ sllx(Rsrc,    56, Rtmp);
10401     __ srlx(Rtmp,     8, Rtmp2);
10402     __ or3 (Rtmp, Rtmp2, Rtmp);
10403     __ srlx(Rtmp,    16, Rtmp2);
10404     __ or3 (Rtmp, Rtmp2, Rtmp);
10405     __ srlx(Rtmp,    32, Rtmp2);
10406     __ or3 (Rtmp, Rtmp2, Rtmp);
10407     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10408     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10409   %}
10410   ins_pipe(ialu_reg);
10411 %}
10412 
10413 // Replicate scalar constant to packed byte values in Double register
10414 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10415   predicate(n->as_Vector()->length() == 8);
10416   match(Set dst (ReplicateB con));
10417   effect(KILL tmp);
10418   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10419   ins_encode %{
10420     // XXX This is a quick fix for 6833573.
10421     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10422     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10423     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10424   %}
10425   ins_pipe(loadConFD);
10426 %}
10427 
10428 // Replicate scalar to packed char/short values into Double register
10429 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10430   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10431   match(Set dst (ReplicateS src));
10432   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10433   format %{ "SLLX  $src,48,$tmp\n\t"
10434             "SRLX  $tmp,16,$tmp2\n\t"
10435             "OR    $tmp,$tmp2,$tmp\n\t"
10436             "SRLX  $tmp,32,$tmp2\n\t"
10437             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10438             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10439   ins_encode %{
10440     Register Rsrc = $src$$Register;
10441     Register Rtmp = $tmp$$Register;
10442     Register Rtmp2 = $tmp2$$Register;
10443     __ sllx(Rsrc,    48, Rtmp);
10444     __ srlx(Rtmp,    16, Rtmp2);
10445     __ or3 (Rtmp, Rtmp2, Rtmp);
10446     __ srlx(Rtmp,    32, Rtmp2);
10447     __ or3 (Rtmp, Rtmp2, Rtmp);
10448     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10449   %}
10450   ins_pipe(ialu_reg);
10451 %}
10452 
10453 // Replicate scalar to packed char/short values into Double stack
10454 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10455   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10456   match(Set dst (ReplicateS src));
10457   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10458   format %{ "SLLX  $src,48,$tmp\n\t"
10459             "SRLX  $tmp,16,$tmp2\n\t"
10460             "OR    $tmp,$tmp2,$tmp\n\t"
10461             "SRLX  $tmp,32,$tmp2\n\t"
10462             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10463             "STX   $tmp,$dst\t! regL to stkD" %}
10464   ins_encode %{
10465     Register Rsrc = $src$$Register;
10466     Register Rtmp = $tmp$$Register;
10467     Register Rtmp2 = $tmp2$$Register;
10468     __ sllx(Rsrc,    48, Rtmp);
10469     __ srlx(Rtmp,    16, Rtmp2);
10470     __ or3 (Rtmp, Rtmp2, Rtmp);
10471     __ srlx(Rtmp,    32, Rtmp2);
10472     __ or3 (Rtmp, Rtmp2, Rtmp);
10473     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10474     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10475   %}
10476   ins_pipe(ialu_reg);
10477 %}
10478 
10479 // Replicate scalar constant to packed char/short values in Double register
10480 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10481   predicate(n->as_Vector()->length() == 4);
10482   match(Set dst (ReplicateS con));
10483   effect(KILL tmp);
10484   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10485   ins_encode %{
10486     // XXX This is a quick fix for 6833573.
10487     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10488     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10489     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10490   %}
10491   ins_pipe(loadConFD);
10492 %}
10493 
10494 // Replicate scalar to packed int values into Double register
10495 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10496   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10497   match(Set dst (ReplicateI src));
10498   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10499   format %{ "SLLX  $src,32,$tmp\n\t"
10500             "SRLX  $tmp,32,$tmp2\n\t"
10501             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10502             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10503   ins_encode %{
10504     Register Rsrc = $src$$Register;
10505     Register Rtmp = $tmp$$Register;
10506     Register Rtmp2 = $tmp2$$Register;
10507     __ sllx(Rsrc,    32, Rtmp);
10508     __ srlx(Rtmp,    32, Rtmp2);
10509     __ or3 (Rtmp, Rtmp2, Rtmp);
10510     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10511   %}
10512   ins_pipe(ialu_reg);
10513 %}
10514 
10515 // Replicate scalar to packed int values into Double stack
10516 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10517   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10518   match(Set dst (ReplicateI src));
10519   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10520   format %{ "SLLX  $src,32,$tmp\n\t"
10521             "SRLX  $tmp,32,$tmp2\n\t"
10522             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10523             "STX   $tmp,$dst\t! regL to stkD" %}
10524   ins_encode %{
10525     Register Rsrc = $src$$Register;
10526     Register Rtmp = $tmp$$Register;
10527     Register Rtmp2 = $tmp2$$Register;
10528     __ sllx(Rsrc,    32, Rtmp);
10529     __ srlx(Rtmp,    32, Rtmp2);
10530     __ or3 (Rtmp, Rtmp2, Rtmp);
10531     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10532     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10533   %}
10534   ins_pipe(ialu_reg);
10535 %}
10536 
10537 // Replicate scalar zero constant to packed int values in Double register
10538 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10539   predicate(n->as_Vector()->length() == 2);
10540   match(Set dst (ReplicateI con));
10541   effect(KILL tmp);
10542   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10543   ins_encode %{
10544     // XXX This is a quick fix for 6833573.
10545     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10546     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10547     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10548   %}
10549   ins_pipe(loadConFD);
10550 %}
10551 
10552 // Replicate scalar to packed float values into Double stack
10553 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10554   predicate(n->as_Vector()->length() == 2);
10555   match(Set dst (ReplicateF src));
10556   ins_cost(MEMORY_REF_COST*2);
10557   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10558             "STF    $src,$dst.lo" %}
10559   opcode(Assembler::stf_op3);
10560   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10561   ins_pipe(fstoreF_stk_reg);
10562 %}
10563 
10564 // Replicate scalar zero constant to packed float values in Double register
10565 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10566   predicate(n->as_Vector()->length() == 2);
10567   match(Set dst (ReplicateF con));
10568   effect(KILL tmp);
10569   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10570   ins_encode %{
10571     // XXX This is a quick fix for 6833573.
10572     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10573     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10574     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10575   %}
10576   ins_pipe(loadConFD);
10577 %}
10578 
10579 //----------PEEPHOLE RULES-----------------------------------------------------
10580 // These must follow all instruction definitions as they use the names
10581 // defined in the instructions definitions.
10582 //
10583 // peepmatch ( root_instr_name [preceding_instruction]* );
10584 //
10585 // peepconstraint %{
10586 // (instruction_number.operand_name relational_op instruction_number.operand_name
10587 //  [, ...] );
10588 // // instruction numbers are zero-based using left to right order in peepmatch
10589 //
10590 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10591 // // provide an instruction_number.operand_name for each operand that appears
10592 // // in the replacement instruction's match rule
10593 //
10594 // ---------VM FLAGS---------------------------------------------------------
10595 //
10596 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10597 //
10598 // Each peephole rule is given an identifying number starting with zero and
10599 // increasing by one in the order seen by the parser.  An individual peephole
10600 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10601 // on the command-line.
10602 //
10603 // ---------CURRENT LIMITATIONS----------------------------------------------
10604 //
10605 // Only match adjacent instructions in same basic block
10606 // Only equality constraints
10607 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10608 // Only one replacement instruction
10609 //
10610 // ---------EXAMPLE----------------------------------------------------------
10611 //
10612 // // pertinent parts of existing instructions in architecture description
10613 // instruct movI(eRegI dst, eRegI src) %{
10614 //   match(Set dst (CopyI src));
10615 // %}
10616 //
10617 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10618 //   match(Set dst (AddI dst src));
10619 //   effect(KILL cr);
10620 // %}
10621 //
10622 // // Change (inc mov) to lea
10623 // peephole %{
10624 //   // increment preceeded by register-register move
10625 //   peepmatch ( incI_eReg movI );
10626 //   // require that the destination register of the increment
10627 //   // match the destination register of the move
10628 //   peepconstraint ( 0.dst == 1.dst );
10629 //   // construct a replacement instruction that sets
10630 //   // the destination to ( move's source register + one )
10631 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10632 // %}
10633 //
10634 
10635 // // Change load of spilled value to only a spill
10636 // instruct storeI(memory mem, eRegI src) %{
10637 //   match(Set mem (StoreI mem src));
10638 // %}
10639 //
10640 // instruct loadI(eRegI dst, memory mem) %{
10641 //   match(Set dst (LoadI mem));
10642 // %}
10643 //
10644 // peephole %{
10645 //   peepmatch ( loadI storeI );
10646 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10647 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10648 // %}
10649 
10650 //----------SMARTSPILL RULES---------------------------------------------------
10651 // These must follow all instruction definitions as they use the names
10652 // defined in the instructions definitions.
10653 //
10654 // SPARC will probably not have any of these rules due to RISC instruction set.
10655 
10656 //----------PIPELINE-----------------------------------------------------------
10657 // Rules which define the behavior of the target architectures pipeline.