1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.Serializable;
  28 import java.io.ObjectOutputStream;
  29 import java.io.IOException;
  30 import java.lang.reflect.Array;
  31 
  32 /**
  33  * This class consists exclusively of static methods that operate on or return
  34  * collections.  It contains polymorphic algorithms that operate on
  35  * collections, "wrappers", which return a new collection backed by a
  36  * specified collection, and a few other odds and ends.
  37  *
  38  * <p>The methods of this class all throw a <tt>NullPointerException</tt>
  39  * if the collections or class objects provided to them are null.
  40  *
  41  * <p>The documentation for the polymorphic algorithms contained in this class
  42  * generally includes a brief description of the <i>implementation</i>.  Such
  43  * descriptions should be regarded as <i>implementation notes</i>, rather than
  44  * parts of the <i>specification</i>.  Implementors should feel free to
  45  * substitute other algorithms, so long as the specification itself is adhered
  46  * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
  47  * a mergesort, but it does have to be <i>stable</i>.)
  48  *
  49  * <p>The "destructive" algorithms contained in this class, that is, the
  50  * algorithms that modify the collection on which they operate, are specified
  51  * to throw <tt>UnsupportedOperationException</tt> if the collection does not
  52  * support the appropriate mutation primitive(s), such as the <tt>set</tt>
  53  * method.  These algorithms may, but are not required to, throw this
  54  * exception if an invocation would have no effect on the collection.  For
  55  * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
  56  * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
  57  *
  58  * <p>This class is a member of the
  59  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  60  * Java Collections Framework</a>.
  61  *
  62  * @author  Josh Bloch
  63  * @author  Neal Gafter
  64  * @see     Collection
  65  * @see     Set
  66  * @see     List
  67  * @see     Map
  68  * @since   1.2
  69  */
  70 
  71 public class Collections {
  72     // Suppresses default constructor, ensuring non-instantiability.
  73     private Collections() {
  74     }
  75 
  76     // Algorithms
  77 
  78     /*
  79      * Tuning parameters for algorithms - Many of the List algorithms have
  80      * two implementations, one of which is appropriate for RandomAccess
  81      * lists, the other for "sequential."  Often, the random access variant
  82      * yields better performance on small sequential access lists.  The
  83      * tuning parameters below determine the cutoff point for what constitutes
  84      * a "small" sequential access list for each algorithm.  The values below
  85      * were empirically determined to work well for LinkedList. Hopefully
  86      * they should be reasonable for other sequential access List
  87      * implementations.  Those doing performance work on this code would
  88      * do well to validate the values of these parameters from time to time.
  89      * (The first word of each tuning parameter name is the algorithm to which
  90      * it applies.)
  91      */
  92     private static final int BINARYSEARCH_THRESHOLD   = 5000;
  93     private static final int REVERSE_THRESHOLD        =   18;
  94     private static final int SHUFFLE_THRESHOLD        =    5;
  95     private static final int FILL_THRESHOLD           =   25;
  96     private static final int ROTATE_THRESHOLD         =  100;
  97     private static final int COPY_THRESHOLD           =   10;
  98     private static final int REPLACEALL_THRESHOLD     =   11;
  99     private static final int INDEXOFSUBLIST_THRESHOLD =   35;
 100 
 101     /**
 102      * Sorts the specified list into ascending order, according to the
 103      * {@linkplain Comparable natural ordering} of its elements.
 104      * All elements in the list must implement the {@link Comparable}
 105      * interface.  Furthermore, all elements in the list must be
 106      * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
 107      * must not throw a {@code ClassCastException} for any elements
 108      * {@code e1} and {@code e2} in the list).
 109      *
 110      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
 111      * not be reordered as a result of the sort.
 112      *
 113      * <p>The specified list must be modifiable, but need not be resizable.
 114      *
 115      * <p>Implementation note: This implementation is a stable, adaptive,
 116      * iterative mergesort that requires far fewer than n lg(n) comparisons
 117      * when the input array is partially sorted, while offering the
 118      * performance of a traditional mergesort when the input array is
 119      * randomly ordered.  If the input array is nearly sorted, the
 120      * implementation requires approximately n comparisons.  Temporary
 121      * storage requirements vary from a small constant for nearly sorted
 122      * input arrays to n/2 object references for randomly ordered input
 123      * arrays.
 124      *
 125      * <p>The implementation takes equal advantage of ascending and
 126      * descending order in its input array, and can take advantage of
 127      * ascending and descending order in different parts of the same
 128      * input array.  It is well-suited to merging two or more sorted arrays:
 129      * simply concatenate the arrays and sort the resulting array.
 130      *
 131      * <p>The implementation was adapted from Tim Peters's list sort for Python
 132      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
 133      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
 134      * Sorting and Information Theoretic Complexity", in Proceedings of the
 135      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
 136      * January 1993.
 137      *
 138      * <p>This implementation dumps the specified list into an array, sorts
 139      * the array, and iterates over the list resetting each element
 140      * from the corresponding position in the array.  This avoids the
 141      * n<sup>2</sup> log(n) performance that would result from attempting
 142      * to sort a linked list in place.
 143      *
 144      * @param  list the list to be sorted.
 145      * @throws ClassCastException if the list contains elements that are not
 146      *         <i>mutually comparable</i> (for example, strings and integers).
 147      * @throws UnsupportedOperationException if the specified list's
 148      *         list-iterator does not support the {@code set} operation.
 149      * @throws IllegalArgumentException (optional) if the implementation
 150      *         detects that the natural ordering of the list elements is
 151      *         found to violate the {@link Comparable} contract
 152      */
 153     @SuppressWarnings("unchecked")
 154     public static <T extends Comparable<? super T>> void sort(List<T> list) {
 155         Object[] a = list.toArray();
 156         Arrays.sort(a);
 157         ListIterator<T> i = list.listIterator();
 158         for (int j=0; j<a.length; j++) {
 159             i.next();
 160             i.set((T)a[j]);
 161         }
 162     }
 163 
 164     /**
 165      * Sorts the specified list according to the order induced by the
 166      * specified comparator.  All elements in the list must be <i>mutually
 167      * comparable</i> using the specified comparator (that is,
 168      * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
 169      * for any elements {@code e1} and {@code e2} in the list).
 170      *
 171      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
 172      * not be reordered as a result of the sort.
 173      *
 174      * <p>The specified list must be modifiable, but need not be resizable.
 175      *
 176      * <p>Implementation note: This implementation is a stable, adaptive,
 177      * iterative mergesort that requires far fewer than n lg(n) comparisons
 178      * when the input array is partially sorted, while offering the
 179      * performance of a traditional mergesort when the input array is
 180      * randomly ordered.  If the input array is nearly sorted, the
 181      * implementation requires approximately n comparisons.  Temporary
 182      * storage requirements vary from a small constant for nearly sorted
 183      * input arrays to n/2 object references for randomly ordered input
 184      * arrays.
 185      *
 186      * <p>The implementation takes equal advantage of ascending and
 187      * descending order in its input array, and can take advantage of
 188      * ascending and descending order in different parts of the same
 189      * input array.  It is well-suited to merging two or more sorted arrays:
 190      * simply concatenate the arrays and sort the resulting array.
 191      *
 192      * <p>The implementation was adapted from Tim Peters's list sort for Python
 193      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
 194      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
 195      * Sorting and Information Theoretic Complexity", in Proceedings of the
 196      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
 197      * January 1993.
 198      *
 199      * <p>This implementation dumps the specified list into an array, sorts
 200      * the array, and iterates over the list resetting each element
 201      * from the corresponding position in the array.  This avoids the
 202      * n<sup>2</sup> log(n) performance that would result from attempting
 203      * to sort a linked list in place.
 204      *
 205      * @param  list the list to be sorted.
 206      * @param  c the comparator to determine the order of the list.  A
 207      *        {@code null} value indicates that the elements' <i>natural
 208      *        ordering</i> should be used.
 209      * @throws ClassCastException if the list contains elements that are not
 210      *         <i>mutually comparable</i> using the specified comparator.
 211      * @throws UnsupportedOperationException if the specified list's
 212      *         list-iterator does not support the {@code set} operation.
 213      * @throws IllegalArgumentException (optional) if the comparator is
 214      *         found to violate the {@link Comparator} contract
 215      */
 216     @SuppressWarnings({"unchecked", "rawtypes"})
 217     public static <T> void sort(List<T> list, Comparator<? super T> c) {
 218         Object[] a = list.toArray();
 219         Arrays.sort(a, (Comparator)c);
 220         ListIterator<T> i = list.listIterator();
 221         for (int j=0; j<a.length; j++) {
 222             i.next();
 223             i.set((T)a[j]);
 224         }
 225     }
 226 
 227 
 228     /**
 229      * Searches the specified list for the specified object using the binary
 230      * search algorithm.  The list must be sorted into ascending order
 231      * according to the {@linkplain Comparable natural ordering} of its
 232      * elements (as by the {@link #sort(List)} method) prior to making this
 233      * call.  If it is not sorted, the results are undefined.  If the list
 234      * contains multiple elements equal to the specified object, there is no
 235      * guarantee which one will be found.
 236      *
 237      * <p>This method runs in log(n) time for a "random access" list (which
 238      * provides near-constant-time positional access).  If the specified list
 239      * does not implement the {@link RandomAccess} interface and is large,
 240      * this method will do an iterator-based binary search that performs
 241      * O(n) link traversals and O(log n) element comparisons.
 242      *
 243      * @param  list the list to be searched.
 244      * @param  key the key to be searched for.
 245      * @return the index of the search key, if it is contained in the list;
 246      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
 247      *         <i>insertion point</i> is defined as the point at which the
 248      *         key would be inserted into the list: the index of the first
 249      *         element greater than the key, or <tt>list.size()</tt> if all
 250      *         elements in the list are less than the specified key.  Note
 251      *         that this guarantees that the return value will be &gt;= 0 if
 252      *         and only if the key is found.
 253      * @throws ClassCastException if the list contains elements that are not
 254      *         <i>mutually comparable</i> (for example, strings and
 255      *         integers), or the search key is not mutually comparable
 256      *         with the elements of the list.
 257      */
 258     public static <T>
 259     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
 260         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
 261             return Collections.indexedBinarySearch(list, key);
 262         else
 263             return Collections.iteratorBinarySearch(list, key);
 264     }
 265 
 266     private static <T>
 267     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
 268     {
 269         int low = 0;
 270         int high = list.size()-1;
 271 
 272         while (low <= high) {
 273             int mid = (low + high) >>> 1;
 274             Comparable<? super T> midVal = list.get(mid);
 275             int cmp = midVal.compareTo(key);
 276 
 277             if (cmp < 0)
 278                 low = mid + 1;
 279             else if (cmp > 0)
 280                 high = mid - 1;
 281             else
 282                 return mid; // key found
 283         }
 284         return -(low + 1);  // key not found
 285     }
 286 
 287     private static <T>
 288     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
 289     {
 290         int low = 0;
 291         int high = list.size()-1;
 292         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
 293 
 294         while (low <= high) {
 295             int mid = (low + high) >>> 1;
 296             Comparable<? super T> midVal = get(i, mid);
 297             int cmp = midVal.compareTo(key);
 298 
 299             if (cmp < 0)
 300                 low = mid + 1;
 301             else if (cmp > 0)
 302                 high = mid - 1;
 303             else
 304                 return mid; // key found
 305         }
 306         return -(low + 1);  // key not found
 307     }
 308 
 309     /**
 310      * Gets the ith element from the given list by repositioning the specified
 311      * list listIterator.
 312      */
 313     private static <T> T get(ListIterator<? extends T> i, int index) {
 314         T obj = null;
 315         int pos = i.nextIndex();
 316         if (pos <= index) {
 317             do {
 318                 obj = i.next();
 319             } while (pos++ < index);
 320         } else {
 321             do {
 322                 obj = i.previous();
 323             } while (--pos > index);
 324         }
 325         return obj;
 326     }
 327 
 328     /**
 329      * Searches the specified list for the specified object using the binary
 330      * search algorithm.  The list must be sorted into ascending order
 331      * according to the specified comparator (as by the
 332      * {@link #sort(List, Comparator) sort(List, Comparator)}
 333      * method), prior to making this call.  If it is
 334      * not sorted, the results are undefined.  If the list contains multiple
 335      * elements equal to the specified object, there is no guarantee which one
 336      * will be found.
 337      *
 338      * <p>This method runs in log(n) time for a "random access" list (which
 339      * provides near-constant-time positional access).  If the specified list
 340      * does not implement the {@link RandomAccess} interface and is large,
 341      * this method will do an iterator-based binary search that performs
 342      * O(n) link traversals and O(log n) element comparisons.
 343      *
 344      * @param  list the list to be searched.
 345      * @param  key the key to be searched for.
 346      * @param  c the comparator by which the list is ordered.
 347      *         A <tt>null</tt> value indicates that the elements'
 348      *         {@linkplain Comparable natural ordering} should be used.
 349      * @return the index of the search key, if it is contained in the list;
 350      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
 351      *         <i>insertion point</i> is defined as the point at which the
 352      *         key would be inserted into the list: the index of the first
 353      *         element greater than the key, or <tt>list.size()</tt> if all
 354      *         elements in the list are less than the specified key.  Note
 355      *         that this guarantees that the return value will be &gt;= 0 if
 356      *         and only if the key is found.
 357      * @throws ClassCastException if the list contains elements that are not
 358      *         <i>mutually comparable</i> using the specified comparator,
 359      *         or the search key is not mutually comparable with the
 360      *         elements of the list using this comparator.
 361      */
 362     @SuppressWarnings("unchecked")
 363     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
 364         if (c==null)
 365             return binarySearch((List<? extends Comparable<? super T>>) list, key);
 366 
 367         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
 368             return Collections.indexedBinarySearch(list, key, c);
 369         else
 370             return Collections.iteratorBinarySearch(list, key, c);
 371     }
 372 
 373     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
 374         int low = 0;
 375         int high = l.size()-1;
 376 
 377         while (low <= high) {
 378             int mid = (low + high) >>> 1;
 379             T midVal = l.get(mid);
 380             int cmp = c.compare(midVal, key);
 381 
 382             if (cmp < 0)
 383                 low = mid + 1;
 384             else if (cmp > 0)
 385                 high = mid - 1;
 386             else
 387                 return mid; // key found
 388         }
 389         return -(low + 1);  // key not found
 390     }
 391 
 392     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
 393         int low = 0;
 394         int high = l.size()-1;
 395         ListIterator<? extends T> i = l.listIterator();
 396 
 397         while (low <= high) {
 398             int mid = (low + high) >>> 1;
 399             T midVal = get(i, mid);
 400             int cmp = c.compare(midVal, key);
 401 
 402             if (cmp < 0)
 403                 low = mid + 1;
 404             else if (cmp > 0)
 405                 high = mid - 1;
 406             else
 407                 return mid; // key found
 408         }
 409         return -(low + 1);  // key not found
 410     }
 411 
 412     /**
 413      * Reverses the order of the elements in the specified list.<p>
 414      *
 415      * This method runs in linear time.
 416      *
 417      * @param  list the list whose elements are to be reversed.
 418      * @throws UnsupportedOperationException if the specified list or
 419      *         its list-iterator does not support the <tt>set</tt> operation.
 420      */
 421     @SuppressWarnings({"rawtypes", "unchecked"})
 422     public static void reverse(List<?> list) {
 423         int size = list.size();
 424         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
 425             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
 426                 swap(list, i, j);
 427         } else {
 428             // instead of using a raw type here, it's possible to capture
 429             // the wildcard but it will require a call to a supplementary
 430             // private method
 431             ListIterator fwd = list.listIterator();
 432             ListIterator rev = list.listIterator(size);
 433             for (int i=0, mid=list.size()>>1; i<mid; i++) {
 434                 Object tmp = fwd.next();
 435                 fwd.set(rev.previous());
 436                 rev.set(tmp);
 437             }
 438         }
 439     }
 440 
 441     /**
 442      * Randomly permutes the specified list using a default source of
 443      * randomness.  All permutations occur with approximately equal
 444      * likelihood.<p>
 445      *
 446      * The hedge "approximately" is used in the foregoing description because
 447      * default source of randomness is only approximately an unbiased source
 448      * of independently chosen bits. If it were a perfect source of randomly
 449      * chosen bits, then the algorithm would choose permutations with perfect
 450      * uniformity.<p>
 451      *
 452      * This implementation traverses the list backwards, from the last element
 453      * up to the second, repeatedly swapping a randomly selected element into
 454      * the "current position".  Elements are randomly selected from the
 455      * portion of the list that runs from the first element to the current
 456      * position, inclusive.<p>
 457      *
 458      * This method runs in linear time.  If the specified list does not
 459      * implement the {@link RandomAccess} interface and is large, this
 460      * implementation dumps the specified list into an array before shuffling
 461      * it, and dumps the shuffled array back into the list.  This avoids the
 462      * quadratic behavior that would result from shuffling a "sequential
 463      * access" list in place.
 464      *
 465      * @param  list the list to be shuffled.
 466      * @throws UnsupportedOperationException if the specified list or
 467      *         its list-iterator does not support the <tt>set</tt> operation.
 468      */
 469     public static void shuffle(List<?> list) {
 470         Random rnd = r;
 471         if (rnd == null)
 472             r = rnd = new Random();
 473         shuffle(list, rnd);
 474     }
 475     private static Random r;
 476 
 477     /**
 478      * Randomly permute the specified list using the specified source of
 479      * randomness.  All permutations occur with equal likelihood
 480      * assuming that the source of randomness is fair.<p>
 481      *
 482      * This implementation traverses the list backwards, from the last element
 483      * up to the second, repeatedly swapping a randomly selected element into
 484      * the "current position".  Elements are randomly selected from the
 485      * portion of the list that runs from the first element to the current
 486      * position, inclusive.<p>
 487      *
 488      * This method runs in linear time.  If the specified list does not
 489      * implement the {@link RandomAccess} interface and is large, this
 490      * implementation dumps the specified list into an array before shuffling
 491      * it, and dumps the shuffled array back into the list.  This avoids the
 492      * quadratic behavior that would result from shuffling a "sequential
 493      * access" list in place.
 494      *
 495      * @param  list the list to be shuffled.
 496      * @param  rnd the source of randomness to use to shuffle the list.
 497      * @throws UnsupportedOperationException if the specified list or its
 498      *         list-iterator does not support the <tt>set</tt> operation.
 499      */
 500     @SuppressWarnings({"rawtypes", "unchecked"})
 501     public static void shuffle(List<?> list, Random rnd) {
 502         int size = list.size();
 503         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
 504             for (int i=size; i>1; i--)
 505                 swap(list, i-1, rnd.nextInt(i));
 506         } else {
 507             Object arr[] = list.toArray();
 508 
 509             // Shuffle array
 510             for (int i=size; i>1; i--)
 511                 swap(arr, i-1, rnd.nextInt(i));
 512 
 513             // Dump array back into list
 514             // instead of using a raw type here, it's possible to capture
 515             // the wildcard but it will require a call to a supplementary
 516             // private method
 517             ListIterator it = list.listIterator();
 518             for (int i=0; i<arr.length; i++) {
 519                 it.next();
 520                 it.set(arr[i]);
 521             }
 522         }
 523     }
 524 
 525     /**
 526      * Swaps the elements at the specified positions in the specified list.
 527      * (If the specified positions are equal, invoking this method leaves
 528      * the list unchanged.)
 529      *
 530      * @param list The list in which to swap elements.
 531      * @param i the index of one element to be swapped.
 532      * @param j the index of the other element to be swapped.
 533      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
 534      *         is out of range (i &lt; 0 || i &gt;= list.size()
 535      *         || j &lt; 0 || j &gt;= list.size()).
 536      * @since 1.4
 537      */
 538     @SuppressWarnings({"rawtypes", "unchecked"})
 539     public static void swap(List<?> list, int i, int j) {
 540         // instead of using a raw type here, it's possible to capture
 541         // the wildcard but it will require a call to a supplementary
 542         // private method
 543         final List l = list;
 544         l.set(i, l.set(j, l.get(i)));
 545     }
 546 
 547     /**
 548      * Swaps the two specified elements in the specified array.
 549      */
 550     private static void swap(Object[] arr, int i, int j) {
 551         Object tmp = arr[i];
 552         arr[i] = arr[j];
 553         arr[j] = tmp;
 554     }
 555 
 556     /**
 557      * Replaces all of the elements of the specified list with the specified
 558      * element. <p>
 559      *
 560      * This method runs in linear time.
 561      *
 562      * @param  list the list to be filled with the specified element.
 563      * @param  obj The element with which to fill the specified list.
 564      * @throws UnsupportedOperationException if the specified list or its
 565      *         list-iterator does not support the <tt>set</tt> operation.
 566      */
 567     public static <T> void fill(List<? super T> list, T obj) {
 568         int size = list.size();
 569 
 570         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
 571             for (int i=0; i<size; i++)
 572                 list.set(i, obj);
 573         } else {
 574             ListIterator<? super T> itr = list.listIterator();
 575             for (int i=0; i<size; i++) {
 576                 itr.next();
 577                 itr.set(obj);
 578             }
 579         }
 580     }
 581 
 582     /**
 583      * Copies all of the elements from one list into another.  After the
 584      * operation, the index of each copied element in the destination list
 585      * will be identical to its index in the source list.  The destination
 586      * list must be at least as long as the source list.  If it is longer, the
 587      * remaining elements in the destination list are unaffected. <p>
 588      *
 589      * This method runs in linear time.
 590      *
 591      * @param  dest The destination list.
 592      * @param  src The source list.
 593      * @throws IndexOutOfBoundsException if the destination list is too small
 594      *         to contain the entire source List.
 595      * @throws UnsupportedOperationException if the destination list's
 596      *         list-iterator does not support the <tt>set</tt> operation.
 597      */
 598     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
 599         int srcSize = src.size();
 600         if (srcSize > dest.size())
 601             throw new IndexOutOfBoundsException("Source does not fit in dest");
 602 
 603         if (srcSize < COPY_THRESHOLD ||
 604             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
 605             for (int i=0; i<srcSize; i++)
 606                 dest.set(i, src.get(i));
 607         } else {
 608             ListIterator<? super T> di=dest.listIterator();
 609             ListIterator<? extends T> si=src.listIterator();
 610             for (int i=0; i<srcSize; i++) {
 611                 di.next();
 612                 di.set(si.next());
 613             }
 614         }
 615     }
 616 
 617     /**
 618      * Returns the minimum element of the given collection, according to the
 619      * <i>natural ordering</i> of its elements.  All elements in the
 620      * collection must implement the <tt>Comparable</tt> interface.
 621      * Furthermore, all elements in the collection must be <i>mutually
 622      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
 623      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 624      * <tt>e2</tt> in the collection).<p>
 625      *
 626      * This method iterates over the entire collection, hence it requires
 627      * time proportional to the size of the collection.
 628      *
 629      * @param  coll the collection whose minimum element is to be determined.
 630      * @return the minimum element of the given collection, according
 631      *         to the <i>natural ordering</i> of its elements.
 632      * @throws ClassCastException if the collection contains elements that are
 633      *         not <i>mutually comparable</i> (for example, strings and
 634      *         integers).
 635      * @throws NoSuchElementException if the collection is empty.
 636      * @see Comparable
 637      */
 638     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
 639         Iterator<? extends T> i = coll.iterator();
 640         T candidate = i.next();
 641 
 642         while (i.hasNext()) {
 643             T next = i.next();
 644             if (next.compareTo(candidate) < 0)
 645                 candidate = next;
 646         }
 647         return candidate;
 648     }
 649 
 650     /**
 651      * Returns the minimum element of the given collection, according to the
 652      * order induced by the specified comparator.  All elements in the
 653      * collection must be <i>mutually comparable</i> by the specified
 654      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
 655      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 656      * <tt>e2</tt> in the collection).<p>
 657      *
 658      * This method iterates over the entire collection, hence it requires
 659      * time proportional to the size of the collection.
 660      *
 661      * @param  coll the collection whose minimum element is to be determined.
 662      * @param  comp the comparator with which to determine the minimum element.
 663      *         A <tt>null</tt> value indicates that the elements' <i>natural
 664      *         ordering</i> should be used.
 665      * @return the minimum element of the given collection, according
 666      *         to the specified comparator.
 667      * @throws ClassCastException if the collection contains elements that are
 668      *         not <i>mutually comparable</i> using the specified comparator.
 669      * @throws NoSuchElementException if the collection is empty.
 670      * @see Comparable
 671      */
 672     @SuppressWarnings({"unchecked", "rawtypes"})
 673     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
 674         if (comp==null)
 675             return (T)min((Collection) coll);
 676 
 677         Iterator<? extends T> i = coll.iterator();
 678         T candidate = i.next();
 679 
 680         while (i.hasNext()) {
 681             T next = i.next();
 682             if (comp.compare(next, candidate) < 0)
 683                 candidate = next;
 684         }
 685         return candidate;
 686     }
 687 
 688     /**
 689      * Returns the maximum element of the given collection, according to the
 690      * <i>natural ordering</i> of its elements.  All elements in the
 691      * collection must implement the <tt>Comparable</tt> interface.
 692      * Furthermore, all elements in the collection must be <i>mutually
 693      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
 694      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 695      * <tt>e2</tt> in the collection).<p>
 696      *
 697      * This method iterates over the entire collection, hence it requires
 698      * time proportional to the size of the collection.
 699      *
 700      * @param  coll the collection whose maximum element is to be determined.
 701      * @return the maximum element of the given collection, according
 702      *         to the <i>natural ordering</i> of its elements.
 703      * @throws ClassCastException if the collection contains elements that are
 704      *         not <i>mutually comparable</i> (for example, strings and
 705      *         integers).
 706      * @throws NoSuchElementException if the collection is empty.
 707      * @see Comparable
 708      */
 709     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
 710         Iterator<? extends T> i = coll.iterator();
 711         T candidate = i.next();
 712 
 713         while (i.hasNext()) {
 714             T next = i.next();
 715             if (next.compareTo(candidate) > 0)
 716                 candidate = next;
 717         }
 718         return candidate;
 719     }
 720 
 721     /**
 722      * Returns the maximum element of the given collection, according to the
 723      * order induced by the specified comparator.  All elements in the
 724      * collection must be <i>mutually comparable</i> by the specified
 725      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
 726      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 727      * <tt>e2</tt> in the collection).<p>
 728      *
 729      * This method iterates over the entire collection, hence it requires
 730      * time proportional to the size of the collection.
 731      *
 732      * @param  coll the collection whose maximum element is to be determined.
 733      * @param  comp the comparator with which to determine the maximum element.
 734      *         A <tt>null</tt> value indicates that the elements' <i>natural
 735      *        ordering</i> should be used.
 736      * @return the maximum element of the given collection, according
 737      *         to the specified comparator.
 738      * @throws ClassCastException if the collection contains elements that are
 739      *         not <i>mutually comparable</i> using the specified comparator.
 740      * @throws NoSuchElementException if the collection is empty.
 741      * @see Comparable
 742      */
 743     @SuppressWarnings({"unchecked", "rawtypes"})
 744     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
 745         if (comp==null)
 746             return (T)max((Collection) coll);
 747 
 748         Iterator<? extends T> i = coll.iterator();
 749         T candidate = i.next();
 750 
 751         while (i.hasNext()) {
 752             T next = i.next();
 753             if (comp.compare(next, candidate) > 0)
 754                 candidate = next;
 755         }
 756         return candidate;
 757     }
 758 
 759     /**
 760      * Rotates the elements in the specified list by the specified distance.
 761      * After calling this method, the element at index <tt>i</tt> will be
 762      * the element previously at index <tt>(i - distance)</tt> mod
 763      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
 764      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
 765      * the size of the list.)
 766      *
 767      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
 768      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
 769      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
 770      * <tt>[s, t, a, n, k]</tt>.
 771      *
 772      * <p>Note that this method can usefully be applied to sublists to
 773      * move one or more elements within a list while preserving the
 774      * order of the remaining elements.  For example, the following idiom
 775      * moves the element at index <tt>j</tt> forward to position
 776      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
 777      * <pre>
 778      *     Collections.rotate(list.subList(j, k+1), -1);
 779      * </pre>
 780      * To make this concrete, suppose <tt>list</tt> comprises
 781      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
 782      * (<tt>b</tt>) forward two positions, perform the following invocation:
 783      * <pre>
 784      *     Collections.rotate(l.subList(1, 4), -1);
 785      * </pre>
 786      * The resulting list is <tt>[a, c, d, b, e]</tt>.
 787      *
 788      * <p>To move more than one element forward, increase the absolute value
 789      * of the rotation distance.  To move elements backward, use a positive
 790      * shift distance.
 791      *
 792      * <p>If the specified list is small or implements the {@link
 793      * RandomAccess} interface, this implementation exchanges the first
 794      * element into the location it should go, and then repeatedly exchanges
 795      * the displaced element into the location it should go until a displaced
 796      * element is swapped into the first element.  If necessary, the process
 797      * is repeated on the second and successive elements, until the rotation
 798      * is complete.  If the specified list is large and doesn't implement the
 799      * <tt>RandomAccess</tt> interface, this implementation breaks the
 800      * list into two sublist views around index <tt>-distance mod size</tt>.
 801      * Then the {@link #reverse(List)} method is invoked on each sublist view,
 802      * and finally it is invoked on the entire list.  For a more complete
 803      * description of both algorithms, see Section 2.3 of Jon Bentley's
 804      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
 805      *
 806      * @param list the list to be rotated.
 807      * @param distance the distance to rotate the list.  There are no
 808      *        constraints on this value; it may be zero, negative, or
 809      *        greater than <tt>list.size()</tt>.
 810      * @throws UnsupportedOperationException if the specified list or
 811      *         its list-iterator does not support the <tt>set</tt> operation.
 812      * @since 1.4
 813      */
 814     public static void rotate(List<?> list, int distance) {
 815         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
 816             rotate1(list, distance);
 817         else
 818             rotate2(list, distance);
 819     }
 820 
 821     private static <T> void rotate1(List<T> list, int distance) {
 822         int size = list.size();
 823         if (size == 0)
 824             return;
 825         distance = distance % size;
 826         if (distance < 0)
 827             distance += size;
 828         if (distance == 0)
 829             return;
 830 
 831         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
 832             T displaced = list.get(cycleStart);
 833             int i = cycleStart;
 834             do {
 835                 i += distance;
 836                 if (i >= size)
 837                     i -= size;
 838                 displaced = list.set(i, displaced);
 839                 nMoved ++;
 840             } while (i != cycleStart);
 841         }
 842     }
 843 
 844     private static void rotate2(List<?> list, int distance) {
 845         int size = list.size();
 846         if (size == 0)
 847             return;
 848         int mid =  -distance % size;
 849         if (mid < 0)
 850             mid += size;
 851         if (mid == 0)
 852             return;
 853 
 854         reverse(list.subList(0, mid));
 855         reverse(list.subList(mid, size));
 856         reverse(list);
 857     }
 858 
 859     /**
 860      * Replaces all occurrences of one specified value in a list with another.
 861      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
 862      * in <tt>list</tt> such that
 863      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
 864      * (This method has no effect on the size of the list.)
 865      *
 866      * @param list the list in which replacement is to occur.
 867      * @param oldVal the old value to be replaced.
 868      * @param newVal the new value with which <tt>oldVal</tt> is to be
 869      *        replaced.
 870      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
 871      *         <tt>e</tt> such that
 872      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
 873      * @throws UnsupportedOperationException if the specified list or
 874      *         its list-iterator does not support the <tt>set</tt> operation.
 875      * @since  1.4
 876      */
 877     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
 878         boolean result = false;
 879         int size = list.size();
 880         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
 881             if (oldVal==null) {
 882                 for (int i=0; i<size; i++) {
 883                     if (list.get(i)==null) {
 884                         list.set(i, newVal);
 885                         result = true;
 886                     }
 887                 }
 888             } else {
 889                 for (int i=0; i<size; i++) {
 890                     if (oldVal.equals(list.get(i))) {
 891                         list.set(i, newVal);
 892                         result = true;
 893                     }
 894                 }
 895             }
 896         } else {
 897             ListIterator<T> itr=list.listIterator();
 898             if (oldVal==null) {
 899                 for (int i=0; i<size; i++) {
 900                     if (itr.next()==null) {
 901                         itr.set(newVal);
 902                         result = true;
 903                     }
 904                 }
 905             } else {
 906                 for (int i=0; i<size; i++) {
 907                     if (oldVal.equals(itr.next())) {
 908                         itr.set(newVal);
 909                         result = true;
 910                     }
 911                 }
 912             }
 913         }
 914         return result;
 915     }
 916 
 917     /**
 918      * Returns the starting position of the first occurrence of the specified
 919      * target list within the specified source list, or -1 if there is no
 920      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
 921      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
 922      * or -1 if there is no such index.  (Returns -1 if
 923      * <tt>target.size() > source.size()</tt>.)
 924      *
 925      * <p>This implementation uses the "brute force" technique of scanning
 926      * over the source list, looking for a match with the target at each
 927      * location in turn.
 928      *
 929      * @param source the list in which to search for the first occurrence
 930      *        of <tt>target</tt>.
 931      * @param target the list to search for as a subList of <tt>source</tt>.
 932      * @return the starting position of the first occurrence of the specified
 933      *         target list within the specified source list, or -1 if there
 934      *         is no such occurrence.
 935      * @since  1.4
 936      */
 937     public static int indexOfSubList(List<?> source, List<?> target) {
 938         int sourceSize = source.size();
 939         int targetSize = target.size();
 940         int maxCandidate = sourceSize - targetSize;
 941 
 942         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
 943             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
 944         nextCand:
 945             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
 946                 for (int i=0, j=candidate; i<targetSize; i++, j++)
 947                     if (!eq(target.get(i), source.get(j)))
 948                         continue nextCand;  // Element mismatch, try next cand
 949                 return candidate;  // All elements of candidate matched target
 950             }
 951         } else {  // Iterator version of above algorithm
 952             ListIterator<?> si = source.listIterator();
 953         nextCand:
 954             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
 955                 ListIterator<?> ti = target.listIterator();
 956                 for (int i=0; i<targetSize; i++) {
 957                     if (!eq(ti.next(), si.next())) {
 958                         // Back up source iterator to next candidate
 959                         for (int j=0; j<i; j++)
 960                             si.previous();
 961                         continue nextCand;
 962                     }
 963                 }
 964                 return candidate;
 965             }
 966         }
 967         return -1;  // No candidate matched the target
 968     }
 969 
 970     /**
 971      * Returns the starting position of the last occurrence of the specified
 972      * target list within the specified source list, or -1 if there is no such
 973      * occurrence.  More formally, returns the highest index <tt>i</tt>
 974      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
 975      * or -1 if there is no such index.  (Returns -1 if
 976      * <tt>target.size() > source.size()</tt>.)
 977      *
 978      * <p>This implementation uses the "brute force" technique of iterating
 979      * over the source list, looking for a match with the target at each
 980      * location in turn.
 981      *
 982      * @param source the list in which to search for the last occurrence
 983      *        of <tt>target</tt>.
 984      * @param target the list to search for as a subList of <tt>source</tt>.
 985      * @return the starting position of the last occurrence of the specified
 986      *         target list within the specified source list, or -1 if there
 987      *         is no such occurrence.
 988      * @since  1.4
 989      */
 990     public static int lastIndexOfSubList(List<?> source, List<?> target) {
 991         int sourceSize = source.size();
 992         int targetSize = target.size();
 993         int maxCandidate = sourceSize - targetSize;
 994 
 995         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
 996             source instanceof RandomAccess) {   // Index access version
 997         nextCand:
 998             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
 999                 for (int i=0, j=candidate; i<targetSize; i++, j++)
1000                     if (!eq(target.get(i), source.get(j)))
1001                         continue nextCand;  // Element mismatch, try next cand
1002                 return candidate;  // All elements of candidate matched target
1003             }
1004         } else {  // Iterator version of above algorithm
1005             if (maxCandidate < 0)
1006                 return -1;
1007             ListIterator<?> si = source.listIterator(maxCandidate);
1008         nextCand:
1009             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
1010                 ListIterator<?> ti = target.listIterator();
1011                 for (int i=0; i<targetSize; i++) {
1012                     if (!eq(ti.next(), si.next())) {
1013                         if (candidate != 0) {
1014                             // Back up source iterator to next candidate
1015                             for (int j=0; j<=i+1; j++)
1016                                 si.previous();
1017                         }
1018                         continue nextCand;
1019                     }
1020                 }
1021                 return candidate;
1022             }
1023         }
1024         return -1;  // No candidate matched the target
1025     }
1026 
1027 
1028     // Unmodifiable Wrappers
1029 
1030     /**
1031      * Returns an unmodifiable view of the specified collection.  This method
1032      * allows modules to provide users with "read-only" access to internal
1033      * collections.  Query operations on the returned collection "read through"
1034      * to the specified collection, and attempts to modify the returned
1035      * collection, whether direct or via its iterator, result in an
1036      * <tt>UnsupportedOperationException</tt>.<p>
1037      *
1038      * The returned collection does <i>not</i> pass the hashCode and equals
1039      * operations through to the backing collection, but relies on
1040      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1041      * is necessary to preserve the contracts of these operations in the case
1042      * that the backing collection is a set or a list.<p>
1043      *
1044      * The returned collection will be serializable if the specified collection
1045      * is serializable.
1046      *
1047      * @param  c the collection for which an unmodifiable view is to be
1048      *         returned.
1049      * @return an unmodifiable view of the specified collection.
1050      */
1051     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1052         return new UnmodifiableCollection<>(c);
1053     }
1054 
1055     /**
1056      * @serial include
1057      */
1058     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1059         private static final long serialVersionUID = 1820017752578914078L;
1060 
1061         final Collection<? extends E> c;
1062 
1063         UnmodifiableCollection(Collection<? extends E> c) {
1064             if (c==null)
1065                 throw new NullPointerException();
1066             this.c = c;
1067         }
1068 
1069         public int size()                   {return c.size();}
1070         public boolean isEmpty()            {return c.isEmpty();}
1071         public boolean contains(Object o)   {return c.contains(o);}
1072         public Object[] toArray()           {return c.toArray();}
1073         public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1074         public String toString()            {return c.toString();}
1075 
1076         public Iterator<E> iterator() {
1077             return new Iterator<E>() {
1078                 private final Iterator<? extends E> i = c.iterator();
1079 
1080                 public boolean hasNext() {return i.hasNext();}
1081                 public E next()          {return i.next();}
1082                 public void remove() {
1083                     throw new UnsupportedOperationException();
1084                 }
1085             };
1086         }
1087 
1088         public boolean add(E e) {
1089             throw new UnsupportedOperationException();
1090         }
1091         public boolean remove(Object o) {
1092             throw new UnsupportedOperationException();
1093         }
1094 
1095         public boolean containsAll(Collection<?> coll) {
1096             return c.containsAll(coll);
1097         }
1098         public boolean addAll(Collection<? extends E> coll) {
1099             throw new UnsupportedOperationException();
1100         }
1101         public boolean removeAll(Collection<?> coll) {
1102             throw new UnsupportedOperationException();
1103         }
1104         public boolean retainAll(Collection<?> coll) {
1105             throw new UnsupportedOperationException();
1106         }
1107         public void clear() {
1108             throw new UnsupportedOperationException();
1109         }
1110     }
1111 
1112     /**
1113      * Returns an unmodifiable view of the specified set.  This method allows
1114      * modules to provide users with "read-only" access to internal sets.
1115      * Query operations on the returned set "read through" to the specified
1116      * set, and attempts to modify the returned set, whether direct or via its
1117      * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1118      *
1119      * The returned set will be serializable if the specified set
1120      * is serializable.
1121      *
1122      * @param  s the set for which an unmodifiable view is to be returned.
1123      * @return an unmodifiable view of the specified set.
1124      */
1125     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1126         return new UnmodifiableSet<>(s);
1127     }
1128 
1129     /**
1130      * @serial include
1131      */
1132     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1133                                  implements Set<E>, Serializable {
1134         private static final long serialVersionUID = -9215047833775013803L;
1135 
1136         UnmodifiableSet(Set<? extends E> s)     {super(s);}
1137         public boolean equals(Object o) {return o == this || c.equals(o);}
1138         public int hashCode()           {return c.hashCode();}
1139     }
1140 
1141     /**
1142      * Returns an unmodifiable view of the specified sorted set.  This method
1143      * allows modules to provide users with "read-only" access to internal
1144      * sorted sets.  Query operations on the returned sorted set "read
1145      * through" to the specified sorted set.  Attempts to modify the returned
1146      * sorted set, whether direct, via its iterator, or via its
1147      * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1148      * an <tt>UnsupportedOperationException</tt>.<p>
1149      *
1150      * The returned sorted set will be serializable if the specified sorted set
1151      * is serializable.
1152      *
1153      * @param s the sorted set for which an unmodifiable view is to be
1154      *        returned.
1155      * @return an unmodifiable view of the specified sorted set.
1156      */
1157     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1158         return new UnmodifiableSortedSet<>(s);
1159     }
1160 
1161     /**
1162      * @serial include
1163      */
1164     static class UnmodifiableSortedSet<E>
1165                              extends UnmodifiableSet<E>
1166                              implements SortedSet<E>, Serializable {
1167         private static final long serialVersionUID = -4929149591599911165L;
1168         private final SortedSet<E> ss;
1169 
1170         UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1171 
1172         public Comparator<? super E> comparator() {return ss.comparator();}
1173 
1174         public SortedSet<E> subSet(E fromElement, E toElement) {
1175             return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement));
1176         }
1177         public SortedSet<E> headSet(E toElement) {
1178             return new UnmodifiableSortedSet<>(ss.headSet(toElement));
1179         }
1180         public SortedSet<E> tailSet(E fromElement) {
1181             return new UnmodifiableSortedSet<>(ss.tailSet(fromElement));
1182         }
1183 
1184         public E first()                   {return ss.first();}
1185         public E last()                    {return ss.last();}
1186     }
1187 
1188     /**
1189      * Returns an unmodifiable view of the specified list.  This method allows
1190      * modules to provide users with "read-only" access to internal
1191      * lists.  Query operations on the returned list "read through" to the
1192      * specified list, and attempts to modify the returned list, whether
1193      * direct or via its iterator, result in an
1194      * <tt>UnsupportedOperationException</tt>.<p>
1195      *
1196      * The returned list will be serializable if the specified list
1197      * is serializable. Similarly, the returned list will implement
1198      * {@link RandomAccess} if the specified list does.
1199      *
1200      * @param  list the list for which an unmodifiable view is to be returned.
1201      * @return an unmodifiable view of the specified list.
1202      */
1203     public static <T> List<T> unmodifiableList(List<? extends T> list) {
1204         return (list instanceof RandomAccess ?
1205                 new UnmodifiableRandomAccessList<>(list) :
1206                 new UnmodifiableList<>(list));
1207     }
1208 
1209     /**
1210      * @serial include
1211      */
1212     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1213                                   implements List<E> {
1214         private static final long serialVersionUID = -283967356065247728L;
1215         final List<? extends E> list;
1216 
1217         UnmodifiableList(List<? extends E> list) {
1218             super(list);
1219             this.list = list;
1220         }
1221 
1222         public boolean equals(Object o) {return o == this || list.equals(o);}
1223         public int hashCode()           {return list.hashCode();}
1224 
1225         public E get(int index) {return list.get(index);}
1226         public E set(int index, E element) {
1227             throw new UnsupportedOperationException();
1228         }
1229         public void add(int index, E element) {
1230             throw new UnsupportedOperationException();
1231         }
1232         public E remove(int index) {
1233             throw new UnsupportedOperationException();
1234         }
1235         public int indexOf(Object o)            {return list.indexOf(o);}
1236         public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1237         public boolean addAll(int index, Collection<? extends E> c) {
1238             throw new UnsupportedOperationException();
1239         }
1240         public ListIterator<E> listIterator()   {return listIterator(0);}
1241 
1242         public ListIterator<E> listIterator(final int index) {
1243             return new ListIterator<E>() {
1244                 private final ListIterator<? extends E> i
1245                     = list.listIterator(index);
1246 
1247                 public boolean hasNext()     {return i.hasNext();}
1248                 public E next()              {return i.next();}
1249                 public boolean hasPrevious() {return i.hasPrevious();}
1250                 public E previous()          {return i.previous();}
1251                 public int nextIndex()       {return i.nextIndex();}
1252                 public int previousIndex()   {return i.previousIndex();}
1253 
1254                 public void remove() {
1255                     throw new UnsupportedOperationException();
1256                 }
1257                 public void set(E e) {
1258                     throw new UnsupportedOperationException();
1259                 }
1260                 public void add(E e) {
1261                     throw new UnsupportedOperationException();
1262                 }
1263             };
1264         }
1265 
1266         public List<E> subList(int fromIndex, int toIndex) {
1267             return new UnmodifiableList<>(list.subList(fromIndex, toIndex));
1268         }
1269 
1270         /**
1271          * UnmodifiableRandomAccessList instances are serialized as
1272          * UnmodifiableList instances to allow them to be deserialized
1273          * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1274          * This method inverts the transformation.  As a beneficial
1275          * side-effect, it also grafts the RandomAccess marker onto
1276          * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1277          *
1278          * Note: Unfortunately, UnmodifiableRandomAccessList instances
1279          * serialized in 1.4.1 and deserialized in 1.4 will become
1280          * UnmodifiableList instances, as this method was missing in 1.4.
1281          */
1282         private Object readResolve() {
1283             return (list instanceof RandomAccess
1284                     ? new UnmodifiableRandomAccessList<>(list)
1285                     : this);
1286         }
1287     }
1288 
1289     /**
1290      * @serial include
1291      */
1292     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1293                                               implements RandomAccess
1294     {
1295         UnmodifiableRandomAccessList(List<? extends E> list) {
1296             super(list);
1297         }
1298 
1299         public List<E> subList(int fromIndex, int toIndex) {
1300             return new UnmodifiableRandomAccessList<>(
1301                 list.subList(fromIndex, toIndex));
1302         }
1303 
1304         private static final long serialVersionUID = -2542308836966382001L;
1305 
1306         /**
1307          * Allows instances to be deserialized in pre-1.4 JREs (which do
1308          * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1309          * a readResolve method that inverts this transformation upon
1310          * deserialization.
1311          */
1312         private Object writeReplace() {
1313             return new UnmodifiableList<>(list);
1314         }
1315     }
1316 
1317     /**
1318      * Returns an unmodifiable view of the specified map.  This method
1319      * allows modules to provide users with "read-only" access to internal
1320      * maps.  Query operations on the returned map "read through"
1321      * to the specified map, and attempts to modify the returned
1322      * map, whether direct or via its collection views, result in an
1323      * <tt>UnsupportedOperationException</tt>.<p>
1324      *
1325      * The returned map will be serializable if the specified map
1326      * is serializable.
1327      *
1328      * @param  m the map for which an unmodifiable view is to be returned.
1329      * @return an unmodifiable view of the specified map.
1330      */
1331     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1332         return new UnmodifiableMap<>(m);
1333     }
1334 
1335     /**
1336      * @serial include
1337      */
1338     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1339         private static final long serialVersionUID = -1034234728574286014L;
1340 
1341         private final Map<? extends K, ? extends V> m;
1342 
1343         UnmodifiableMap(Map<? extends K, ? extends V> m) {
1344             if (m==null)
1345                 throw new NullPointerException();
1346             this.m = m;
1347         }
1348 
1349         public int size()                        {return m.size();}
1350         public boolean isEmpty()                 {return m.isEmpty();}
1351         public boolean containsKey(Object key)   {return m.containsKey(key);}
1352         public boolean containsValue(Object val) {return m.containsValue(val);}
1353         public V get(Object key)                 {return m.get(key);}
1354 
1355         public V put(K key, V value) {
1356             throw new UnsupportedOperationException();
1357         }
1358         public V remove(Object key) {
1359             throw new UnsupportedOperationException();
1360         }
1361         public void putAll(Map<? extends K, ? extends V> m) {
1362             throw new UnsupportedOperationException();
1363         }
1364         public void clear() {
1365             throw new UnsupportedOperationException();
1366         }
1367 
1368         private transient Set<K> keySet = null;
1369         private transient Set<Map.Entry<K,V>> entrySet = null;
1370         private transient Collection<V> values = null;
1371 
1372         public Set<K> keySet() {
1373             if (keySet==null)
1374                 keySet = unmodifiableSet(m.keySet());
1375             return keySet;
1376         }
1377 
1378         public Set<Map.Entry<K,V>> entrySet() {
1379             if (entrySet==null)
1380                 entrySet = new UnmodifiableEntrySet<>(m.entrySet());
1381             return entrySet;
1382         }
1383 
1384         public Collection<V> values() {
1385             if (values==null)
1386                 values = unmodifiableCollection(m.values());
1387             return values;
1388         }
1389 
1390         public boolean equals(Object o) {return o == this || m.equals(o);}
1391         public int hashCode()           {return m.hashCode();}
1392         public String toString()        {return m.toString();}
1393 
1394         /**
1395          * We need this class in addition to UnmodifiableSet as
1396          * Map.Entries themselves permit modification of the backing Map
1397          * via their setValue operation.  This class is subtle: there are
1398          * many possible attacks that must be thwarted.
1399          *
1400          * @serial include
1401          */
1402         static class UnmodifiableEntrySet<K,V>
1403             extends UnmodifiableSet<Map.Entry<K,V>> {
1404             private static final long serialVersionUID = 7854390611657943733L;
1405 
1406             @SuppressWarnings({"unchecked", "rawtypes"})
1407             UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1408                 // Need to cast to raw in order to work around a limitation in the type system
1409                 super((Set)s);
1410             }
1411             public Iterator<Map.Entry<K,V>> iterator() {
1412                 return new Iterator<Map.Entry<K,V>>() {
1413                     private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1414 
1415                     public boolean hasNext() {
1416                         return i.hasNext();
1417                     }
1418                     public Map.Entry<K,V> next() {
1419                         return new UnmodifiableEntry<>(i.next());
1420                     }
1421                     public void remove() {
1422                         throw new UnsupportedOperationException();
1423                     }
1424                 };
1425             }
1426 
1427             @SuppressWarnings("unchecked")
1428             public Object[] toArray() {
1429                 Object[] a = c.toArray();
1430                 for (int i=0; i<a.length; i++)
1431                     a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]);
1432                 return a;
1433             }
1434 
1435             @SuppressWarnings("unchecked")
1436             public <T> T[] toArray(T[] a) {
1437                 // We don't pass a to c.toArray, to avoid window of
1438                 // vulnerability wherein an unscrupulous multithreaded client
1439                 // could get his hands on raw (unwrapped) Entries from c.
1440                 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1441 
1442                 for (int i=0; i<arr.length; i++)
1443                     arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]);
1444 
1445                 if (arr.length > a.length)
1446                     return (T[])arr;
1447 
1448                 System.arraycopy(arr, 0, a, 0, arr.length);
1449                 if (a.length > arr.length)
1450                     a[arr.length] = null;
1451                 return a;
1452             }
1453 
1454             /**
1455              * This method is overridden to protect the backing set against
1456              * an object with a nefarious equals function that senses
1457              * that the equality-candidate is Map.Entry and calls its
1458              * setValue method.
1459              */
1460             public boolean contains(Object o) {
1461                 if (!(o instanceof Map.Entry))
1462                     return false;
1463                 return c.contains(
1464                     new UnmodifiableEntry<>((Map.Entry<?,?>) o));
1465             }
1466 
1467             /**
1468              * The next two methods are overridden to protect against
1469              * an unscrupulous List whose contains(Object o) method senses
1470              * when o is a Map.Entry, and calls o.setValue.
1471              */
1472             public boolean containsAll(Collection<?> coll) {
1473                 for (Object e : coll) {
1474                     if (!contains(e)) // Invokes safe contains() above
1475                         return false;
1476                 }
1477                 return true;
1478             }
1479             public boolean equals(Object o) {
1480                 if (o == this)
1481                     return true;
1482 
1483                 if (!(o instanceof Set))
1484                     return false;
1485                 Set<?> s = (Set<?>) o;
1486                 if (s.size() != c.size())
1487                     return false;
1488                 return containsAll(s); // Invokes safe containsAll() above
1489             }
1490 
1491             /**
1492              * This "wrapper class" serves two purposes: it prevents
1493              * the client from modifying the backing Map, by short-circuiting
1494              * the setValue method, and it protects the backing Map against
1495              * an ill-behaved Map.Entry that attempts to modify another
1496              * Map Entry when asked to perform an equality check.
1497              */
1498             private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1499                 private Map.Entry<? extends K, ? extends V> e;
1500 
1501                 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1502 
1503                 public K getKey()        {return e.getKey();}
1504                 public V getValue()      {return e.getValue();}
1505                 public V setValue(V value) {
1506                     throw new UnsupportedOperationException();
1507                 }
1508                 public int hashCode()    {return e.hashCode();}
1509                 public boolean equals(Object o) {
1510                     if (this == o)
1511                         return true;
1512                     if (!(o instanceof Map.Entry))
1513                         return false;
1514                     Map.Entry<?,?> t = (Map.Entry<?,?>)o;
1515                     return eq(e.getKey(),   t.getKey()) &&
1516                            eq(e.getValue(), t.getValue());
1517                 }
1518                 public String toString() {return e.toString();}
1519             }
1520         }
1521     }
1522 
1523     /**
1524      * Returns an unmodifiable view of the specified sorted map.  This method
1525      * allows modules to provide users with "read-only" access to internal
1526      * sorted maps.  Query operations on the returned sorted map "read through"
1527      * to the specified sorted map.  Attempts to modify the returned
1528      * sorted map, whether direct, via its collection views, or via its
1529      * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1530      * an <tt>UnsupportedOperationException</tt>.<p>
1531      *
1532      * The returned sorted map will be serializable if the specified sorted map
1533      * is serializable.
1534      *
1535      * @param m the sorted map for which an unmodifiable view is to be
1536      *        returned.
1537      * @return an unmodifiable view of the specified sorted map.
1538      */
1539     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1540         return new UnmodifiableSortedMap<>(m);
1541     }
1542 
1543     /**
1544      * @serial include
1545      */
1546     static class UnmodifiableSortedMap<K,V>
1547           extends UnmodifiableMap<K,V>
1548           implements SortedMap<K,V>, Serializable {
1549         private static final long serialVersionUID = -8806743815996713206L;
1550 
1551         private final SortedMap<K, ? extends V> sm;
1552 
1553         UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1554 
1555         public Comparator<? super K> comparator() {return sm.comparator();}
1556 
1557         public SortedMap<K,V> subMap(K fromKey, K toKey) {
1558             return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey));
1559         }
1560         public SortedMap<K,V> headMap(K toKey) {
1561             return new UnmodifiableSortedMap<>(sm.headMap(toKey));
1562         }
1563         public SortedMap<K,V> tailMap(K fromKey) {
1564             return new UnmodifiableSortedMap<>(sm.tailMap(fromKey));
1565         }
1566 
1567         public K firstKey()           {return sm.firstKey();}
1568         public K lastKey()            {return sm.lastKey();}
1569     }
1570 
1571 
1572     // Synch Wrappers
1573 
1574     /**
1575      * Returns a synchronized (thread-safe) collection backed by the specified
1576      * collection.  In order to guarantee serial access, it is critical that
1577      * <strong>all</strong> access to the backing collection is accomplished
1578      * through the returned collection.<p>
1579      *
1580      * It is imperative that the user manually synchronize on the returned
1581      * collection when iterating over it:
1582      * <pre>
1583      *  Collection c = Collections.synchronizedCollection(myCollection);
1584      *     ...
1585      *  synchronized (c) {
1586      *      Iterator i = c.iterator(); // Must be in the synchronized block
1587      *      while (i.hasNext())
1588      *         foo(i.next());
1589      *  }
1590      * </pre>
1591      * Failure to follow this advice may result in non-deterministic behavior.
1592      *
1593      * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1594      * and <tt>equals</tt> operations through to the backing collection, but
1595      * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
1596      * necessary to preserve the contracts of these operations in the case
1597      * that the backing collection is a set or a list.<p>
1598      *
1599      * The returned collection will be serializable if the specified collection
1600      * is serializable.
1601      *
1602      * @param  c the collection to be "wrapped" in a synchronized collection.
1603      * @return a synchronized view of the specified collection.
1604      */
1605     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1606         return new SynchronizedCollection<>(c);
1607     }
1608 
1609     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1610         return new SynchronizedCollection<>(c, mutex);
1611     }
1612 
1613     /**
1614      * @serial include
1615      */
1616     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1617         private static final long serialVersionUID = 3053995032091335093L;
1618 
1619         final Collection<E> c;  // Backing Collection
1620         final Object mutex;     // Object on which to synchronize
1621 
1622         SynchronizedCollection(Collection<E> c) {
1623             if (c==null)
1624                 throw new NullPointerException();
1625             this.c = c;
1626             mutex = this;
1627         }
1628         SynchronizedCollection(Collection<E> c, Object mutex) {
1629             this.c = c;
1630             this.mutex = mutex;
1631         }
1632 
1633         public int size() {
1634             synchronized (mutex) {return c.size();}
1635         }
1636         public boolean isEmpty() {
1637             synchronized (mutex) {return c.isEmpty();}
1638         }
1639         public boolean contains(Object o) {
1640             synchronized (mutex) {return c.contains(o);}
1641         }
1642         public Object[] toArray() {
1643             synchronized (mutex) {return c.toArray();}
1644         }
1645         public <T> T[] toArray(T[] a) {
1646             synchronized (mutex) {return c.toArray(a);}
1647         }
1648 
1649         public Iterator<E> iterator() {
1650             return c.iterator(); // Must be manually synched by user!
1651         }
1652 
1653         public boolean add(E e) {
1654             synchronized (mutex) {return c.add(e);}
1655         }
1656         public boolean remove(Object o) {
1657             synchronized (mutex) {return c.remove(o);}
1658         }
1659 
1660         public boolean containsAll(Collection<?> coll) {
1661             synchronized (mutex) {return c.containsAll(coll);}
1662         }
1663         public boolean addAll(Collection<? extends E> coll) {
1664             synchronized (mutex) {return c.addAll(coll);}
1665         }
1666         public boolean removeAll(Collection<?> coll) {
1667             synchronized (mutex) {return c.removeAll(coll);}
1668         }
1669         public boolean retainAll(Collection<?> coll) {
1670             synchronized (mutex) {return c.retainAll(coll);}
1671         }
1672         public void clear() {
1673             synchronized (mutex) {c.clear();}
1674         }
1675         public String toString() {
1676             synchronized (mutex) {return c.toString();}
1677         }
1678         private void writeObject(ObjectOutputStream s) throws IOException {
1679             synchronized (mutex) {s.defaultWriteObject();}
1680         }
1681     }
1682 
1683     /**
1684      * Returns a synchronized (thread-safe) set backed by the specified
1685      * set.  In order to guarantee serial access, it is critical that
1686      * <strong>all</strong> access to the backing set is accomplished
1687      * through the returned set.<p>
1688      *
1689      * It is imperative that the user manually synchronize on the returned
1690      * set when iterating over it:
1691      * <pre>
1692      *  Set s = Collections.synchronizedSet(new HashSet());
1693      *      ...
1694      *  synchronized (s) {
1695      *      Iterator i = s.iterator(); // Must be in the synchronized block
1696      *      while (i.hasNext())
1697      *          foo(i.next());
1698      *  }
1699      * </pre>
1700      * Failure to follow this advice may result in non-deterministic behavior.
1701      *
1702      * <p>The returned set will be serializable if the specified set is
1703      * serializable.
1704      *
1705      * @param  s the set to be "wrapped" in a synchronized set.
1706      * @return a synchronized view of the specified set.
1707      */
1708     public static <T> Set<T> synchronizedSet(Set<T> s) {
1709         return new SynchronizedSet<>(s);
1710     }
1711 
1712     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1713         return new SynchronizedSet<>(s, mutex);
1714     }
1715 
1716     /**
1717      * @serial include
1718      */
1719     static class SynchronizedSet<E>
1720           extends SynchronizedCollection<E>
1721           implements Set<E> {
1722         private static final long serialVersionUID = 487447009682186044L;
1723 
1724         SynchronizedSet(Set<E> s) {
1725             super(s);
1726         }
1727         SynchronizedSet(Set<E> s, Object mutex) {
1728             super(s, mutex);
1729         }
1730 
1731         public boolean equals(Object o) {
1732             if (this == o)
1733                 return true;
1734             synchronized (mutex) {return c.equals(o);}
1735         }
1736         public int hashCode() {
1737             synchronized (mutex) {return c.hashCode();}
1738         }
1739     }
1740 
1741     /**
1742      * Returns a synchronized (thread-safe) sorted set backed by the specified
1743      * sorted set.  In order to guarantee serial access, it is critical that
1744      * <strong>all</strong> access to the backing sorted set is accomplished
1745      * through the returned sorted set (or its views).<p>
1746      *
1747      * It is imperative that the user manually synchronize on the returned
1748      * sorted set when iterating over it or any of its <tt>subSet</tt>,
1749      * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1750      * <pre>
1751      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1752      *      ...
1753      *  synchronized (s) {
1754      *      Iterator i = s.iterator(); // Must be in the synchronized block
1755      *      while (i.hasNext())
1756      *          foo(i.next());
1757      *  }
1758      * </pre>
1759      * or:
1760      * <pre>
1761      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1762      *  SortedSet s2 = s.headSet(foo);
1763      *      ...
1764      *  synchronized (s) {  // Note: s, not s2!!!
1765      *      Iterator i = s2.iterator(); // Must be in the synchronized block
1766      *      while (i.hasNext())
1767      *          foo(i.next());
1768      *  }
1769      * </pre>
1770      * Failure to follow this advice may result in non-deterministic behavior.
1771      *
1772      * <p>The returned sorted set will be serializable if the specified
1773      * sorted set is serializable.
1774      *
1775      * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
1776      * @return a synchronized view of the specified sorted set.
1777      */
1778     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1779         return new SynchronizedSortedSet<>(s);
1780     }
1781 
1782     /**
1783      * @serial include
1784      */
1785     static class SynchronizedSortedSet<E>
1786         extends SynchronizedSet<E>
1787         implements SortedSet<E>
1788     {
1789         private static final long serialVersionUID = 8695801310862127406L;
1790 
1791         private final SortedSet<E> ss;
1792 
1793         SynchronizedSortedSet(SortedSet<E> s) {
1794             super(s);
1795             ss = s;
1796         }
1797         SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1798             super(s, mutex);
1799             ss = s;
1800         }
1801 
1802         public Comparator<? super E> comparator() {
1803             synchronized (mutex) {return ss.comparator();}
1804         }
1805 
1806         public SortedSet<E> subSet(E fromElement, E toElement) {
1807             synchronized (mutex) {
1808                 return new SynchronizedSortedSet<>(
1809                     ss.subSet(fromElement, toElement), mutex);
1810             }
1811         }
1812         public SortedSet<E> headSet(E toElement) {
1813             synchronized (mutex) {
1814                 return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex);
1815             }
1816         }
1817         public SortedSet<E> tailSet(E fromElement) {
1818             synchronized (mutex) {
1819                return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex);
1820             }
1821         }
1822 
1823         public E first() {
1824             synchronized (mutex) {return ss.first();}
1825         }
1826         public E last() {
1827             synchronized (mutex) {return ss.last();}
1828         }
1829     }
1830 
1831     /**
1832      * Returns a synchronized (thread-safe) list backed by the specified
1833      * list.  In order to guarantee serial access, it is critical that
1834      * <strong>all</strong> access to the backing list is accomplished
1835      * through the returned list.<p>
1836      *
1837      * It is imperative that the user manually synchronize on the returned
1838      * list when iterating over it:
1839      * <pre>
1840      *  List list = Collections.synchronizedList(new ArrayList());
1841      *      ...
1842      *  synchronized (list) {
1843      *      Iterator i = list.iterator(); // Must be in synchronized block
1844      *      while (i.hasNext())
1845      *          foo(i.next());
1846      *  }
1847      * </pre>
1848      * Failure to follow this advice may result in non-deterministic behavior.
1849      *
1850      * <p>The returned list will be serializable if the specified list is
1851      * serializable.
1852      *
1853      * @param  list the list to be "wrapped" in a synchronized list.
1854      * @return a synchronized view of the specified list.
1855      */
1856     public static <T> List<T> synchronizedList(List<T> list) {
1857         return (list instanceof RandomAccess ?
1858                 new SynchronizedRandomAccessList<>(list) :
1859                 new SynchronizedList<>(list));
1860     }
1861 
1862     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1863         return (list instanceof RandomAccess ?
1864                 new SynchronizedRandomAccessList<>(list, mutex) :
1865                 new SynchronizedList<>(list, mutex));
1866     }
1867 
1868     /**
1869      * @serial include
1870      */
1871     static class SynchronizedList<E>
1872         extends SynchronizedCollection<E>
1873         implements List<E> {
1874         private static final long serialVersionUID = -7754090372962971524L;
1875 
1876         final List<E> list;
1877 
1878         SynchronizedList(List<E> list) {
1879             super(list);
1880             this.list = list;
1881         }
1882         SynchronizedList(List<E> list, Object mutex) {
1883             super(list, mutex);
1884             this.list = list;
1885         }
1886 
1887         public boolean equals(Object o) {
1888             if (this == o)
1889                 return true;
1890             synchronized (mutex) {return list.equals(o);}
1891         }
1892         public int hashCode() {
1893             synchronized (mutex) {return list.hashCode();}
1894         }
1895 
1896         public E get(int index) {
1897             synchronized (mutex) {return list.get(index);}
1898         }
1899         public E set(int index, E element) {
1900             synchronized (mutex) {return list.set(index, element);}
1901         }
1902         public void add(int index, E element) {
1903             synchronized (mutex) {list.add(index, element);}
1904         }
1905         public E remove(int index) {
1906             synchronized (mutex) {return list.remove(index);}
1907         }
1908 
1909         public int indexOf(Object o) {
1910             synchronized (mutex) {return list.indexOf(o);}
1911         }
1912         public int lastIndexOf(Object o) {
1913             synchronized (mutex) {return list.lastIndexOf(o);}
1914         }
1915 
1916         public boolean addAll(int index, Collection<? extends E> c) {
1917             synchronized (mutex) {return list.addAll(index, c);}
1918         }
1919 
1920         public ListIterator<E> listIterator() {
1921             return list.listIterator(); // Must be manually synched by user
1922         }
1923 
1924         public ListIterator<E> listIterator(int index) {
1925             return list.listIterator(index); // Must be manually synched by user
1926         }
1927 
1928         public List<E> subList(int fromIndex, int toIndex) {
1929             synchronized (mutex) {
1930                 return new SynchronizedList<>(list.subList(fromIndex, toIndex),
1931                                             mutex);
1932             }
1933         }
1934 
1935         /**
1936          * SynchronizedRandomAccessList instances are serialized as
1937          * SynchronizedList instances to allow them to be deserialized
1938          * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1939          * This method inverts the transformation.  As a beneficial
1940          * side-effect, it also grafts the RandomAccess marker onto
1941          * SynchronizedList instances that were serialized in pre-1.4 JREs.
1942          *
1943          * Note: Unfortunately, SynchronizedRandomAccessList instances
1944          * serialized in 1.4.1 and deserialized in 1.4 will become
1945          * SynchronizedList instances, as this method was missing in 1.4.
1946          */
1947         private Object readResolve() {
1948             return (list instanceof RandomAccess
1949                     ? new SynchronizedRandomAccessList<>(list)
1950                     : this);
1951         }
1952     }
1953 
1954     /**
1955      * @serial include
1956      */
1957     static class SynchronizedRandomAccessList<E>
1958         extends SynchronizedList<E>
1959         implements RandomAccess {
1960 
1961         SynchronizedRandomAccessList(List<E> list) {
1962             super(list);
1963         }
1964 
1965         SynchronizedRandomAccessList(List<E> list, Object mutex) {
1966             super(list, mutex);
1967         }
1968 
1969         public List<E> subList(int fromIndex, int toIndex) {
1970             synchronized (mutex) {
1971                 return new SynchronizedRandomAccessList<>(
1972                     list.subList(fromIndex, toIndex), mutex);
1973             }
1974         }
1975 
1976         private static final long serialVersionUID = 1530674583602358482L;
1977 
1978         /**
1979          * Allows instances to be deserialized in pre-1.4 JREs (which do
1980          * not have SynchronizedRandomAccessList).  SynchronizedList has
1981          * a readResolve method that inverts this transformation upon
1982          * deserialization.
1983          */
1984         private Object writeReplace() {
1985             return new SynchronizedList<>(list);
1986         }
1987     }
1988 
1989     /**
1990      * Returns a synchronized (thread-safe) map backed by the specified
1991      * map.  In order to guarantee serial access, it is critical that
1992      * <strong>all</strong> access to the backing map is accomplished
1993      * through the returned map.<p>
1994      *
1995      * It is imperative that the user manually synchronize on the returned
1996      * map when iterating over any of its collection views:
1997      * <pre>
1998      *  Map m = Collections.synchronizedMap(new HashMap());
1999      *      ...
2000      *  Set s = m.keySet();  // Needn't be in synchronized block
2001      *      ...
2002      *  synchronized (m) {  // Synchronizing on m, not s!
2003      *      Iterator i = s.iterator(); // Must be in synchronized block
2004      *      while (i.hasNext())
2005      *          foo(i.next());
2006      *  }
2007      * </pre>
2008      * Failure to follow this advice may result in non-deterministic behavior.
2009      *
2010      * <p>The returned map will be serializable if the specified map is
2011      * serializable.
2012      *
2013      * @param  m the map to be "wrapped" in a synchronized map.
2014      * @return a synchronized view of the specified map.
2015      */
2016     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
2017         return new SynchronizedMap<>(m);
2018     }
2019 
2020     /**
2021      * @serial include
2022      */
2023     private static class SynchronizedMap<K,V>
2024         implements Map<K,V>, Serializable {
2025         private static final long serialVersionUID = 1978198479659022715L;
2026 
2027         private final Map<K,V> m;     // Backing Map
2028         final Object      mutex;        // Object on which to synchronize
2029 
2030         SynchronizedMap(Map<K,V> m) {
2031             if (m==null)
2032                 throw new NullPointerException();
2033             this.m = m;
2034             mutex = this;
2035         }
2036 
2037         SynchronizedMap(Map<K,V> m, Object mutex) {
2038             this.m = m;
2039             this.mutex = mutex;
2040         }
2041 
2042         public int size() {
2043             synchronized (mutex) {return m.size();}
2044         }
2045         public boolean isEmpty() {
2046             synchronized (mutex) {return m.isEmpty();}
2047         }
2048         public boolean containsKey(Object key) {
2049             synchronized (mutex) {return m.containsKey(key);}
2050         }
2051         public boolean containsValue(Object value) {
2052             synchronized (mutex) {return m.containsValue(value);}
2053         }
2054         public V get(Object key) {
2055             synchronized (mutex) {return m.get(key);}
2056         }
2057 
2058         public V put(K key, V value) {
2059             synchronized (mutex) {return m.put(key, value);}
2060         }
2061         public V remove(Object key) {
2062             synchronized (mutex) {return m.remove(key);}
2063         }
2064         public void putAll(Map<? extends K, ? extends V> map) {
2065             synchronized (mutex) {m.putAll(map);}
2066         }
2067         public void clear() {
2068             synchronized (mutex) {m.clear();}
2069         }
2070 
2071         private transient Set<K> keySet = null;
2072         private transient Set<Map.Entry<K,V>> entrySet = null;
2073         private transient Collection<V> values = null;
2074 
2075         public Set<K> keySet() {
2076             synchronized (mutex) {
2077                 if (keySet==null)
2078                     keySet = new SynchronizedSet<>(m.keySet(), mutex);
2079                 return keySet;
2080             }
2081         }
2082 
2083         public Set<Map.Entry<K,V>> entrySet() {
2084             synchronized (mutex) {
2085                 if (entrySet==null)
2086                     entrySet = new SynchronizedSet<>(m.entrySet(), mutex);
2087                 return entrySet;
2088             }
2089         }
2090 
2091         public Collection<V> values() {
2092             synchronized (mutex) {
2093                 if (values==null)
2094                     values = new SynchronizedCollection<>(m.values(), mutex);
2095                 return values;
2096             }
2097         }
2098 
2099         public boolean equals(Object o) {
2100             if (this == o)
2101                 return true;
2102             synchronized (mutex) {return m.equals(o);}
2103         }
2104         public int hashCode() {
2105             synchronized (mutex) {return m.hashCode();}
2106         }
2107         public String toString() {
2108             synchronized (mutex) {return m.toString();}
2109         }
2110         private void writeObject(ObjectOutputStream s) throws IOException {
2111             synchronized (mutex) {s.defaultWriteObject();}
2112         }
2113     }
2114 
2115     /**
2116      * Returns a synchronized (thread-safe) sorted map backed by the specified
2117      * sorted map.  In order to guarantee serial access, it is critical that
2118      * <strong>all</strong> access to the backing sorted map is accomplished
2119      * through the returned sorted map (or its views).<p>
2120      *
2121      * It is imperative that the user manually synchronize on the returned
2122      * sorted map when iterating over any of its collection views, or the
2123      * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2124      * <tt>tailMap</tt> views.
2125      * <pre>
2126      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2127      *      ...
2128      *  Set s = m.keySet();  // Needn't be in synchronized block
2129      *      ...
2130      *  synchronized (m) {  // Synchronizing on m, not s!
2131      *      Iterator i = s.iterator(); // Must be in synchronized block
2132      *      while (i.hasNext())
2133      *          foo(i.next());
2134      *  }
2135      * </pre>
2136      * or:
2137      * <pre>
2138      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2139      *  SortedMap m2 = m.subMap(foo, bar);
2140      *      ...
2141      *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2142      *      ...
2143      *  synchronized (m) {  // Synchronizing on m, not m2 or s2!
2144      *      Iterator i = s.iterator(); // Must be in synchronized block
2145      *      while (i.hasNext())
2146      *          foo(i.next());
2147      *  }
2148      * </pre>
2149      * Failure to follow this advice may result in non-deterministic behavior.
2150      *
2151      * <p>The returned sorted map will be serializable if the specified
2152      * sorted map is serializable.
2153      *
2154      * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2155      * @return a synchronized view of the specified sorted map.
2156      */
2157     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2158         return new SynchronizedSortedMap<>(m);
2159     }
2160 
2161 
2162     /**
2163      * @serial include
2164      */
2165     static class SynchronizedSortedMap<K,V>
2166         extends SynchronizedMap<K,V>
2167         implements SortedMap<K,V>
2168     {
2169         private static final long serialVersionUID = -8798146769416483793L;
2170 
2171         private final SortedMap<K,V> sm;
2172 
2173         SynchronizedSortedMap(SortedMap<K,V> m) {
2174             super(m);
2175             sm = m;
2176         }
2177         SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2178             super(m, mutex);
2179             sm = m;
2180         }
2181 
2182         public Comparator<? super K> comparator() {
2183             synchronized (mutex) {return sm.comparator();}
2184         }
2185 
2186         public SortedMap<K,V> subMap(K fromKey, K toKey) {
2187             synchronized (mutex) {
2188                 return new SynchronizedSortedMap<>(
2189                     sm.subMap(fromKey, toKey), mutex);
2190             }
2191         }
2192         public SortedMap<K,V> headMap(K toKey) {
2193             synchronized (mutex) {
2194                 return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex);
2195             }
2196         }
2197         public SortedMap<K,V> tailMap(K fromKey) {
2198             synchronized (mutex) {
2199                return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex);
2200             }
2201         }
2202 
2203         public K firstKey() {
2204             synchronized (mutex) {return sm.firstKey();}
2205         }
2206         public K lastKey() {
2207             synchronized (mutex) {return sm.lastKey();}
2208         }
2209     }
2210 
2211     // Dynamically typesafe collection wrappers
2212 
2213     /**
2214      * Returns a dynamically typesafe view of the specified collection.
2215      * Any attempt to insert an element of the wrong type will result in an
2216      * immediate {@link ClassCastException}.  Assuming a collection
2217      * contains no incorrectly typed elements prior to the time a
2218      * dynamically typesafe view is generated, and that all subsequent
2219      * access to the collection takes place through the view, it is
2220      * <i>guaranteed</i> that the collection cannot contain an incorrectly
2221      * typed element.
2222      *
2223      * <p>The generics mechanism in the language provides compile-time
2224      * (static) type checking, but it is possible to defeat this mechanism
2225      * with unchecked casts.  Usually this is not a problem, as the compiler
2226      * issues warnings on all such unchecked operations.  There are, however,
2227      * times when static type checking alone is not sufficient.  For example,
2228      * suppose a collection is passed to a third-party library and it is
2229      * imperative that the library code not corrupt the collection by
2230      * inserting an element of the wrong type.
2231      *
2232      * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2233      * program fails with a {@code ClassCastException}, indicating that an
2234      * incorrectly typed element was put into a parameterized collection.
2235      * Unfortunately, the exception can occur at any time after the erroneous
2236      * element is inserted, so it typically provides little or no information
2237      * as to the real source of the problem.  If the problem is reproducible,
2238      * one can quickly determine its source by temporarily modifying the
2239      * program to wrap the collection with a dynamically typesafe view.
2240      * For example, this declaration:
2241      *  <pre> {@code
2242      *     Collection<String> c = new HashSet<String>();
2243      * }</pre>
2244      * may be replaced temporarily by this one:
2245      *  <pre> {@code
2246      *     Collection<String> c = Collections.checkedCollection(
2247      *         new HashSet<String>(), String.class);
2248      * }</pre>
2249      * Running the program again will cause it to fail at the point where
2250      * an incorrectly typed element is inserted into the collection, clearly
2251      * identifying the source of the problem.  Once the problem is fixed, the
2252      * modified declaration may be reverted back to the original.
2253      *
2254      * <p>The returned collection does <i>not</i> pass the hashCode and equals
2255      * operations through to the backing collection, but relies on
2256      * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2257      * is necessary to preserve the contracts of these operations in the case
2258      * that the backing collection is a set or a list.
2259      *
2260      * <p>The returned collection will be serializable if the specified
2261      * collection is serializable.
2262      *
2263      * <p>Since {@code null} is considered to be a value of any reference
2264      * type, the returned collection permits insertion of null elements
2265      * whenever the backing collection does.
2266      *
2267      * @param c the collection for which a dynamically typesafe view is to be
2268      *          returned
2269      * @param type the type of element that {@code c} is permitted to hold
2270      * @return a dynamically typesafe view of the specified collection
2271      * @since 1.5
2272      */
2273     public static <E> Collection<E> checkedCollection(Collection<E> c,
2274                                                       Class<E> type) {
2275         return new CheckedCollection<>(c, type);
2276     }
2277 
2278     @SuppressWarnings("unchecked")
2279     static <T> T[] zeroLengthArray(Class<T> type) {
2280         return (T[]) Array.newInstance(type, 0);
2281     }
2282 
2283     /**
2284      * @serial include
2285      */
2286     static class CheckedCollection<E> implements Collection<E>, Serializable {
2287         private static final long serialVersionUID = 1578914078182001775L;
2288 
2289         final Collection<E> c;
2290         final Class<E> type;
2291 
2292         void typeCheck(Object o) {
2293             if (o != null && !type.isInstance(o))
2294                 throw new ClassCastException(badElementMsg(o));
2295         }
2296 
2297         private String badElementMsg(Object o) {
2298             return "Attempt to insert " + o.getClass() +
2299                 " element into collection with element type " + type;
2300         }
2301 
2302         CheckedCollection(Collection<E> c, Class<E> type) {
2303             if (c==null || type == null)
2304                 throw new NullPointerException();
2305             this.c = c;
2306             this.type = type;
2307         }
2308 
2309         public int size()                 { return c.size(); }
2310         public boolean isEmpty()          { return c.isEmpty(); }
2311         public boolean contains(Object o) { return c.contains(o); }
2312         public Object[] toArray()         { return c.toArray(); }
2313         public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2314         public String toString()          { return c.toString(); }
2315         public boolean remove(Object o)   { return c.remove(o); }
2316         public void clear()               {        c.clear(); }
2317 
2318         public boolean containsAll(Collection<?> coll) {
2319             return c.containsAll(coll);
2320         }
2321         public boolean removeAll(Collection<?> coll) {
2322             return c.removeAll(coll);
2323         }
2324         public boolean retainAll(Collection<?> coll) {
2325             return c.retainAll(coll);
2326         }
2327 
2328         public Iterator<E> iterator() {
2329             final Iterator<E> it = c.iterator();
2330             return new Iterator<E>() {
2331                 public boolean hasNext() { return it.hasNext(); }
2332                 public E next()          { return it.next(); }
2333                 public void remove()     {        it.remove(); }};
2334         }
2335 
2336         public boolean add(E e) {
2337             typeCheck(e);
2338             return c.add(e);
2339         }
2340 
2341         private E[] zeroLengthElementArray = null; // Lazily initialized
2342 
2343         private E[] zeroLengthElementArray() {
2344             return zeroLengthElementArray != null ? zeroLengthElementArray :
2345                 (zeroLengthElementArray = zeroLengthArray(type));
2346         }
2347 
2348         @SuppressWarnings("unchecked")
2349         Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2350             Object[] a = null;
2351             try {
2352                 E[] z = zeroLengthElementArray();
2353                 a = coll.toArray(z);
2354                 // Defend against coll violating the toArray contract
2355                 if (a.getClass() != z.getClass())
2356                     a = Arrays.copyOf(a, a.length, z.getClass());
2357             } catch (ArrayStoreException ignore) {
2358                 // To get better and consistent diagnostics,
2359                 // we call typeCheck explicitly on each element.
2360                 // We call clone() to defend against coll retaining a
2361                 // reference to the returned array and storing a bad
2362                 // element into it after it has been type checked.
2363                 a = coll.toArray().clone();
2364                 for (Object o : a)
2365                     typeCheck(o);
2366             }
2367             // A slight abuse of the type system, but safe here.
2368             return (Collection<E>) Arrays.asList(a);
2369         }
2370 
2371         public boolean addAll(Collection<? extends E> coll) {
2372             // Doing things this way insulates us from concurrent changes
2373             // in the contents of coll and provides all-or-nothing
2374             // semantics (which we wouldn't get if we type-checked each
2375             // element as we added it)
2376             return c.addAll(checkedCopyOf(coll));
2377         }
2378     }
2379 
2380     /**
2381      * Returns a dynamically typesafe view of the specified queue.
2382      * Any attempt to insert an element of the wrong type will result in
2383      * an immediate {@link ClassCastException}.  Assuming a queue contains
2384      * no incorrectly typed elements prior to the time a dynamically typesafe
2385      * view is generated, and that all subsequent access to the queue
2386      * takes place through the view, it is <i>guaranteed</i> that the
2387      * queue cannot contain an incorrectly typed element.
2388      *
2389      * <p>A discussion of the use of dynamically typesafe views may be
2390      * found in the documentation for the {@link #checkedCollection
2391      * checkedCollection} method.
2392      *
2393      * <p>The returned queue will be serializable if the specified queue
2394      * is serializable.
2395      *
2396      * <p>Since {@code null} is considered to be a value of any reference
2397      * type, the returned queue permits insertion of {@code null} elements
2398      * whenever the backing queue does.
2399      *
2400      * @param queue the queue for which a dynamically typesafe view is to be
2401      *             returned
2402      * @param type the type of element that {@code queue} is permitted to hold
2403      * @return a dynamically typesafe view of the specified queue
2404      * @since 1.8
2405      */
2406     public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) {
2407         return new CheckedQueue<>(queue, type);
2408     }
2409 
2410     /**
2411      * @serial include
2412      */
2413     static class CheckedQueue<E>
2414         extends CheckedCollection<E>
2415         implements Queue<E>, Serializable
2416     {
2417         private static final long serialVersionUID = 1433151992604707767L;
2418         final Queue<E> queue;
2419 
2420         CheckedQueue(Queue<E> queue, Class<E> elementType) {
2421             super(queue, elementType);
2422             this.queue = queue;
2423         }
2424 
2425         public E element()              {return queue.element();}
2426         public boolean equals(Object o) {return o == this || c.equals(o);}
2427         public int hashCode()           {return c.hashCode();}
2428         public E peek()                 {return queue.peek();}
2429         public E poll()                 {return queue.poll();}
2430         public E remove()               {return queue.remove();}
2431 
2432         public boolean offer(E e) {
2433             typeCheck(e);
2434             return add(e);
2435         }
2436     }
2437 
2438     /**
2439      * Returns a dynamically typesafe view of the specified set.
2440      * Any attempt to insert an element of the wrong type will result in
2441      * an immediate {@link ClassCastException}.  Assuming a set contains
2442      * no incorrectly typed elements prior to the time a dynamically typesafe
2443      * view is generated, and that all subsequent access to the set
2444      * takes place through the view, it is <i>guaranteed</i> that the
2445      * set cannot contain an incorrectly typed element.
2446      *
2447      * <p>A discussion of the use of dynamically typesafe views may be
2448      * found in the documentation for the {@link #checkedCollection
2449      * checkedCollection} method.
2450      *
2451      * <p>The returned set will be serializable if the specified set is
2452      * serializable.
2453      *
2454      * <p>Since {@code null} is considered to be a value of any reference
2455      * type, the returned set permits insertion of null elements whenever
2456      * the backing set does.
2457      *
2458      * @param s the set for which a dynamically typesafe view is to be
2459      *          returned
2460      * @param type the type of element that {@code s} is permitted to hold
2461      * @return a dynamically typesafe view of the specified set
2462      * @since 1.5
2463      */
2464     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2465         return new CheckedSet<>(s, type);
2466     }
2467 
2468     /**
2469      * @serial include
2470      */
2471     static class CheckedSet<E> extends CheckedCollection<E>
2472                                  implements Set<E>, Serializable
2473     {
2474         private static final long serialVersionUID = 4694047833775013803L;
2475 
2476         CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2477 
2478         public boolean equals(Object o) { return o == this || c.equals(o); }
2479         public int hashCode()           { return c.hashCode(); }
2480     }
2481 
2482     /**
2483      * Returns a dynamically typesafe view of the specified sorted set.
2484      * Any attempt to insert an element of the wrong type will result in an
2485      * immediate {@link ClassCastException}.  Assuming a sorted set
2486      * contains no incorrectly typed elements prior to the time a
2487      * dynamically typesafe view is generated, and that all subsequent
2488      * access to the sorted set takes place through the view, it is
2489      * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2490      * typed element.
2491      *
2492      * <p>A discussion of the use of dynamically typesafe views may be
2493      * found in the documentation for the {@link #checkedCollection
2494      * checkedCollection} method.
2495      *
2496      * <p>The returned sorted set will be serializable if the specified sorted
2497      * set is serializable.
2498      *
2499      * <p>Since {@code null} is considered to be a value of any reference
2500      * type, the returned sorted set permits insertion of null elements
2501      * whenever the backing sorted set does.
2502      *
2503      * @param s the sorted set for which a dynamically typesafe view is to be
2504      *          returned
2505      * @param type the type of element that {@code s} is permitted to hold
2506      * @return a dynamically typesafe view of the specified sorted set
2507      * @since 1.5
2508      */
2509     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2510                                                     Class<E> type) {
2511         return new CheckedSortedSet<>(s, type);
2512     }
2513 
2514     /**
2515      * @serial include
2516      */
2517     static class CheckedSortedSet<E> extends CheckedSet<E>
2518         implements SortedSet<E>, Serializable
2519     {
2520         private static final long serialVersionUID = 1599911165492914959L;
2521         private final SortedSet<E> ss;
2522 
2523         CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2524             super(s, type);
2525             ss = s;
2526         }
2527 
2528         public Comparator<? super E> comparator() { return ss.comparator(); }
2529         public E first()                   { return ss.first(); }
2530         public E last()                    { return ss.last(); }
2531 
2532         public SortedSet<E> subSet(E fromElement, E toElement) {
2533             return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2534         }
2535         public SortedSet<E> headSet(E toElement) {
2536             return checkedSortedSet(ss.headSet(toElement), type);
2537         }
2538         public SortedSet<E> tailSet(E fromElement) {
2539             return checkedSortedSet(ss.tailSet(fromElement), type);
2540         }
2541     }
2542 
2543     /**
2544      * Returns a dynamically typesafe view of the specified list.
2545      * Any attempt to insert an element of the wrong type will result in
2546      * an immediate {@link ClassCastException}.  Assuming a list contains
2547      * no incorrectly typed elements prior to the time a dynamically typesafe
2548      * view is generated, and that all subsequent access to the list
2549      * takes place through the view, it is <i>guaranteed</i> that the
2550      * list cannot contain an incorrectly typed element.
2551      *
2552      * <p>A discussion of the use of dynamically typesafe views may be
2553      * found in the documentation for the {@link #checkedCollection
2554      * checkedCollection} method.
2555      *
2556      * <p>The returned list will be serializable if the specified list
2557      * is serializable.
2558      *
2559      * <p>Since {@code null} is considered to be a value of any reference
2560      * type, the returned list permits insertion of null elements whenever
2561      * the backing list does.
2562      *
2563      * @param list the list for which a dynamically typesafe view is to be
2564      *             returned
2565      * @param type the type of element that {@code list} is permitted to hold
2566      * @return a dynamically typesafe view of the specified list
2567      * @since 1.5
2568      */
2569     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2570         return (list instanceof RandomAccess ?
2571                 new CheckedRandomAccessList<>(list, type) :
2572                 new CheckedList<>(list, type));
2573     }
2574 
2575     /**
2576      * @serial include
2577      */
2578     static class CheckedList<E>
2579         extends CheckedCollection<E>
2580         implements List<E>
2581     {
2582         private static final long serialVersionUID = 65247728283967356L;
2583         final List<E> list;
2584 
2585         CheckedList(List<E> list, Class<E> type) {
2586             super(list, type);
2587             this.list = list;
2588         }
2589 
2590         public boolean equals(Object o)  { return o == this || list.equals(o); }
2591         public int hashCode()            { return list.hashCode(); }
2592         public E get(int index)          { return list.get(index); }
2593         public E remove(int index)       { return list.remove(index); }
2594         public int indexOf(Object o)     { return list.indexOf(o); }
2595         public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2596 
2597         public E set(int index, E element) {
2598             typeCheck(element);
2599             return list.set(index, element);
2600         }
2601 
2602         public void add(int index, E element) {
2603             typeCheck(element);
2604             list.add(index, element);
2605         }
2606 
2607         public boolean addAll(int index, Collection<? extends E> c) {
2608             return list.addAll(index, checkedCopyOf(c));
2609         }
2610         public ListIterator<E> listIterator()   { return listIterator(0); }
2611 
2612         public ListIterator<E> listIterator(final int index) {
2613             final ListIterator<E> i = list.listIterator(index);
2614 
2615             return new ListIterator<E>() {
2616                 public boolean hasNext()     { return i.hasNext(); }
2617                 public E next()              { return i.next(); }
2618                 public boolean hasPrevious() { return i.hasPrevious(); }
2619                 public E previous()          { return i.previous(); }
2620                 public int nextIndex()       { return i.nextIndex(); }
2621                 public int previousIndex()   { return i.previousIndex(); }
2622                 public void remove()         {        i.remove(); }
2623 
2624                 public void set(E e) {
2625                     typeCheck(e);
2626                     i.set(e);
2627                 }
2628 
2629                 public void add(E e) {
2630                     typeCheck(e);
2631                     i.add(e);
2632                 }
2633             };
2634         }
2635 
2636         public List<E> subList(int fromIndex, int toIndex) {
2637             return new CheckedList<>(list.subList(fromIndex, toIndex), type);
2638         }
2639     }
2640 
2641     /**
2642      * @serial include
2643      */
2644     static class CheckedRandomAccessList<E> extends CheckedList<E>
2645                                             implements RandomAccess
2646     {
2647         private static final long serialVersionUID = 1638200125423088369L;
2648 
2649         CheckedRandomAccessList(List<E> list, Class<E> type) {
2650             super(list, type);
2651         }
2652 
2653         public List<E> subList(int fromIndex, int toIndex) {
2654             return new CheckedRandomAccessList<>(
2655                 list.subList(fromIndex, toIndex), type);
2656         }
2657     }
2658 
2659     /**
2660      * Returns a dynamically typesafe view of the specified map.
2661      * Any attempt to insert a mapping whose key or value have the wrong
2662      * type will result in an immediate {@link ClassCastException}.
2663      * Similarly, any attempt to modify the value currently associated with
2664      * a key will result in an immediate {@link ClassCastException},
2665      * whether the modification is attempted directly through the map
2666      * itself, or through a {@link Map.Entry} instance obtained from the
2667      * map's {@link Map#entrySet() entry set} view.
2668      *
2669      * <p>Assuming a map contains no incorrectly typed keys or values
2670      * prior to the time a dynamically typesafe view is generated, and
2671      * that all subsequent access to the map takes place through the view
2672      * (or one of its collection views), it is <i>guaranteed</i> that the
2673      * map cannot contain an incorrectly typed key or value.
2674      *
2675      * <p>A discussion of the use of dynamically typesafe views may be
2676      * found in the documentation for the {@link #checkedCollection
2677      * checkedCollection} method.
2678      *
2679      * <p>The returned map will be serializable if the specified map is
2680      * serializable.
2681      *
2682      * <p>Since {@code null} is considered to be a value of any reference
2683      * type, the returned map permits insertion of null keys or values
2684      * whenever the backing map does.
2685      *
2686      * @param m the map for which a dynamically typesafe view is to be
2687      *          returned
2688      * @param keyType the type of key that {@code m} is permitted to hold
2689      * @param valueType the type of value that {@code m} is permitted to hold
2690      * @return a dynamically typesafe view of the specified map
2691      * @since 1.5
2692      */
2693     public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2694                                               Class<K> keyType,
2695                                               Class<V> valueType) {
2696         return new CheckedMap<>(m, keyType, valueType);
2697     }
2698 
2699 
2700     /**
2701      * @serial include
2702      */
2703     private static class CheckedMap<K,V>
2704         implements Map<K,V>, Serializable
2705     {
2706         private static final long serialVersionUID = 5742860141034234728L;
2707 
2708         private final Map<K, V> m;
2709         final Class<K> keyType;
2710         final Class<V> valueType;
2711 
2712         private void typeCheck(Object key, Object value) {
2713             if (key != null && !keyType.isInstance(key))
2714                 throw new ClassCastException(badKeyMsg(key));
2715 
2716             if (value != null && !valueType.isInstance(value))
2717                 throw new ClassCastException(badValueMsg(value));
2718         }
2719 
2720         private String badKeyMsg(Object key) {
2721             return "Attempt to insert " + key.getClass() +
2722                 " key into map with key type " + keyType;
2723         }
2724 
2725         private String badValueMsg(Object value) {
2726             return "Attempt to insert " + value.getClass() +
2727                 " value into map with value type " + valueType;
2728         }
2729 
2730         CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2731             if (m == null || keyType == null || valueType == null)
2732                 throw new NullPointerException();
2733             this.m = m;
2734             this.keyType = keyType;
2735             this.valueType = valueType;
2736         }
2737 
2738         public int size()                      { return m.size(); }
2739         public boolean isEmpty()               { return m.isEmpty(); }
2740         public boolean containsKey(Object key) { return m.containsKey(key); }
2741         public boolean containsValue(Object v) { return m.containsValue(v); }
2742         public V get(Object key)               { return m.get(key); }
2743         public V remove(Object key)            { return m.remove(key); }
2744         public void clear()                    { m.clear(); }
2745         public Set<K> keySet()                 { return m.keySet(); }
2746         public Collection<V> values()          { return m.values(); }
2747         public boolean equals(Object o)        { return o == this || m.equals(o); }
2748         public int hashCode()                  { return m.hashCode(); }
2749         public String toString()               { return m.toString(); }
2750 
2751         public V put(K key, V value) {
2752             typeCheck(key, value);
2753             return m.put(key, value);
2754         }
2755 
2756         @SuppressWarnings("unchecked")
2757         public void putAll(Map<? extends K, ? extends V> t) {
2758             // Satisfy the following goals:
2759             // - good diagnostics in case of type mismatch
2760             // - all-or-nothing semantics
2761             // - protection from malicious t
2762             // - correct behavior if t is a concurrent map
2763             Object[] entries = t.entrySet().toArray();
2764             List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length);
2765             for (Object o : entries) {
2766                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2767                 Object k = e.getKey();
2768                 Object v = e.getValue();
2769                 typeCheck(k, v);
2770                 checked.add(
2771                     new AbstractMap.SimpleImmutableEntry<>((K) k, (V) v));
2772             }
2773             for (Map.Entry<K,V> e : checked)
2774                 m.put(e.getKey(), e.getValue());
2775         }
2776 
2777         private transient Set<Map.Entry<K,V>> entrySet = null;
2778 
2779         public Set<Map.Entry<K,V>> entrySet() {
2780             if (entrySet==null)
2781                 entrySet = new CheckedEntrySet<>(m.entrySet(), valueType);
2782             return entrySet;
2783         }
2784 
2785         /**
2786          * We need this class in addition to CheckedSet as Map.Entry permits
2787          * modification of the backing Map via the setValue operation.  This
2788          * class is subtle: there are many possible attacks that must be
2789          * thwarted.
2790          *
2791          * @serial exclude
2792          */
2793         static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2794             private final Set<Map.Entry<K,V>> s;
2795             private final Class<V> valueType;
2796 
2797             CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2798                 this.s = s;
2799                 this.valueType = valueType;
2800             }
2801 
2802             public int size()        { return s.size(); }
2803             public boolean isEmpty() { return s.isEmpty(); }
2804             public String toString() { return s.toString(); }
2805             public int hashCode()    { return s.hashCode(); }
2806             public void clear()      {        s.clear(); }
2807 
2808             public boolean add(Map.Entry<K, V> e) {
2809                 throw new UnsupportedOperationException();
2810             }
2811             public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2812                 throw new UnsupportedOperationException();
2813             }
2814 
2815             public Iterator<Map.Entry<K,V>> iterator() {
2816                 final Iterator<Map.Entry<K, V>> i = s.iterator();
2817                 final Class<V> valueType = this.valueType;
2818 
2819                 return new Iterator<Map.Entry<K,V>>() {
2820                     public boolean hasNext() { return i.hasNext(); }
2821                     public void remove()     { i.remove(); }
2822 
2823                     public Map.Entry<K,V> next() {
2824                         return checkedEntry(i.next(), valueType);
2825                     }
2826                 };
2827             }
2828 
2829             @SuppressWarnings("unchecked")
2830             public Object[] toArray() {
2831                 Object[] source = s.toArray();
2832 
2833                 /*
2834                  * Ensure that we don't get an ArrayStoreException even if
2835                  * s.toArray returns an array of something other than Object
2836                  */
2837                 Object[] dest = (CheckedEntry.class.isInstance(
2838                     source.getClass().getComponentType()) ? source :
2839                                  new Object[source.length]);
2840 
2841                 for (int i = 0; i < source.length; i++)
2842                     dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
2843                                            valueType);
2844                 return dest;
2845             }
2846 
2847             @SuppressWarnings("unchecked")
2848             public <T> T[] toArray(T[] a) {
2849                 // We don't pass a to s.toArray, to avoid window of
2850                 // vulnerability wherein an unscrupulous multithreaded client
2851                 // could get his hands on raw (unwrapped) Entries from s.
2852                 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2853 
2854                 for (int i=0; i<arr.length; i++)
2855                     arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
2856                                               valueType);
2857                 if (arr.length > a.length)
2858                     return arr;
2859 
2860                 System.arraycopy(arr, 0, a, 0, arr.length);
2861                 if (a.length > arr.length)
2862                     a[arr.length] = null;
2863                 return a;
2864             }
2865 
2866             /**
2867              * This method is overridden to protect the backing set against
2868              * an object with a nefarious equals function that senses
2869              * that the equality-candidate is Map.Entry and calls its
2870              * setValue method.
2871              */
2872             public boolean contains(Object o) {
2873                 if (!(o instanceof Map.Entry))
2874                     return false;
2875                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2876                 return s.contains(
2877                     (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
2878             }
2879 
2880             /**
2881              * The bulk collection methods are overridden to protect
2882              * against an unscrupulous collection whose contains(Object o)
2883              * method senses when o is a Map.Entry, and calls o.setValue.
2884              */
2885             public boolean containsAll(Collection<?> c) {
2886                 for (Object o : c)
2887                     if (!contains(o)) // Invokes safe contains() above
2888                         return false;
2889                 return true;
2890             }
2891 
2892             public boolean remove(Object o) {
2893                 if (!(o instanceof Map.Entry))
2894                     return false;
2895                 return s.remove(new AbstractMap.SimpleImmutableEntry
2896                                 <>((Map.Entry<?,?>)o));
2897             }
2898 
2899             public boolean removeAll(Collection<?> c) {
2900                 return batchRemove(c, false);
2901             }
2902             public boolean retainAll(Collection<?> c) {
2903                 return batchRemove(c, true);
2904             }
2905             private boolean batchRemove(Collection<?> c, boolean complement) {
2906                 boolean modified = false;
2907                 Iterator<Map.Entry<K,V>> it = iterator();
2908                 while (it.hasNext()) {
2909                     if (c.contains(it.next()) != complement) {
2910                         it.remove();
2911                         modified = true;
2912                     }
2913                 }
2914                 return modified;
2915             }
2916 
2917             public boolean equals(Object o) {
2918                 if (o == this)
2919                     return true;
2920                 if (!(o instanceof Set))
2921                     return false;
2922                 Set<?> that = (Set<?>) o;
2923                 return that.size() == s.size()
2924                     && containsAll(that); // Invokes safe containsAll() above
2925             }
2926 
2927             static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
2928                                                             Class<T> valueType) {
2929                 return new CheckedEntry<>(e, valueType);
2930             }
2931 
2932             /**
2933              * This "wrapper class" serves two purposes: it prevents
2934              * the client from modifying the backing Map, by short-circuiting
2935              * the setValue method, and it protects the backing Map against
2936              * an ill-behaved Map.Entry that attempts to modify another
2937              * Map.Entry when asked to perform an equality check.
2938              */
2939             private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
2940                 private final Map.Entry<K, V> e;
2941                 private final Class<T> valueType;
2942 
2943                 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
2944                     this.e = e;
2945                     this.valueType = valueType;
2946                 }
2947 
2948                 public K getKey()        { return e.getKey(); }
2949                 public V getValue()      { return e.getValue(); }
2950                 public int hashCode()    { return e.hashCode(); }
2951                 public String toString() { return e.toString(); }
2952 
2953                 public V setValue(V value) {
2954                     if (value != null && !valueType.isInstance(value))
2955                         throw new ClassCastException(badValueMsg(value));
2956                     return e.setValue(value);
2957                 }
2958 
2959                 private String badValueMsg(Object value) {
2960                     return "Attempt to insert " + value.getClass() +
2961                         " value into map with value type " + valueType;
2962                 }
2963 
2964                 public boolean equals(Object o) {
2965                     if (o == this)
2966                         return true;
2967                     if (!(o instanceof Map.Entry))
2968                         return false;
2969                     return e.equals(new AbstractMap.SimpleImmutableEntry
2970                                     <>((Map.Entry<?,?>)o));
2971                 }
2972             }
2973         }
2974     }
2975 
2976     /**
2977      * Returns a dynamically typesafe view of the specified sorted map.
2978      * Any attempt to insert a mapping whose key or value have the wrong
2979      * type will result in an immediate {@link ClassCastException}.
2980      * Similarly, any attempt to modify the value currently associated with
2981      * a key will result in an immediate {@link ClassCastException},
2982      * whether the modification is attempted directly through the map
2983      * itself, or through a {@link Map.Entry} instance obtained from the
2984      * map's {@link Map#entrySet() entry set} view.
2985      *
2986      * <p>Assuming a map contains no incorrectly typed keys or values
2987      * prior to the time a dynamically typesafe view is generated, and
2988      * that all subsequent access to the map takes place through the view
2989      * (or one of its collection views), it is <i>guaranteed</i> that the
2990      * map cannot contain an incorrectly typed key or value.
2991      *
2992      * <p>A discussion of the use of dynamically typesafe views may be
2993      * found in the documentation for the {@link #checkedCollection
2994      * checkedCollection} method.
2995      *
2996      * <p>The returned map will be serializable if the specified map is
2997      * serializable.
2998      *
2999      * <p>Since {@code null} is considered to be a value of any reference
3000      * type, the returned map permits insertion of null keys or values
3001      * whenever the backing map does.
3002      *
3003      * @param m the map for which a dynamically typesafe view is to be
3004      *          returned
3005      * @param keyType the type of key that {@code m} is permitted to hold
3006      * @param valueType the type of value that {@code m} is permitted to hold
3007      * @return a dynamically typesafe view of the specified map
3008      * @since 1.5
3009      */
3010     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
3011                                                         Class<K> keyType,
3012                                                         Class<V> valueType) {
3013         return new CheckedSortedMap<>(m, keyType, valueType);
3014     }
3015 
3016     /**
3017      * @serial include
3018      */
3019     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
3020         implements SortedMap<K,V>, Serializable
3021     {
3022         private static final long serialVersionUID = 1599671320688067438L;
3023 
3024         private final SortedMap<K, V> sm;
3025 
3026         CheckedSortedMap(SortedMap<K, V> m,
3027                          Class<K> keyType, Class<V> valueType) {
3028             super(m, keyType, valueType);
3029             sm = m;
3030         }
3031 
3032         public Comparator<? super K> comparator() { return sm.comparator(); }
3033         public K firstKey()                       { return sm.firstKey(); }
3034         public K lastKey()                        { return sm.lastKey(); }
3035 
3036         public SortedMap<K,V> subMap(K fromKey, K toKey) {
3037             return checkedSortedMap(sm.subMap(fromKey, toKey),
3038                                     keyType, valueType);
3039         }
3040         public SortedMap<K,V> headMap(K toKey) {
3041             return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
3042         }
3043         public SortedMap<K,V> tailMap(K fromKey) {
3044             return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
3045         }
3046     }
3047 
3048     // Empty collections
3049 
3050     /**
3051      * Returns an iterator that has no elements.  More precisely,
3052      *
3053      * <ul compact>
3054      *
3055      * <li>{@link Iterator#hasNext hasNext} always returns {@code
3056      * false}.
3057      *
3058      * <li>{@link Iterator#next next} always throws {@link
3059      * NoSuchElementException}.
3060      *
3061      * <li>{@link Iterator#remove remove} always throws {@link
3062      * IllegalStateException}.
3063      *
3064      * </ul>
3065      *
3066      * <p>Implementations of this method are permitted, but not
3067      * required, to return the same object from multiple invocations.
3068      *
3069      * @return an empty iterator
3070      * @since 1.7
3071      */
3072     @SuppressWarnings("unchecked")
3073     public static <T> Iterator<T> emptyIterator() {
3074         return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
3075     }
3076 
3077     private static class EmptyIterator<E> implements Iterator<E> {
3078         static final EmptyIterator<Object> EMPTY_ITERATOR
3079             = new EmptyIterator<>();
3080 
3081         public boolean hasNext() { return false; }
3082         public E next() { throw new NoSuchElementException(); }
3083         public void remove() { throw new IllegalStateException(); }
3084     }
3085 
3086     /**
3087      * Returns a list iterator that has no elements.  More precisely,
3088      *
3089      * <ul compact>
3090      *
3091      * <li>{@link Iterator#hasNext hasNext} and {@link
3092      * ListIterator#hasPrevious hasPrevious} always return {@code
3093      * false}.
3094      *
3095      * <li>{@link Iterator#next next} and {@link ListIterator#previous
3096      * previous} always throw {@link NoSuchElementException}.
3097      *
3098      * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3099      * set} always throw {@link IllegalStateException}.
3100      *
3101      * <li>{@link ListIterator#add add} always throws {@link
3102      * UnsupportedOperationException}.
3103      *
3104      * <li>{@link ListIterator#nextIndex nextIndex} always returns
3105      * {@code 0} .
3106      *
3107      * <li>{@link ListIterator#previousIndex previousIndex} always
3108      * returns {@code -1}.
3109      *
3110      * </ul>
3111      *
3112      * <p>Implementations of this method are permitted, but not
3113      * required, to return the same object from multiple invocations.
3114      *
3115      * @return an empty list iterator
3116      * @since 1.7
3117      */
3118     @SuppressWarnings("unchecked")
3119     public static <T> ListIterator<T> emptyListIterator() {
3120         return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3121     }
3122 
3123     private static class EmptyListIterator<E>
3124         extends EmptyIterator<E>
3125         implements ListIterator<E>
3126     {
3127         static final EmptyListIterator<Object> EMPTY_ITERATOR
3128             = new EmptyListIterator<>();
3129 
3130         public boolean hasPrevious() { return false; }
3131         public E previous() { throw new NoSuchElementException(); }
3132         public int nextIndex()     { return 0; }
3133         public int previousIndex() { return -1; }
3134         public void set(E e) { throw new IllegalStateException(); }
3135         public void add(E e) { throw new UnsupportedOperationException(); }
3136     }
3137 
3138     /**
3139      * Returns an enumeration that has no elements.  More precisely,
3140      *
3141      * <ul compact>
3142      *
3143      * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3144      * returns {@code false}.
3145      *
3146      * <li> {@link Enumeration#nextElement nextElement} always throws
3147      * {@link NoSuchElementException}.
3148      *
3149      * </ul>
3150      *
3151      * <p>Implementations of this method are permitted, but not
3152      * required, to return the same object from multiple invocations.
3153      *
3154      * @return an empty enumeration
3155      * @since 1.7
3156      */
3157     @SuppressWarnings("unchecked")
3158     public static <T> Enumeration<T> emptyEnumeration() {
3159         return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3160     }
3161 
3162     private static class EmptyEnumeration<E> implements Enumeration<E> {
3163         static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3164             = new EmptyEnumeration<>();
3165 
3166         public boolean hasMoreElements() { return false; }
3167         public E nextElement() { throw new NoSuchElementException(); }
3168     }
3169 
3170     /**
3171      * The empty set (immutable).  This set is serializable.
3172      *
3173      * @see #emptySet()
3174      */
3175     @SuppressWarnings("rawtypes")
3176     public static final Set EMPTY_SET = new EmptySet<>();
3177 
3178     /**
3179      * Returns the empty set (immutable).  This set is serializable.
3180      * Unlike the like-named field, this method is parameterized.
3181      *
3182      * <p>This example illustrates the type-safe way to obtain an empty set:
3183      * <pre>
3184      *     Set&lt;String&gt; s = Collections.emptySet();
3185      * </pre>
3186      * Implementation note:  Implementations of this method need not
3187      * create a separate <tt>Set</tt> object for each call.   Using this
3188      * method is likely to have comparable cost to using the like-named
3189      * field.  (Unlike this method, the field does not provide type safety.)
3190      *
3191      * @see #EMPTY_SET
3192      * @since 1.5
3193      */
3194     @SuppressWarnings("unchecked")
3195     public static final <T> Set<T> emptySet() {
3196         return (Set<T>) EMPTY_SET;
3197     }
3198 
3199     /**
3200      * @serial include
3201      */
3202     private static class EmptySet<E>
3203         extends AbstractSet<E>
3204         implements Serializable
3205     {
3206         private static final long serialVersionUID = 1582296315990362920L;
3207 
3208         public Iterator<E> iterator() { return emptyIterator(); }
3209 
3210         public int size() {return 0;}
3211         public boolean isEmpty() {return true;}
3212 
3213         public boolean contains(Object obj) {return false;}
3214         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3215 
3216         public Object[] toArray() { return new Object[0]; }
3217 
3218         public <T> T[] toArray(T[] a) {
3219             if (a.length > 0)
3220                 a[0] = null;
3221             return a;
3222         }
3223 
3224         // Preserves singleton property
3225         private Object readResolve() {
3226             return EMPTY_SET;
3227         }
3228     }
3229 
3230     /**
3231      * Returns the empty sorted set (immutable).  This set is serializable.
3232      *
3233      * <p>This example illustrates the type-safe way to obtain an empty sorted
3234      * set:
3235      * <pre>
3236      *     SortedSet&lt;String&gt; s = Collections.emptySortedSet();
3237      * </pre>
3238      * Implementation note:  Implementations of this method need not
3239      * create a separate <tt>SortedSet</tt> object for each call.
3240      *
3241      * @since 1.8
3242      */
3243     @SuppressWarnings("unchecked")
3244     public static final <E> SortedSet<E> emptySortedSet() {
3245         return (SortedSet<E>) new EmptySortedSet<>();
3246     }
3247 
3248     /**
3249      * @serial include
3250      */
3251     private static class EmptySortedSet<E>
3252         extends AbstractSet<E>
3253         implements SortedSet<E>, Serializable
3254     {
3255         private static final long serialVersionUID = 6316515401502265487L;
3256         public Iterator<E> iterator() { return emptyIterator(); }
3257         public int size() {return 0;}
3258         public boolean isEmpty() {return true;}
3259         public boolean contains(Object obj) {return false;}
3260         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3261         public Object[] toArray() { return new Object[0]; }
3262 
3263         public <E> E[] toArray(E[] a) {
3264             if (a.length > 0)
3265                 a[0] = null;
3266             return a;
3267         }
3268 
3269         // Preserves singleton property
3270         private Object readResolve() {
3271             return new EmptySortedSet<>();
3272         }
3273 
3274         @Override
3275         public Comparator<? super E> comparator() {
3276             return null;
3277         }
3278 
3279         @Override
3280         @SuppressWarnings("unchecked")
3281         public SortedSet<E> subSet(Object fromElement, Object toElement) {
3282             Objects.requireNonNull(fromElement);
3283             Objects.requireNonNull(toElement);
3284 
3285             if (!(fromElement instanceof Comparable) ||
3286                     !(toElement instanceof Comparable))
3287             {
3288                 throw new ClassCastException();
3289             }
3290 
3291             if ((((Comparable)fromElement).compareTo(toElement) >= 0) ||
3292                     (((Comparable)toElement).compareTo(fromElement) < 0))
3293             {
3294                 throw new IllegalArgumentException();
3295             }
3296 
3297             return emptySortedSet();
3298         }
3299 
3300         @Override
3301         public SortedSet<E> headSet(Object toElement) {
3302             Objects.requireNonNull(toElement);
3303 
3304             if (!(toElement instanceof Comparable)) {
3305                 throw new ClassCastException();
3306             }
3307 
3308             return emptySortedSet();
3309         }
3310 
3311         @Override
3312         public SortedSet<E> tailSet(Object fromElement) {
3313             Objects.requireNonNull(fromElement);
3314 
3315             if (!(fromElement instanceof Comparable)) {
3316                 throw new ClassCastException();
3317             }
3318 
3319             return emptySortedSet();
3320         }
3321 
3322         @Override
3323         public E first() {
3324             throw new NoSuchElementException();
3325         }
3326 
3327         @Override
3328         public E last() {
3329             throw new NoSuchElementException();
3330         }
3331     }
3332 
3333     /**
3334      * The empty list (immutable).  This list is serializable.
3335      *
3336      * @see #emptyList()
3337      */
3338     @SuppressWarnings("rawtypes")
3339     public static final List EMPTY_LIST = new EmptyList<>();
3340 
3341     /**
3342      * Returns the empty list (immutable).  This list is serializable.
3343      *
3344      * <p>This example illustrates the type-safe way to obtain an empty list:
3345      * <pre>
3346      *     List&lt;String&gt; s = Collections.emptyList();
3347      * </pre>
3348      * Implementation note:  Implementations of this method need not
3349      * create a separate <tt>List</tt> object for each call.   Using this
3350      * method is likely to have comparable cost to using the like-named
3351      * field.  (Unlike this method, the field does not provide type safety.)
3352      *
3353      * @see #EMPTY_LIST
3354      * @since 1.5
3355      */
3356     @SuppressWarnings("unchecked")
3357     public static final <T> List<T> emptyList() {
3358         return (List<T>) EMPTY_LIST;
3359     }
3360 
3361     /**
3362      * @serial include
3363      */
3364     private static class EmptyList<E>
3365         extends AbstractList<E>
3366         implements RandomAccess, Serializable {
3367         private static final long serialVersionUID = 8842843931221139166L;
3368 
3369         public Iterator<E> iterator() {
3370             return emptyIterator();
3371         }
3372         public ListIterator<E> listIterator() {
3373             return emptyListIterator();
3374         }
3375 
3376         public int size() {return 0;}
3377         public boolean isEmpty() {return true;}
3378 
3379         public boolean contains(Object obj) {return false;}
3380         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3381 
3382         public Object[] toArray() { return new Object[0]; }
3383 
3384         public <T> T[] toArray(T[] a) {
3385             if (a.length > 0)
3386                 a[0] = null;
3387             return a;
3388         }
3389 
3390         public E get(int index) {
3391             throw new IndexOutOfBoundsException("Index: "+index);
3392         }
3393 
3394         public boolean equals(Object o) {
3395             return (o instanceof List) && ((List<?>)o).isEmpty();
3396         }
3397 
3398         public int hashCode() { return 1; }
3399 
3400         // Preserves singleton property
3401         private Object readResolve() {
3402             return EMPTY_LIST;
3403         }
3404     }
3405 
3406     /**
3407      * The empty map (immutable).  This map is serializable.
3408      *
3409      * @see #emptyMap()
3410      * @since 1.3
3411      */
3412     @SuppressWarnings("rawtypes")
3413     public static final Map EMPTY_MAP = new EmptyMap<>();
3414 
3415     /**
3416      * Returns the empty map (immutable).  This map is serializable.
3417      *
3418      * <p>This example illustrates the type-safe way to obtain an empty set:
3419      * <pre>
3420      *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3421      * </pre>
3422      * Implementation note:  Implementations of this method need not
3423      * create a separate <tt>Map</tt> object for each call.   Using this
3424      * method is likely to have comparable cost to using the like-named
3425      * field.  (Unlike this method, the field does not provide type safety.)
3426      *
3427      * @see #EMPTY_MAP
3428      * @since 1.5
3429      */
3430     @SuppressWarnings("unchecked")
3431     public static final <K,V> Map<K,V> emptyMap() {
3432         return (Map<K,V>) EMPTY_MAP;
3433     }
3434 
3435     /**
3436      * @serial include
3437      */
3438     private static class EmptyMap<K,V>
3439         extends AbstractMap<K,V>
3440         implements Serializable
3441     {
3442         private static final long serialVersionUID = 6428348081105594320L;
3443 
3444         public int size()                          {return 0;}
3445         public boolean isEmpty()                   {return true;}
3446         public boolean containsKey(Object key)     {return false;}
3447         public boolean containsValue(Object value) {return false;}
3448         public V get(Object key)                   {return null;}
3449         public Set<K> keySet()                     {return emptySet();}
3450         public Collection<V> values()              {return emptySet();}
3451         public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3452 
3453         public boolean equals(Object o) {
3454             return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3455         }
3456 
3457         public int hashCode()                      {return 0;}
3458 
3459         // Preserves singleton property
3460         private Object readResolve() {
3461             return EMPTY_MAP;
3462         }
3463     }
3464 
3465     // Singleton collections
3466 
3467     /**
3468      * Returns an immutable set containing only the specified object.
3469      * The returned set is serializable.
3470      *
3471      * @param o the sole object to be stored in the returned set.
3472      * @return an immutable set containing only the specified object.
3473      */
3474     public static <T> Set<T> singleton(T o) {
3475         return new SingletonSet<>(o);
3476     }
3477 
3478     static <E> Iterator<E> singletonIterator(final E e) {
3479         return new Iterator<E>() {
3480             private boolean hasNext = true;
3481             public boolean hasNext() {
3482                 return hasNext;
3483             }
3484             public E next() {
3485                 if (hasNext) {
3486                     hasNext = false;
3487                     return e;
3488                 }
3489                 throw new NoSuchElementException();
3490             }
3491             public void remove() {
3492                 throw new UnsupportedOperationException();
3493             }
3494         };
3495     }
3496 
3497     /**
3498      * @serial include
3499      */
3500     private static class SingletonSet<E>
3501         extends AbstractSet<E>
3502         implements Serializable
3503     {
3504         private static final long serialVersionUID = 3193687207550431679L;
3505 
3506         private final E element;
3507 
3508         SingletonSet(E e) {element = e;}
3509 
3510         public Iterator<E> iterator() {
3511             return singletonIterator(element);
3512         }
3513 
3514         public int size() {return 1;}
3515 
3516         public boolean contains(Object o) {return eq(o, element);}
3517     }
3518 
3519     /**
3520      * Returns an immutable list containing only the specified object.
3521      * The returned list is serializable.
3522      *
3523      * @param o the sole object to be stored in the returned list.
3524      * @return an immutable list containing only the specified object.
3525      * @since 1.3
3526      */
3527     public static <T> List<T> singletonList(T o) {
3528         return new SingletonList<>(o);
3529     }
3530 
3531     /**
3532      * @serial include
3533      */
3534     private static class SingletonList<E>
3535         extends AbstractList<E>
3536         implements RandomAccess, Serializable {
3537 
3538         private static final long serialVersionUID = 3093736618740652951L;
3539 
3540         private final E element;
3541 
3542         SingletonList(E obj)                {element = obj;}
3543 
3544         public Iterator<E> iterator() {
3545             return singletonIterator(element);
3546         }
3547 
3548         public int size()                   {return 1;}
3549 
3550         public boolean contains(Object obj) {return eq(obj, element);}
3551 
3552         public E get(int index) {
3553             if (index != 0)
3554               throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3555             return element;
3556         }
3557     }
3558 
3559     /**
3560      * Returns an immutable map, mapping only the specified key to the
3561      * specified value.  The returned map is serializable.
3562      *
3563      * @param key the sole key to be stored in the returned map.
3564      * @param value the value to which the returned map maps <tt>key</tt>.
3565      * @return an immutable map containing only the specified key-value
3566      *         mapping.
3567      * @since 1.3
3568      */
3569     public static <K,V> Map<K,V> singletonMap(K key, V value) {
3570         return new SingletonMap<>(key, value);
3571     }
3572 
3573     /**
3574      * @serial include
3575      */
3576     private static class SingletonMap<K,V>
3577           extends AbstractMap<K,V>
3578           implements Serializable {
3579         private static final long serialVersionUID = -6979724477215052911L;
3580 
3581         private final K k;
3582         private final V v;
3583 
3584         SingletonMap(K key, V value) {
3585             k = key;
3586             v = value;
3587         }
3588 
3589         public int size()                          {return 1;}
3590 
3591         public boolean isEmpty()                   {return false;}
3592 
3593         public boolean containsKey(Object key)     {return eq(key, k);}
3594 
3595         public boolean containsValue(Object value) {return eq(value, v);}
3596 
3597         public V get(Object key)                   {return (eq(key, k) ? v : null);}
3598 
3599         private transient Set<K> keySet = null;
3600         private transient Set<Map.Entry<K,V>> entrySet = null;
3601         private transient Collection<V> values = null;
3602 
3603         public Set<K> keySet() {
3604             if (keySet==null)
3605                 keySet = singleton(k);
3606             return keySet;
3607         }
3608 
3609         public Set<Map.Entry<K,V>> entrySet() {
3610             if (entrySet==null)
3611                 entrySet = Collections.<Map.Entry<K,V>>singleton(
3612                     new SimpleImmutableEntry<>(k, v));
3613             return entrySet;
3614         }
3615 
3616         public Collection<V> values() {
3617             if (values==null)
3618                 values = singleton(v);
3619             return values;
3620         }
3621 
3622     }
3623 
3624     // Miscellaneous
3625 
3626     /**
3627      * Returns an immutable list consisting of <tt>n</tt> copies of the
3628      * specified object.  The newly allocated data object is tiny (it contains
3629      * a single reference to the data object).  This method is useful in
3630      * combination with the <tt>List.addAll</tt> method to grow lists.
3631      * The returned list is serializable.
3632      *
3633      * @param  n the number of elements in the returned list.
3634      * @param  o the element to appear repeatedly in the returned list.
3635      * @return an immutable list consisting of <tt>n</tt> copies of the
3636      *         specified object.
3637      * @throws IllegalArgumentException if {@code n < 0}
3638      * @see    List#addAll(Collection)
3639      * @see    List#addAll(int, Collection)
3640      */
3641     public static <T> List<T> nCopies(int n, T o) {
3642         if (n < 0)
3643             throw new IllegalArgumentException("List length = " + n);
3644         return new CopiesList<>(n, o);
3645     }
3646 
3647     /**
3648      * @serial include
3649      */
3650     private static class CopiesList<E>
3651         extends AbstractList<E>
3652         implements RandomAccess, Serializable
3653     {
3654         private static final long serialVersionUID = 2739099268398711800L;
3655 
3656         final int n;
3657         final E element;
3658 
3659         CopiesList(int n, E e) {
3660             assert n >= 0;
3661             this.n = n;
3662             element = e;
3663         }
3664 
3665         public int size() {
3666             return n;
3667         }
3668 
3669         public boolean contains(Object obj) {
3670             return n != 0 && eq(obj, element);
3671         }
3672 
3673         public int indexOf(Object o) {
3674             return contains(o) ? 0 : -1;
3675         }
3676 
3677         public int lastIndexOf(Object o) {
3678             return contains(o) ? n - 1 : -1;
3679         }
3680 
3681         public E get(int index) {
3682             if (index < 0 || index >= n)
3683                 throw new IndexOutOfBoundsException("Index: "+index+
3684                                                     ", Size: "+n);
3685             return element;
3686         }
3687 
3688         public Object[] toArray() {
3689             final Object[] a = new Object[n];
3690             if (element != null)
3691                 Arrays.fill(a, 0, n, element);
3692             return a;
3693         }
3694 
3695         @SuppressWarnings("unchecked")
3696         public <T> T[] toArray(T[] a) {
3697             final int n = this.n;
3698             if (a.length < n) {
3699                 a = (T[])java.lang.reflect.Array
3700                     .newInstance(a.getClass().getComponentType(), n);
3701                 if (element != null)
3702                     Arrays.fill(a, 0, n, element);
3703             } else {
3704                 Arrays.fill(a, 0, n, element);
3705                 if (a.length > n)
3706                     a[n] = null;
3707             }
3708             return a;
3709         }
3710 
3711         public List<E> subList(int fromIndex, int toIndex) {
3712             if (fromIndex < 0)
3713                 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3714             if (toIndex > n)
3715                 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3716             if (fromIndex > toIndex)
3717                 throw new IllegalArgumentException("fromIndex(" + fromIndex +
3718                                                    ") > toIndex(" + toIndex + ")");
3719             return new CopiesList<>(toIndex - fromIndex, element);
3720         }
3721     }
3722 
3723     /**
3724      * Returns a comparator that imposes the reverse of the <em>natural
3725      * ordering</em> on a collection of objects that implement the
3726      * {@code Comparable} interface.  (The natural ordering is the ordering
3727      * imposed by the objects' own {@code compareTo} method.)  This enables a
3728      * simple idiom for sorting (or maintaining) collections (or arrays) of
3729      * objects that implement the {@code Comparable} interface in
3730      * reverse-natural-order.  For example, suppose {@code a} is an array of
3731      * strings. Then: <pre>
3732      *          Arrays.sort(a, Collections.reverseOrder());
3733      * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3734      *
3735      * The returned comparator is serializable.
3736      *
3737      * @return A comparator that imposes the reverse of the <i>natural
3738      *         ordering</i> on a collection of objects that implement
3739      *         the <tt>Comparable</tt> interface.
3740      * @see Comparable
3741      */
3742     @SuppressWarnings("unchecked")
3743     public static <T> Comparator<T> reverseOrder() {
3744         return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3745     }
3746 
3747     /**
3748      * @serial include
3749      */
3750     private static class ReverseComparator
3751         implements Comparator<Comparable<Object>>, Serializable {
3752 
3753         private static final long serialVersionUID = 7207038068494060240L;
3754 
3755         static final ReverseComparator REVERSE_ORDER
3756             = new ReverseComparator();
3757 
3758         public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3759             return c2.compareTo(c1);
3760         }
3761 
3762         private Object readResolve() { return reverseOrder(); }
3763     }
3764 
3765     /**
3766      * Returns a comparator that imposes the reverse ordering of the specified
3767      * comparator.  If the specified comparator is {@code null}, this method is
3768      * equivalent to {@link #reverseOrder()} (in other words, it returns a
3769      * comparator that imposes the reverse of the <em>natural ordering</em> on
3770      * a collection of objects that implement the Comparable interface).
3771      *
3772      * <p>The returned comparator is serializable (assuming the specified
3773      * comparator is also serializable or {@code null}).
3774      *
3775      * @param cmp a comparator who's ordering is to be reversed by the returned
3776      * comparator or {@code null}
3777      * @return A comparator that imposes the reverse ordering of the
3778      *         specified comparator.
3779      * @since 1.5
3780      */
3781     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3782         if (cmp == null)
3783             return reverseOrder();
3784 
3785         if (cmp instanceof ReverseComparator2)
3786             return ((ReverseComparator2<T>)cmp).cmp;
3787 
3788         return new ReverseComparator2<>(cmp);
3789     }
3790 
3791     /**
3792      * @serial include
3793      */
3794     private static class ReverseComparator2<T> implements Comparator<T>,
3795         Serializable
3796     {
3797         private static final long serialVersionUID = 4374092139857L;
3798 
3799         /**
3800          * The comparator specified in the static factory.  This will never
3801          * be null, as the static factory returns a ReverseComparator
3802          * instance if its argument is null.
3803          *
3804          * @serial
3805          */
3806         final Comparator<T> cmp;
3807 
3808         ReverseComparator2(Comparator<T> cmp) {
3809             assert cmp != null;
3810             this.cmp = cmp;
3811         }
3812 
3813         public int compare(T t1, T t2) {
3814             return cmp.compare(t2, t1);
3815         }
3816 
3817         public boolean equals(Object o) {
3818             return (o == this) ||
3819                 (o instanceof ReverseComparator2 &&
3820                  cmp.equals(((ReverseComparator2)o).cmp));
3821         }
3822 
3823         public int hashCode() {
3824             return cmp.hashCode() ^ Integer.MIN_VALUE;
3825         }
3826     }
3827 
3828     /**
3829      * Returns an enumeration over the specified collection.  This provides
3830      * interoperability with legacy APIs that require an enumeration
3831      * as input.
3832      *
3833      * @param c the collection for which an enumeration is to be returned.
3834      * @return an enumeration over the specified collection.
3835      * @see Enumeration
3836      */
3837     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3838         return new Enumeration<T>() {
3839             private final Iterator<T> i = c.iterator();
3840 
3841             public boolean hasMoreElements() {
3842                 return i.hasNext();
3843             }
3844 
3845             public T nextElement() {
3846                 return i.next();
3847             }
3848         };
3849     }
3850 
3851     /**
3852      * Returns an array list containing the elements returned by the
3853      * specified enumeration in the order they are returned by the
3854      * enumeration.  This method provides interoperability between
3855      * legacy APIs that return enumerations and new APIs that require
3856      * collections.
3857      *
3858      * @param e enumeration providing elements for the returned
3859      *          array list
3860      * @return an array list containing the elements returned
3861      *         by the specified enumeration.
3862      * @since 1.4
3863      * @see Enumeration
3864      * @see ArrayList
3865      */
3866     public static <T> ArrayList<T> list(Enumeration<T> e) {
3867         ArrayList<T> l = new ArrayList<>();
3868         while (e.hasMoreElements())
3869             l.add(e.nextElement());
3870         return l;
3871     }
3872 
3873     /**
3874      * Returns true if the specified arguments are equal, or both null.
3875      */
3876     static boolean eq(Object o1, Object o2) {
3877         return o1==null ? o2==null : o1.equals(o2);
3878     }
3879 
3880     /**
3881      * Returns the number of elements in the specified collection equal to the
3882      * specified object.  More formally, returns the number of elements
3883      * <tt>e</tt> in the collection such that
3884      * <tt>(o == null ? e == null : o.equals(e))</tt>.
3885      *
3886      * @param c the collection in which to determine the frequency
3887      *     of <tt>o</tt>
3888      * @param o the object whose frequency is to be determined
3889      * @throws NullPointerException if <tt>c</tt> is null
3890      * @since 1.5
3891      */
3892     public static int frequency(Collection<?> c, Object o) {
3893         int result = 0;
3894         if (o == null) {
3895             for (Object e : c)
3896                 if (e == null)
3897                     result++;
3898         } else {
3899             for (Object e : c)
3900                 if (o.equals(e))
3901                     result++;
3902         }
3903         return result;
3904     }
3905 
3906     /**
3907      * Returns {@code true} if the two specified collections have no
3908      * elements in common.
3909      *
3910      * <p>Care must be exercised if this method is used on collections that
3911      * do not comply with the general contract for {@code Collection}.
3912      * Implementations may elect to iterate over either collection and test
3913      * for containment in the other collection (or to perform any equivalent
3914      * computation).  If either collection uses a nonstandard equality test
3915      * (as does a {@link SortedSet} whose ordering is not <em>compatible with
3916      * equals</em>, or the key set of an {@link IdentityHashMap}), both
3917      * collections must use the same nonstandard equality test, or the
3918      * result of this method is undefined.
3919      *
3920      * <p>Care must also be exercised when using collections that have
3921      * restrictions on the elements that they may contain. Collection
3922      * implementations are allowed to throw exceptions for any operation
3923      * involving elements they deem ineligible. For absolute safety the
3924      * specified collections should contain only elements which are
3925      * eligible elements for both collections.
3926      *
3927      * <p>Note that it is permissible to pass the same collection in both
3928      * parameters, in which case the method will return {@code true} if and
3929      * only if the collection is empty.
3930      *
3931      * @param c1 a collection
3932      * @param c2 a collection
3933      * @return {@code true} if the two specified collections have no
3934      * elements in common.
3935      * @throws NullPointerException if either collection is {@code null}.
3936      * @throws NullPointerException if one collection contains a {@code null}
3937      * element and {@code null} is not an eligible element for the other collection.
3938      * (<a href="Collection.html#optional-restrictions">optional</a>)
3939      * @throws ClassCastException if one collection contains an element that is
3940      * of a type which is ineligible for the other collection.
3941      * (<a href="Collection.html#optional-restrictions">optional</a>)
3942      * @since 1.5
3943      */
3944     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3945         // The collection to be used for contains(). Preference is given to
3946         // the collection who's contains() has lower O() complexity.
3947         Collection<?> contains = c2;
3948         // The collection to be iterated. If the collections' contains() impl
3949         // are of different O() complexity, the collection with slower
3950         // contains() will be used for iteration. For collections who's
3951         // contains() are of the same complexity then best performance is
3952         // achieved by iterating the smaller collection.
3953         Collection<?> iterate = c1;
3954 
3955         // Performance optimization cases. The heuristics:
3956         //   1. Generally iterate over c1.
3957         //   2. If c1 is a Set then iterate over c2.
3958         //   3. If either collection is empty then result is always true.
3959         //   4. Iterate over the smaller Collection.
3960         if (c1 instanceof Set) {
3961             // Use c1 for contains as a Set's contains() is expected to perform
3962             // better than O(N/2)
3963             iterate = c2;
3964             contains = c1;
3965         } else if (!(c2 instanceof Set)) {
3966             // Both are mere Collections. Iterate over smaller collection.
3967             // Example: If c1 contains 3 elements and c2 contains 50 elements and
3968             // assuming contains() requires ceiling(N/2) comparisons then
3969             // checking for all c1 elements in c2 would require 75 comparisons
3970             // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring
3971             // 100 comparisons (50 * ceiling(3/2)).
3972             int c1size = c1.size();
3973             int c2size = c2.size();
3974             if (c1size == 0 || c2size == 0) {
3975                 // At least one collection is empty. Nothing will match.
3976                 return true;
3977             }
3978 
3979             if (c1size > c2size) {
3980                 iterate = c2;
3981                 contains = c1;
3982             }
3983         }
3984 
3985         for (Object e : iterate) {
3986             if (contains.contains(e)) {
3987                // Found a common element. Collections are not disjoint.
3988                 return false;
3989             }
3990         }
3991 
3992         // No common elements were found.
3993         return true;
3994     }
3995 
3996     /**
3997      * Adds all of the specified elements to the specified collection.
3998      * Elements to be added may be specified individually or as an array.
3999      * The behavior of this convenience method is identical to that of
4000      * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
4001      * to run significantly faster under most implementations.
4002      *
4003      * <p>When elements are specified individually, this method provides a
4004      * convenient way to add a few elements to an existing collection:
4005      * <pre>
4006      *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
4007      * </pre>
4008      *
4009      * @param c the collection into which <tt>elements</tt> are to be inserted
4010      * @param elements the elements to insert into <tt>c</tt>
4011      * @return <tt>true</tt> if the collection changed as a result of the call
4012      * @throws UnsupportedOperationException if <tt>c</tt> does not support
4013      *         the <tt>add</tt> operation
4014      * @throws NullPointerException if <tt>elements</tt> contains one or more
4015      *         null values and <tt>c</tt> does not permit null elements, or
4016      *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
4017      * @throws IllegalArgumentException if some property of a value in
4018      *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
4019      * @see Collection#addAll(Collection)
4020      * @since 1.5
4021      */
4022     @SafeVarargs
4023     public static <T> boolean addAll(Collection<? super T> c, T... elements) {
4024         boolean result = false;
4025         for (T element : elements)
4026             result |= c.add(element);
4027         return result;
4028     }
4029 
4030     /**
4031      * Returns a set backed by the specified map.  The resulting set displays
4032      * the same ordering, concurrency, and performance characteristics as the
4033      * backing map.  In essence, this factory method provides a {@link Set}
4034      * implementation corresponding to any {@link Map} implementation.  There
4035      * is no need to use this method on a {@link Map} implementation that
4036      * already has a corresponding {@link Set} implementation (such as {@link
4037      * HashMap} or {@link TreeMap}).
4038      *
4039      * <p>Each method invocation on the set returned by this method results in
4040      * exactly one method invocation on the backing map or its <tt>keySet</tt>
4041      * view, with one exception.  The <tt>addAll</tt> method is implemented
4042      * as a sequence of <tt>put</tt> invocations on the backing map.
4043      *
4044      * <p>The specified map must be empty at the time this method is invoked,
4045      * and should not be accessed directly after this method returns.  These
4046      * conditions are ensured if the map is created empty, passed directly
4047      * to this method, and no reference to the map is retained, as illustrated
4048      * in the following code fragment:
4049      * <pre>
4050      *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
4051      *        new WeakHashMap&lt;Object, Boolean&gt;());
4052      * </pre>
4053      *
4054      * @param map the backing map
4055      * @return the set backed by the map
4056      * @throws IllegalArgumentException if <tt>map</tt> is not empty
4057      * @since 1.6
4058      */
4059     public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
4060         return new SetFromMap<>(map);
4061     }
4062 
4063     /**
4064      * @serial include
4065      */
4066     private static class SetFromMap<E> extends AbstractSet<E>
4067         implements Set<E>, Serializable
4068     {
4069         private final Map<E, Boolean> m;  // The backing map
4070         private transient Set<E> s;       // Its keySet
4071 
4072         SetFromMap(Map<E, Boolean> map) {
4073             if (!map.isEmpty())
4074                 throw new IllegalArgumentException("Map is non-empty");
4075             m = map;
4076             s = map.keySet();
4077         }
4078 
4079         public void clear()               {        m.clear(); }
4080         public int size()                 { return m.size(); }
4081         public boolean isEmpty()          { return m.isEmpty(); }
4082         public boolean contains(Object o) { return m.containsKey(o); }
4083         public boolean remove(Object o)   { return m.remove(o) != null; }
4084         public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
4085         public Iterator<E> iterator()     { return s.iterator(); }
4086         public Object[] toArray()         { return s.toArray(); }
4087         public <T> T[] toArray(T[] a)     { return s.toArray(a); }
4088         public String toString()          { return s.toString(); }
4089         public int hashCode()             { return s.hashCode(); }
4090         public boolean equals(Object o)   { return o == this || s.equals(o); }
4091         public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
4092         public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
4093         public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
4094         // addAll is the only inherited implementation
4095 
4096         private static final long serialVersionUID = 2454657854757543876L;
4097 
4098         private void readObject(java.io.ObjectInputStream stream)
4099             throws IOException, ClassNotFoundException
4100         {
4101             stream.defaultReadObject();
4102             s = m.keySet();
4103         }
4104     }
4105 
4106     /**
4107      * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
4108      * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
4109      * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
4110      * view can be useful when you would like to use a method
4111      * requiring a <tt>Queue</tt> but you need Lifo ordering.
4112      *
4113      * <p>Each method invocation on the queue returned by this method
4114      * results in exactly one method invocation on the backing deque, with
4115      * one exception.  The {@link Queue#addAll addAll} method is
4116      * implemented as a sequence of {@link Deque#addFirst addFirst}
4117      * invocations on the backing deque.
4118      *
4119      * @param deque the deque
4120      * @return the queue
4121      * @since  1.6
4122      */
4123     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
4124         return new AsLIFOQueue<>(deque);
4125     }
4126 
4127     /**
4128      * @serial include
4129      */
4130     static class AsLIFOQueue<E> extends AbstractQueue<E>
4131         implements Queue<E>, Serializable {
4132         private static final long serialVersionUID = 1802017725587941708L;
4133         private final Deque<E> q;
4134         AsLIFOQueue(Deque<E> q)           { this.q = q; }
4135         public boolean add(E e)           { q.addFirst(e); return true; }
4136         public boolean offer(E e)         { return q.offerFirst(e); }
4137         public E poll()                   { return q.pollFirst(); }
4138         public E remove()                 { return q.removeFirst(); }
4139         public E peek()                   { return q.peekFirst(); }
4140         public E element()                { return q.getFirst(); }
4141         public void clear()               {        q.clear(); }
4142         public int size()                 { return q.size(); }
4143         public boolean isEmpty()          { return q.isEmpty(); }
4144         public boolean contains(Object o) { return q.contains(o); }
4145         public boolean remove(Object o)   { return q.remove(o); }
4146         public Iterator<E> iterator()     { return q.iterator(); }
4147         public Object[] toArray()         { return q.toArray(); }
4148         public <T> T[] toArray(T[] a)     { return q.toArray(a); }
4149         public String toString()          { return q.toString(); }
4150         public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
4151         public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
4152         public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
4153         // We use inherited addAll; forwarding addAll would be wrong
4154     }
4155 }