1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/referencePolicy.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "memory/tenuredGeneration.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "prims/jvmtiExport.hpp"
  58 #include "runtime/globals_extension.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/vmThread.hpp"
  62 #include "services/memoryService.hpp"
  63 #include "services/runtimeService.hpp"
  64 
  65 // statics
  66 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  67 bool CMSCollector::_full_gc_requested = false;
  68 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  69 
  70 //////////////////////////////////////////////////////////////////
  71 // In support of CMS/VM thread synchronization
  72 //////////////////////////////////////////////////////////////////
  73 // We split use of the CGC_lock into 2 "levels".
  74 // The low-level locking is of the usual CGC_lock monitor. We introduce
  75 // a higher level "token" (hereafter "CMS token") built on top of the
  76 // low level monitor (hereafter "CGC lock").
  77 // The token-passing protocol gives priority to the VM thread. The
  78 // CMS-lock doesn't provide any fairness guarantees, but clients
  79 // should ensure that it is only held for very short, bounded
  80 // durations.
  81 //
  82 // When either of the CMS thread or the VM thread is involved in
  83 // collection operations during which it does not want the other
  84 // thread to interfere, it obtains the CMS token.
  85 //
  86 // If either thread tries to get the token while the other has
  87 // it, that thread waits. However, if the VM thread and CMS thread
  88 // both want the token, then the VM thread gets priority while the
  89 // CMS thread waits. This ensures, for instance, that the "concurrent"
  90 // phases of the CMS thread's work do not block out the VM thread
  91 // for long periods of time as the CMS thread continues to hog
  92 // the token. (See bug 4616232).
  93 //
  94 // The baton-passing functions are, however, controlled by the
  95 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  96 // and here the low-level CMS lock, not the high level token,
  97 // ensures mutual exclusion.
  98 //
  99 // Two important conditions that we have to satisfy:
 100 // 1. if a thread does a low-level wait on the CMS lock, then it
 101 //    relinquishes the CMS token if it were holding that token
 102 //    when it acquired the low-level CMS lock.
 103 // 2. any low-level notifications on the low-level lock
 104 //    should only be sent when a thread has relinquished the token.
 105 //
 106 // In the absence of either property, we'd have potential deadlock.
 107 //
 108 // We protect each of the CMS (concurrent and sequential) phases
 109 // with the CMS _token_, not the CMS _lock_.
 110 //
 111 // The only code protected by CMS lock is the token acquisition code
 112 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 113 // baton-passing code.
 114 //
 115 // Unfortunately, i couldn't come up with a good abstraction to factor and
 116 // hide the naked CGC_lock manipulation in the baton-passing code
 117 // further below. That's something we should try to do. Also, the proof
 118 // of correctness of this 2-level locking scheme is far from obvious,
 119 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 120 // that there may be a theoretical possibility of delay/starvation in the
 121 // low-level lock/wait/notify scheme used for the baton-passing because of
 122 // potential intereference with the priority scheme embodied in the
 123 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 124 // invocation further below and marked with "XXX 20011219YSR".
 125 // Indeed, as we note elsewhere, this may become yet more slippery
 126 // in the presence of multiple CMS and/or multiple VM threads. XXX
 127 
 128 class CMSTokenSync: public StackObj {
 129  private:
 130   bool _is_cms_thread;
 131  public:
 132   CMSTokenSync(bool is_cms_thread):
 133     _is_cms_thread(is_cms_thread) {
 134     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 135            "Incorrect argument to constructor");
 136     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 137   }
 138 
 139   ~CMSTokenSync() {
 140     assert(_is_cms_thread ?
 141              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 142              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 143           "Incorrect state");
 144     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 145   }
 146 };
 147 
 148 // Convenience class that does a CMSTokenSync, and then acquires
 149 // upto three locks.
 150 class CMSTokenSyncWithLocks: public CMSTokenSync {
 151  private:
 152   // Note: locks are acquired in textual declaration order
 153   // and released in the opposite order
 154   MutexLockerEx _locker1, _locker2, _locker3;
 155  public:
 156   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 157                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 158     CMSTokenSync(is_cms_thread),
 159     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 160     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 161     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 162   { }
 163 };
 164 
 165 
 166 // Wrapper class to temporarily disable icms during a foreground cms collection.
 167 class ICMSDisabler: public StackObj {
 168  public:
 169   // The ctor disables icms and wakes up the thread so it notices the change;
 170   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 171   // CMSIncrementalMode.
 172   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 173   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 174 };
 175 
 176 //////////////////////////////////////////////////////////////////
 177 //  Concurrent Mark-Sweep Generation /////////////////////////////
 178 //////////////////////////////////////////////////////////////////
 179 
 180 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 181 
 182 // This struct contains per-thread things necessary to support parallel
 183 // young-gen collection.
 184 class CMSParGCThreadState: public CHeapObj<mtGC> {
 185  public:
 186   CFLS_LAB lab;
 187   PromotionInfo promo;
 188 
 189   // Constructor.
 190   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 191     promo.setSpace(cfls);
 192   }
 193 };
 194 
 195 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 196      ReservedSpace rs, size_t initial_byte_size, int level,
 197      CardTableRS* ct, bool use_adaptive_freelists,
 198      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 199   CardGeneration(rs, initial_byte_size, level, ct),
 200   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 201   _debug_collection_type(Concurrent_collection_type),
 202   _did_compact(false)
 203 {
 204   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 205   HeapWord* end    = (HeapWord*) _virtual_space.high();
 206 
 207   _direct_allocated_words = 0;
 208   NOT_PRODUCT(
 209     _numObjectsPromoted = 0;
 210     _numWordsPromoted = 0;
 211     _numObjectsAllocated = 0;
 212     _numWordsAllocated = 0;
 213   )
 214 
 215   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 216                                            use_adaptive_freelists,
 217                                            dictionaryChoice);
 218   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 219   if (_cmsSpace == NULL) {
 220     vm_exit_during_initialization(
 221       "CompactibleFreeListSpace allocation failure");
 222   }
 223   _cmsSpace->_gen = this;
 224 
 225   _gc_stats = new CMSGCStats();
 226 
 227   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 228   // offsets match. The ability to tell free chunks from objects
 229   // depends on this property.
 230   debug_only(
 231     FreeChunk* junk = NULL;
 232     assert(UseCompressedKlassPointers ||
 233            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 234            "Offset of FreeChunk::_prev within FreeChunk must match"
 235            "  that of OopDesc::_klass within OopDesc");
 236   )
 237   if (CollectedHeap::use_parallel_gc_threads()) {
 238     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 239     _par_gc_thread_states =
 240       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 241     if (_par_gc_thread_states == NULL) {
 242       vm_exit_during_initialization("Could not allocate par gc structs");
 243     }
 244     for (uint i = 0; i < ParallelGCThreads; i++) {
 245       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 246       if (_par_gc_thread_states[i] == NULL) {
 247         vm_exit_during_initialization("Could not allocate par gc structs");
 248       }
 249     }
 250   } else {
 251     _par_gc_thread_states = NULL;
 252   }
 253   _incremental_collection_failed = false;
 254   // The "dilatation_factor" is the expansion that can occur on
 255   // account of the fact that the minimum object size in the CMS
 256   // generation may be larger than that in, say, a contiguous young
 257   //  generation.
 258   // Ideally, in the calculation below, we'd compute the dilatation
 259   // factor as: MinChunkSize/(promoting_gen's min object size)
 260   // Since we do not have such a general query interface for the
 261   // promoting generation, we'll instead just use the mimimum
 262   // object size (which today is a header's worth of space);
 263   // note that all arithmetic is in units of HeapWords.
 264   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 265   assert(_dilatation_factor >= 1.0, "from previous assert");
 266 }
 267 
 268 
 269 // The field "_initiating_occupancy" represents the occupancy percentage
 270 // at which we trigger a new collection cycle.  Unless explicitly specified
 271 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 272 // is calculated by:
 273 //
 274 //   Let "f" be MinHeapFreeRatio in
 275 //
 276 //    _intiating_occupancy = 100-f +
 277 //                           f * (CMSTriggerRatio/100)
 278 //   where CMSTriggerRatio is the argument "tr" below.
 279 //
 280 // That is, if we assume the heap is at its desired maximum occupancy at the
 281 // end of a collection, we let CMSTriggerRatio of the (purported) free
 282 // space be allocated before initiating a new collection cycle.
 283 //
 284 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 285   assert(io <= 100 && tr <= 100, "Check the arguments");
 286   if (io >= 0) {
 287     _initiating_occupancy = (double)io / 100.0;
 288   } else {
 289     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 290                              (double)(tr * MinHeapFreeRatio) / 100.0)
 291                             / 100.0;
 292   }
 293 }
 294 
 295 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 296   assert(collector() != NULL, "no collector");
 297   collector()->ref_processor_init();
 298 }
 299 
 300 void CMSCollector::ref_processor_init() {
 301   if (_ref_processor == NULL) {
 302     // Allocate and initialize a reference processor
 303     _ref_processor =
 304       new ReferenceProcessor(_span,                               // span
 305                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 306                              (int) ParallelGCThreads,             // mt processing degree
 307                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 308                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 309                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 310                              &_is_alive_closure,                  // closure for liveness info
 311                              false);                              // next field updates do not need write barrier
 312     // Initialize the _ref_processor field of CMSGen
 313     _cmsGen->set_ref_processor(_ref_processor);
 314 
 315   }
 316 }
 317 
 318 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 319   GenCollectedHeap* gch = GenCollectedHeap::heap();
 320   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 321     "Wrong type of heap");
 322   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 323     gch->gen_policy()->size_policy();
 324   assert(sp->is_gc_cms_adaptive_size_policy(),
 325     "Wrong type of size policy");
 326   return sp;
 327 }
 328 
 329 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 330   CMSGCAdaptivePolicyCounters* results =
 331     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 332   assert(
 333     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 334     "Wrong gc policy counter kind");
 335   return results;
 336 }
 337 
 338 
 339 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 340 
 341   const char* gen_name = "old";
 342 
 343   // Generation Counters - generation 1, 1 subspace
 344   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 345 
 346   _space_counters = new GSpaceCounters(gen_name, 0,
 347                                        _virtual_space.reserved_size(),
 348                                        this, _gen_counters);
 349 }
 350 
 351 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 352   _cms_gen(cms_gen)
 353 {
 354   assert(alpha <= 100, "bad value");
 355   _saved_alpha = alpha;
 356 
 357   // Initialize the alphas to the bootstrap value of 100.
 358   _gc0_alpha = _cms_alpha = 100;
 359 
 360   _cms_begin_time.update();
 361   _cms_end_time.update();
 362 
 363   _gc0_duration = 0.0;
 364   _gc0_period = 0.0;
 365   _gc0_promoted = 0;
 366 
 367   _cms_duration = 0.0;
 368   _cms_period = 0.0;
 369   _cms_allocated = 0;
 370 
 371   _cms_used_at_gc0_begin = 0;
 372   _cms_used_at_gc0_end = 0;
 373   _allow_duty_cycle_reduction = false;
 374   _valid_bits = 0;
 375   _icms_duty_cycle = CMSIncrementalDutyCycle;
 376 }
 377 
 378 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 379   // TBD: CR 6909490
 380   return 1.0;
 381 }
 382 
 383 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 384 }
 385 
 386 // If promotion failure handling is on use
 387 // the padded average size of the promotion for each
 388 // young generation collection.
 389 double CMSStats::time_until_cms_gen_full() const {
 390   size_t cms_free = _cms_gen->cmsSpace()->free();
 391   GenCollectedHeap* gch = GenCollectedHeap::heap();
 392   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 393                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 394   if (cms_free > expected_promotion) {
 395     // Start a cms collection if there isn't enough space to promote
 396     // for the next minor collection.  Use the padded average as
 397     // a safety factor.
 398     cms_free -= expected_promotion;
 399 
 400     // Adjust by the safety factor.
 401     double cms_free_dbl = (double)cms_free;
 402     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 403     // Apply a further correction factor which tries to adjust
 404     // for recent occurance of concurrent mode failures.
 405     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 406     cms_free_dbl = cms_free_dbl * cms_adjustment;
 407 
 408     if (PrintGCDetails && Verbose) {
 409       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 410         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 411         cms_free, expected_promotion);
 412       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 413         cms_free_dbl, cms_consumption_rate() + 1.0);
 414     }
 415     // Add 1 in case the consumption rate goes to zero.
 416     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 417   }
 418   return 0.0;
 419 }
 420 
 421 // Compare the duration of the cms collection to the
 422 // time remaining before the cms generation is empty.
 423 // Note that the time from the start of the cms collection
 424 // to the start of the cms sweep (less than the total
 425 // duration of the cms collection) can be used.  This
 426 // has been tried and some applications experienced
 427 // promotion failures early in execution.  This was
 428 // possibly because the averages were not accurate
 429 // enough at the beginning.
 430 double CMSStats::time_until_cms_start() const {
 431   // We add "gc0_period" to the "work" calculation
 432   // below because this query is done (mostly) at the
 433   // end of a scavenge, so we need to conservatively
 434   // account for that much possible delay
 435   // in the query so as to avoid concurrent mode failures
 436   // due to starting the collection just a wee bit too
 437   // late.
 438   double work = cms_duration() + gc0_period();
 439   double deadline = time_until_cms_gen_full();
 440   // If a concurrent mode failure occurred recently, we want to be
 441   // more conservative and halve our expected time_until_cms_gen_full()
 442   if (work > deadline) {
 443     if (Verbose && PrintGCDetails) {
 444       gclog_or_tty->print(
 445         " CMSCollector: collect because of anticipated promotion "
 446         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 447         gc0_period(), time_until_cms_gen_full());
 448     }
 449     return 0.0;
 450   }
 451   return work - deadline;
 452 }
 453 
 454 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 455 // amount of change to prevent wild oscillation.
 456 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 457                                               unsigned int new_duty_cycle) {
 458   assert(old_duty_cycle <= 100, "bad input value");
 459   assert(new_duty_cycle <= 100, "bad input value");
 460 
 461   // Note:  use subtraction with caution since it may underflow (values are
 462   // unsigned).  Addition is safe since we're in the range 0-100.
 463   unsigned int damped_duty_cycle = new_duty_cycle;
 464   if (new_duty_cycle < old_duty_cycle) {
 465     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 466     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 467       damped_duty_cycle = old_duty_cycle - largest_delta;
 468     }
 469   } else if (new_duty_cycle > old_duty_cycle) {
 470     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 471     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 472       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 473     }
 474   }
 475   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 476 
 477   if (CMSTraceIncrementalPacing) {
 478     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 479                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 480   }
 481   return damped_duty_cycle;
 482 }
 483 
 484 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 485   assert(CMSIncrementalPacing && valid(),
 486          "should be handled in icms_update_duty_cycle()");
 487 
 488   double cms_time_so_far = cms_timer().seconds();
 489   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 490   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 491 
 492   // Avoid division by 0.
 493   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 494   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 495 
 496   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 497   if (new_duty_cycle > _icms_duty_cycle) {
 498     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 499     if (new_duty_cycle > 2) {
 500       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 501                                                 new_duty_cycle);
 502     }
 503   } else if (_allow_duty_cycle_reduction) {
 504     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 505     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 506     // Respect the minimum duty cycle.
 507     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 508     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 509   }
 510 
 511   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 512     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 513   }
 514 
 515   _allow_duty_cycle_reduction = false;
 516   return _icms_duty_cycle;
 517 }
 518 
 519 #ifndef PRODUCT
 520 void CMSStats::print_on(outputStream *st) const {
 521   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 522   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 523                gc0_duration(), gc0_period(), gc0_promoted());
 524   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 525             cms_duration(), cms_duration_per_mb(),
 526             cms_period(), cms_allocated());
 527   st->print(",cms_since_beg=%g,cms_since_end=%g",
 528             cms_time_since_begin(), cms_time_since_end());
 529   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 530             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 531   if (CMSIncrementalMode) {
 532     st->print(",dc=%d", icms_duty_cycle());
 533   }
 534 
 535   if (valid()) {
 536     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 537               promotion_rate(), cms_allocation_rate());
 538     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 539               cms_consumption_rate(), time_until_cms_gen_full());
 540   }
 541   st->print(" ");
 542 }
 543 #endif // #ifndef PRODUCT
 544 
 545 CMSCollector::CollectorState CMSCollector::_collectorState =
 546                              CMSCollector::Idling;
 547 bool CMSCollector::_foregroundGCIsActive = false;
 548 bool CMSCollector::_foregroundGCShouldWait = false;
 549 
 550 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 551                            CardTableRS*                   ct,
 552                            ConcurrentMarkSweepPolicy*     cp):
 553   _cmsGen(cmsGen),
 554   _ct(ct),
 555   _ref_processor(NULL),    // will be set later
 556   _conc_workers(NULL),     // may be set later
 557   _abort_preclean(false),
 558   _start_sampling(false),
 559   _between_prologue_and_epilogue(false),
 560   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 561   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 562                  -1 /* lock-free */, "No_lock" /* dummy */),
 563   _modUnionClosure(&_modUnionTable),
 564   _modUnionClosurePar(&_modUnionTable),
 565   // Adjust my span to cover old (cms) gen
 566   _span(cmsGen->reserved()),
 567   // Construct the is_alive_closure with _span & markBitMap
 568   _is_alive_closure(_span, &_markBitMap),
 569   _restart_addr(NULL),
 570   _overflow_list(NULL),
 571   _stats(cmsGen),
 572   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 573   _eden_chunk_array(NULL),     // may be set in ctor body
 574   _eden_chunk_capacity(0),     // -- ditto --
 575   _eden_chunk_index(0),        // -- ditto --
 576   _survivor_plab_array(NULL),  // -- ditto --
 577   _survivor_chunk_array(NULL), // -- ditto --
 578   _survivor_chunk_capacity(0), // -- ditto --
 579   _survivor_chunk_index(0),    // -- ditto --
 580   _ser_pmc_preclean_ovflw(0),
 581   _ser_kac_preclean_ovflw(0),
 582   _ser_pmc_remark_ovflw(0),
 583   _par_pmc_remark_ovflw(0),
 584   _ser_kac_ovflw(0),
 585   _par_kac_ovflw(0),
 586 #ifndef PRODUCT
 587   _num_par_pushes(0),
 588 #endif
 589   _collection_count_start(0),
 590   _verifying(false),
 591   _icms_start_limit(NULL),
 592   _icms_stop_limit(NULL),
 593   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 594   _completed_initialization(false),
 595   _collector_policy(cp),
 596   _should_unload_classes(false),
 597   _concurrent_cycles_since_last_unload(0),
 598   _roots_scanning_options(0),
 599   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 600   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 602   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 603   _cms_start_registered(false)
 604 {
 605   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 606     ExplicitGCInvokesConcurrent = true;
 607   }
 608   // Now expand the span and allocate the collection support structures
 609   // (MUT, marking bit map etc.) to cover both generations subject to
 610   // collection.
 611 
 612   // For use by dirty card to oop closures.
 613   _cmsGen->cmsSpace()->set_collector(this);
 614 
 615   // Allocate MUT and marking bit map
 616   {
 617     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 618     if (!_markBitMap.allocate(_span)) {
 619       warning("Failed to allocate CMS Bit Map");
 620       return;
 621     }
 622     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 623   }
 624   {
 625     _modUnionTable.allocate(_span);
 626     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 627   }
 628 
 629   if (!_markStack.allocate(MarkStackSize)) {
 630     warning("Failed to allocate CMS Marking Stack");
 631     return;
 632   }
 633 
 634   // Support for multi-threaded concurrent phases
 635   if (CMSConcurrentMTEnabled) {
 636     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 637       // just for now
 638       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 639     }
 640     if (ConcGCThreads > 1) {
 641       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 642                                  ConcGCThreads, true);
 643       if (_conc_workers == NULL) {
 644         warning("GC/CMS: _conc_workers allocation failure: "
 645               "forcing -CMSConcurrentMTEnabled");
 646         CMSConcurrentMTEnabled = false;
 647       } else {
 648         _conc_workers->initialize_workers();
 649       }
 650     } else {
 651       CMSConcurrentMTEnabled = false;
 652     }
 653   }
 654   if (!CMSConcurrentMTEnabled) {
 655     ConcGCThreads = 0;
 656   } else {
 657     // Turn off CMSCleanOnEnter optimization temporarily for
 658     // the MT case where it's not fixed yet; see 6178663.
 659     CMSCleanOnEnter = false;
 660   }
 661   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 662          "Inconsistency");
 663 
 664   // Parallel task queues; these are shared for the
 665   // concurrent and stop-world phases of CMS, but
 666   // are not shared with parallel scavenge (ParNew).
 667   {
 668     uint i;
 669     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 670 
 671     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 672          || ParallelRefProcEnabled)
 673         && num_queues > 0) {
 674       _task_queues = new OopTaskQueueSet(num_queues);
 675       if (_task_queues == NULL) {
 676         warning("task_queues allocation failure.");
 677         return;
 678       }
 679       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 680       if (_hash_seed == NULL) {
 681         warning("_hash_seed array allocation failure");
 682         return;
 683       }
 684 
 685       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 686       for (i = 0; i < num_queues; i++) {
 687         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 688         if (q == NULL) {
 689           warning("work_queue allocation failure.");
 690           return;
 691         }
 692         _task_queues->register_queue(i, q);
 693       }
 694       for (i = 0; i < num_queues; i++) {
 695         _task_queues->queue(i)->initialize();
 696         _hash_seed[i] = 17;  // copied from ParNew
 697       }
 698     }
 699   }
 700 
 701   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 702 
 703   // Clip CMSBootstrapOccupancy between 0 and 100.
 704   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 705 
 706   _full_gcs_since_conc_gc = 0;
 707 
 708   // Now tell CMS generations the identity of their collector
 709   ConcurrentMarkSweepGeneration::set_collector(this);
 710 
 711   // Create & start a CMS thread for this CMS collector
 712   _cmsThread = ConcurrentMarkSweepThread::start(this);
 713   assert(cmsThread() != NULL, "CMS Thread should have been created");
 714   assert(cmsThread()->collector() == this,
 715          "CMS Thread should refer to this gen");
 716   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 717 
 718   // Support for parallelizing young gen rescan
 719   GenCollectedHeap* gch = GenCollectedHeap::heap();
 720   _young_gen = gch->prev_gen(_cmsGen);
 721   if (gch->supports_inline_contig_alloc()) {
 722     _top_addr = gch->top_addr();
 723     _end_addr = gch->end_addr();
 724     assert(_young_gen != NULL, "no _young_gen");
 725     _eden_chunk_index = 0;
 726     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 727     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 728     if (_eden_chunk_array == NULL) {
 729       _eden_chunk_capacity = 0;
 730       warning("GC/CMS: _eden_chunk_array allocation failure");
 731     }
 732   }
 733   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 734 
 735   // Support for parallelizing survivor space rescan
 736   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 737     const size_t max_plab_samples =
 738       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 739 
 740     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 741     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 742     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 743     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 744         || _cursor == NULL) {
 745       warning("Failed to allocate survivor plab/chunk array");
 746       if (_survivor_plab_array  != NULL) {
 747         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 748         _survivor_plab_array = NULL;
 749       }
 750       if (_survivor_chunk_array != NULL) {
 751         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 752         _survivor_chunk_array = NULL;
 753       }
 754       if (_cursor != NULL) {
 755         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 756         _cursor = NULL;
 757       }
 758     } else {
 759       _survivor_chunk_capacity = 2*max_plab_samples;
 760       for (uint i = 0; i < ParallelGCThreads; i++) {
 761         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 762         if (vec == NULL) {
 763           warning("Failed to allocate survivor plab array");
 764           for (int j = i; j > 0; j--) {
 765             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 766           }
 767           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 768           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 769           _survivor_plab_array = NULL;
 770           _survivor_chunk_array = NULL;
 771           _survivor_chunk_capacity = 0;
 772           break;
 773         } else {
 774           ChunkArray* cur =
 775             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 776                                                         max_plab_samples);
 777           assert(cur->end() == 0, "Should be 0");
 778           assert(cur->array() == vec, "Should be vec");
 779           assert(cur->capacity() == max_plab_samples, "Error");
 780         }
 781       }
 782     }
 783   }
 784   assert(   (   _survivor_plab_array  != NULL
 785              && _survivor_chunk_array != NULL)
 786          || (   _survivor_chunk_capacity == 0
 787              && _survivor_chunk_index == 0),
 788          "Error");
 789 
 790   // Choose what strong roots should be scanned depending on verification options
 791   if (!CMSClassUnloadingEnabled) {
 792     // If class unloading is disabled we want to include all classes into the root set.
 793     add_root_scanning_option(SharedHeap::SO_AllClasses);
 794   } else {
 795     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 796   }
 797 
 798   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 799   _gc_counters = new CollectorCounters("CMS", 1);
 800   _completed_initialization = true;
 801   _inter_sweep_timer.start();  // start of time
 802 }
 803 
 804 const char* ConcurrentMarkSweepGeneration::name() const {
 805   return "concurrent mark-sweep generation";
 806 }
 807 void ConcurrentMarkSweepGeneration::update_counters() {
 808   if (UsePerfData) {
 809     _space_counters->update_all();
 810     _gen_counters->update_all();
 811   }
 812 }
 813 
 814 // this is an optimized version of update_counters(). it takes the
 815 // used value as a parameter rather than computing it.
 816 //
 817 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 818   if (UsePerfData) {
 819     _space_counters->update_used(used);
 820     _space_counters->update_capacity();
 821     _gen_counters->update_all();
 822   }
 823 }
 824 
 825 void ConcurrentMarkSweepGeneration::print() const {
 826   Generation::print();
 827   cmsSpace()->print();
 828 }
 829 
 830 #ifndef PRODUCT
 831 void ConcurrentMarkSweepGeneration::print_statistics() {
 832   cmsSpace()->printFLCensus(0);
 833 }
 834 #endif
 835 
 836 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 837   GenCollectedHeap* gch = GenCollectedHeap::heap();
 838   if (PrintGCDetails) {
 839     if (Verbose) {
 840       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 841         level(), short_name(), s, used(), capacity());
 842     } else {
 843       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 844         level(), short_name(), s, used() / K, capacity() / K);
 845     }
 846   }
 847   if (Verbose) {
 848     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 849               gch->used(), gch->capacity());
 850   } else {
 851     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 852               gch->used() / K, gch->capacity() / K);
 853   }
 854 }
 855 
 856 size_t
 857 ConcurrentMarkSweepGeneration::contiguous_available() const {
 858   // dld proposes an improvement in precision here. If the committed
 859   // part of the space ends in a free block we should add that to
 860   // uncommitted size in the calculation below. Will make this
 861   // change later, staying with the approximation below for the
 862   // time being. -- ysr.
 863   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 864 }
 865 
 866 size_t
 867 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 868   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 869 }
 870 
 871 size_t ConcurrentMarkSweepGeneration::max_available() const {
 872   return free() + _virtual_space.uncommitted_size();
 873 }
 874 
 875 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 876   size_t available = max_available();
 877   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 878   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 879   if (Verbose && PrintGCDetails) {
 880     gclog_or_tty->print_cr(
 881       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 882       "max_promo("SIZE_FORMAT")",
 883       res? "":" not", available, res? ">=":"<",
 884       av_promo, max_promotion_in_bytes);
 885   }
 886   return res;
 887 }
 888 
 889 // At a promotion failure dump information on block layout in heap
 890 // (cms old generation).
 891 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 892   if (CMSDumpAtPromotionFailure) {
 893     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 894   }
 895 }
 896 
 897 CompactibleSpace*
 898 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 899   return _cmsSpace;
 900 }
 901 
 902 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 903   // Clear the promotion information.  These pointers can be adjusted
 904   // along with all the other pointers into the heap but
 905   // compaction is expected to be a rare event with
 906   // a heap using cms so don't do it without seeing the need.
 907   if (CollectedHeap::use_parallel_gc_threads()) {
 908     for (uint i = 0; i < ParallelGCThreads; i++) {
 909       _par_gc_thread_states[i]->promo.reset();
 910     }
 911   }
 912 }
 913 
 914 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 915   blk->do_space(_cmsSpace);
 916 }
 917 
 918 void ConcurrentMarkSweepGeneration::compute_new_size() {
 919   assert_locked_or_safepoint(Heap_lock);
 920 
 921   // If incremental collection failed, we just want to expand
 922   // to the limit.
 923   if (incremental_collection_failed()) {
 924     clear_incremental_collection_failed();
 925     grow_to_reserved();
 926     return;
 927   }
 928 
 929   // The heap has been compacted but not reset yet.
 930   // Any metric such as free() or used() will be incorrect.
 931 
 932   CardGeneration::compute_new_size();
 933 
 934   // Reset again after a possible resizing
 935   if (did_compact()) {
 936     cmsSpace()->reset_after_compaction();
 937   }
 938 }
 939 
 940 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 941   assert_locked_or_safepoint(Heap_lock);
 942 
 943   // If incremental collection failed, we just want to expand
 944   // to the limit.
 945   if (incremental_collection_failed()) {
 946     clear_incremental_collection_failed();
 947     grow_to_reserved();
 948     return;
 949   }
 950 
 951   double free_percentage = ((double) free()) / capacity();
 952   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 953   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 954 
 955   // compute expansion delta needed for reaching desired free percentage
 956   if (free_percentage < desired_free_percentage) {
 957     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 958     assert(desired_capacity >= capacity(), "invalid expansion size");
 959     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 960     if (PrintGCDetails && Verbose) {
 961       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 962       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 963       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 964       gclog_or_tty->print_cr("  Desired free fraction %f",
 965         desired_free_percentage);
 966       gclog_or_tty->print_cr("  Maximum free fraction %f",
 967         maximum_free_percentage);
 968       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 969       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 970         desired_capacity/1000);
 971       int prev_level = level() - 1;
 972       if (prev_level >= 0) {
 973         size_t prev_size = 0;
 974         GenCollectedHeap* gch = GenCollectedHeap::heap();
 975         Generation* prev_gen = gch->_gens[prev_level];
 976         prev_size = prev_gen->capacity();
 977           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 978                                  prev_size/1000);
 979       }
 980       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 981         unsafe_max_alloc_nogc()/1000);
 982       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 983         contiguous_available()/1000);
 984       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 985         expand_bytes);
 986     }
 987     // safe if expansion fails
 988     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 989     if (PrintGCDetails && Verbose) {
 990       gclog_or_tty->print_cr("  Expanded free fraction %f",
 991         ((double) free()) / capacity());
 992     }
 993   } else {
 994     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 995     assert(desired_capacity <= capacity(), "invalid expansion size");
 996     size_t shrink_bytes = capacity() - desired_capacity;
 997     // Don't shrink unless the delta is greater than the minimum shrink we want
 998     if (shrink_bytes >= MinHeapDeltaBytes) {
 999       shrink_free_list_by(shrink_bytes);
1000     }
1001   }
1002 }
1003 
1004 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1005   return cmsSpace()->freelistLock();
1006 }
1007 
1008 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1009                                                   bool   tlab) {
1010   CMSSynchronousYieldRequest yr;
1011   MutexLockerEx x(freelistLock(),
1012                   Mutex::_no_safepoint_check_flag);
1013   return have_lock_and_allocate(size, tlab);
1014 }
1015 
1016 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1017                                                   bool   tlab /* ignored */) {
1018   assert_lock_strong(freelistLock());
1019   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1020   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1021   // Allocate the object live (grey) if the background collector has
1022   // started marking. This is necessary because the marker may
1023   // have passed this address and consequently this object will
1024   // not otherwise be greyed and would be incorrectly swept up.
1025   // Note that if this object contains references, the writing
1026   // of those references will dirty the card containing this object
1027   // allowing the object to be blackened (and its references scanned)
1028   // either during a preclean phase or at the final checkpoint.
1029   if (res != NULL) {
1030     // We may block here with an uninitialized object with
1031     // its mark-bit or P-bits not yet set. Such objects need
1032     // to be safely navigable by block_start().
1033     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1034     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1035     collector()->direct_allocated(res, adjustedSize);
1036     _direct_allocated_words += adjustedSize;
1037     // allocation counters
1038     NOT_PRODUCT(
1039       _numObjectsAllocated++;
1040       _numWordsAllocated += (int)adjustedSize;
1041     )
1042   }
1043   return res;
1044 }
1045 
1046 // In the case of direct allocation by mutators in a generation that
1047 // is being concurrently collected, the object must be allocated
1048 // live (grey) if the background collector has started marking.
1049 // This is necessary because the marker may
1050 // have passed this address and consequently this object will
1051 // not otherwise be greyed and would be incorrectly swept up.
1052 // Note that if this object contains references, the writing
1053 // of those references will dirty the card containing this object
1054 // allowing the object to be blackened (and its references scanned)
1055 // either during a preclean phase or at the final checkpoint.
1056 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1057   assert(_markBitMap.covers(start, size), "Out of bounds");
1058   if (_collectorState >= Marking) {
1059     MutexLockerEx y(_markBitMap.lock(),
1060                     Mutex::_no_safepoint_check_flag);
1061     // [see comments preceding SweepClosure::do_blk() below for details]
1062     //
1063     // Can the P-bits be deleted now?  JJJ
1064     //
1065     // 1. need to mark the object as live so it isn't collected
1066     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1067     // 3. need to mark the end of the object so marking, precleaning or sweeping
1068     //    can skip over uninitialized or unparsable objects. An allocated
1069     //    object is considered uninitialized for our purposes as long as
1070     //    its klass word is NULL.  All old gen objects are parsable
1071     //    as soon as they are initialized.)
1072     _markBitMap.mark(start);          // object is live
1073     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1074     _markBitMap.mark(start + size - 1);
1075                                       // mark end of object
1076   }
1077   // check that oop looks uninitialized
1078   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1079 }
1080 
1081 void CMSCollector::promoted(bool par, HeapWord* start,
1082                             bool is_obj_array, size_t obj_size) {
1083   assert(_markBitMap.covers(start), "Out of bounds");
1084   // See comment in direct_allocated() about when objects should
1085   // be allocated live.
1086   if (_collectorState >= Marking) {
1087     // we already hold the marking bit map lock, taken in
1088     // the prologue
1089     if (par) {
1090       _markBitMap.par_mark(start);
1091     } else {
1092       _markBitMap.mark(start);
1093     }
1094     // We don't need to mark the object as uninitialized (as
1095     // in direct_allocated above) because this is being done with the
1096     // world stopped and the object will be initialized by the
1097     // time the marking, precleaning or sweeping get to look at it.
1098     // But see the code for copying objects into the CMS generation,
1099     // where we need to ensure that concurrent readers of the
1100     // block offset table are able to safely navigate a block that
1101     // is in flux from being free to being allocated (and in
1102     // transition while being copied into) and subsequently
1103     // becoming a bona-fide object when the copy/promotion is complete.
1104     assert(SafepointSynchronize::is_at_safepoint(),
1105            "expect promotion only at safepoints");
1106 
1107     if (_collectorState < Sweeping) {
1108       // Mark the appropriate cards in the modUnionTable, so that
1109       // this object gets scanned before the sweep. If this is
1110       // not done, CMS generation references in the object might
1111       // not get marked.
1112       // For the case of arrays, which are otherwise precisely
1113       // marked, we need to dirty the entire array, not just its head.
1114       if (is_obj_array) {
1115         // The [par_]mark_range() method expects mr.end() below to
1116         // be aligned to the granularity of a bit's representation
1117         // in the heap. In the case of the MUT below, that's a
1118         // card size.
1119         MemRegion mr(start,
1120                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1121                         CardTableModRefBS::card_size /* bytes */));
1122         if (par) {
1123           _modUnionTable.par_mark_range(mr);
1124         } else {
1125           _modUnionTable.mark_range(mr);
1126         }
1127       } else {  // not an obj array; we can just mark the head
1128         if (par) {
1129           _modUnionTable.par_mark(start);
1130         } else {
1131           _modUnionTable.mark(start);
1132         }
1133       }
1134     }
1135   }
1136 }
1137 
1138 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1139 {
1140   size_t delta = pointer_delta(addr, space->bottom());
1141   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1142 }
1143 
1144 void CMSCollector::icms_update_allocation_limits()
1145 {
1146   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1147   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1148 
1149   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1150   if (CMSTraceIncrementalPacing) {
1151     stats().print();
1152   }
1153 
1154   assert(duty_cycle <= 100, "invalid duty cycle");
1155   if (duty_cycle != 0) {
1156     // The duty_cycle is a percentage between 0 and 100; convert to words and
1157     // then compute the offset from the endpoints of the space.
1158     size_t free_words = eden->free() / HeapWordSize;
1159     double free_words_dbl = (double)free_words;
1160     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1161     size_t offset_words = (free_words - duty_cycle_words) / 2;
1162 
1163     _icms_start_limit = eden->top() + offset_words;
1164     _icms_stop_limit = eden->end() - offset_words;
1165 
1166     // The limits may be adjusted (shifted to the right) by
1167     // CMSIncrementalOffset, to allow the application more mutator time after a
1168     // young gen gc (when all mutators were stopped) and before CMS starts and
1169     // takes away one or more cpus.
1170     if (CMSIncrementalOffset != 0) {
1171       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1172       size_t adjustment = (size_t)adjustment_dbl;
1173       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1174       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1175         _icms_start_limit += adjustment;
1176         _icms_stop_limit = tmp_stop;
1177       }
1178     }
1179   }
1180   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1181     _icms_start_limit = _icms_stop_limit = eden->end();
1182   }
1183 
1184   // Install the new start limit.
1185   eden->set_soft_end(_icms_start_limit);
1186 
1187   if (CMSTraceIncrementalMode) {
1188     gclog_or_tty->print(" icms alloc limits:  "
1189                            PTR_FORMAT "," PTR_FORMAT
1190                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1191                            _icms_start_limit, _icms_stop_limit,
1192                            percent_of_space(eden, _icms_start_limit),
1193                            percent_of_space(eden, _icms_stop_limit));
1194     if (Verbose) {
1195       gclog_or_tty->print("eden:  ");
1196       eden->print_on(gclog_or_tty);
1197     }
1198   }
1199 }
1200 
1201 // Any changes here should try to maintain the invariant
1202 // that if this method is called with _icms_start_limit
1203 // and _icms_stop_limit both NULL, then it should return NULL
1204 // and not notify the icms thread.
1205 HeapWord*
1206 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1207                                        size_t word_size)
1208 {
1209   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1210   // nop.
1211   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1212     if (top <= _icms_start_limit) {
1213       if (CMSTraceIncrementalMode) {
1214         space->print_on(gclog_or_tty);
1215         gclog_or_tty->stamp();
1216         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1217                                ", new limit=" PTR_FORMAT
1218                                " (" SIZE_FORMAT "%%)",
1219                                top, _icms_stop_limit,
1220                                percent_of_space(space, _icms_stop_limit));
1221       }
1222       ConcurrentMarkSweepThread::start_icms();
1223       assert(top < _icms_stop_limit, "Tautology");
1224       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1225         return _icms_stop_limit;
1226       }
1227 
1228       // The allocation will cross both the _start and _stop limits, so do the
1229       // stop notification also and return end().
1230       if (CMSTraceIncrementalMode) {
1231         space->print_on(gclog_or_tty);
1232         gclog_or_tty->stamp();
1233         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1234                                ", new limit=" PTR_FORMAT
1235                                " (" SIZE_FORMAT "%%)",
1236                                top, space->end(),
1237                                percent_of_space(space, space->end()));
1238       }
1239       ConcurrentMarkSweepThread::stop_icms();
1240       return space->end();
1241     }
1242 
1243     if (top <= _icms_stop_limit) {
1244       if (CMSTraceIncrementalMode) {
1245         space->print_on(gclog_or_tty);
1246         gclog_or_tty->stamp();
1247         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1248                                ", new limit=" PTR_FORMAT
1249                                " (" SIZE_FORMAT "%%)",
1250                                top, space->end(),
1251                                percent_of_space(space, space->end()));
1252       }
1253       ConcurrentMarkSweepThread::stop_icms();
1254       return space->end();
1255     }
1256 
1257     if (CMSTraceIncrementalMode) {
1258       space->print_on(gclog_or_tty);
1259       gclog_or_tty->stamp();
1260       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1261                              ", new limit=" PTR_FORMAT,
1262                              top, NULL);
1263     }
1264   }
1265 
1266   return NULL;
1267 }
1268 
1269 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1270   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1271   // allocate, copy and if necessary update promoinfo --
1272   // delegate to underlying space.
1273   assert_lock_strong(freelistLock());
1274 
1275 #ifndef PRODUCT
1276   if (Universe::heap()->promotion_should_fail()) {
1277     return NULL;
1278   }
1279 #endif  // #ifndef PRODUCT
1280 
1281   oop res = _cmsSpace->promote(obj, obj_size);
1282   if (res == NULL) {
1283     // expand and retry
1284     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1285     expand(s*HeapWordSize, MinHeapDeltaBytes,
1286       CMSExpansionCause::_satisfy_promotion);
1287     // Since there's currently no next generation, we don't try to promote
1288     // into a more senior generation.
1289     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1290                                "is made to pass on a possibly failing "
1291                                "promotion to next generation");
1292     res = _cmsSpace->promote(obj, obj_size);
1293   }
1294   if (res != NULL) {
1295     // See comment in allocate() about when objects should
1296     // be allocated live.
1297     assert(obj->is_oop(), "Will dereference klass pointer below");
1298     collector()->promoted(false,           // Not parallel
1299                           (HeapWord*)res, obj->is_objArray(), obj_size);
1300     // promotion counters
1301     NOT_PRODUCT(
1302       _numObjectsPromoted++;
1303       _numWordsPromoted +=
1304         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1305     )
1306   }
1307   return res;
1308 }
1309 
1310 
1311 HeapWord*
1312 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1313                                              HeapWord* top,
1314                                              size_t word_sz)
1315 {
1316   return collector()->allocation_limit_reached(space, top, word_sz);
1317 }
1318 
1319 // IMPORTANT: Notes on object size recognition in CMS.
1320 // ---------------------------------------------------
1321 // A block of storage in the CMS generation is always in
1322 // one of three states. A free block (FREE), an allocated
1323 // object (OBJECT) whose size() method reports the correct size,
1324 // and an intermediate state (TRANSIENT) in which its size cannot
1325 // be accurately determined.
1326 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1327 // -----------------------------------------------------
1328 // FREE:      klass_word & 1 == 1; mark_word holds block size
1329 //
1330 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1331 //            obj->size() computes correct size
1332 //
1333 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1334 //
1335 // STATE IDENTIFICATION: (64 bit+COOPS)
1336 // ------------------------------------
1337 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1338 //
1339 // OBJECT:    klass_word installed; klass_word != 0;
1340 //            obj->size() computes correct size
1341 //
1342 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1343 //
1344 //
1345 // STATE TRANSITION DIAGRAM
1346 //
1347 //        mut / parnew                     mut  /  parnew
1348 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1349 //  ^                                                                   |
1350 //  |------------------------ DEAD <------------------------------------|
1351 //         sweep                            mut
1352 //
1353 // While a block is in TRANSIENT state its size cannot be determined
1354 // so readers will either need to come back later or stall until
1355 // the size can be determined. Note that for the case of direct
1356 // allocation, P-bits, when available, may be used to determine the
1357 // size of an object that may not yet have been initialized.
1358 
1359 // Things to support parallel young-gen collection.
1360 oop
1361 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1362                                            oop old, markOop m,
1363                                            size_t word_sz) {
1364 #ifndef PRODUCT
1365   if (Universe::heap()->promotion_should_fail()) {
1366     return NULL;
1367   }
1368 #endif  // #ifndef PRODUCT
1369 
1370   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1371   PromotionInfo* promoInfo = &ps->promo;
1372   // if we are tracking promotions, then first ensure space for
1373   // promotion (including spooling space for saving header if necessary).
1374   // then allocate and copy, then track promoted info if needed.
1375   // When tracking (see PromotionInfo::track()), the mark word may
1376   // be displaced and in this case restoration of the mark word
1377   // occurs in the (oop_since_save_marks_)iterate phase.
1378   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1379     // Out of space for allocating spooling buffers;
1380     // try expanding and allocating spooling buffers.
1381     if (!expand_and_ensure_spooling_space(promoInfo)) {
1382       return NULL;
1383     }
1384   }
1385   assert(promoInfo->has_spooling_space(), "Control point invariant");
1386   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1387   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1388   if (obj_ptr == NULL) {
1389      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1390      if (obj_ptr == NULL) {
1391        return NULL;
1392      }
1393   }
1394   oop obj = oop(obj_ptr);
1395   OrderAccess::storestore();
1396   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1397   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1398   // IMPORTANT: See note on object initialization for CMS above.
1399   // Otherwise, copy the object.  Here we must be careful to insert the
1400   // klass pointer last, since this marks the block as an allocated object.
1401   // Except with compressed oops it's the mark word.
1402   HeapWord* old_ptr = (HeapWord*)old;
1403   // Restore the mark word copied above.
1404   obj->set_mark(m);
1405   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1406   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1407   OrderAccess::storestore();
1408 
1409   if (UseCompressedKlassPointers) {
1410     // Copy gap missed by (aligned) header size calculation below
1411     obj->set_klass_gap(old->klass_gap());
1412   }
1413   if (word_sz > (size_t)oopDesc::header_size()) {
1414     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1415                                  obj_ptr + oopDesc::header_size(),
1416                                  word_sz - oopDesc::header_size());
1417   }
1418 
1419   // Now we can track the promoted object, if necessary.  We take care
1420   // to delay the transition from uninitialized to full object
1421   // (i.e., insertion of klass pointer) until after, so that it
1422   // atomically becomes a promoted object.
1423   if (promoInfo->tracking()) {
1424     promoInfo->track((PromotedObject*)obj, old->klass());
1425   }
1426   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1427   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1428   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1429 
1430   // Finally, install the klass pointer (this should be volatile).
1431   OrderAccess::storestore();
1432   obj->set_klass(old->klass());
1433   // We should now be able to calculate the right size for this object
1434   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1435 
1436   collector()->promoted(true,          // parallel
1437                         obj_ptr, old->is_objArray(), word_sz);
1438 
1439   NOT_PRODUCT(
1440     Atomic::inc_ptr(&_numObjectsPromoted);
1441     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1442   )
1443 
1444   return obj;
1445 }
1446 
1447 void
1448 ConcurrentMarkSweepGeneration::
1449 par_promote_alloc_undo(int thread_num,
1450                        HeapWord* obj, size_t word_sz) {
1451   // CMS does not support promotion undo.
1452   ShouldNotReachHere();
1453 }
1454 
1455 void
1456 ConcurrentMarkSweepGeneration::
1457 par_promote_alloc_done(int thread_num) {
1458   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1459   ps->lab.retire(thread_num);
1460 }
1461 
1462 void
1463 ConcurrentMarkSweepGeneration::
1464 par_oop_since_save_marks_iterate_done(int thread_num) {
1465   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1466   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1467   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1468 }
1469 
1470 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1471                                                    size_t size,
1472                                                    bool   tlab)
1473 {
1474   // We allow a STW collection only if a full
1475   // collection was requested.
1476   return full || should_allocate(size, tlab); // FIX ME !!!
1477   // This and promotion failure handling are connected at the
1478   // hip and should be fixed by untying them.
1479 }
1480 
1481 bool CMSCollector::shouldConcurrentCollect() {
1482   if (_full_gc_requested) {
1483     if (Verbose && PrintGCDetails) {
1484       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1485                              " gc request (or gc_locker)");
1486     }
1487     return true;
1488   }
1489 
1490   // For debugging purposes, change the type of collection.
1491   // If the rotation is not on the concurrent collection
1492   // type, don't start a concurrent collection.
1493   NOT_PRODUCT(
1494     if (RotateCMSCollectionTypes &&
1495         (_cmsGen->debug_collection_type() !=
1496           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1497       assert(_cmsGen->debug_collection_type() !=
1498         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1499         "Bad cms collection type");
1500       return false;
1501     }
1502   )
1503 
1504   FreelistLocker x(this);
1505   // ------------------------------------------------------------------
1506   // Print out lots of information which affects the initiation of
1507   // a collection.
1508   if (PrintCMSInitiationStatistics && stats().valid()) {
1509     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1510     gclog_or_tty->stamp();
1511     gclog_or_tty->print_cr("");
1512     stats().print_on(gclog_or_tty);
1513     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1514       stats().time_until_cms_gen_full());
1515     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1516     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1517                            _cmsGen->contiguous_available());
1518     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1519     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1520     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1521     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1522     gclog_or_tty->print_cr("metadata initialized %d",
1523       MetaspaceGC::should_concurrent_collect());
1524   }
1525   // ------------------------------------------------------------------
1526 
1527   // If the estimated time to complete a cms collection (cms_duration())
1528   // is less than the estimated time remaining until the cms generation
1529   // is full, start a collection.
1530   if (!UseCMSInitiatingOccupancyOnly) {
1531     if (stats().valid()) {
1532       if (stats().time_until_cms_start() == 0.0) {
1533         return true;
1534       }
1535     } else {
1536       // We want to conservatively collect somewhat early in order
1537       // to try and "bootstrap" our CMS/promotion statistics;
1538       // this branch will not fire after the first successful CMS
1539       // collection because the stats should then be valid.
1540       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1541         if (Verbose && PrintGCDetails) {
1542           gclog_or_tty->print_cr(
1543             " CMSCollector: collect for bootstrapping statistics:"
1544             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1545             _bootstrap_occupancy);
1546         }
1547         return true;
1548       }
1549     }
1550   }
1551 
1552   // Otherwise, we start a collection cycle if
1553   // old gen want a collection cycle started. Each may use
1554   // an appropriate criterion for making this decision.
1555   // XXX We need to make sure that the gen expansion
1556   // criterion dovetails well with this. XXX NEED TO FIX THIS
1557   if (_cmsGen->should_concurrent_collect()) {
1558     if (Verbose && PrintGCDetails) {
1559       gclog_or_tty->print_cr("CMS old gen initiated");
1560     }
1561     return true;
1562   }
1563 
1564   // We start a collection if we believe an incremental collection may fail;
1565   // this is not likely to be productive in practice because it's probably too
1566   // late anyway.
1567   GenCollectedHeap* gch = GenCollectedHeap::heap();
1568   assert(gch->collector_policy()->is_two_generation_policy(),
1569          "You may want to check the correctness of the following");
1570   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1571     if (Verbose && PrintGCDetails) {
1572       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1573     }
1574     return true;
1575   }
1576 
1577   if (MetaspaceGC::should_concurrent_collect()) {
1578       if (Verbose && PrintGCDetails) {
1579       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1580       }
1581       return true;
1582     }
1583 
1584   return false;
1585 }
1586 
1587 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1588 
1589 // Clear _expansion_cause fields of constituent generations
1590 void CMSCollector::clear_expansion_cause() {
1591   _cmsGen->clear_expansion_cause();
1592 }
1593 
1594 // We should be conservative in starting a collection cycle.  To
1595 // start too eagerly runs the risk of collecting too often in the
1596 // extreme.  To collect too rarely falls back on full collections,
1597 // which works, even if not optimum in terms of concurrent work.
1598 // As a work around for too eagerly collecting, use the flag
1599 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1600 // giving the user an easily understandable way of controlling the
1601 // collections.
1602 // We want to start a new collection cycle if any of the following
1603 // conditions hold:
1604 // . our current occupancy exceeds the configured initiating occupancy
1605 //   for this generation, or
1606 // . we recently needed to expand this space and have not, since that
1607 //   expansion, done a collection of this generation, or
1608 // . the underlying space believes that it may be a good idea to initiate
1609 //   a concurrent collection (this may be based on criteria such as the
1610 //   following: the space uses linear allocation and linear allocation is
1611 //   going to fail, or there is believed to be excessive fragmentation in
1612 //   the generation, etc... or ...
1613 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1614 //   the case of the old generation; see CR 6543076):
1615 //   we may be approaching a point at which allocation requests may fail because
1616 //   we will be out of sufficient free space given allocation rate estimates.]
1617 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1618 
1619   assert_lock_strong(freelistLock());
1620   if (occupancy() > initiating_occupancy()) {
1621     if (PrintGCDetails && Verbose) {
1622       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1623         short_name(), occupancy(), initiating_occupancy());
1624     }
1625     return true;
1626   }
1627   if (UseCMSInitiatingOccupancyOnly) {
1628     return false;
1629   }
1630   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1633         short_name());
1634     }
1635     return true;
1636   }
1637   if (_cmsSpace->should_concurrent_collect()) {
1638     if (PrintGCDetails && Verbose) {
1639       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1640         short_name());
1641     }
1642     return true;
1643   }
1644   return false;
1645 }
1646 
1647 void ConcurrentMarkSweepGeneration::collect(bool   full,
1648                                             bool   clear_all_soft_refs,
1649                                             size_t size,
1650                                             bool   tlab)
1651 {
1652   collector()->collect(full, clear_all_soft_refs, size, tlab);
1653 }
1654 
1655 void CMSCollector::collect(bool   full,
1656                            bool   clear_all_soft_refs,
1657                            size_t size,
1658                            bool   tlab)
1659 {
1660   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1661     // For debugging purposes skip the collection if the state
1662     // is not currently idle
1663     if (TraceCMSState) {
1664       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1665         Thread::current(), full, _collectorState);
1666     }
1667     return;
1668   }
1669 
1670   // The following "if" branch is present for defensive reasons.
1671   // In the current uses of this interface, it can be replaced with:
1672   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1673   // But I am not placing that assert here to allow future
1674   // generality in invoking this interface.
1675   if (GC_locker::is_active()) {
1676     // A consistency test for GC_locker
1677     assert(GC_locker::needs_gc(), "Should have been set already");
1678     // Skip this foreground collection, instead
1679     // expanding the heap if necessary.
1680     // Need the free list locks for the call to free() in compute_new_size()
1681     compute_new_size();
1682     return;
1683   }
1684   acquire_control_and_collect(full, clear_all_soft_refs);
1685   _full_gcs_since_conc_gc++;
1686 }
1687 
1688 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1689   GenCollectedHeap* gch = GenCollectedHeap::heap();
1690   unsigned int gc_count = gch->total_full_collections();
1691   if (gc_count == full_gc_count) {
1692     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1693     _full_gc_requested = true;
1694     _full_gc_cause = cause;
1695     CGC_lock->notify();   // nudge CMS thread
1696   } else {
1697     assert(gc_count > full_gc_count, "Error: causal loop");
1698   }
1699 }
1700 
1701 bool CMSCollector::is_external_interruption() {
1702   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1703   return GCCause::is_user_requested_gc(cause) ||
1704          GCCause::is_serviceability_requested_gc(cause);
1705 }
1706 
1707 void CMSCollector::report_concurrent_mode_interruption() {
1708   if (is_external_interruption()) {
1709     if (PrintGCDetails) {
1710       gclog_or_tty->print(" (concurrent mode interrupted)");
1711     }
1712   } else {
1713     if (PrintGCDetails) {
1714       gclog_or_tty->print(" (concurrent mode failure)");
1715     }
1716     _gc_tracer_cm->report_concurrent_mode_failure();
1717   }
1718 }
1719 
1720 
1721 // The foreground and background collectors need to coordinate in order
1722 // to make sure that they do not mutually interfere with CMS collections.
1723 // When a background collection is active,
1724 // the foreground collector may need to take over (preempt) and
1725 // synchronously complete an ongoing collection. Depending on the
1726 // frequency of the background collections and the heap usage
1727 // of the application, this preemption can be seldom or frequent.
1728 // There are only certain
1729 // points in the background collection that the "collection-baton"
1730 // can be passed to the foreground collector.
1731 //
1732 // The foreground collector will wait for the baton before
1733 // starting any part of the collection.  The foreground collector
1734 // will only wait at one location.
1735 //
1736 // The background collector will yield the baton before starting a new
1737 // phase of the collection (e.g., before initial marking, marking from roots,
1738 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1739 // of the loop which switches the phases. The background collector does some
1740 // of the phases (initial mark, final re-mark) with the world stopped.
1741 // Because of locking involved in stopping the world,
1742 // the foreground collector should not block waiting for the background
1743 // collector when it is doing a stop-the-world phase.  The background
1744 // collector will yield the baton at an additional point just before
1745 // it enters a stop-the-world phase.  Once the world is stopped, the
1746 // background collector checks the phase of the collection.  If the
1747 // phase has not changed, it proceeds with the collection.  If the
1748 // phase has changed, it skips that phase of the collection.  See
1749 // the comments on the use of the Heap_lock in collect_in_background().
1750 //
1751 // Variable used in baton passing.
1752 //   _foregroundGCIsActive - Set to true by the foreground collector when
1753 //      it wants the baton.  The foreground clears it when it has finished
1754 //      the collection.
1755 //   _foregroundGCShouldWait - Set to true by the background collector
1756 //        when it is running.  The foreground collector waits while
1757 //      _foregroundGCShouldWait is true.
1758 //  CGC_lock - monitor used to protect access to the above variables
1759 //      and to notify the foreground and background collectors.
1760 //  _collectorState - current state of the CMS collection.
1761 //
1762 // The foreground collector
1763 //   acquires the CGC_lock
1764 //   sets _foregroundGCIsActive
1765 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1766 //     various locks acquired in preparation for the collection
1767 //     are released so as not to block the background collector
1768 //     that is in the midst of a collection
1769 //   proceeds with the collection
1770 //   clears _foregroundGCIsActive
1771 //   returns
1772 //
1773 // The background collector in a loop iterating on the phases of the
1774 //      collection
1775 //   acquires the CGC_lock
1776 //   sets _foregroundGCShouldWait
1777 //   if _foregroundGCIsActive is set
1778 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1779 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1780 //     and exits the loop.
1781 //   otherwise
1782 //     proceed with that phase of the collection
1783 //     if the phase is a stop-the-world phase,
1784 //       yield the baton once more just before enqueueing
1785 //       the stop-world CMS operation (executed by the VM thread).
1786 //   returns after all phases of the collection are done
1787 //
1788 
1789 void CMSCollector::acquire_control_and_collect(bool full,
1790         bool clear_all_soft_refs) {
1791   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1792   assert(!Thread::current()->is_ConcurrentGC_thread(),
1793          "shouldn't try to acquire control from self!");
1794 
1795   // Start the protocol for acquiring control of the
1796   // collection from the background collector (aka CMS thread).
1797   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1798          "VM thread should have CMS token");
1799   // Remember the possibly interrupted state of an ongoing
1800   // concurrent collection
1801   CollectorState first_state = _collectorState;
1802 
1803   // Signal to a possibly ongoing concurrent collection that
1804   // we want to do a foreground collection.
1805   _foregroundGCIsActive = true;
1806 
1807   // Disable incremental mode during a foreground collection.
1808   ICMSDisabler icms_disabler;
1809 
1810   // release locks and wait for a notify from the background collector
1811   // releasing the locks in only necessary for phases which
1812   // do yields to improve the granularity of the collection.
1813   assert_lock_strong(bitMapLock());
1814   // We need to lock the Free list lock for the space that we are
1815   // currently collecting.
1816   assert(haveFreelistLocks(), "Must be holding free list locks");
1817   bitMapLock()->unlock();
1818   releaseFreelistLocks();
1819   {
1820     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1821     if (_foregroundGCShouldWait) {
1822       // We are going to be waiting for action for the CMS thread;
1823       // it had better not be gone (for instance at shutdown)!
1824       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1825              "CMS thread must be running");
1826       // Wait here until the background collector gives us the go-ahead
1827       ConcurrentMarkSweepThread::clear_CMS_flag(
1828         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1829       // Get a possibly blocked CMS thread going:
1830       //   Note that we set _foregroundGCIsActive true above,
1831       //   without protection of the CGC_lock.
1832       CGC_lock->notify();
1833       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1834              "Possible deadlock");
1835       while (_foregroundGCShouldWait) {
1836         // wait for notification
1837         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1838         // Possibility of delay/starvation here, since CMS token does
1839         // not know to give priority to VM thread? Actually, i think
1840         // there wouldn't be any delay/starvation, but the proof of
1841         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1842       }
1843       ConcurrentMarkSweepThread::set_CMS_flag(
1844         ConcurrentMarkSweepThread::CMS_vm_has_token);
1845     }
1846   }
1847   // The CMS_token is already held.  Get back the other locks.
1848   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1849          "VM thread should have CMS token");
1850   getFreelistLocks();
1851   bitMapLock()->lock_without_safepoint_check();
1852   if (TraceCMSState) {
1853     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1854       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1855     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1856   }
1857 
1858   // Check if we need to do a compaction, or if not, whether
1859   // we need to start the mark-sweep from scratch.
1860   bool should_compact    = false;
1861   bool should_start_over = false;
1862   decide_foreground_collection_type(clear_all_soft_refs,
1863     &should_compact, &should_start_over);
1864 
1865 NOT_PRODUCT(
1866   if (RotateCMSCollectionTypes) {
1867     if (_cmsGen->debug_collection_type() ==
1868         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1869       should_compact = true;
1870     } else if (_cmsGen->debug_collection_type() ==
1871                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1872       should_compact = false;
1873     }
1874   }
1875 )
1876 
1877   if (first_state > Idling) {
1878     report_concurrent_mode_interruption();
1879   }
1880 
1881   set_did_compact(should_compact);
1882   if (should_compact) {
1883     // If the collection is being acquired from the background
1884     // collector, there may be references on the discovered
1885     // references lists that have NULL referents (being those
1886     // that were concurrently cleared by a mutator) or
1887     // that are no longer active (having been enqueued concurrently
1888     // by the mutator).
1889     // Scrub the list of those references because Mark-Sweep-Compact
1890     // code assumes referents are not NULL and that all discovered
1891     // Reference objects are active.
1892     ref_processor()->clean_up_discovered_references();
1893 
1894     if (first_state > Idling) {
1895       save_heap_summary();
1896     }
1897 
1898     do_compaction_work(clear_all_soft_refs);
1899 
1900     // Has the GC time limit been exceeded?
1901     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1902     size_t max_eden_size = young_gen->max_capacity() -
1903                            young_gen->to()->capacity() -
1904                            young_gen->from()->capacity();
1905     GenCollectedHeap* gch = GenCollectedHeap::heap();
1906     GCCause::Cause gc_cause = gch->gc_cause();
1907     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1908                                            young_gen->eden()->used(),
1909                                            _cmsGen->max_capacity(),
1910                                            max_eden_size,
1911                                            full,
1912                                            gc_cause,
1913                                            gch->collector_policy());
1914   } else {
1915     do_mark_sweep_work(clear_all_soft_refs, first_state,
1916       should_start_over);
1917   }
1918   // Reset the expansion cause, now that we just completed
1919   // a collection cycle.
1920   clear_expansion_cause();
1921   _foregroundGCIsActive = false;
1922   return;
1923 }
1924 
1925 // Resize the tenured generation
1926 // after obtaining the free list locks for the
1927 // two generations.
1928 void CMSCollector::compute_new_size() {
1929   assert_locked_or_safepoint(Heap_lock);
1930   FreelistLocker z(this);
1931   MetaspaceGC::compute_new_size();
1932   _cmsGen->compute_new_size_free_list();
1933 }
1934 
1935 // A work method used by foreground collection to determine
1936 // what type of collection (compacting or not, continuing or fresh)
1937 // it should do.
1938 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1939 // and CMSCompactWhenClearAllSoftRefs the default in the future
1940 // and do away with the flags after a suitable period.
1941 void CMSCollector::decide_foreground_collection_type(
1942   bool clear_all_soft_refs, bool* should_compact,
1943   bool* should_start_over) {
1944   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1945   // flag is set, and we have either requested a System.gc() or
1946   // the number of full gc's since the last concurrent cycle
1947   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1948   // or if an incremental collection has failed
1949   GenCollectedHeap* gch = GenCollectedHeap::heap();
1950   assert(gch->collector_policy()->is_two_generation_policy(),
1951          "You may want to check the correctness of the following");
1952   // Inform cms gen if this was due to partial collection failing.
1953   // The CMS gen may use this fact to determine its expansion policy.
1954   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1955     assert(!_cmsGen->incremental_collection_failed(),
1956            "Should have been noticed, reacted to and cleared");
1957     _cmsGen->set_incremental_collection_failed();
1958   }
1959   *should_compact =
1960     UseCMSCompactAtFullCollection &&
1961     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1962      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1963      gch->incremental_collection_will_fail(true /* consult_young */));
1964   *should_start_over = false;
1965   if (clear_all_soft_refs && !*should_compact) {
1966     // We are about to do a last ditch collection attempt
1967     // so it would normally make sense to do a compaction
1968     // to reclaim as much space as possible.
1969     if (CMSCompactWhenClearAllSoftRefs) {
1970       // Default: The rationale is that in this case either
1971       // we are past the final marking phase, in which case
1972       // we'd have to start over, or so little has been done
1973       // that there's little point in saving that work. Compaction
1974       // appears to be the sensible choice in either case.
1975       *should_compact = true;
1976     } else {
1977       // We have been asked to clear all soft refs, but not to
1978       // compact. Make sure that we aren't past the final checkpoint
1979       // phase, for that is where we process soft refs. If we are already
1980       // past that phase, we'll need to redo the refs discovery phase and
1981       // if necessary clear soft refs that weren't previously
1982       // cleared. We do so by remembering the phase in which
1983       // we came in, and if we are past the refs processing
1984       // phase, we'll choose to just redo the mark-sweep
1985       // collection from scratch.
1986       if (_collectorState > FinalMarking) {
1987         // We are past the refs processing phase;
1988         // start over and do a fresh synchronous CMS cycle
1989         _collectorState = Resetting; // skip to reset to start new cycle
1990         reset(false /* == !asynch */);
1991         *should_start_over = true;
1992       } // else we can continue a possibly ongoing current cycle
1993     }
1994   }
1995 }
1996 
1997 // A work method used by the foreground collector to do
1998 // a mark-sweep-compact.
1999 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2000   GenCollectedHeap* gch = GenCollectedHeap::heap();
2001 
2002   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2003   gc_timer->register_gc_start(os::elapsed_counter());
2004 
2005   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2006   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2007 
2008   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2009   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2010     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2011       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2012   }
2013 
2014   // Sample collection interval time and reset for collection pause.
2015   if (UseAdaptiveSizePolicy) {
2016     size_policy()->msc_collection_begin();
2017   }
2018 
2019   // Temporarily widen the span of the weak reference processing to
2020   // the entire heap.
2021   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2022   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2023   // Temporarily, clear the "is_alive_non_header" field of the
2024   // reference processor.
2025   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2026   // Temporarily make reference _processing_ single threaded (non-MT).
2027   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2028   // Temporarily make refs discovery atomic
2029   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2030   // Temporarily make reference _discovery_ single threaded (non-MT)
2031   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2032 
2033   ref_processor()->set_enqueuing_is_done(false);
2034   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2035   ref_processor()->setup_policy(clear_all_soft_refs);
2036   // If an asynchronous collection finishes, the _modUnionTable is
2037   // all clear.  If we are assuming the collection from an asynchronous
2038   // collection, clear the _modUnionTable.
2039   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2040     "_modUnionTable should be clear if the baton was not passed");
2041   _modUnionTable.clear_all();
2042   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2043     "mod union for klasses should be clear if the baton was passed");
2044   _ct->klass_rem_set()->clear_mod_union();
2045 
2046   // We must adjust the allocation statistics being maintained
2047   // in the free list space. We do so by reading and clearing
2048   // the sweep timer and updating the block flux rate estimates below.
2049   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2050   if (_inter_sweep_timer.is_active()) {
2051     _inter_sweep_timer.stop();
2052     // Note that we do not use this sample to update the _inter_sweep_estimate.
2053     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2054                                             _inter_sweep_estimate.padded_average(),
2055                                             _intra_sweep_estimate.padded_average());
2056   }
2057 
2058   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2059     ref_processor(), clear_all_soft_refs);
2060   #ifdef ASSERT
2061     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2062     size_t free_size = cms_space->free();
2063     assert(free_size ==
2064            pointer_delta(cms_space->end(), cms_space->compaction_top())
2065            * HeapWordSize,
2066       "All the free space should be compacted into one chunk at top");
2067     assert(cms_space->dictionary()->total_chunk_size(
2068                                       debug_only(cms_space->freelistLock())) == 0 ||
2069            cms_space->totalSizeInIndexedFreeLists() == 0,
2070       "All the free space should be in a single chunk");
2071     size_t num = cms_space->totalCount();
2072     assert((free_size == 0 && num == 0) ||
2073            (free_size > 0  && (num == 1 || num == 2)),
2074          "There should be at most 2 free chunks after compaction");
2075   #endif // ASSERT
2076   _collectorState = Resetting;
2077   assert(_restart_addr == NULL,
2078          "Should have been NULL'd before baton was passed");
2079   reset(false /* == !asynch */);
2080   _cmsGen->reset_after_compaction();
2081   _concurrent_cycles_since_last_unload = 0;
2082 
2083   // Clear any data recorded in the PLAB chunk arrays.
2084   if (_survivor_plab_array != NULL) {
2085     reset_survivor_plab_arrays();
2086   }
2087 
2088   // Adjust the per-size allocation stats for the next epoch.
2089   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2090   // Restart the "inter sweep timer" for the next epoch.
2091   _inter_sweep_timer.reset();
2092   _inter_sweep_timer.start();
2093 
2094   // Sample collection pause time and reset for collection interval.
2095   if (UseAdaptiveSizePolicy) {
2096     size_policy()->msc_collection_end(gch->gc_cause());
2097   }
2098 
2099   gc_timer->register_gc_end(os::elapsed_counter());
2100 
2101   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2102 
2103   // For a mark-sweep-compact, compute_new_size() will be called
2104   // in the heap's do_collection() method.
2105 }
2106 
2107 // A work method used by the foreground collector to do
2108 // a mark-sweep, after taking over from a possibly on-going
2109 // concurrent mark-sweep collection.
2110 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2111   CollectorState first_state, bool should_start_over) {
2112   if (PrintGC && Verbose) {
2113     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2114       "collector with count %d",
2115       _full_gcs_since_conc_gc);
2116   }
2117   switch (_collectorState) {
2118     case Idling:
2119       if (first_state == Idling || should_start_over) {
2120         // The background GC was not active, or should
2121         // restarted from scratch;  start the cycle.
2122         _collectorState = InitialMarking;
2123       }
2124       // If first_state was not Idling, then a background GC
2125       // was in progress and has now finished.  No need to do it
2126       // again.  Leave the state as Idling.
2127       break;
2128     case Precleaning:
2129       // In the foreground case don't do the precleaning since
2130       // it is not done concurrently and there is extra work
2131       // required.
2132       _collectorState = FinalMarking;
2133   }
2134   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2135 
2136   // For a mark-sweep, compute_new_size() will be called
2137   // in the heap's do_collection() method.
2138 }
2139 
2140 
2141 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2142   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2143   EdenSpace* eden_space = dng->eden();
2144   ContiguousSpace* from_space = dng->from();
2145   ContiguousSpace* to_space   = dng->to();
2146   // Eden
2147   if (_eden_chunk_array != NULL) {
2148     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2149                            eden_space->bottom(), eden_space->top(),
2150                            eden_space->end(), eden_space->capacity());
2151     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2152                            "_eden_chunk_capacity=" SIZE_FORMAT,
2153                            _eden_chunk_index, _eden_chunk_capacity);
2154     for (size_t i = 0; i < _eden_chunk_index; i++) {
2155       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2156                              i, _eden_chunk_array[i]);
2157     }
2158   }
2159   // Survivor
2160   if (_survivor_chunk_array != NULL) {
2161     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2162                            from_space->bottom(), from_space->top(),
2163                            from_space->end(), from_space->capacity());
2164     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2165                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2166                            _survivor_chunk_index, _survivor_chunk_capacity);
2167     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2168       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2169                              i, _survivor_chunk_array[i]);
2170     }
2171   }
2172 }
2173 
2174 void CMSCollector::getFreelistLocks() const {
2175   // Get locks for all free lists in all generations that this
2176   // collector is responsible for
2177   _cmsGen->freelistLock()->lock_without_safepoint_check();
2178 }
2179 
2180 void CMSCollector::releaseFreelistLocks() const {
2181   // Release locks for all free lists in all generations that this
2182   // collector is responsible for
2183   _cmsGen->freelistLock()->unlock();
2184 }
2185 
2186 bool CMSCollector::haveFreelistLocks() const {
2187   // Check locks for all free lists in all generations that this
2188   // collector is responsible for
2189   assert_lock_strong(_cmsGen->freelistLock());
2190   PRODUCT_ONLY(ShouldNotReachHere());
2191   return true;
2192 }
2193 
2194 // A utility class that is used by the CMS collector to
2195 // temporarily "release" the foreground collector from its
2196 // usual obligation to wait for the background collector to
2197 // complete an ongoing phase before proceeding.
2198 class ReleaseForegroundGC: public StackObj {
2199  private:
2200   CMSCollector* _c;
2201  public:
2202   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2203     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2204     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2205     // allow a potentially blocked foreground collector to proceed
2206     _c->_foregroundGCShouldWait = false;
2207     if (_c->_foregroundGCIsActive) {
2208       CGC_lock->notify();
2209     }
2210     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2211            "Possible deadlock");
2212   }
2213 
2214   ~ReleaseForegroundGC() {
2215     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2216     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2217     _c->_foregroundGCShouldWait = true;
2218   }
2219 };
2220 
2221 // There are separate collect_in_background and collect_in_foreground because of
2222 // the different locking requirements of the background collector and the
2223 // foreground collector.  There was originally an attempt to share
2224 // one "collect" method between the background collector and the foreground
2225 // collector but the if-then-else required made it cleaner to have
2226 // separate methods.
2227 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2228   assert(Thread::current()->is_ConcurrentGC_thread(),
2229     "A CMS asynchronous collection is only allowed on a CMS thread.");
2230 
2231   GenCollectedHeap* gch = GenCollectedHeap::heap();
2232   {
2233     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2234     MutexLockerEx hl(Heap_lock, safepoint_check);
2235     FreelistLocker fll(this);
2236     MutexLockerEx x(CGC_lock, safepoint_check);
2237     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2238       // The foreground collector is active or we're
2239       // not using asynchronous collections.  Skip this
2240       // background collection.
2241       assert(!_foregroundGCShouldWait, "Should be clear");
2242       return;
2243     } else {
2244       assert(_collectorState == Idling, "Should be idling before start.");
2245       _collectorState = InitialMarking;
2246       register_gc_start(cause);
2247       // Reset the expansion cause, now that we are about to begin
2248       // a new cycle.
2249       clear_expansion_cause();
2250 
2251       // Clear the MetaspaceGC flag since a concurrent collection
2252       // is starting but also clear it after the collection.
2253       MetaspaceGC::set_should_concurrent_collect(false);
2254     }
2255     // Decide if we want to enable class unloading as part of the
2256     // ensuing concurrent GC cycle.
2257     update_should_unload_classes();
2258     _full_gc_requested = false;           // acks all outstanding full gc requests
2259     _full_gc_cause = GCCause::_no_gc;
2260     // Signal that we are about to start a collection
2261     gch->increment_total_full_collections();  // ... starting a collection cycle
2262     _collection_count_start = gch->total_full_collections();
2263   }
2264 
2265   // Used for PrintGC
2266   size_t prev_used;
2267   if (PrintGC && Verbose) {
2268     prev_used = _cmsGen->used(); // XXXPERM
2269   }
2270 
2271   // The change of the collection state is normally done at this level;
2272   // the exceptions are phases that are executed while the world is
2273   // stopped.  For those phases the change of state is done while the
2274   // world is stopped.  For baton passing purposes this allows the
2275   // background collector to finish the phase and change state atomically.
2276   // The foreground collector cannot wait on a phase that is done
2277   // while the world is stopped because the foreground collector already
2278   // has the world stopped and would deadlock.
2279   while (_collectorState != Idling) {
2280     if (TraceCMSState) {
2281       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2282         Thread::current(), _collectorState);
2283     }
2284     // The foreground collector
2285     //   holds the Heap_lock throughout its collection.
2286     //   holds the CMS token (but not the lock)
2287     //     except while it is waiting for the background collector to yield.
2288     //
2289     // The foreground collector should be blocked (not for long)
2290     //   if the background collector is about to start a phase
2291     //   executed with world stopped.  If the background
2292     //   collector has already started such a phase, the
2293     //   foreground collector is blocked waiting for the
2294     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2295     //   are executed in the VM thread.
2296     //
2297     // The locking order is
2298     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2299     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2300     //   CMS token  (claimed in
2301     //                stop_world_and_do() -->
2302     //                  safepoint_synchronize() -->
2303     //                    CMSThread::synchronize())
2304 
2305     {
2306       // Check if the FG collector wants us to yield.
2307       CMSTokenSync x(true); // is cms thread
2308       if (waitForForegroundGC()) {
2309         // We yielded to a foreground GC, nothing more to be
2310         // done this round.
2311         assert(_foregroundGCShouldWait == false, "We set it to false in "
2312                "waitForForegroundGC()");
2313         if (TraceCMSState) {
2314           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2315             " exiting collection CMS state %d",
2316             Thread::current(), _collectorState);
2317         }
2318         return;
2319       } else {
2320         // The background collector can run but check to see if the
2321         // foreground collector has done a collection while the
2322         // background collector was waiting to get the CGC_lock
2323         // above.  If yes, break so that _foregroundGCShouldWait
2324         // is cleared before returning.
2325         if (_collectorState == Idling) {
2326           break;
2327         }
2328       }
2329     }
2330 
2331     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2332       "should be waiting");
2333 
2334     switch (_collectorState) {
2335       case InitialMarking:
2336         {
2337           ReleaseForegroundGC x(this);
2338           stats().record_cms_begin();
2339           VM_CMS_Initial_Mark initial_mark_op(this);
2340           VMThread::execute(&initial_mark_op);
2341         }
2342         // The collector state may be any legal state at this point
2343         // since the background collector may have yielded to the
2344         // foreground collector.
2345         break;
2346       case Marking:
2347         // initial marking in checkpointRootsInitialWork has been completed
2348         if (markFromRoots(true)) { // we were successful
2349           assert(_collectorState == Precleaning, "Collector state should "
2350             "have changed");
2351         } else {
2352           assert(_foregroundGCIsActive, "Internal state inconsistency");
2353         }
2354         break;
2355       case Precleaning:
2356         if (UseAdaptiveSizePolicy) {
2357           size_policy()->concurrent_precleaning_begin();
2358         }
2359         // marking from roots in markFromRoots has been completed
2360         preclean();
2361         if (UseAdaptiveSizePolicy) {
2362           size_policy()->concurrent_precleaning_end();
2363         }
2364         assert(_collectorState == AbortablePreclean ||
2365                _collectorState == FinalMarking,
2366                "Collector state should have changed");
2367         break;
2368       case AbortablePreclean:
2369         if (UseAdaptiveSizePolicy) {
2370         size_policy()->concurrent_phases_resume();
2371         }
2372         abortable_preclean();
2373         if (UseAdaptiveSizePolicy) {
2374           size_policy()->concurrent_precleaning_end();
2375         }
2376         assert(_collectorState == FinalMarking, "Collector state should "
2377           "have changed");
2378         break;
2379       case FinalMarking:
2380         {
2381           ReleaseForegroundGC x(this);
2382 
2383           VM_CMS_Final_Remark final_remark_op(this);
2384           VMThread::execute(&final_remark_op);
2385         }
2386         assert(_foregroundGCShouldWait, "block post-condition");
2387         break;
2388       case Sweeping:
2389         if (UseAdaptiveSizePolicy) {
2390           size_policy()->concurrent_sweeping_begin();
2391         }
2392         // final marking in checkpointRootsFinal has been completed
2393         sweep(true);
2394         assert(_collectorState == Resizing, "Collector state change "
2395           "to Resizing must be done under the free_list_lock");
2396         _full_gcs_since_conc_gc = 0;
2397 
2398         // Stop the timers for adaptive size policy for the concurrent phases
2399         if (UseAdaptiveSizePolicy) {
2400           size_policy()->concurrent_sweeping_end();
2401           size_policy()->concurrent_phases_end(gch->gc_cause(),
2402                                              gch->prev_gen(_cmsGen)->capacity(),
2403                                              _cmsGen->free());
2404         }
2405 
2406       case Resizing: {
2407         // Sweeping has been completed...
2408         // At this point the background collection has completed.
2409         // Don't move the call to compute_new_size() down
2410         // into code that might be executed if the background
2411         // collection was preempted.
2412         {
2413           ReleaseForegroundGC x(this);   // unblock FG collection
2414           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2415           CMSTokenSync        z(true);   // not strictly needed.
2416           if (_collectorState == Resizing) {
2417             compute_new_size();
2418             save_heap_summary();
2419             _collectorState = Resetting;
2420           } else {
2421             assert(_collectorState == Idling, "The state should only change"
2422                    " because the foreground collector has finished the collection");
2423           }
2424         }
2425         break;
2426       }
2427       case Resetting:
2428         // CMS heap resizing has been completed
2429         reset(true);
2430         assert(_collectorState == Idling, "Collector state should "
2431           "have changed");
2432 
2433         MetaspaceGC::set_should_concurrent_collect(false);
2434 
2435         stats().record_cms_end();
2436         // Don't move the concurrent_phases_end() and compute_new_size()
2437         // calls to here because a preempted background collection
2438         // has it's state set to "Resetting".
2439         break;
2440       case Idling:
2441       default:
2442         ShouldNotReachHere();
2443         break;
2444     }
2445     if (TraceCMSState) {
2446       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2447         Thread::current(), _collectorState);
2448     }
2449     assert(_foregroundGCShouldWait, "block post-condition");
2450   }
2451 
2452   // Should this be in gc_epilogue?
2453   collector_policy()->counters()->update_counters();
2454 
2455   {
2456     // Clear _foregroundGCShouldWait and, in the event that the
2457     // foreground collector is waiting, notify it, before
2458     // returning.
2459     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2460     _foregroundGCShouldWait = false;
2461     if (_foregroundGCIsActive) {
2462       CGC_lock->notify();
2463     }
2464     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2465            "Possible deadlock");
2466   }
2467   if (TraceCMSState) {
2468     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2469       " exiting collection CMS state %d",
2470       Thread::current(), _collectorState);
2471   }
2472   if (PrintGC && Verbose) {
2473     _cmsGen->print_heap_change(prev_used);
2474   }
2475 }
2476 
2477 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2478   if (!_cms_start_registered) {
2479     register_gc_start(cause);
2480   }
2481 }
2482 
2483 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2484   _cms_start_registered = true;
2485   _gc_timer_cm->register_gc_start(os::elapsed_counter());
2486   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2487 }
2488 
2489 void CMSCollector::register_gc_end() {
2490   if (_cms_start_registered) {
2491     report_heap_summary(GCWhen::AfterGC);
2492 
2493     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2494     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2495     _cms_start_registered = false;
2496   }
2497 }
2498 
2499 void CMSCollector::save_heap_summary() {
2500   GenCollectedHeap* gch = GenCollectedHeap::heap();
2501   _last_heap_summary = gch->create_heap_summary();
2502   _last_metaspace_summary = gch->create_metaspace_summary();
2503 }
2504 
2505 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2506   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2507 }
2508 
2509 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2510   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2511          "Foreground collector should be waiting, not executing");
2512   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2513     "may only be done by the VM Thread with the world stopped");
2514   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2515          "VM thread should have CMS token");
2516 
2517   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2518     true, NULL);)
2519   if (UseAdaptiveSizePolicy) {
2520     size_policy()->ms_collection_begin();
2521   }
2522   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2523 
2524   HandleMark hm;  // Discard invalid handles created during verification
2525 
2526   if (VerifyBeforeGC &&
2527       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2528     Universe::verify();
2529   }
2530 
2531   // Snapshot the soft reference policy to be used in this collection cycle.
2532   ref_processor()->setup_policy(clear_all_soft_refs);
2533 
2534   bool init_mark_was_synchronous = false; // until proven otherwise
2535   while (_collectorState != Idling) {
2536     if (TraceCMSState) {
2537       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2538         Thread::current(), _collectorState);
2539     }
2540     switch (_collectorState) {
2541       case InitialMarking:
2542         register_foreground_gc_start(cause);
2543         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2544         checkpointRootsInitial(false);
2545         assert(_collectorState == Marking, "Collector state should have changed"
2546           " within checkpointRootsInitial()");
2547         break;
2548       case Marking:
2549         // initial marking in checkpointRootsInitialWork has been completed
2550         if (VerifyDuringGC &&
2551             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2552           Universe::verify("Verify before initial mark: ");
2553         }
2554         {
2555           bool res = markFromRoots(false);
2556           assert(res && _collectorState == FinalMarking, "Collector state should "
2557             "have changed");
2558           break;
2559         }
2560       case FinalMarking:
2561         if (VerifyDuringGC &&
2562             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2563           Universe::verify("Verify before re-mark: ");
2564         }
2565         checkpointRootsFinal(false, clear_all_soft_refs,
2566                              init_mark_was_synchronous);
2567         assert(_collectorState == Sweeping, "Collector state should not "
2568           "have changed within checkpointRootsFinal()");
2569         break;
2570       case Sweeping:
2571         // final marking in checkpointRootsFinal has been completed
2572         if (VerifyDuringGC &&
2573             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2574           Universe::verify("Verify before sweep: ");
2575         }
2576         sweep(false);
2577         assert(_collectorState == Resizing, "Incorrect state");
2578         break;
2579       case Resizing: {
2580         // Sweeping has been completed; the actual resize in this case
2581         // is done separately; nothing to be done in this state.
2582         _collectorState = Resetting;
2583         break;
2584       }
2585       case Resetting:
2586         // The heap has been resized.
2587         if (VerifyDuringGC &&
2588             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2589           Universe::verify("Verify before reset: ");
2590         }
2591         save_heap_summary();
2592         reset(false);
2593         assert(_collectorState == Idling, "Collector state should "
2594           "have changed");
2595         break;
2596       case Precleaning:
2597       case AbortablePreclean:
2598         // Elide the preclean phase
2599         _collectorState = FinalMarking;
2600         break;
2601       default:
2602         ShouldNotReachHere();
2603     }
2604     if (TraceCMSState) {
2605       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2606         Thread::current(), _collectorState);
2607     }
2608   }
2609 
2610   if (UseAdaptiveSizePolicy) {
2611     GenCollectedHeap* gch = GenCollectedHeap::heap();
2612     size_policy()->ms_collection_end(gch->gc_cause());
2613   }
2614 
2615   if (VerifyAfterGC &&
2616       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2617     Universe::verify();
2618   }
2619   if (TraceCMSState) {
2620     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2621       " exiting collection CMS state %d",
2622       Thread::current(), _collectorState);
2623   }
2624 }
2625 
2626 bool CMSCollector::waitForForegroundGC() {
2627   bool res = false;
2628   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2629          "CMS thread should have CMS token");
2630   // Block the foreground collector until the
2631   // background collectors decides whether to
2632   // yield.
2633   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2634   _foregroundGCShouldWait = true;
2635   if (_foregroundGCIsActive) {
2636     // The background collector yields to the
2637     // foreground collector and returns a value
2638     // indicating that it has yielded.  The foreground
2639     // collector can proceed.
2640     res = true;
2641     _foregroundGCShouldWait = false;
2642     ConcurrentMarkSweepThread::clear_CMS_flag(
2643       ConcurrentMarkSweepThread::CMS_cms_has_token);
2644     ConcurrentMarkSweepThread::set_CMS_flag(
2645       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2646     // Get a possibly blocked foreground thread going
2647     CGC_lock->notify();
2648     if (TraceCMSState) {
2649       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2650         Thread::current(), _collectorState);
2651     }
2652     while (_foregroundGCIsActive) {
2653       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2654     }
2655     ConcurrentMarkSweepThread::set_CMS_flag(
2656       ConcurrentMarkSweepThread::CMS_cms_has_token);
2657     ConcurrentMarkSweepThread::clear_CMS_flag(
2658       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2659   }
2660   if (TraceCMSState) {
2661     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2662       Thread::current(), _collectorState);
2663   }
2664   return res;
2665 }
2666 
2667 // Because of the need to lock the free lists and other structures in
2668 // the collector, common to all the generations that the collector is
2669 // collecting, we need the gc_prologues of individual CMS generations
2670 // delegate to their collector. It may have been simpler had the
2671 // current infrastructure allowed one to call a prologue on a
2672 // collector. In the absence of that we have the generation's
2673 // prologue delegate to the collector, which delegates back
2674 // some "local" work to a worker method in the individual generations
2675 // that it's responsible for collecting, while itself doing any
2676 // work common to all generations it's responsible for. A similar
2677 // comment applies to the  gc_epilogue()'s.
2678 // The role of the varaible _between_prologue_and_epilogue is to
2679 // enforce the invocation protocol.
2680 void CMSCollector::gc_prologue(bool full) {
2681   // Call gc_prologue_work() for the CMSGen
2682   // we are responsible for.
2683 
2684   // The following locking discipline assumes that we are only called
2685   // when the world is stopped.
2686   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2687 
2688   // The CMSCollector prologue must call the gc_prologues for the
2689   // "generations" that it's responsible
2690   // for.
2691 
2692   assert(   Thread::current()->is_VM_thread()
2693          || (   CMSScavengeBeforeRemark
2694              && Thread::current()->is_ConcurrentGC_thread()),
2695          "Incorrect thread type for prologue execution");
2696 
2697   if (_between_prologue_and_epilogue) {
2698     // We have already been invoked; this is a gc_prologue delegation
2699     // from yet another CMS generation that we are responsible for, just
2700     // ignore it since all relevant work has already been done.
2701     return;
2702   }
2703 
2704   // set a bit saying prologue has been called; cleared in epilogue
2705   _between_prologue_and_epilogue = true;
2706   // Claim locks for common data structures, then call gc_prologue_work()
2707   // for each CMSGen.
2708 
2709   getFreelistLocks();   // gets free list locks on constituent spaces
2710   bitMapLock()->lock_without_safepoint_check();
2711 
2712   // Should call gc_prologue_work() for all cms gens we are responsible for
2713   bool duringMarking =    _collectorState >= Marking
2714                          && _collectorState < Sweeping;
2715 
2716   // The young collections clear the modified oops state, which tells if
2717   // there are any modified oops in the class. The remark phase also needs
2718   // that information. Tell the young collection to save the union of all
2719   // modified klasses.
2720   if (duringMarking) {
2721     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2722   }
2723 
2724   bool registerClosure = duringMarking;
2725 
2726   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2727                                                &_modUnionClosurePar
2728                                                : &_modUnionClosure;
2729   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2730 
2731   if (!full) {
2732     stats().record_gc0_begin();
2733   }
2734 }
2735 
2736 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2737 
2738   _capacity_at_prologue = capacity();
2739   _used_at_prologue = used();
2740 
2741   // Delegate to CMScollector which knows how to coordinate between
2742   // this and any other CMS generations that it is responsible for
2743   // collecting.
2744   collector()->gc_prologue(full);
2745 }
2746 
2747 // This is a "private" interface for use by this generation's CMSCollector.
2748 // Not to be called directly by any other entity (for instance,
2749 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2750 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2751   bool registerClosure, ModUnionClosure* modUnionClosure) {
2752   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2753   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2754     "Should be NULL");
2755   if (registerClosure) {
2756     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2757   }
2758   cmsSpace()->gc_prologue();
2759   // Clear stat counters
2760   NOT_PRODUCT(
2761     assert(_numObjectsPromoted == 0, "check");
2762     assert(_numWordsPromoted   == 0, "check");
2763     if (Verbose && PrintGC) {
2764       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2765                           SIZE_FORMAT" bytes concurrently",
2766       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2767     }
2768     _numObjectsAllocated = 0;
2769     _numWordsAllocated   = 0;
2770   )
2771 }
2772 
2773 void CMSCollector::gc_epilogue(bool full) {
2774   // The following locking discipline assumes that we are only called
2775   // when the world is stopped.
2776   assert(SafepointSynchronize::is_at_safepoint(),
2777          "world is stopped assumption");
2778 
2779   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2780   // if linear allocation blocks need to be appropriately marked to allow the
2781   // the blocks to be parsable. We also check here whether we need to nudge the
2782   // CMS collector thread to start a new cycle (if it's not already active).
2783   assert(   Thread::current()->is_VM_thread()
2784          || (   CMSScavengeBeforeRemark
2785              && Thread::current()->is_ConcurrentGC_thread()),
2786          "Incorrect thread type for epilogue execution");
2787 
2788   if (!_between_prologue_and_epilogue) {
2789     // We have already been invoked; this is a gc_epilogue delegation
2790     // from yet another CMS generation that we are responsible for, just
2791     // ignore it since all relevant work has already been done.
2792     return;
2793   }
2794   assert(haveFreelistLocks(), "must have freelist locks");
2795   assert_lock_strong(bitMapLock());
2796 
2797   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2798 
2799   _cmsGen->gc_epilogue_work(full);
2800 
2801   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2802     // in case sampling was not already enabled, enable it
2803     _start_sampling = true;
2804   }
2805   // reset _eden_chunk_array so sampling starts afresh
2806   _eden_chunk_index = 0;
2807 
2808   size_t cms_used   = _cmsGen->cmsSpace()->used();
2809 
2810   // update performance counters - this uses a special version of
2811   // update_counters() that allows the utilization to be passed as a
2812   // parameter, avoiding multiple calls to used().
2813   //
2814   _cmsGen->update_counters(cms_used);
2815 
2816   if (CMSIncrementalMode) {
2817     icms_update_allocation_limits();
2818   }
2819 
2820   bitMapLock()->unlock();
2821   releaseFreelistLocks();
2822 
2823   if (!CleanChunkPoolAsync) {
2824     Chunk::clean_chunk_pool();
2825   }
2826 
2827   set_did_compact(false);
2828   _between_prologue_and_epilogue = false;  // ready for next cycle
2829 }
2830 
2831 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2832   collector()->gc_epilogue(full);
2833 
2834   // Also reset promotion tracking in par gc thread states.
2835   if (CollectedHeap::use_parallel_gc_threads()) {
2836     for (uint i = 0; i < ParallelGCThreads; i++) {
2837       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2838     }
2839   }
2840 }
2841 
2842 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2843   assert(!incremental_collection_failed(), "Should have been cleared");
2844   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2845   cmsSpace()->gc_epilogue();
2846     // Print stat counters
2847   NOT_PRODUCT(
2848     assert(_numObjectsAllocated == 0, "check");
2849     assert(_numWordsAllocated == 0, "check");
2850     if (Verbose && PrintGC) {
2851       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2852                           SIZE_FORMAT" bytes",
2853                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2854     }
2855     _numObjectsPromoted = 0;
2856     _numWordsPromoted   = 0;
2857   )
2858 
2859   if (PrintGC && Verbose) {
2860     // Call down the chain in contiguous_available needs the freelistLock
2861     // so print this out before releasing the freeListLock.
2862     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2863                         contiguous_available());
2864   }
2865 }
2866 
2867 #ifndef PRODUCT
2868 bool CMSCollector::have_cms_token() {
2869   Thread* thr = Thread::current();
2870   if (thr->is_VM_thread()) {
2871     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2872   } else if (thr->is_ConcurrentGC_thread()) {
2873     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2874   } else if (thr->is_GC_task_thread()) {
2875     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2876            ParGCRareEvent_lock->owned_by_self();
2877   }
2878   return false;
2879 }
2880 #endif
2881 
2882 // Check reachability of the given heap address in CMS generation,
2883 // treating all other generations as roots.
2884 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2885   // We could "guarantee" below, rather than assert, but i'll
2886   // leave these as "asserts" so that an adventurous debugger
2887   // could try this in the product build provided some subset of
2888   // the conditions were met, provided they were intersted in the
2889   // results and knew that the computation below wouldn't interfere
2890   // with other concurrent computations mutating the structures
2891   // being read or written.
2892   assert(SafepointSynchronize::is_at_safepoint(),
2893          "Else mutations in object graph will make answer suspect");
2894   assert(have_cms_token(), "Should hold cms token");
2895   assert(haveFreelistLocks(), "must hold free list locks");
2896   assert_lock_strong(bitMapLock());
2897 
2898   // Clear the marking bit map array before starting, but, just
2899   // for kicks, first report if the given address is already marked
2900   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2901                 _markBitMap.isMarked(addr) ? "" : " not");
2902 
2903   if (verify_after_remark()) {
2904     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2905     bool result = verification_mark_bm()->isMarked(addr);
2906     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2907                            result ? "IS" : "is NOT");
2908     return result;
2909   } else {
2910     gclog_or_tty->print_cr("Could not compute result");
2911     return false;
2912   }
2913 }
2914 
2915 
2916 void
2917 CMSCollector::print_on_error(outputStream* st) {
2918   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2919   if (collector != NULL) {
2920     CMSBitMap* bitmap = &collector->_markBitMap;
2921     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2922     bitmap->print_on_error(st, " Bits: ");
2923 
2924     st->cr();
2925 
2926     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2927     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2928     mut_bitmap->print_on_error(st, " Bits: ");
2929   }
2930 }
2931 
2932 ////////////////////////////////////////////////////////
2933 // CMS Verification Support
2934 ////////////////////////////////////////////////////////
2935 // Following the remark phase, the following invariant
2936 // should hold -- each object in the CMS heap which is
2937 // marked in markBitMap() should be marked in the verification_mark_bm().
2938 
2939 class VerifyMarkedClosure: public BitMapClosure {
2940   CMSBitMap* _marks;
2941   bool       _failed;
2942 
2943  public:
2944   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2945 
2946   bool do_bit(size_t offset) {
2947     HeapWord* addr = _marks->offsetToHeapWord(offset);
2948     if (!_marks->isMarked(addr)) {
2949       oop(addr)->print_on(gclog_or_tty);
2950       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2951       _failed = true;
2952     }
2953     return true;
2954   }
2955 
2956   bool failed() { return _failed; }
2957 };
2958 
2959 bool CMSCollector::verify_after_remark(bool silent) {
2960   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2961   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2962   static bool init = false;
2963 
2964   assert(SafepointSynchronize::is_at_safepoint(),
2965          "Else mutations in object graph will make answer suspect");
2966   assert(have_cms_token(),
2967          "Else there may be mutual interference in use of "
2968          " verification data structures");
2969   assert(_collectorState > Marking && _collectorState <= Sweeping,
2970          "Else marking info checked here may be obsolete");
2971   assert(haveFreelistLocks(), "must hold free list locks");
2972   assert_lock_strong(bitMapLock());
2973 
2974 
2975   // Allocate marking bit map if not already allocated
2976   if (!init) { // first time
2977     if (!verification_mark_bm()->allocate(_span)) {
2978       return false;
2979     }
2980     init = true;
2981   }
2982 
2983   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2984 
2985   // Turn off refs discovery -- so we will be tracing through refs.
2986   // This is as intended, because by this time
2987   // GC must already have cleared any refs that need to be cleared,
2988   // and traced those that need to be marked; moreover,
2989   // the marking done here is not going to intefere in any
2990   // way with the marking information used by GC.
2991   NoRefDiscovery no_discovery(ref_processor());
2992 
2993   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2994 
2995   // Clear any marks from a previous round
2996   verification_mark_bm()->clear_all();
2997   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2998   verify_work_stacks_empty();
2999 
3000   GenCollectedHeap* gch = GenCollectedHeap::heap();
3001   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3002   // Update the saved marks which may affect the root scans.
3003   gch->save_marks();
3004 
3005   if (CMSRemarkVerifyVariant == 1) {
3006     // In this first variant of verification, we complete
3007     // all marking, then check if the new marks-verctor is
3008     // a subset of the CMS marks-vector.
3009     verify_after_remark_work_1();
3010   } else if (CMSRemarkVerifyVariant == 2) {
3011     // In this second variant of verification, we flag an error
3012     // (i.e. an object reachable in the new marks-vector not reachable
3013     // in the CMS marks-vector) immediately, also indicating the
3014     // identify of an object (A) that references the unmarked object (B) --
3015     // presumably, a mutation to A failed to be picked up by preclean/remark?
3016     verify_after_remark_work_2();
3017   } else {
3018     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3019             CMSRemarkVerifyVariant);
3020   }
3021   if (!silent) gclog_or_tty->print(" done] ");
3022   return true;
3023 }
3024 
3025 void CMSCollector::verify_after_remark_work_1() {
3026   ResourceMark rm;
3027   HandleMark  hm;
3028   GenCollectedHeap* gch = GenCollectedHeap::heap();
3029 
3030   // Get a clear set of claim bits for the strong roots processing to work with.
3031   ClassLoaderDataGraph::clear_claimed_marks();
3032 
3033   // Mark from roots one level into CMS
3034   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3035   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3036 
3037   gch->gen_process_strong_roots(_cmsGen->level(),
3038                                 true,   // younger gens are roots
3039                                 true,   // activate StrongRootsScope
3040                                 false,  // not scavenging
3041                                 SharedHeap::ScanningOption(roots_scanning_options()),
3042                                 &notOlder,
3043                                 true,   // walk code active on stacks
3044                                 NULL,
3045                                 NULL); // SSS: Provide correct closure
3046 
3047   // Now mark from the roots
3048   MarkFromRootsClosure markFromRootsClosure(this, _span,
3049     verification_mark_bm(), verification_mark_stack(),
3050     false /* don't yield */, true /* verifying */);
3051   assert(_restart_addr == NULL, "Expected pre-condition");
3052   verification_mark_bm()->iterate(&markFromRootsClosure);
3053   while (_restart_addr != NULL) {
3054     // Deal with stack overflow: by restarting at the indicated
3055     // address.
3056     HeapWord* ra = _restart_addr;
3057     markFromRootsClosure.reset(ra);
3058     _restart_addr = NULL;
3059     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3060   }
3061   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3062   verify_work_stacks_empty();
3063 
3064   // Marking completed -- now verify that each bit marked in
3065   // verification_mark_bm() is also marked in markBitMap(); flag all
3066   // errors by printing corresponding objects.
3067   VerifyMarkedClosure vcl(markBitMap());
3068   verification_mark_bm()->iterate(&vcl);
3069   if (vcl.failed()) {
3070     gclog_or_tty->print("Verification failed");
3071     Universe::heap()->print_on(gclog_or_tty);
3072     fatal("CMS: failed marking verification after remark");
3073   }
3074 }
3075 
3076 class VerifyKlassOopsKlassClosure : public KlassClosure {
3077   class VerifyKlassOopsClosure : public OopClosure {
3078     CMSBitMap* _bitmap;
3079    public:
3080     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3081     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3082     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3083   } _oop_closure;
3084  public:
3085   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3086   void do_klass(Klass* k) {
3087     k->oops_do(&_oop_closure);
3088   }
3089 };
3090 
3091 void CMSCollector::verify_after_remark_work_2() {
3092   ResourceMark rm;
3093   HandleMark  hm;
3094   GenCollectedHeap* gch = GenCollectedHeap::heap();
3095 
3096   // Get a clear set of claim bits for the strong roots processing to work with.
3097   ClassLoaderDataGraph::clear_claimed_marks();
3098 
3099   // Mark from roots one level into CMS
3100   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3101                                      markBitMap());
3102   CMKlassClosure klass_closure(&notOlder);
3103 
3104   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3105   gch->gen_process_strong_roots(_cmsGen->level(),
3106                                 true,   // younger gens are roots
3107                                 true,   // activate StrongRootsScope
3108                                 false,  // not scavenging
3109                                 SharedHeap::ScanningOption(roots_scanning_options()),
3110                                 &notOlder,
3111                                 true,   // walk code active on stacks
3112                                 NULL,
3113                                 &klass_closure);
3114 
3115   // Now mark from the roots
3116   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3117     verification_mark_bm(), markBitMap(), verification_mark_stack());
3118   assert(_restart_addr == NULL, "Expected pre-condition");
3119   verification_mark_bm()->iterate(&markFromRootsClosure);
3120   while (_restart_addr != NULL) {
3121     // Deal with stack overflow: by restarting at the indicated
3122     // address.
3123     HeapWord* ra = _restart_addr;
3124     markFromRootsClosure.reset(ra);
3125     _restart_addr = NULL;
3126     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3127   }
3128   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3129   verify_work_stacks_empty();
3130 
3131   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3132   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3133 
3134   // Marking completed -- now verify that each bit marked in
3135   // verification_mark_bm() is also marked in markBitMap(); flag all
3136   // errors by printing corresponding objects.
3137   VerifyMarkedClosure vcl(markBitMap());
3138   verification_mark_bm()->iterate(&vcl);
3139   assert(!vcl.failed(), "Else verification above should not have succeeded");
3140 }
3141 
3142 void ConcurrentMarkSweepGeneration::save_marks() {
3143   // delegate to CMS space
3144   cmsSpace()->save_marks();
3145   for (uint i = 0; i < ParallelGCThreads; i++) {
3146     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3147   }
3148 }
3149 
3150 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3151   return cmsSpace()->no_allocs_since_save_marks();
3152 }
3153 
3154 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3155                                                                 \
3156 void ConcurrentMarkSweepGeneration::                            \
3157 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3158   cl->set_generation(this);                                     \
3159   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3160   cl->reset_generation();                                       \
3161   save_marks();                                                 \
3162 }
3163 
3164 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3165 
3166 void
3167 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3168 {
3169   // Not currently implemented; need to do the following. -- ysr.
3170   // dld -- I think that is used for some sort of allocation profiler.  So it
3171   // really means the objects allocated by the mutator since the last
3172   // GC.  We could potentially implement this cheaply by recording only
3173   // the direct allocations in a side data structure.
3174   //
3175   // I think we probably ought not to be required to support these
3176   // iterations at any arbitrary point; I think there ought to be some
3177   // call to enable/disable allocation profiling in a generation/space,
3178   // and the iterator ought to return the objects allocated in the
3179   // gen/space since the enable call, or the last iterator call (which
3180   // will probably be at a GC.)  That way, for gens like CM&S that would
3181   // require some extra data structure to support this, we only pay the
3182   // cost when it's in use...
3183   cmsSpace()->object_iterate_since_last_GC(blk);
3184 }
3185 
3186 void
3187 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3188   cl->set_generation(this);
3189   younger_refs_in_space_iterate(_cmsSpace, cl);
3190   cl->reset_generation();
3191 }
3192 
3193 void
3194 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3195   if (freelistLock()->owned_by_self()) {
3196     Generation::oop_iterate(mr, cl);
3197   } else {
3198     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3199     Generation::oop_iterate(mr, cl);
3200   }
3201 }
3202 
3203 void
3204 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3205   if (freelistLock()->owned_by_self()) {
3206     Generation::oop_iterate(cl);
3207   } else {
3208     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3209     Generation::oop_iterate(cl);
3210   }
3211 }
3212 
3213 void
3214 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3215   if (freelistLock()->owned_by_self()) {
3216     Generation::object_iterate(cl);
3217   } else {
3218     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3219     Generation::object_iterate(cl);
3220   }
3221 }
3222 
3223 void
3224 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3225   if (freelistLock()->owned_by_self()) {
3226     Generation::safe_object_iterate(cl);
3227   } else {
3228     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3229     Generation::safe_object_iterate(cl);
3230   }
3231 }
3232 
3233 void
3234 ConcurrentMarkSweepGeneration::post_compact() {
3235 }
3236 
3237 void
3238 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3239   // Fix the linear allocation blocks to look like free blocks.
3240 
3241   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3242   // are not called when the heap is verified during universe initialization and
3243   // at vm shutdown.
3244   if (freelistLock()->owned_by_self()) {
3245     cmsSpace()->prepare_for_verify();
3246   } else {
3247     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3248     cmsSpace()->prepare_for_verify();
3249   }
3250 }
3251 
3252 void
3253 ConcurrentMarkSweepGeneration::verify() {
3254   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3255   // are not called when the heap is verified during universe initialization and
3256   // at vm shutdown.
3257   if (freelistLock()->owned_by_self()) {
3258     cmsSpace()->verify();
3259   } else {
3260     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3261     cmsSpace()->verify();
3262   }
3263 }
3264 
3265 void CMSCollector::verify() {
3266   _cmsGen->verify();
3267 }
3268 
3269 #ifndef PRODUCT
3270 bool CMSCollector::overflow_list_is_empty() const {
3271   assert(_num_par_pushes >= 0, "Inconsistency");
3272   if (_overflow_list == NULL) {
3273     assert(_num_par_pushes == 0, "Inconsistency");
3274   }
3275   return _overflow_list == NULL;
3276 }
3277 
3278 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3279 // merely consolidate assertion checks that appear to occur together frequently.
3280 void CMSCollector::verify_work_stacks_empty() const {
3281   assert(_markStack.isEmpty(), "Marking stack should be empty");
3282   assert(overflow_list_is_empty(), "Overflow list should be empty");
3283 }
3284 
3285 void CMSCollector::verify_overflow_empty() const {
3286   assert(overflow_list_is_empty(), "Overflow list should be empty");
3287   assert(no_preserved_marks(), "No preserved marks");
3288 }
3289 #endif // PRODUCT
3290 
3291 // Decide if we want to enable class unloading as part of the
3292 // ensuing concurrent GC cycle. We will collect and
3293 // unload classes if it's the case that:
3294 // (1) an explicit gc request has been made and the flag
3295 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3296 // (2) (a) class unloading is enabled at the command line, and
3297 //     (b) old gen is getting really full
3298 // NOTE: Provided there is no change in the state of the heap between
3299 // calls to this method, it should have idempotent results. Moreover,
3300 // its results should be monotonically increasing (i.e. going from 0 to 1,
3301 // but not 1 to 0) between successive calls between which the heap was
3302 // not collected. For the implementation below, it must thus rely on
3303 // the property that concurrent_cycles_since_last_unload()
3304 // will not decrease unless a collection cycle happened and that
3305 // _cmsGen->is_too_full() are
3306 // themselves also monotonic in that sense. See check_monotonicity()
3307 // below.
3308 void CMSCollector::update_should_unload_classes() {
3309   _should_unload_classes = false;
3310   // Condition 1 above
3311   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3312     _should_unload_classes = true;
3313   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3314     // Disjuncts 2.b.(i,ii,iii) above
3315     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3316                               CMSClassUnloadingMaxInterval)
3317                            || _cmsGen->is_too_full();
3318   }
3319 }
3320 
3321 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3322   bool res = should_concurrent_collect();
3323   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3324   return res;
3325 }
3326 
3327 void CMSCollector::setup_cms_unloading_and_verification_state() {
3328   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3329                              || VerifyBeforeExit;
3330   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3331 
3332   if (should_unload_classes()) {   // Should unload classes this cycle
3333     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3334     set_verifying(should_verify);    // Set verification state for this cycle
3335     return;                            // Nothing else needs to be done at this time
3336   }
3337 
3338   // Not unloading classes this cycle
3339   assert(!should_unload_classes(), "Inconsitency!");
3340   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3341     // Include symbols, strings and code cache elements to prevent their resurrection.
3342     add_root_scanning_option(rso);
3343     set_verifying(true);
3344   } else if (verifying() && !should_verify) {
3345     // We were verifying, but some verification flags got disabled.
3346     set_verifying(false);
3347     // Exclude symbols, strings and code cache elements from root scanning to
3348     // reduce IM and RM pauses.
3349     remove_root_scanning_option(rso);
3350   }
3351 }
3352 
3353 
3354 #ifndef PRODUCT
3355 HeapWord* CMSCollector::block_start(const void* p) const {
3356   const HeapWord* addr = (HeapWord*)p;
3357   if (_span.contains(p)) {
3358     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3359       return _cmsGen->cmsSpace()->block_start(p);
3360     }
3361   }
3362   return NULL;
3363 }
3364 #endif
3365 
3366 HeapWord*
3367 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3368                                                    bool   tlab,
3369                                                    bool   parallel) {
3370   CMSSynchronousYieldRequest yr;
3371   assert(!tlab, "Can't deal with TLAB allocation");
3372   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3373   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3374     CMSExpansionCause::_satisfy_allocation);
3375   if (GCExpandToAllocateDelayMillis > 0) {
3376     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3377   }
3378   return have_lock_and_allocate(word_size, tlab);
3379 }
3380 
3381 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3382 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3383 // to CardGeneration and share it...
3384 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3385   return CardGeneration::expand(bytes, expand_bytes);
3386 }
3387 
3388 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3389   CMSExpansionCause::Cause cause)
3390 {
3391 
3392   bool success = expand(bytes, expand_bytes);
3393 
3394   // remember why we expanded; this information is used
3395   // by shouldConcurrentCollect() when making decisions on whether to start
3396   // a new CMS cycle.
3397   if (success) {
3398     set_expansion_cause(cause);
3399     if (PrintGCDetails && Verbose) {
3400       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3401         CMSExpansionCause::to_string(cause));
3402     }
3403   }
3404 }
3405 
3406 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3407   HeapWord* res = NULL;
3408   MutexLocker x(ParGCRareEvent_lock);
3409   while (true) {
3410     // Expansion by some other thread might make alloc OK now:
3411     res = ps->lab.alloc(word_sz);
3412     if (res != NULL) return res;
3413     // If there's not enough expansion space available, give up.
3414     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3415       return NULL;
3416     }
3417     // Otherwise, we try expansion.
3418     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3419       CMSExpansionCause::_allocate_par_lab);
3420     // Now go around the loop and try alloc again;
3421     // A competing par_promote might beat us to the expansion space,
3422     // so we may go around the loop again if promotion fails agaion.
3423     if (GCExpandToAllocateDelayMillis > 0) {
3424       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3425     }
3426   }
3427 }
3428 
3429 
3430 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3431   PromotionInfo* promo) {
3432   MutexLocker x(ParGCRareEvent_lock);
3433   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3434   while (true) {
3435     // Expansion by some other thread might make alloc OK now:
3436     if (promo->ensure_spooling_space()) {
3437       assert(promo->has_spooling_space(),
3438              "Post-condition of successful ensure_spooling_space()");
3439       return true;
3440     }
3441     // If there's not enough expansion space available, give up.
3442     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3443       return false;
3444     }
3445     // Otherwise, we try expansion.
3446     expand(refill_size_bytes, MinHeapDeltaBytes,
3447       CMSExpansionCause::_allocate_par_spooling_space);
3448     // Now go around the loop and try alloc again;
3449     // A competing allocation might beat us to the expansion space,
3450     // so we may go around the loop again if allocation fails again.
3451     if (GCExpandToAllocateDelayMillis > 0) {
3452       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3453     }
3454   }
3455 }
3456 
3457 
3458 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3459   assert_locked_or_safepoint(ExpandHeap_lock);
3460   // Shrink committed space
3461   _virtual_space.shrink_by(bytes);
3462   // Shrink space; this also shrinks the space's BOT
3463   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3464   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3465   // Shrink the shared block offset array
3466   _bts->resize(new_word_size);
3467   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3468   // Shrink the card table
3469   Universe::heap()->barrier_set()->resize_covered_region(mr);
3470 
3471   if (Verbose && PrintGC) {
3472     size_t new_mem_size = _virtual_space.committed_size();
3473     size_t old_mem_size = new_mem_size + bytes;
3474     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3475                   name(), old_mem_size/K, new_mem_size/K);
3476   }
3477 }
3478 
3479 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3480   assert_locked_or_safepoint(Heap_lock);
3481   size_t size = ReservedSpace::page_align_size_down(bytes);
3482   if (size > 0) {
3483     shrink_by(size);
3484   }
3485 }
3486 
3487 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3488   assert_locked_or_safepoint(Heap_lock);
3489   bool result = _virtual_space.expand_by(bytes);
3490   if (result) {
3491     size_t new_word_size =
3492       heap_word_size(_virtual_space.committed_size());
3493     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3494     _bts->resize(new_word_size);  // resize the block offset shared array
3495     Universe::heap()->barrier_set()->resize_covered_region(mr);
3496     // Hmmmm... why doesn't CFLS::set_end verify locking?
3497     // This is quite ugly; FIX ME XXX
3498     _cmsSpace->assert_locked(freelistLock());
3499     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3500 
3501     // update the space and generation capacity counters
3502     if (UsePerfData) {
3503       _space_counters->update_capacity();
3504       _gen_counters->update_all();
3505     }
3506 
3507     if (Verbose && PrintGC) {
3508       size_t new_mem_size = _virtual_space.committed_size();
3509       size_t old_mem_size = new_mem_size - bytes;
3510       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3511                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3512     }
3513   }
3514   return result;
3515 }
3516 
3517 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3518   assert_locked_or_safepoint(Heap_lock);
3519   bool success = true;
3520   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3521   if (remaining_bytes > 0) {
3522     success = grow_by(remaining_bytes);
3523     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3524   }
3525   return success;
3526 }
3527 
3528 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3529   assert_locked_or_safepoint(Heap_lock);
3530   assert_lock_strong(freelistLock());
3531   if (PrintGCDetails && Verbose) {
3532     warning("Shrinking of CMS not yet implemented");
3533   }
3534   return;
3535 }
3536 
3537 
3538 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3539 // phases.
3540 class CMSPhaseAccounting: public StackObj {
3541  public:
3542   CMSPhaseAccounting(CMSCollector *collector,
3543                      const char *phase,
3544                      bool print_cr = true);
3545   ~CMSPhaseAccounting();
3546 
3547  private:
3548   CMSCollector *_collector;
3549   const char *_phase;
3550   elapsedTimer _wallclock;
3551   bool _print_cr;
3552 
3553  public:
3554   // Not MT-safe; so do not pass around these StackObj's
3555   // where they may be accessed by other threads.
3556   jlong wallclock_millis() {
3557     assert(_wallclock.is_active(), "Wall clock should not stop");
3558     _wallclock.stop();  // to record time
3559     jlong ret = _wallclock.milliseconds();
3560     _wallclock.start(); // restart
3561     return ret;
3562   }
3563 };
3564 
3565 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3566                                        const char *phase,
3567                                        bool print_cr) :
3568   _collector(collector), _phase(phase), _print_cr(print_cr) {
3569 
3570   if (PrintCMSStatistics != 0) {
3571     _collector->resetYields();
3572   }
3573   if (PrintGCDetails) {
3574     gclog_or_tty->date_stamp(PrintGCDateStamps);
3575     gclog_or_tty->stamp(PrintGCTimeStamps);
3576     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3577       _collector->cmsGen()->short_name(), _phase);
3578   }
3579   _collector->resetTimer();
3580   _wallclock.start();
3581   _collector->startTimer();
3582 }
3583 
3584 CMSPhaseAccounting::~CMSPhaseAccounting() {
3585   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3586   _collector->stopTimer();
3587   _wallclock.stop();
3588   if (PrintGCDetails) {
3589     gclog_or_tty->date_stamp(PrintGCDateStamps);
3590     gclog_or_tty->stamp(PrintGCTimeStamps);
3591     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3592                  _collector->cmsGen()->short_name(),
3593                  _phase, _collector->timerValue(), _wallclock.seconds());
3594     if (_print_cr) {
3595       gclog_or_tty->print_cr("");
3596     }
3597     if (PrintCMSStatistics != 0) {
3598       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3599                     _collector->yields());
3600     }
3601   }
3602 }
3603 
3604 // CMS work
3605 
3606 // Checkpoint the roots into this generation from outside
3607 // this generation. [Note this initial checkpoint need only
3608 // be approximate -- we'll do a catch up phase subsequently.]
3609 void CMSCollector::checkpointRootsInitial(bool asynch) {
3610   assert(_collectorState == InitialMarking, "Wrong collector state");
3611   check_correct_thread_executing();
3612   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3613 
3614   save_heap_summary();
3615   report_heap_summary(GCWhen::BeforeGC);
3616 
3617   ReferenceProcessor* rp = ref_processor();
3618   SpecializationStats::clear();
3619   assert(_restart_addr == NULL, "Control point invariant");
3620   if (asynch) {
3621     // acquire locks for subsequent manipulations
3622     MutexLockerEx x(bitMapLock(),
3623                     Mutex::_no_safepoint_check_flag);
3624     checkpointRootsInitialWork(asynch);
3625     // enable ("weak") refs discovery
3626     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3627     _collectorState = Marking;
3628   } else {
3629     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3630     // which recognizes if we are a CMS generation, and doesn't try to turn on
3631     // discovery; verify that they aren't meddling.
3632     assert(!rp->discovery_is_atomic(),
3633            "incorrect setting of discovery predicate");
3634     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3635            "ref discovery for this generation kind");
3636     // already have locks
3637     checkpointRootsInitialWork(asynch);
3638     // now enable ("weak") refs discovery
3639     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3640     _collectorState = Marking;
3641   }
3642   SpecializationStats::print();
3643 }
3644 
3645 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3646   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3647   assert(_collectorState == InitialMarking, "just checking");
3648 
3649   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3650   // precede our marking with a collection of all
3651   // younger generations to keep floating garbage to a minimum.
3652   // XXX: we won't do this for now -- it's an optimization to be done later.
3653 
3654   // already have locks
3655   assert_lock_strong(bitMapLock());
3656   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3657 
3658   // Setup the verification and class unloading state for this
3659   // CMS collection cycle.
3660   setup_cms_unloading_and_verification_state();
3661 
3662   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3663     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3664   if (UseAdaptiveSizePolicy) {
3665     size_policy()->checkpoint_roots_initial_begin();
3666   }
3667 
3668   // Reset all the PLAB chunk arrays if necessary.
3669   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3670     reset_survivor_plab_arrays();
3671   }
3672 
3673   ResourceMark rm;
3674   HandleMark  hm;
3675 
3676   FalseClosure falseClosure;
3677   // In the case of a synchronous collection, we will elide the
3678   // remark step, so it's important to catch all the nmethod oops
3679   // in this step.
3680   // The final 'true' flag to gen_process_strong_roots will ensure this.
3681   // If 'async' is true, we can relax the nmethod tracing.
3682   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3683   GenCollectedHeap* gch = GenCollectedHeap::heap();
3684 
3685   verify_work_stacks_empty();
3686   verify_overflow_empty();
3687 
3688   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3689   // Update the saved marks which may affect the root scans.
3690   gch->save_marks();
3691 
3692   // weak reference processing has not started yet.
3693   ref_processor()->set_enqueuing_is_done(false);
3694 
3695   // Need to remember all newly created CLDs,
3696   // so that we can guarantee that the remark finds them.
3697   ClassLoaderDataGraph::remember_new_clds(true);
3698 
3699   // Whenever a CLD is found, it will be claimed before proceeding to mark
3700   // the klasses. The claimed marks need to be cleared before marking starts.
3701   ClassLoaderDataGraph::clear_claimed_marks();
3702 
3703   if (CMSPrintEdenSurvivorChunks) {
3704     print_eden_and_survivor_chunk_arrays();
3705   }
3706 
3707   CMKlassClosure klass_closure(&notOlder);
3708   {
3709     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3710     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3711     gch->gen_process_strong_roots(_cmsGen->level(),
3712                                   true,   // younger gens are roots
3713                                   true,   // activate StrongRootsScope
3714                                   false,  // not scavenging
3715                                   SharedHeap::ScanningOption(roots_scanning_options()),
3716                                   &notOlder,
3717                                   true,   // walk all of code cache if (so & SO_CodeCache)
3718                                   NULL,
3719                                   &klass_closure);
3720   }
3721 
3722   // Clear mod-union table; it will be dirtied in the prologue of
3723   // CMS generation per each younger generation collection.
3724 
3725   assert(_modUnionTable.isAllClear(),
3726        "Was cleared in most recent final checkpoint phase"
3727        " or no bits are set in the gc_prologue before the start of the next "
3728        "subsequent marking phase.");
3729 
3730   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3731 
3732   // Save the end of the used_region of the constituent generations
3733   // to be used to limit the extent of sweep in each generation.
3734   save_sweep_limits();
3735   if (UseAdaptiveSizePolicy) {
3736     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3737   }
3738   verify_overflow_empty();
3739 }
3740 
3741 bool CMSCollector::markFromRoots(bool asynch) {
3742   // we might be tempted to assert that:
3743   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3744   //        "inconsistent argument?");
3745   // However that wouldn't be right, because it's possible that
3746   // a safepoint is indeed in progress as a younger generation
3747   // stop-the-world GC happens even as we mark in this generation.
3748   assert(_collectorState == Marking, "inconsistent state?");
3749   check_correct_thread_executing();
3750   verify_overflow_empty();
3751 
3752   bool res;
3753   if (asynch) {
3754 
3755     // Start the timers for adaptive size policy for the concurrent phases
3756     // Do it here so that the foreground MS can use the concurrent
3757     // timer since a foreground MS might has the sweep done concurrently
3758     // or STW.
3759     if (UseAdaptiveSizePolicy) {
3760       size_policy()->concurrent_marking_begin();
3761     }
3762 
3763     // Weak ref discovery note: We may be discovering weak
3764     // refs in this generation concurrent (but interleaved) with
3765     // weak ref discovery by a younger generation collector.
3766 
3767     CMSTokenSyncWithLocks ts(true, bitMapLock());
3768     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3769     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3770     res = markFromRootsWork(asynch);
3771     if (res) {
3772       _collectorState = Precleaning;
3773     } else { // We failed and a foreground collection wants to take over
3774       assert(_foregroundGCIsActive, "internal state inconsistency");
3775       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3776       if (PrintGCDetails) {
3777         gclog_or_tty->print_cr("bailing out to foreground collection");
3778       }
3779     }
3780     if (UseAdaptiveSizePolicy) {
3781       size_policy()->concurrent_marking_end();
3782     }
3783   } else {
3784     assert(SafepointSynchronize::is_at_safepoint(),
3785            "inconsistent with asynch == false");
3786     if (UseAdaptiveSizePolicy) {
3787       size_policy()->ms_collection_marking_begin();
3788     }
3789     // already have locks
3790     res = markFromRootsWork(asynch);
3791     _collectorState = FinalMarking;
3792     if (UseAdaptiveSizePolicy) {
3793       GenCollectedHeap* gch = GenCollectedHeap::heap();
3794       size_policy()->ms_collection_marking_end(gch->gc_cause());
3795     }
3796   }
3797   verify_overflow_empty();
3798   return res;
3799 }
3800 
3801 bool CMSCollector::markFromRootsWork(bool asynch) {
3802   // iterate over marked bits in bit map, doing a full scan and mark
3803   // from these roots using the following algorithm:
3804   // . if oop is to the right of the current scan pointer,
3805   //   mark corresponding bit (we'll process it later)
3806   // . else (oop is to left of current scan pointer)
3807   //   push oop on marking stack
3808   // . drain the marking stack
3809 
3810   // Note that when we do a marking step we need to hold the
3811   // bit map lock -- recall that direct allocation (by mutators)
3812   // and promotion (by younger generation collectors) is also
3813   // marking the bit map. [the so-called allocate live policy.]
3814   // Because the implementation of bit map marking is not
3815   // robust wrt simultaneous marking of bits in the same word,
3816   // we need to make sure that there is no such interference
3817   // between concurrent such updates.
3818 
3819   // already have locks
3820   assert_lock_strong(bitMapLock());
3821 
3822   verify_work_stacks_empty();
3823   verify_overflow_empty();
3824   bool result = false;
3825   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3826     result = do_marking_mt(asynch);
3827   } else {
3828     result = do_marking_st(asynch);
3829   }
3830   return result;
3831 }
3832 
3833 // Forward decl
3834 class CMSConcMarkingTask;
3835 
3836 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3837   CMSCollector*       _collector;
3838   CMSConcMarkingTask* _task;
3839  public:
3840   virtual void yield();
3841 
3842   // "n_threads" is the number of threads to be terminated.
3843   // "queue_set" is a set of work queues of other threads.
3844   // "collector" is the CMS collector associated with this task terminator.
3845   // "yield" indicates whether we need the gang as a whole to yield.
3846   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3847     ParallelTaskTerminator(n_threads, queue_set),
3848     _collector(collector) { }
3849 
3850   void set_task(CMSConcMarkingTask* task) {
3851     _task = task;
3852   }
3853 };
3854 
3855 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3856   CMSConcMarkingTask* _task;
3857  public:
3858   bool should_exit_termination();
3859   void set_task(CMSConcMarkingTask* task) {
3860     _task = task;
3861   }
3862 };
3863 
3864 // MT Concurrent Marking Task
3865 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3866   CMSCollector* _collector;
3867   int           _n_workers;                  // requested/desired # workers
3868   bool          _asynch;
3869   bool          _result;
3870   CompactibleFreeListSpace*  _cms_space;
3871   char          _pad_front[64];   // padding to ...
3872   HeapWord*     _global_finger;   // ... avoid sharing cache line
3873   char          _pad_back[64];
3874   HeapWord*     _restart_addr;
3875 
3876   //  Exposed here for yielding support
3877   Mutex* const _bit_map_lock;
3878 
3879   // The per thread work queues, available here for stealing
3880   OopTaskQueueSet*  _task_queues;
3881 
3882   // Termination (and yielding) support
3883   CMSConcMarkingTerminator _term;
3884   CMSConcMarkingTerminatorTerminator _term_term;
3885 
3886  public:
3887   CMSConcMarkingTask(CMSCollector* collector,
3888                  CompactibleFreeListSpace* cms_space,
3889                  bool asynch,
3890                  YieldingFlexibleWorkGang* workers,
3891                  OopTaskQueueSet* task_queues):
3892     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3893     _collector(collector),
3894     _cms_space(cms_space),
3895     _asynch(asynch), _n_workers(0), _result(true),
3896     _task_queues(task_queues),
3897     _term(_n_workers, task_queues, _collector),
3898     _bit_map_lock(collector->bitMapLock())
3899   {
3900     _requested_size = _n_workers;
3901     _term.set_task(this);
3902     _term_term.set_task(this);
3903     _restart_addr = _global_finger = _cms_space->bottom();
3904   }
3905 
3906 
3907   OopTaskQueueSet* task_queues()  { return _task_queues; }
3908 
3909   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3910 
3911   HeapWord** global_finger_addr() { return &_global_finger; }
3912 
3913   CMSConcMarkingTerminator* terminator() { return &_term; }
3914 
3915   virtual void set_for_termination(int active_workers) {
3916     terminator()->reset_for_reuse(active_workers);
3917   }
3918 
3919   void work(uint worker_id);
3920   bool should_yield() {
3921     return    ConcurrentMarkSweepThread::should_yield()
3922            && !_collector->foregroundGCIsActive()
3923            && _asynch;
3924   }
3925 
3926   virtual void coordinator_yield();  // stuff done by coordinator
3927   bool result() { return _result; }
3928 
3929   void reset(HeapWord* ra) {
3930     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3931     _restart_addr = _global_finger = ra;
3932     _term.reset_for_reuse();
3933   }
3934 
3935   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3936                                            OopTaskQueue* work_q);
3937 
3938  private:
3939   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3940   void do_work_steal(int i);
3941   void bump_global_finger(HeapWord* f);
3942 };
3943 
3944 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3945   assert(_task != NULL, "Error");
3946   return _task->yielding();
3947   // Note that we do not need the disjunct || _task->should_yield() above
3948   // because we want terminating threads to yield only if the task
3949   // is already in the midst of yielding, which happens only after at least one
3950   // thread has yielded.
3951 }
3952 
3953 void CMSConcMarkingTerminator::yield() {
3954   if (_task->should_yield()) {
3955     _task->yield();
3956   } else {
3957     ParallelTaskTerminator::yield();
3958   }
3959 }
3960 
3961 ////////////////////////////////////////////////////////////////
3962 // Concurrent Marking Algorithm Sketch
3963 ////////////////////////////////////////////////////////////////
3964 // Until all tasks exhausted (both spaces):
3965 // -- claim next available chunk
3966 // -- bump global finger via CAS
3967 // -- find first object that starts in this chunk
3968 //    and start scanning bitmap from that position
3969 // -- scan marked objects for oops
3970 // -- CAS-mark target, and if successful:
3971 //    . if target oop is above global finger (volatile read)
3972 //      nothing to do
3973 //    . if target oop is in chunk and above local finger
3974 //        then nothing to do
3975 //    . else push on work-queue
3976 // -- Deal with possible overflow issues:
3977 //    . local work-queue overflow causes stuff to be pushed on
3978 //      global (common) overflow queue
3979 //    . always first empty local work queue
3980 //    . then get a batch of oops from global work queue if any
3981 //    . then do work stealing
3982 // -- When all tasks claimed (both spaces)
3983 //    and local work queue empty,
3984 //    then in a loop do:
3985 //    . check global overflow stack; steal a batch of oops and trace
3986 //    . try to steal from other threads oif GOS is empty
3987 //    . if neither is available, offer termination
3988 // -- Terminate and return result
3989 //
3990 void CMSConcMarkingTask::work(uint worker_id) {
3991   elapsedTimer _timer;
3992   ResourceMark rm;
3993   HandleMark hm;
3994 
3995   DEBUG_ONLY(_collector->verify_overflow_empty();)
3996 
3997   // Before we begin work, our work queue should be empty
3998   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3999   // Scan the bitmap covering _cms_space, tracing through grey objects.
4000   _timer.start();
4001   do_scan_and_mark(worker_id, _cms_space);
4002   _timer.stop();
4003   if (PrintCMSStatistics != 0) {
4004     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4005       worker_id, _timer.seconds());
4006       // XXX: need xxx/xxx type of notation, two timers
4007   }
4008 
4009   // ... do work stealing
4010   _timer.reset();
4011   _timer.start();
4012   do_work_steal(worker_id);
4013   _timer.stop();
4014   if (PrintCMSStatistics != 0) {
4015     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4016       worker_id, _timer.seconds());
4017       // XXX: need xxx/xxx type of notation, two timers
4018   }
4019   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4020   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4021   // Note that under the current task protocol, the
4022   // following assertion is true even of the spaces
4023   // expanded since the completion of the concurrent
4024   // marking. XXX This will likely change under a strict
4025   // ABORT semantics.
4026   // After perm removal the comparison was changed to
4027   // greater than or equal to from strictly greater than.
4028   // Before perm removal the highest address sweep would
4029   // have been at the end of perm gen but now is at the
4030   // end of the tenured gen.
4031   assert(_global_finger >=  _cms_space->end(),
4032          "All tasks have been completed");
4033   DEBUG_ONLY(_collector->verify_overflow_empty();)
4034 }
4035 
4036 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4037   HeapWord* read = _global_finger;
4038   HeapWord* cur  = read;
4039   while (f > read) {
4040     cur = read;
4041     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4042     if (cur == read) {
4043       // our cas succeeded
4044       assert(_global_finger >= f, "protocol consistency");
4045       break;
4046     }
4047   }
4048 }
4049 
4050 // This is really inefficient, and should be redone by
4051 // using (not yet available) block-read and -write interfaces to the
4052 // stack and the work_queue. XXX FIX ME !!!
4053 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4054                                                       OopTaskQueue* work_q) {
4055   // Fast lock-free check
4056   if (ovflw_stk->length() == 0) {
4057     return false;
4058   }
4059   assert(work_q->size() == 0, "Shouldn't steal");
4060   MutexLockerEx ml(ovflw_stk->par_lock(),
4061                    Mutex::_no_safepoint_check_flag);
4062   // Grab up to 1/4 the size of the work queue
4063   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4064                     (size_t)ParGCDesiredObjsFromOverflowList);
4065   num = MIN2(num, ovflw_stk->length());
4066   for (int i = (int) num; i > 0; i--) {
4067     oop cur = ovflw_stk->pop();
4068     assert(cur != NULL, "Counted wrong?");
4069     work_q->push(cur);
4070   }
4071   return num > 0;
4072 }
4073 
4074 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4075   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4076   int n_tasks = pst->n_tasks();
4077   // We allow that there may be no tasks to do here because
4078   // we are restarting after a stack overflow.
4079   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4080   uint nth_task = 0;
4081 
4082   HeapWord* aligned_start = sp->bottom();
4083   if (sp->used_region().contains(_restart_addr)) {
4084     // Align down to a card boundary for the start of 0th task
4085     // for this space.
4086     aligned_start =
4087       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4088                                  CardTableModRefBS::card_size);
4089   }
4090 
4091   size_t chunk_size = sp->marking_task_size();
4092   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4093     // Having claimed the nth task in this space,
4094     // compute the chunk that it corresponds to:
4095     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4096                                aligned_start + (nth_task+1)*chunk_size);
4097     // Try and bump the global finger via a CAS;
4098     // note that we need to do the global finger bump
4099     // _before_ taking the intersection below, because
4100     // the task corresponding to that region will be
4101     // deemed done even if the used_region() expands
4102     // because of allocation -- as it almost certainly will
4103     // during start-up while the threads yield in the
4104     // closure below.
4105     HeapWord* finger = span.end();
4106     bump_global_finger(finger);   // atomically
4107     // There are null tasks here corresponding to chunks
4108     // beyond the "top" address of the space.
4109     span = span.intersection(sp->used_region());
4110     if (!span.is_empty()) {  // Non-null task
4111       HeapWord* prev_obj;
4112       assert(!span.contains(_restart_addr) || nth_task == 0,
4113              "Inconsistency");
4114       if (nth_task == 0) {
4115         // For the 0th task, we'll not need to compute a block_start.
4116         if (span.contains(_restart_addr)) {
4117           // In the case of a restart because of stack overflow,
4118           // we might additionally skip a chunk prefix.
4119           prev_obj = _restart_addr;
4120         } else {
4121           prev_obj = span.start();
4122         }
4123       } else {
4124         // We want to skip the first object because
4125         // the protocol is to scan any object in its entirety
4126         // that _starts_ in this span; a fortiori, any
4127         // object starting in an earlier span is scanned
4128         // as part of an earlier claimed task.
4129         // Below we use the "careful" version of block_start
4130         // so we do not try to navigate uninitialized objects.
4131         prev_obj = sp->block_start_careful(span.start());
4132         // Below we use a variant of block_size that uses the
4133         // Printezis bits to avoid waiting for allocated
4134         // objects to become initialized/parsable.
4135         while (prev_obj < span.start()) {
4136           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4137           if (sz > 0) {
4138             prev_obj += sz;
4139           } else {
4140             // In this case we may end up doing a bit of redundant
4141             // scanning, but that appears unavoidable, short of
4142             // locking the free list locks; see bug 6324141.
4143             break;
4144           }
4145         }
4146       }
4147       if (prev_obj < span.end()) {
4148         MemRegion my_span = MemRegion(prev_obj, span.end());
4149         // Do the marking work within a non-empty span --
4150         // the last argument to the constructor indicates whether the
4151         // iteration should be incremental with periodic yields.
4152         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4153                                     &_collector->_markBitMap,
4154                                     work_queue(i),
4155                                     &_collector->_markStack,
4156                                     _asynch);
4157         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4158       } // else nothing to do for this task
4159     }   // else nothing to do for this task
4160   }
4161   // We'd be tempted to assert here that since there are no
4162   // more tasks left to claim in this space, the global_finger
4163   // must exceed space->top() and a fortiori space->end(). However,
4164   // that would not quite be correct because the bumping of
4165   // global_finger occurs strictly after the claiming of a task,
4166   // so by the time we reach here the global finger may not yet
4167   // have been bumped up by the thread that claimed the last
4168   // task.
4169   pst->all_tasks_completed();
4170 }
4171 
4172 class Par_ConcMarkingClosure: public CMSOopClosure {
4173  private:
4174   CMSCollector* _collector;
4175   CMSConcMarkingTask* _task;
4176   MemRegion     _span;
4177   CMSBitMap*    _bit_map;
4178   CMSMarkStack* _overflow_stack;
4179   OopTaskQueue* _work_queue;
4180  protected:
4181   DO_OOP_WORK_DEFN
4182  public:
4183   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4184                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4185     CMSOopClosure(collector->ref_processor()),
4186     _collector(collector),
4187     _task(task),
4188     _span(collector->_span),
4189     _work_queue(work_queue),
4190     _bit_map(bit_map),
4191     _overflow_stack(overflow_stack)
4192   { }
4193   virtual void do_oop(oop* p);
4194   virtual void do_oop(narrowOop* p);
4195 
4196   void trim_queue(size_t max);
4197   void handle_stack_overflow(HeapWord* lost);
4198   void do_yield_check() {
4199     if (_task->should_yield()) {
4200       _task->yield();
4201     }
4202   }
4203 };
4204 
4205 // Grey object scanning during work stealing phase --
4206 // the salient assumption here is that any references
4207 // that are in these stolen objects being scanned must
4208 // already have been initialized (else they would not have
4209 // been published), so we do not need to check for
4210 // uninitialized objects before pushing here.
4211 void Par_ConcMarkingClosure::do_oop(oop obj) {
4212   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4213   HeapWord* addr = (HeapWord*)obj;
4214   // Check if oop points into the CMS generation
4215   // and is not marked
4216   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4217     // a white object ...
4218     // If we manage to "claim" the object, by being the
4219     // first thread to mark it, then we push it on our
4220     // marking stack
4221     if (_bit_map->par_mark(addr)) {     // ... now grey
4222       // push on work queue (grey set)
4223       bool simulate_overflow = false;
4224       NOT_PRODUCT(
4225         if (CMSMarkStackOverflowALot &&
4226             _collector->simulate_overflow()) {
4227           // simulate a stack overflow
4228           simulate_overflow = true;
4229         }
4230       )
4231       if (simulate_overflow ||
4232           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4233         // stack overflow
4234         if (PrintCMSStatistics != 0) {
4235           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4236                                  SIZE_FORMAT, _overflow_stack->capacity());
4237         }
4238         // We cannot assert that the overflow stack is full because
4239         // it may have been emptied since.
4240         assert(simulate_overflow ||
4241                _work_queue->size() == _work_queue->max_elems(),
4242               "Else push should have succeeded");
4243         handle_stack_overflow(addr);
4244       }
4245     } // Else, some other thread got there first
4246     do_yield_check();
4247   }
4248 }
4249 
4250 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4251 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4252 
4253 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4254   while (_work_queue->size() > max) {
4255     oop new_oop;
4256     if (_work_queue->pop_local(new_oop)) {
4257       assert(new_oop->is_oop(), "Should be an oop");
4258       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4259       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4260       new_oop->oop_iterate(this);  // do_oop() above
4261       do_yield_check();
4262     }
4263   }
4264 }
4265 
4266 // Upon stack overflow, we discard (part of) the stack,
4267 // remembering the least address amongst those discarded
4268 // in CMSCollector's _restart_address.
4269 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4270   // We need to do this under a mutex to prevent other
4271   // workers from interfering with the work done below.
4272   MutexLockerEx ml(_overflow_stack->par_lock(),
4273                    Mutex::_no_safepoint_check_flag);
4274   // Remember the least grey address discarded
4275   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4276   _collector->lower_restart_addr(ra);
4277   _overflow_stack->reset();  // discard stack contents
4278   _overflow_stack->expand(); // expand the stack if possible
4279 }
4280 
4281 
4282 void CMSConcMarkingTask::do_work_steal(int i) {
4283   OopTaskQueue* work_q = work_queue(i);
4284   oop obj_to_scan;
4285   CMSBitMap* bm = &(_collector->_markBitMap);
4286   CMSMarkStack* ovflw = &(_collector->_markStack);
4287   int* seed = _collector->hash_seed(i);
4288   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4289   while (true) {
4290     cl.trim_queue(0);
4291     assert(work_q->size() == 0, "Should have been emptied above");
4292     if (get_work_from_overflow_stack(ovflw, work_q)) {
4293       // Can't assert below because the work obtained from the
4294       // overflow stack may already have been stolen from us.
4295       // assert(work_q->size() > 0, "Work from overflow stack");
4296       continue;
4297     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4298       assert(obj_to_scan->is_oop(), "Should be an oop");
4299       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4300       obj_to_scan->oop_iterate(&cl);
4301     } else if (terminator()->offer_termination(&_term_term)) {
4302       assert(work_q->size() == 0, "Impossible!");
4303       break;
4304     } else if (yielding() || should_yield()) {
4305       yield();
4306     }
4307   }
4308 }
4309 
4310 // This is run by the CMS (coordinator) thread.
4311 void CMSConcMarkingTask::coordinator_yield() {
4312   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4313          "CMS thread should hold CMS token");
4314   // First give up the locks, then yield, then re-lock
4315   // We should probably use a constructor/destructor idiom to
4316   // do this unlock/lock or modify the MutexUnlocker class to
4317   // serve our purpose. XXX
4318   assert_lock_strong(_bit_map_lock);
4319   _bit_map_lock->unlock();
4320   ConcurrentMarkSweepThread::desynchronize(true);
4321   ConcurrentMarkSweepThread::acknowledge_yield_request();
4322   _collector->stopTimer();
4323   if (PrintCMSStatistics != 0) {
4324     _collector->incrementYields();
4325   }
4326   _collector->icms_wait();
4327 
4328   // It is possible for whichever thread initiated the yield request
4329   // not to get a chance to wake up and take the bitmap lock between
4330   // this thread releasing it and reacquiring it. So, while the
4331   // should_yield() flag is on, let's sleep for a bit to give the
4332   // other thread a chance to wake up. The limit imposed on the number
4333   // of iterations is defensive, to avoid any unforseen circumstances
4334   // putting us into an infinite loop. Since it's always been this
4335   // (coordinator_yield()) method that was observed to cause the
4336   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4337   // which is by default non-zero. For the other seven methods that
4338   // also perform the yield operation, as are using a different
4339   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4340   // can enable the sleeping for those methods too, if necessary.
4341   // See 6442774.
4342   //
4343   // We really need to reconsider the synchronization between the GC
4344   // thread and the yield-requesting threads in the future and we
4345   // should really use wait/notify, which is the recommended
4346   // way of doing this type of interaction. Additionally, we should
4347   // consolidate the eight methods that do the yield operation and they
4348   // are almost identical into one for better maintenability and
4349   // readability. See 6445193.
4350   //
4351   // Tony 2006.06.29
4352   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4353                    ConcurrentMarkSweepThread::should_yield() &&
4354                    !CMSCollector::foregroundGCIsActive(); ++i) {
4355     os::sleep(Thread::current(), 1, false);
4356     ConcurrentMarkSweepThread::acknowledge_yield_request();
4357   }
4358 
4359   ConcurrentMarkSweepThread::synchronize(true);
4360   _bit_map_lock->lock_without_safepoint_check();
4361   _collector->startTimer();
4362 }
4363 
4364 bool CMSCollector::do_marking_mt(bool asynch) {
4365   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4366   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4367                                        conc_workers()->total_workers(),
4368                                        conc_workers()->active_workers(),
4369                                        Threads::number_of_non_daemon_threads());
4370   conc_workers()->set_active_workers(num_workers);
4371 
4372   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4373 
4374   CMSConcMarkingTask tsk(this,
4375                          cms_space,
4376                          asynch,
4377                          conc_workers(),
4378                          task_queues());
4379 
4380   // Since the actual number of workers we get may be different
4381   // from the number we requested above, do we need to do anything different
4382   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4383   // class?? XXX
4384   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4385 
4386   // Refs discovery is already non-atomic.
4387   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4388   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4389   conc_workers()->start_task(&tsk);
4390   while (tsk.yielded()) {
4391     tsk.coordinator_yield();
4392     conc_workers()->continue_task(&tsk);
4393   }
4394   // If the task was aborted, _restart_addr will be non-NULL
4395   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4396   while (_restart_addr != NULL) {
4397     // XXX For now we do not make use of ABORTED state and have not
4398     // yet implemented the right abort semantics (even in the original
4399     // single-threaded CMS case). That needs some more investigation
4400     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4401     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4402     // If _restart_addr is non-NULL, a marking stack overflow
4403     // occurred; we need to do a fresh marking iteration from the
4404     // indicated restart address.
4405     if (_foregroundGCIsActive && asynch) {
4406       // We may be running into repeated stack overflows, having
4407       // reached the limit of the stack size, while making very
4408       // slow forward progress. It may be best to bail out and
4409       // let the foreground collector do its job.
4410       // Clear _restart_addr, so that foreground GC
4411       // works from scratch. This avoids the headache of
4412       // a "rescan" which would otherwise be needed because
4413       // of the dirty mod union table & card table.
4414       _restart_addr = NULL;
4415       return false;
4416     }
4417     // Adjust the task to restart from _restart_addr
4418     tsk.reset(_restart_addr);
4419     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4420                   _restart_addr);
4421     _restart_addr = NULL;
4422     // Get the workers going again
4423     conc_workers()->start_task(&tsk);
4424     while (tsk.yielded()) {
4425       tsk.coordinator_yield();
4426       conc_workers()->continue_task(&tsk);
4427     }
4428   }
4429   assert(tsk.completed(), "Inconsistency");
4430   assert(tsk.result() == true, "Inconsistency");
4431   return true;
4432 }
4433 
4434 bool CMSCollector::do_marking_st(bool asynch) {
4435   ResourceMark rm;
4436   HandleMark   hm;
4437 
4438   // Temporarily make refs discovery single threaded (non-MT)
4439   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4440   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4441     &_markStack, CMSYield && asynch);
4442   // the last argument to iterate indicates whether the iteration
4443   // should be incremental with periodic yields.
4444   _markBitMap.iterate(&markFromRootsClosure);
4445   // If _restart_addr is non-NULL, a marking stack overflow
4446   // occurred; we need to do a fresh iteration from the
4447   // indicated restart address.
4448   while (_restart_addr != NULL) {
4449     if (_foregroundGCIsActive && asynch) {
4450       // We may be running into repeated stack overflows, having
4451       // reached the limit of the stack size, while making very
4452       // slow forward progress. It may be best to bail out and
4453       // let the foreground collector do its job.
4454       // Clear _restart_addr, so that foreground GC
4455       // works from scratch. This avoids the headache of
4456       // a "rescan" which would otherwise be needed because
4457       // of the dirty mod union table & card table.
4458       _restart_addr = NULL;
4459       return false;  // indicating failure to complete marking
4460     }
4461     // Deal with stack overflow:
4462     // we restart marking from _restart_addr
4463     HeapWord* ra = _restart_addr;
4464     markFromRootsClosure.reset(ra);
4465     _restart_addr = NULL;
4466     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4467   }
4468   return true;
4469 }
4470 
4471 void CMSCollector::preclean() {
4472   check_correct_thread_executing();
4473   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4474   verify_work_stacks_empty();
4475   verify_overflow_empty();
4476   _abort_preclean = false;
4477   if (CMSPrecleaningEnabled) {
4478     if (!CMSEdenChunksRecordAlways) {
4479       _eden_chunk_index = 0;
4480     }
4481     size_t used = get_eden_used();
4482     size_t capacity = get_eden_capacity();
4483     // Don't start sampling unless we will get sufficiently
4484     // many samples.
4485     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4486                 * CMSScheduleRemarkEdenPenetration)) {
4487       _start_sampling = true;
4488     } else {
4489       _start_sampling = false;
4490     }
4491     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4492     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4493     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4494   }
4495   CMSTokenSync x(true); // is cms thread
4496   if (CMSPrecleaningEnabled) {
4497     sample_eden();
4498     _collectorState = AbortablePreclean;
4499   } else {
4500     _collectorState = FinalMarking;
4501   }
4502   verify_work_stacks_empty();
4503   verify_overflow_empty();
4504 }
4505 
4506 // Try and schedule the remark such that young gen
4507 // occupancy is CMSScheduleRemarkEdenPenetration %.
4508 void CMSCollector::abortable_preclean() {
4509   check_correct_thread_executing();
4510   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4511   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4512 
4513   // If Eden's current occupancy is below this threshold,
4514   // immediately schedule the remark; else preclean
4515   // past the next scavenge in an effort to
4516   // schedule the pause as described avove. By choosing
4517   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4518   // we will never do an actual abortable preclean cycle.
4519   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4520     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4521     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4522     // We need more smarts in the abortable preclean
4523     // loop below to deal with cases where allocation
4524     // in young gen is very very slow, and our precleaning
4525     // is running a losing race against a horde of
4526     // mutators intent on flooding us with CMS updates
4527     // (dirty cards).
4528     // One, admittedly dumb, strategy is to give up
4529     // after a certain number of abortable precleaning loops
4530     // or after a certain maximum time. We want to make
4531     // this smarter in the next iteration.
4532     // XXX FIX ME!!! YSR
4533     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4534     while (!(should_abort_preclean() ||
4535              ConcurrentMarkSweepThread::should_terminate())) {
4536       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4537       cumworkdone += workdone;
4538       loops++;
4539       // Voluntarily terminate abortable preclean phase if we have
4540       // been at it for too long.
4541       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4542           loops >= CMSMaxAbortablePrecleanLoops) {
4543         if (PrintGCDetails) {
4544           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4545         }
4546         break;
4547       }
4548       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4549         if (PrintGCDetails) {
4550           gclog_or_tty->print(" CMS: abort preclean due to time ");
4551         }
4552         break;
4553       }
4554       // If we are doing little work each iteration, we should
4555       // take a short break.
4556       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4557         // Sleep for some time, waiting for work to accumulate
4558         stopTimer();
4559         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4560         startTimer();
4561         waited++;
4562       }
4563     }
4564     if (PrintCMSStatistics > 0) {
4565       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4566                           loops, waited, cumworkdone);
4567     }
4568   }
4569   CMSTokenSync x(true); // is cms thread
4570   if (_collectorState != Idling) {
4571     assert(_collectorState == AbortablePreclean,
4572            "Spontaneous state transition?");
4573     _collectorState = FinalMarking;
4574   } // Else, a foreground collection completed this CMS cycle.
4575   return;
4576 }
4577 
4578 // Respond to an Eden sampling opportunity
4579 void CMSCollector::sample_eden() {
4580   // Make sure a young gc cannot sneak in between our
4581   // reading and recording of a sample.
4582   assert(Thread::current()->is_ConcurrentGC_thread(),
4583          "Only the cms thread may collect Eden samples");
4584   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4585          "Should collect samples while holding CMS token");
4586   if (!_start_sampling) {
4587     return;
4588   }
4589   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4590   // is populated by the young generation.
4591   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4592     if (_eden_chunk_index < _eden_chunk_capacity) {
4593       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4594       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4595              "Unexpected state of Eden");
4596       // We'd like to check that what we just sampled is an oop-start address;
4597       // however, we cannot do that here since the object may not yet have been
4598       // initialized. So we'll instead do the check when we _use_ this sample
4599       // later.
4600       if (_eden_chunk_index == 0 ||
4601           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4602                          _eden_chunk_array[_eden_chunk_index-1])
4603            >= CMSSamplingGrain)) {
4604         _eden_chunk_index++;  // commit sample
4605       }
4606     }
4607   }
4608   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4609     size_t used = get_eden_used();
4610     size_t capacity = get_eden_capacity();
4611     assert(used <= capacity, "Unexpected state of Eden");
4612     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4613       _abort_preclean = true;
4614     }
4615   }
4616 }
4617 
4618 
4619 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4620   assert(_collectorState == Precleaning ||
4621          _collectorState == AbortablePreclean, "incorrect state");
4622   ResourceMark rm;
4623   HandleMark   hm;
4624 
4625   // Precleaning is currently not MT but the reference processor
4626   // may be set for MT.  Disable it temporarily here.
4627   ReferenceProcessor* rp = ref_processor();
4628   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4629 
4630   // Do one pass of scrubbing the discovered reference lists
4631   // to remove any reference objects with strongly-reachable
4632   // referents.
4633   if (clean_refs) {
4634     CMSPrecleanRefsYieldClosure yield_cl(this);
4635     assert(rp->span().equals(_span), "Spans should be equal");
4636     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4637                                    &_markStack, true /* preclean */);
4638     CMSDrainMarkingStackClosure complete_trace(this,
4639                                    _span, &_markBitMap, &_markStack,
4640                                    &keep_alive, true /* preclean */);
4641 
4642     // We don't want this step to interfere with a young
4643     // collection because we don't want to take CPU
4644     // or memory bandwidth away from the young GC threads
4645     // (which may be as many as there are CPUs).
4646     // Note that we don't need to protect ourselves from
4647     // interference with mutators because they can't
4648     // manipulate the discovered reference lists nor affect
4649     // the computed reachability of the referents, the
4650     // only properties manipulated by the precleaning
4651     // of these reference lists.
4652     stopTimer();
4653     CMSTokenSyncWithLocks x(true /* is cms thread */,
4654                             bitMapLock());
4655     startTimer();
4656     sample_eden();
4657 
4658     // The following will yield to allow foreground
4659     // collection to proceed promptly. XXX YSR:
4660     // The code in this method may need further
4661     // tweaking for better performance and some restructuring
4662     // for cleaner interfaces.
4663     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4664     rp->preclean_discovered_references(
4665           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4666           gc_timer);
4667   }
4668 
4669   if (clean_survivor) {  // preclean the active survivor space(s)
4670     assert(_young_gen->kind() == Generation::DefNew ||
4671            _young_gen->kind() == Generation::ParNew ||
4672            _young_gen->kind() == Generation::ASParNew,
4673          "incorrect type for cast");
4674     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4675     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4676                              &_markBitMap, &_modUnionTable,
4677                              &_markStack, true /* precleaning phase */);
4678     stopTimer();
4679     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4680                              bitMapLock());
4681     startTimer();
4682     unsigned int before_count =
4683       GenCollectedHeap::heap()->total_collections();
4684     SurvivorSpacePrecleanClosure
4685       sss_cl(this, _span, &_markBitMap, &_markStack,
4686              &pam_cl, before_count, CMSYield);
4687     dng->from()->object_iterate_careful(&sss_cl);
4688     dng->to()->object_iterate_careful(&sss_cl);
4689   }
4690   MarkRefsIntoAndScanClosure
4691     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4692              &_markStack, this, CMSYield,
4693              true /* precleaning phase */);
4694   // CAUTION: The following closure has persistent state that may need to
4695   // be reset upon a decrease in the sequence of addresses it
4696   // processes.
4697   ScanMarkedObjectsAgainCarefullyClosure
4698     smoac_cl(this, _span,
4699       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4700 
4701   // Preclean dirty cards in ModUnionTable and CardTable using
4702   // appropriate convergence criterion;
4703   // repeat CMSPrecleanIter times unless we find that
4704   // we are losing.
4705   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4706   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4707          "Bad convergence multiplier");
4708   assert(CMSPrecleanThreshold >= 100,
4709          "Unreasonably low CMSPrecleanThreshold");
4710 
4711   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4712   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4713        numIter < CMSPrecleanIter;
4714        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4715     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4716     if (Verbose && PrintGCDetails) {
4717       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4718     }
4719     // Either there are very few dirty cards, so re-mark
4720     // pause will be small anyway, or our pre-cleaning isn't
4721     // that much faster than the rate at which cards are being
4722     // dirtied, so we might as well stop and re-mark since
4723     // precleaning won't improve our re-mark time by much.
4724     if (curNumCards <= CMSPrecleanThreshold ||
4725         (numIter > 0 &&
4726          (curNumCards * CMSPrecleanDenominator >
4727          lastNumCards * CMSPrecleanNumerator))) {
4728       numIter++;
4729       cumNumCards += curNumCards;
4730       break;
4731     }
4732   }
4733 
4734   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4735 
4736   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4737   cumNumCards += curNumCards;
4738   if (PrintGCDetails && PrintCMSStatistics != 0) {
4739     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4740                   curNumCards, cumNumCards, numIter);
4741   }
4742   return cumNumCards;   // as a measure of useful work done
4743 }
4744 
4745 // PRECLEANING NOTES:
4746 // Precleaning involves:
4747 // . reading the bits of the modUnionTable and clearing the set bits.
4748 // . For the cards corresponding to the set bits, we scan the
4749 //   objects on those cards. This means we need the free_list_lock
4750 //   so that we can safely iterate over the CMS space when scanning
4751 //   for oops.
4752 // . When we scan the objects, we'll be both reading and setting
4753 //   marks in the marking bit map, so we'll need the marking bit map.
4754 // . For protecting _collector_state transitions, we take the CGC_lock.
4755 //   Note that any races in the reading of of card table entries by the
4756 //   CMS thread on the one hand and the clearing of those entries by the
4757 //   VM thread or the setting of those entries by the mutator threads on the
4758 //   other are quite benign. However, for efficiency it makes sense to keep
4759 //   the VM thread from racing with the CMS thread while the latter is
4760 //   dirty card info to the modUnionTable. We therefore also use the
4761 //   CGC_lock to protect the reading of the card table and the mod union
4762 //   table by the CM thread.
4763 // . We run concurrently with mutator updates, so scanning
4764 //   needs to be done carefully  -- we should not try to scan
4765 //   potentially uninitialized objects.
4766 //
4767 // Locking strategy: While holding the CGC_lock, we scan over and
4768 // reset a maximal dirty range of the mod union / card tables, then lock
4769 // the free_list_lock and bitmap lock to do a full marking, then
4770 // release these locks; and repeat the cycle. This allows for a
4771 // certain amount of fairness in the sharing of these locks between
4772 // the CMS collector on the one hand, and the VM thread and the
4773 // mutators on the other.
4774 
4775 // NOTE: preclean_mod_union_table() and preclean_card_table()
4776 // further below are largely identical; if you need to modify
4777 // one of these methods, please check the other method too.
4778 
4779 size_t CMSCollector::preclean_mod_union_table(
4780   ConcurrentMarkSweepGeneration* gen,
4781   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4782   verify_work_stacks_empty();
4783   verify_overflow_empty();
4784 
4785   // strategy: starting with the first card, accumulate contiguous
4786   // ranges of dirty cards; clear these cards, then scan the region
4787   // covered by these cards.
4788 
4789   // Since all of the MUT is committed ahead, we can just use
4790   // that, in case the generations expand while we are precleaning.
4791   // It might also be fine to just use the committed part of the
4792   // generation, but we might potentially miss cards when the
4793   // generation is rapidly expanding while we are in the midst
4794   // of precleaning.
4795   HeapWord* startAddr = gen->reserved().start();
4796   HeapWord* endAddr   = gen->reserved().end();
4797 
4798   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4799 
4800   size_t numDirtyCards, cumNumDirtyCards;
4801   HeapWord *nextAddr, *lastAddr;
4802   for (cumNumDirtyCards = numDirtyCards = 0,
4803        nextAddr = lastAddr = startAddr;
4804        nextAddr < endAddr;
4805        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4806 
4807     ResourceMark rm;
4808     HandleMark   hm;
4809 
4810     MemRegion dirtyRegion;
4811     {
4812       stopTimer();
4813       // Potential yield point
4814       CMSTokenSync ts(true);
4815       startTimer();
4816       sample_eden();
4817       // Get dirty region starting at nextOffset (inclusive),
4818       // simultaneously clearing it.
4819       dirtyRegion =
4820         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4821       assert(dirtyRegion.start() >= nextAddr,
4822              "returned region inconsistent?");
4823     }
4824     // Remember where the next search should begin.
4825     // The returned region (if non-empty) is a right open interval,
4826     // so lastOffset is obtained from the right end of that
4827     // interval.
4828     lastAddr = dirtyRegion.end();
4829     // Should do something more transparent and less hacky XXX
4830     numDirtyCards =
4831       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4832 
4833     // We'll scan the cards in the dirty region (with periodic
4834     // yields for foreground GC as needed).
4835     if (!dirtyRegion.is_empty()) {
4836       assert(numDirtyCards > 0, "consistency check");
4837       HeapWord* stop_point = NULL;
4838       stopTimer();
4839       // Potential yield point
4840       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4841                                bitMapLock());
4842       startTimer();
4843       {
4844         verify_work_stacks_empty();
4845         verify_overflow_empty();
4846         sample_eden();
4847         stop_point =
4848           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4849       }
4850       if (stop_point != NULL) {
4851         // The careful iteration stopped early either because it found an
4852         // uninitialized object, or because we were in the midst of an
4853         // "abortable preclean", which should now be aborted. Redirty
4854         // the bits corresponding to the partially-scanned or unscanned
4855         // cards. We'll either restart at the next block boundary or
4856         // abort the preclean.
4857         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4858                "Should only be AbortablePreclean.");
4859         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4860         if (should_abort_preclean()) {
4861           break; // out of preclean loop
4862         } else {
4863           // Compute the next address at which preclean should pick up;
4864           // might need bitMapLock in order to read P-bits.
4865           lastAddr = next_card_start_after_block(stop_point);
4866         }
4867       }
4868     } else {
4869       assert(lastAddr == endAddr, "consistency check");
4870       assert(numDirtyCards == 0, "consistency check");
4871       break;
4872     }
4873   }
4874   verify_work_stacks_empty();
4875   verify_overflow_empty();
4876   return cumNumDirtyCards;
4877 }
4878 
4879 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4880 // below are largely identical; if you need to modify
4881 // one of these methods, please check the other method too.
4882 
4883 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4884   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4885   // strategy: it's similar to precleamModUnionTable above, in that
4886   // we accumulate contiguous ranges of dirty cards, mark these cards
4887   // precleaned, then scan the region covered by these cards.
4888   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4889   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4890 
4891   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4892 
4893   size_t numDirtyCards, cumNumDirtyCards;
4894   HeapWord *lastAddr, *nextAddr;
4895 
4896   for (cumNumDirtyCards = numDirtyCards = 0,
4897        nextAddr = lastAddr = startAddr;
4898        nextAddr < endAddr;
4899        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4900 
4901     ResourceMark rm;
4902     HandleMark   hm;
4903 
4904     MemRegion dirtyRegion;
4905     {
4906       // See comments in "Precleaning notes" above on why we
4907       // do this locking. XXX Could the locking overheads be
4908       // too high when dirty cards are sparse? [I don't think so.]
4909       stopTimer();
4910       CMSTokenSync x(true); // is cms thread
4911       startTimer();
4912       sample_eden();
4913       // Get and clear dirty region from card table
4914       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4915                                     MemRegion(nextAddr, endAddr),
4916                                     true,
4917                                     CardTableModRefBS::precleaned_card_val());
4918 
4919       assert(dirtyRegion.start() >= nextAddr,
4920              "returned region inconsistent?");
4921     }
4922     lastAddr = dirtyRegion.end();
4923     numDirtyCards =
4924       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4925 
4926     if (!dirtyRegion.is_empty()) {
4927       stopTimer();
4928       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4929       startTimer();
4930       sample_eden();
4931       verify_work_stacks_empty();
4932       verify_overflow_empty();
4933       HeapWord* stop_point =
4934         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4935       if (stop_point != NULL) {
4936         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4937                "Should only be AbortablePreclean.");
4938         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4939         if (should_abort_preclean()) {
4940           break; // out of preclean loop
4941         } else {
4942           // Compute the next address at which preclean should pick up.
4943           lastAddr = next_card_start_after_block(stop_point);
4944         }
4945       }
4946     } else {
4947       break;
4948     }
4949   }
4950   verify_work_stacks_empty();
4951   verify_overflow_empty();
4952   return cumNumDirtyCards;
4953 }
4954 
4955 class PrecleanKlassClosure : public KlassClosure {
4956   CMKlassClosure _cm_klass_closure;
4957  public:
4958   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4959   void do_klass(Klass* k) {
4960     if (k->has_accumulated_modified_oops()) {
4961       k->clear_accumulated_modified_oops();
4962 
4963       _cm_klass_closure.do_klass(k);
4964     }
4965   }
4966 };
4967 
4968 // The freelist lock is needed to prevent asserts, is it really needed?
4969 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4970 
4971   cl->set_freelistLock(freelistLock);
4972 
4973   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4974 
4975   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4976   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4977   PrecleanKlassClosure preclean_klass_closure(cl);
4978   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4979 
4980   verify_work_stacks_empty();
4981   verify_overflow_empty();
4982 }
4983 
4984 void CMSCollector::checkpointRootsFinal(bool asynch,
4985   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4986   assert(_collectorState == FinalMarking, "incorrect state transition?");
4987   check_correct_thread_executing();
4988   // world is stopped at this checkpoint
4989   assert(SafepointSynchronize::is_at_safepoint(),
4990          "world should be stopped");
4991   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4992 
4993   verify_work_stacks_empty();
4994   verify_overflow_empty();
4995 
4996   SpecializationStats::clear();
4997   if (PrintGCDetails) {
4998     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4999                         _young_gen->used() / K,
5000                         _young_gen->capacity() / K);
5001   }
5002   if (asynch) {
5003     if (CMSScavengeBeforeRemark) {
5004       GenCollectedHeap* gch = GenCollectedHeap::heap();
5005       // Temporarily set flag to false, GCH->do_collection will
5006       // expect it to be false and set to true
5007       FlagSetting fl(gch->_is_gc_active, false);
5008       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5009         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5010       int level = _cmsGen->level() - 1;
5011       if (level >= 0) {
5012         gch->do_collection(true,        // full (i.e. force, see below)
5013                            false,       // !clear_all_soft_refs
5014                            0,           // size
5015                            false,       // is_tlab
5016                            level        // max_level
5017                           );
5018       }
5019     }
5020     FreelistLocker x(this);
5021     MutexLockerEx y(bitMapLock(),
5022                     Mutex::_no_safepoint_check_flag);
5023     assert(!init_mark_was_synchronous, "but that's impossible!");
5024     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5025   } else {
5026     // already have all the locks
5027     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5028                              init_mark_was_synchronous);
5029   }
5030   verify_work_stacks_empty();
5031   verify_overflow_empty();
5032   SpecializationStats::print();
5033 }
5034 
5035 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5036   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5037 
5038   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5039 
5040   assert(haveFreelistLocks(), "must have free list locks");
5041   assert_lock_strong(bitMapLock());
5042 
5043   if (UseAdaptiveSizePolicy) {
5044     size_policy()->checkpoint_roots_final_begin();
5045   }
5046 
5047   ResourceMark rm;
5048   HandleMark   hm;
5049 
5050   GenCollectedHeap* gch = GenCollectedHeap::heap();
5051 
5052   if (should_unload_classes()) {
5053     CodeCache::gc_prologue();
5054   }
5055   assert(haveFreelistLocks(), "must have free list locks");
5056   assert_lock_strong(bitMapLock());
5057 
5058   if (!init_mark_was_synchronous) {
5059     // We might assume that we need not fill TLAB's when
5060     // CMSScavengeBeforeRemark is set, because we may have just done
5061     // a scavenge which would have filled all TLAB's -- and besides
5062     // Eden would be empty. This however may not always be the case --
5063     // for instance although we asked for a scavenge, it may not have
5064     // happened because of a JNI critical section. We probably need
5065     // a policy for deciding whether we can in that case wait until
5066     // the critical section releases and then do the remark following
5067     // the scavenge, and skip it here. In the absence of that policy,
5068     // or of an indication of whether the scavenge did indeed occur,
5069     // we cannot rely on TLAB's having been filled and must do
5070     // so here just in case a scavenge did not happen.
5071     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5072     // Update the saved marks which may affect the root scans.
5073     gch->save_marks();
5074 
5075     if (CMSPrintEdenSurvivorChunks) {
5076       print_eden_and_survivor_chunk_arrays();
5077     }
5078 
5079     {
5080       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5081 
5082       // Note on the role of the mod union table:
5083       // Since the marker in "markFromRoots" marks concurrently with
5084       // mutators, it is possible for some reachable objects not to have been
5085       // scanned. For instance, an only reference to an object A was
5086       // placed in object B after the marker scanned B. Unless B is rescanned,
5087       // A would be collected. Such updates to references in marked objects
5088       // are detected via the mod union table which is the set of all cards
5089       // dirtied since the first checkpoint in this GC cycle and prior to
5090       // the most recent young generation GC, minus those cleaned up by the
5091       // concurrent precleaning.
5092       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5093         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5094         do_remark_parallel();
5095       } else {
5096         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5097                     _gc_timer_cm);
5098         do_remark_non_parallel();
5099       }
5100     }
5101   } else {
5102     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5103     // The initial mark was stop-world, so there's no rescanning to
5104     // do; go straight on to the next step below.
5105   }
5106   verify_work_stacks_empty();
5107   verify_overflow_empty();
5108 
5109   {
5110     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5111     refProcessingWork(asynch, clear_all_soft_refs);
5112   }
5113   verify_work_stacks_empty();
5114   verify_overflow_empty();
5115 
5116   if (should_unload_classes()) {
5117     CodeCache::gc_epilogue();
5118   }
5119   JvmtiExport::gc_epilogue();
5120 
5121   // If we encountered any (marking stack / work queue) overflow
5122   // events during the current CMS cycle, take appropriate
5123   // remedial measures, where possible, so as to try and avoid
5124   // recurrence of that condition.
5125   assert(_markStack.isEmpty(), "No grey objects");
5126   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5127                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5128   if (ser_ovflw > 0) {
5129     if (PrintCMSStatistics != 0) {
5130       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5131         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5132         ", kac_preclean="SIZE_FORMAT")",
5133         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5134         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5135     }
5136     _markStack.expand();
5137     _ser_pmc_remark_ovflw = 0;
5138     _ser_pmc_preclean_ovflw = 0;
5139     _ser_kac_preclean_ovflw = 0;
5140     _ser_kac_ovflw = 0;
5141   }
5142   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5143     if (PrintCMSStatistics != 0) {
5144       gclog_or_tty->print_cr("Work queue overflow (benign) "
5145         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5146         _par_pmc_remark_ovflw, _par_kac_ovflw);
5147     }
5148     _par_pmc_remark_ovflw = 0;
5149     _par_kac_ovflw = 0;
5150   }
5151   if (PrintCMSStatistics != 0) {
5152      if (_markStack._hit_limit > 0) {
5153        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5154                               _markStack._hit_limit);
5155      }
5156      if (_markStack._failed_double > 0) {
5157        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5158                               " current capacity "SIZE_FORMAT,
5159                               _markStack._failed_double,
5160                               _markStack.capacity());
5161      }
5162   }
5163   _markStack._hit_limit = 0;
5164   _markStack._failed_double = 0;
5165 
5166   if ((VerifyAfterGC || VerifyDuringGC) &&
5167       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5168     verify_after_remark();
5169   }
5170 
5171   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5172 
5173   // Change under the freelistLocks.
5174   _collectorState = Sweeping;
5175   // Call isAllClear() under bitMapLock
5176   assert(_modUnionTable.isAllClear(),
5177       "Should be clear by end of the final marking");
5178   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5179       "Should be clear by end of the final marking");
5180   if (UseAdaptiveSizePolicy) {
5181     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5182   }
5183 }
5184 
5185 // Parallel remark task
5186 class CMSParRemarkTask: public AbstractGangTask {
5187   CMSCollector* _collector;
5188   int           _n_workers;
5189   CompactibleFreeListSpace* _cms_space;
5190 
5191   // The per-thread work queues, available here for stealing.
5192   OopTaskQueueSet*       _task_queues;
5193   ParallelTaskTerminator _term;
5194 
5195  public:
5196   // A value of 0 passed to n_workers will cause the number of
5197   // workers to be taken from the active workers in the work gang.
5198   CMSParRemarkTask(CMSCollector* collector,
5199                    CompactibleFreeListSpace* cms_space,
5200                    int n_workers, FlexibleWorkGang* workers,
5201                    OopTaskQueueSet* task_queues):
5202     AbstractGangTask("Rescan roots and grey objects in parallel"),
5203     _collector(collector),
5204     _cms_space(cms_space),
5205     _n_workers(n_workers),
5206     _task_queues(task_queues),
5207     _term(n_workers, task_queues) { }
5208 
5209   OopTaskQueueSet* task_queues() { return _task_queues; }
5210 
5211   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5212 
5213   ParallelTaskTerminator* terminator() { return &_term; }
5214   int n_workers() { return _n_workers; }
5215 
5216   void work(uint worker_id);
5217 
5218  private:
5219   // Work method in support of parallel rescan ... of young gen spaces
5220   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5221                              ContiguousSpace* space,
5222                              HeapWord** chunk_array, size_t chunk_top);
5223 
5224   // ... of  dirty cards in old space
5225   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5226                                   Par_MarkRefsIntoAndScanClosure* cl);
5227 
5228   // ... work stealing for the above
5229   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5230 };
5231 
5232 class RemarkKlassClosure : public KlassClosure {
5233   CMKlassClosure _cm_klass_closure;
5234  public:
5235   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5236   void do_klass(Klass* k) {
5237     // Check if we have modified any oops in the Klass during the concurrent marking.
5238     if (k->has_accumulated_modified_oops()) {
5239       k->clear_accumulated_modified_oops();
5240 
5241       // We could have transfered the current modified marks to the accumulated marks,
5242       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5243     } else if (k->has_modified_oops()) {
5244       // Don't clear anything, this info is needed by the next young collection.
5245     } else {
5246       // No modified oops in the Klass.
5247       return;
5248     }
5249 
5250     // The klass has modified fields, need to scan the klass.
5251     _cm_klass_closure.do_klass(k);
5252   }
5253 };
5254 
5255 // work_queue(i) is passed to the closure
5256 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5257 // also is passed to do_dirty_card_rescan_tasks() and to
5258 // do_work_steal() to select the i-th task_queue.
5259 
5260 void CMSParRemarkTask::work(uint worker_id) {
5261   elapsedTimer _timer;
5262   ResourceMark rm;
5263   HandleMark   hm;
5264 
5265   // ---------- rescan from roots --------------
5266   _timer.start();
5267   GenCollectedHeap* gch = GenCollectedHeap::heap();
5268   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5269     _collector->_span, _collector->ref_processor(),
5270     &(_collector->_markBitMap),
5271     work_queue(worker_id));
5272 
5273   // Rescan young gen roots first since these are likely
5274   // coarsely partitioned and may, on that account, constitute
5275   // the critical path; thus, it's best to start off that
5276   // work first.
5277   // ---------- young gen roots --------------
5278   {
5279     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5280     EdenSpace* eden_space = dng->eden();
5281     ContiguousSpace* from_space = dng->from();
5282     ContiguousSpace* to_space   = dng->to();
5283 
5284     HeapWord** eca = _collector->_eden_chunk_array;
5285     size_t     ect = _collector->_eden_chunk_index;
5286     HeapWord** sca = _collector->_survivor_chunk_array;
5287     size_t     sct = _collector->_survivor_chunk_index;
5288 
5289     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5290     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5291 
5292     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5293     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5294     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5295 
5296     _timer.stop();
5297     if (PrintCMSStatistics != 0) {
5298       gclog_or_tty->print_cr(
5299         "Finished young gen rescan work in %dth thread: %3.3f sec",
5300         worker_id, _timer.seconds());
5301     }
5302   }
5303 
5304   // ---------- remaining roots --------------
5305   _timer.reset();
5306   _timer.start();
5307   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5308                                 false,     // yg was scanned above
5309                                 false,     // this is parallel code
5310                                 false,     // not scavenging
5311                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5312                                 &par_mrias_cl,
5313                                 true,   // walk all of code cache if (so & SO_CodeCache)
5314                                 NULL,
5315                                 NULL);     // The dirty klasses will be handled below
5316   assert(_collector->should_unload_classes()
5317          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5318          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5319   _timer.stop();
5320   if (PrintCMSStatistics != 0) {
5321     gclog_or_tty->print_cr(
5322       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5323       worker_id, _timer.seconds());
5324   }
5325 
5326   // ---------- unhandled CLD scanning ----------
5327   if (worker_id == 0) { // Single threaded at the moment.
5328     _timer.reset();
5329     _timer.start();
5330 
5331     // Scan all new class loader data objects and new dependencies that were
5332     // introduced during concurrent marking.
5333     ResourceMark rm;
5334     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5335     for (int i = 0; i < array->length(); i++) {
5336       par_mrias_cl.do_class_loader_data(array->at(i));
5337     }
5338 
5339     // We don't need to keep track of new CLDs anymore.
5340     ClassLoaderDataGraph::remember_new_clds(false);
5341 
5342     _timer.stop();
5343     if (PrintCMSStatistics != 0) {
5344       gclog_or_tty->print_cr(
5345           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5346           worker_id, _timer.seconds());
5347     }
5348   }
5349 
5350   // ---------- dirty klass scanning ----------
5351   if (worker_id == 0) { // Single threaded at the moment.
5352     _timer.reset();
5353     _timer.start();
5354 
5355     // Scan all classes that was dirtied during the concurrent marking phase.
5356     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5357     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5358 
5359     _timer.stop();
5360     if (PrintCMSStatistics != 0) {
5361       gclog_or_tty->print_cr(
5362           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5363           worker_id, _timer.seconds());
5364     }
5365   }
5366 
5367   // We might have added oops to ClassLoaderData::_handles during the
5368   // concurrent marking phase. These oops point to newly allocated objects
5369   // that are guaranteed to be kept alive. Either by the direct allocation
5370   // code, or when the young collector processes the strong roots. Hence,
5371   // we don't have to revisit the _handles block during the remark phase.
5372 
5373   // ---------- rescan dirty cards ------------
5374   _timer.reset();
5375   _timer.start();
5376 
5377   // Do the rescan tasks for each of the two spaces
5378   // (cms_space) in turn.
5379   // "worker_id" is passed to select the task_queue for "worker_id"
5380   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5381   _timer.stop();
5382   if (PrintCMSStatistics != 0) {
5383     gclog_or_tty->print_cr(
5384       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5385       worker_id, _timer.seconds());
5386   }
5387 
5388   // ---------- steal work from other threads ...
5389   // ---------- ... and drain overflow list.
5390   _timer.reset();
5391   _timer.start();
5392   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5393   _timer.stop();
5394   if (PrintCMSStatistics != 0) {
5395     gclog_or_tty->print_cr(
5396       "Finished work stealing in %dth thread: %3.3f sec",
5397       worker_id, _timer.seconds());
5398   }
5399 }
5400 
5401 // Note that parameter "i" is not used.
5402 void
5403 CMSParRemarkTask::do_young_space_rescan(int i,
5404   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5405   HeapWord** chunk_array, size_t chunk_top) {
5406   // Until all tasks completed:
5407   // . claim an unclaimed task
5408   // . compute region boundaries corresponding to task claimed
5409   //   using chunk_array
5410   // . par_oop_iterate(cl) over that region
5411 
5412   ResourceMark rm;
5413   HandleMark   hm;
5414 
5415   SequentialSubTasksDone* pst = space->par_seq_tasks();
5416   assert(pst->valid(), "Uninitialized use?");
5417 
5418   uint nth_task = 0;
5419   uint n_tasks  = pst->n_tasks();
5420 
5421   HeapWord *start, *end;
5422   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5423     // We claimed task # nth_task; compute its boundaries.
5424     if (chunk_top == 0) {  // no samples were taken
5425       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5426       start = space->bottom();
5427       end   = space->top();
5428     } else if (nth_task == 0) {
5429       start = space->bottom();
5430       end   = chunk_array[nth_task];
5431     } else if (nth_task < (uint)chunk_top) {
5432       assert(nth_task >= 1, "Control point invariant");
5433       start = chunk_array[nth_task - 1];
5434       end   = chunk_array[nth_task];
5435     } else {
5436       assert(nth_task == (uint)chunk_top, "Control point invariant");
5437       start = chunk_array[chunk_top - 1];
5438       end   = space->top();
5439     }
5440     MemRegion mr(start, end);
5441     // Verify that mr is in space
5442     assert(mr.is_empty() || space->used_region().contains(mr),
5443            "Should be in space");
5444     // Verify that "start" is an object boundary
5445     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5446            "Should be an oop");
5447     space->par_oop_iterate(mr, cl);
5448   }
5449   pst->all_tasks_completed();
5450 }
5451 
5452 void
5453 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5454   CompactibleFreeListSpace* sp, int i,
5455   Par_MarkRefsIntoAndScanClosure* cl) {
5456   // Until all tasks completed:
5457   // . claim an unclaimed task
5458   // . compute region boundaries corresponding to task claimed
5459   // . transfer dirty bits ct->mut for that region
5460   // . apply rescanclosure to dirty mut bits for that region
5461 
5462   ResourceMark rm;
5463   HandleMark   hm;
5464 
5465   OopTaskQueue* work_q = work_queue(i);
5466   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5467   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5468   // CAUTION: This closure has state that persists across calls to
5469   // the work method dirty_range_iterate_clear() in that it has
5470   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5471   // use of that state in the imbedded UpwardsObjectClosure instance
5472   // assumes that the cards are always iterated (even if in parallel
5473   // by several threads) in monotonically increasing order per each
5474   // thread. This is true of the implementation below which picks
5475   // card ranges (chunks) in monotonically increasing order globally
5476   // and, a-fortiori, in monotonically increasing order per thread
5477   // (the latter order being a subsequence of the former).
5478   // If the work code below is ever reorganized into a more chaotic
5479   // work-partitioning form than the current "sequential tasks"
5480   // paradigm, the use of that persistent state will have to be
5481   // revisited and modified appropriately. See also related
5482   // bug 4756801 work on which should examine this code to make
5483   // sure that the changes there do not run counter to the
5484   // assumptions made here and necessary for correctness and
5485   // efficiency. Note also that this code might yield inefficient
5486   // behaviour in the case of very large objects that span one or
5487   // more work chunks. Such objects would potentially be scanned
5488   // several times redundantly. Work on 4756801 should try and
5489   // address that performance anomaly if at all possible. XXX
5490   MemRegion  full_span  = _collector->_span;
5491   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5492   MarkFromDirtyCardsClosure
5493     greyRescanClosure(_collector, full_span, // entire span of interest
5494                       sp, bm, work_q, cl);
5495 
5496   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5497   assert(pst->valid(), "Uninitialized use?");
5498   uint nth_task = 0;
5499   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5500   MemRegion span = sp->used_region();
5501   HeapWord* start_addr = span.start();
5502   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5503                                            alignment);
5504   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5505   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5506          start_addr, "Check alignment");
5507   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5508          chunk_size, "Check alignment");
5509 
5510   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5511     // Having claimed the nth_task, compute corresponding mem-region,
5512     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5513     // The alignment restriction ensures that we do not need any
5514     // synchronization with other gang-workers while setting or
5515     // clearing bits in thus chunk of the MUT.
5516     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5517                                     start_addr + (nth_task+1)*chunk_size);
5518     // The last chunk's end might be way beyond end of the
5519     // used region. In that case pull back appropriately.
5520     if (this_span.end() > end_addr) {
5521       this_span.set_end(end_addr);
5522       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5523     }
5524     // Iterate over the dirty cards covering this chunk, marking them
5525     // precleaned, and setting the corresponding bits in the mod union
5526     // table. Since we have been careful to partition at Card and MUT-word
5527     // boundaries no synchronization is needed between parallel threads.
5528     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5529                                                  &modUnionClosure);
5530 
5531     // Having transferred these marks into the modUnionTable,
5532     // rescan the marked objects on the dirty cards in the modUnionTable.
5533     // Even if this is at a synchronous collection, the initial marking
5534     // may have been done during an asynchronous collection so there
5535     // may be dirty bits in the mod-union table.
5536     _collector->_modUnionTable.dirty_range_iterate_clear(
5537                   this_span, &greyRescanClosure);
5538     _collector->_modUnionTable.verifyNoOneBitsInRange(
5539                                  this_span.start(),
5540                                  this_span.end());
5541   }
5542   pst->all_tasks_completed();  // declare that i am done
5543 }
5544 
5545 // . see if we can share work_queues with ParNew? XXX
5546 void
5547 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5548                                 int* seed) {
5549   OopTaskQueue* work_q = work_queue(i);
5550   NOT_PRODUCT(int num_steals = 0;)
5551   oop obj_to_scan;
5552   CMSBitMap* bm = &(_collector->_markBitMap);
5553 
5554   while (true) {
5555     // Completely finish any left over work from (an) earlier round(s)
5556     cl->trim_queue(0);
5557     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5558                                          (size_t)ParGCDesiredObjsFromOverflowList);
5559     // Now check if there's any work in the overflow list
5560     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5561     // only affects the number of attempts made to get work from the
5562     // overflow list and does not affect the number of workers.  Just
5563     // pass ParallelGCThreads so this behavior is unchanged.
5564     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5565                                                 work_q,
5566                                                 ParallelGCThreads)) {
5567       // found something in global overflow list;
5568       // not yet ready to go stealing work from others.
5569       // We'd like to assert(work_q->size() != 0, ...)
5570       // because we just took work from the overflow list,
5571       // but of course we can't since all of that could have
5572       // been already stolen from us.
5573       // "He giveth and He taketh away."
5574       continue;
5575     }
5576     // Verify that we have no work before we resort to stealing
5577     assert(work_q->size() == 0, "Have work, shouldn't steal");
5578     // Try to steal from other queues that have work
5579     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5580       NOT_PRODUCT(num_steals++;)
5581       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5582       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5583       // Do scanning work
5584       obj_to_scan->oop_iterate(cl);
5585       // Loop around, finish this work, and try to steal some more
5586     } else if (terminator()->offer_termination()) {
5587         break;  // nirvana from the infinite cycle
5588     }
5589   }
5590   NOT_PRODUCT(
5591     if (PrintCMSStatistics != 0) {
5592       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5593     }
5594   )
5595   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5596          "Else our work is not yet done");
5597 }
5598 
5599 // Record object boundaries in _eden_chunk_array by sampling the eden
5600 // top in the slow-path eden object allocation code path and record
5601 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5602 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5603 // sampling in sample_eden() that activates during the part of the
5604 // preclean phase.
5605 void CMSCollector::sample_eden_chunk() {
5606   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5607     if (_eden_chunk_lock->try_lock()) {
5608       // Record a sample. This is the critical section. The contents
5609       // of the _eden_chunk_array have to be non-decreasing in the
5610       // address order.
5611       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5612       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5613              "Unexpected state of Eden");
5614       if (_eden_chunk_index == 0 ||
5615           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5616            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5617                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5618         _eden_chunk_index++;  // commit sample
5619       }
5620       _eden_chunk_lock->unlock();
5621     }
5622   }
5623 }
5624 
5625 // Return a thread-local PLAB recording array, as appropriate.
5626 void* CMSCollector::get_data_recorder(int thr_num) {
5627   if (_survivor_plab_array != NULL &&
5628       (CMSPLABRecordAlways ||
5629        (_collectorState > Marking && _collectorState < FinalMarking))) {
5630     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5631     ChunkArray* ca = &_survivor_plab_array[thr_num];
5632     ca->reset();   // clear it so that fresh data is recorded
5633     return (void*) ca;
5634   } else {
5635     return NULL;
5636   }
5637 }
5638 
5639 // Reset all the thread-local PLAB recording arrays
5640 void CMSCollector::reset_survivor_plab_arrays() {
5641   for (uint i = 0; i < ParallelGCThreads; i++) {
5642     _survivor_plab_array[i].reset();
5643   }
5644 }
5645 
5646 // Merge the per-thread plab arrays into the global survivor chunk
5647 // array which will provide the partitioning of the survivor space
5648 // for CMS rescan.
5649 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5650                                               int no_of_gc_threads) {
5651   assert(_survivor_plab_array  != NULL, "Error");
5652   assert(_survivor_chunk_array != NULL, "Error");
5653   assert(_collectorState == FinalMarking, "Error");
5654   for (int j = 0; j < no_of_gc_threads; j++) {
5655     _cursor[j] = 0;
5656   }
5657   HeapWord* top = surv->top();
5658   size_t i;
5659   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5660     HeapWord* min_val = top;          // Higher than any PLAB address
5661     uint      min_tid = 0;            // position of min_val this round
5662     for (int j = 0; j < no_of_gc_threads; j++) {
5663       ChunkArray* cur_sca = &_survivor_plab_array[j];
5664       if (_cursor[j] == cur_sca->end()) {
5665         continue;
5666       }
5667       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5668       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5669       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5670       if (cur_val < min_val) {
5671         min_tid = j;
5672         min_val = cur_val;
5673       } else {
5674         assert(cur_val < top, "All recorded addresses should be less");
5675       }
5676     }
5677     // At this point min_val and min_tid are respectively
5678     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5679     // and the thread (j) that witnesses that address.
5680     // We record this address in the _survivor_chunk_array[i]
5681     // and increment _cursor[min_tid] prior to the next round i.
5682     if (min_val == top) {
5683       break;
5684     }
5685     _survivor_chunk_array[i] = min_val;
5686     _cursor[min_tid]++;
5687   }
5688   // We are all done; record the size of the _survivor_chunk_array
5689   _survivor_chunk_index = i; // exclusive: [0, i)
5690   if (PrintCMSStatistics > 0) {
5691     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5692   }
5693   // Verify that we used up all the recorded entries
5694   #ifdef ASSERT
5695     size_t total = 0;
5696     for (int j = 0; j < no_of_gc_threads; j++) {
5697       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5698       total += _cursor[j];
5699     }
5700     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5701     // Check that the merged array is in sorted order
5702     if (total > 0) {
5703       for (size_t i = 0; i < total - 1; i++) {
5704         if (PrintCMSStatistics > 0) {
5705           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5706                               i, _survivor_chunk_array[i]);
5707         }
5708         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5709                "Not sorted");
5710       }
5711     }
5712   #endif // ASSERT
5713 }
5714 
5715 // Set up the space's par_seq_tasks structure for work claiming
5716 // for parallel rescan of young gen.
5717 // See ParRescanTask where this is currently used.
5718 void
5719 CMSCollector::
5720 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5721   assert(n_threads > 0, "Unexpected n_threads argument");
5722   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5723 
5724   // Eden space
5725   {
5726     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5727     assert(!pst->valid(), "Clobbering existing data?");
5728     // Each valid entry in [0, _eden_chunk_index) represents a task.
5729     size_t n_tasks = _eden_chunk_index + 1;
5730     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5731     // Sets the condition for completion of the subtask (how many threads
5732     // need to finish in order to be done).
5733     pst->set_n_threads(n_threads);
5734     pst->set_n_tasks((int)n_tasks);
5735   }
5736 
5737   // Merge the survivor plab arrays into _survivor_chunk_array
5738   if (_survivor_plab_array != NULL) {
5739     merge_survivor_plab_arrays(dng->from(), n_threads);
5740   } else {
5741     assert(_survivor_chunk_index == 0, "Error");
5742   }
5743 
5744   // To space
5745   {
5746     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5747     assert(!pst->valid(), "Clobbering existing data?");
5748     // Sets the condition for completion of the subtask (how many threads
5749     // need to finish in order to be done).
5750     pst->set_n_threads(n_threads);
5751     pst->set_n_tasks(1);
5752     assert(pst->valid(), "Error");
5753   }
5754 
5755   // From space
5756   {
5757     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5758     assert(!pst->valid(), "Clobbering existing data?");
5759     size_t n_tasks = _survivor_chunk_index + 1;
5760     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5761     // Sets the condition for completion of the subtask (how many threads
5762     // need to finish in order to be done).
5763     pst->set_n_threads(n_threads);
5764     pst->set_n_tasks((int)n_tasks);
5765     assert(pst->valid(), "Error");
5766   }
5767 }
5768 
5769 // Parallel version of remark
5770 void CMSCollector::do_remark_parallel() {
5771   GenCollectedHeap* gch = GenCollectedHeap::heap();
5772   FlexibleWorkGang* workers = gch->workers();
5773   assert(workers != NULL, "Need parallel worker threads.");
5774   // Choose to use the number of GC workers most recently set
5775   // into "active_workers".  If active_workers is not set, set it
5776   // to ParallelGCThreads.
5777   int n_workers = workers->active_workers();
5778   if (n_workers == 0) {
5779     assert(n_workers > 0, "Should have been set during scavenge");
5780     n_workers = ParallelGCThreads;
5781     workers->set_active_workers(n_workers);
5782   }
5783   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5784 
5785   CMSParRemarkTask tsk(this,
5786     cms_space,
5787     n_workers, workers, task_queues());
5788 
5789   // Set up for parallel process_strong_roots work.
5790   gch->set_par_threads(n_workers);
5791   // We won't be iterating over the cards in the card table updating
5792   // the younger_gen cards, so we shouldn't call the following else
5793   // the verification code as well as subsequent younger_refs_iterate
5794   // code would get confused. XXX
5795   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5796 
5797   // The young gen rescan work will not be done as part of
5798   // process_strong_roots (which currently doesn't knw how to
5799   // parallelize such a scan), but rather will be broken up into
5800   // a set of parallel tasks (via the sampling that the [abortable]
5801   // preclean phase did of EdenSpace, plus the [two] tasks of
5802   // scanning the [two] survivor spaces. Further fine-grain
5803   // parallelization of the scanning of the survivor spaces
5804   // themselves, and of precleaning of the younger gen itself
5805   // is deferred to the future.
5806   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5807 
5808   // The dirty card rescan work is broken up into a "sequence"
5809   // of parallel tasks (per constituent space) that are dynamically
5810   // claimed by the parallel threads.
5811   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5812 
5813   // It turns out that even when we're using 1 thread, doing the work in a
5814   // separate thread causes wide variance in run times.  We can't help this
5815   // in the multi-threaded case, but we special-case n=1 here to get
5816   // repeatable measurements of the 1-thread overhead of the parallel code.
5817   if (n_workers > 1) {
5818     // Make refs discovery MT-safe, if it isn't already: it may not
5819     // necessarily be so, since it's possible that we are doing
5820     // ST marking.
5821     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5822     GenCollectedHeap::StrongRootsScope srs(gch);
5823     workers->run_task(&tsk);
5824   } else {
5825     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5826     GenCollectedHeap::StrongRootsScope srs(gch);
5827     tsk.work(0);
5828   }
5829 
5830   gch->set_par_threads(0);  // 0 ==> non-parallel.
5831   // restore, single-threaded for now, any preserved marks
5832   // as a result of work_q overflow
5833   restore_preserved_marks_if_any();
5834 }
5835 
5836 // Non-parallel version of remark
5837 void CMSCollector::do_remark_non_parallel() {
5838   ResourceMark rm;
5839   HandleMark   hm;
5840   GenCollectedHeap* gch = GenCollectedHeap::heap();
5841   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5842 
5843   MarkRefsIntoAndScanClosure
5844     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5845              &_markStack, this,
5846              false /* should_yield */, false /* not precleaning */);
5847   MarkFromDirtyCardsClosure
5848     markFromDirtyCardsClosure(this, _span,
5849                               NULL,  // space is set further below
5850                               &_markBitMap, &_markStack, &mrias_cl);
5851   {
5852     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5853     // Iterate over the dirty cards, setting the corresponding bits in the
5854     // mod union table.
5855     {
5856       ModUnionClosure modUnionClosure(&_modUnionTable);
5857       _ct->ct_bs()->dirty_card_iterate(
5858                       _cmsGen->used_region(),
5859                       &modUnionClosure);
5860     }
5861     // Having transferred these marks into the modUnionTable, we just need
5862     // to rescan the marked objects on the dirty cards in the modUnionTable.
5863     // The initial marking may have been done during an asynchronous
5864     // collection so there may be dirty bits in the mod-union table.
5865     const int alignment =
5866       CardTableModRefBS::card_size * BitsPerWord;
5867     {
5868       // ... First handle dirty cards in CMS gen
5869       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5870       MemRegion ur = _cmsGen->used_region();
5871       HeapWord* lb = ur.start();
5872       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5873       MemRegion cms_span(lb, ub);
5874       _modUnionTable.dirty_range_iterate_clear(cms_span,
5875                                                &markFromDirtyCardsClosure);
5876       verify_work_stacks_empty();
5877       if (PrintCMSStatistics != 0) {
5878         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5879           markFromDirtyCardsClosure.num_dirty_cards());
5880       }
5881     }
5882   }
5883   if (VerifyDuringGC &&
5884       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5885     HandleMark hm;  // Discard invalid handles created during verification
5886     Universe::verify();
5887   }
5888   {
5889     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5890 
5891     verify_work_stacks_empty();
5892 
5893     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5894     GenCollectedHeap::StrongRootsScope srs(gch);
5895     gch->gen_process_strong_roots(_cmsGen->level(),
5896                                   true,  // younger gens as roots
5897                                   false, // use the local StrongRootsScope
5898                                   false, // not scavenging
5899                                   SharedHeap::ScanningOption(roots_scanning_options()),
5900                                   &mrias_cl,
5901                                   true,   // walk code active on stacks
5902                                   NULL,
5903                                   NULL);  // The dirty klasses will be handled below
5904 
5905     assert(should_unload_classes()
5906            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5907            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5908   }
5909 
5910   {
5911     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5912 
5913     verify_work_stacks_empty();
5914 
5915     // Scan all class loader data objects that might have been introduced
5916     // during concurrent marking.
5917     ResourceMark rm;
5918     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5919     for (int i = 0; i < array->length(); i++) {
5920       mrias_cl.do_class_loader_data(array->at(i));
5921     }
5922 
5923     // We don't need to keep track of new CLDs anymore.
5924     ClassLoaderDataGraph::remember_new_clds(false);
5925 
5926     verify_work_stacks_empty();
5927   }
5928 
5929   {
5930     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
5931 
5932     verify_work_stacks_empty();
5933 
5934     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5935     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5936 
5937     verify_work_stacks_empty();
5938   }
5939 
5940   // We might have added oops to ClassLoaderData::_handles during the
5941   // concurrent marking phase. These oops point to newly allocated objects
5942   // that are guaranteed to be kept alive. Either by the direct allocation
5943   // code, or when the young collector processes the strong roots. Hence,
5944   // we don't have to revisit the _handles block during the remark phase.
5945 
5946   verify_work_stacks_empty();
5947   // Restore evacuated mark words, if any, used for overflow list links
5948   if (!CMSOverflowEarlyRestoration) {
5949     restore_preserved_marks_if_any();
5950   }
5951   verify_overflow_empty();
5952 }
5953 
5954 ////////////////////////////////////////////////////////
5955 // Parallel Reference Processing Task Proxy Class
5956 ////////////////////////////////////////////////////////
5957 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5958   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5959   CMSCollector*          _collector;
5960   CMSBitMap*             _mark_bit_map;
5961   const MemRegion        _span;
5962   ProcessTask&           _task;
5963 
5964 public:
5965   CMSRefProcTaskProxy(ProcessTask&     task,
5966                       CMSCollector*    collector,
5967                       const MemRegion& span,
5968                       CMSBitMap*       mark_bit_map,
5969                       AbstractWorkGang* workers,
5970                       OopTaskQueueSet* task_queues):
5971     // XXX Should superclass AGTWOQ also know about AWG since it knows
5972     // about the task_queues used by the AWG? Then it could initialize
5973     // the terminator() object. See 6984287. The set_for_termination()
5974     // below is a temporary band-aid for the regression in 6984287.
5975     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5976       task_queues),
5977     _task(task),
5978     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5979   {
5980     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5981            "Inconsistency in _span");
5982     set_for_termination(workers->active_workers());
5983   }
5984 
5985   OopTaskQueueSet* task_queues() { return queues(); }
5986 
5987   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5988 
5989   void do_work_steal(int i,
5990                      CMSParDrainMarkingStackClosure* drain,
5991                      CMSParKeepAliveClosure* keep_alive,
5992                      int* seed);
5993 
5994   virtual void work(uint worker_id);
5995 };
5996 
5997 void CMSRefProcTaskProxy::work(uint worker_id) {
5998   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5999   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6000                                         _mark_bit_map,
6001                                         work_queue(worker_id));
6002   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6003                                                  _mark_bit_map,
6004                                                  work_queue(worker_id));
6005   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6006   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6007   if (_task.marks_oops_alive()) {
6008     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6009                   _collector->hash_seed(worker_id));
6010   }
6011   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6012   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6013 }
6014 
6015 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6016   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6017   EnqueueTask& _task;
6018 
6019 public:
6020   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6021     : AbstractGangTask("Enqueue reference objects in parallel"),
6022       _task(task)
6023   { }
6024 
6025   virtual void work(uint worker_id)
6026   {
6027     _task.work(worker_id);
6028   }
6029 };
6030 
6031 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6032   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6033    _span(span),
6034    _bit_map(bit_map),
6035    _work_queue(work_queue),
6036    _mark_and_push(collector, span, bit_map, work_queue),
6037    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6038                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6039 { }
6040 
6041 // . see if we can share work_queues with ParNew? XXX
6042 void CMSRefProcTaskProxy::do_work_steal(int i,
6043   CMSParDrainMarkingStackClosure* drain,
6044   CMSParKeepAliveClosure* keep_alive,
6045   int* seed) {
6046   OopTaskQueue* work_q = work_queue(i);
6047   NOT_PRODUCT(int num_steals = 0;)
6048   oop obj_to_scan;
6049 
6050   while (true) {
6051     // Completely finish any left over work from (an) earlier round(s)
6052     drain->trim_queue(0);
6053     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6054                                          (size_t)ParGCDesiredObjsFromOverflowList);
6055     // Now check if there's any work in the overflow list
6056     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6057     // only affects the number of attempts made to get work from the
6058     // overflow list and does not affect the number of workers.  Just
6059     // pass ParallelGCThreads so this behavior is unchanged.
6060     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6061                                                 work_q,
6062                                                 ParallelGCThreads)) {
6063       // Found something in global overflow list;
6064       // not yet ready to go stealing work from others.
6065       // We'd like to assert(work_q->size() != 0, ...)
6066       // because we just took work from the overflow list,
6067       // but of course we can't, since all of that might have
6068       // been already stolen from us.
6069       continue;
6070     }
6071     // Verify that we have no work before we resort to stealing
6072     assert(work_q->size() == 0, "Have work, shouldn't steal");
6073     // Try to steal from other queues that have work
6074     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6075       NOT_PRODUCT(num_steals++;)
6076       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6077       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6078       // Do scanning work
6079       obj_to_scan->oop_iterate(keep_alive);
6080       // Loop around, finish this work, and try to steal some more
6081     } else if (terminator()->offer_termination()) {
6082       break;  // nirvana from the infinite cycle
6083     }
6084   }
6085   NOT_PRODUCT(
6086     if (PrintCMSStatistics != 0) {
6087       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6088     }
6089   )
6090 }
6091 
6092 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6093 {
6094   GenCollectedHeap* gch = GenCollectedHeap::heap();
6095   FlexibleWorkGang* workers = gch->workers();
6096   assert(workers != NULL, "Need parallel worker threads.");
6097   CMSRefProcTaskProxy rp_task(task, &_collector,
6098                               _collector.ref_processor()->span(),
6099                               _collector.markBitMap(),
6100                               workers, _collector.task_queues());
6101   workers->run_task(&rp_task);
6102 }
6103 
6104 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6105 {
6106 
6107   GenCollectedHeap* gch = GenCollectedHeap::heap();
6108   FlexibleWorkGang* workers = gch->workers();
6109   assert(workers != NULL, "Need parallel worker threads.");
6110   CMSRefEnqueueTaskProxy enq_task(task);
6111   workers->run_task(&enq_task);
6112 }
6113 
6114 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6115 
6116   ResourceMark rm;
6117   HandleMark   hm;
6118 
6119   ReferenceProcessor* rp = ref_processor();
6120   assert(rp->span().equals(_span), "Spans should be equal");
6121   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6122   // Process weak references.
6123   rp->setup_policy(clear_all_soft_refs);
6124   verify_work_stacks_empty();
6125 
6126   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6127                                           &_markStack, false /* !preclean */);
6128   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6129                                 _span, &_markBitMap, &_markStack,
6130                                 &cmsKeepAliveClosure, false /* !preclean */);
6131   {
6132     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6133 
6134     ReferenceProcessorStats stats;
6135     if (rp->processing_is_mt()) {
6136       // Set the degree of MT here.  If the discovery is done MT, there
6137       // may have been a different number of threads doing the discovery
6138       // and a different number of discovered lists may have Ref objects.
6139       // That is OK as long as the Reference lists are balanced (see
6140       // balance_all_queues() and balance_queues()).
6141       GenCollectedHeap* gch = GenCollectedHeap::heap();
6142       int active_workers = ParallelGCThreads;
6143       FlexibleWorkGang* workers = gch->workers();
6144       if (workers != NULL) {
6145         active_workers = workers->active_workers();
6146         // The expectation is that active_workers will have already
6147         // been set to a reasonable value.  If it has not been set,
6148         // investigate.
6149         assert(active_workers > 0, "Should have been set during scavenge");
6150       }
6151       rp->set_active_mt_degree(active_workers);
6152       CMSRefProcTaskExecutor task_executor(*this);
6153       stats = rp->process_discovered_references(&_is_alive_closure,
6154                                         &cmsKeepAliveClosure,
6155                                         &cmsDrainMarkingStackClosure,
6156                                         &task_executor,
6157                                         _gc_timer_cm);
6158     } else {
6159       stats = rp->process_discovered_references(&_is_alive_closure,
6160                                         &cmsKeepAliveClosure,
6161                                         &cmsDrainMarkingStackClosure,
6162                                         NULL,
6163                                         _gc_timer_cm);
6164     }
6165     _gc_tracer_cm->report_gc_reference_stats(stats);
6166 
6167   }
6168 
6169   // This is the point where the entire marking should have completed.
6170   verify_work_stacks_empty();
6171 
6172   if (should_unload_classes()) {
6173     {
6174       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6175 
6176       // Unload classes and purge the SystemDictionary.
6177       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6178 
6179       // Unload nmethods.
6180       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6181 
6182       // Prune dead klasses from subklass/sibling/implementor lists.
6183       Klass::clean_weak_klass_links(&_is_alive_closure);
6184     }
6185 
6186     {
6187       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6188       // Clean up unreferenced symbols in symbol table.
6189       SymbolTable::unlink();
6190     }
6191   }
6192 
6193   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6194   // Need to check if we really scanned the StringTable.
6195   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6196     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6197     // Delete entries for dead interned strings.
6198     StringTable::unlink(&_is_alive_closure);
6199   }
6200 
6201   // Restore any preserved marks as a result of mark stack or
6202   // work queue overflow
6203   restore_preserved_marks_if_any();  // done single-threaded for now
6204 
6205   rp->set_enqueuing_is_done(true);
6206   if (rp->processing_is_mt()) {
6207     rp->balance_all_queues();
6208     CMSRefProcTaskExecutor task_executor(*this);
6209     rp->enqueue_discovered_references(&task_executor);
6210   } else {
6211     rp->enqueue_discovered_references(NULL);
6212   }
6213   rp->verify_no_references_recorded();
6214   assert(!rp->discovery_enabled(), "should have been disabled");
6215 }
6216 
6217 #ifndef PRODUCT
6218 void CMSCollector::check_correct_thread_executing() {
6219   Thread* t = Thread::current();
6220   // Only the VM thread or the CMS thread should be here.
6221   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6222          "Unexpected thread type");
6223   // If this is the vm thread, the foreground process
6224   // should not be waiting.  Note that _foregroundGCIsActive is
6225   // true while the foreground collector is waiting.
6226   if (_foregroundGCShouldWait) {
6227     // We cannot be the VM thread
6228     assert(t->is_ConcurrentGC_thread(),
6229            "Should be CMS thread");
6230   } else {
6231     // We can be the CMS thread only if we are in a stop-world
6232     // phase of CMS collection.
6233     if (t->is_ConcurrentGC_thread()) {
6234       assert(_collectorState == InitialMarking ||
6235              _collectorState == FinalMarking,
6236              "Should be a stop-world phase");
6237       // The CMS thread should be holding the CMS_token.
6238       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6239              "Potential interference with concurrently "
6240              "executing VM thread");
6241     }
6242   }
6243 }
6244 #endif
6245 
6246 void CMSCollector::sweep(bool asynch) {
6247   assert(_collectorState == Sweeping, "just checking");
6248   check_correct_thread_executing();
6249   verify_work_stacks_empty();
6250   verify_overflow_empty();
6251   increment_sweep_count();
6252   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6253 
6254   _inter_sweep_timer.stop();
6255   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6256   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6257 
6258   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6259   _intra_sweep_timer.reset();
6260   _intra_sweep_timer.start();
6261   if (asynch) {
6262     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6263     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6264     // First sweep the old gen
6265     {
6266       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6267                                bitMapLock());
6268       sweepWork(_cmsGen, asynch);
6269     }
6270 
6271     // Update Universe::_heap_*_at_gc figures.
6272     // We need all the free list locks to make the abstract state
6273     // transition from Sweeping to Resetting. See detailed note
6274     // further below.
6275     {
6276       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6277       // Update heap occupancy information which is used as
6278       // input to soft ref clearing policy at the next gc.
6279       Universe::update_heap_info_at_gc();
6280       _collectorState = Resizing;
6281     }
6282   } else {
6283     // already have needed locks
6284     sweepWork(_cmsGen,  asynch);
6285     // Update heap occupancy information which is used as
6286     // input to soft ref clearing policy at the next gc.
6287     Universe::update_heap_info_at_gc();
6288     _collectorState = Resizing;
6289   }
6290   verify_work_stacks_empty();
6291   verify_overflow_empty();
6292 
6293   if (should_unload_classes()) {
6294     ClassLoaderDataGraph::purge();
6295   }
6296 
6297   _intra_sweep_timer.stop();
6298   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6299 
6300   _inter_sweep_timer.reset();
6301   _inter_sweep_timer.start();
6302 
6303   // We need to use a monotonically non-deccreasing time in ms
6304   // or we will see time-warp warnings and os::javaTimeMillis()
6305   // does not guarantee monotonicity.
6306   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6307   update_time_of_last_gc(now);
6308 
6309   // NOTE on abstract state transitions:
6310   // Mutators allocate-live and/or mark the mod-union table dirty
6311   // based on the state of the collection.  The former is done in
6312   // the interval [Marking, Sweeping] and the latter in the interval
6313   // [Marking, Sweeping).  Thus the transitions into the Marking state
6314   // and out of the Sweeping state must be synchronously visible
6315   // globally to the mutators.
6316   // The transition into the Marking state happens with the world
6317   // stopped so the mutators will globally see it.  Sweeping is
6318   // done asynchronously by the background collector so the transition
6319   // from the Sweeping state to the Resizing state must be done
6320   // under the freelistLock (as is the check for whether to
6321   // allocate-live and whether to dirty the mod-union table).
6322   assert(_collectorState == Resizing, "Change of collector state to"
6323     " Resizing must be done under the freelistLocks (plural)");
6324 
6325   // Now that sweeping has been completed, we clear
6326   // the incremental_collection_failed flag,
6327   // thus inviting a younger gen collection to promote into
6328   // this generation. If such a promotion may still fail,
6329   // the flag will be set again when a young collection is
6330   // attempted.
6331   GenCollectedHeap* gch = GenCollectedHeap::heap();
6332   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6333   gch->update_full_collections_completed(_collection_count_start);
6334 }
6335 
6336 // FIX ME!!! Looks like this belongs in CFLSpace, with
6337 // CMSGen merely delegating to it.
6338 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6339   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6340   HeapWord*  minAddr        = _cmsSpace->bottom();
6341   HeapWord*  largestAddr    =
6342     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6343   if (largestAddr == NULL) {
6344     // The dictionary appears to be empty.  In this case
6345     // try to coalesce at the end of the heap.
6346     largestAddr = _cmsSpace->end();
6347   }
6348   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6349   size_t nearLargestOffset =
6350     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6351   if (PrintFLSStatistics != 0) {
6352     gclog_or_tty->print_cr(
6353       "CMS: Large Block: " PTR_FORMAT ";"
6354       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6355       largestAddr,
6356       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6357   }
6358   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6359 }
6360 
6361 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6362   return addr >= _cmsSpace->nearLargestChunk();
6363 }
6364 
6365 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6366   return _cmsSpace->find_chunk_at_end();
6367 }
6368 
6369 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6370                                                     bool full) {
6371   // The next lower level has been collected.  Gather any statistics
6372   // that are of interest at this point.
6373   if (!full && (current_level + 1) == level()) {
6374     // Gather statistics on the young generation collection.
6375     collector()->stats().record_gc0_end(used());
6376   }
6377 }
6378 
6379 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6380   GenCollectedHeap* gch = GenCollectedHeap::heap();
6381   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6382     "Wrong type of heap");
6383   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6384     gch->gen_policy()->size_policy();
6385   assert(sp->is_gc_cms_adaptive_size_policy(),
6386     "Wrong type of size policy");
6387   return sp;
6388 }
6389 
6390 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6391   if (PrintGCDetails && Verbose) {
6392     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6393   }
6394   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6395   _debug_collection_type =
6396     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6397   if (PrintGCDetails && Verbose) {
6398     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6399   }
6400 }
6401 
6402 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6403   bool asynch) {
6404   // We iterate over the space(s) underlying this generation,
6405   // checking the mark bit map to see if the bits corresponding
6406   // to specific blocks are marked or not. Blocks that are
6407   // marked are live and are not swept up. All remaining blocks
6408   // are swept up, with coalescing on-the-fly as we sweep up
6409   // contiguous free and/or garbage blocks:
6410   // We need to ensure that the sweeper synchronizes with allocators
6411   // and stop-the-world collectors. In particular, the following
6412   // locks are used:
6413   // . CMS token: if this is held, a stop the world collection cannot occur
6414   // . freelistLock: if this is held no allocation can occur from this
6415   //                 generation by another thread
6416   // . bitMapLock: if this is held, no other thread can access or update
6417   //
6418 
6419   // Note that we need to hold the freelistLock if we use
6420   // block iterate below; else the iterator might go awry if
6421   // a mutator (or promotion) causes block contents to change
6422   // (for instance if the allocator divvies up a block).
6423   // If we hold the free list lock, for all practical purposes
6424   // young generation GC's can't occur (they'll usually need to
6425   // promote), so we might as well prevent all young generation
6426   // GC's while we do a sweeping step. For the same reason, we might
6427   // as well take the bit map lock for the entire duration
6428 
6429   // check that we hold the requisite locks
6430   assert(have_cms_token(), "Should hold cms token");
6431   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6432          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6433         "Should possess CMS token to sweep");
6434   assert_lock_strong(gen->freelistLock());
6435   assert_lock_strong(bitMapLock());
6436 
6437   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6438   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6439   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6440                                       _inter_sweep_estimate.padded_average(),
6441                                       _intra_sweep_estimate.padded_average());
6442   gen->setNearLargestChunk();
6443 
6444   {
6445     SweepClosure sweepClosure(this, gen, &_markBitMap,
6446                             CMSYield && asynch);
6447     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6448     // We need to free-up/coalesce garbage/blocks from a
6449     // co-terminal free run. This is done in the SweepClosure
6450     // destructor; so, do not remove this scope, else the
6451     // end-of-sweep-census below will be off by a little bit.
6452   }
6453   gen->cmsSpace()->sweep_completed();
6454   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6455   if (should_unload_classes()) {                // unloaded classes this cycle,
6456     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6457   } else {                                      // did not unload classes,
6458     _concurrent_cycles_since_last_unload++;     // ... increment count
6459   }
6460 }
6461 
6462 // Reset CMS data structures (for now just the marking bit map)
6463 // preparatory for the next cycle.
6464 void CMSCollector::reset(bool asynch) {
6465   GenCollectedHeap* gch = GenCollectedHeap::heap();
6466   CMSAdaptiveSizePolicy* sp = size_policy();
6467   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6468   if (asynch) {
6469     CMSTokenSyncWithLocks ts(true, bitMapLock());
6470 
6471     // If the state is not "Resetting", the foreground  thread
6472     // has done a collection and the resetting.
6473     if (_collectorState != Resetting) {
6474       assert(_collectorState == Idling, "The state should only change"
6475         " because the foreground collector has finished the collection");
6476       return;
6477     }
6478 
6479     // Clear the mark bitmap (no grey objects to start with)
6480     // for the next cycle.
6481     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6482     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6483 
6484     HeapWord* curAddr = _markBitMap.startWord();
6485     while (curAddr < _markBitMap.endWord()) {
6486       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6487       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6488       _markBitMap.clear_large_range(chunk);
6489       if (ConcurrentMarkSweepThread::should_yield() &&
6490           !foregroundGCIsActive() &&
6491           CMSYield) {
6492         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6493                "CMS thread should hold CMS token");
6494         assert_lock_strong(bitMapLock());
6495         bitMapLock()->unlock();
6496         ConcurrentMarkSweepThread::desynchronize(true);
6497         ConcurrentMarkSweepThread::acknowledge_yield_request();
6498         stopTimer();
6499         if (PrintCMSStatistics != 0) {
6500           incrementYields();
6501         }
6502         icms_wait();
6503 
6504         // See the comment in coordinator_yield()
6505         for (unsigned i = 0; i < CMSYieldSleepCount &&
6506                          ConcurrentMarkSweepThread::should_yield() &&
6507                          !CMSCollector::foregroundGCIsActive(); ++i) {
6508           os::sleep(Thread::current(), 1, false);
6509           ConcurrentMarkSweepThread::acknowledge_yield_request();
6510         }
6511 
6512         ConcurrentMarkSweepThread::synchronize(true);
6513         bitMapLock()->lock_without_safepoint_check();
6514         startTimer();
6515       }
6516       curAddr = chunk.end();
6517     }
6518     // A successful mostly concurrent collection has been done.
6519     // Because only the full (i.e., concurrent mode failure) collections
6520     // are being measured for gc overhead limits, clean the "near" flag
6521     // and count.
6522     sp->reset_gc_overhead_limit_count();
6523     _collectorState = Idling;
6524   } else {
6525     // already have the lock
6526     assert(_collectorState == Resetting, "just checking");
6527     assert_lock_strong(bitMapLock());
6528     _markBitMap.clear_all();
6529     _collectorState = Idling;
6530   }
6531 
6532   // Stop incremental mode after a cycle completes, so that any future cycles
6533   // are triggered by allocation.
6534   stop_icms();
6535 
6536   NOT_PRODUCT(
6537     if (RotateCMSCollectionTypes) {
6538       _cmsGen->rotate_debug_collection_type();
6539     }
6540   )
6541 
6542   register_gc_end();
6543 }
6544 
6545 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6546   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6547   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6548   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6549   TraceCollectorStats tcs(counters());
6550 
6551   switch (op) {
6552     case CMS_op_checkpointRootsInitial: {
6553       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6554       checkpointRootsInitial(true);       // asynch
6555       if (PrintGC) {
6556         _cmsGen->printOccupancy("initial-mark");
6557       }
6558       break;
6559     }
6560     case CMS_op_checkpointRootsFinal: {
6561       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6562       checkpointRootsFinal(true,    // asynch
6563                            false,   // !clear_all_soft_refs
6564                            false);  // !init_mark_was_synchronous
6565       if (PrintGC) {
6566         _cmsGen->printOccupancy("remark");
6567       }
6568       break;
6569     }
6570     default:
6571       fatal("No such CMS_op");
6572   }
6573 }
6574 
6575 #ifndef PRODUCT
6576 size_t const CMSCollector::skip_header_HeapWords() {
6577   return FreeChunk::header_size();
6578 }
6579 
6580 // Try and collect here conditions that should hold when
6581 // CMS thread is exiting. The idea is that the foreground GC
6582 // thread should not be blocked if it wants to terminate
6583 // the CMS thread and yet continue to run the VM for a while
6584 // after that.
6585 void CMSCollector::verify_ok_to_terminate() const {
6586   assert(Thread::current()->is_ConcurrentGC_thread(),
6587          "should be called by CMS thread");
6588   assert(!_foregroundGCShouldWait, "should be false");
6589   // We could check here that all the various low-level locks
6590   // are not held by the CMS thread, but that is overkill; see
6591   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6592   // is checked.
6593 }
6594 #endif
6595 
6596 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6597    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6598           "missing Printezis mark?");
6599   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6600   size_t size = pointer_delta(nextOneAddr + 1, addr);
6601   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6602          "alignment problem");
6603   assert(size >= 3, "Necessary for Printezis marks to work");
6604   return size;
6605 }
6606 
6607 // A variant of the above (block_size_using_printezis_bits()) except
6608 // that we return 0 if the P-bits are not yet set.
6609 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6610   if (_markBitMap.isMarked(addr + 1)) {
6611     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6612     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6613     size_t size = pointer_delta(nextOneAddr + 1, addr);
6614     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6615            "alignment problem");
6616     assert(size >= 3, "Necessary for Printezis marks to work");
6617     return size;
6618   }
6619   return 0;
6620 }
6621 
6622 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6623   size_t sz = 0;
6624   oop p = (oop)addr;
6625   if (p->klass_or_null() != NULL) {
6626     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6627   } else {
6628     sz = block_size_using_printezis_bits(addr);
6629   }
6630   assert(sz > 0, "size must be nonzero");
6631   HeapWord* next_block = addr + sz;
6632   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6633                                              CardTableModRefBS::card_size);
6634   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6635          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6636          "must be different cards");
6637   return next_card;
6638 }
6639 
6640 
6641 // CMS Bit Map Wrapper /////////////////////////////////////////
6642 
6643 // Construct a CMS bit map infrastructure, but don't create the
6644 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6645 // further below.
6646 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6647   _bm(),
6648   _shifter(shifter),
6649   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6650 {
6651   _bmStartWord = 0;
6652   _bmWordSize  = 0;
6653 }
6654 
6655 bool CMSBitMap::allocate(MemRegion mr) {
6656   _bmStartWord = mr.start();
6657   _bmWordSize  = mr.word_size();
6658   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6659                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6660   if (!brs.is_reserved()) {
6661     warning("CMS bit map allocation failure");
6662     return false;
6663   }
6664   // For now we'll just commit all of the bit map up fromt.
6665   // Later on we'll try to be more parsimonious with swap.
6666   if (!_virtual_space.initialize(brs, brs.size())) {
6667     warning("CMS bit map backing store failure");
6668     return false;
6669   }
6670   assert(_virtual_space.committed_size() == brs.size(),
6671          "didn't reserve backing store for all of CMS bit map?");
6672   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6673   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6674          _bmWordSize, "inconsistency in bit map sizing");
6675   _bm.set_size(_bmWordSize >> _shifter);
6676 
6677   // bm.clear(); // can we rely on getting zero'd memory? verify below
6678   assert(isAllClear(),
6679          "Expected zero'd memory from ReservedSpace constructor");
6680   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6681          "consistency check");
6682   return true;
6683 }
6684 
6685 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6686   HeapWord *next_addr, *end_addr, *last_addr;
6687   assert_locked();
6688   assert(covers(mr), "out-of-range error");
6689   // XXX assert that start and end are appropriately aligned
6690   for (next_addr = mr.start(), end_addr = mr.end();
6691        next_addr < end_addr; next_addr = last_addr) {
6692     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6693     last_addr = dirty_region.end();
6694     if (!dirty_region.is_empty()) {
6695       cl->do_MemRegion(dirty_region);
6696     } else {
6697       assert(last_addr == end_addr, "program logic");
6698       return;
6699     }
6700   }
6701 }
6702 
6703 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6704   _bm.print_on_error(st, prefix);
6705 }
6706 
6707 #ifndef PRODUCT
6708 void CMSBitMap::assert_locked() const {
6709   CMSLockVerifier::assert_locked(lock());
6710 }
6711 
6712 bool CMSBitMap::covers(MemRegion mr) const {
6713   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6714   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6715          "size inconsistency");
6716   return (mr.start() >= _bmStartWord) &&
6717          (mr.end()   <= endWord());
6718 }
6719 
6720 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6721     return (start >= _bmStartWord && (start + size) <= endWord());
6722 }
6723 
6724 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6725   // verify that there are no 1 bits in the interval [left, right)
6726   FalseBitMapClosure falseBitMapClosure;
6727   iterate(&falseBitMapClosure, left, right);
6728 }
6729 
6730 void CMSBitMap::region_invariant(MemRegion mr)
6731 {
6732   assert_locked();
6733   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6734   assert(!mr.is_empty(), "unexpected empty region");
6735   assert(covers(mr), "mr should be covered by bit map");
6736   // convert address range into offset range
6737   size_t start_ofs = heapWordToOffset(mr.start());
6738   // Make sure that end() is appropriately aligned
6739   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6740                         (1 << (_shifter+LogHeapWordSize))),
6741          "Misaligned mr.end()");
6742   size_t end_ofs   = heapWordToOffset(mr.end());
6743   assert(end_ofs > start_ofs, "Should mark at least one bit");
6744 }
6745 
6746 #endif
6747 
6748 bool CMSMarkStack::allocate(size_t size) {
6749   // allocate a stack of the requisite depth
6750   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6751                    size * sizeof(oop)));
6752   if (!rs.is_reserved()) {
6753     warning("CMSMarkStack allocation failure");
6754     return false;
6755   }
6756   if (!_virtual_space.initialize(rs, rs.size())) {
6757     warning("CMSMarkStack backing store failure");
6758     return false;
6759   }
6760   assert(_virtual_space.committed_size() == rs.size(),
6761          "didn't reserve backing store for all of CMS stack?");
6762   _base = (oop*)(_virtual_space.low());
6763   _index = 0;
6764   _capacity = size;
6765   NOT_PRODUCT(_max_depth = 0);
6766   return true;
6767 }
6768 
6769 // XXX FIX ME !!! In the MT case we come in here holding a
6770 // leaf lock. For printing we need to take a further lock
6771 // which has lower rank. We need to recallibrate the two
6772 // lock-ranks involved in order to be able to rpint the
6773 // messages below. (Or defer the printing to the caller.
6774 // For now we take the expedient path of just disabling the
6775 // messages for the problematic case.)
6776 void CMSMarkStack::expand() {
6777   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6778   if (_capacity == MarkStackSizeMax) {
6779     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6780       // We print a warning message only once per CMS cycle.
6781       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6782     }
6783     return;
6784   }
6785   // Double capacity if possible
6786   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6787   // Do not give up existing stack until we have managed to
6788   // get the double capacity that we desired.
6789   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6790                    new_capacity * sizeof(oop)));
6791   if (rs.is_reserved()) {
6792     // Release the backing store associated with old stack
6793     _virtual_space.release();
6794     // Reinitialize virtual space for new stack
6795     if (!_virtual_space.initialize(rs, rs.size())) {
6796       fatal("Not enough swap for expanded marking stack");
6797     }
6798     _base = (oop*)(_virtual_space.low());
6799     _index = 0;
6800     _capacity = new_capacity;
6801   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6802     // Failed to double capacity, continue;
6803     // we print a detail message only once per CMS cycle.
6804     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6805             SIZE_FORMAT"K",
6806             _capacity / K, new_capacity / K);
6807   }
6808 }
6809 
6810 
6811 // Closures
6812 // XXX: there seems to be a lot of code  duplication here;
6813 // should refactor and consolidate common code.
6814 
6815 // This closure is used to mark refs into the CMS generation in
6816 // the CMS bit map. Called at the first checkpoint. This closure
6817 // assumes that we do not need to re-mark dirty cards; if the CMS
6818 // generation on which this is used is not an oldest
6819 // generation then this will lose younger_gen cards!
6820 
6821 MarkRefsIntoClosure::MarkRefsIntoClosure(
6822   MemRegion span, CMSBitMap* bitMap):
6823     _span(span),
6824     _bitMap(bitMap)
6825 {
6826     assert(_ref_processor == NULL, "deliberately left NULL");
6827     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6828 }
6829 
6830 void MarkRefsIntoClosure::do_oop(oop obj) {
6831   // if p points into _span, then mark corresponding bit in _markBitMap
6832   assert(obj->is_oop(), "expected an oop");
6833   HeapWord* addr = (HeapWord*)obj;
6834   if (_span.contains(addr)) {
6835     // this should be made more efficient
6836     _bitMap->mark(addr);
6837   }
6838 }
6839 
6840 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6841 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6842 
6843 // A variant of the above, used for CMS marking verification.
6844 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6845   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6846     _span(span),
6847     _verification_bm(verification_bm),
6848     _cms_bm(cms_bm)
6849 {
6850     assert(_ref_processor == NULL, "deliberately left NULL");
6851     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6852 }
6853 
6854 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6855   // if p points into _span, then mark corresponding bit in _markBitMap
6856   assert(obj->is_oop(), "expected an oop");
6857   HeapWord* addr = (HeapWord*)obj;
6858   if (_span.contains(addr)) {
6859     _verification_bm->mark(addr);
6860     if (!_cms_bm->isMarked(addr)) {
6861       oop(addr)->print();
6862       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6863       fatal("... aborting");
6864     }
6865   }
6866 }
6867 
6868 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6869 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6870 
6871 //////////////////////////////////////////////////
6872 // MarkRefsIntoAndScanClosure
6873 //////////////////////////////////////////////////
6874 
6875 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6876                                                        ReferenceProcessor* rp,
6877                                                        CMSBitMap* bit_map,
6878                                                        CMSBitMap* mod_union_table,
6879                                                        CMSMarkStack*  mark_stack,
6880                                                        CMSCollector* collector,
6881                                                        bool should_yield,
6882                                                        bool concurrent_precleaning):
6883   _collector(collector),
6884   _span(span),
6885   _bit_map(bit_map),
6886   _mark_stack(mark_stack),
6887   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6888                       mark_stack, concurrent_precleaning),
6889   _yield(should_yield),
6890   _concurrent_precleaning(concurrent_precleaning),
6891   _freelistLock(NULL)
6892 {
6893   _ref_processor = rp;
6894   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6895 }
6896 
6897 // This closure is used to mark refs into the CMS generation at the
6898 // second (final) checkpoint, and to scan and transitively follow
6899 // the unmarked oops. It is also used during the concurrent precleaning
6900 // phase while scanning objects on dirty cards in the CMS generation.
6901 // The marks are made in the marking bit map and the marking stack is
6902 // used for keeping the (newly) grey objects during the scan.
6903 // The parallel version (Par_...) appears further below.
6904 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6905   if (obj != NULL) {
6906     assert(obj->is_oop(), "expected an oop");
6907     HeapWord* addr = (HeapWord*)obj;
6908     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6909     assert(_collector->overflow_list_is_empty(),
6910            "overflow list should be empty");
6911     if (_span.contains(addr) &&
6912         !_bit_map->isMarked(addr)) {
6913       // mark bit map (object is now grey)
6914       _bit_map->mark(addr);
6915       // push on marking stack (stack should be empty), and drain the
6916       // stack by applying this closure to the oops in the oops popped
6917       // from the stack (i.e. blacken the grey objects)
6918       bool res = _mark_stack->push(obj);
6919       assert(res, "Should have space to push on empty stack");
6920       do {
6921         oop new_oop = _mark_stack->pop();
6922         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6923         assert(_bit_map->isMarked((HeapWord*)new_oop),
6924                "only grey objects on this stack");
6925         // iterate over the oops in this oop, marking and pushing
6926         // the ones in CMS heap (i.e. in _span).
6927         new_oop->oop_iterate(&_pushAndMarkClosure);
6928         // check if it's time to yield
6929         do_yield_check();
6930       } while (!_mark_stack->isEmpty() ||
6931                (!_concurrent_precleaning && take_from_overflow_list()));
6932         // if marking stack is empty, and we are not doing this
6933         // during precleaning, then check the overflow list
6934     }
6935     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6936     assert(_collector->overflow_list_is_empty(),
6937            "overflow list was drained above");
6938     // We could restore evacuated mark words, if any, used for
6939     // overflow list links here because the overflow list is
6940     // provably empty here. That would reduce the maximum
6941     // size requirements for preserved_{oop,mark}_stack.
6942     // But we'll just postpone it until we are all done
6943     // so we can just stream through.
6944     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6945       _collector->restore_preserved_marks_if_any();
6946       assert(_collector->no_preserved_marks(), "No preserved marks");
6947     }
6948     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6949            "All preserved marks should have been restored above");
6950   }
6951 }
6952 
6953 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6954 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6955 
6956 void MarkRefsIntoAndScanClosure::do_yield_work() {
6957   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6958          "CMS thread should hold CMS token");
6959   assert_lock_strong(_freelistLock);
6960   assert_lock_strong(_bit_map->lock());
6961   // relinquish the free_list_lock and bitMaplock()
6962   _bit_map->lock()->unlock();
6963   _freelistLock->unlock();
6964   ConcurrentMarkSweepThread::desynchronize(true);
6965   ConcurrentMarkSweepThread::acknowledge_yield_request();
6966   _collector->stopTimer();
6967   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6968   if (PrintCMSStatistics != 0) {
6969     _collector->incrementYields();
6970   }
6971   _collector->icms_wait();
6972 
6973   // See the comment in coordinator_yield()
6974   for (unsigned i = 0;
6975        i < CMSYieldSleepCount &&
6976        ConcurrentMarkSweepThread::should_yield() &&
6977        !CMSCollector::foregroundGCIsActive();
6978        ++i) {
6979     os::sleep(Thread::current(), 1, false);
6980     ConcurrentMarkSweepThread::acknowledge_yield_request();
6981   }
6982 
6983   ConcurrentMarkSweepThread::synchronize(true);
6984   _freelistLock->lock_without_safepoint_check();
6985   _bit_map->lock()->lock_without_safepoint_check();
6986   _collector->startTimer();
6987 }
6988 
6989 ///////////////////////////////////////////////////////////
6990 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6991 //                                 MarkRefsIntoAndScanClosure
6992 ///////////////////////////////////////////////////////////
6993 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6994   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6995   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6996   _span(span),
6997   _bit_map(bit_map),
6998   _work_queue(work_queue),
6999   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7000                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7001   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7002 {
7003   _ref_processor = rp;
7004   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7005 }
7006 
7007 // This closure is used to mark refs into the CMS generation at the
7008 // second (final) checkpoint, and to scan and transitively follow
7009 // the unmarked oops. The marks are made in the marking bit map and
7010 // the work_queue is used for keeping the (newly) grey objects during
7011 // the scan phase whence they are also available for stealing by parallel
7012 // threads. Since the marking bit map is shared, updates are
7013 // synchronized (via CAS).
7014 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7015   if (obj != NULL) {
7016     // Ignore mark word because this could be an already marked oop
7017     // that may be chained at the end of the overflow list.
7018     assert(obj->is_oop(true), "expected an oop");
7019     HeapWord* addr = (HeapWord*)obj;
7020     if (_span.contains(addr) &&
7021         !_bit_map->isMarked(addr)) {
7022       // mark bit map (object will become grey):
7023       // It is possible for several threads to be
7024       // trying to "claim" this object concurrently;
7025       // the unique thread that succeeds in marking the
7026       // object first will do the subsequent push on
7027       // to the work queue (or overflow list).
7028       if (_bit_map->par_mark(addr)) {
7029         // push on work_queue (which may not be empty), and trim the
7030         // queue to an appropriate length by applying this closure to
7031         // the oops in the oops popped from the stack (i.e. blacken the
7032         // grey objects)
7033         bool res = _work_queue->push(obj);
7034         assert(res, "Low water mark should be less than capacity?");
7035         trim_queue(_low_water_mark);
7036       } // Else, another thread claimed the object
7037     }
7038   }
7039 }
7040 
7041 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7042 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7043 
7044 // This closure is used to rescan the marked objects on the dirty cards
7045 // in the mod union table and the card table proper.
7046 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7047   oop p, MemRegion mr) {
7048 
7049   size_t size = 0;
7050   HeapWord* addr = (HeapWord*)p;
7051   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7052   assert(_span.contains(addr), "we are scanning the CMS generation");
7053   // check if it's time to yield
7054   if (do_yield_check()) {
7055     // We yielded for some foreground stop-world work,
7056     // and we have been asked to abort this ongoing preclean cycle.
7057     return 0;
7058   }
7059   if (_bitMap->isMarked(addr)) {
7060     // it's marked; is it potentially uninitialized?
7061     if (p->klass_or_null() != NULL) {
7062         // an initialized object; ignore mark word in verification below
7063         // since we are running concurrent with mutators
7064         assert(p->is_oop(true), "should be an oop");
7065         if (p->is_objArray()) {
7066           // objArrays are precisely marked; restrict scanning
7067           // to dirty cards only.
7068           size = CompactibleFreeListSpace::adjustObjectSize(
7069                    p->oop_iterate(_scanningClosure, mr));
7070         } else {
7071           // A non-array may have been imprecisely marked; we need
7072           // to scan object in its entirety.
7073           size = CompactibleFreeListSpace::adjustObjectSize(
7074                    p->oop_iterate(_scanningClosure));
7075         }
7076         #ifdef ASSERT
7077           size_t direct_size =
7078             CompactibleFreeListSpace::adjustObjectSize(p->size());
7079           assert(size == direct_size, "Inconsistency in size");
7080           assert(size >= 3, "Necessary for Printezis marks to work");
7081           if (!_bitMap->isMarked(addr+1)) {
7082             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7083           } else {
7084             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7085             assert(_bitMap->isMarked(addr+size-1),
7086                    "inconsistent Printezis mark");
7087           }
7088         #endif // ASSERT
7089     } else {
7090       // an unitialized object
7091       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7092       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7093       size = pointer_delta(nextOneAddr + 1, addr);
7094       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7095              "alignment problem");
7096       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7097       // will dirty the card when the klass pointer is installed in the
7098       // object (signalling the completion of initialization).
7099     }
7100   } else {
7101     // Either a not yet marked object or an uninitialized object
7102     if (p->klass_or_null() == NULL) {
7103       // An uninitialized object, skip to the next card, since
7104       // we may not be able to read its P-bits yet.
7105       assert(size == 0, "Initial value");
7106     } else {
7107       // An object not (yet) reached by marking: we merely need to
7108       // compute its size so as to go look at the next block.
7109       assert(p->is_oop(true), "should be an oop");
7110       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7111     }
7112   }
7113   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7114   return size;
7115 }
7116 
7117 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7118   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7119          "CMS thread should hold CMS token");
7120   assert_lock_strong(_freelistLock);
7121   assert_lock_strong(_bitMap->lock());
7122   // relinquish the free_list_lock and bitMaplock()
7123   _bitMap->lock()->unlock();
7124   _freelistLock->unlock();
7125   ConcurrentMarkSweepThread::desynchronize(true);
7126   ConcurrentMarkSweepThread::acknowledge_yield_request();
7127   _collector->stopTimer();
7128   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7129   if (PrintCMSStatistics != 0) {
7130     _collector->incrementYields();
7131   }
7132   _collector->icms_wait();
7133 
7134   // See the comment in coordinator_yield()
7135   for (unsigned i = 0; i < CMSYieldSleepCount &&
7136                    ConcurrentMarkSweepThread::should_yield() &&
7137                    !CMSCollector::foregroundGCIsActive(); ++i) {
7138     os::sleep(Thread::current(), 1, false);
7139     ConcurrentMarkSweepThread::acknowledge_yield_request();
7140   }
7141 
7142   ConcurrentMarkSweepThread::synchronize(true);
7143   _freelistLock->lock_without_safepoint_check();
7144   _bitMap->lock()->lock_without_safepoint_check();
7145   _collector->startTimer();
7146 }
7147 
7148 
7149 //////////////////////////////////////////////////////////////////
7150 // SurvivorSpacePrecleanClosure
7151 //////////////////////////////////////////////////////////////////
7152 // This (single-threaded) closure is used to preclean the oops in
7153 // the survivor spaces.
7154 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7155 
7156   HeapWord* addr = (HeapWord*)p;
7157   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7158   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7159   assert(p->klass_or_null() != NULL, "object should be initializd");
7160   // an initialized object; ignore mark word in verification below
7161   // since we are running concurrent with mutators
7162   assert(p->is_oop(true), "should be an oop");
7163   // Note that we do not yield while we iterate over
7164   // the interior oops of p, pushing the relevant ones
7165   // on our marking stack.
7166   size_t size = p->oop_iterate(_scanning_closure);
7167   do_yield_check();
7168   // Observe that below, we do not abandon the preclean
7169   // phase as soon as we should; rather we empty the
7170   // marking stack before returning. This is to satisfy
7171   // some existing assertions. In general, it may be a
7172   // good idea to abort immediately and complete the marking
7173   // from the grey objects at a later time.
7174   while (!_mark_stack->isEmpty()) {
7175     oop new_oop = _mark_stack->pop();
7176     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7177     assert(_bit_map->isMarked((HeapWord*)new_oop),
7178            "only grey objects on this stack");
7179     // iterate over the oops in this oop, marking and pushing
7180     // the ones in CMS heap (i.e. in _span).
7181     new_oop->oop_iterate(_scanning_closure);
7182     // check if it's time to yield
7183     do_yield_check();
7184   }
7185   unsigned int after_count =
7186     GenCollectedHeap::heap()->total_collections();
7187   bool abort = (_before_count != after_count) ||
7188                _collector->should_abort_preclean();
7189   return abort ? 0 : size;
7190 }
7191 
7192 void SurvivorSpacePrecleanClosure::do_yield_work() {
7193   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7194          "CMS thread should hold CMS token");
7195   assert_lock_strong(_bit_map->lock());
7196   // Relinquish the bit map lock
7197   _bit_map->lock()->unlock();
7198   ConcurrentMarkSweepThread::desynchronize(true);
7199   ConcurrentMarkSweepThread::acknowledge_yield_request();
7200   _collector->stopTimer();
7201   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7202   if (PrintCMSStatistics != 0) {
7203     _collector->incrementYields();
7204   }
7205   _collector->icms_wait();
7206 
7207   // See the comment in coordinator_yield()
7208   for (unsigned i = 0; i < CMSYieldSleepCount &&
7209                        ConcurrentMarkSweepThread::should_yield() &&
7210                        !CMSCollector::foregroundGCIsActive(); ++i) {
7211     os::sleep(Thread::current(), 1, false);
7212     ConcurrentMarkSweepThread::acknowledge_yield_request();
7213   }
7214 
7215   ConcurrentMarkSweepThread::synchronize(true);
7216   _bit_map->lock()->lock_without_safepoint_check();
7217   _collector->startTimer();
7218 }
7219 
7220 // This closure is used to rescan the marked objects on the dirty cards
7221 // in the mod union table and the card table proper. In the parallel
7222 // case, although the bitMap is shared, we do a single read so the
7223 // isMarked() query is "safe".
7224 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7225   // Ignore mark word because we are running concurrent with mutators
7226   assert(p->is_oop_or_null(true), "expected an oop or null");
7227   HeapWord* addr = (HeapWord*)p;
7228   assert(_span.contains(addr), "we are scanning the CMS generation");
7229   bool is_obj_array = false;
7230   #ifdef ASSERT
7231     if (!_parallel) {
7232       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7233       assert(_collector->overflow_list_is_empty(),
7234              "overflow list should be empty");
7235 
7236     }
7237   #endif // ASSERT
7238   if (_bit_map->isMarked(addr)) {
7239     // Obj arrays are precisely marked, non-arrays are not;
7240     // so we scan objArrays precisely and non-arrays in their
7241     // entirety.
7242     if (p->is_objArray()) {
7243       is_obj_array = true;
7244       if (_parallel) {
7245         p->oop_iterate(_par_scan_closure, mr);
7246       } else {
7247         p->oop_iterate(_scan_closure, mr);
7248       }
7249     } else {
7250       if (_parallel) {
7251         p->oop_iterate(_par_scan_closure);
7252       } else {
7253         p->oop_iterate(_scan_closure);
7254       }
7255     }
7256   }
7257   #ifdef ASSERT
7258     if (!_parallel) {
7259       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7260       assert(_collector->overflow_list_is_empty(),
7261              "overflow list should be empty");
7262 
7263     }
7264   #endif // ASSERT
7265   return is_obj_array;
7266 }
7267 
7268 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7269                         MemRegion span,
7270                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7271                         bool should_yield, bool verifying):
7272   _collector(collector),
7273   _span(span),
7274   _bitMap(bitMap),
7275   _mut(&collector->_modUnionTable),
7276   _markStack(markStack),
7277   _yield(should_yield),
7278   _skipBits(0)
7279 {
7280   assert(_markStack->isEmpty(), "stack should be empty");
7281   _finger = _bitMap->startWord();
7282   _threshold = _finger;
7283   assert(_collector->_restart_addr == NULL, "Sanity check");
7284   assert(_span.contains(_finger), "Out of bounds _finger?");
7285   DEBUG_ONLY(_verifying = verifying;)
7286 }
7287 
7288 void MarkFromRootsClosure::reset(HeapWord* addr) {
7289   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7290   assert(_span.contains(addr), "Out of bounds _finger?");
7291   _finger = addr;
7292   _threshold = (HeapWord*)round_to(
7293                  (intptr_t)_finger, CardTableModRefBS::card_size);
7294 }
7295 
7296 // Should revisit to see if this should be restructured for
7297 // greater efficiency.
7298 bool MarkFromRootsClosure::do_bit(size_t offset) {
7299   if (_skipBits > 0) {
7300     _skipBits--;
7301     return true;
7302   }
7303   // convert offset into a HeapWord*
7304   HeapWord* addr = _bitMap->startWord() + offset;
7305   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7306          "address out of range");
7307   assert(_bitMap->isMarked(addr), "tautology");
7308   if (_bitMap->isMarked(addr+1)) {
7309     // this is an allocated but not yet initialized object
7310     assert(_skipBits == 0, "tautology");
7311     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7312     oop p = oop(addr);
7313     if (p->klass_or_null() == NULL) {
7314       DEBUG_ONLY(if (!_verifying) {)
7315         // We re-dirty the cards on which this object lies and increase
7316         // the _threshold so that we'll come back to scan this object
7317         // during the preclean or remark phase. (CMSCleanOnEnter)
7318         if (CMSCleanOnEnter) {
7319           size_t sz = _collector->block_size_using_printezis_bits(addr);
7320           HeapWord* end_card_addr   = (HeapWord*)round_to(
7321                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7322           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7323           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7324           // Bump _threshold to end_card_addr; note that
7325           // _threshold cannot possibly exceed end_card_addr, anyhow.
7326           // This prevents future clearing of the card as the scan proceeds
7327           // to the right.
7328           assert(_threshold <= end_card_addr,
7329                  "Because we are just scanning into this object");
7330           if (_threshold < end_card_addr) {
7331             _threshold = end_card_addr;
7332           }
7333           if (p->klass_or_null() != NULL) {
7334             // Redirty the range of cards...
7335             _mut->mark_range(redirty_range);
7336           } // ...else the setting of klass will dirty the card anyway.
7337         }
7338       DEBUG_ONLY(})
7339       return true;
7340     }
7341   }
7342   scanOopsInOop(addr);
7343   return true;
7344 }
7345 
7346 // We take a break if we've been at this for a while,
7347 // so as to avoid monopolizing the locks involved.
7348 void MarkFromRootsClosure::do_yield_work() {
7349   // First give up the locks, then yield, then re-lock
7350   // We should probably use a constructor/destructor idiom to
7351   // do this unlock/lock or modify the MutexUnlocker class to
7352   // serve our purpose. XXX
7353   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7354          "CMS thread should hold CMS token");
7355   assert_lock_strong(_bitMap->lock());
7356   _bitMap->lock()->unlock();
7357   ConcurrentMarkSweepThread::desynchronize(true);
7358   ConcurrentMarkSweepThread::acknowledge_yield_request();
7359   _collector->stopTimer();
7360   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7361   if (PrintCMSStatistics != 0) {
7362     _collector->incrementYields();
7363   }
7364   _collector->icms_wait();
7365 
7366   // See the comment in coordinator_yield()
7367   for (unsigned i = 0; i < CMSYieldSleepCount &&
7368                        ConcurrentMarkSweepThread::should_yield() &&
7369                        !CMSCollector::foregroundGCIsActive(); ++i) {
7370     os::sleep(Thread::current(), 1, false);
7371     ConcurrentMarkSweepThread::acknowledge_yield_request();
7372   }
7373 
7374   ConcurrentMarkSweepThread::synchronize(true);
7375   _bitMap->lock()->lock_without_safepoint_check();
7376   _collector->startTimer();
7377 }
7378 
7379 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7380   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7381   assert(_markStack->isEmpty(),
7382          "should drain stack to limit stack usage");
7383   // convert ptr to an oop preparatory to scanning
7384   oop obj = oop(ptr);
7385   // Ignore mark word in verification below, since we
7386   // may be running concurrent with mutators.
7387   assert(obj->is_oop(true), "should be an oop");
7388   assert(_finger <= ptr, "_finger runneth ahead");
7389   // advance the finger to right end of this object
7390   _finger = ptr + obj->size();
7391   assert(_finger > ptr, "we just incremented it above");
7392   // On large heaps, it may take us some time to get through
7393   // the marking phase (especially if running iCMS). During
7394   // this time it's possible that a lot of mutations have
7395   // accumulated in the card table and the mod union table --
7396   // these mutation records are redundant until we have
7397   // actually traced into the corresponding card.
7398   // Here, we check whether advancing the finger would make
7399   // us cross into a new card, and if so clear corresponding
7400   // cards in the MUT (preclean them in the card-table in the
7401   // future).
7402 
7403   DEBUG_ONLY(if (!_verifying) {)
7404     // The clean-on-enter optimization is disabled by default,
7405     // until we fix 6178663.
7406     if (CMSCleanOnEnter && (_finger > _threshold)) {
7407       // [_threshold, _finger) represents the interval
7408       // of cards to be cleared  in MUT (or precleaned in card table).
7409       // The set of cards to be cleared is all those that overlap
7410       // with the interval [_threshold, _finger); note that
7411       // _threshold is always kept card-aligned but _finger isn't
7412       // always card-aligned.
7413       HeapWord* old_threshold = _threshold;
7414       assert(old_threshold == (HeapWord*)round_to(
7415               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7416              "_threshold should always be card-aligned");
7417       _threshold = (HeapWord*)round_to(
7418                      (intptr_t)_finger, CardTableModRefBS::card_size);
7419       MemRegion mr(old_threshold, _threshold);
7420       assert(!mr.is_empty(), "Control point invariant");
7421       assert(_span.contains(mr), "Should clear within span");
7422       _mut->clear_range(mr);
7423     }
7424   DEBUG_ONLY(})
7425   // Note: the finger doesn't advance while we drain
7426   // the stack below.
7427   PushOrMarkClosure pushOrMarkClosure(_collector,
7428                                       _span, _bitMap, _markStack,
7429                                       _finger, this);
7430   bool res = _markStack->push(obj);
7431   assert(res, "Empty non-zero size stack should have space for single push");
7432   while (!_markStack->isEmpty()) {
7433     oop new_oop = _markStack->pop();
7434     // Skip verifying header mark word below because we are
7435     // running concurrent with mutators.
7436     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7437     // now scan this oop's oops
7438     new_oop->oop_iterate(&pushOrMarkClosure);
7439     do_yield_check();
7440   }
7441   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7442 }
7443 
7444 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7445                        CMSCollector* collector, MemRegion span,
7446                        CMSBitMap* bit_map,
7447                        OopTaskQueue* work_queue,
7448                        CMSMarkStack*  overflow_stack,
7449                        bool should_yield):
7450   _collector(collector),
7451   _whole_span(collector->_span),
7452   _span(span),
7453   _bit_map(bit_map),
7454   _mut(&collector->_modUnionTable),
7455   _work_queue(work_queue),
7456   _overflow_stack(overflow_stack),
7457   _yield(should_yield),
7458   _skip_bits(0),
7459   _task(task)
7460 {
7461   assert(_work_queue->size() == 0, "work_queue should be empty");
7462   _finger = span.start();
7463   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7464   assert(_span.contains(_finger), "Out of bounds _finger?");
7465 }
7466 
7467 // Should revisit to see if this should be restructured for
7468 // greater efficiency.
7469 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7470   if (_skip_bits > 0) {
7471     _skip_bits--;
7472     return true;
7473   }
7474   // convert offset into a HeapWord*
7475   HeapWord* addr = _bit_map->startWord() + offset;
7476   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7477          "address out of range");
7478   assert(_bit_map->isMarked(addr), "tautology");
7479   if (_bit_map->isMarked(addr+1)) {
7480     // this is an allocated object that might not yet be initialized
7481     assert(_skip_bits == 0, "tautology");
7482     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7483     oop p = oop(addr);
7484     if (p->klass_or_null() == NULL) {
7485       // in the case of Clean-on-Enter optimization, redirty card
7486       // and avoid clearing card by increasing  the threshold.
7487       return true;
7488     }
7489   }
7490   scan_oops_in_oop(addr);
7491   return true;
7492 }
7493 
7494 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7495   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7496   // Should we assert that our work queue is empty or
7497   // below some drain limit?
7498   assert(_work_queue->size() == 0,
7499          "should drain stack to limit stack usage");
7500   // convert ptr to an oop preparatory to scanning
7501   oop obj = oop(ptr);
7502   // Ignore mark word in verification below, since we
7503   // may be running concurrent with mutators.
7504   assert(obj->is_oop(true), "should be an oop");
7505   assert(_finger <= ptr, "_finger runneth ahead");
7506   // advance the finger to right end of this object
7507   _finger = ptr + obj->size();
7508   assert(_finger > ptr, "we just incremented it above");
7509   // On large heaps, it may take us some time to get through
7510   // the marking phase (especially if running iCMS). During
7511   // this time it's possible that a lot of mutations have
7512   // accumulated in the card table and the mod union table --
7513   // these mutation records are redundant until we have
7514   // actually traced into the corresponding card.
7515   // Here, we check whether advancing the finger would make
7516   // us cross into a new card, and if so clear corresponding
7517   // cards in the MUT (preclean them in the card-table in the
7518   // future).
7519 
7520   // The clean-on-enter optimization is disabled by default,
7521   // until we fix 6178663.
7522   if (CMSCleanOnEnter && (_finger > _threshold)) {
7523     // [_threshold, _finger) represents the interval
7524     // of cards to be cleared  in MUT (or precleaned in card table).
7525     // The set of cards to be cleared is all those that overlap
7526     // with the interval [_threshold, _finger); note that
7527     // _threshold is always kept card-aligned but _finger isn't
7528     // always card-aligned.
7529     HeapWord* old_threshold = _threshold;
7530     assert(old_threshold == (HeapWord*)round_to(
7531             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7532            "_threshold should always be card-aligned");
7533     _threshold = (HeapWord*)round_to(
7534                    (intptr_t)_finger, CardTableModRefBS::card_size);
7535     MemRegion mr(old_threshold, _threshold);
7536     assert(!mr.is_empty(), "Control point invariant");
7537     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7538     _mut->clear_range(mr);
7539   }
7540 
7541   // Note: the local finger doesn't advance while we drain
7542   // the stack below, but the global finger sure can and will.
7543   HeapWord** gfa = _task->global_finger_addr();
7544   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7545                                       _span, _bit_map,
7546                                       _work_queue,
7547                                       _overflow_stack,
7548                                       _finger,
7549                                       gfa, this);
7550   bool res = _work_queue->push(obj);   // overflow could occur here
7551   assert(res, "Will hold once we use workqueues");
7552   while (true) {
7553     oop new_oop;
7554     if (!_work_queue->pop_local(new_oop)) {
7555       // We emptied our work_queue; check if there's stuff that can
7556       // be gotten from the overflow stack.
7557       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7558             _overflow_stack, _work_queue)) {
7559         do_yield_check();
7560         continue;
7561       } else {  // done
7562         break;
7563       }
7564     }
7565     // Skip verifying header mark word below because we are
7566     // running concurrent with mutators.
7567     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7568     // now scan this oop's oops
7569     new_oop->oop_iterate(&pushOrMarkClosure);
7570     do_yield_check();
7571   }
7572   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7573 }
7574 
7575 // Yield in response to a request from VM Thread or
7576 // from mutators.
7577 void Par_MarkFromRootsClosure::do_yield_work() {
7578   assert(_task != NULL, "sanity");
7579   _task->yield();
7580 }
7581 
7582 // A variant of the above used for verifying CMS marking work.
7583 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7584                         MemRegion span,
7585                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7586                         CMSMarkStack*  mark_stack):
7587   _collector(collector),
7588   _span(span),
7589   _verification_bm(verification_bm),
7590   _cms_bm(cms_bm),
7591   _mark_stack(mark_stack),
7592   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7593                       mark_stack)
7594 {
7595   assert(_mark_stack->isEmpty(), "stack should be empty");
7596   _finger = _verification_bm->startWord();
7597   assert(_collector->_restart_addr == NULL, "Sanity check");
7598   assert(_span.contains(_finger), "Out of bounds _finger?");
7599 }
7600 
7601 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7602   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7603   assert(_span.contains(addr), "Out of bounds _finger?");
7604   _finger = addr;
7605 }
7606 
7607 // Should revisit to see if this should be restructured for
7608 // greater efficiency.
7609 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7610   // convert offset into a HeapWord*
7611   HeapWord* addr = _verification_bm->startWord() + offset;
7612   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7613          "address out of range");
7614   assert(_verification_bm->isMarked(addr), "tautology");
7615   assert(_cms_bm->isMarked(addr), "tautology");
7616 
7617   assert(_mark_stack->isEmpty(),
7618          "should drain stack to limit stack usage");
7619   // convert addr to an oop preparatory to scanning
7620   oop obj = oop(addr);
7621   assert(obj->is_oop(), "should be an oop");
7622   assert(_finger <= addr, "_finger runneth ahead");
7623   // advance the finger to right end of this object
7624   _finger = addr + obj->size();
7625   assert(_finger > addr, "we just incremented it above");
7626   // Note: the finger doesn't advance while we drain
7627   // the stack below.
7628   bool res = _mark_stack->push(obj);
7629   assert(res, "Empty non-zero size stack should have space for single push");
7630   while (!_mark_stack->isEmpty()) {
7631     oop new_oop = _mark_stack->pop();
7632     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7633     // now scan this oop's oops
7634     new_oop->oop_iterate(&_pam_verify_closure);
7635   }
7636   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7637   return true;
7638 }
7639 
7640 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7641   CMSCollector* collector, MemRegion span,
7642   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7643   CMSMarkStack*  mark_stack):
7644   CMSOopClosure(collector->ref_processor()),
7645   _collector(collector),
7646   _span(span),
7647   _verification_bm(verification_bm),
7648   _cms_bm(cms_bm),
7649   _mark_stack(mark_stack)
7650 { }
7651 
7652 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7653 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7654 
7655 // Upon stack overflow, we discard (part of) the stack,
7656 // remembering the least address amongst those discarded
7657 // in CMSCollector's _restart_address.
7658 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7659   // Remember the least grey address discarded
7660   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7661   _collector->lower_restart_addr(ra);
7662   _mark_stack->reset();  // discard stack contents
7663   _mark_stack->expand(); // expand the stack if possible
7664 }
7665 
7666 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7667   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7668   HeapWord* addr = (HeapWord*)obj;
7669   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7670     // Oop lies in _span and isn't yet grey or black
7671     _verification_bm->mark(addr);            // now grey
7672     if (!_cms_bm->isMarked(addr)) {
7673       oop(addr)->print();
7674       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7675                              addr);
7676       fatal("... aborting");
7677     }
7678 
7679     if (!_mark_stack->push(obj)) { // stack overflow
7680       if (PrintCMSStatistics != 0) {
7681         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7682                                SIZE_FORMAT, _mark_stack->capacity());
7683       }
7684       assert(_mark_stack->isFull(), "Else push should have succeeded");
7685       handle_stack_overflow(addr);
7686     }
7687     // anything including and to the right of _finger
7688     // will be scanned as we iterate over the remainder of the
7689     // bit map
7690   }
7691 }
7692 
7693 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7694                      MemRegion span,
7695                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7696                      HeapWord* finger, MarkFromRootsClosure* parent) :
7697   CMSOopClosure(collector->ref_processor()),
7698   _collector(collector),
7699   _span(span),
7700   _bitMap(bitMap),
7701   _markStack(markStack),
7702   _finger(finger),
7703   _parent(parent)
7704 { }
7705 
7706 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7707                      MemRegion span,
7708                      CMSBitMap* bit_map,
7709                      OopTaskQueue* work_queue,
7710                      CMSMarkStack*  overflow_stack,
7711                      HeapWord* finger,
7712                      HeapWord** global_finger_addr,
7713                      Par_MarkFromRootsClosure* parent) :
7714   CMSOopClosure(collector->ref_processor()),
7715   _collector(collector),
7716   _whole_span(collector->_span),
7717   _span(span),
7718   _bit_map(bit_map),
7719   _work_queue(work_queue),
7720   _overflow_stack(overflow_stack),
7721   _finger(finger),
7722   _global_finger_addr(global_finger_addr),
7723   _parent(parent)
7724 { }
7725 
7726 // Assumes thread-safe access by callers, who are
7727 // responsible for mutual exclusion.
7728 void CMSCollector::lower_restart_addr(HeapWord* low) {
7729   assert(_span.contains(low), "Out of bounds addr");
7730   if (_restart_addr == NULL) {
7731     _restart_addr = low;
7732   } else {
7733     _restart_addr = MIN2(_restart_addr, low);
7734   }
7735 }
7736 
7737 // Upon stack overflow, we discard (part of) the stack,
7738 // remembering the least address amongst those discarded
7739 // in CMSCollector's _restart_address.
7740 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7741   // Remember the least grey address discarded
7742   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7743   _collector->lower_restart_addr(ra);
7744   _markStack->reset();  // discard stack contents
7745   _markStack->expand(); // expand the stack if possible
7746 }
7747 
7748 // Upon stack overflow, we discard (part of) the stack,
7749 // remembering the least address amongst those discarded
7750 // in CMSCollector's _restart_address.
7751 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7752   // We need to do this under a mutex to prevent other
7753   // workers from interfering with the work done below.
7754   MutexLockerEx ml(_overflow_stack->par_lock(),
7755                    Mutex::_no_safepoint_check_flag);
7756   // Remember the least grey address discarded
7757   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7758   _collector->lower_restart_addr(ra);
7759   _overflow_stack->reset();  // discard stack contents
7760   _overflow_stack->expand(); // expand the stack if possible
7761 }
7762 
7763 void CMKlassClosure::do_klass(Klass* k) {
7764   assert(_oop_closure != NULL, "Not initialized?");
7765   k->oops_do(_oop_closure);
7766 }
7767 
7768 void PushOrMarkClosure::do_oop(oop obj) {
7769   // Ignore mark word because we are running concurrent with mutators.
7770   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7771   HeapWord* addr = (HeapWord*)obj;
7772   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7773     // Oop lies in _span and isn't yet grey or black
7774     _bitMap->mark(addr);            // now grey
7775     if (addr < _finger) {
7776       // the bit map iteration has already either passed, or
7777       // sampled, this bit in the bit map; we'll need to
7778       // use the marking stack to scan this oop's oops.
7779       bool simulate_overflow = false;
7780       NOT_PRODUCT(
7781         if (CMSMarkStackOverflowALot &&
7782             _collector->simulate_overflow()) {
7783           // simulate a stack overflow
7784           simulate_overflow = true;
7785         }
7786       )
7787       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7788         if (PrintCMSStatistics != 0) {
7789           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7790                                  SIZE_FORMAT, _markStack->capacity());
7791         }
7792         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7793         handle_stack_overflow(addr);
7794       }
7795     }
7796     // anything including and to the right of _finger
7797     // will be scanned as we iterate over the remainder of the
7798     // bit map
7799     do_yield_check();
7800   }
7801 }
7802 
7803 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7804 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7805 
7806 void Par_PushOrMarkClosure::do_oop(oop obj) {
7807   // Ignore mark word because we are running concurrent with mutators.
7808   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7809   HeapWord* addr = (HeapWord*)obj;
7810   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7811     // Oop lies in _span and isn't yet grey or black
7812     // We read the global_finger (volatile read) strictly after marking oop
7813     bool res = _bit_map->par_mark(addr);    // now grey
7814     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7815     // Should we push this marked oop on our stack?
7816     // -- if someone else marked it, nothing to do
7817     // -- if target oop is above global finger nothing to do
7818     // -- if target oop is in chunk and above local finger
7819     //      then nothing to do
7820     // -- else push on work queue
7821     if (   !res       // someone else marked it, they will deal with it
7822         || (addr >= *gfa)  // will be scanned in a later task
7823         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7824       return;
7825     }
7826     // the bit map iteration has already either passed, or
7827     // sampled, this bit in the bit map; we'll need to
7828     // use the marking stack to scan this oop's oops.
7829     bool simulate_overflow = false;
7830     NOT_PRODUCT(
7831       if (CMSMarkStackOverflowALot &&
7832           _collector->simulate_overflow()) {
7833         // simulate a stack overflow
7834         simulate_overflow = true;
7835       }
7836     )
7837     if (simulate_overflow ||
7838         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7839       // stack overflow
7840       if (PrintCMSStatistics != 0) {
7841         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7842                                SIZE_FORMAT, _overflow_stack->capacity());
7843       }
7844       // We cannot assert that the overflow stack is full because
7845       // it may have been emptied since.
7846       assert(simulate_overflow ||
7847              _work_queue->size() == _work_queue->max_elems(),
7848             "Else push should have succeeded");
7849       handle_stack_overflow(addr);
7850     }
7851     do_yield_check();
7852   }
7853 }
7854 
7855 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7856 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7857 
7858 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7859                                        MemRegion span,
7860                                        ReferenceProcessor* rp,
7861                                        CMSBitMap* bit_map,
7862                                        CMSBitMap* mod_union_table,
7863                                        CMSMarkStack*  mark_stack,
7864                                        bool           concurrent_precleaning):
7865   CMSOopClosure(rp),
7866   _collector(collector),
7867   _span(span),
7868   _bit_map(bit_map),
7869   _mod_union_table(mod_union_table),
7870   _mark_stack(mark_stack),
7871   _concurrent_precleaning(concurrent_precleaning)
7872 {
7873   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7874 }
7875 
7876 // Grey object rescan during pre-cleaning and second checkpoint phases --
7877 // the non-parallel version (the parallel version appears further below.)
7878 void PushAndMarkClosure::do_oop(oop obj) {
7879   // Ignore mark word verification. If during concurrent precleaning,
7880   // the object monitor may be locked. If during the checkpoint
7881   // phases, the object may already have been reached by a  different
7882   // path and may be at the end of the global overflow list (so
7883   // the mark word may be NULL).
7884   assert(obj->is_oop_or_null(true /* ignore mark word */),
7885          "expected an oop or NULL");
7886   HeapWord* addr = (HeapWord*)obj;
7887   // Check if oop points into the CMS generation
7888   // and is not marked
7889   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7890     // a white object ...
7891     _bit_map->mark(addr);         // ... now grey
7892     // push on the marking stack (grey set)
7893     bool simulate_overflow = false;
7894     NOT_PRODUCT(
7895       if (CMSMarkStackOverflowALot &&
7896           _collector->simulate_overflow()) {
7897         // simulate a stack overflow
7898         simulate_overflow = true;
7899       }
7900     )
7901     if (simulate_overflow || !_mark_stack->push(obj)) {
7902       if (_concurrent_precleaning) {
7903          // During precleaning we can just dirty the appropriate card(s)
7904          // in the mod union table, thus ensuring that the object remains
7905          // in the grey set  and continue. In the case of object arrays
7906          // we need to dirty all of the cards that the object spans,
7907          // since the rescan of object arrays will be limited to the
7908          // dirty cards.
7909          // Note that no one can be intefering with us in this action
7910          // of dirtying the mod union table, so no locking or atomics
7911          // are required.
7912          if (obj->is_objArray()) {
7913            size_t sz = obj->size();
7914            HeapWord* end_card_addr = (HeapWord*)round_to(
7915                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7916            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7917            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7918            _mod_union_table->mark_range(redirty_range);
7919          } else {
7920            _mod_union_table->mark(addr);
7921          }
7922          _collector->_ser_pmc_preclean_ovflw++;
7923       } else {
7924          // During the remark phase, we need to remember this oop
7925          // in the overflow list.
7926          _collector->push_on_overflow_list(obj);
7927          _collector->_ser_pmc_remark_ovflw++;
7928       }
7929     }
7930   }
7931 }
7932 
7933 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7934                                                MemRegion span,
7935                                                ReferenceProcessor* rp,
7936                                                CMSBitMap* bit_map,
7937                                                OopTaskQueue* work_queue):
7938   CMSOopClosure(rp),
7939   _collector(collector),
7940   _span(span),
7941   _bit_map(bit_map),
7942   _work_queue(work_queue)
7943 {
7944   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7945 }
7946 
7947 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7948 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7949 
7950 // Grey object rescan during second checkpoint phase --
7951 // the parallel version.
7952 void Par_PushAndMarkClosure::do_oop(oop obj) {
7953   // In the assert below, we ignore the mark word because
7954   // this oop may point to an already visited object that is
7955   // on the overflow stack (in which case the mark word has
7956   // been hijacked for chaining into the overflow stack --
7957   // if this is the last object in the overflow stack then
7958   // its mark word will be NULL). Because this object may
7959   // have been subsequently popped off the global overflow
7960   // stack, and the mark word possibly restored to the prototypical
7961   // value, by the time we get to examined this failing assert in
7962   // the debugger, is_oop_or_null(false) may subsequently start
7963   // to hold.
7964   assert(obj->is_oop_or_null(true),
7965          "expected an oop or NULL");
7966   HeapWord* addr = (HeapWord*)obj;
7967   // Check if oop points into the CMS generation
7968   // and is not marked
7969   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7970     // a white object ...
7971     // If we manage to "claim" the object, by being the
7972     // first thread to mark it, then we push it on our
7973     // marking stack
7974     if (_bit_map->par_mark(addr)) {     // ... now grey
7975       // push on work queue (grey set)
7976       bool simulate_overflow = false;
7977       NOT_PRODUCT(
7978         if (CMSMarkStackOverflowALot &&
7979             _collector->par_simulate_overflow()) {
7980           // simulate a stack overflow
7981           simulate_overflow = true;
7982         }
7983       )
7984       if (simulate_overflow || !_work_queue->push(obj)) {
7985         _collector->par_push_on_overflow_list(obj);
7986         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7987       }
7988     } // Else, some other thread got there first
7989   }
7990 }
7991 
7992 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7993 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7994 
7995 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7996   Mutex* bml = _collector->bitMapLock();
7997   assert_lock_strong(bml);
7998   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7999          "CMS thread should hold CMS token");
8000 
8001   bml->unlock();
8002   ConcurrentMarkSweepThread::desynchronize(true);
8003 
8004   ConcurrentMarkSweepThread::acknowledge_yield_request();
8005 
8006   _collector->stopTimer();
8007   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8008   if (PrintCMSStatistics != 0) {
8009     _collector->incrementYields();
8010   }
8011   _collector->icms_wait();
8012 
8013   // See the comment in coordinator_yield()
8014   for (unsigned i = 0; i < CMSYieldSleepCount &&
8015                        ConcurrentMarkSweepThread::should_yield() &&
8016                        !CMSCollector::foregroundGCIsActive(); ++i) {
8017     os::sleep(Thread::current(), 1, false);
8018     ConcurrentMarkSweepThread::acknowledge_yield_request();
8019   }
8020 
8021   ConcurrentMarkSweepThread::synchronize(true);
8022   bml->lock();
8023 
8024   _collector->startTimer();
8025 }
8026 
8027 bool CMSPrecleanRefsYieldClosure::should_return() {
8028   if (ConcurrentMarkSweepThread::should_yield()) {
8029     do_yield_work();
8030   }
8031   return _collector->foregroundGCIsActive();
8032 }
8033 
8034 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8035   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8036          "mr should be aligned to start at a card boundary");
8037   // We'd like to assert:
8038   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8039   //        "mr should be a range of cards");
8040   // However, that would be too strong in one case -- the last
8041   // partition ends at _unallocated_block which, in general, can be
8042   // an arbitrary boundary, not necessarily card aligned.
8043   if (PrintCMSStatistics != 0) {
8044     _num_dirty_cards +=
8045          mr.word_size()/CardTableModRefBS::card_size_in_words;
8046   }
8047   _space->object_iterate_mem(mr, &_scan_cl);
8048 }
8049 
8050 SweepClosure::SweepClosure(CMSCollector* collector,
8051                            ConcurrentMarkSweepGeneration* g,
8052                            CMSBitMap* bitMap, bool should_yield) :
8053   _collector(collector),
8054   _g(g),
8055   _sp(g->cmsSpace()),
8056   _limit(_sp->sweep_limit()),
8057   _freelistLock(_sp->freelistLock()),
8058   _bitMap(bitMap),
8059   _yield(should_yield),
8060   _inFreeRange(false),           // No free range at beginning of sweep
8061   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8062   _lastFreeRangeCoalesced(false),
8063   _freeFinger(g->used_region().start())
8064 {
8065   NOT_PRODUCT(
8066     _numObjectsFreed = 0;
8067     _numWordsFreed   = 0;
8068     _numObjectsLive = 0;
8069     _numWordsLive = 0;
8070     _numObjectsAlreadyFree = 0;
8071     _numWordsAlreadyFree = 0;
8072     _last_fc = NULL;
8073 
8074     _sp->initializeIndexedFreeListArrayReturnedBytes();
8075     _sp->dictionary()->initialize_dict_returned_bytes();
8076   )
8077   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8078          "sweep _limit out of bounds");
8079   if (CMSTraceSweeper) {
8080     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8081                         _limit);
8082   }
8083 }
8084 
8085 void SweepClosure::print_on(outputStream* st) const {
8086   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8087                 _sp->bottom(), _sp->end());
8088   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8089   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8090   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8091   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8092                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8093 }
8094 
8095 #ifndef PRODUCT
8096 // Assertion checking only:  no useful work in product mode --
8097 // however, if any of the flags below become product flags,
8098 // you may need to review this code to see if it needs to be
8099 // enabled in product mode.
8100 SweepClosure::~SweepClosure() {
8101   assert_lock_strong(_freelistLock);
8102   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8103          "sweep _limit out of bounds");
8104   if (inFreeRange()) {
8105     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8106     print();
8107     ShouldNotReachHere();
8108   }
8109   if (Verbose && PrintGC) {
8110     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8111                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8112     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8113                            SIZE_FORMAT" bytes  "
8114       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8115       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8116       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8117     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8118                         * sizeof(HeapWord);
8119     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8120 
8121     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8122       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8123       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8124       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8125       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8126       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8127         indexListReturnedBytes);
8128       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8129         dict_returned_bytes);
8130     }
8131   }
8132   if (CMSTraceSweeper) {
8133     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8134                            _limit);
8135   }
8136 }
8137 #endif  // PRODUCT
8138 
8139 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8140     bool freeRangeInFreeLists) {
8141   if (CMSTraceSweeper) {
8142     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8143                freeFinger, freeRangeInFreeLists);
8144   }
8145   assert(!inFreeRange(), "Trampling existing free range");
8146   set_inFreeRange(true);
8147   set_lastFreeRangeCoalesced(false);
8148 
8149   set_freeFinger(freeFinger);
8150   set_freeRangeInFreeLists(freeRangeInFreeLists);
8151   if (CMSTestInFreeList) {
8152     if (freeRangeInFreeLists) {
8153       FreeChunk* fc = (FreeChunk*) freeFinger;
8154       assert(fc->is_free(), "A chunk on the free list should be free.");
8155       assert(fc->size() > 0, "Free range should have a size");
8156       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8157     }
8158   }
8159 }
8160 
8161 // Note that the sweeper runs concurrently with mutators. Thus,
8162 // it is possible for direct allocation in this generation to happen
8163 // in the middle of the sweep. Note that the sweeper also coalesces
8164 // contiguous free blocks. Thus, unless the sweeper and the allocator
8165 // synchronize appropriately freshly allocated blocks may get swept up.
8166 // This is accomplished by the sweeper locking the free lists while
8167 // it is sweeping. Thus blocks that are determined to be free are
8168 // indeed free. There is however one additional complication:
8169 // blocks that have been allocated since the final checkpoint and
8170 // mark, will not have been marked and so would be treated as
8171 // unreachable and swept up. To prevent this, the allocator marks
8172 // the bit map when allocating during the sweep phase. This leads,
8173 // however, to a further complication -- objects may have been allocated
8174 // but not yet initialized -- in the sense that the header isn't yet
8175 // installed. The sweeper can not then determine the size of the block
8176 // in order to skip over it. To deal with this case, we use a technique
8177 // (due to Printezis) to encode such uninitialized block sizes in the
8178 // bit map. Since the bit map uses a bit per every HeapWord, but the
8179 // CMS generation has a minimum object size of 3 HeapWords, it follows
8180 // that "normal marks" won't be adjacent in the bit map (there will
8181 // always be at least two 0 bits between successive 1 bits). We make use
8182 // of these "unused" bits to represent uninitialized blocks -- the bit
8183 // corresponding to the start of the uninitialized object and the next
8184 // bit are both set. Finally, a 1 bit marks the end of the object that
8185 // started with the two consecutive 1 bits to indicate its potentially
8186 // uninitialized state.
8187 
8188 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8189   FreeChunk* fc = (FreeChunk*)addr;
8190   size_t res;
8191 
8192   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8193   // than "addr == _limit" because although _limit was a block boundary when
8194   // we started the sweep, it may no longer be one because heap expansion
8195   // may have caused us to coalesce the block ending at the address _limit
8196   // with a newly expanded chunk (this happens when _limit was set to the
8197   // previous _end of the space), so we may have stepped past _limit:
8198   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8199   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8200     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8201            "sweep _limit out of bounds");
8202     assert(addr < _sp->end(), "addr out of bounds");
8203     // Flush any free range we might be holding as a single
8204     // coalesced chunk to the appropriate free list.
8205     if (inFreeRange()) {
8206       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8207              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8208       flush_cur_free_chunk(freeFinger(),
8209                            pointer_delta(addr, freeFinger()));
8210       if (CMSTraceSweeper) {
8211         gclog_or_tty->print("Sweep: last chunk: ");
8212         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8213                    "[coalesced:"SIZE_FORMAT"]\n",
8214                    freeFinger(), pointer_delta(addr, freeFinger()),
8215                    lastFreeRangeCoalesced());
8216       }
8217     }
8218 
8219     // help the iterator loop finish
8220     return pointer_delta(_sp->end(), addr);
8221   }
8222 
8223   assert(addr < _limit, "sweep invariant");
8224   // check if we should yield
8225   do_yield_check(addr);
8226   if (fc->is_free()) {
8227     // Chunk that is already free
8228     res = fc->size();
8229     do_already_free_chunk(fc);
8230     debug_only(_sp->verifyFreeLists());
8231     // If we flush the chunk at hand in lookahead_and_flush()
8232     // and it's coalesced with a preceding chunk, then the
8233     // process of "mangling" the payload of the coalesced block
8234     // will cause erasure of the size information from the
8235     // (erstwhile) header of all the coalesced blocks but the
8236     // first, so the first disjunct in the assert will not hold
8237     // in that specific case (in which case the second disjunct
8238     // will hold).
8239     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8240            "Otherwise the size info doesn't change at this step");
8241     NOT_PRODUCT(
8242       _numObjectsAlreadyFree++;
8243       _numWordsAlreadyFree += res;
8244     )
8245     NOT_PRODUCT(_last_fc = fc;)
8246   } else if (!_bitMap->isMarked(addr)) {
8247     // Chunk is fresh garbage
8248     res = do_garbage_chunk(fc);
8249     debug_only(_sp->verifyFreeLists());
8250     NOT_PRODUCT(
8251       _numObjectsFreed++;
8252       _numWordsFreed += res;
8253     )
8254   } else {
8255     // Chunk that is alive.
8256     res = do_live_chunk(fc);
8257     debug_only(_sp->verifyFreeLists());
8258     NOT_PRODUCT(
8259         _numObjectsLive++;
8260         _numWordsLive += res;
8261     )
8262   }
8263   return res;
8264 }
8265 
8266 // For the smart allocation, record following
8267 //  split deaths - a free chunk is removed from its free list because
8268 //      it is being split into two or more chunks.
8269 //  split birth - a free chunk is being added to its free list because
8270 //      a larger free chunk has been split and resulted in this free chunk.
8271 //  coal death - a free chunk is being removed from its free list because
8272 //      it is being coalesced into a large free chunk.
8273 //  coal birth - a free chunk is being added to its free list because
8274 //      it was created when two or more free chunks where coalesced into
8275 //      this free chunk.
8276 //
8277 // These statistics are used to determine the desired number of free
8278 // chunks of a given size.  The desired number is chosen to be relative
8279 // to the end of a CMS sweep.  The desired number at the end of a sweep
8280 // is the
8281 //      count-at-end-of-previous-sweep (an amount that was enough)
8282 //              - count-at-beginning-of-current-sweep  (the excess)
8283 //              + split-births  (gains in this size during interval)
8284 //              - split-deaths  (demands on this size during interval)
8285 // where the interval is from the end of one sweep to the end of the
8286 // next.
8287 //
8288 // When sweeping the sweeper maintains an accumulated chunk which is
8289 // the chunk that is made up of chunks that have been coalesced.  That
8290 // will be termed the left-hand chunk.  A new chunk of garbage that
8291 // is being considered for coalescing will be referred to as the
8292 // right-hand chunk.
8293 //
8294 // When making a decision on whether to coalesce a right-hand chunk with
8295 // the current left-hand chunk, the current count vs. the desired count
8296 // of the left-hand chunk is considered.  Also if the right-hand chunk
8297 // is near the large chunk at the end of the heap (see
8298 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8299 // left-hand chunk is coalesced.
8300 //
8301 // When making a decision about whether to split a chunk, the desired count
8302 // vs. the current count of the candidate to be split is also considered.
8303 // If the candidate is underpopulated (currently fewer chunks than desired)
8304 // a chunk of an overpopulated (currently more chunks than desired) size may
8305 // be chosen.  The "hint" associated with a free list, if non-null, points
8306 // to a free list which may be overpopulated.
8307 //
8308 
8309 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8310   const size_t size = fc->size();
8311   // Chunks that cannot be coalesced are not in the
8312   // free lists.
8313   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8314     assert(_sp->verify_chunk_in_free_list(fc),
8315       "free chunk should be in free lists");
8316   }
8317   // a chunk that is already free, should not have been
8318   // marked in the bit map
8319   HeapWord* const addr = (HeapWord*) fc;
8320   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8321   // Verify that the bit map has no bits marked between
8322   // addr and purported end of this block.
8323   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8324 
8325   // Some chunks cannot be coalesced under any circumstances.
8326   // See the definition of cantCoalesce().
8327   if (!fc->cantCoalesce()) {
8328     // This chunk can potentially be coalesced.
8329     if (_sp->adaptive_freelists()) {
8330       // All the work is done in
8331       do_post_free_or_garbage_chunk(fc, size);
8332     } else {  // Not adaptive free lists
8333       // this is a free chunk that can potentially be coalesced by the sweeper;
8334       if (!inFreeRange()) {
8335         // if the next chunk is a free block that can't be coalesced
8336         // it doesn't make sense to remove this chunk from the free lists
8337         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8338         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8339         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8340             nextChunk->is_free()               &&     // ... which is free...
8341             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8342           // nothing to do
8343         } else {
8344           // Potentially the start of a new free range:
8345           // Don't eagerly remove it from the free lists.
8346           // No need to remove it if it will just be put
8347           // back again.  (Also from a pragmatic point of view
8348           // if it is a free block in a region that is beyond
8349           // any allocated blocks, an assertion will fail)
8350           // Remember the start of a free run.
8351           initialize_free_range(addr, true);
8352           // end - can coalesce with next chunk
8353         }
8354       } else {
8355         // the midst of a free range, we are coalescing
8356         print_free_block_coalesced(fc);
8357         if (CMSTraceSweeper) {
8358           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8359         }
8360         // remove it from the free lists
8361         _sp->removeFreeChunkFromFreeLists(fc);
8362         set_lastFreeRangeCoalesced(true);
8363         // If the chunk is being coalesced and the current free range is
8364         // in the free lists, remove the current free range so that it
8365         // will be returned to the free lists in its entirety - all
8366         // the coalesced pieces included.
8367         if (freeRangeInFreeLists()) {
8368           FreeChunk* ffc = (FreeChunk*) freeFinger();
8369           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8370             "Size of free range is inconsistent with chunk size.");
8371           if (CMSTestInFreeList) {
8372             assert(_sp->verify_chunk_in_free_list(ffc),
8373               "free range is not in free lists");
8374           }
8375           _sp->removeFreeChunkFromFreeLists(ffc);
8376           set_freeRangeInFreeLists(false);
8377         }
8378       }
8379     }
8380     // Note that if the chunk is not coalescable (the else arm
8381     // below), we unconditionally flush, without needing to do
8382     // a "lookahead," as we do below.
8383     if (inFreeRange()) lookahead_and_flush(fc, size);
8384   } else {
8385     // Code path common to both original and adaptive free lists.
8386 
8387     // cant coalesce with previous block; this should be treated
8388     // as the end of a free run if any
8389     if (inFreeRange()) {
8390       // we kicked some butt; time to pick up the garbage
8391       assert(freeFinger() < addr, "freeFinger points too high");
8392       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8393     }
8394     // else, nothing to do, just continue
8395   }
8396 }
8397 
8398 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8399   // This is a chunk of garbage.  It is not in any free list.
8400   // Add it to a free list or let it possibly be coalesced into
8401   // a larger chunk.
8402   HeapWord* const addr = (HeapWord*) fc;
8403   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8404 
8405   if (_sp->adaptive_freelists()) {
8406     // Verify that the bit map has no bits marked between
8407     // addr and purported end of just dead object.
8408     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8409 
8410     do_post_free_or_garbage_chunk(fc, size);
8411   } else {
8412     if (!inFreeRange()) {
8413       // start of a new free range
8414       assert(size > 0, "A free range should have a size");
8415       initialize_free_range(addr, false);
8416     } else {
8417       // this will be swept up when we hit the end of the
8418       // free range
8419       if (CMSTraceSweeper) {
8420         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8421       }
8422       // If the chunk is being coalesced and the current free range is
8423       // in the free lists, remove the current free range so that it
8424       // will be returned to the free lists in its entirety - all
8425       // the coalesced pieces included.
8426       if (freeRangeInFreeLists()) {
8427         FreeChunk* ffc = (FreeChunk*)freeFinger();
8428         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8429           "Size of free range is inconsistent with chunk size.");
8430         if (CMSTestInFreeList) {
8431           assert(_sp->verify_chunk_in_free_list(ffc),
8432             "free range is not in free lists");
8433         }
8434         _sp->removeFreeChunkFromFreeLists(ffc);
8435         set_freeRangeInFreeLists(false);
8436       }
8437       set_lastFreeRangeCoalesced(true);
8438     }
8439     // this will be swept up when we hit the end of the free range
8440 
8441     // Verify that the bit map has no bits marked between
8442     // addr and purported end of just dead object.
8443     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8444   }
8445   assert(_limit >= addr + size,
8446          "A freshly garbage chunk can't possibly straddle over _limit");
8447   if (inFreeRange()) lookahead_and_flush(fc, size);
8448   return size;
8449 }
8450 
8451 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8452   HeapWord* addr = (HeapWord*) fc;
8453   // The sweeper has just found a live object. Return any accumulated
8454   // left hand chunk to the free lists.
8455   if (inFreeRange()) {
8456     assert(freeFinger() < addr, "freeFinger points too high");
8457     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8458   }
8459 
8460   // This object is live: we'd normally expect this to be
8461   // an oop, and like to assert the following:
8462   // assert(oop(addr)->is_oop(), "live block should be an oop");
8463   // However, as we commented above, this may be an object whose
8464   // header hasn't yet been initialized.
8465   size_t size;
8466   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8467   if (_bitMap->isMarked(addr + 1)) {
8468     // Determine the size from the bit map, rather than trying to
8469     // compute it from the object header.
8470     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8471     size = pointer_delta(nextOneAddr + 1, addr);
8472     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8473            "alignment problem");
8474 
8475 #ifdef ASSERT
8476       if (oop(addr)->klass_or_null() != NULL) {
8477         // Ignore mark word because we are running concurrent with mutators
8478         assert(oop(addr)->is_oop(true), "live block should be an oop");
8479         assert(size ==
8480                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8481                "P-mark and computed size do not agree");
8482       }
8483 #endif
8484 
8485   } else {
8486     // This should be an initialized object that's alive.
8487     assert(oop(addr)->klass_or_null() != NULL,
8488            "Should be an initialized object");
8489     // Ignore mark word because we are running concurrent with mutators
8490     assert(oop(addr)->is_oop(true), "live block should be an oop");
8491     // Verify that the bit map has no bits marked between
8492     // addr and purported end of this block.
8493     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8494     assert(size >= 3, "Necessary for Printezis marks to work");
8495     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8496     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8497   }
8498   return size;
8499 }
8500 
8501 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8502                                                  size_t chunkSize) {
8503   // do_post_free_or_garbage_chunk() should only be called in the case
8504   // of the adaptive free list allocator.
8505   const bool fcInFreeLists = fc->is_free();
8506   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8507   assert((HeapWord*)fc <= _limit, "sweep invariant");
8508   if (CMSTestInFreeList && fcInFreeLists) {
8509     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8510   }
8511 
8512   if (CMSTraceSweeper) {
8513     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8514   }
8515 
8516   HeapWord* const fc_addr = (HeapWord*) fc;
8517 
8518   bool coalesce;
8519   const size_t left  = pointer_delta(fc_addr, freeFinger());
8520   const size_t right = chunkSize;
8521   switch (FLSCoalescePolicy) {
8522     // numeric value forms a coalition aggressiveness metric
8523     case 0:  { // never coalesce
8524       coalesce = false;
8525       break;
8526     }
8527     case 1: { // coalesce if left & right chunks on overpopulated lists
8528       coalesce = _sp->coalOverPopulated(left) &&
8529                  _sp->coalOverPopulated(right);
8530       break;
8531     }
8532     case 2: { // coalesce if left chunk on overpopulated list (default)
8533       coalesce = _sp->coalOverPopulated(left);
8534       break;
8535     }
8536     case 3: { // coalesce if left OR right chunk on overpopulated list
8537       coalesce = _sp->coalOverPopulated(left) ||
8538                  _sp->coalOverPopulated(right);
8539       break;
8540     }
8541     case 4: { // always coalesce
8542       coalesce = true;
8543       break;
8544     }
8545     default:
8546      ShouldNotReachHere();
8547   }
8548 
8549   // Should the current free range be coalesced?
8550   // If the chunk is in a free range and either we decided to coalesce above
8551   // or the chunk is near the large block at the end of the heap
8552   // (isNearLargestChunk() returns true), then coalesce this chunk.
8553   const bool doCoalesce = inFreeRange()
8554                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8555   if (doCoalesce) {
8556     // Coalesce the current free range on the left with the new
8557     // chunk on the right.  If either is on a free list,
8558     // it must be removed from the list and stashed in the closure.
8559     if (freeRangeInFreeLists()) {
8560       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8561       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8562         "Size of free range is inconsistent with chunk size.");
8563       if (CMSTestInFreeList) {
8564         assert(_sp->verify_chunk_in_free_list(ffc),
8565           "Chunk is not in free lists");
8566       }
8567       _sp->coalDeath(ffc->size());
8568       _sp->removeFreeChunkFromFreeLists(ffc);
8569       set_freeRangeInFreeLists(false);
8570     }
8571     if (fcInFreeLists) {
8572       _sp->coalDeath(chunkSize);
8573       assert(fc->size() == chunkSize,
8574         "The chunk has the wrong size or is not in the free lists");
8575       _sp->removeFreeChunkFromFreeLists(fc);
8576     }
8577     set_lastFreeRangeCoalesced(true);
8578     print_free_block_coalesced(fc);
8579   } else {  // not in a free range and/or should not coalesce
8580     // Return the current free range and start a new one.
8581     if (inFreeRange()) {
8582       // In a free range but cannot coalesce with the right hand chunk.
8583       // Put the current free range into the free lists.
8584       flush_cur_free_chunk(freeFinger(),
8585                            pointer_delta(fc_addr, freeFinger()));
8586     }
8587     // Set up for new free range.  Pass along whether the right hand
8588     // chunk is in the free lists.
8589     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8590   }
8591 }
8592 
8593 // Lookahead flush:
8594 // If we are tracking a free range, and this is the last chunk that
8595 // we'll look at because its end crosses past _limit, we'll preemptively
8596 // flush it along with any free range we may be holding on to. Note that
8597 // this can be the case only for an already free or freshly garbage
8598 // chunk. If this block is an object, it can never straddle
8599 // over _limit. The "straddling" occurs when _limit is set at
8600 // the previous end of the space when this cycle started, and
8601 // a subsequent heap expansion caused the previously co-terminal
8602 // free block to be coalesced with the newly expanded portion,
8603 // thus rendering _limit a non-block-boundary making it dangerous
8604 // for the sweeper to step over and examine.
8605 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8606   assert(inFreeRange(), "Should only be called if currently in a free range.");
8607   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8608   assert(_sp->used_region().contains(eob - 1),
8609          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8610                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8611                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8612   if (eob >= _limit) {
8613     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8614     if (CMSTraceSweeper) {
8615       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8616                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8617                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8618                              _limit, fc, eob, _sp->bottom(), _sp->end());
8619     }
8620     // Return the storage we are tracking back into the free lists.
8621     if (CMSTraceSweeper) {
8622       gclog_or_tty->print_cr("Flushing ... ");
8623     }
8624     assert(freeFinger() < eob, "Error");
8625     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8626   }
8627 }
8628 
8629 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8630   assert(inFreeRange(), "Should only be called if currently in a free range.");
8631   assert(size > 0,
8632     "A zero sized chunk cannot be added to the free lists.");
8633   if (!freeRangeInFreeLists()) {
8634     if (CMSTestInFreeList) {
8635       FreeChunk* fc = (FreeChunk*) chunk;
8636       fc->set_size(size);
8637       assert(!_sp->verify_chunk_in_free_list(fc),
8638         "chunk should not be in free lists yet");
8639     }
8640     if (CMSTraceSweeper) {
8641       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8642                     chunk, size);
8643     }
8644     // A new free range is going to be starting.  The current
8645     // free range has not been added to the free lists yet or
8646     // was removed so add it back.
8647     // If the current free range was coalesced, then the death
8648     // of the free range was recorded.  Record a birth now.
8649     if (lastFreeRangeCoalesced()) {
8650       _sp->coalBirth(size);
8651     }
8652     _sp->addChunkAndRepairOffsetTable(chunk, size,
8653             lastFreeRangeCoalesced());
8654   } else if (CMSTraceSweeper) {
8655     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8656   }
8657   set_inFreeRange(false);
8658   set_freeRangeInFreeLists(false);
8659 }
8660 
8661 // We take a break if we've been at this for a while,
8662 // so as to avoid monopolizing the locks involved.
8663 void SweepClosure::do_yield_work(HeapWord* addr) {
8664   // Return current free chunk being used for coalescing (if any)
8665   // to the appropriate freelist.  After yielding, the next
8666   // free block encountered will start a coalescing range of
8667   // free blocks.  If the next free block is adjacent to the
8668   // chunk just flushed, they will need to wait for the next
8669   // sweep to be coalesced.
8670   if (inFreeRange()) {
8671     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8672   }
8673 
8674   // First give up the locks, then yield, then re-lock.
8675   // We should probably use a constructor/destructor idiom to
8676   // do this unlock/lock or modify the MutexUnlocker class to
8677   // serve our purpose. XXX
8678   assert_lock_strong(_bitMap->lock());
8679   assert_lock_strong(_freelistLock);
8680   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8681          "CMS thread should hold CMS token");
8682   _bitMap->lock()->unlock();
8683   _freelistLock->unlock();
8684   ConcurrentMarkSweepThread::desynchronize(true);
8685   ConcurrentMarkSweepThread::acknowledge_yield_request();
8686   _collector->stopTimer();
8687   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8688   if (PrintCMSStatistics != 0) {
8689     _collector->incrementYields();
8690   }
8691   _collector->icms_wait();
8692 
8693   // See the comment in coordinator_yield()
8694   for (unsigned i = 0; i < CMSYieldSleepCount &&
8695                        ConcurrentMarkSweepThread::should_yield() &&
8696                        !CMSCollector::foregroundGCIsActive(); ++i) {
8697     os::sleep(Thread::current(), 1, false);
8698     ConcurrentMarkSweepThread::acknowledge_yield_request();
8699   }
8700 
8701   ConcurrentMarkSweepThread::synchronize(true);
8702   _freelistLock->lock();
8703   _bitMap->lock()->lock_without_safepoint_check();
8704   _collector->startTimer();
8705 }
8706 
8707 #ifndef PRODUCT
8708 // This is actually very useful in a product build if it can
8709 // be called from the debugger.  Compile it into the product
8710 // as needed.
8711 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8712   return debug_cms_space->verify_chunk_in_free_list(fc);
8713 }
8714 #endif
8715 
8716 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8717   if (CMSTraceSweeper) {
8718     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8719                            fc, fc->size());
8720   }
8721 }
8722 
8723 // CMSIsAliveClosure
8724 bool CMSIsAliveClosure::do_object_b(oop obj) {
8725   HeapWord* addr = (HeapWord*)obj;
8726   return addr != NULL &&
8727          (!_span.contains(addr) || _bit_map->isMarked(addr));
8728 }
8729 
8730 
8731 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8732                       MemRegion span,
8733                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8734                       bool cpc):
8735   _collector(collector),
8736   _span(span),
8737   _bit_map(bit_map),
8738   _mark_stack(mark_stack),
8739   _concurrent_precleaning(cpc) {
8740   assert(!_span.is_empty(), "Empty span could spell trouble");
8741 }
8742 
8743 
8744 // CMSKeepAliveClosure: the serial version
8745 void CMSKeepAliveClosure::do_oop(oop obj) {
8746   HeapWord* addr = (HeapWord*)obj;
8747   if (_span.contains(addr) &&
8748       !_bit_map->isMarked(addr)) {
8749     _bit_map->mark(addr);
8750     bool simulate_overflow = false;
8751     NOT_PRODUCT(
8752       if (CMSMarkStackOverflowALot &&
8753           _collector->simulate_overflow()) {
8754         // simulate a stack overflow
8755         simulate_overflow = true;
8756       }
8757     )
8758     if (simulate_overflow || !_mark_stack->push(obj)) {
8759       if (_concurrent_precleaning) {
8760         // We dirty the overflown object and let the remark
8761         // phase deal with it.
8762         assert(_collector->overflow_list_is_empty(), "Error");
8763         // In the case of object arrays, we need to dirty all of
8764         // the cards that the object spans. No locking or atomics
8765         // are needed since no one else can be mutating the mod union
8766         // table.
8767         if (obj->is_objArray()) {
8768           size_t sz = obj->size();
8769           HeapWord* end_card_addr =
8770             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8771           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8772           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8773           _collector->_modUnionTable.mark_range(redirty_range);
8774         } else {
8775           _collector->_modUnionTable.mark(addr);
8776         }
8777         _collector->_ser_kac_preclean_ovflw++;
8778       } else {
8779         _collector->push_on_overflow_list(obj);
8780         _collector->_ser_kac_ovflw++;
8781       }
8782     }
8783   }
8784 }
8785 
8786 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8787 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8788 
8789 // CMSParKeepAliveClosure: a parallel version of the above.
8790 // The work queues are private to each closure (thread),
8791 // but (may be) available for stealing by other threads.
8792 void CMSParKeepAliveClosure::do_oop(oop obj) {
8793   HeapWord* addr = (HeapWord*)obj;
8794   if (_span.contains(addr) &&
8795       !_bit_map->isMarked(addr)) {
8796     // In general, during recursive tracing, several threads
8797     // may be concurrently getting here; the first one to
8798     // "tag" it, claims it.
8799     if (_bit_map->par_mark(addr)) {
8800       bool res = _work_queue->push(obj);
8801       assert(res, "Low water mark should be much less than capacity");
8802       // Do a recursive trim in the hope that this will keep
8803       // stack usage lower, but leave some oops for potential stealers
8804       trim_queue(_low_water_mark);
8805     } // Else, another thread got there first
8806   }
8807 }
8808 
8809 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8810 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8811 
8812 void CMSParKeepAliveClosure::trim_queue(uint max) {
8813   while (_work_queue->size() > max) {
8814     oop new_oop;
8815     if (_work_queue->pop_local(new_oop)) {
8816       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8817       assert(_bit_map->isMarked((HeapWord*)new_oop),
8818              "no white objects on this stack!");
8819       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8820       // iterate over the oops in this oop, marking and pushing
8821       // the ones in CMS heap (i.e. in _span).
8822       new_oop->oop_iterate(&_mark_and_push);
8823     }
8824   }
8825 }
8826 
8827 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8828                                 CMSCollector* collector,
8829                                 MemRegion span, CMSBitMap* bit_map,
8830                                 OopTaskQueue* work_queue):
8831   _collector(collector),
8832   _span(span),
8833   _bit_map(bit_map),
8834   _work_queue(work_queue) { }
8835 
8836 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8837   HeapWord* addr = (HeapWord*)obj;
8838   if (_span.contains(addr) &&
8839       !_bit_map->isMarked(addr)) {
8840     if (_bit_map->par_mark(addr)) {
8841       bool simulate_overflow = false;
8842       NOT_PRODUCT(
8843         if (CMSMarkStackOverflowALot &&
8844             _collector->par_simulate_overflow()) {
8845           // simulate a stack overflow
8846           simulate_overflow = true;
8847         }
8848       )
8849       if (simulate_overflow || !_work_queue->push(obj)) {
8850         _collector->par_push_on_overflow_list(obj);
8851         _collector->_par_kac_ovflw++;
8852       }
8853     } // Else another thread got there already
8854   }
8855 }
8856 
8857 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8858 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8859 
8860 //////////////////////////////////////////////////////////////////
8861 //  CMSExpansionCause                /////////////////////////////
8862 //////////////////////////////////////////////////////////////////
8863 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8864   switch (cause) {
8865     case _no_expansion:
8866       return "No expansion";
8867     case _satisfy_free_ratio:
8868       return "Free ratio";
8869     case _satisfy_promotion:
8870       return "Satisfy promotion";
8871     case _satisfy_allocation:
8872       return "allocation";
8873     case _allocate_par_lab:
8874       return "Par LAB";
8875     case _allocate_par_spooling_space:
8876       return "Par Spooling Space";
8877     case _adaptive_size_policy:
8878       return "Ergonomics";
8879     default:
8880       return "unknown";
8881   }
8882 }
8883 
8884 void CMSDrainMarkingStackClosure::do_void() {
8885   // the max number to take from overflow list at a time
8886   const size_t num = _mark_stack->capacity()/4;
8887   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8888          "Overflow list should be NULL during concurrent phases");
8889   while (!_mark_stack->isEmpty() ||
8890          // if stack is empty, check the overflow list
8891          _collector->take_from_overflow_list(num, _mark_stack)) {
8892     oop obj = _mark_stack->pop();
8893     HeapWord* addr = (HeapWord*)obj;
8894     assert(_span.contains(addr), "Should be within span");
8895     assert(_bit_map->isMarked(addr), "Should be marked");
8896     assert(obj->is_oop(), "Should be an oop");
8897     obj->oop_iterate(_keep_alive);
8898   }
8899 }
8900 
8901 void CMSParDrainMarkingStackClosure::do_void() {
8902   // drain queue
8903   trim_queue(0);
8904 }
8905 
8906 // Trim our work_queue so its length is below max at return
8907 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8908   while (_work_queue->size() > max) {
8909     oop new_oop;
8910     if (_work_queue->pop_local(new_oop)) {
8911       assert(new_oop->is_oop(), "Expected an oop");
8912       assert(_bit_map->isMarked((HeapWord*)new_oop),
8913              "no white objects on this stack!");
8914       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8915       // iterate over the oops in this oop, marking and pushing
8916       // the ones in CMS heap (i.e. in _span).
8917       new_oop->oop_iterate(&_mark_and_push);
8918     }
8919   }
8920 }
8921 
8922 ////////////////////////////////////////////////////////////////////
8923 // Support for Marking Stack Overflow list handling and related code
8924 ////////////////////////////////////////////////////////////////////
8925 // Much of the following code is similar in shape and spirit to the
8926 // code used in ParNewGC. We should try and share that code
8927 // as much as possible in the future.
8928 
8929 #ifndef PRODUCT
8930 // Debugging support for CMSStackOverflowALot
8931 
8932 // It's OK to call this multi-threaded;  the worst thing
8933 // that can happen is that we'll get a bunch of closely
8934 // spaced simulated oveflows, but that's OK, in fact
8935 // probably good as it would exercise the overflow code
8936 // under contention.
8937 bool CMSCollector::simulate_overflow() {
8938   if (_overflow_counter-- <= 0) { // just being defensive
8939     _overflow_counter = CMSMarkStackOverflowInterval;
8940     return true;
8941   } else {
8942     return false;
8943   }
8944 }
8945 
8946 bool CMSCollector::par_simulate_overflow() {
8947   return simulate_overflow();
8948 }
8949 #endif
8950 
8951 // Single-threaded
8952 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8953   assert(stack->isEmpty(), "Expected precondition");
8954   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8955   size_t i = num;
8956   oop  cur = _overflow_list;
8957   const markOop proto = markOopDesc::prototype();
8958   NOT_PRODUCT(ssize_t n = 0;)
8959   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8960     next = oop(cur->mark());
8961     cur->set_mark(proto);   // until proven otherwise
8962     assert(cur->is_oop(), "Should be an oop");
8963     bool res = stack->push(cur);
8964     assert(res, "Bit off more than can chew?");
8965     NOT_PRODUCT(n++;)
8966   }
8967   _overflow_list = cur;
8968 #ifndef PRODUCT
8969   assert(_num_par_pushes >= n, "Too many pops?");
8970   _num_par_pushes -=n;
8971 #endif
8972   return !stack->isEmpty();
8973 }
8974 
8975 #define BUSY  (oop(0x1aff1aff))
8976 // (MT-safe) Get a prefix of at most "num" from the list.
8977 // The overflow list is chained through the mark word of
8978 // each object in the list. We fetch the entire list,
8979 // break off a prefix of the right size and return the
8980 // remainder. If other threads try to take objects from
8981 // the overflow list at that time, they will wait for
8982 // some time to see if data becomes available. If (and
8983 // only if) another thread places one or more object(s)
8984 // on the global list before we have returned the suffix
8985 // to the global list, we will walk down our local list
8986 // to find its end and append the global list to
8987 // our suffix before returning it. This suffix walk can
8988 // prove to be expensive (quadratic in the amount of traffic)
8989 // when there are many objects in the overflow list and
8990 // there is much producer-consumer contention on the list.
8991 // *NOTE*: The overflow list manipulation code here and
8992 // in ParNewGeneration:: are very similar in shape,
8993 // except that in the ParNew case we use the old (from/eden)
8994 // copy of the object to thread the list via its klass word.
8995 // Because of the common code, if you make any changes in
8996 // the code below, please check the ParNew version to see if
8997 // similar changes might be needed.
8998 // CR 6797058 has been filed to consolidate the common code.
8999 bool CMSCollector::par_take_from_overflow_list(size_t num,
9000                                                OopTaskQueue* work_q,
9001                                                int no_of_gc_threads) {
9002   assert(work_q->size() == 0, "First empty local work queue");
9003   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9004   if (_overflow_list == NULL) {
9005     return false;
9006   }
9007   // Grab the entire list; we'll put back a suffix
9008   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
9009   Thread* tid = Thread::current();
9010   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9011   // set to ParallelGCThreads.
9012   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9013   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9014   // If the list is busy, we spin for a short while,
9015   // sleeping between attempts to get the list.
9016   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9017     os::sleep(tid, sleep_time_millis, false);
9018     if (_overflow_list == NULL) {
9019       // Nothing left to take
9020       return false;
9021     } else if (_overflow_list != BUSY) {
9022       // Try and grab the prefix
9023       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
9024     }
9025   }
9026   // If the list was found to be empty, or we spun long
9027   // enough, we give up and return empty-handed. If we leave
9028   // the list in the BUSY state below, it must be the case that
9029   // some other thread holds the overflow list and will set it
9030   // to a non-BUSY state in the future.
9031   if (prefix == NULL || prefix == BUSY) {
9032      // Nothing to take or waited long enough
9033      if (prefix == NULL) {
9034        // Write back the NULL in case we overwrote it with BUSY above
9035        // and it is still the same value.
9036        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9037      }
9038      return false;
9039   }
9040   assert(prefix != NULL && prefix != BUSY, "Error");
9041   size_t i = num;
9042   oop cur = prefix;
9043   // Walk down the first "num" objects, unless we reach the end.
9044   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9045   if (cur->mark() == NULL) {
9046     // We have "num" or fewer elements in the list, so there
9047     // is nothing to return to the global list.
9048     // Write back the NULL in lieu of the BUSY we wrote
9049     // above, if it is still the same value.
9050     if (_overflow_list == BUSY) {
9051       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9052     }
9053   } else {
9054     // Chop off the suffix and rerturn it to the global list.
9055     assert(cur->mark() != BUSY, "Error");
9056     oop suffix_head = cur->mark(); // suffix will be put back on global list
9057     cur->set_mark(NULL);           // break off suffix
9058     // It's possible that the list is still in the empty(busy) state
9059     // we left it in a short while ago; in that case we may be
9060     // able to place back the suffix without incurring the cost
9061     // of a walk down the list.
9062     oop observed_overflow_list = _overflow_list;
9063     oop cur_overflow_list = observed_overflow_list;
9064     bool attached = false;
9065     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9066       observed_overflow_list =
9067         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9068       if (cur_overflow_list == observed_overflow_list) {
9069         attached = true;
9070         break;
9071       } else cur_overflow_list = observed_overflow_list;
9072     }
9073     if (!attached) {
9074       // Too bad, someone else sneaked in (at least) an element; we'll need
9075       // to do a splice. Find tail of suffix so we can prepend suffix to global
9076       // list.
9077       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9078       oop suffix_tail = cur;
9079       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9080              "Tautology");
9081       observed_overflow_list = _overflow_list;
9082       do {
9083         cur_overflow_list = observed_overflow_list;
9084         if (cur_overflow_list != BUSY) {
9085           // Do the splice ...
9086           suffix_tail->set_mark(markOop(cur_overflow_list));
9087         } else { // cur_overflow_list == BUSY
9088           suffix_tail->set_mark(NULL);
9089         }
9090         // ... and try to place spliced list back on overflow_list ...
9091         observed_overflow_list =
9092           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9093       } while (cur_overflow_list != observed_overflow_list);
9094       // ... until we have succeeded in doing so.
9095     }
9096   }
9097 
9098   // Push the prefix elements on work_q
9099   assert(prefix != NULL, "control point invariant");
9100   const markOop proto = markOopDesc::prototype();
9101   oop next;
9102   NOT_PRODUCT(ssize_t n = 0;)
9103   for (cur = prefix; cur != NULL; cur = next) {
9104     next = oop(cur->mark());
9105     cur->set_mark(proto);   // until proven otherwise
9106     assert(cur->is_oop(), "Should be an oop");
9107     bool res = work_q->push(cur);
9108     assert(res, "Bit off more than we can chew?");
9109     NOT_PRODUCT(n++;)
9110   }
9111 #ifndef PRODUCT
9112   assert(_num_par_pushes >= n, "Too many pops?");
9113   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9114 #endif
9115   return true;
9116 }
9117 
9118 // Single-threaded
9119 void CMSCollector::push_on_overflow_list(oop p) {
9120   NOT_PRODUCT(_num_par_pushes++;)
9121   assert(p->is_oop(), "Not an oop");
9122   preserve_mark_if_necessary(p);
9123   p->set_mark((markOop)_overflow_list);
9124   _overflow_list = p;
9125 }
9126 
9127 // Multi-threaded; use CAS to prepend to overflow list
9128 void CMSCollector::par_push_on_overflow_list(oop p) {
9129   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9130   assert(p->is_oop(), "Not an oop");
9131   par_preserve_mark_if_necessary(p);
9132   oop observed_overflow_list = _overflow_list;
9133   oop cur_overflow_list;
9134   do {
9135     cur_overflow_list = observed_overflow_list;
9136     if (cur_overflow_list != BUSY) {
9137       p->set_mark(markOop(cur_overflow_list));
9138     } else {
9139       p->set_mark(NULL);
9140     }
9141     observed_overflow_list =
9142       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9143   } while (cur_overflow_list != observed_overflow_list);
9144 }
9145 #undef BUSY
9146 
9147 // Single threaded
9148 // General Note on GrowableArray: pushes may silently fail
9149 // because we are (temporarily) out of C-heap for expanding
9150 // the stack. The problem is quite ubiquitous and affects
9151 // a lot of code in the JVM. The prudent thing for GrowableArray
9152 // to do (for now) is to exit with an error. However, that may
9153 // be too draconian in some cases because the caller may be
9154 // able to recover without much harm. For such cases, we
9155 // should probably introduce a "soft_push" method which returns
9156 // an indication of success or failure with the assumption that
9157 // the caller may be able to recover from a failure; code in
9158 // the VM can then be changed, incrementally, to deal with such
9159 // failures where possible, thus, incrementally hardening the VM
9160 // in such low resource situations.
9161 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9162   _preserved_oop_stack.push(p);
9163   _preserved_mark_stack.push(m);
9164   assert(m == p->mark(), "Mark word changed");
9165   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9166          "bijection");
9167 }
9168 
9169 // Single threaded
9170 void CMSCollector::preserve_mark_if_necessary(oop p) {
9171   markOop m = p->mark();
9172   if (m->must_be_preserved(p)) {
9173     preserve_mark_work(p, m);
9174   }
9175 }
9176 
9177 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9178   markOop m = p->mark();
9179   if (m->must_be_preserved(p)) {
9180     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9181     // Even though we read the mark word without holding
9182     // the lock, we are assured that it will not change
9183     // because we "own" this oop, so no other thread can
9184     // be trying to push it on the overflow list; see
9185     // the assertion in preserve_mark_work() that checks
9186     // that m == p->mark().
9187     preserve_mark_work(p, m);
9188   }
9189 }
9190 
9191 // We should be able to do this multi-threaded,
9192 // a chunk of stack being a task (this is
9193 // correct because each oop only ever appears
9194 // once in the overflow list. However, it's
9195 // not very easy to completely overlap this with
9196 // other operations, so will generally not be done
9197 // until all work's been completed. Because we
9198 // expect the preserved oop stack (set) to be small,
9199 // it's probably fine to do this single-threaded.
9200 // We can explore cleverer concurrent/overlapped/parallel
9201 // processing of preserved marks if we feel the
9202 // need for this in the future. Stack overflow should
9203 // be so rare in practice and, when it happens, its
9204 // effect on performance so great that this will
9205 // likely just be in the noise anyway.
9206 void CMSCollector::restore_preserved_marks_if_any() {
9207   assert(SafepointSynchronize::is_at_safepoint(),
9208          "world should be stopped");
9209   assert(Thread::current()->is_ConcurrentGC_thread() ||
9210          Thread::current()->is_VM_thread(),
9211          "should be single-threaded");
9212   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9213          "bijection");
9214 
9215   while (!_preserved_oop_stack.is_empty()) {
9216     oop p = _preserved_oop_stack.pop();
9217     assert(p->is_oop(), "Should be an oop");
9218     assert(_span.contains(p), "oop should be in _span");
9219     assert(p->mark() == markOopDesc::prototype(),
9220            "Set when taken from overflow list");
9221     markOop m = _preserved_mark_stack.pop();
9222     p->set_mark(m);
9223   }
9224   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9225          "stacks were cleared above");
9226 }
9227 
9228 #ifndef PRODUCT
9229 bool CMSCollector::no_preserved_marks() const {
9230   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9231 }
9232 #endif
9233 
9234 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9235 {
9236   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9237   CMSAdaptiveSizePolicy* size_policy =
9238     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9239   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9240     "Wrong type for size policy");
9241   return size_policy;
9242 }
9243 
9244 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9245                                            size_t desired_promo_size) {
9246   if (cur_promo_size < desired_promo_size) {
9247     size_t expand_bytes = desired_promo_size - cur_promo_size;
9248     if (PrintAdaptiveSizePolicy && Verbose) {
9249       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9250         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9251         expand_bytes);
9252     }
9253     expand(expand_bytes,
9254            MinHeapDeltaBytes,
9255            CMSExpansionCause::_adaptive_size_policy);
9256   } else if (desired_promo_size < cur_promo_size) {
9257     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9258     if (PrintAdaptiveSizePolicy && Verbose) {
9259       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9260         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9261         shrink_bytes);
9262     }
9263     shrink(shrink_bytes);
9264   }
9265 }
9266 
9267 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9268   GenCollectedHeap* gch = GenCollectedHeap::heap();
9269   CMSGCAdaptivePolicyCounters* counters =
9270     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9271   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9272     "Wrong kind of counters");
9273   return counters;
9274 }
9275 
9276 
9277 void ASConcurrentMarkSweepGeneration::update_counters() {
9278   if (UsePerfData) {
9279     _space_counters->update_all();
9280     _gen_counters->update_all();
9281     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9282     GenCollectedHeap* gch = GenCollectedHeap::heap();
9283     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9284     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9285       "Wrong gc statistics type");
9286     counters->update_counters(gc_stats_l);
9287   }
9288 }
9289 
9290 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9291   if (UsePerfData) {
9292     _space_counters->update_used(used);
9293     _space_counters->update_capacity();
9294     _gen_counters->update_all();
9295 
9296     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9297     GenCollectedHeap* gch = GenCollectedHeap::heap();
9298     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9299     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9300       "Wrong gc statistics type");
9301     counters->update_counters(gc_stats_l);
9302   }
9303 }
9304 
9305 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9306   assert_locked_or_safepoint(Heap_lock);
9307   assert_lock_strong(freelistLock());
9308   HeapWord* old_end = _cmsSpace->end();
9309   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9310   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9311   FreeChunk* chunk_at_end = find_chunk_at_end();
9312   if (chunk_at_end == NULL) {
9313     // No room to shrink
9314     if (PrintGCDetails && Verbose) {
9315       gclog_or_tty->print_cr("No room to shrink: old_end  "
9316         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9317         " chunk_at_end  " PTR_FORMAT,
9318         old_end, unallocated_start, chunk_at_end);
9319     }
9320     return;
9321   } else {
9322 
9323     // Find the chunk at the end of the space and determine
9324     // how much it can be shrunk.
9325     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9326     size_t aligned_shrinkable_size_in_bytes =
9327       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9328     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9329       "Inconsistent chunk at end of space");
9330     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9331     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9332 
9333     // Shrink the underlying space
9334     _virtual_space.shrink_by(bytes);
9335     if (PrintGCDetails && Verbose) {
9336       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9337         " desired_bytes " SIZE_FORMAT
9338         " shrinkable_size_in_bytes " SIZE_FORMAT
9339         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9340         "  bytes  " SIZE_FORMAT,
9341         desired_bytes, shrinkable_size_in_bytes,
9342         aligned_shrinkable_size_in_bytes, bytes);
9343       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9344         "  unallocated_start  " SIZE_FORMAT,
9345         old_end, unallocated_start);
9346     }
9347 
9348     // If the space did shrink (shrinking is not guaranteed),
9349     // shrink the chunk at the end by the appropriate amount.
9350     if (((HeapWord*)_virtual_space.high()) < old_end) {
9351       size_t new_word_size =
9352         heap_word_size(_virtual_space.committed_size());
9353 
9354       // Have to remove the chunk from the dictionary because it is changing
9355       // size and might be someplace elsewhere in the dictionary.
9356 
9357       // Get the chunk at end, shrink it, and put it
9358       // back.
9359       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9360       size_t word_size_change = word_size_before - new_word_size;
9361       size_t chunk_at_end_old_size = chunk_at_end->size();
9362       assert(chunk_at_end_old_size >= word_size_change,
9363         "Shrink is too large");
9364       chunk_at_end->set_size(chunk_at_end_old_size -
9365                           word_size_change);
9366       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9367         word_size_change);
9368 
9369       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9370 
9371       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9372       _bts->resize(new_word_size);  // resize the block offset shared array
9373       Universe::heap()->barrier_set()->resize_covered_region(mr);
9374       _cmsSpace->assert_locked();
9375       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9376 
9377       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9378 
9379       // update the space and generation capacity counters
9380       if (UsePerfData) {
9381         _space_counters->update_capacity();
9382         _gen_counters->update_all();
9383       }
9384 
9385       if (Verbose && PrintGCDetails) {
9386         size_t new_mem_size = _virtual_space.committed_size();
9387         size_t old_mem_size = new_mem_size + bytes;
9388         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9389                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9390       }
9391     }
9392 
9393     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9394       "Inconsistency at end of space");
9395     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9396       "Shrinking is inconsistent");
9397     return;
9398   }
9399 }
9400 
9401 // Transfer some number of overflown objects to usual marking
9402 // stack. Return true if some objects were transferred.
9403 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9404   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9405                     (size_t)ParGCDesiredObjsFromOverflowList);
9406 
9407   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9408   assert(_collector->overflow_list_is_empty() || res,
9409          "If list is not empty, we should have taken something");
9410   assert(!res || !_mark_stack->isEmpty(),
9411          "If we took something, it should now be on our stack");
9412   return res;
9413 }
9414 
9415 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9416   size_t res = _sp->block_size_no_stall(addr, _collector);
9417   if (_sp->block_is_obj(addr)) {
9418     if (_live_bit_map->isMarked(addr)) {
9419       // It can't have been dead in a previous cycle
9420       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9421     } else {
9422       _dead_bit_map->mark(addr);      // mark the dead object
9423     }
9424   }
9425   // Could be 0, if the block size could not be computed without stalling.
9426   return res;
9427 }
9428 
9429 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9430 
9431   switch (phase) {
9432     case CMSCollector::InitialMarking:
9433       initialize(true  /* fullGC */ ,
9434                  cause /* cause of the GC */,
9435                  true  /* recordGCBeginTime */,
9436                  true  /* recordPreGCUsage */,
9437                  false /* recordPeakUsage */,
9438                  false /* recordPostGCusage */,
9439                  true  /* recordAccumulatedGCTime */,
9440                  false /* recordGCEndTime */,
9441                  false /* countCollection */  );
9442       break;
9443 
9444     case CMSCollector::FinalMarking:
9445       initialize(true  /* fullGC */ ,
9446                  cause /* cause of the GC */,
9447                  false /* recordGCBeginTime */,
9448                  false /* recordPreGCUsage */,
9449                  false /* recordPeakUsage */,
9450                  false /* recordPostGCusage */,
9451                  true  /* recordAccumulatedGCTime */,
9452                  false /* recordGCEndTime */,
9453                  false /* countCollection */  );
9454       break;
9455 
9456     case CMSCollector::Sweeping:
9457       initialize(true  /* fullGC */ ,
9458                  cause /* cause of the GC */,
9459                  false /* recordGCBeginTime */,
9460                  false /* recordPreGCUsage */,
9461                  true  /* recordPeakUsage */,
9462                  true  /* recordPostGCusage */,
9463                  false /* recordAccumulatedGCTime */,
9464                  true  /* recordGCEndTime */,
9465                  true  /* countCollection */  );
9466       break;
9467 
9468     default:
9469       ShouldNotReachHere();
9470   }
9471 }