1 /*
   2  * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/bytecodeAssembler.hpp"
  27 #include "classfile/defaultMethods.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "memory/metadataFactory.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "runtime/signature.hpp"
  33 #include "runtime/thread.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/klass.hpp"
  36 #include "oops/method.hpp"
  37 #include "utilities/accessFlags.hpp"
  38 #include "utilities/exceptions.hpp"
  39 #include "utilities/ostream.hpp"
  40 #include "utilities/pair.hpp"
  41 #include "utilities/resourceHash.hpp"
  42 
  43 typedef enum { QUALIFIED, DISQUALIFIED } QualifiedState;
  44 
  45 // Because we use an iterative algorithm when iterating over the type
  46 // hierarchy, we can't use traditional scoped objects which automatically do
  47 // cleanup in the destructor when the scope is exited.  PseudoScope (and
  48 // PseudoScopeMark) provides a similar functionality, but for when you want a
  49 // scoped object in non-stack memory (such as in resource memory, as we do
  50 // here).  You've just got to remember to call 'destroy()' on the scope when
  51 // leaving it (and marks have to be explicitly added).
  52 class PseudoScopeMark : public ResourceObj {
  53  public:
  54   virtual void destroy() = 0;
  55 };
  56 
  57 class PseudoScope : public ResourceObj {
  58  private:
  59   GrowableArray<PseudoScopeMark*> _marks;
  60  public:
  61 
  62   static PseudoScope* cast(void* data) {
  63     return static_cast<PseudoScope*>(data);
  64   }
  65 
  66   void add_mark(PseudoScopeMark* psm) {
  67    _marks.append(psm);
  68   }
  69 
  70   void destroy() {
  71     for (int i = 0; i < _marks.length(); ++i) {
  72       _marks.at(i)->destroy();
  73     }
  74   }
  75 };
  76 
  77 #ifndef PRODUCT
  78 static void print_slot(outputStream* str, Symbol* name, Symbol* signature) {
  79   ResourceMark rm;
  80   str->print("%s%s", name->as_C_string(), signature->as_C_string());
  81 }
  82 
  83 static void print_method(outputStream* str, Method* mo, bool with_class=true) {
  84   ResourceMark rm;
  85   if (with_class) {
  86     str->print("%s.", mo->klass_name()->as_C_string());
  87   }
  88   print_slot(str, mo->name(), mo->signature());
  89 }
  90 #endif // ndef PRODUCT
  91 
  92 /**
  93  * Perform a depth-first iteration over the class hierarchy, applying
  94  * algorithmic logic as it goes.
  95  *
  96  * This class is one half of the inheritance hierarchy analysis mechanism.
  97  * It is meant to be used in conjunction with another class, the algorithm,
  98  * which is indicated by the ALGO template parameter.  This class can be
  99  * paired with any algorithm class that provides the required methods.
 100  *
 101  * This class contains all the mechanics for iterating over the class hierarchy
 102  * starting at a particular root, without recursing (thus limiting stack growth
 103  * from this point).  It visits each superclass (if present) and superinterface
 104  * in a depth-first manner, with callbacks to the ALGO class as each class is
 105  * encountered (visit()), The algorithm can cut-off further exploration of a
 106  * particular branch by returning 'false' from a visit() call.
 107  *
 108  * The ALGO class, must provide a visit() method, which each of which will be
 109  * called once for each node in the inheritance tree during the iteration.  In
 110  * addition, it can provide a memory block via new_node_data(InstanceKlass*),
 111  * which it can use for node-specific storage (and access via the
 112  * current_data() and data_at_depth(int) methods).
 113  *
 114  * Bare minimum needed to be an ALGO class:
 115  * class Algo : public HierarchyVisitor<Algo> {
 116  *   void* new_node_data(InstanceKlass* cls) { return NULL; }
 117  *   void free_node_data(void* data) { return; }
 118  *   bool visit() { return true; }
 119  * };
 120  */
 121 template <class ALGO>
 122 class HierarchyVisitor : StackObj {
 123  private:
 124 
 125   class Node : public ResourceObj {
 126    public:
 127     InstanceKlass* _class;
 128     bool _super_was_visited;
 129     int _interface_index;
 130     void* _algorithm_data;
 131 
 132     Node(InstanceKlass* cls, void* data, bool visit_super)
 133         : _class(cls), _super_was_visited(!visit_super),
 134           _interface_index(0), _algorithm_data(data) {}
 135 
 136     int number_of_interfaces() { return _class->local_interfaces()->length(); }
 137     int interface_index() { return _interface_index; }
 138     void set_super_visited() { _super_was_visited = true; }
 139     void increment_visited_interface() { ++_interface_index; }
 140     void set_all_interfaces_visited() {
 141       _interface_index = number_of_interfaces();
 142     }
 143     bool has_visited_super() { return _super_was_visited; }
 144     bool has_visited_all_interfaces() {
 145       return interface_index() >= number_of_interfaces();
 146     }
 147     InstanceKlass* interface_at(int index) {
 148       return InstanceKlass::cast(_class->local_interfaces()->at(index));
 149     }
 150     InstanceKlass* next_super() { return _class->java_super(); }
 151     InstanceKlass* next_interface() {
 152       return interface_at(interface_index());
 153     }
 154   };
 155 
 156   bool _cancelled;
 157   GrowableArray<Node*> _path;
 158 
 159   Node* current_top() const { return _path.top(); }
 160   bool has_more_nodes() const { return !_path.is_empty(); }
 161   void push(InstanceKlass* cls, void* data) {
 162     assert(cls != NULL, "Requires a valid instance class");
 163     Node* node = new Node(cls, data, has_super(cls));
 164     _path.push(node);
 165   }
 166   void pop() { _path.pop(); }
 167 
 168   void reset_iteration() {
 169     _cancelled = false;
 170     _path.clear();
 171   }
 172   bool is_cancelled() const { return _cancelled; }
 173 
 174   // This code used to skip interface classes because their only
 175   // superclass was j.l.Object which would be also covered by class
 176   // superclass hierarchy walks. Now that the starting point can be
 177   // an interface, we must ensure we catch j.l.Object as the super.
 178   static bool has_super(InstanceKlass* cls) {
 179     return cls->super() != NULL;
 180   }
 181 
 182   Node* node_at_depth(int i) const {
 183     return (i >= _path.length()) ? NULL : _path.at(_path.length() - i - 1);
 184   }
 185 
 186  protected:
 187 
 188   // Accessors available to the algorithm
 189   int current_depth() const { return _path.length() - 1; }
 190 
 191   InstanceKlass* class_at_depth(int i) {
 192     Node* n = node_at_depth(i);
 193     return n == NULL ? NULL : n->_class;
 194   }
 195   InstanceKlass* current_class() { return class_at_depth(0); }
 196 
 197   void* data_at_depth(int i) {
 198     Node* n = node_at_depth(i);
 199     return n == NULL ? NULL : n->_algorithm_data;
 200   }
 201   void* current_data() { return data_at_depth(0); }
 202 
 203   void cancel_iteration() { _cancelled = true; }
 204 
 205  public:
 206 
 207   void run(InstanceKlass* root) {
 208     ALGO* algo = static_cast<ALGO*>(this);
 209 
 210     reset_iteration();
 211 
 212     void* algo_data = algo->new_node_data(root);
 213     push(root, algo_data);
 214     bool top_needs_visit = true;
 215 
 216     do {
 217       Node* top = current_top();
 218       if (top_needs_visit) {
 219         if (algo->visit() == false) {
 220           // algorithm does not want to continue along this path.  Arrange
 221           // it so that this state is immediately popped off the stack
 222           top->set_super_visited();
 223           top->set_all_interfaces_visited();
 224         }
 225         top_needs_visit = false;
 226       }
 227 
 228       if (top->has_visited_super() && top->has_visited_all_interfaces()) {
 229         algo->free_node_data(top->_algorithm_data);
 230         pop();
 231       } else {
 232         InstanceKlass* next = NULL;
 233         if (top->has_visited_super() == false) {
 234           next = top->next_super();
 235           top->set_super_visited();
 236         } else {
 237           next = top->next_interface();
 238           top->increment_visited_interface();
 239         }
 240         assert(next != NULL, "Otherwise we shouldn't be here");
 241         algo_data = algo->new_node_data(next);
 242         push(next, algo_data);
 243         top_needs_visit = true;
 244       }
 245     } while (!is_cancelled() && has_more_nodes());
 246   }
 247 };
 248 
 249 #ifndef PRODUCT
 250 class PrintHierarchy : public HierarchyVisitor<PrintHierarchy> {
 251  public:
 252 
 253   bool visit() {
 254     InstanceKlass* cls = current_class();
 255     streamIndentor si(tty, current_depth() * 2);
 256     tty->indent().print_cr("%s", cls->name()->as_C_string());
 257     return true;
 258   }
 259 
 260   void* new_node_data(InstanceKlass* cls) { return NULL; }
 261   void free_node_data(void* data) { return; }
 262 };
 263 #endif // ndef PRODUCT
 264 
 265 // Used to register InstanceKlass objects and all related metadata structures
 266 // (Methods, ConstantPools) as "in-use" by the current thread so that they can't
 267 // be deallocated by class redefinition while we're using them.  The classes are
 268 // de-registered when this goes out of scope.
 269 //
 270 // Once a class is registered, we need not bother with methodHandles or
 271 // constantPoolHandles for it's associated metadata.
 272 class KeepAliveRegistrar : public StackObj {
 273  private:
 274   Thread* _thread;
 275   GrowableArray<ConstantPool*> _keep_alive;
 276 
 277  public:
 278   KeepAliveRegistrar(Thread* thread) : _thread(thread), _keep_alive(20) {
 279     assert(thread == Thread::current(), "Must be current thread");
 280   }
 281 
 282   ~KeepAliveRegistrar() {
 283     for (int i = _keep_alive.length() - 1; i >= 0; --i) {
 284       ConstantPool* cp = _keep_alive.at(i);
 285       int idx = _thread->metadata_handles()->find_from_end(cp);
 286       assert(idx > 0, "Must be in the list");
 287       _thread->metadata_handles()->remove_at(idx);
 288     }
 289   }
 290 
 291   // Register a class as 'in-use' by the thread.  It's fine to register a class
 292   // multiple times (though perhaps inefficient)
 293   void register_class(InstanceKlass* ik) {
 294     ConstantPool* cp = ik->constants();
 295     _keep_alive.push(cp);
 296     _thread->metadata_handles()->push(cp);
 297   }
 298 };
 299 
 300 class KeepAliveVisitor : public HierarchyVisitor<KeepAliveVisitor> {
 301  private:
 302   KeepAliveRegistrar* _registrar;
 303 
 304  public:
 305   KeepAliveVisitor(KeepAliveRegistrar* registrar) : _registrar(registrar) {}
 306 
 307   void* new_node_data(InstanceKlass* cls) { return NULL; }
 308   void free_node_data(void* data) { return; }
 309 
 310   bool visit() {
 311     _registrar->register_class(current_class());
 312     return true;
 313   }
 314 };
 315 
 316 
 317 // A method family contains a set of all methods that implement a single
 318 // erased method. As members of the set are collected while walking over the
 319 // hierarchy, they are tagged with a qualification state.  The qualification
 320 // state for an erased method is set to disqualified if there exists a path
 321 // from the root of hierarchy to the method that contains an interleaving
 322 // erased method defined in an interface.
 323 
 324 class MethodFamily : public ResourceObj {
 325  private:
 326 
 327   GrowableArray<Pair<Method*,QualifiedState> > _members;
 328   ResourceHashtable<Method*, int> _member_index;
 329 
 330   Method* _selected_target;  // Filled in later, if a unique target exists
 331   Symbol* _exception_message; // If no unique target is found
 332   Symbol* _exception_name;    // If no unique target is found
 333 
 334   bool contains_method(Method* method) {
 335     int* lookup = _member_index.get(method);
 336     return lookup != NULL;
 337   }
 338 
 339   void add_method(Method* method, QualifiedState state) {
 340     Pair<Method*,QualifiedState> entry(method, state);
 341     _member_index.put(method, _members.length());
 342     _members.append(entry);
 343   }
 344 
 345   void disqualify_method(Method* method) {
 346     int* index = _member_index.get(method);
 347     guarantee(index != NULL && *index >= 0 && *index < _members.length(), "bad index");
 348     _members.at(*index).second = DISQUALIFIED;
 349   }
 350 
 351   Symbol* generate_no_defaults_message(TRAPS) const;
 352   Symbol* generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const;
 353 
 354  public:
 355 
 356   MethodFamily()
 357       : _selected_target(NULL), _exception_message(NULL), _exception_name(NULL) {}
 358 
 359   void set_target_if_empty(Method* m) {
 360     if (_selected_target == NULL && !m->is_overpass()) {
 361       _selected_target = m;
 362     }
 363   }
 364 
 365   void record_qualified_method(Method* m) {
 366     // If the method already exists in the set as qualified, this operation is
 367     // redundant.  If it already exists as disqualified, then we leave it as
 368     // disqualfied.  Thus we only add to the set if it's not already in the
 369     // set.
 370     if (!contains_method(m)) {
 371       add_method(m, QUALIFIED);
 372     }
 373   }
 374 
 375   void record_disqualified_method(Method* m) {
 376     // If not in the set, add it as disqualified.  If it's already in the set,
 377     // then set the state to disqualified no matter what the previous state was.
 378     if (!contains_method(m)) {
 379       add_method(m, DISQUALIFIED);
 380     } else {
 381       disqualify_method(m);
 382     }
 383   }
 384 
 385   bool has_target() const { return _selected_target != NULL; }
 386   bool throws_exception() { return _exception_message != NULL; }
 387 
 388   Method* get_selected_target() { return _selected_target; }
 389   Symbol* get_exception_message() { return _exception_message; }
 390   Symbol* get_exception_name() { return _exception_name; }
 391 
 392   // Either sets the target or the exception error message
 393   void determine_target(InstanceKlass* root, TRAPS) {
 394     if (has_target() || throws_exception()) {
 395       return;
 396     }
 397 
 398     // Qualified methods are maximally-specific methods
 399     // These include public, instance concrete (=default) and abstract methods
 400     GrowableArray<Method*> qualified_methods;
 401     int num_defaults = 0;
 402     int default_index = -1;
 403     int qualified_index = -1;
 404     for (int i = 0; i < _members.length(); ++i) {
 405       Pair<Method*,QualifiedState> entry = _members.at(i);
 406       if (entry.second == QUALIFIED) {
 407         qualified_methods.append(entry.first);
 408         qualified_index++;
 409         if (entry.first->is_default_method()) {
 410           num_defaults++;
 411           default_index = qualified_index;
 412 
 413         }
 414       }
 415     }
 416 
 417     if (qualified_methods.length() == 0) {
 418       _exception_message = generate_no_defaults_message(CHECK);
 419       _exception_name = vmSymbols::java_lang_AbstractMethodError();
 420     // If only one qualified method is default, select that
 421     } else if (num_defaults == 1) {
 422         _selected_target = qualified_methods.at(default_index);
 423     } else if (num_defaults > 1) {
 424       _exception_message = generate_conflicts_message(&qualified_methods,CHECK);
 425       _exception_name = vmSymbols::java_lang_IncompatibleClassChangeError();
 426       if (TraceDefaultMethods) {
 427         _exception_message->print_value_on(tty);
 428         tty->print_cr("");
 429       }
 430     }
 431     // leave abstract methods alone, they will be found via normal search path
 432   }
 433 
 434   bool contains_signature(Symbol* query) {
 435     for (int i = 0; i < _members.length(); ++i) {
 436       if (query == _members.at(i).first->signature()) {
 437         return true;
 438       }
 439     }
 440     return false;
 441   }
 442 
 443 #ifndef PRODUCT
 444   void print_sig_on(outputStream* str, Symbol* signature, int indent) const {
 445     streamIndentor si(str, indent * 2);
 446 
 447     str->indent().print_cr("Logical Method %s:", signature->as_C_string());
 448 
 449     streamIndentor si2(str);
 450     for (int i = 0; i < _members.length(); ++i) {
 451       str->indent();
 452       print_method(str, _members.at(i).first);
 453       if (_members.at(i).second == DISQUALIFIED) {
 454         str->print(" (disqualified)");
 455       }
 456       str->print_cr("");
 457     }
 458 
 459     if (_selected_target != NULL) {
 460       print_selected(str, 1);
 461     }
 462   }
 463 
 464   void print_selected(outputStream* str, int indent) const {
 465     assert(has_target(), "Should be called otherwise");
 466     streamIndentor si(str, indent * 2);
 467     str->indent().print("Selected method: ");
 468     print_method(str, _selected_target);
 469     Klass* method_holder = _selected_target->method_holder();
 470     if (!method_holder->is_interface()) {
 471       tty->print(" : in superclass");
 472     }
 473     str->print_cr("");
 474   }
 475 
 476   void print_exception(outputStream* str, int indent) {
 477     assert(throws_exception(), "Should be called otherwise");
 478     assert(_exception_name != NULL, "exception_name should be set");
 479     streamIndentor si(str, indent * 2);
 480     str->indent().print_cr("%s: %s", _exception_name->as_C_string(), _exception_message->as_C_string());
 481   }
 482 #endif // ndef PRODUCT
 483 };
 484 
 485 Symbol* MethodFamily::generate_no_defaults_message(TRAPS) const {
 486   return SymbolTable::new_symbol("No qualifying defaults found", CHECK_NULL);
 487 }
 488 
 489 Symbol* MethodFamily::generate_conflicts_message(GrowableArray<Method*>* methods, TRAPS) const {
 490   stringStream ss;
 491   ss.print("Conflicting default methods:");
 492   for (int i = 0; i < methods->length(); ++i) {
 493     Method* method = methods->at(i);
 494     Symbol* klass = method->klass_name();
 495     Symbol* name = method->name();
 496     ss.print(" ");
 497     ss.write((const char*)klass->bytes(), klass->utf8_length());
 498     ss.print(".");
 499     ss.write((const char*)name->bytes(), name->utf8_length());
 500   }
 501   return SymbolTable::new_symbol(ss.base(), (int)ss.size(), CHECK_NULL);
 502 }
 503 
 504 
 505 class StateRestorer;
 506 
 507 // StatefulMethodFamily is a wrapper around a MethodFamily that maintains the
 508 // qualification state during hierarchy visitation, and applies that state
 509 // when adding members to the MethodFamily
 510 class StatefulMethodFamily : public ResourceObj {
 511   friend class StateRestorer;
 512  private:
 513   QualifiedState _qualification_state;
 514 
 515   void set_qualification_state(QualifiedState state) {
 516     _qualification_state = state;
 517   }
 518 
 519  protected:
 520   MethodFamily* _method_family;
 521 
 522  public:
 523   StatefulMethodFamily() {
 524    _method_family = new MethodFamily();
 525    _qualification_state = QUALIFIED;
 526   }
 527 
 528   StatefulMethodFamily(MethodFamily* mf) {
 529    _method_family = mf;
 530    _qualification_state = QUALIFIED;
 531   }
 532 
 533   void set_target_if_empty(Method* m) { _method_family->set_target_if_empty(m); }
 534 
 535   MethodFamily* get_method_family() { return _method_family; }
 536 
 537   StateRestorer* record_method_and_dq_further(Method* mo);
 538 };
 539 
 540 class StateRestorer : public PseudoScopeMark {
 541  private:
 542   StatefulMethodFamily* _method;
 543   QualifiedState _state_to_restore;
 544  public:
 545   StateRestorer(StatefulMethodFamily* dm, QualifiedState state)
 546       : _method(dm), _state_to_restore(state) {}
 547   ~StateRestorer() { destroy(); }
 548   void restore_state() { _method->set_qualification_state(_state_to_restore); }
 549   virtual void destroy() { restore_state(); }
 550 };
 551 
 552 StateRestorer* StatefulMethodFamily::record_method_and_dq_further(Method* mo) {
 553   StateRestorer* mark = new StateRestorer(this, _qualification_state);
 554   if (_qualification_state == QUALIFIED) {
 555     _method_family->record_qualified_method(mo);
 556   } else {
 557     _method_family->record_disqualified_method(mo);
 558   }
 559   // Everything found "above"??? this method in the hierarchy walk is set to
 560   // disqualified
 561   set_qualification_state(DISQUALIFIED);
 562   return mark;
 563 }
 564 
 565 // Represents a location corresponding to a vtable slot for methods that
 566 // neither the class nor any of it's ancestors provide an implementaion.
 567 // Default methods may be present to fill this slot.
 568 class EmptyVtableSlot : public ResourceObj {
 569  private:
 570   Symbol* _name;
 571   Symbol* _signature;
 572   int _size_of_parameters;
 573   MethodFamily* _binding;
 574 
 575  public:
 576   EmptyVtableSlot(Method* method)
 577       : _name(method->name()), _signature(method->signature()),
 578         _size_of_parameters(method->size_of_parameters()), _binding(NULL) {}
 579 
 580   Symbol* name() const { return _name; }
 581   Symbol* signature() const { return _signature; }
 582   int size_of_parameters() const { return _size_of_parameters; }
 583 
 584   void bind_family(MethodFamily* lm) { _binding = lm; }
 585   bool is_bound() { return _binding != NULL; }
 586   MethodFamily* get_binding() { return _binding; }
 587 
 588 #ifndef PRODUCT
 589   void print_on(outputStream* str) const {
 590     print_slot(str, name(), signature());
 591   }
 592 #endif // ndef PRODUCT
 593 };
 594 
 595 static bool already_in_vtable_slots(GrowableArray<EmptyVtableSlot*>* slots, Method* m) {
 596   bool found = false;
 597   for (int j = 0; j < slots->length(); ++j) {
 598     if (slots->at(j)->name() == m->name() &&
 599         slots->at(j)->signature() == m->signature() ) {
 600       found = true;
 601       break;
 602     }
 603   }
 604   return found;
 605 }
 606 
 607 static GrowableArray<EmptyVtableSlot*>* find_empty_vtable_slots(
 608     InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
 609 
 610   assert(klass != NULL, "Must be valid class");
 611 
 612   GrowableArray<EmptyVtableSlot*>* slots = new GrowableArray<EmptyVtableSlot*>();
 613 
 614   // All miranda methods are obvious candidates
 615   for (int i = 0; i < mirandas->length(); ++i) {
 616     Method* m = mirandas->at(i);
 617     if (!already_in_vtable_slots(slots, m)) {
 618       slots->append(new EmptyVtableSlot(m));
 619     }
 620   }
 621 
 622   // Also any overpasses in our superclasses, that we haven't implemented.
 623   // (can't use the vtable because it is not guaranteed to be initialized yet)
 624   InstanceKlass* super = klass->java_super();
 625   while (super != NULL) {
 626     for (int i = 0; i < super->methods()->length(); ++i) {
 627       Method* m = super->methods()->at(i);
 628       if (m->is_overpass() || m->is_static()) {
 629         // m is a method that would have been a miranda if not for the
 630         // default method processing that occurred on behalf of our superclass,
 631         // so it's a method we want to re-examine in this new context.  That is,
 632         // unless we have a real implementation of it in the current class.
 633         Method* impl = klass->lookup_method(m->name(), m->signature());
 634         if (impl == NULL || impl->is_overpass() || impl->is_static()) {
 635           if (!already_in_vtable_slots(slots, m)) {
 636             slots->append(new EmptyVtableSlot(m));
 637           }
 638         }
 639       }
 640     }
 641 
 642     // also any default methods in our superclasses
 643     if (super->default_methods() != NULL) {
 644       for (int i = 0; i < super->default_methods()->length(); ++i) {
 645         Method* m = super->default_methods()->at(i);
 646         // m is a method that would have been a miranda if not for the
 647         // default method processing that occurred on behalf of our superclass,
 648         // so it's a method we want to re-examine in this new context.  That is,
 649         // unless we have a real implementation of it in the current class.
 650         Method* impl = klass->lookup_method(m->name(), m->signature());
 651         if (impl == NULL || impl->is_overpass() || impl->is_static()) {
 652           if (!already_in_vtable_slots(slots, m)) {
 653             slots->append(new EmptyVtableSlot(m));
 654           }
 655         }
 656       }
 657     }
 658     super = super->java_super();
 659   }
 660 
 661 #ifndef PRODUCT
 662   if (TraceDefaultMethods) {
 663     tty->print_cr("Slots that need filling:");
 664     streamIndentor si(tty);
 665     for (int i = 0; i < slots->length(); ++i) {
 666       tty->indent();
 667       slots->at(i)->print_on(tty);
 668       tty->print_cr("");
 669     }
 670   }
 671 #endif // ndef PRODUCT
 672   return slots;
 673 }
 674 
 675 // Iterates over the superinterface type hierarchy looking for all methods
 676 // with a specific erased signature.
 677 class FindMethodsByErasedSig : public HierarchyVisitor<FindMethodsByErasedSig> {
 678  private:
 679   // Context data
 680   Symbol* _method_name;
 681   Symbol* _method_signature;
 682   StatefulMethodFamily*  _family;
 683 
 684  public:
 685   FindMethodsByErasedSig(Symbol* name, Symbol* signature) :
 686       _method_name(name), _method_signature(signature),
 687       _family(NULL) {}
 688 
 689   void get_discovered_family(MethodFamily** family) {
 690       if (_family != NULL) {
 691         *family = _family->get_method_family();
 692       } else {
 693         *family = NULL;
 694       }
 695   }
 696 
 697   void* new_node_data(InstanceKlass* cls) { return new PseudoScope(); }
 698   void free_node_data(void* node_data) {
 699     PseudoScope::cast(node_data)->destroy();
 700   }
 701 
 702   // Find all methods on this hierarchy that match this
 703   // method's erased (name, signature)
 704   bool visit() {
 705     PseudoScope* scope = PseudoScope::cast(current_data());
 706     InstanceKlass* iklass = current_class();
 707 
 708     Method* m = iklass->find_method(_method_name, _method_signature);
 709     // private interface methods are not candidates for default methods
 710     // invokespecial to private interface methods doesn't use default method logic
 711     // The overpasses are your supertypes' errors, we do not include them
 712     // future: take access controls into account for superclass methods
 713     if (m != NULL && !m->is_static() && !m->is_overpass() &&
 714          (!iklass->is_interface() || m->is_public())) {
 715       if (_family == NULL) {
 716         _family = new StatefulMethodFamily();
 717       }
 718 
 719       if (iklass->is_interface()) {
 720         StateRestorer* restorer = _family->record_method_and_dq_further(m);
 721         scope->add_mark(restorer);
 722       } else {
 723         // This is the rule that methods in classes "win" (bad word) over
 724         // methods in interfaces. This works because of single inheritance
 725         _family->set_target_if_empty(m);
 726       }
 727     }
 728     return true;
 729   }
 730 
 731 };
 732 
 733 
 734 
 735 static void create_defaults_and_exceptions(
 736     GrowableArray<EmptyVtableSlot*>* slots, InstanceKlass* klass, TRAPS);
 737 
 738 static void generate_erased_defaults(
 739      InstanceKlass* klass, GrowableArray<EmptyVtableSlot*>* empty_slots,
 740      EmptyVtableSlot* slot, TRAPS) {
 741 
 742   // sets up a set of methods with the same exact erased signature
 743   FindMethodsByErasedSig visitor(slot->name(), slot->signature());
 744   visitor.run(klass);
 745 
 746   MethodFamily* family;
 747   visitor.get_discovered_family(&family);
 748   if (family != NULL) {
 749     family->determine_target(klass, CHECK);
 750     slot->bind_family(family);
 751   }
 752 }
 753 
 754 static void merge_in_new_methods(InstanceKlass* klass,
 755     GrowableArray<Method*>* new_methods, TRAPS);
 756 static void create_default_methods( InstanceKlass* klass,
 757     GrowableArray<Method*>* new_methods, TRAPS);
 758 
 759 // This is the guts of the default methods implementation.  This is called just
 760 // after the classfile has been parsed if some ancestor has default methods.
 761 //
 762 // First if finds any name/signature slots that need any implementation (either
 763 // because they are miranda or a superclass's implementation is an overpass
 764 // itself).  For each slot, iterate over the hierarchy, to see if they contain a
 765 // signature that matches the slot we are looking at.
 766 //
 767 // For each slot filled, we generate an overpass method that either calls the
 768 // unique default method candidate using invokespecial, or throws an exception
 769 // (in the case of no default method candidates, or more than one valid
 770 // candidate).  These methods are then added to the class's method list.
 771 // The JVM does not create bridges nor handle generic signatures here.
 772 void DefaultMethods::generate_default_methods(
 773     InstanceKlass* klass, GrowableArray<Method*>* mirandas, TRAPS) {
 774 
 775   // This resource mark is the bound for all memory allocation that takes
 776   // place during default method processing.  After this goes out of scope,
 777   // all (Resource) objects' memory will be reclaimed.  Be careful if adding an
 778   // embedded resource mark under here as that memory can't be used outside
 779   // whatever scope it's in.
 780   ResourceMark rm(THREAD);
 781 
 782   // Keep entire hierarchy alive for the duration of the computation
 783   KeepAliveRegistrar keepAlive(THREAD);
 784   KeepAliveVisitor loadKeepAlive(&keepAlive);
 785   loadKeepAlive.run(klass);
 786 
 787 #ifndef PRODUCT
 788   if (TraceDefaultMethods) {
 789     ResourceMark rm;  // be careful with these!
 790     tty->print_cr("%s %s requires default method processing",
 791         klass->is_interface() ? "Interface" : "Class",
 792         klass->name()->as_klass_external_name());
 793     PrintHierarchy printer;
 794     printer.run(klass);
 795   }
 796 #endif // ndef PRODUCT
 797 
 798   GrowableArray<EmptyVtableSlot*>* empty_slots =
 799       find_empty_vtable_slots(klass, mirandas, CHECK);
 800 
 801   for (int i = 0; i < empty_slots->length(); ++i) {
 802     EmptyVtableSlot* slot = empty_slots->at(i);
 803 #ifndef PRODUCT
 804     if (TraceDefaultMethods) {
 805       streamIndentor si(tty, 2);
 806       tty->indent().print("Looking for default methods for slot ");
 807       slot->print_on(tty);
 808       tty->print_cr("");
 809     }
 810 #endif // ndef PRODUCT
 811 
 812     generate_erased_defaults(klass, empty_slots, slot, CHECK);
 813  }
 814 #ifndef PRODUCT
 815   if (TraceDefaultMethods) {
 816     tty->print_cr("Creating defaults and overpasses...");
 817   }
 818 #endif // ndef PRODUCT
 819 
 820   create_defaults_and_exceptions(empty_slots, klass, CHECK);
 821 
 822 #ifndef PRODUCT
 823   if (TraceDefaultMethods) {
 824     tty->print_cr("Default method processing complete");
 825   }
 826 #endif // ndef PRODUCT
 827 }
 828 
 829 static int assemble_method_error(
 830     BytecodeConstantPool* cp, BytecodeBuffer* buffer, Symbol* errorName, Symbol* message, TRAPS) {
 831 
 832   Symbol* init = vmSymbols::object_initializer_name();
 833   Symbol* sig = vmSymbols::string_void_signature();
 834 
 835   BytecodeAssembler assem(buffer, cp);
 836 
 837   assem._new(errorName);
 838   assem.dup();
 839   assem.load_string(message);
 840   assem.invokespecial(errorName, init, sig);
 841   assem.athrow();
 842 
 843   return 3; // max stack size: [ exception, exception, string ]
 844 }
 845 
 846 static Method* new_method(
 847     BytecodeConstantPool* cp, BytecodeBuffer* bytecodes, Symbol* name,
 848     Symbol* sig, AccessFlags flags, int max_stack, int params,
 849     ConstMethod::MethodType mt, TRAPS) {
 850 
 851   address code_start = 0;
 852   int code_length = 0;
 853   InlineTableSizes sizes;
 854 
 855   if (bytecodes != NULL && bytecodes->length() > 0) {
 856     code_start = static_cast<address>(bytecodes->adr_at(0));
 857     code_length = bytecodes->length();
 858   }
 859 
 860   Method* m = Method::allocate(cp->pool_holder()->class_loader_data(),
 861                                code_length, flags, &sizes,
 862                                mt, CHECK_NULL);
 863 
 864   m->set_constants(NULL); // This will get filled in later
 865   m->set_name_index(cp->utf8(name));
 866   m->set_signature_index(cp->utf8(sig));
 867 #ifdef CC_INTERP
 868   ResultTypeFinder rtf(sig);
 869   m->set_result_index(rtf.type());
 870 #endif
 871   m->set_size_of_parameters(params);
 872   m->set_max_stack(max_stack);
 873   m->set_max_locals(params);
 874   m->constMethod()->set_stackmap_data(NULL);
 875   m->set_code(code_start);
 876 
 877   return m;
 878 }
 879 
 880 static void switchover_constant_pool(BytecodeConstantPool* bpool,
 881     InstanceKlass* klass, GrowableArray<Method*>* new_methods, TRAPS) {
 882 
 883   if (new_methods->length() > 0) {
 884     ConstantPool* cp = bpool->create_constant_pool(CHECK);
 885     if (cp != klass->constants()) {
 886       klass->class_loader_data()->add_to_deallocate_list(klass->constants());
 887       klass->set_constants(cp);
 888       cp->set_pool_holder(klass);
 889 
 890       for (int i = 0; i < new_methods->length(); ++i) {
 891         new_methods->at(i)->set_constants(cp);
 892       }
 893       for (int i = 0; i < klass->methods()->length(); ++i) {
 894         Method* mo = klass->methods()->at(i);
 895         mo->set_constants(cp);
 896       }
 897     }
 898   }
 899 }
 900 
 901 // Create default_methods list for the current class.
 902 // With the VM only processing erased signatures, the VM only
 903 // creates an overpass in a conflict case or a case with no candidates.
 904 // This allows virtual methods to override the overpass, but ensures
 905 // that a local method search will find the exception rather than an abstract
 906 // or default method that is not a valid candidate.
 907 static void create_defaults_and_exceptions(
 908     GrowableArray<EmptyVtableSlot*>* slots,
 909     InstanceKlass* klass, TRAPS) {
 910 
 911   GrowableArray<Method*> overpasses;
 912   GrowableArray<Method*> defaults;
 913   BytecodeConstantPool bpool(klass->constants());
 914 
 915   for (int i = 0; i < slots->length(); ++i) {
 916     EmptyVtableSlot* slot = slots->at(i);
 917 
 918     if (slot->is_bound()) {
 919       MethodFamily* method = slot->get_binding();
 920       BytecodeBuffer buffer;
 921 
 922 #ifndef PRODUCT
 923       if (TraceDefaultMethods) {
 924         tty->print("for slot: ");
 925         slot->print_on(tty);
 926         tty->print_cr("");
 927         if (method->has_target()) {
 928           method->print_selected(tty, 1);
 929         } else if (method->throws_exception()) {
 930           method->print_exception(tty, 1);
 931         }
 932       }
 933 #endif // ndef PRODUCT
 934 
 935       if (method->has_target()) {
 936         Method* selected = method->get_selected_target();
 937         if (selected->method_holder()->is_interface()) {
 938           defaults.push(selected);
 939         }
 940       } else if (method->throws_exception()) {
 941         int max_stack = assemble_method_error(&bpool, &buffer,
 942            method->get_exception_name(), method->get_exception_message(), CHECK);
 943         AccessFlags flags = accessFlags_from(
 944           JVM_ACC_PUBLIC | JVM_ACC_SYNTHETIC | JVM_ACC_BRIDGE);
 945          Method* m = new_method(&bpool, &buffer, slot->name(), slot->signature(),
 946           flags, max_stack, slot->size_of_parameters(),
 947           ConstMethod::OVERPASS, CHECK);
 948         // We push to the methods list:
 949         // overpass methods which are exception throwing methods
 950         if (m != NULL) {
 951           overpasses.push(m);
 952         }
 953       }
 954     }
 955   }
 956 
 957 #ifndef PRODUCT
 958   if (TraceDefaultMethods) {
 959     tty->print_cr("Created %d overpass methods", overpasses.length());
 960     tty->print_cr("Created %d default  methods", defaults.length());
 961   }
 962 #endif // ndef PRODUCT
 963 
 964   if (overpasses.length() > 0) {
 965     switchover_constant_pool(&bpool, klass, &overpasses, CHECK);
 966     merge_in_new_methods(klass, &overpasses, CHECK);
 967   }
 968   if (defaults.length() > 0) {
 969     create_default_methods(klass, &defaults, CHECK);
 970   }
 971 }
 972 
 973 static void create_default_methods( InstanceKlass* klass,
 974     GrowableArray<Method*>* new_methods, TRAPS) {
 975 
 976   int new_size = new_methods->length();
 977   Array<Method*>* total_default_methods = MetadataFactory::new_array<Method*>(
 978       klass->class_loader_data(), new_size, NULL, CHECK);
 979   for (int index = 0; index < new_size; index++ ) {
 980     total_default_methods->at_put(index, new_methods->at(index));
 981   }
 982   Method::sort_methods(total_default_methods, false, false);
 983 
 984   klass->set_default_methods(total_default_methods);
 985 }
 986 
 987 static void sort_methods(GrowableArray<Method*>* methods) {
 988   // Note that this must sort using the same key as is used for sorting
 989   // methods in InstanceKlass.
 990   bool sorted = true;
 991   for (int i = methods->length() - 1; i > 0; --i) {
 992     for (int j = 0; j < i; ++j) {
 993       Method* m1 = methods->at(j);
 994       Method* m2 = methods->at(j + 1);
 995       if ((uintptr_t)m1->name() > (uintptr_t)m2->name()) {
 996         methods->at_put(j, m2);
 997         methods->at_put(j + 1, m1);
 998         sorted = false;
 999       }
1000     }
1001     if (sorted) break;
1002     sorted = true;
1003   }
1004 #ifdef ASSERT
1005   uintptr_t prev = 0;
1006   for (int i = 0; i < methods->length(); ++i) {
1007     Method* mh = methods->at(i);
1008     uintptr_t nv = (uintptr_t)mh->name();
1009     assert(nv >= prev, "Incorrect overpass method ordering");
1010     prev = nv;
1011   }
1012 #endif
1013 }
1014 
1015 static void merge_in_new_methods(InstanceKlass* klass,
1016     GrowableArray<Method*>* new_methods, TRAPS) {
1017 
1018   enum { ANNOTATIONS, PARAMETERS, DEFAULTS, NUM_ARRAYS };
1019 
1020   Array<Method*>* original_methods = klass->methods();
1021   Array<int>* original_ordering = klass->method_ordering();
1022   Array<int>* merged_ordering = Universe::the_empty_int_array();
1023 
1024   int new_size = klass->methods()->length() + new_methods->length();
1025 
1026   Array<Method*>* merged_methods = MetadataFactory::new_array<Method*>(
1027       klass->class_loader_data(), new_size, NULL, CHECK);
1028 
1029   if (original_ordering != NULL && original_ordering->length() > 0) {
1030     merged_ordering = MetadataFactory::new_array<int>(
1031         klass->class_loader_data(), new_size, CHECK);
1032   }
1033   int method_order_index = klass->methods()->length();
1034 
1035   sort_methods(new_methods);
1036 
1037   // Perform grand merge of existing methods and new methods
1038   int orig_idx = 0;
1039   int new_idx = 0;
1040 
1041   for (int i = 0; i < new_size; ++i) {
1042     Method* orig_method = NULL;
1043     Method* new_method = NULL;
1044     if (orig_idx < original_methods->length()) {
1045       orig_method = original_methods->at(orig_idx);
1046     }
1047     if (new_idx < new_methods->length()) {
1048       new_method = new_methods->at(new_idx);
1049     }
1050 
1051     if (orig_method != NULL &&
1052         (new_method == NULL || orig_method->name() < new_method->name())) {
1053       merged_methods->at_put(i, orig_method);
1054       original_methods->at_put(orig_idx, NULL);
1055       if (merged_ordering->length() > 0) {
1056         merged_ordering->at_put(i, original_ordering->at(orig_idx));
1057       }
1058       ++orig_idx;
1059     } else {
1060       merged_methods->at_put(i, new_method);
1061       if (merged_ordering->length() > 0) {
1062         merged_ordering->at_put(i, method_order_index++);
1063       }
1064       ++new_idx;
1065     }
1066     // update idnum for new location
1067     merged_methods->at(i)->set_method_idnum(i);
1068   }
1069 
1070   // Verify correct order
1071 #ifdef ASSERT
1072   uintptr_t prev = 0;
1073   for (int i = 0; i < merged_methods->length(); ++i) {
1074     Method* mo = merged_methods->at(i);
1075     uintptr_t nv = (uintptr_t)mo->name();
1076     assert(nv >= prev, "Incorrect method ordering");
1077     prev = nv;
1078   }
1079 #endif
1080 
1081   // Replace klass methods with new merged lists
1082   klass->set_methods(merged_methods);
1083   klass->set_initial_method_idnum(new_size);
1084 
1085   ClassLoaderData* cld = klass->class_loader_data();
1086   if (original_methods ->length() > 0) {
1087     MetadataFactory::free_array(cld, original_methods);
1088   }
1089   if (original_ordering->length() > 0) {
1090     klass->set_method_ordering(merged_ordering);
1091     MetadataFactory::free_array(cld, original_ordering);
1092   }
1093 }