1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/gcLocker.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71 #elif defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81 #endif
  82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 100 };
 101 
 102 // Map ideal registers (machine types) to ideal types
 103 const Type *Type::mreg2type[_last_machine_leaf];
 104 
 105 // Map basic types to canonical Type* pointers.
 106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 107 
 108 // Map basic types to constant-zero Types.
 109 const Type* Type::            _zero_type[T_CONFLICT+1];
 110 
 111 // Map basic types to array-body alias types.
 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 113 
 114 //=============================================================================
 115 // Convenience common pre-built types.
 116 const Type *Type::ABIO;         // State-of-machine only
 117 const Type *Type::BOTTOM;       // All values
 118 const Type *Type::CONTROL;      // Control only
 119 const Type *Type::DOUBLE;       // All doubles
 120 const Type *Type::FLOAT;        // All floats
 121 const Type *Type::HALF;         // Placeholder half of doublewide type
 122 const Type *Type::MEMORY;       // Abstract store only
 123 const Type *Type::RETURN_ADDRESS;
 124 const Type *Type::TOP;          // No values in set
 125 
 126 //------------------------------get_const_type---------------------------
 127 const Type* Type::get_const_type(ciType* type) {
 128   if (type == NULL) {
 129     return NULL;
 130   } else if (type->is_primitive_type()) {
 131     return get_const_basic_type(type->basic_type());
 132   } else {
 133     return TypeOopPtr::make_from_klass(type->as_klass());
 134   }
 135 }
 136 
 137 //---------------------------array_element_basic_type---------------------------------
 138 // Mapping to the array element's basic type.
 139 BasicType Type::array_element_basic_type() const {
 140   BasicType bt = basic_type();
 141   if (bt == T_INT) {
 142     if (this == TypeInt::INT)   return T_INT;
 143     if (this == TypeInt::CHAR)  return T_CHAR;
 144     if (this == TypeInt::BYTE)  return T_BYTE;
 145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 146     if (this == TypeInt::SHORT) return T_SHORT;
 147     return T_VOID;
 148   }
 149   return bt;
 150 }
 151 
 152 //---------------------------get_typeflow_type---------------------------------
 153 // Import a type produced by ciTypeFlow.
 154 const Type* Type::get_typeflow_type(ciType* type) {
 155   switch (type->basic_type()) {
 156 
 157   case ciTypeFlow::StateVector::T_BOTTOM:
 158     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 159     return Type::BOTTOM;
 160 
 161   case ciTypeFlow::StateVector::T_TOP:
 162     assert(type == ciTypeFlow::StateVector::top_type(), "");
 163     return Type::TOP;
 164 
 165   case ciTypeFlow::StateVector::T_NULL:
 166     assert(type == ciTypeFlow::StateVector::null_type(), "");
 167     return TypePtr::NULL_PTR;
 168 
 169   case ciTypeFlow::StateVector::T_LONG2:
 170     // The ciTypeFlow pass pushes a long, then the half.
 171     // We do the same.
 172     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 173     return TypeInt::TOP;
 174 
 175   case ciTypeFlow::StateVector::T_DOUBLE2:
 176     // The ciTypeFlow pass pushes double, then the half.
 177     // Our convention is the same.
 178     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 179     return Type::TOP;
 180 
 181   case T_ADDRESS:
 182     assert(type->is_return_address(), "");
 183     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 184 
 185   default:
 186     // make sure we did not mix up the cases:
 187     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 188     assert(type != ciTypeFlow::StateVector::top_type(), "");
 189     assert(type != ciTypeFlow::StateVector::null_type(), "");
 190     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 191     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 192     assert(!type->is_return_address(), "");
 193 
 194     return Type::get_const_type(type);
 195   }
 196 }
 197 
 198 
 199 //-----------------------make_from_constant------------------------------------
 200 const Type* Type::make_from_constant(ciConstant constant,
 201                                      bool require_constant, bool is_autobox_cache) {
 202   switch (constant.basic_type()) {
 203   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 204   case T_CHAR:     return TypeInt::make(constant.as_char());
 205   case T_BYTE:     return TypeInt::make(constant.as_byte());
 206   case T_SHORT:    return TypeInt::make(constant.as_short());
 207   case T_INT:      return TypeInt::make(constant.as_int());
 208   case T_LONG:     return TypeLong::make(constant.as_long());
 209   case T_FLOAT:    return TypeF::make(constant.as_float());
 210   case T_DOUBLE:   return TypeD::make(constant.as_double());
 211   case T_ARRAY:
 212   case T_OBJECT:
 213     {
 214       // cases:
 215       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 216       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 217       // An oop is not scavengable if it is in the perm gen.
 218       ciObject* oop_constant = constant.as_object();
 219       if (oop_constant->is_null_object()) {
 220         return Type::get_zero_type(T_OBJECT);
 221       } else if (require_constant || oop_constant->should_be_constant()) {
 222         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 223       }
 224     }
 225   }
 226   // Fall through to failure
 227   return NULL;
 228 }
 229 
 230 
 231 //------------------------------make-------------------------------------------
 232 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 233 // and look for an existing copy in the type dictionary.
 234 const Type *Type::make( enum TYPES t ) {
 235   return (new Type(t))->hashcons();
 236 }
 237 
 238 //------------------------------cmp--------------------------------------------
 239 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 240   if( t1->_base != t2->_base )
 241     return 1;                   // Missed badly
 242   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 243   return !t1->eq(t2);           // Return ZERO if equal
 244 }
 245 
 246 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 247   if (!include_speculative) {
 248     return remove_speculative();
 249   }
 250   return this;
 251 }
 252 
 253 //------------------------------hash-------------------------------------------
 254 int Type::uhash( const Type *const t ) {
 255   return t->hash();
 256 }
 257 
 258 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 259 
 260 //--------------------------Initialize_shared----------------------------------
 261 void Type::Initialize_shared(Compile* current) {
 262   // This method does not need to be locked because the first system
 263   // compilations (stub compilations) occur serially.  If they are
 264   // changed to proceed in parallel, then this section will need
 265   // locking.
 266 
 267   Arena* save = current->type_arena();
 268   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 269 
 270   current->set_type_arena(shared_type_arena);
 271   _shared_type_dict =
 272     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 273                                   shared_type_arena, 128 );
 274   current->set_type_dict(_shared_type_dict);
 275 
 276   // Make shared pre-built types.
 277   CONTROL = make(Control);      // Control only
 278   TOP     = make(Top);          // No values in set
 279   MEMORY  = make(Memory);       // Abstract store only
 280   ABIO    = make(Abio);         // State-of-machine only
 281   RETURN_ADDRESS=make(Return_Address);
 282   FLOAT   = make(FloatBot);     // All floats
 283   DOUBLE  = make(DoubleBot);    // All doubles
 284   BOTTOM  = make(Bottom);       // Everything
 285   HALF    = make(Half);         // Placeholder half of doublewide type
 286 
 287   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 288   TypeF::ONE  = TypeF::make(1.0); // Float 1
 289 
 290   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 291   TypeD::ONE  = TypeD::make(1.0); // Double 1
 292 
 293   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 294   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 295   TypeInt::ONE     = TypeInt::make( 1);  //  1
 296   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 297   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 298   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 299   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 300   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 301   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 302   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 303   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 304   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 305   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 306   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 307   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 308   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 309   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 310   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 311   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 312   // CmpL is overloaded both as the bytecode computation returning
 313   // a trinary (-1,0,+1) integer result AND as an efficient long
 314   // compare returning optimizer ideal-type flags.
 315   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 316   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 317   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 318   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 319   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 320 
 321   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 322   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 323   TypeLong::ONE     = TypeLong::make( 1);        //  1
 324   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 325   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 326   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 327   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 328   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 329 
 330   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 331   fboth[0] = Type::CONTROL;
 332   fboth[1] = Type::CONTROL;
 333   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 334 
 335   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 336   ffalse[0] = Type::CONTROL;
 337   ffalse[1] = Type::TOP;
 338   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 339 
 340   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 341   fneither[0] = Type::TOP;
 342   fneither[1] = Type::TOP;
 343   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 344 
 345   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 346   ftrue[0] = Type::TOP;
 347   ftrue[1] = Type::CONTROL;
 348   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 349 
 350   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 351   floop[0] = Type::CONTROL;
 352   floop[1] = TypeInt::INT;
 353   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 354 
 355   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 356   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 357   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 358 
 359   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 360   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 361 
 362   const Type **fmembar = TypeTuple::fields(0);
 363   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 364 
 365   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 366   fsc[0] = TypeInt::CC;
 367   fsc[1] = Type::MEMORY;
 368   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 369 
 370   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 371   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 372   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 373   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 374                                            false, 0, oopDesc::mark_offset_in_bytes());
 375   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 376                                            false, 0, oopDesc::klass_offset_in_bytes());
 377   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 378 
 379   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 380 
 381   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 382   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 383 
 384   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 385 
 386   mreg2type[Op_Node] = Type::BOTTOM;
 387   mreg2type[Op_Set ] = 0;
 388   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 389   mreg2type[Op_RegI] = TypeInt::INT;
 390   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 391   mreg2type[Op_RegF] = Type::FLOAT;
 392   mreg2type[Op_RegD] = Type::DOUBLE;
 393   mreg2type[Op_RegL] = TypeLong::LONG;
 394   mreg2type[Op_RegFlags] = TypeInt::CC;
 395 
 396   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 397 
 398   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 399 
 400 #ifdef _LP64
 401   if (UseCompressedOops) {
 402     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 403     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 404   } else
 405 #endif
 406   {
 407     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 408     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 409   }
 410   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 411   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 412   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 413   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 414   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 415   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 416   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 417 
 418   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 419   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 420   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 421   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 422   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 423   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 424   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 425   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 426   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 427   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 428   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 429   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 430 
 431   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 432   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 433 
 434   const Type **fi2c = TypeTuple::fields(2);
 435   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 436   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 437   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 438 
 439   const Type **intpair = TypeTuple::fields(2);
 440   intpair[0] = TypeInt::INT;
 441   intpair[1] = TypeInt::INT;
 442   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 443 
 444   const Type **longpair = TypeTuple::fields(2);
 445   longpair[0] = TypeLong::LONG;
 446   longpair[1] = TypeLong::LONG;
 447   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 448 
 449   const Type **intccpair = TypeTuple::fields(2);
 450   intccpair[0] = TypeInt::INT;
 451   intccpair[1] = TypeInt::CC;
 452   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 453 
 454   const Type **longccpair = TypeTuple::fields(2);
 455   longccpair[0] = TypeLong::LONG;
 456   longccpair[1] = TypeInt::CC;
 457   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 458 
 459   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 460   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 461   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 462   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 463   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 464   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 465   _const_basic_type[T_INT]         = TypeInt::INT;
 466   _const_basic_type[T_LONG]        = TypeLong::LONG;
 467   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 468   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 469   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 470   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 471   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 472   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 473   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 474 
 475   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 476   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 477   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 478   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 479   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 480   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 481   _zero_type[T_INT]         = TypeInt::ZERO;
 482   _zero_type[T_LONG]        = TypeLong::ZERO;
 483   _zero_type[T_FLOAT]       = TypeF::ZERO;
 484   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 485   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 486   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 487   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 488   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 489 
 490   // get_zero_type() should not happen for T_CONFLICT
 491   _zero_type[T_CONFLICT]= NULL;
 492 
 493   // Vector predefined types, it needs initialized _const_basic_type[].
 494   if (Matcher::vector_size_supported(T_BYTE,4)) {
 495     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 496   }
 497   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 498     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 499   }
 500   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 501     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 502   }
 503   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 504     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 505   }
 506   mreg2type[Op_VecS] = TypeVect::VECTS;
 507   mreg2type[Op_VecD] = TypeVect::VECTD;
 508   mreg2type[Op_VecX] = TypeVect::VECTX;
 509   mreg2type[Op_VecY] = TypeVect::VECTY;
 510 
 511   // Restore working type arena.
 512   current->set_type_arena(save);
 513   current->set_type_dict(NULL);
 514 }
 515 
 516 //------------------------------Initialize-------------------------------------
 517 void Type::Initialize(Compile* current) {
 518   assert(current->type_arena() != NULL, "must have created type arena");
 519 
 520   if (_shared_type_dict == NULL) {
 521     Initialize_shared(current);
 522   }
 523 
 524   Arena* type_arena = current->type_arena();
 525 
 526   // Create the hash-cons'ing dictionary with top-level storage allocation
 527   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 528   current->set_type_dict(tdic);
 529 
 530   // Transfer the shared types.
 531   DictI i(_shared_type_dict);
 532   for( ; i.test(); ++i ) {
 533     Type* t = (Type*)i._value;
 534     tdic->Insert(t,t);  // New Type, insert into Type table
 535   }
 536 }
 537 
 538 //------------------------------hashcons---------------------------------------
 539 // Do the hash-cons trick.  If the Type already exists in the type table,
 540 // delete the current Type and return the existing Type.  Otherwise stick the
 541 // current Type in the Type table.
 542 const Type *Type::hashcons(void) {
 543   debug_only(base());           // Check the assertion in Type::base().
 544   // Look up the Type in the Type dictionary
 545   Dict *tdic = type_dict();
 546   Type* old = (Type*)(tdic->Insert(this, this, false));
 547   if( old ) {                   // Pre-existing Type?
 548     if( old != this )           // Yes, this guy is not the pre-existing?
 549       delete this;              // Yes, Nuke this guy
 550     assert( old->_dual, "" );
 551     return old;                 // Return pre-existing
 552   }
 553 
 554   // Every type has a dual (to make my lattice symmetric).
 555   // Since we just discovered a new Type, compute its dual right now.
 556   assert( !_dual, "" );         // No dual yet
 557   _dual = xdual();              // Compute the dual
 558   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 559     _dual = this;
 560     return this;
 561   }
 562   assert( !_dual->_dual, "" );  // No reverse dual yet
 563   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 564   // New Type, insert into Type table
 565   tdic->Insert((void*)_dual,(void*)_dual);
 566   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 567 #ifdef ASSERT
 568   Type *dual_dual = (Type*)_dual->xdual();
 569   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 570   delete dual_dual;
 571 #endif
 572   return this;                  // Return new Type
 573 }
 574 
 575 //------------------------------eq---------------------------------------------
 576 // Structural equality check for Type representations
 577 bool Type::eq( const Type * ) const {
 578   return true;                  // Nothing else can go wrong
 579 }
 580 
 581 //------------------------------hash-------------------------------------------
 582 // Type-specific hashing function.
 583 int Type::hash(void) const {
 584   return _base;
 585 }
 586 
 587 //------------------------------is_finite--------------------------------------
 588 // Has a finite value
 589 bool Type::is_finite() const {
 590   return false;
 591 }
 592 
 593 //------------------------------is_nan-----------------------------------------
 594 // Is not a number (NaN)
 595 bool Type::is_nan()    const {
 596   return false;
 597 }
 598 
 599 //----------------------interface_vs_oop---------------------------------------
 600 #ifdef ASSERT
 601 bool Type::interface_vs_oop_helper(const Type *t) const {
 602   bool result = false;
 603 
 604   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 605   const TypePtr*    t_ptr =    t->make_ptr();
 606   if( this_ptr == NULL || t_ptr == NULL )
 607     return result;
 608 
 609   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 610   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 611   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 612     bool this_interface = this_inst->klass()->is_interface();
 613     bool    t_interface =    t_inst->klass()->is_interface();
 614     result = this_interface ^ t_interface;
 615   }
 616 
 617   return result;
 618 }
 619 
 620 bool Type::interface_vs_oop(const Type *t) const {
 621   if (interface_vs_oop_helper(t)) {
 622     return true;
 623   }
 624   // Now check the speculative parts as well
 625   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 626   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 627   if (this_spec != NULL && t_spec != NULL) {
 628     if (this_spec->interface_vs_oop_helper(t_spec)) {
 629       return true;
 630     }
 631     return false;
 632   }
 633   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 634     return true;
 635   }
 636   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 637     return true;
 638   }
 639   return false;
 640 }
 641 
 642 #endif
 643 
 644 //------------------------------meet-------------------------------------------
 645 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 646 // commutative and the lattice is symmetric.
 647 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 648   if (isa_narrowoop() && t->isa_narrowoop()) {
 649     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 650     return result->make_narrowoop();
 651   }
 652   if (isa_narrowklass() && t->isa_narrowklass()) {
 653     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 654     return result->make_narrowklass();
 655   }
 656 
 657   const Type *this_t = maybe_remove_speculative(include_speculative);
 658   t = t->maybe_remove_speculative(include_speculative);
 659 
 660   const Type *mt = this_t->xmeet(t);
 661   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 662   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 663 #ifdef ASSERT
 664   assert(mt == t->xmeet(this_t), "meet not commutative");
 665   const Type* dual_join = mt->_dual;
 666   const Type *t2t    = dual_join->xmeet(t->_dual);
 667   const Type *t2this = dual_join->xmeet(this_t->_dual);
 668 
 669   // Interface meet Oop is Not Symmetric:
 670   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 671   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 672 
 673   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 674     tty->print_cr("=== Meet Not Symmetric ===");
 675     tty->print("t   =                   ");              t->dump(); tty->cr();
 676     tty->print("this=                   ");         this_t->dump(); tty->cr();
 677     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 678 
 679     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 680     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 681     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 682 
 683     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 684     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 685 
 686     fatal("meet not symmetric" );
 687   }
 688 #endif
 689   return mt;
 690 }
 691 
 692 //------------------------------xmeet------------------------------------------
 693 // Compute the MEET of two types.  It returns a new Type object.
 694 const Type *Type::xmeet( const Type *t ) const {
 695   // Perform a fast test for common case; meeting the same types together.
 696   if( this == t ) return this;  // Meeting same type-rep?
 697 
 698   // Meeting TOP with anything?
 699   if( _base == Top ) return t;
 700 
 701   // Meeting BOTTOM with anything?
 702   if( _base == Bottom ) return BOTTOM;
 703 
 704   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 705   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 706   switch (t->base()) {  // Switch on original type
 707 
 708   // Cut in half the number of cases I must handle.  Only need cases for when
 709   // the given enum "t->type" is less than or equal to the local enum "type".
 710   case FloatCon:
 711   case DoubleCon:
 712   case Int:
 713   case Long:
 714     return t->xmeet(this);
 715 
 716   case OopPtr:
 717     return t->xmeet(this);
 718 
 719   case InstPtr:
 720     return t->xmeet(this);
 721 
 722   case MetadataPtr:
 723   case KlassPtr:
 724     return t->xmeet(this);
 725 
 726   case AryPtr:
 727     return t->xmeet(this);
 728 
 729   case NarrowOop:
 730     return t->xmeet(this);
 731 
 732   case NarrowKlass:
 733     return t->xmeet(this);
 734 
 735   case Bad:                     // Type check
 736   default:                      // Bogus type not in lattice
 737     typerr(t);
 738     return Type::BOTTOM;
 739 
 740   case Bottom:                  // Ye Olde Default
 741     return t;
 742 
 743   case FloatTop:
 744     if( _base == FloatTop ) return this;
 745   case FloatBot:                // Float
 746     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 747     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 748     typerr(t);
 749     return Type::BOTTOM;
 750 
 751   case DoubleTop:
 752     if( _base == DoubleTop ) return this;
 753   case DoubleBot:               // Double
 754     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 755     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 756     typerr(t);
 757     return Type::BOTTOM;
 758 
 759   // These next few cases must match exactly or it is a compile-time error.
 760   case Control:                 // Control of code
 761   case Abio:                    // State of world outside of program
 762   case Memory:
 763     if( _base == t->_base )  return this;
 764     typerr(t);
 765     return Type::BOTTOM;
 766 
 767   case Top:                     // Top of the lattice
 768     return this;
 769   }
 770 
 771   // The type is unchanged
 772   return this;
 773 }
 774 
 775 //-----------------------------filter------------------------------------------
 776 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 777   const Type* ft = join_helper(kills, include_speculative);
 778   if (ft->empty())
 779     return Type::TOP;           // Canonical empty value
 780   return ft;
 781 }
 782 
 783 //------------------------------xdual------------------------------------------
 784 // Compute dual right now.
 785 const Type::TYPES Type::dual_type[Type::lastype] = {
 786   Bad,          // Bad
 787   Control,      // Control
 788   Bottom,       // Top
 789   Bad,          // Int - handled in v-call
 790   Bad,          // Long - handled in v-call
 791   Half,         // Half
 792   Bad,          // NarrowOop - handled in v-call
 793   Bad,          // NarrowKlass - handled in v-call
 794 
 795   Bad,          // Tuple - handled in v-call
 796   Bad,          // Array - handled in v-call
 797   Bad,          // VectorS - handled in v-call
 798   Bad,          // VectorD - handled in v-call
 799   Bad,          // VectorX - handled in v-call
 800   Bad,          // VectorY - handled in v-call
 801 
 802   Bad,          // AnyPtr - handled in v-call
 803   Bad,          // RawPtr - handled in v-call
 804   Bad,          // OopPtr - handled in v-call
 805   Bad,          // InstPtr - handled in v-call
 806   Bad,          // AryPtr - handled in v-call
 807 
 808   Bad,          //  MetadataPtr - handled in v-call
 809   Bad,          // KlassPtr - handled in v-call
 810 
 811   Bad,          // Function - handled in v-call
 812   Abio,         // Abio
 813   Return_Address,// Return_Address
 814   Memory,       // Memory
 815   FloatBot,     // FloatTop
 816   FloatCon,     // FloatCon
 817   FloatTop,     // FloatBot
 818   DoubleBot,    // DoubleTop
 819   DoubleCon,    // DoubleCon
 820   DoubleTop,    // DoubleBot
 821   Top           // Bottom
 822 };
 823 
 824 const Type *Type::xdual() const {
 825   // Note: the base() accessor asserts the sanity of _base.
 826   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 827   return new Type(_type_info[_base].dual_type);
 828 }
 829 
 830 //------------------------------has_memory-------------------------------------
 831 bool Type::has_memory() const {
 832   Type::TYPES tx = base();
 833   if (tx == Memory) return true;
 834   if (tx == Tuple) {
 835     const TypeTuple *t = is_tuple();
 836     for (uint i=0; i < t->cnt(); i++) {
 837       tx = t->field_at(i)->base();
 838       if (tx == Memory)  return true;
 839     }
 840   }
 841   return false;
 842 }
 843 
 844 #ifndef PRODUCT
 845 //------------------------------dump2------------------------------------------
 846 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 847   st->print("%s", _type_info[_base].msg);
 848 }
 849 
 850 //------------------------------dump-------------------------------------------
 851 void Type::dump_on(outputStream *st) const {
 852   ResourceMark rm;
 853   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 854   dump2(d,1, st);
 855   if (is_ptr_to_narrowoop()) {
 856     st->print(" [narrow]");
 857   } else if (is_ptr_to_narrowklass()) {
 858     st->print(" [narrowklass]");
 859   }
 860 }
 861 #endif
 862 
 863 //------------------------------singleton--------------------------------------
 864 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 865 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 866 bool Type::singleton(void) const {
 867   return _base == Top || _base == Half;
 868 }
 869 
 870 //------------------------------empty------------------------------------------
 871 // TRUE if Type is a type with no values, FALSE otherwise.
 872 bool Type::empty(void) const {
 873   switch (_base) {
 874   case DoubleTop:
 875   case FloatTop:
 876   case Top:
 877     return true;
 878 
 879   case Half:
 880   case Abio:
 881   case Return_Address:
 882   case Memory:
 883   case Bottom:
 884   case FloatBot:
 885   case DoubleBot:
 886     return false;  // never a singleton, therefore never empty
 887   }
 888 
 889   ShouldNotReachHere();
 890   return false;
 891 }
 892 
 893 //------------------------------dump_stats-------------------------------------
 894 // Dump collected statistics to stderr
 895 #ifndef PRODUCT
 896 void Type::dump_stats() {
 897   tty->print("Types made: %d\n", type_dict()->Size());
 898 }
 899 #endif
 900 
 901 //------------------------------typerr-----------------------------------------
 902 void Type::typerr( const Type *t ) const {
 903 #ifndef PRODUCT
 904   tty->print("\nError mixing types: ");
 905   dump();
 906   tty->print(" and ");
 907   t->dump();
 908   tty->print("\n");
 909 #endif
 910   ShouldNotReachHere();
 911 }
 912 
 913 
 914 //=============================================================================
 915 // Convenience common pre-built types.
 916 const TypeF *TypeF::ZERO;       // Floating point zero
 917 const TypeF *TypeF::ONE;        // Floating point one
 918 
 919 //------------------------------make-------------------------------------------
 920 // Create a float constant
 921 const TypeF *TypeF::make(float f) {
 922   return (TypeF*)(new TypeF(f))->hashcons();
 923 }
 924 
 925 //------------------------------meet-------------------------------------------
 926 // Compute the MEET of two types.  It returns a new Type object.
 927 const Type *TypeF::xmeet( const Type *t ) const {
 928   // Perform a fast test for common case; meeting the same types together.
 929   if( this == t ) return this;  // Meeting same type-rep?
 930 
 931   // Current "this->_base" is FloatCon
 932   switch (t->base()) {          // Switch on original type
 933   case AnyPtr:                  // Mixing with oops happens when javac
 934   case RawPtr:                  // reuses local variables
 935   case OopPtr:
 936   case InstPtr:
 937   case AryPtr:
 938   case MetadataPtr:
 939   case KlassPtr:
 940   case NarrowOop:
 941   case NarrowKlass:
 942   case Int:
 943   case Long:
 944   case DoubleTop:
 945   case DoubleCon:
 946   case DoubleBot:
 947   case Bottom:                  // Ye Olde Default
 948     return Type::BOTTOM;
 949 
 950   case FloatBot:
 951     return t;
 952 
 953   default:                      // All else is a mistake
 954     typerr(t);
 955 
 956   case FloatCon:                // Float-constant vs Float-constant?
 957     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 958                                 // must compare bitwise as positive zero, negative zero and NaN have
 959                                 // all the same representation in C++
 960       return FLOAT;             // Return generic float
 961                                 // Equal constants
 962   case Top:
 963   case FloatTop:
 964     break;                      // Return the float constant
 965   }
 966   return this;                  // Return the float constant
 967 }
 968 
 969 //------------------------------xdual------------------------------------------
 970 // Dual: symmetric
 971 const Type *TypeF::xdual() const {
 972   return this;
 973 }
 974 
 975 //------------------------------eq---------------------------------------------
 976 // Structural equality check for Type representations
 977 bool TypeF::eq( const Type *t ) const {
 978   if( g_isnan(_f) ||
 979       g_isnan(t->getf()) ) {
 980     // One or both are NANs.  If both are NANs return true, else false.
 981     return (g_isnan(_f) && g_isnan(t->getf()));
 982   }
 983   if (_f == t->getf()) {
 984     // (NaN is impossible at this point, since it is not equal even to itself)
 985     if (_f == 0.0) {
 986       // difference between positive and negative zero
 987       if (jint_cast(_f) != jint_cast(t->getf()))  return false;
 988     }
 989     return true;
 990   }
 991   return false;
 992 }
 993 
 994 //------------------------------hash-------------------------------------------
 995 // Type-specific hashing function.
 996 int TypeF::hash(void) const {
 997   return *(int*)(&_f);
 998 }
 999 
1000 //------------------------------is_finite--------------------------------------
1001 // Has a finite value
1002 bool TypeF::is_finite() const {
1003   return g_isfinite(getf()) != 0;
1004 }
1005 
1006 //------------------------------is_nan-----------------------------------------
1007 // Is not a number (NaN)
1008 bool TypeF::is_nan()    const {
1009   return g_isnan(getf()) != 0;
1010 }
1011 
1012 //------------------------------dump2------------------------------------------
1013 // Dump float constant Type
1014 #ifndef PRODUCT
1015 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1016   Type::dump2(d,depth, st);
1017   st->print("%f", _f);
1018 }
1019 #endif
1020 
1021 //------------------------------singleton--------------------------------------
1022 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1023 // constants (Ldi nodes).  Singletons are integer, float or double constants
1024 // or a single symbol.
1025 bool TypeF::singleton(void) const {
1026   return true;                  // Always a singleton
1027 }
1028 
1029 bool TypeF::empty(void) const {
1030   return false;                 // always exactly a singleton
1031 }
1032 
1033 //=============================================================================
1034 // Convenience common pre-built types.
1035 const TypeD *TypeD::ZERO;       // Floating point zero
1036 const TypeD *TypeD::ONE;        // Floating point one
1037 
1038 //------------------------------make-------------------------------------------
1039 const TypeD *TypeD::make(double d) {
1040   return (TypeD*)(new TypeD(d))->hashcons();
1041 }
1042 
1043 //------------------------------meet-------------------------------------------
1044 // Compute the MEET of two types.  It returns a new Type object.
1045 const Type *TypeD::xmeet( const Type *t ) const {
1046   // Perform a fast test for common case; meeting the same types together.
1047   if( this == t ) return this;  // Meeting same type-rep?
1048 
1049   // Current "this->_base" is DoubleCon
1050   switch (t->base()) {          // Switch on original type
1051   case AnyPtr:                  // Mixing with oops happens when javac
1052   case RawPtr:                  // reuses local variables
1053   case OopPtr:
1054   case InstPtr:
1055   case AryPtr:
1056   case MetadataPtr:
1057   case KlassPtr:
1058   case NarrowOop:
1059   case NarrowKlass:
1060   case Int:
1061   case Long:
1062   case FloatTop:
1063   case FloatCon:
1064   case FloatBot:
1065   case Bottom:                  // Ye Olde Default
1066     return Type::BOTTOM;
1067 
1068   case DoubleBot:
1069     return t;
1070 
1071   default:                      // All else is a mistake
1072     typerr(t);
1073 
1074   case DoubleCon:               // Double-constant vs Double-constant?
1075     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1076       return DOUBLE;            // Return generic double
1077   case Top:
1078   case DoubleTop:
1079     break;
1080   }
1081   return this;                  // Return the double constant
1082 }
1083 
1084 //------------------------------xdual------------------------------------------
1085 // Dual: symmetric
1086 const Type *TypeD::xdual() const {
1087   return this;
1088 }
1089 
1090 //------------------------------eq---------------------------------------------
1091 // Structural equality check for Type representations
1092 bool TypeD::eq( const Type *t ) const {
1093   if( g_isnan(_d) ||
1094       g_isnan(t->getd()) ) {
1095     // One or both are NANs.  If both are NANs return true, else false.
1096     return (g_isnan(_d) && g_isnan(t->getd()));
1097   }
1098   if (_d == t->getd()) {
1099     // (NaN is impossible at this point, since it is not equal even to itself)
1100     if (_d == 0.0) {
1101       // difference between positive and negative zero
1102       if (jlong_cast(_d) != jlong_cast(t->getd()))  return false;
1103     }
1104     return true;
1105   }
1106   return false;
1107 }
1108 
1109 //------------------------------hash-------------------------------------------
1110 // Type-specific hashing function.
1111 int TypeD::hash(void) const {
1112   return *(int*)(&_d);
1113 }
1114 
1115 //------------------------------is_finite--------------------------------------
1116 // Has a finite value
1117 bool TypeD::is_finite() const {
1118   return g_isfinite(getd()) != 0;
1119 }
1120 
1121 //------------------------------is_nan-----------------------------------------
1122 // Is not a number (NaN)
1123 bool TypeD::is_nan()    const {
1124   return g_isnan(getd()) != 0;
1125 }
1126 
1127 //------------------------------dump2------------------------------------------
1128 // Dump double constant Type
1129 #ifndef PRODUCT
1130 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1131   Type::dump2(d,depth,st);
1132   st->print("%f", _d);
1133 }
1134 #endif
1135 
1136 //------------------------------singleton--------------------------------------
1137 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1138 // constants (Ldi nodes).  Singletons are integer, float or double constants
1139 // or a single symbol.
1140 bool TypeD::singleton(void) const {
1141   return true;                  // Always a singleton
1142 }
1143 
1144 bool TypeD::empty(void) const {
1145   return false;                 // always exactly a singleton
1146 }
1147 
1148 //=============================================================================
1149 // Convience common pre-built types.
1150 const TypeInt *TypeInt::MINUS_1;// -1
1151 const TypeInt *TypeInt::ZERO;   // 0
1152 const TypeInt *TypeInt::ONE;    // 1
1153 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1154 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1155 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1156 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1157 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1158 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1159 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1160 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1161 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1162 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1163 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1164 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1165 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1166 const TypeInt *TypeInt::INT;    // 32-bit integers
1167 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1168 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1169 
1170 //------------------------------TypeInt----------------------------------------
1171 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1172 }
1173 
1174 //------------------------------make-------------------------------------------
1175 const TypeInt *TypeInt::make( jint lo ) {
1176   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1177 }
1178 
1179 static int normalize_int_widen( jint lo, jint hi, int w ) {
1180   // Certain normalizations keep us sane when comparing types.
1181   // The 'SMALLINT' covers constants and also CC and its relatives.
1182   if (lo <= hi) {
1183     if ((juint)(hi - lo) <= SMALLINT)  w = Type::WidenMin;
1184     if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1185   } else {
1186     if ((juint)(lo - hi) <= SMALLINT)  w = Type::WidenMin;
1187     if ((juint)(lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1188   }
1189   return w;
1190 }
1191 
1192 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1193   w = normalize_int_widen(lo, hi, w);
1194   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1195 }
1196 
1197 //------------------------------meet-------------------------------------------
1198 // Compute the MEET of two types.  It returns a new Type representation object
1199 // with reference count equal to the number of Types pointing at it.
1200 // Caller should wrap a Types around it.
1201 const Type *TypeInt::xmeet( const Type *t ) const {
1202   // Perform a fast test for common case; meeting the same types together.
1203   if( this == t ) return this;  // Meeting same type?
1204 
1205   // Currently "this->_base" is a TypeInt
1206   switch (t->base()) {          // Switch on original type
1207   case AnyPtr:                  // Mixing with oops happens when javac
1208   case RawPtr:                  // reuses local variables
1209   case OopPtr:
1210   case InstPtr:
1211   case AryPtr:
1212   case MetadataPtr:
1213   case KlassPtr:
1214   case NarrowOop:
1215   case NarrowKlass:
1216   case Long:
1217   case FloatTop:
1218   case FloatCon:
1219   case FloatBot:
1220   case DoubleTop:
1221   case DoubleCon:
1222   case DoubleBot:
1223   case Bottom:                  // Ye Olde Default
1224     return Type::BOTTOM;
1225   default:                      // All else is a mistake
1226     typerr(t);
1227   case Top:                     // No change
1228     return this;
1229   case Int:                     // Int vs Int?
1230     break;
1231   }
1232 
1233   // Expand covered set
1234   const TypeInt *r = t->is_int();
1235   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1236 }
1237 
1238 //------------------------------xdual------------------------------------------
1239 // Dual: reverse hi & lo; flip widen
1240 const Type *TypeInt::xdual() const {
1241   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1242   return new TypeInt(_hi,_lo,w);
1243 }
1244 
1245 //------------------------------widen------------------------------------------
1246 // Only happens for optimistic top-down optimizations.
1247 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1248   // Coming from TOP or such; no widening
1249   if( old->base() != Int ) return this;
1250   const TypeInt *ot = old->is_int();
1251 
1252   // If new guy is equal to old guy, no widening
1253   if( _lo == ot->_lo && _hi == ot->_hi )
1254     return old;
1255 
1256   // If new guy contains old, then we widened
1257   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1258     // New contains old
1259     // If new guy is already wider than old, no widening
1260     if( _widen > ot->_widen ) return this;
1261     // If old guy was a constant, do not bother
1262     if (ot->_lo == ot->_hi)  return this;
1263     // Now widen new guy.
1264     // Check for widening too far
1265     if (_widen == WidenMax) {
1266       int max = max_jint;
1267       int min = min_jint;
1268       if (limit->isa_int()) {
1269         max = limit->is_int()->_hi;
1270         min = limit->is_int()->_lo;
1271       }
1272       if (min < _lo && _hi < max) {
1273         // If neither endpoint is extremal yet, push out the endpoint
1274         // which is closer to its respective limit.
1275         if (_lo >= 0 ||                 // easy common case
1276             (juint)(_lo - min) >= (juint)(max - _hi)) {
1277           // Try to widen to an unsigned range type of 31 bits:
1278           return make(_lo, max, WidenMax);
1279         } else {
1280           return make(min, _hi, WidenMax);
1281         }
1282       }
1283       return TypeInt::INT;
1284     }
1285     // Returned widened new guy
1286     return make(_lo,_hi,_widen+1);
1287   }
1288 
1289   // If old guy contains new, then we probably widened too far & dropped to
1290   // bottom.  Return the wider fellow.
1291   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1292     return old;
1293 
1294   //fatal("Integer value range is not subset");
1295   //return this;
1296   return TypeInt::INT;
1297 }
1298 
1299 //------------------------------narrow---------------------------------------
1300 // Only happens for pessimistic optimizations.
1301 const Type *TypeInt::narrow( const Type *old ) const {
1302   if (_lo >= _hi)  return this;   // already narrow enough
1303   if (old == NULL)  return this;
1304   const TypeInt* ot = old->isa_int();
1305   if (ot == NULL)  return this;
1306   jint olo = ot->_lo;
1307   jint ohi = ot->_hi;
1308 
1309   // If new guy is equal to old guy, no narrowing
1310   if (_lo == olo && _hi == ohi)  return old;
1311 
1312   // If old guy was maximum range, allow the narrowing
1313   if (olo == min_jint && ohi == max_jint)  return this;
1314 
1315   if (_lo < olo || _hi > ohi)
1316     return this;                // doesn't narrow; pretty wierd
1317 
1318   // The new type narrows the old type, so look for a "death march".
1319   // See comments on PhaseTransform::saturate.
1320   juint nrange = _hi - _lo;
1321   juint orange = ohi - olo;
1322   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1323     // Use the new type only if the range shrinks a lot.
1324     // We do not want the optimizer computing 2^31 point by point.
1325     return old;
1326   }
1327 
1328   return this;
1329 }
1330 
1331 //-----------------------------filter------------------------------------------
1332 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1333   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1334   if (ft == NULL || ft->empty())
1335     return Type::TOP;           // Canonical empty value
1336   if (ft->_widen < this->_widen) {
1337     // Do not allow the value of kill->_widen to affect the outcome.
1338     // The widen bits must be allowed to run freely through the graph.
1339     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1340   }
1341   return ft;
1342 }
1343 
1344 //------------------------------eq---------------------------------------------
1345 // Structural equality check for Type representations
1346 bool TypeInt::eq( const Type *t ) const {
1347   const TypeInt *r = t->is_int(); // Handy access
1348   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1349 }
1350 
1351 //------------------------------hash-------------------------------------------
1352 // Type-specific hashing function.
1353 int TypeInt::hash(void) const {
1354   return _lo+_hi+_widen+(int)Type::Int;
1355 }
1356 
1357 //------------------------------is_finite--------------------------------------
1358 // Has a finite value
1359 bool TypeInt::is_finite() const {
1360   return true;
1361 }
1362 
1363 //------------------------------dump2------------------------------------------
1364 // Dump TypeInt
1365 #ifndef PRODUCT
1366 static const char* intname(char* buf, jint n) {
1367   if (n == min_jint)
1368     return "min";
1369   else if (n < min_jint + 10000)
1370     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1371   else if (n == max_jint)
1372     return "max";
1373   else if (n > max_jint - 10000)
1374     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1375   else
1376     sprintf(buf, INT32_FORMAT, n);
1377   return buf;
1378 }
1379 
1380 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1381   char buf[40], buf2[40];
1382   if (_lo == min_jint && _hi == max_jint)
1383     st->print("int");
1384   else if (is_con())
1385     st->print("int:%s", intname(buf, get_con()));
1386   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1387     st->print("bool");
1388   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1389     st->print("byte");
1390   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1391     st->print("char");
1392   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1393     st->print("short");
1394   else if (_hi == max_jint)
1395     st->print("int:>=%s", intname(buf, _lo));
1396   else if (_lo == min_jint)
1397     st->print("int:<=%s", intname(buf, _hi));
1398   else
1399     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1400 
1401   if (_widen != 0 && this != TypeInt::INT)
1402     st->print(":%.*s", _widen, "wwww");
1403 }
1404 #endif
1405 
1406 //------------------------------singleton--------------------------------------
1407 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1408 // constants.
1409 bool TypeInt::singleton(void) const {
1410   return _lo >= _hi;
1411 }
1412 
1413 bool TypeInt::empty(void) const {
1414   return _lo > _hi;
1415 }
1416 
1417 //=============================================================================
1418 // Convenience common pre-built types.
1419 const TypeLong *TypeLong::MINUS_1;// -1
1420 const TypeLong *TypeLong::ZERO; // 0
1421 const TypeLong *TypeLong::ONE;  // 1
1422 const TypeLong *TypeLong::POS;  // >=0
1423 const TypeLong *TypeLong::LONG; // 64-bit integers
1424 const TypeLong *TypeLong::INT;  // 32-bit subrange
1425 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1426 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1427 
1428 //------------------------------TypeLong---------------------------------------
1429 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1430 }
1431 
1432 //------------------------------make-------------------------------------------
1433 const TypeLong *TypeLong::make( jlong lo ) {
1434   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1435 }
1436 
1437 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1438   // Certain normalizations keep us sane when comparing types.
1439   // The 'SMALLINT' covers constants.
1440   if (lo <= hi) {
1441     if ((julong)(hi - lo) <= SMALLINT)   w = Type::WidenMin;
1442     if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1443   } else {
1444     if ((julong)(lo - hi) <= SMALLINT)   w = Type::WidenMin;
1445     if ((julong)(lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1446   }
1447   return w;
1448 }
1449 
1450 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1451   w = normalize_long_widen(lo, hi, w);
1452   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1453 }
1454 
1455 
1456 //------------------------------meet-------------------------------------------
1457 // Compute the MEET of two types.  It returns a new Type representation object
1458 // with reference count equal to the number of Types pointing at it.
1459 // Caller should wrap a Types around it.
1460 const Type *TypeLong::xmeet( const Type *t ) const {
1461   // Perform a fast test for common case; meeting the same types together.
1462   if( this == t ) return this;  // Meeting same type?
1463 
1464   // Currently "this->_base" is a TypeLong
1465   switch (t->base()) {          // Switch on original type
1466   case AnyPtr:                  // Mixing with oops happens when javac
1467   case RawPtr:                  // reuses local variables
1468   case OopPtr:
1469   case InstPtr:
1470   case AryPtr:
1471   case MetadataPtr:
1472   case KlassPtr:
1473   case NarrowOop:
1474   case NarrowKlass:
1475   case Int:
1476   case FloatTop:
1477   case FloatCon:
1478   case FloatBot:
1479   case DoubleTop:
1480   case DoubleCon:
1481   case DoubleBot:
1482   case Bottom:                  // Ye Olde Default
1483     return Type::BOTTOM;
1484   default:                      // All else is a mistake
1485     typerr(t);
1486   case Top:                     // No change
1487     return this;
1488   case Long:                    // Long vs Long?
1489     break;
1490   }
1491 
1492   // Expand covered set
1493   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1494   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1495 }
1496 
1497 //------------------------------xdual------------------------------------------
1498 // Dual: reverse hi & lo; flip widen
1499 const Type *TypeLong::xdual() const {
1500   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1501   return new TypeLong(_hi,_lo,w);
1502 }
1503 
1504 //------------------------------widen------------------------------------------
1505 // Only happens for optimistic top-down optimizations.
1506 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1507   // Coming from TOP or such; no widening
1508   if( old->base() != Long ) return this;
1509   const TypeLong *ot = old->is_long();
1510 
1511   // If new guy is equal to old guy, no widening
1512   if( _lo == ot->_lo && _hi == ot->_hi )
1513     return old;
1514 
1515   // If new guy contains old, then we widened
1516   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1517     // New contains old
1518     // If new guy is already wider than old, no widening
1519     if( _widen > ot->_widen ) return this;
1520     // If old guy was a constant, do not bother
1521     if (ot->_lo == ot->_hi)  return this;
1522     // Now widen new guy.
1523     // Check for widening too far
1524     if (_widen == WidenMax) {
1525       jlong max = max_jlong;
1526       jlong min = min_jlong;
1527       if (limit->isa_long()) {
1528         max = limit->is_long()->_hi;
1529         min = limit->is_long()->_lo;
1530       }
1531       if (min < _lo && _hi < max) {
1532         // If neither endpoint is extremal yet, push out the endpoint
1533         // which is closer to its respective limit.
1534         if (_lo >= 0 ||                 // easy common case
1535             (julong)(_lo - min) >= (julong)(max - _hi)) {
1536           // Try to widen to an unsigned range type of 32/63 bits:
1537           if (max >= max_juint && _hi < max_juint)
1538             return make(_lo, max_juint, WidenMax);
1539           else
1540             return make(_lo, max, WidenMax);
1541         } else {
1542           return make(min, _hi, WidenMax);
1543         }
1544       }
1545       return TypeLong::LONG;
1546     }
1547     // Returned widened new guy
1548     return make(_lo,_hi,_widen+1);
1549   }
1550 
1551   // If old guy contains new, then we probably widened too far & dropped to
1552   // bottom.  Return the wider fellow.
1553   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1554     return old;
1555 
1556   //  fatal("Long value range is not subset");
1557   // return this;
1558   return TypeLong::LONG;
1559 }
1560 
1561 //------------------------------narrow----------------------------------------
1562 // Only happens for pessimistic optimizations.
1563 const Type *TypeLong::narrow( const Type *old ) const {
1564   if (_lo >= _hi)  return this;   // already narrow enough
1565   if (old == NULL)  return this;
1566   const TypeLong* ot = old->isa_long();
1567   if (ot == NULL)  return this;
1568   jlong olo = ot->_lo;
1569   jlong ohi = ot->_hi;
1570 
1571   // If new guy is equal to old guy, no narrowing
1572   if (_lo == olo && _hi == ohi)  return old;
1573 
1574   // If old guy was maximum range, allow the narrowing
1575   if (olo == min_jlong && ohi == max_jlong)  return this;
1576 
1577   if (_lo < olo || _hi > ohi)
1578     return this;                // doesn't narrow; pretty wierd
1579 
1580   // The new type narrows the old type, so look for a "death march".
1581   // See comments on PhaseTransform::saturate.
1582   julong nrange = _hi - _lo;
1583   julong orange = ohi - olo;
1584   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1585     // Use the new type only if the range shrinks a lot.
1586     // We do not want the optimizer computing 2^31 point by point.
1587     return old;
1588   }
1589 
1590   return this;
1591 }
1592 
1593 //-----------------------------filter------------------------------------------
1594 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1595   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1596   if (ft == NULL || ft->empty())
1597     return Type::TOP;           // Canonical empty value
1598   if (ft->_widen < this->_widen) {
1599     // Do not allow the value of kill->_widen to affect the outcome.
1600     // The widen bits must be allowed to run freely through the graph.
1601     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1602   }
1603   return ft;
1604 }
1605 
1606 //------------------------------eq---------------------------------------------
1607 // Structural equality check for Type representations
1608 bool TypeLong::eq( const Type *t ) const {
1609   const TypeLong *r = t->is_long(); // Handy access
1610   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1611 }
1612 
1613 //------------------------------hash-------------------------------------------
1614 // Type-specific hashing function.
1615 int TypeLong::hash(void) const {
1616   return (int)(_lo+_hi+_widen+(int)Type::Long);
1617 }
1618 
1619 //------------------------------is_finite--------------------------------------
1620 // Has a finite value
1621 bool TypeLong::is_finite() const {
1622   return true;
1623 }
1624 
1625 //------------------------------dump2------------------------------------------
1626 // Dump TypeLong
1627 #ifndef PRODUCT
1628 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1629   if (n > x) {
1630     if (n >= x + 10000)  return NULL;
1631     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1632   } else if (n < x) {
1633     if (n <= x - 10000)  return NULL;
1634     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1635   } else {
1636     return xname;
1637   }
1638   return buf;
1639 }
1640 
1641 static const char* longname(char* buf, jlong n) {
1642   const char* str;
1643   if (n == min_jlong)
1644     return "min";
1645   else if (n < min_jlong + 10000)
1646     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1647   else if (n == max_jlong)
1648     return "max";
1649   else if (n > max_jlong - 10000)
1650     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1651   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1652     return str;
1653   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1654     return str;
1655   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1656     return str;
1657   else
1658     sprintf(buf, JLONG_FORMAT, n);
1659   return buf;
1660 }
1661 
1662 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1663   char buf[80], buf2[80];
1664   if (_lo == min_jlong && _hi == max_jlong)
1665     st->print("long");
1666   else if (is_con())
1667     st->print("long:%s", longname(buf, get_con()));
1668   else if (_hi == max_jlong)
1669     st->print("long:>=%s", longname(buf, _lo));
1670   else if (_lo == min_jlong)
1671     st->print("long:<=%s", longname(buf, _hi));
1672   else
1673     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1674 
1675   if (_widen != 0 && this != TypeLong::LONG)
1676     st->print(":%.*s", _widen, "wwww");
1677 }
1678 #endif
1679 
1680 //------------------------------singleton--------------------------------------
1681 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1682 // constants
1683 bool TypeLong::singleton(void) const {
1684   return _lo >= _hi;
1685 }
1686 
1687 bool TypeLong::empty(void) const {
1688   return _lo > _hi;
1689 }
1690 
1691 //=============================================================================
1692 // Convenience common pre-built types.
1693 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1694 const TypeTuple *TypeTuple::IFFALSE;
1695 const TypeTuple *TypeTuple::IFTRUE;
1696 const TypeTuple *TypeTuple::IFNEITHER;
1697 const TypeTuple *TypeTuple::LOOPBODY;
1698 const TypeTuple *TypeTuple::MEMBAR;
1699 const TypeTuple *TypeTuple::STORECONDITIONAL;
1700 const TypeTuple *TypeTuple::START_I2C;
1701 const TypeTuple *TypeTuple::INT_PAIR;
1702 const TypeTuple *TypeTuple::LONG_PAIR;
1703 const TypeTuple *TypeTuple::INT_CC_PAIR;
1704 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1705 
1706 
1707 //------------------------------make-------------------------------------------
1708 // Make a TypeTuple from the range of a method signature
1709 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1710   ciType* return_type = sig->return_type();
1711   uint arg_cnt = return_type->size();
1712   const Type **field_array = fields(arg_cnt);
1713   switch (return_type->basic_type()) {
1714   case T_LONG:
1715     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1716     field_array[TypeFunc::Parms+1] = Type::HALF;
1717     break;
1718   case T_DOUBLE:
1719     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1720     field_array[TypeFunc::Parms+1] = Type::HALF;
1721     break;
1722   case T_OBJECT:
1723   case T_ARRAY:
1724   case T_BOOLEAN:
1725   case T_CHAR:
1726   case T_FLOAT:
1727   case T_BYTE:
1728   case T_SHORT:
1729   case T_INT:
1730     field_array[TypeFunc::Parms] = get_const_type(return_type);
1731     break;
1732   case T_VOID:
1733     break;
1734   default:
1735     ShouldNotReachHere();
1736   }
1737   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1738 }
1739 
1740 // Make a TypeTuple from the domain of a method signature
1741 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1742   uint arg_cnt = sig->size();
1743 
1744   uint pos = TypeFunc::Parms;
1745   const Type **field_array;
1746   if (recv != NULL) {
1747     arg_cnt++;
1748     field_array = fields(arg_cnt);
1749     // Use get_const_type here because it respects UseUniqueSubclasses:
1750     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1751   } else {
1752     field_array = fields(arg_cnt);
1753   }
1754 
1755   int i = 0;
1756   while (pos < TypeFunc::Parms + arg_cnt) {
1757     ciType* type = sig->type_at(i);
1758 
1759     switch (type->basic_type()) {
1760     case T_LONG:
1761       field_array[pos++] = TypeLong::LONG;
1762       field_array[pos++] = Type::HALF;
1763       break;
1764     case T_DOUBLE:
1765       field_array[pos++] = Type::DOUBLE;
1766       field_array[pos++] = Type::HALF;
1767       break;
1768     case T_OBJECT:
1769     case T_ARRAY:
1770     case T_BOOLEAN:
1771     case T_CHAR:
1772     case T_FLOAT:
1773     case T_BYTE:
1774     case T_SHORT:
1775     case T_INT:
1776       field_array[pos++] = get_const_type(type);
1777       break;
1778     default:
1779       ShouldNotReachHere();
1780     }
1781     i++;
1782   }
1783 
1784   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1785 }
1786 
1787 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1788   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1789 }
1790 
1791 //------------------------------fields-----------------------------------------
1792 // Subroutine call type with space allocated for argument types
1793 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1794 const Type **TypeTuple::fields( uint arg_cnt ) {
1795   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1796   flds[TypeFunc::Control  ] = Type::CONTROL;
1797   flds[TypeFunc::I_O      ] = Type::ABIO;
1798   flds[TypeFunc::Memory   ] = Type::MEMORY;
1799   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1800   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1801 
1802   return flds;
1803 }
1804 
1805 //------------------------------meet-------------------------------------------
1806 // Compute the MEET of two types.  It returns a new Type object.
1807 const Type *TypeTuple::xmeet( const Type *t ) const {
1808   // Perform a fast test for common case; meeting the same types together.
1809   if( this == t ) return this;  // Meeting same type-rep?
1810 
1811   // Current "this->_base" is Tuple
1812   switch (t->base()) {          // switch on original type
1813 
1814   case Bottom:                  // Ye Olde Default
1815     return t;
1816 
1817   default:                      // All else is a mistake
1818     typerr(t);
1819 
1820   case Tuple: {                 // Meeting 2 signatures?
1821     const TypeTuple *x = t->is_tuple();
1822     assert( _cnt == x->_cnt, "" );
1823     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1824     for( uint i=0; i<_cnt; i++ )
1825       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1826     return TypeTuple::make(_cnt,fields);
1827   }
1828   case Top:
1829     break;
1830   }
1831   return this;                  // Return the double constant
1832 }
1833 
1834 //------------------------------xdual------------------------------------------
1835 // Dual: compute field-by-field dual
1836 const Type *TypeTuple::xdual() const {
1837   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1838   for( uint i=0; i<_cnt; i++ )
1839     fields[i] = _fields[i]->dual();
1840   return new TypeTuple(_cnt,fields);
1841 }
1842 
1843 //------------------------------eq---------------------------------------------
1844 // Structural equality check for Type representations
1845 bool TypeTuple::eq( const Type *t ) const {
1846   const TypeTuple *s = (const TypeTuple *)t;
1847   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1848   for (uint i = 0; i < _cnt; i++)
1849     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1850       return false;             // Missed
1851   return true;
1852 }
1853 
1854 //------------------------------hash-------------------------------------------
1855 // Type-specific hashing function.
1856 int TypeTuple::hash(void) const {
1857   intptr_t sum = _cnt;
1858   for( uint i=0; i<_cnt; i++ )
1859     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1860   return sum;
1861 }
1862 
1863 //------------------------------dump2------------------------------------------
1864 // Dump signature Type
1865 #ifndef PRODUCT
1866 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1867   st->print("{");
1868   if( !depth || d[this] ) {     // Check for recursive print
1869     st->print("...}");
1870     return;
1871   }
1872   d.Insert((void*)this, (void*)this);   // Stop recursion
1873   if( _cnt ) {
1874     uint i;
1875     for( i=0; i<_cnt-1; i++ ) {
1876       st->print("%d:", i);
1877       _fields[i]->dump2(d, depth-1, st);
1878       st->print(", ");
1879     }
1880     st->print("%d:", i);
1881     _fields[i]->dump2(d, depth-1, st);
1882   }
1883   st->print("}");
1884 }
1885 #endif
1886 
1887 //------------------------------singleton--------------------------------------
1888 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1889 // constants (Ldi nodes).  Singletons are integer, float or double constants
1890 // or a single symbol.
1891 bool TypeTuple::singleton(void) const {
1892   return false;                 // Never a singleton
1893 }
1894 
1895 bool TypeTuple::empty(void) const {
1896   for( uint i=0; i<_cnt; i++ ) {
1897     if (_fields[i]->empty())  return true;
1898   }
1899   return false;
1900 }
1901 
1902 //=============================================================================
1903 // Convenience common pre-built types.
1904 
1905 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1906   // Certain normalizations keep us sane when comparing types.
1907   // We do not want arrayOop variables to differ only by the wideness
1908   // of their index types.  Pick minimum wideness, since that is the
1909   // forced wideness of small ranges anyway.
1910   if (size->_widen != Type::WidenMin)
1911     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1912   else
1913     return size;
1914 }
1915 
1916 //------------------------------make-------------------------------------------
1917 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1918   if (UseCompressedOops && elem->isa_oopptr()) {
1919     elem = elem->make_narrowoop();
1920   }
1921   size = normalize_array_size(size);
1922   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1923 }
1924 
1925 //------------------------------meet-------------------------------------------
1926 // Compute the MEET of two types.  It returns a new Type object.
1927 const Type *TypeAry::xmeet( const Type *t ) const {
1928   // Perform a fast test for common case; meeting the same types together.
1929   if( this == t ) return this;  // Meeting same type-rep?
1930 
1931   // Current "this->_base" is Ary
1932   switch (t->base()) {          // switch on original type
1933 
1934   case Bottom:                  // Ye Olde Default
1935     return t;
1936 
1937   default:                      // All else is a mistake
1938     typerr(t);
1939 
1940   case Array: {                 // Meeting 2 arrays?
1941     const TypeAry *a = t->is_ary();
1942     return TypeAry::make(_elem->meet_speculative(a->_elem),
1943                          _size->xmeet(a->_size)->is_int(),
1944                          _stable & a->_stable);
1945   }
1946   case Top:
1947     break;
1948   }
1949   return this;                  // Return the double constant
1950 }
1951 
1952 //------------------------------xdual------------------------------------------
1953 // Dual: compute field-by-field dual
1954 const Type *TypeAry::xdual() const {
1955   const TypeInt* size_dual = _size->dual()->is_int();
1956   size_dual = normalize_array_size(size_dual);
1957   return new TypeAry(_elem->dual(), size_dual, !_stable);
1958 }
1959 
1960 //------------------------------eq---------------------------------------------
1961 // Structural equality check for Type representations
1962 bool TypeAry::eq( const Type *t ) const {
1963   const TypeAry *a = (const TypeAry*)t;
1964   return _elem == a->_elem &&
1965     _stable == a->_stable &&
1966     _size == a->_size;
1967 }
1968 
1969 //------------------------------hash-------------------------------------------
1970 // Type-specific hashing function.
1971 int TypeAry::hash(void) const {
1972   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1973 }
1974 
1975 /**
1976  * Return same type without a speculative part in the element
1977  */
1978 const Type* TypeAry::remove_speculative() const {
1979   return make(_elem->remove_speculative(), _size, _stable);
1980 }
1981 
1982 /**
1983  * Return same type with cleaned up speculative part of element
1984  */
1985 const Type* TypeAry::cleanup_speculative() const {
1986   return make(_elem->cleanup_speculative(), _size, _stable);
1987 }
1988 
1989 /**
1990  * Return same type but with a different inline depth (used for speculation)
1991  *
1992  * @param depth  depth to meet with
1993  */
1994 const TypePtr* TypePtr::with_inline_depth(int depth) const {
1995   if (!UseInlineDepthForSpeculativeTypes) {
1996     return this;
1997   }
1998   return make(AnyPtr, _ptr, _offset, _speculative, depth);
1999 }
2000 
2001 //----------------------interface_vs_oop---------------------------------------
2002 #ifdef ASSERT
2003 bool TypeAry::interface_vs_oop(const Type *t) const {
2004   const TypeAry* t_ary = t->is_ary();
2005   if (t_ary) {
2006     return _elem->interface_vs_oop(t_ary->_elem);
2007   }
2008   return false;
2009 }
2010 #endif
2011 
2012 //------------------------------dump2------------------------------------------
2013 #ifndef PRODUCT
2014 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2015   if (_stable)  st->print("stable:");
2016   _elem->dump2(d, depth, st);
2017   st->print("[");
2018   _size->dump2(d, depth, st);
2019   st->print("]");
2020 }
2021 #endif
2022 
2023 //------------------------------singleton--------------------------------------
2024 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2025 // constants (Ldi nodes).  Singletons are integer, float or double constants
2026 // or a single symbol.
2027 bool TypeAry::singleton(void) const {
2028   return false;                 // Never a singleton
2029 }
2030 
2031 bool TypeAry::empty(void) const {
2032   return _elem->empty() || _size->empty();
2033 }
2034 
2035 //--------------------------ary_must_be_exact----------------------------------
2036 bool TypeAry::ary_must_be_exact() const {
2037   if (!UseExactTypes)       return false;
2038   // This logic looks at the element type of an array, and returns true
2039   // if the element type is either a primitive or a final instance class.
2040   // In such cases, an array built on this ary must have no subclasses.
2041   if (_elem == BOTTOM)      return false;  // general array not exact
2042   if (_elem == TOP   )      return false;  // inverted general array not exact
2043   const TypeOopPtr*  toop = NULL;
2044   if (UseCompressedOops && _elem->isa_narrowoop()) {
2045     toop = _elem->make_ptr()->isa_oopptr();
2046   } else {
2047     toop = _elem->isa_oopptr();
2048   }
2049   if (!toop)                return true;   // a primitive type, like int
2050   ciKlass* tklass = toop->klass();
2051   if (tklass == NULL)       return false;  // unloaded class
2052   if (!tklass->is_loaded()) return false;  // unloaded class
2053   const TypeInstPtr* tinst;
2054   if (_elem->isa_narrowoop())
2055     tinst = _elem->make_ptr()->isa_instptr();
2056   else
2057     tinst = _elem->isa_instptr();
2058   if (tinst)
2059     return tklass->as_instance_klass()->is_final();
2060   const TypeAryPtr*  tap;
2061   if (_elem->isa_narrowoop())
2062     tap = _elem->make_ptr()->isa_aryptr();
2063   else
2064     tap = _elem->isa_aryptr();
2065   if (tap)
2066     return tap->ary()->ary_must_be_exact();
2067   return false;
2068 }
2069 
2070 //==============================TypeVect=======================================
2071 // Convenience common pre-built types.
2072 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2073 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2074 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2075 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2076 
2077 //------------------------------make-------------------------------------------
2078 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2079   BasicType elem_bt = elem->array_element_basic_type();
2080   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2081   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2082   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2083   int size = length * type2aelembytes(elem_bt);
2084   switch (Matcher::vector_ideal_reg(size)) {
2085   case Op_VecS:
2086     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2087   case Op_RegL:
2088   case Op_VecD:
2089   case Op_RegD:
2090     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2091   case Op_VecX:
2092     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2093   case Op_VecY:
2094     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2095   }
2096  ShouldNotReachHere();
2097   return NULL;
2098 }
2099 
2100 //------------------------------meet-------------------------------------------
2101 // Compute the MEET of two types.  It returns a new Type object.
2102 const Type *TypeVect::xmeet( const Type *t ) const {
2103   // Perform a fast test for common case; meeting the same types together.
2104   if( this == t ) return this;  // Meeting same type-rep?
2105 
2106   // Current "this->_base" is Vector
2107   switch (t->base()) {          // switch on original type
2108 
2109   case Bottom:                  // Ye Olde Default
2110     return t;
2111 
2112   default:                      // All else is a mistake
2113     typerr(t);
2114 
2115   case VectorS:
2116   case VectorD:
2117   case VectorX:
2118   case VectorY: {                // Meeting 2 vectors?
2119     const TypeVect* v = t->is_vect();
2120     assert(  base() == v->base(), "");
2121     assert(length() == v->length(), "");
2122     assert(element_basic_type() == v->element_basic_type(), "");
2123     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2124   }
2125   case Top:
2126     break;
2127   }
2128   return this;
2129 }
2130 
2131 //------------------------------xdual------------------------------------------
2132 // Dual: compute field-by-field dual
2133 const Type *TypeVect::xdual() const {
2134   return new TypeVect(base(), _elem->dual(), _length);
2135 }
2136 
2137 //------------------------------eq---------------------------------------------
2138 // Structural equality check for Type representations
2139 bool TypeVect::eq(const Type *t) const {
2140   const TypeVect *v = t->is_vect();
2141   return (_elem == v->_elem) && (_length == v->_length);
2142 }
2143 
2144 //------------------------------hash-------------------------------------------
2145 // Type-specific hashing function.
2146 int TypeVect::hash(void) const {
2147   return (intptr_t)_elem + (intptr_t)_length;
2148 }
2149 
2150 //------------------------------singleton--------------------------------------
2151 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2152 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2153 // constant value (when vector is created with Replicate code).
2154 bool TypeVect::singleton(void) const {
2155 // There is no Con node for vectors yet.
2156 //  return _elem->singleton();
2157   return false;
2158 }
2159 
2160 bool TypeVect::empty(void) const {
2161   return _elem->empty();
2162 }
2163 
2164 //------------------------------dump2------------------------------------------
2165 #ifndef PRODUCT
2166 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2167   switch (base()) {
2168   case VectorS:
2169     st->print("vectors["); break;
2170   case VectorD:
2171     st->print("vectord["); break;
2172   case VectorX:
2173     st->print("vectorx["); break;
2174   case VectorY:
2175     st->print("vectory["); break;
2176   default:
2177     ShouldNotReachHere();
2178   }
2179   st->print("%d]:{", _length);
2180   _elem->dump2(d, depth, st);
2181   st->print("}");
2182 }
2183 #endif
2184 
2185 
2186 //=============================================================================
2187 // Convenience common pre-built types.
2188 const TypePtr *TypePtr::NULL_PTR;
2189 const TypePtr *TypePtr::NOTNULL;
2190 const TypePtr *TypePtr::BOTTOM;
2191 
2192 //------------------------------meet-------------------------------------------
2193 // Meet over the PTR enum
2194 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2195   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2196   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2197   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2198   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2199   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2200   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2201   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2202 };
2203 
2204 //------------------------------make-------------------------------------------
2205 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2206   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2207 }
2208 
2209 //------------------------------cast_to_ptr_type-------------------------------
2210 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2211   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2212   if( ptr == _ptr ) return this;
2213   return make(_base, ptr, _offset, _speculative, _inline_depth);
2214 }
2215 
2216 //------------------------------get_con----------------------------------------
2217 intptr_t TypePtr::get_con() const {
2218   assert( _ptr == Null, "" );
2219   return _offset;
2220 }
2221 
2222 //------------------------------meet-------------------------------------------
2223 // Compute the MEET of two types.  It returns a new Type object.
2224 const Type *TypePtr::xmeet(const Type *t) const {
2225   const Type* res = xmeet_helper(t);
2226   if (res->isa_ptr() == NULL) {
2227     return res;
2228   }
2229 
2230   const TypePtr* res_ptr = res->is_ptr();
2231   if (res_ptr->speculative() != NULL) {
2232     // type->speculative() == NULL means that speculation is no better
2233     // than type, i.e. type->speculative() == type. So there are 2
2234     // ways to represent the fact that we have no useful speculative
2235     // data and we should use a single one to be able to test for
2236     // equality between types. Check whether type->speculative() ==
2237     // type and set speculative to NULL if it is the case.
2238     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2239       return res_ptr->remove_speculative();
2240     }
2241   }
2242 
2243   return res;
2244 }
2245 
2246 const Type *TypePtr::xmeet_helper(const Type *t) const {
2247   // Perform a fast test for common case; meeting the same types together.
2248   if( this == t ) return this;  // Meeting same type-rep?
2249 
2250   // Current "this->_base" is AnyPtr
2251   switch (t->base()) {          // switch on original type
2252   case Int:                     // Mixing ints & oops happens when javac
2253   case Long:                    // reuses local variables
2254   case FloatTop:
2255   case FloatCon:
2256   case FloatBot:
2257   case DoubleTop:
2258   case DoubleCon:
2259   case DoubleBot:
2260   case NarrowOop:
2261   case NarrowKlass:
2262   case Bottom:                  // Ye Olde Default
2263     return Type::BOTTOM;
2264   case Top:
2265     return this;
2266 
2267   case AnyPtr: {                // Meeting to AnyPtrs
2268     const TypePtr *tp = t->is_ptr();
2269     const TypePtr* speculative = xmeet_speculative(tp);
2270     int depth = meet_inline_depth(tp->inline_depth());
2271     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2272   }
2273   case RawPtr:                  // For these, flip the call around to cut down
2274   case OopPtr:
2275   case InstPtr:                 // on the cases I have to handle.
2276   case AryPtr:
2277   case MetadataPtr:
2278   case KlassPtr:
2279     return t->xmeet(this);      // Call in reverse direction
2280   default:                      // All else is a mistake
2281     typerr(t);
2282 
2283   }
2284   return this;
2285 }
2286 
2287 //------------------------------meet_offset------------------------------------
2288 int TypePtr::meet_offset( int offset ) const {
2289   // Either is 'TOP' offset?  Return the other offset!
2290   if( _offset == OffsetTop ) return offset;
2291   if( offset == OffsetTop ) return _offset;
2292   // If either is different, return 'BOTTOM' offset
2293   if( _offset != offset ) return OffsetBot;
2294   return _offset;
2295 }
2296 
2297 //------------------------------dual_offset------------------------------------
2298 int TypePtr::dual_offset( ) const {
2299   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2300   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2301   return _offset;               // Map everything else into self
2302 }
2303 
2304 //------------------------------xdual------------------------------------------
2305 // Dual: compute field-by-field dual
2306 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2307   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2308 };
2309 const Type *TypePtr::xdual() const {
2310   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2311 }
2312 
2313 //------------------------------xadd_offset------------------------------------
2314 int TypePtr::xadd_offset( intptr_t offset ) const {
2315   // Adding to 'TOP' offset?  Return 'TOP'!
2316   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2317   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2318   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2319   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2320   offset += (intptr_t)_offset;
2321   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2322 
2323   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2324   // It is possible to construct a negative offset during PhaseCCP
2325 
2326   return (int)offset;        // Sum valid offsets
2327 }
2328 
2329 //------------------------------add_offset-------------------------------------
2330 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2331   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2332 }
2333 
2334 //------------------------------eq---------------------------------------------
2335 // Structural equality check for Type representations
2336 bool TypePtr::eq( const Type *t ) const {
2337   const TypePtr *a = (const TypePtr*)t;
2338   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2339 }
2340 
2341 //------------------------------hash-------------------------------------------
2342 // Type-specific hashing function.
2343 int TypePtr::hash(void) const {
2344   return _ptr + _offset + hash_speculative() + _inline_depth;
2345 ;
2346 }
2347 
2348 /**
2349  * Return same type without a speculative part
2350  */
2351 const Type* TypePtr::remove_speculative() const {
2352   if (_speculative == NULL) {
2353     return this;
2354   }
2355   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2356   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2357 }
2358 
2359 /**
2360  * Return same type but drop speculative part if we know we won't use
2361  * it
2362  */
2363 const Type* TypePtr::cleanup_speculative() const {
2364   if (speculative() == NULL) {
2365     return this;
2366   }
2367   const Type* no_spec = remove_speculative();
2368   // If this is NULL_PTR then we don't need the speculative type
2369   // (with_inline_depth in case the current type inline depth is
2370   // InlineDepthTop)
2371   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2372     return no_spec;
2373   }
2374   if (above_centerline(speculative()->ptr())) {
2375     return no_spec;
2376   }
2377   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2378   // If the speculative may be null and is an inexact klass then it
2379   // doesn't help
2380   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2381     return no_spec;
2382   }
2383   return this;
2384 }
2385 
2386 /**
2387  * dual of the speculative part of the type
2388  */
2389 const TypePtr* TypePtr::dual_speculative() const {
2390   if (_speculative == NULL) {
2391     return NULL;
2392   }
2393   return _speculative->dual()->is_ptr();
2394 }
2395 
2396 /**
2397  * meet of the speculative parts of 2 types
2398  *
2399  * @param other  type to meet with
2400  */
2401 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2402   bool this_has_spec = (_speculative != NULL);
2403   bool other_has_spec = (other->speculative() != NULL);
2404 
2405   if (!this_has_spec && !other_has_spec) {
2406     return NULL;
2407   }
2408 
2409   // If we are at a point where control flow meets and one branch has
2410   // a speculative type and the other has not, we meet the speculative
2411   // type of one branch with the actual type of the other. If the
2412   // actual type is exact and the speculative is as well, then the
2413   // result is a speculative type which is exact and we can continue
2414   // speculation further.
2415   const TypePtr* this_spec = _speculative;
2416   const TypePtr* other_spec = other->speculative();
2417 
2418   if (!this_has_spec) {
2419     this_spec = this;
2420   }
2421 
2422   if (!other_has_spec) {
2423     other_spec = other;
2424   }
2425 
2426   return this_spec->meet(other_spec)->is_ptr();
2427 }
2428 
2429 /**
2430  * dual of the inline depth for this type (used for speculation)
2431  */
2432 int TypePtr::dual_inline_depth() const {
2433   return -inline_depth();
2434 }
2435 
2436 /**
2437  * meet of 2 inline depths (used for speculation)
2438  *
2439  * @param depth  depth to meet with
2440  */
2441 int TypePtr::meet_inline_depth(int depth) const {
2442   return MAX2(inline_depth(), depth);
2443 }
2444 
2445 /**
2446  * Are the speculative parts of 2 types equal?
2447  *
2448  * @param other  type to compare this one to
2449  */
2450 bool TypePtr::eq_speculative(const TypePtr* other) const {
2451   if (_speculative == NULL || other->speculative() == NULL) {
2452     return _speculative == other->speculative();
2453   }
2454 
2455   if (_speculative->base() != other->speculative()->base()) {
2456     return false;
2457   }
2458 
2459   return _speculative->eq(other->speculative());
2460 }
2461 
2462 /**
2463  * Hash of the speculative part of the type
2464  */
2465 int TypePtr::hash_speculative() const {
2466   if (_speculative == NULL) {
2467     return 0;
2468   }
2469 
2470   return _speculative->hash();
2471 }
2472 
2473 /**
2474  * add offset to the speculative part of the type
2475  *
2476  * @param offset  offset to add
2477  */
2478 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2479   if (_speculative == NULL) {
2480     return NULL;
2481   }
2482   return _speculative->add_offset(offset)->is_ptr();
2483 }
2484 
2485 /**
2486  * return exact klass from the speculative type if there's one
2487  */
2488 ciKlass* TypePtr::speculative_type() const {
2489   if (_speculative != NULL && _speculative->isa_oopptr()) {
2490     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2491     if (speculative->klass_is_exact()) {
2492       return speculative->klass();
2493     }
2494   }
2495   return NULL;
2496 }
2497 
2498 /**
2499  * return true if speculative type may be null
2500  */
2501 bool TypePtr::speculative_maybe_null() const {
2502   if (_speculative != NULL) {
2503     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2504     return speculative->maybe_null();
2505   }
2506   return true;
2507 }
2508 
2509 /**
2510  * Same as TypePtr::speculative_type() but return the klass only if
2511  * the speculative tells us is not null
2512  */
2513 ciKlass* TypePtr::speculative_type_not_null() const {
2514   if (speculative_maybe_null()) {
2515     return NULL;
2516   }
2517   return speculative_type();
2518 }
2519 
2520 /**
2521  * Check whether new profiling would improve speculative type
2522  *
2523  * @param   exact_kls    class from profiling
2524  * @param   inline_depth inlining depth of profile point
2525  *
2526  * @return  true if type profile is valuable
2527  */
2528 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2529   // no profiling?
2530   if (exact_kls == NULL) {
2531     return false;
2532   }
2533   // no speculative type or non exact speculative type?
2534   if (speculative_type() == NULL) {
2535     return true;
2536   }
2537   // If the node already has an exact speculative type keep it,
2538   // unless it was provided by profiling that is at a deeper
2539   // inlining level. Profiling at a higher inlining depth is
2540   // expected to be less accurate.
2541   if (_speculative->inline_depth() == InlineDepthBottom) {
2542     return false;
2543   }
2544   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2545   return inline_depth < _speculative->inline_depth();
2546 }
2547 
2548 /**
2549  * Check whether new profiling would improve ptr (= tells us it is non
2550  * null)
2551  *
2552  * @param   maybe_null true if profiling tells the ptr may be null
2553  *
2554  * @return  true if ptr profile is valuable
2555  */
2556 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2557   // profiling doesn't tell us anything useful
2558   if (maybe_null) {
2559     return false;
2560   }
2561   // We already know this is not be null
2562   if (!this->maybe_null()) {
2563     return false;
2564   }
2565   // We already know the speculative type cannot be null
2566   if (!speculative_maybe_null()) {
2567     return false;
2568   }
2569   return true;
2570 }
2571 
2572 //------------------------------dump2------------------------------------------
2573 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2574   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2575 };
2576 
2577 #ifndef PRODUCT
2578 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2579   if( _ptr == Null ) st->print("NULL");
2580   else st->print("%s *", ptr_msg[_ptr]);
2581   if( _offset == OffsetTop ) st->print("+top");
2582   else if( _offset == OffsetBot ) st->print("+bot");
2583   else if( _offset ) st->print("+%d", _offset);
2584   dump_inline_depth(st);
2585   dump_speculative(st);
2586 }
2587 
2588 /**
2589  *dump the speculative part of the type
2590  */
2591 void TypePtr::dump_speculative(outputStream *st) const {
2592   if (_speculative != NULL) {
2593     st->print(" (speculative=");
2594     _speculative->dump_on(st);
2595     st->print(")");
2596   }
2597 }
2598 
2599 /**
2600  *dump the inline depth of the type
2601  */
2602 void TypePtr::dump_inline_depth(outputStream *st) const {
2603   if (_inline_depth != InlineDepthBottom) {
2604     if (_inline_depth == InlineDepthTop) {
2605       st->print(" (inline_depth=InlineDepthTop)");
2606     } else {
2607       st->print(" (inline_depth=%d)", _inline_depth);
2608     }
2609   }
2610 }
2611 #endif
2612 
2613 //------------------------------singleton--------------------------------------
2614 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2615 // constants
2616 bool TypePtr::singleton(void) const {
2617   // TopPTR, Null, AnyNull, Constant are all singletons
2618   return (_offset != OffsetBot) && !below_centerline(_ptr);
2619 }
2620 
2621 bool TypePtr::empty(void) const {
2622   return (_offset == OffsetTop) || above_centerline(_ptr);
2623 }
2624 
2625 //=============================================================================
2626 // Convenience common pre-built types.
2627 const TypeRawPtr *TypeRawPtr::BOTTOM;
2628 const TypeRawPtr *TypeRawPtr::NOTNULL;
2629 
2630 //------------------------------make-------------------------------------------
2631 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2632   assert( ptr != Constant, "what is the constant?" );
2633   assert( ptr != Null, "Use TypePtr for NULL" );
2634   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2635 }
2636 
2637 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2638   assert( bits, "Use TypePtr for NULL" );
2639   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2640 }
2641 
2642 //------------------------------cast_to_ptr_type-------------------------------
2643 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2644   assert( ptr != Constant, "what is the constant?" );
2645   assert( ptr != Null, "Use TypePtr for NULL" );
2646   assert( _bits==0, "Why cast a constant address?");
2647   if( ptr == _ptr ) return this;
2648   return make(ptr);
2649 }
2650 
2651 //------------------------------get_con----------------------------------------
2652 intptr_t TypeRawPtr::get_con() const {
2653   assert( _ptr == Null || _ptr == Constant, "" );
2654   return (intptr_t)_bits;
2655 }
2656 
2657 //------------------------------meet-------------------------------------------
2658 // Compute the MEET of two types.  It returns a new Type object.
2659 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2660   // Perform a fast test for common case; meeting the same types together.
2661   if( this == t ) return this;  // Meeting same type-rep?
2662 
2663   // Current "this->_base" is RawPtr
2664   switch( t->base() ) {         // switch on original type
2665   case Bottom:                  // Ye Olde Default
2666     return t;
2667   case Top:
2668     return this;
2669   case AnyPtr:                  // Meeting to AnyPtrs
2670     break;
2671   case RawPtr: {                // might be top, bot, any/not or constant
2672     enum PTR tptr = t->is_ptr()->ptr();
2673     enum PTR ptr = meet_ptr( tptr );
2674     if( ptr == Constant ) {     // Cannot be equal constants, so...
2675       if( tptr == Constant && _ptr != Constant)  return t;
2676       if( _ptr == Constant && tptr != Constant)  return this;
2677       ptr = NotNull;            // Fall down in lattice
2678     }
2679     return make( ptr );
2680   }
2681 
2682   case OopPtr:
2683   case InstPtr:
2684   case AryPtr:
2685   case MetadataPtr:
2686   case KlassPtr:
2687     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2688   default:                      // All else is a mistake
2689     typerr(t);
2690   }
2691 
2692   // Found an AnyPtr type vs self-RawPtr type
2693   const TypePtr *tp = t->is_ptr();
2694   switch (tp->ptr()) {
2695   case TypePtr::TopPTR:  return this;
2696   case TypePtr::BotPTR:  return t;
2697   case TypePtr::Null:
2698     if( _ptr == TypePtr::TopPTR ) return t;
2699     return TypeRawPtr::BOTTOM;
2700   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2701   case TypePtr::AnyNull:
2702     if( _ptr == TypePtr::Constant) return this;
2703     return make( meet_ptr(TypePtr::AnyNull) );
2704   default: ShouldNotReachHere();
2705   }
2706   return this;
2707 }
2708 
2709 //------------------------------xdual------------------------------------------
2710 // Dual: compute field-by-field dual
2711 const Type *TypeRawPtr::xdual() const {
2712   return new TypeRawPtr( dual_ptr(), _bits );
2713 }
2714 
2715 //------------------------------add_offset-------------------------------------
2716 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2717   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2718   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2719   if( offset == 0 ) return this; // No change
2720   switch (_ptr) {
2721   case TypePtr::TopPTR:
2722   case TypePtr::BotPTR:
2723   case TypePtr::NotNull:
2724     return this;
2725   case TypePtr::Null:
2726   case TypePtr::Constant: {
2727     address bits = _bits+offset;
2728     if ( bits == 0 ) return TypePtr::NULL_PTR;
2729     return make( bits );
2730   }
2731   default:  ShouldNotReachHere();
2732   }
2733   return NULL;                  // Lint noise
2734 }
2735 
2736 //------------------------------eq---------------------------------------------
2737 // Structural equality check for Type representations
2738 bool TypeRawPtr::eq( const Type *t ) const {
2739   const TypeRawPtr *a = (const TypeRawPtr*)t;
2740   return _bits == a->_bits && TypePtr::eq(t);
2741 }
2742 
2743 //------------------------------hash-------------------------------------------
2744 // Type-specific hashing function.
2745 int TypeRawPtr::hash(void) const {
2746   return (intptr_t)_bits + TypePtr::hash();
2747 }
2748 
2749 //------------------------------dump2------------------------------------------
2750 #ifndef PRODUCT
2751 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2752   if( _ptr == Constant )
2753     st->print(INTPTR_FORMAT, _bits);
2754   else
2755     st->print("rawptr:%s", ptr_msg[_ptr]);
2756 }
2757 #endif
2758 
2759 //=============================================================================
2760 // Convenience common pre-built type.
2761 const TypeOopPtr *TypeOopPtr::BOTTOM;
2762 
2763 //------------------------------TypeOopPtr-------------------------------------
2764 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2765                        int instance_id, const TypePtr* speculative, int inline_depth)
2766   : TypePtr(t, ptr, offset, speculative, inline_depth),
2767     _const_oop(o), _klass(k),
2768     _klass_is_exact(xk),
2769     _is_ptr_to_narrowoop(false),
2770     _is_ptr_to_narrowklass(false),
2771     _is_ptr_to_boxed_value(false),
2772     _instance_id(instance_id) {
2773   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2774       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2775     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2776   }
2777 #ifdef _LP64
2778   if (_offset != 0) {
2779     if (_offset == oopDesc::klass_offset_in_bytes()) {
2780       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2781     } else if (klass() == NULL) {
2782       // Array with unknown body type
2783       assert(this->isa_aryptr(), "only arrays without klass");
2784       _is_ptr_to_narrowoop = UseCompressedOops;
2785     } else if (this->isa_aryptr()) {
2786       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2787                              _offset != arrayOopDesc::length_offset_in_bytes());
2788     } else if (klass()->is_instance_klass()) {
2789       ciInstanceKlass* ik = klass()->as_instance_klass();
2790       ciField* field = NULL;
2791       if (this->isa_klassptr()) {
2792         // Perm objects don't use compressed references
2793       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2794         // unsafe access
2795         _is_ptr_to_narrowoop = UseCompressedOops;
2796       } else { // exclude unsafe ops
2797         assert(this->isa_instptr(), "must be an instance ptr.");
2798 
2799         if (klass() == ciEnv::current()->Class_klass() &&
2800             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2801              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2802           // Special hidden fields from the Class.
2803           assert(this->isa_instptr(), "must be an instance ptr.");
2804           _is_ptr_to_narrowoop = false;
2805         } else if (klass() == ciEnv::current()->Class_klass() &&
2806                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2807           // Static fields
2808           assert(o != NULL, "must be constant");
2809           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2810           ciField* field = k->get_field_by_offset(_offset, true);
2811           assert(field != NULL, "missing field");
2812           BasicType basic_elem_type = field->layout_type();
2813           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2814                                                        basic_elem_type == T_ARRAY);
2815         } else {
2816           // Instance fields which contains a compressed oop references.
2817           field = ik->get_field_by_offset(_offset, false);
2818           if (field != NULL) {
2819             BasicType basic_elem_type = field->layout_type();
2820             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2821                                                          basic_elem_type == T_ARRAY);
2822           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2823             // Compile::find_alias_type() cast exactness on all types to verify
2824             // that it does not affect alias type.
2825             _is_ptr_to_narrowoop = UseCompressedOops;
2826           } else {
2827             // Type for the copy start in LibraryCallKit::inline_native_clone().
2828             _is_ptr_to_narrowoop = UseCompressedOops;
2829           }
2830         }
2831       }
2832     }
2833   }
2834 #endif
2835 }
2836 
2837 //------------------------------make-------------------------------------------
2838 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2839                                      const TypePtr* speculative, int inline_depth) {
2840   assert(ptr != Constant, "no constant generic pointers");
2841   ciKlass*  k = Compile::current()->env()->Object_klass();
2842   bool      xk = false;
2843   ciObject* o = NULL;
2844   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2845 }
2846 
2847 
2848 //------------------------------cast_to_ptr_type-------------------------------
2849 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2850   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2851   if( ptr == _ptr ) return this;
2852   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2853 }
2854 
2855 //-----------------------------cast_to_instance_id----------------------------
2856 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2857   // There are no instances of a general oop.
2858   // Return self unchanged.
2859   return this;
2860 }
2861 
2862 //-----------------------------cast_to_exactness-------------------------------
2863 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2864   // There is no such thing as an exact general oop.
2865   // Return self unchanged.
2866   return this;
2867 }
2868 
2869 
2870 //------------------------------as_klass_type----------------------------------
2871 // Return the klass type corresponding to this instance or array type.
2872 // It is the type that is loaded from an object of this type.
2873 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2874   ciKlass* k = klass();
2875   bool    xk = klass_is_exact();
2876   if (k == NULL)
2877     return TypeKlassPtr::OBJECT;
2878   else
2879     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2880 }
2881 
2882 //------------------------------meet-------------------------------------------
2883 // Compute the MEET of two types.  It returns a new Type object.
2884 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2885   // Perform a fast test for common case; meeting the same types together.
2886   if( this == t ) return this;  // Meeting same type-rep?
2887 
2888   // Current "this->_base" is OopPtr
2889   switch (t->base()) {          // switch on original type
2890 
2891   case Int:                     // Mixing ints & oops happens when javac
2892   case Long:                    // reuses local variables
2893   case FloatTop:
2894   case FloatCon:
2895   case FloatBot:
2896   case DoubleTop:
2897   case DoubleCon:
2898   case DoubleBot:
2899   case NarrowOop:
2900   case NarrowKlass:
2901   case Bottom:                  // Ye Olde Default
2902     return Type::BOTTOM;
2903   case Top:
2904     return this;
2905 
2906   default:                      // All else is a mistake
2907     typerr(t);
2908 
2909   case RawPtr:
2910   case MetadataPtr:
2911   case KlassPtr:
2912     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2913 
2914   case AnyPtr: {
2915     // Found an AnyPtr type vs self-OopPtr type
2916     const TypePtr *tp = t->is_ptr();
2917     int offset = meet_offset(tp->offset());
2918     PTR ptr = meet_ptr(tp->ptr());
2919     const TypePtr* speculative = xmeet_speculative(tp);
2920     int depth = meet_inline_depth(tp->inline_depth());
2921     switch (tp->ptr()) {
2922     case Null:
2923       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2924       // else fall through:
2925     case TopPTR:
2926     case AnyNull: {
2927       int instance_id = meet_instance_id(InstanceTop);
2928       return make(ptr, offset, instance_id, speculative, depth);
2929     }
2930     case BotPTR:
2931     case NotNull:
2932       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2933     default: typerr(t);
2934     }
2935   }
2936 
2937   case OopPtr: {                 // Meeting to other OopPtrs
2938     const TypeOopPtr *tp = t->is_oopptr();
2939     int instance_id = meet_instance_id(tp->instance_id());
2940     const TypePtr* speculative = xmeet_speculative(tp);
2941     int depth = meet_inline_depth(tp->inline_depth());
2942     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2943   }
2944 
2945   case InstPtr:                  // For these, flip the call around to cut down
2946   case AryPtr:
2947     return t->xmeet(this);      // Call in reverse direction
2948 
2949   } // End of switch
2950   return this;                  // Return the double constant
2951 }
2952 
2953 
2954 //------------------------------xdual------------------------------------------
2955 // Dual of a pure heap pointer.  No relevant klass or oop information.
2956 const Type *TypeOopPtr::xdual() const {
2957   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2958   assert(const_oop() == NULL,             "no constants here");
2959   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2960 }
2961 
2962 //--------------------------make_from_klass_common-----------------------------
2963 // Computes the element-type given a klass.
2964 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2965   if (klass->is_instance_klass()) {
2966     Compile* C = Compile::current();
2967     Dependencies* deps = C->dependencies();
2968     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2969     // Element is an instance
2970     bool klass_is_exact = false;
2971     if (klass->is_loaded()) {
2972       // Try to set klass_is_exact.
2973       ciInstanceKlass* ik = klass->as_instance_klass();
2974       klass_is_exact = ik->is_final();
2975       if (!klass_is_exact && klass_change
2976           && deps != NULL && UseUniqueSubclasses) {
2977         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2978         if (sub != NULL) {
2979           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2980           klass = ik = sub;
2981           klass_is_exact = sub->is_final();
2982         }
2983       }
2984       if (!klass_is_exact && try_for_exact
2985           && deps != NULL && UseExactTypes) {
2986         if (!ik->is_interface() && !ik->has_subklass()) {
2987           // Add a dependence; if concrete subclass added we need to recompile
2988           deps->assert_leaf_type(ik);
2989           klass_is_exact = true;
2990         }
2991       }
2992     }
2993     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2994   } else if (klass->is_obj_array_klass()) {
2995     // Element is an object array. Recursively call ourself.
2996     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2997     bool xk = etype->klass_is_exact();
2998     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2999     // We used to pass NotNull in here, asserting that the sub-arrays
3000     // are all not-null.  This is not true in generally, as code can
3001     // slam NULLs down in the subarrays.
3002     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3003     return arr;
3004   } else if (klass->is_type_array_klass()) {
3005     // Element is an typeArray
3006     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3007     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3008     // We used to pass NotNull in here, asserting that the array pointer
3009     // is not-null. That was not true in general.
3010     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3011     return arr;
3012   } else {
3013     ShouldNotReachHere();
3014     return NULL;
3015   }
3016 }
3017 
3018 //------------------------------make_from_constant-----------------------------
3019 // Make a java pointer from an oop constant
3020 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
3021                                                  bool require_constant,
3022                                                  bool is_autobox_cache) {
3023   assert(!o->is_null_object(), "null object not yet handled here.");
3024   ciKlass* klass = o->klass();
3025   if (klass->is_instance_klass()) {
3026     // Element is an instance
3027     if (require_constant) {
3028       if (!o->can_be_constant())  return NULL;
3029     } else if (!o->should_be_constant()) {
3030       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3031     }
3032     return TypeInstPtr::make(o);
3033   } else if (klass->is_obj_array_klass()) {
3034     // Element is an object array. Recursively call ourself.
3035     const TypeOopPtr *etype =
3036       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3037     if (is_autobox_cache) {
3038       // The pointers in the autobox arrays are always non-null.
3039       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3040     }
3041     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3042     // We used to pass NotNull in here, asserting that the sub-arrays
3043     // are all not-null.  This is not true in generally, as code can
3044     // slam NULLs down in the subarrays.
3045     if (require_constant) {
3046       if (!o->can_be_constant())  return NULL;
3047     } else if (!o->should_be_constant()) {
3048       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3049     }
3050     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
3051     return arr;
3052   } else if (klass->is_type_array_klass()) {
3053     // Element is an typeArray
3054     const Type* etype =
3055       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3056     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3057     // We used to pass NotNull in here, asserting that the array pointer
3058     // is not-null. That was not true in general.
3059     if (require_constant) {
3060       if (!o->can_be_constant())  return NULL;
3061     } else if (!o->should_be_constant()) {
3062       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3063     }
3064     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3065     return arr;
3066   }
3067 
3068   fatal("unhandled object type");
3069   return NULL;
3070 }
3071 
3072 //------------------------------get_con----------------------------------------
3073 intptr_t TypeOopPtr::get_con() const {
3074   assert( _ptr == Null || _ptr == Constant, "" );
3075   assert( _offset >= 0, "" );
3076 
3077   if (_offset != 0) {
3078     // After being ported to the compiler interface, the compiler no longer
3079     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3080     // to a handle at compile time.  This handle is embedded in the generated
3081     // code and dereferenced at the time the nmethod is made.  Until that time,
3082     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3083     // have access to the addresses!).  This does not seem to currently happen,
3084     // but this assertion here is to help prevent its occurence.
3085     tty->print_cr("Found oop constant with non-zero offset");
3086     ShouldNotReachHere();
3087   }
3088 
3089   return (intptr_t)const_oop()->constant_encoding();
3090 }
3091 
3092 
3093 //-----------------------------filter------------------------------------------
3094 // Do not allow interface-vs.-noninterface joins to collapse to top.
3095 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3096 
3097   const Type* ft = join_helper(kills, include_speculative);
3098   const TypeInstPtr* ftip = ft->isa_instptr();
3099   const TypeInstPtr* ktip = kills->isa_instptr();
3100 
3101   if (ft->empty()) {
3102     // Check for evil case of 'this' being a class and 'kills' expecting an
3103     // interface.  This can happen because the bytecodes do not contain
3104     // enough type info to distinguish a Java-level interface variable
3105     // from a Java-level object variable.  If we meet 2 classes which
3106     // both implement interface I, but their meet is at 'j/l/O' which
3107     // doesn't implement I, we have no way to tell if the result should
3108     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3109     // into a Phi which "knows" it's an Interface type we'll have to
3110     // uplift the type.
3111     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3112       return kills;             // Uplift to interface
3113 
3114     return Type::TOP;           // Canonical empty value
3115   }
3116 
3117   // If we have an interface-typed Phi or cast and we narrow to a class type,
3118   // the join should report back the class.  However, if we have a J/L/Object
3119   // class-typed Phi and an interface flows in, it's possible that the meet &
3120   // join report an interface back out.  This isn't possible but happens
3121   // because the type system doesn't interact well with interfaces.
3122   if (ftip != NULL && ktip != NULL &&
3123       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3124       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3125     // Happens in a CTW of rt.jar, 320-341, no extra flags
3126     assert(!ftip->klass_is_exact(), "interface could not be exact");
3127     return ktip->cast_to_ptr_type(ftip->ptr());
3128   }
3129 
3130   return ft;
3131 }
3132 
3133 //------------------------------eq---------------------------------------------
3134 // Structural equality check for Type representations
3135 bool TypeOopPtr::eq( const Type *t ) const {
3136   const TypeOopPtr *a = (const TypeOopPtr*)t;
3137   if (_klass_is_exact != a->_klass_is_exact ||
3138       _instance_id != a->_instance_id)  return false;
3139   ciObject* one = const_oop();
3140   ciObject* two = a->const_oop();
3141   if (one == NULL || two == NULL) {
3142     return (one == two) && TypePtr::eq(t);
3143   } else {
3144     return one->equals(two) && TypePtr::eq(t);
3145   }
3146 }
3147 
3148 //------------------------------hash-------------------------------------------
3149 // Type-specific hashing function.
3150 int TypeOopPtr::hash(void) const {
3151   return
3152     (const_oop() ? const_oop()->hash() : 0) +
3153     _klass_is_exact +
3154     _instance_id +
3155     TypePtr::hash();
3156 }
3157 
3158 //------------------------------dump2------------------------------------------
3159 #ifndef PRODUCT
3160 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3161   st->print("oopptr:%s", ptr_msg[_ptr]);
3162   if( _klass_is_exact ) st->print(":exact");
3163   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3164   switch( _offset ) {
3165   case OffsetTop: st->print("+top"); break;
3166   case OffsetBot: st->print("+any"); break;
3167   case         0: break;
3168   default:        st->print("+%d",_offset); break;
3169   }
3170   if (_instance_id == InstanceTop)
3171     st->print(",iid=top");
3172   else if (_instance_id != InstanceBot)
3173     st->print(",iid=%d",_instance_id);
3174 
3175   dump_inline_depth(st);
3176   dump_speculative(st);
3177 }
3178 #endif
3179 
3180 //------------------------------singleton--------------------------------------
3181 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3182 // constants
3183 bool TypeOopPtr::singleton(void) const {
3184   // detune optimizer to not generate constant oop + constant offset as a constant!
3185   // TopPTR, Null, AnyNull, Constant are all singletons
3186   return (_offset == 0) && !below_centerline(_ptr);
3187 }
3188 
3189 //------------------------------add_offset-------------------------------------
3190 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3191   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3192 }
3193 
3194 /**
3195  * Return same type without a speculative part
3196  */
3197 const Type* TypeOopPtr::remove_speculative() const {
3198   if (_speculative == NULL) {
3199     return this;
3200   }
3201   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3202   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3203 }
3204 
3205 /**
3206  * Return same type but drop speculative part if we know we won't use
3207  * it
3208  */
3209 const Type* TypeOopPtr::cleanup_speculative() const {
3210   // If the klass is exact and the ptr is not null then there's
3211   // nothing that the speculative type can help us with
3212   if (klass_is_exact() && !maybe_null()) {
3213     return remove_speculative();
3214   }
3215   return TypePtr::cleanup_speculative();
3216 }
3217 
3218 /**
3219  * Return same type but with a different inline depth (used for speculation)
3220  *
3221  * @param depth  depth to meet with
3222  */
3223 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3224   if (!UseInlineDepthForSpeculativeTypes) {
3225     return this;
3226   }
3227   return make(_ptr, _offset, _instance_id, _speculative, depth);
3228 }
3229 
3230 //------------------------------meet_instance_id--------------------------------
3231 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3232   // Either is 'TOP' instance?  Return the other instance!
3233   if( _instance_id == InstanceTop ) return  instance_id;
3234   if(  instance_id == InstanceTop ) return _instance_id;
3235   // If either is different, return 'BOTTOM' instance
3236   if( _instance_id != instance_id ) return InstanceBot;
3237   return _instance_id;
3238 }
3239 
3240 //------------------------------dual_instance_id--------------------------------
3241 int TypeOopPtr::dual_instance_id( ) const {
3242   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3243   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3244   return _instance_id;              // Map everything else into self
3245 }
3246 
3247 /**
3248  * Check whether new profiling would improve speculative type
3249  *
3250  * @param   exact_kls    class from profiling
3251  * @param   inline_depth inlining depth of profile point
3252  *
3253  * @return  true if type profile is valuable
3254  */
3255 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3256   // no way to improve an already exact type
3257   if (klass_is_exact()) {
3258     return false;
3259   }
3260   return TypePtr::would_improve_type(exact_kls, inline_depth);
3261 }
3262 
3263 //=============================================================================
3264 // Convenience common pre-built types.
3265 const TypeInstPtr *TypeInstPtr::NOTNULL;
3266 const TypeInstPtr *TypeInstPtr::BOTTOM;
3267 const TypeInstPtr *TypeInstPtr::MIRROR;
3268 const TypeInstPtr *TypeInstPtr::MARK;
3269 const TypeInstPtr *TypeInstPtr::KLASS;
3270 
3271 //------------------------------TypeInstPtr-------------------------------------
3272 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3273                          int instance_id, const TypePtr* speculative, int inline_depth)
3274   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3275     _name(k->name()) {
3276    assert(k != NULL &&
3277           (k->is_loaded() || o == NULL),
3278           "cannot have constants with non-loaded klass");
3279 };
3280 
3281 //------------------------------make-------------------------------------------
3282 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3283                                      ciKlass* k,
3284                                      bool xk,
3285                                      ciObject* o,
3286                                      int offset,
3287                                      int instance_id,
3288                                      const TypePtr* speculative,
3289                                      int inline_depth) {
3290   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3291   // Either const_oop() is NULL or else ptr is Constant
3292   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3293           "constant pointers must have a value supplied" );
3294   // Ptr is never Null
3295   assert( ptr != Null, "NULL pointers are not typed" );
3296 
3297   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3298   if (!UseExactTypes)  xk = false;
3299   if (ptr == Constant) {
3300     // Note:  This case includes meta-object constants, such as methods.
3301     xk = true;
3302   } else if (k->is_loaded()) {
3303     ciInstanceKlass* ik = k->as_instance_klass();
3304     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3305     if (xk && ik->is_interface())  xk = false;  // no exact interface
3306   }
3307 
3308   // Now hash this baby
3309   TypeInstPtr *result =
3310     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3311 
3312   return result;
3313 }
3314 
3315 /**
3316  *  Create constant type for a constant boxed value
3317  */
3318 const Type* TypeInstPtr::get_const_boxed_value() const {
3319   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3320   assert((const_oop() != NULL), "should be called only for constant object");
3321   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3322   BasicType bt = constant.basic_type();
3323   switch (bt) {
3324     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3325     case T_INT:      return TypeInt::make(constant.as_int());
3326     case T_CHAR:     return TypeInt::make(constant.as_char());
3327     case T_BYTE:     return TypeInt::make(constant.as_byte());
3328     case T_SHORT:    return TypeInt::make(constant.as_short());
3329     case T_FLOAT:    return TypeF::make(constant.as_float());
3330     case T_DOUBLE:   return TypeD::make(constant.as_double());
3331     case T_LONG:     return TypeLong::make(constant.as_long());
3332     default:         break;
3333   }
3334   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3335   return NULL;
3336 }
3337 
3338 //------------------------------cast_to_ptr_type-------------------------------
3339 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3340   if( ptr == _ptr ) return this;
3341   // Reconstruct _sig info here since not a problem with later lazy
3342   // construction, _sig will show up on demand.
3343   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3344 }
3345 
3346 
3347 //-----------------------------cast_to_exactness-------------------------------
3348 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3349   if( klass_is_exact == _klass_is_exact ) return this;
3350   if (!UseExactTypes)  return this;
3351   if (!_klass->is_loaded())  return this;
3352   ciInstanceKlass* ik = _klass->as_instance_klass();
3353   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3354   if( ik->is_interface() )              return this;  // cannot set xk
3355   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3356 }
3357 
3358 //-----------------------------cast_to_instance_id----------------------------
3359 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3360   if( instance_id == _instance_id ) return this;
3361   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3362 }
3363 
3364 //------------------------------xmeet_unloaded---------------------------------
3365 // Compute the MEET of two InstPtrs when at least one is unloaded.
3366 // Assume classes are different since called after check for same name/class-loader
3367 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3368     int off = meet_offset(tinst->offset());
3369     PTR ptr = meet_ptr(tinst->ptr());
3370     int instance_id = meet_instance_id(tinst->instance_id());
3371     const TypePtr* speculative = xmeet_speculative(tinst);
3372     int depth = meet_inline_depth(tinst->inline_depth());
3373 
3374     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3375     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3376     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3377       //
3378       // Meet unloaded class with java/lang/Object
3379       //
3380       // Meet
3381       //          |                     Unloaded Class
3382       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3383       //  ===================================================================
3384       //   TOP    | ..........................Unloaded......................|
3385       //  AnyNull |  U-AN    |................Unloaded......................|
3386       // Constant | ... O-NN .................................. |   O-BOT   |
3387       //  NotNull | ... O-NN .................................. |   O-BOT   |
3388       //  BOTTOM  | ........................Object-BOTTOM ..................|
3389       //
3390       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3391       //
3392       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3393       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3394       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3395       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3396         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3397         else                                      { return TypeInstPtr::NOTNULL; }
3398       }
3399       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3400 
3401       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3402     }
3403 
3404     // Both are unloaded, not the same class, not Object
3405     // Or meet unloaded with a different loaded class, not java/lang/Object
3406     if( ptr != TypePtr::BotPTR ) {
3407       return TypeInstPtr::NOTNULL;
3408     }
3409     return TypeInstPtr::BOTTOM;
3410 }
3411 
3412 
3413 //------------------------------meet-------------------------------------------
3414 // Compute the MEET of two types.  It returns a new Type object.
3415 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3416   // Perform a fast test for common case; meeting the same types together.
3417   if( this == t ) return this;  // Meeting same type-rep?
3418 
3419   // Current "this->_base" is Pointer
3420   switch (t->base()) {          // switch on original type
3421 
3422   case Int:                     // Mixing ints & oops happens when javac
3423   case Long:                    // reuses local variables
3424   case FloatTop:
3425   case FloatCon:
3426   case FloatBot:
3427   case DoubleTop:
3428   case DoubleCon:
3429   case DoubleBot:
3430   case NarrowOop:
3431   case NarrowKlass:
3432   case Bottom:                  // Ye Olde Default
3433     return Type::BOTTOM;
3434   case Top:
3435     return this;
3436 
3437   default:                      // All else is a mistake
3438     typerr(t);
3439 
3440   case MetadataPtr:
3441   case KlassPtr:
3442   case RawPtr: return TypePtr::BOTTOM;
3443 
3444   case AryPtr: {                // All arrays inherit from Object class
3445     const TypeAryPtr *tp = t->is_aryptr();
3446     int offset = meet_offset(tp->offset());
3447     PTR ptr = meet_ptr(tp->ptr());
3448     int instance_id = meet_instance_id(tp->instance_id());
3449     const TypePtr* speculative = xmeet_speculative(tp);
3450     int depth = meet_inline_depth(tp->inline_depth());
3451     switch (ptr) {
3452     case TopPTR:
3453     case AnyNull:                // Fall 'down' to dual of object klass
3454       // For instances when a subclass meets a superclass we fall
3455       // below the centerline when the superclass is exact. We need to
3456       // do the same here.
3457       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3458         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3459       } else {
3460         // cannot subclass, so the meet has to fall badly below the centerline
3461         ptr = NotNull;
3462         instance_id = InstanceBot;
3463         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3464       }
3465     case Constant:
3466     case NotNull:
3467     case BotPTR:                // Fall down to object klass
3468       // LCA is object_klass, but if we subclass from the top we can do better
3469       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3470         // If 'this' (InstPtr) is above the centerline and it is Object class
3471         // then we can subclass in the Java class hierarchy.
3472         // For instances when a subclass meets a superclass we fall
3473         // below the centerline when the superclass is exact. We need
3474         // to do the same here.
3475         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3476           // that is, tp's array type is a subtype of my klass
3477           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3478                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3479         }
3480       }
3481       // The other case cannot happen, since I cannot be a subtype of an array.
3482       // The meet falls down to Object class below centerline.
3483       if( ptr == Constant )
3484          ptr = NotNull;
3485       instance_id = InstanceBot;
3486       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3487     default: typerr(t);
3488     }
3489   }
3490 
3491   case OopPtr: {                // Meeting to OopPtrs
3492     // Found a OopPtr type vs self-InstPtr type
3493     const TypeOopPtr *tp = t->is_oopptr();
3494     int offset = meet_offset(tp->offset());
3495     PTR ptr = meet_ptr(tp->ptr());
3496     switch (tp->ptr()) {
3497     case TopPTR:
3498     case AnyNull: {
3499       int instance_id = meet_instance_id(InstanceTop);
3500       const TypePtr* speculative = xmeet_speculative(tp);
3501       int depth = meet_inline_depth(tp->inline_depth());
3502       return make(ptr, klass(), klass_is_exact(),
3503                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3504     }
3505     case NotNull:
3506     case BotPTR: {
3507       int instance_id = meet_instance_id(tp->instance_id());
3508       const TypePtr* speculative = xmeet_speculative(tp);
3509       int depth = meet_inline_depth(tp->inline_depth());
3510       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3511     }
3512     default: typerr(t);
3513     }
3514   }
3515 
3516   case AnyPtr: {                // Meeting to AnyPtrs
3517     // Found an AnyPtr type vs self-InstPtr type
3518     const TypePtr *tp = t->is_ptr();
3519     int offset = meet_offset(tp->offset());
3520     PTR ptr = meet_ptr(tp->ptr());
3521     int instance_id = meet_instance_id(InstanceTop);
3522     const TypePtr* speculative = xmeet_speculative(tp);
3523     int depth = meet_inline_depth(tp->inline_depth());
3524     switch (tp->ptr()) {
3525     case Null:
3526       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3527       // else fall through to AnyNull
3528     case TopPTR:
3529     case AnyNull: {
3530       return make(ptr, klass(), klass_is_exact(),
3531                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3532     }
3533     case NotNull:
3534     case BotPTR:
3535       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3536     default: typerr(t);
3537     }
3538   }
3539 
3540   /*
3541                  A-top         }
3542                /   |   \       }  Tops
3543            B-top A-any C-top   }
3544               | /  |  \ |      }  Any-nulls
3545            B-any   |   C-any   }
3546               |    |    |
3547            B-con A-con C-con   } constants; not comparable across classes
3548               |    |    |
3549            B-not   |   C-not   }
3550               | \  |  / |      }  not-nulls
3551            B-bot A-not C-bot   }
3552                \   |   /       }  Bottoms
3553                  A-bot         }
3554   */
3555 
3556   case InstPtr: {                // Meeting 2 Oops?
3557     // Found an InstPtr sub-type vs self-InstPtr type
3558     const TypeInstPtr *tinst = t->is_instptr();
3559     int off = meet_offset( tinst->offset() );
3560     PTR ptr = meet_ptr( tinst->ptr() );
3561     int instance_id = meet_instance_id(tinst->instance_id());
3562     const TypePtr* speculative = xmeet_speculative(tinst);
3563     int depth = meet_inline_depth(tinst->inline_depth());
3564 
3565     // Check for easy case; klasses are equal (and perhaps not loaded!)
3566     // If we have constants, then we created oops so classes are loaded
3567     // and we can handle the constants further down.  This case handles
3568     // both-not-loaded or both-loaded classes
3569     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3570       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3571     }
3572 
3573     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3574     ciKlass* tinst_klass = tinst->klass();
3575     ciKlass* this_klass  = this->klass();
3576     bool tinst_xk = tinst->klass_is_exact();
3577     bool this_xk  = this->klass_is_exact();
3578     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3579       // One of these classes has not been loaded
3580       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3581 #ifndef PRODUCT
3582       if( PrintOpto && Verbose ) {
3583         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3584         tty->print("  this == "); this->dump(); tty->cr();
3585         tty->print(" tinst == "); tinst->dump(); tty->cr();
3586       }
3587 #endif
3588       return unloaded_meet;
3589     }
3590 
3591     // Handle mixing oops and interfaces first.
3592     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3593                                         tinst_klass == ciEnv::current()->Object_klass())) {
3594       ciKlass *tmp = tinst_klass; // Swap interface around
3595       tinst_klass = this_klass;
3596       this_klass = tmp;
3597       bool tmp2 = tinst_xk;
3598       tinst_xk = this_xk;
3599       this_xk = tmp2;
3600     }
3601     if (tinst_klass->is_interface() &&
3602         !(this_klass->is_interface() ||
3603           // Treat java/lang/Object as an honorary interface,
3604           // because we need a bottom for the interface hierarchy.
3605           this_klass == ciEnv::current()->Object_klass())) {
3606       // Oop meets interface!
3607 
3608       // See if the oop subtypes (implements) interface.
3609       ciKlass *k;
3610       bool xk;
3611       if( this_klass->is_subtype_of( tinst_klass ) ) {
3612         // Oop indeed subtypes.  Now keep oop or interface depending
3613         // on whether we are both above the centerline or either is
3614         // below the centerline.  If we are on the centerline
3615         // (e.g., Constant vs. AnyNull interface), use the constant.
3616         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3617         // If we are keeping this_klass, keep its exactness too.
3618         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3619       } else {                  // Does not implement, fall to Object
3620         // Oop does not implement interface, so mixing falls to Object
3621         // just like the verifier does (if both are above the
3622         // centerline fall to interface)
3623         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3624         xk = above_centerline(ptr) ? tinst_xk : false;
3625         // Watch out for Constant vs. AnyNull interface.
3626         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3627         instance_id = InstanceBot;
3628       }
3629       ciObject* o = NULL;  // the Constant value, if any
3630       if (ptr == Constant) {
3631         // Find out which constant.
3632         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3633       }
3634       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3635     }
3636 
3637     // Either oop vs oop or interface vs interface or interface vs Object
3638 
3639     // !!! Here's how the symmetry requirement breaks down into invariants:
3640     // If we split one up & one down AND they subtype, take the down man.
3641     // If we split one up & one down AND they do NOT subtype, "fall hard".
3642     // If both are up and they subtype, take the subtype class.
3643     // If both are up and they do NOT subtype, "fall hard".
3644     // If both are down and they subtype, take the supertype class.
3645     // If both are down and they do NOT subtype, "fall hard".
3646     // Constants treated as down.
3647 
3648     // Now, reorder the above list; observe that both-down+subtype is also
3649     // "fall hard"; "fall hard" becomes the default case:
3650     // If we split one up & one down AND they subtype, take the down man.
3651     // If both are up and they subtype, take the subtype class.
3652 
3653     // If both are down and they subtype, "fall hard".
3654     // If both are down and they do NOT subtype, "fall hard".
3655     // If both are up and they do NOT subtype, "fall hard".
3656     // If we split one up & one down AND they do NOT subtype, "fall hard".
3657 
3658     // If a proper subtype is exact, and we return it, we return it exactly.
3659     // If a proper supertype is exact, there can be no subtyping relationship!
3660     // If both types are equal to the subtype, exactness is and-ed below the
3661     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3662 
3663     // Check for subtyping:
3664     ciKlass *subtype = NULL;
3665     bool subtype_exact = false;
3666     if( tinst_klass->equals(this_klass) ) {
3667       subtype = this_klass;
3668       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3669     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3670       subtype = this_klass;     // Pick subtyping class
3671       subtype_exact = this_xk;
3672     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3673       subtype = tinst_klass;    // Pick subtyping class
3674       subtype_exact = tinst_xk;
3675     }
3676 
3677     if( subtype ) {
3678       if( above_centerline(ptr) ) { // both are up?
3679         this_klass = tinst_klass = subtype;
3680         this_xk = tinst_xk = subtype_exact;
3681       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3682         this_klass = tinst_klass; // tinst is down; keep down man
3683         this_xk = tinst_xk;
3684       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3685         tinst_klass = this_klass; // this is down; keep down man
3686         tinst_xk = this_xk;
3687       } else {
3688         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3689       }
3690     }
3691 
3692     // Check for classes now being equal
3693     if (tinst_klass->equals(this_klass)) {
3694       // If the klasses are equal, the constants may still differ.  Fall to
3695       // NotNull if they do (neither constant is NULL; that is a special case
3696       // handled elsewhere).
3697       ciObject* o = NULL;             // Assume not constant when done
3698       ciObject* this_oop  = const_oop();
3699       ciObject* tinst_oop = tinst->const_oop();
3700       if( ptr == Constant ) {
3701         if (this_oop != NULL && tinst_oop != NULL &&
3702             this_oop->equals(tinst_oop) )
3703           o = this_oop;
3704         else if (above_centerline(this ->_ptr))
3705           o = tinst_oop;
3706         else if (above_centerline(tinst ->_ptr))
3707           o = this_oop;
3708         else
3709           ptr = NotNull;
3710       }
3711       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3712     } // Else classes are not equal
3713 
3714     // Since klasses are different, we require a LCA in the Java
3715     // class hierarchy - which means we have to fall to at least NotNull.
3716     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3717       ptr = NotNull;
3718 
3719     instance_id = InstanceBot;
3720 
3721     // Now we find the LCA of Java classes
3722     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3723     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3724   } // End of case InstPtr
3725 
3726   } // End of switch
3727   return this;                  // Return the double constant
3728 }
3729 
3730 
3731 //------------------------java_mirror_type--------------------------------------
3732 ciType* TypeInstPtr::java_mirror_type() const {
3733   // must be a singleton type
3734   if( const_oop() == NULL )  return NULL;
3735 
3736   // must be of type java.lang.Class
3737   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3738 
3739   return const_oop()->as_instance()->java_mirror_type();
3740 }
3741 
3742 
3743 //------------------------------xdual------------------------------------------
3744 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3745 // inheritance mechanism.
3746 const Type *TypeInstPtr::xdual() const {
3747   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3748 }
3749 
3750 //------------------------------eq---------------------------------------------
3751 // Structural equality check for Type representations
3752 bool TypeInstPtr::eq( const Type *t ) const {
3753   const TypeInstPtr *p = t->is_instptr();
3754   return
3755     klass()->equals(p->klass()) &&
3756     TypeOopPtr::eq(p);          // Check sub-type stuff
3757 }
3758 
3759 //------------------------------hash-------------------------------------------
3760 // Type-specific hashing function.
3761 int TypeInstPtr::hash(void) const {
3762   int hash = klass()->hash() + TypeOopPtr::hash();
3763   return hash;
3764 }
3765 
3766 //------------------------------dump2------------------------------------------
3767 // Dump oop Type
3768 #ifndef PRODUCT
3769 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3770   // Print the name of the klass.
3771   klass()->print_name_on(st);
3772 
3773   switch( _ptr ) {
3774   case Constant:
3775     // TO DO: Make CI print the hex address of the underlying oop.
3776     if (WizardMode || Verbose) {
3777       const_oop()->print_oop(st);
3778     }
3779   case BotPTR:
3780     if (!WizardMode && !Verbose) {
3781       if( _klass_is_exact ) st->print(":exact");
3782       break;
3783     }
3784   case TopPTR:
3785   case AnyNull:
3786   case NotNull:
3787     st->print(":%s", ptr_msg[_ptr]);
3788     if( _klass_is_exact ) st->print(":exact");
3789     break;
3790   }
3791 
3792   if( _offset ) {               // Dump offset, if any
3793     if( _offset == OffsetBot )      st->print("+any");
3794     else if( _offset == OffsetTop ) st->print("+unknown");
3795     else st->print("+%d", _offset);
3796   }
3797 
3798   st->print(" *");
3799   if (_instance_id == InstanceTop)
3800     st->print(",iid=top");
3801   else if (_instance_id != InstanceBot)
3802     st->print(",iid=%d",_instance_id);
3803 
3804   dump_inline_depth(st);
3805   dump_speculative(st);
3806 }
3807 #endif
3808 
3809 //------------------------------add_offset-------------------------------------
3810 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3811   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3812               _instance_id, add_offset_speculative(offset), _inline_depth);
3813 }
3814 
3815 const Type *TypeInstPtr::remove_speculative() const {
3816   if (_speculative == NULL) {
3817     return this;
3818   }
3819   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3820   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3821               _instance_id, NULL, _inline_depth);
3822 }
3823 
3824 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3825   if (!UseInlineDepthForSpeculativeTypes) {
3826     return this;
3827   }
3828   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3829 }
3830 
3831 //=============================================================================
3832 // Convenience common pre-built types.
3833 const TypeAryPtr *TypeAryPtr::RANGE;
3834 const TypeAryPtr *TypeAryPtr::OOPS;
3835 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3836 const TypeAryPtr *TypeAryPtr::BYTES;
3837 const TypeAryPtr *TypeAryPtr::SHORTS;
3838 const TypeAryPtr *TypeAryPtr::CHARS;
3839 const TypeAryPtr *TypeAryPtr::INTS;
3840 const TypeAryPtr *TypeAryPtr::LONGS;
3841 const TypeAryPtr *TypeAryPtr::FLOATS;
3842 const TypeAryPtr *TypeAryPtr::DOUBLES;
3843 
3844 //------------------------------make-------------------------------------------
3845 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3846                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3847   assert(!(k == NULL && ary->_elem->isa_int()),
3848          "integral arrays must be pre-equipped with a class");
3849   if (!xk)  xk = ary->ary_must_be_exact();
3850   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3851   if (!UseExactTypes)  xk = (ptr == Constant);
3852   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3853 }
3854 
3855 //------------------------------make-------------------------------------------
3856 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3857                                    int instance_id, const TypePtr* speculative, int inline_depth,
3858                                    bool is_autobox_cache) {
3859   assert(!(k == NULL && ary->_elem->isa_int()),
3860          "integral arrays must be pre-equipped with a class");
3861   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3862   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3863   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3864   if (!UseExactTypes)  xk = (ptr == Constant);
3865   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3866 }
3867 
3868 //------------------------------cast_to_ptr_type-------------------------------
3869 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3870   if( ptr == _ptr ) return this;
3871   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3872 }
3873 
3874 
3875 //-----------------------------cast_to_exactness-------------------------------
3876 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3877   if( klass_is_exact == _klass_is_exact ) return this;
3878   if (!UseExactTypes)  return this;
3879   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3880   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3881 }
3882 
3883 //-----------------------------cast_to_instance_id----------------------------
3884 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3885   if( instance_id == _instance_id ) return this;
3886   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3887 }
3888 
3889 //-----------------------------narrow_size_type-------------------------------
3890 // Local cache for arrayOopDesc::max_array_length(etype),
3891 // which is kind of slow (and cached elsewhere by other users).
3892 static jint max_array_length_cache[T_CONFLICT+1];
3893 static jint max_array_length(BasicType etype) {
3894   jint& cache = max_array_length_cache[etype];
3895   jint res = cache;
3896   if (res == 0) {
3897     switch (etype) {
3898     case T_NARROWOOP:
3899       etype = T_OBJECT;
3900       break;
3901     case T_NARROWKLASS:
3902     case T_CONFLICT:
3903     case T_ILLEGAL:
3904     case T_VOID:
3905       etype = T_BYTE;           // will produce conservatively high value
3906     }
3907     cache = res = arrayOopDesc::max_array_length(etype);
3908   }
3909   return res;
3910 }
3911 
3912 // Narrow the given size type to the index range for the given array base type.
3913 // Return NULL if the resulting int type becomes empty.
3914 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3915   jint hi = size->_hi;
3916   jint lo = size->_lo;
3917   jint min_lo = 0;
3918   jint max_hi = max_array_length(elem()->basic_type());
3919   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3920   bool chg = false;
3921   if (lo < min_lo) {
3922     lo = min_lo;
3923     if (size->is_con()) {
3924       hi = lo;
3925     }
3926     chg = true;
3927   }
3928   if (hi > max_hi) {
3929     hi = max_hi;
3930     if (size->is_con()) {
3931       lo = hi;
3932     }
3933     chg = true;
3934   }
3935   // Negative length arrays will produce weird intermediate dead fast-path code
3936   if (lo > hi)
3937     return TypeInt::ZERO;
3938   if (!chg)
3939     return size;
3940   return TypeInt::make(lo, hi, Type::WidenMin);
3941 }
3942 
3943 //-------------------------------cast_to_size----------------------------------
3944 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3945   assert(new_size != NULL, "");
3946   new_size = narrow_size_type(new_size);
3947   if (new_size == size())  return this;
3948   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3949   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3950 }
3951 
3952 
3953 //------------------------------cast_to_stable---------------------------------
3954 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3955   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3956     return this;
3957 
3958   const Type* elem = this->elem();
3959   const TypePtr* elem_ptr = elem->make_ptr();
3960 
3961   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3962     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3963     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3964   }
3965 
3966   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3967 
3968   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3969 }
3970 
3971 //-----------------------------stable_dimension--------------------------------
3972 int TypeAryPtr::stable_dimension() const {
3973   if (!is_stable())  return 0;
3974   int dim = 1;
3975   const TypePtr* elem_ptr = elem()->make_ptr();
3976   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3977     dim += elem_ptr->is_aryptr()->stable_dimension();
3978   return dim;
3979 }
3980 
3981 //------------------------------eq---------------------------------------------
3982 // Structural equality check for Type representations
3983 bool TypeAryPtr::eq( const Type *t ) const {
3984   const TypeAryPtr *p = t->is_aryptr();
3985   return
3986     _ary == p->_ary &&  // Check array
3987     TypeOopPtr::eq(p);  // Check sub-parts
3988 }
3989 
3990 //------------------------------hash-------------------------------------------
3991 // Type-specific hashing function.
3992 int TypeAryPtr::hash(void) const {
3993   return (intptr_t)_ary + TypeOopPtr::hash();
3994 }
3995 
3996 //------------------------------meet-------------------------------------------
3997 // Compute the MEET of two types.  It returns a new Type object.
3998 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3999   // Perform a fast test for common case; meeting the same types together.
4000   if( this == t ) return this;  // Meeting same type-rep?
4001   // Current "this->_base" is Pointer
4002   switch (t->base()) {          // switch on original type
4003 
4004   // Mixing ints & oops happens when javac reuses local variables
4005   case Int:
4006   case Long:
4007   case FloatTop:
4008   case FloatCon:
4009   case FloatBot:
4010   case DoubleTop:
4011   case DoubleCon:
4012   case DoubleBot:
4013   case NarrowOop:
4014   case NarrowKlass:
4015   case Bottom:                  // Ye Olde Default
4016     return Type::BOTTOM;
4017   case Top:
4018     return this;
4019 
4020   default:                      // All else is a mistake
4021     typerr(t);
4022 
4023   case OopPtr: {                // Meeting to OopPtrs
4024     // Found a OopPtr type vs self-AryPtr type
4025     const TypeOopPtr *tp = t->is_oopptr();
4026     int offset = meet_offset(tp->offset());
4027     PTR ptr = meet_ptr(tp->ptr());
4028     int depth = meet_inline_depth(tp->inline_depth());
4029     const TypePtr* speculative = xmeet_speculative(tp);
4030     switch (tp->ptr()) {
4031     case TopPTR:
4032     case AnyNull: {
4033       int instance_id = meet_instance_id(InstanceTop);
4034       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4035                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4036     }
4037     case BotPTR:
4038     case NotNull: {
4039       int instance_id = meet_instance_id(tp->instance_id());
4040       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4041     }
4042     default: ShouldNotReachHere();
4043     }
4044   }
4045 
4046   case AnyPtr: {                // Meeting two AnyPtrs
4047     // Found an AnyPtr type vs self-AryPtr type
4048     const TypePtr *tp = t->is_ptr();
4049     int offset = meet_offset(tp->offset());
4050     PTR ptr = meet_ptr(tp->ptr());
4051     const TypePtr* speculative = xmeet_speculative(tp);
4052     int depth = meet_inline_depth(tp->inline_depth());
4053     switch (tp->ptr()) {
4054     case TopPTR:
4055       return this;
4056     case BotPTR:
4057     case NotNull:
4058       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4059     case Null:
4060       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4061       // else fall through to AnyNull
4062     case AnyNull: {
4063       int instance_id = meet_instance_id(InstanceTop);
4064       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4065                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4066     }
4067     default: ShouldNotReachHere();
4068     }
4069   }
4070 
4071   case MetadataPtr:
4072   case KlassPtr:
4073   case RawPtr: return TypePtr::BOTTOM;
4074 
4075   case AryPtr: {                // Meeting 2 references?
4076     const TypeAryPtr *tap = t->is_aryptr();
4077     int off = meet_offset(tap->offset());
4078     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4079     PTR ptr = meet_ptr(tap->ptr());
4080     int instance_id = meet_instance_id(tap->instance_id());
4081     const TypePtr* speculative = xmeet_speculative(tap);
4082     int depth = meet_inline_depth(tap->inline_depth());
4083     ciKlass* lazy_klass = NULL;
4084     if (tary->_elem->isa_int()) {
4085       // Integral array element types have irrelevant lattice relations.
4086       // It is the klass that determines array layout, not the element type.
4087       if (_klass == NULL)
4088         lazy_klass = tap->_klass;
4089       else if (tap->_klass == NULL || tap->_klass == _klass) {
4090         lazy_klass = _klass;
4091       } else {
4092         // Something like byte[int+] meets char[int+].
4093         // This must fall to bottom, not (int[-128..65535])[int+].
4094         instance_id = InstanceBot;
4095         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4096       }
4097     } else // Non integral arrays.
4098       // Must fall to bottom if exact klasses in upper lattice
4099       // are not equal or super klass is exact.
4100       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4101           // meet with top[] and bottom[] are processed further down:
4102           tap->_klass != NULL  && this->_klass != NULL   &&
4103           // both are exact and not equal:
4104           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4105            // 'tap'  is exact and super or unrelated:
4106            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4107            // 'this' is exact and super or unrelated:
4108            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4109       tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4110       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4111     }
4112 
4113     bool xk = false;
4114     switch (tap->ptr()) {
4115     case AnyNull:
4116     case TopPTR:
4117       // Compute new klass on demand, do not use tap->_klass
4118       if (below_centerline(this->_ptr)) {
4119         xk = this->_klass_is_exact;
4120       } else {
4121         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4122       }
4123       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4124     case Constant: {
4125       ciObject* o = const_oop();
4126       if( _ptr == Constant ) {
4127         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4128           xk = (klass() == tap->klass());
4129           ptr = NotNull;
4130           o = NULL;
4131           instance_id = InstanceBot;
4132         } else {
4133           xk = true;
4134         }
4135       } else if(above_centerline(_ptr)) {
4136         o = tap->const_oop();
4137         xk = true;
4138       } else {
4139         // Only precise for identical arrays
4140         xk = this->_klass_is_exact && (klass() == tap->klass());
4141       }
4142       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4143     }
4144     case NotNull:
4145     case BotPTR:
4146       // Compute new klass on demand, do not use tap->_klass
4147       if (above_centerline(this->_ptr))
4148             xk = tap->_klass_is_exact;
4149       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4150               (klass() == tap->klass()); // Only precise for identical arrays
4151       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4152     default: ShouldNotReachHere();
4153     }
4154   }
4155 
4156   // All arrays inherit from Object class
4157   case InstPtr: {
4158     const TypeInstPtr *tp = t->is_instptr();
4159     int offset = meet_offset(tp->offset());
4160     PTR ptr = meet_ptr(tp->ptr());
4161     int instance_id = meet_instance_id(tp->instance_id());
4162     const TypePtr* speculative = xmeet_speculative(tp);
4163     int depth = meet_inline_depth(tp->inline_depth());
4164     switch (ptr) {
4165     case TopPTR:
4166     case AnyNull:                // Fall 'down' to dual of object klass
4167       // For instances when a subclass meets a superclass we fall
4168       // below the centerline when the superclass is exact. We need to
4169       // do the same here.
4170       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4171         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4172       } else {
4173         // cannot subclass, so the meet has to fall badly below the centerline
4174         ptr = NotNull;
4175         instance_id = InstanceBot;
4176         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4177       }
4178     case Constant:
4179     case NotNull:
4180     case BotPTR:                // Fall down to object klass
4181       // LCA is object_klass, but if we subclass from the top we can do better
4182       if (above_centerline(tp->ptr())) {
4183         // If 'tp'  is above the centerline and it is Object class
4184         // then we can subclass in the Java class hierarchy.
4185         // For instances when a subclass meets a superclass we fall
4186         // below the centerline when the superclass is exact. We need
4187         // to do the same here.
4188         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4189           // that is, my array type is a subtype of 'tp' klass
4190           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4191                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4192         }
4193       }
4194       // The other case cannot happen, since t cannot be a subtype of an array.
4195       // The meet falls down to Object class below centerline.
4196       if( ptr == Constant )
4197          ptr = NotNull;
4198       instance_id = InstanceBot;
4199       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4200     default: typerr(t);
4201     }
4202   }
4203   }
4204   return this;                  // Lint noise
4205 }
4206 
4207 //------------------------------xdual------------------------------------------
4208 // Dual: compute field-by-field dual
4209 const Type *TypeAryPtr::xdual() const {
4210   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4211 }
4212 
4213 //----------------------interface_vs_oop---------------------------------------
4214 #ifdef ASSERT
4215 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4216   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4217   if (t_aryptr) {
4218     return _ary->interface_vs_oop(t_aryptr->_ary);
4219   }
4220   return false;
4221 }
4222 #endif
4223 
4224 //------------------------------dump2------------------------------------------
4225 #ifndef PRODUCT
4226 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4227   _ary->dump2(d,depth,st);
4228   switch( _ptr ) {
4229   case Constant:
4230     const_oop()->print(st);
4231     break;
4232   case BotPTR:
4233     if (!WizardMode && !Verbose) {
4234       if( _klass_is_exact ) st->print(":exact");
4235       break;
4236     }
4237   case TopPTR:
4238   case AnyNull:
4239   case NotNull:
4240     st->print(":%s", ptr_msg[_ptr]);
4241     if( _klass_is_exact ) st->print(":exact");
4242     break;
4243   }
4244 
4245   if( _offset != 0 ) {
4246     int header_size = objArrayOopDesc::header_size() * wordSize;
4247     if( _offset == OffsetTop )       st->print("+undefined");
4248     else if( _offset == OffsetBot )  st->print("+any");
4249     else if( _offset < header_size ) st->print("+%d", _offset);
4250     else {
4251       BasicType basic_elem_type = elem()->basic_type();
4252       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4253       int elem_size = type2aelembytes(basic_elem_type);
4254       st->print("[%d]", (_offset - array_base)/elem_size);
4255     }
4256   }
4257   st->print(" *");
4258   if (_instance_id == InstanceTop)
4259     st->print(",iid=top");
4260   else if (_instance_id != InstanceBot)
4261     st->print(",iid=%d",_instance_id);
4262 
4263   dump_inline_depth(st);
4264   dump_speculative(st);
4265 }
4266 #endif
4267 
4268 bool TypeAryPtr::empty(void) const {
4269   if (_ary->empty())       return true;
4270   return TypeOopPtr::empty();
4271 }
4272 
4273 //------------------------------add_offset-------------------------------------
4274 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4275   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4276 }
4277 
4278 const Type *TypeAryPtr::remove_speculative() const {
4279   if (_speculative == NULL) {
4280     return this;
4281   }
4282   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4283   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4284 }
4285 
4286 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4287   if (!UseInlineDepthForSpeculativeTypes) {
4288     return this;
4289   }
4290   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4291 }
4292 
4293 //=============================================================================
4294 
4295 //------------------------------hash-------------------------------------------
4296 // Type-specific hashing function.
4297 int TypeNarrowPtr::hash(void) const {
4298   return _ptrtype->hash() + 7;
4299 }
4300 
4301 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4302   return _ptrtype->singleton();
4303 }
4304 
4305 bool TypeNarrowPtr::empty(void) const {
4306   return _ptrtype->empty();
4307 }
4308 
4309 intptr_t TypeNarrowPtr::get_con() const {
4310   return _ptrtype->get_con();
4311 }
4312 
4313 bool TypeNarrowPtr::eq( const Type *t ) const {
4314   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4315   if (tc != NULL) {
4316     if (_ptrtype->base() != tc->_ptrtype->base()) {
4317       return false;
4318     }
4319     return tc->_ptrtype->eq(_ptrtype);
4320   }
4321   return false;
4322 }
4323 
4324 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4325   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4326   return make_same_narrowptr(odual);
4327 }
4328 
4329 
4330 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4331   if (isa_same_narrowptr(kills)) {
4332     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4333     if (ft->empty())
4334       return Type::TOP;           // Canonical empty value
4335     if (ft->isa_ptr()) {
4336       return make_hash_same_narrowptr(ft->isa_ptr());
4337     }
4338     return ft;
4339   } else if (kills->isa_ptr()) {
4340     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4341     if (ft->empty())
4342       return Type::TOP;           // Canonical empty value
4343     return ft;
4344   } else {
4345     return Type::TOP;
4346   }
4347 }
4348 
4349 //------------------------------xmeet------------------------------------------
4350 // Compute the MEET of two types.  It returns a new Type object.
4351 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4352   // Perform a fast test for common case; meeting the same types together.
4353   if( this == t ) return this;  // Meeting same type-rep?
4354 
4355   if (t->base() == base()) {
4356     const Type* result = _ptrtype->xmeet(t->make_ptr());
4357     if (result->isa_ptr()) {
4358       return make_hash_same_narrowptr(result->is_ptr());
4359     }
4360     return result;
4361   }
4362 
4363   // Current "this->_base" is NarrowKlass or NarrowOop
4364   switch (t->base()) {          // switch on original type
4365 
4366   case Int:                     // Mixing ints & oops happens when javac
4367   case Long:                    // reuses local variables
4368   case FloatTop:
4369   case FloatCon:
4370   case FloatBot:
4371   case DoubleTop:
4372   case DoubleCon:
4373   case DoubleBot:
4374   case AnyPtr:
4375   case RawPtr:
4376   case OopPtr:
4377   case InstPtr:
4378   case AryPtr:
4379   case MetadataPtr:
4380   case KlassPtr:
4381   case NarrowOop:
4382   case NarrowKlass:
4383 
4384   case Bottom:                  // Ye Olde Default
4385     return Type::BOTTOM;
4386   case Top:
4387     return this;
4388 
4389   default:                      // All else is a mistake
4390     typerr(t);
4391 
4392   } // End of switch
4393 
4394   return this;
4395 }
4396 
4397 #ifndef PRODUCT
4398 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4399   _ptrtype->dump2(d, depth, st);
4400 }
4401 #endif
4402 
4403 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4404 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4405 
4406 
4407 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4408   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4409 }
4410 
4411 const Type* TypeNarrowOop::remove_speculative() const {
4412   return make(_ptrtype->remove_speculative()->is_ptr());
4413 }
4414 
4415 const Type* TypeNarrowOop::cleanup_speculative() const {
4416   return make(_ptrtype->cleanup_speculative()->is_ptr());
4417 }
4418 
4419 #ifndef PRODUCT
4420 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4421   st->print("narrowoop: ");
4422   TypeNarrowPtr::dump2(d, depth, st);
4423 }
4424 #endif
4425 
4426 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4427 
4428 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4429   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4430 }
4431 
4432 #ifndef PRODUCT
4433 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4434   st->print("narrowklass: ");
4435   TypeNarrowPtr::dump2(d, depth, st);
4436 }
4437 #endif
4438 
4439 
4440 //------------------------------eq---------------------------------------------
4441 // Structural equality check for Type representations
4442 bool TypeMetadataPtr::eq( const Type *t ) const {
4443   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4444   ciMetadata* one = metadata();
4445   ciMetadata* two = a->metadata();
4446   if (one == NULL || two == NULL) {
4447     return (one == two) && TypePtr::eq(t);
4448   } else {
4449     return one->equals(two) && TypePtr::eq(t);
4450   }
4451 }
4452 
4453 //------------------------------hash-------------------------------------------
4454 // Type-specific hashing function.
4455 int TypeMetadataPtr::hash(void) const {
4456   return
4457     (metadata() ? metadata()->hash() : 0) +
4458     TypePtr::hash();
4459 }
4460 
4461 //------------------------------singleton--------------------------------------
4462 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4463 // constants
4464 bool TypeMetadataPtr::singleton(void) const {
4465   // detune optimizer to not generate constant metadta + constant offset as a constant!
4466   // TopPTR, Null, AnyNull, Constant are all singletons
4467   return (_offset == 0) && !below_centerline(_ptr);
4468 }
4469 
4470 //------------------------------add_offset-------------------------------------
4471 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4472   return make( _ptr, _metadata, xadd_offset(offset));
4473 }
4474 
4475 //-----------------------------filter------------------------------------------
4476 // Do not allow interface-vs.-noninterface joins to collapse to top.
4477 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4478   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4479   if (ft == NULL || ft->empty())
4480     return Type::TOP;           // Canonical empty value
4481   return ft;
4482 }
4483 
4484  //------------------------------get_con----------------------------------------
4485 intptr_t TypeMetadataPtr::get_con() const {
4486   assert( _ptr == Null || _ptr == Constant, "" );
4487   assert( _offset >= 0, "" );
4488 
4489   if (_offset != 0) {
4490     // After being ported to the compiler interface, the compiler no longer
4491     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4492     // to a handle at compile time.  This handle is embedded in the generated
4493     // code and dereferenced at the time the nmethod is made.  Until that time,
4494     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4495     // have access to the addresses!).  This does not seem to currently happen,
4496     // but this assertion here is to help prevent its occurence.
4497     tty->print_cr("Found oop constant with non-zero offset");
4498     ShouldNotReachHere();
4499   }
4500 
4501   return (intptr_t)metadata()->constant_encoding();
4502 }
4503 
4504 //------------------------------cast_to_ptr_type-------------------------------
4505 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4506   if( ptr == _ptr ) return this;
4507   return make(ptr, metadata(), _offset);
4508 }
4509 
4510 //------------------------------meet-------------------------------------------
4511 // Compute the MEET of two types.  It returns a new Type object.
4512 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4513   // Perform a fast test for common case; meeting the same types together.
4514   if( this == t ) return this;  // Meeting same type-rep?
4515 
4516   // Current "this->_base" is OopPtr
4517   switch (t->base()) {          // switch on original type
4518 
4519   case Int:                     // Mixing ints & oops happens when javac
4520   case Long:                    // reuses local variables
4521   case FloatTop:
4522   case FloatCon:
4523   case FloatBot:
4524   case DoubleTop:
4525   case DoubleCon:
4526   case DoubleBot:
4527   case NarrowOop:
4528   case NarrowKlass:
4529   case Bottom:                  // Ye Olde Default
4530     return Type::BOTTOM;
4531   case Top:
4532     return this;
4533 
4534   default:                      // All else is a mistake
4535     typerr(t);
4536 
4537   case AnyPtr: {
4538     // Found an AnyPtr type vs self-OopPtr type
4539     const TypePtr *tp = t->is_ptr();
4540     int offset = meet_offset(tp->offset());
4541     PTR ptr = meet_ptr(tp->ptr());
4542     switch (tp->ptr()) {
4543     case Null:
4544       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4545       // else fall through:
4546     case TopPTR:
4547     case AnyNull: {
4548       return make(ptr, _metadata, offset);
4549     }
4550     case BotPTR:
4551     case NotNull:
4552       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4553     default: typerr(t);
4554     }
4555   }
4556 
4557   case RawPtr:
4558   case KlassPtr:
4559   case OopPtr:
4560   case InstPtr:
4561   case AryPtr:
4562     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4563 
4564   case MetadataPtr: {
4565     const TypeMetadataPtr *tp = t->is_metadataptr();
4566     int offset = meet_offset(tp->offset());
4567     PTR tptr = tp->ptr();
4568     PTR ptr = meet_ptr(tptr);
4569     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4570     if (tptr == TopPTR || _ptr == TopPTR ||
4571         metadata()->equals(tp->metadata())) {
4572       return make(ptr, md, offset);
4573     }
4574     // metadata is different
4575     if( ptr == Constant ) {  // Cannot be equal constants, so...
4576       if( tptr == Constant && _ptr != Constant)  return t;
4577       if( _ptr == Constant && tptr != Constant)  return this;
4578       ptr = NotNull;            // Fall down in lattice
4579     }
4580     return make(ptr, NULL, offset);
4581     break;
4582   }
4583   } // End of switch
4584   return this;                  // Return the double constant
4585 }
4586 
4587 
4588 //------------------------------xdual------------------------------------------
4589 // Dual of a pure metadata pointer.
4590 const Type *TypeMetadataPtr::xdual() const {
4591   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4592 }
4593 
4594 //------------------------------dump2------------------------------------------
4595 #ifndef PRODUCT
4596 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4597   st->print("metadataptr:%s", ptr_msg[_ptr]);
4598   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4599   switch( _offset ) {
4600   case OffsetTop: st->print("+top"); break;
4601   case OffsetBot: st->print("+any"); break;
4602   case         0: break;
4603   default:        st->print("+%d",_offset); break;
4604   }
4605 }
4606 #endif
4607 
4608 
4609 //=============================================================================
4610 // Convenience common pre-built type.
4611 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4612 
4613 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4614   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4615 }
4616 
4617 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4618   return make(Constant, m, 0);
4619 }
4620 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4621   return make(Constant, m, 0);
4622 }
4623 
4624 //------------------------------make-------------------------------------------
4625 // Create a meta data constant
4626 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4627   assert(m == NULL || !m->is_klass(), "wrong type");
4628   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4629 }
4630 
4631 
4632 //=============================================================================
4633 // Convenience common pre-built types.
4634 
4635 // Not-null object klass or below
4636 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4637 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4638 
4639 //------------------------------TypeKlassPtr-----------------------------------
4640 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4641   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4642 }
4643 
4644 //------------------------------make-------------------------------------------
4645 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4646 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4647   assert( k != NULL, "Expect a non-NULL klass");
4648   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4649   TypeKlassPtr *r =
4650     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4651 
4652   return r;
4653 }
4654 
4655 //------------------------------eq---------------------------------------------
4656 // Structural equality check for Type representations
4657 bool TypeKlassPtr::eq( const Type *t ) const {
4658   const TypeKlassPtr *p = t->is_klassptr();
4659   return
4660     klass()->equals(p->klass()) &&
4661     TypePtr::eq(p);
4662 }
4663 
4664 //------------------------------hash-------------------------------------------
4665 // Type-specific hashing function.
4666 int TypeKlassPtr::hash(void) const {
4667   return klass()->hash() + TypePtr::hash();
4668 }
4669 
4670 //------------------------------singleton--------------------------------------
4671 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4672 // constants
4673 bool TypeKlassPtr::singleton(void) const {
4674   // detune optimizer to not generate constant klass + constant offset as a constant!
4675   // TopPTR, Null, AnyNull, Constant are all singletons
4676   return (_offset == 0) && !below_centerline(_ptr);
4677 }
4678 
4679 // Do not allow interface-vs.-noninterface joins to collapse to top.
4680 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4681   // logic here mirrors the one from TypeOopPtr::filter. See comments
4682   // there.
4683   const Type* ft = join_helper(kills, include_speculative);
4684   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4685   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4686 
4687   if (ft->empty()) {
4688     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4689       return kills;             // Uplift to interface
4690 
4691     return Type::TOP;           // Canonical empty value
4692   }
4693 
4694   // Interface klass type could be exact in opposite to interface type,
4695   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4696   if (ftkp != NULL && ktkp != NULL &&
4697       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4698       !ftkp->klass_is_exact() && // Keep exact interface klass
4699       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4700     return ktkp->cast_to_ptr_type(ftkp->ptr());
4701   }
4702 
4703   return ft;
4704 }
4705 
4706 //----------------------compute_klass------------------------------------------
4707 // Compute the defining klass for this class
4708 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4709   // Compute _klass based on element type.
4710   ciKlass* k_ary = NULL;
4711   const TypeInstPtr *tinst;
4712   const TypeAryPtr *tary;
4713   const Type* el = elem();
4714   if (el->isa_narrowoop()) {
4715     el = el->make_ptr();
4716   }
4717 
4718   // Get element klass
4719   if ((tinst = el->isa_instptr()) != NULL) {
4720     // Compute array klass from element klass
4721     k_ary = ciObjArrayKlass::make(tinst->klass());
4722   } else if ((tary = el->isa_aryptr()) != NULL) {
4723     // Compute array klass from element klass
4724     ciKlass* k_elem = tary->klass();
4725     // If element type is something like bottom[], k_elem will be null.
4726     if (k_elem != NULL)
4727       k_ary = ciObjArrayKlass::make(k_elem);
4728   } else if ((el->base() == Type::Top) ||
4729              (el->base() == Type::Bottom)) {
4730     // element type of Bottom occurs from meet of basic type
4731     // and object; Top occurs when doing join on Bottom.
4732     // Leave k_ary at NULL.
4733   } else {
4734     // Cannot compute array klass directly from basic type,
4735     // since subtypes of TypeInt all have basic type T_INT.
4736 #ifdef ASSERT
4737     if (verify && el->isa_int()) {
4738       // Check simple cases when verifying klass.
4739       BasicType bt = T_ILLEGAL;
4740       if (el == TypeInt::BYTE) {
4741         bt = T_BYTE;
4742       } else if (el == TypeInt::SHORT) {
4743         bt = T_SHORT;
4744       } else if (el == TypeInt::CHAR) {
4745         bt = T_CHAR;
4746       } else if (el == TypeInt::INT) {
4747         bt = T_INT;
4748       } else {
4749         return _klass; // just return specified klass
4750       }
4751       return ciTypeArrayKlass::make(bt);
4752     }
4753 #endif
4754     assert(!el->isa_int(),
4755            "integral arrays must be pre-equipped with a class");
4756     // Compute array klass directly from basic type
4757     k_ary = ciTypeArrayKlass::make(el->basic_type());
4758   }
4759   return k_ary;
4760 }
4761 
4762 //------------------------------klass------------------------------------------
4763 // Return the defining klass for this class
4764 ciKlass* TypeAryPtr::klass() const {
4765   if( _klass ) return _klass;   // Return cached value, if possible
4766 
4767   // Oops, need to compute _klass and cache it
4768   ciKlass* k_ary = compute_klass();
4769 
4770   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4771     // The _klass field acts as a cache of the underlying
4772     // ciKlass for this array type.  In order to set the field,
4773     // we need to cast away const-ness.
4774     //
4775     // IMPORTANT NOTE: we *never* set the _klass field for the
4776     // type TypeAryPtr::OOPS.  This Type is shared between all
4777     // active compilations.  However, the ciKlass which represents
4778     // this Type is *not* shared between compilations, so caching
4779     // this value would result in fetching a dangling pointer.
4780     //
4781     // Recomputing the underlying ciKlass for each request is
4782     // a bit less efficient than caching, but calls to
4783     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4784     ((TypeAryPtr*)this)->_klass = k_ary;
4785     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4786         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4787       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4788     }
4789   }
4790   return k_ary;
4791 }
4792 
4793 
4794 //------------------------------add_offset-------------------------------------
4795 // Access internals of klass object
4796 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4797   return make( _ptr, klass(), xadd_offset(offset) );
4798 }
4799 
4800 //------------------------------cast_to_ptr_type-------------------------------
4801 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4802   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4803   if( ptr == _ptr ) return this;
4804   return make(ptr, _klass, _offset);
4805 }
4806 
4807 
4808 //-----------------------------cast_to_exactness-------------------------------
4809 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4810   if( klass_is_exact == _klass_is_exact ) return this;
4811   if (!UseExactTypes)  return this;
4812   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4813 }
4814 
4815 
4816 //-----------------------------as_instance_type--------------------------------
4817 // Corresponding type for an instance of the given class.
4818 // It will be NotNull, and exact if and only if the klass type is exact.
4819 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4820   ciKlass* k = klass();
4821   bool    xk = klass_is_exact();
4822   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4823   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4824   guarantee(toop != NULL, "need type for given klass");
4825   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4826   return toop->cast_to_exactness(xk)->is_oopptr();
4827 }
4828 
4829 
4830 //------------------------------xmeet------------------------------------------
4831 // Compute the MEET of two types, return a new Type object.
4832 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4833   // Perform a fast test for common case; meeting the same types together.
4834   if( this == t ) return this;  // Meeting same type-rep?
4835 
4836   // Current "this->_base" is Pointer
4837   switch (t->base()) {          // switch on original type
4838 
4839   case Int:                     // Mixing ints & oops happens when javac
4840   case Long:                    // reuses local variables
4841   case FloatTop:
4842   case FloatCon:
4843   case FloatBot:
4844   case DoubleTop:
4845   case DoubleCon:
4846   case DoubleBot:
4847   case NarrowOop:
4848   case NarrowKlass:
4849   case Bottom:                  // Ye Olde Default
4850     return Type::BOTTOM;
4851   case Top:
4852     return this;
4853 
4854   default:                      // All else is a mistake
4855     typerr(t);
4856 
4857   case AnyPtr: {                // Meeting to AnyPtrs
4858     // Found an AnyPtr type vs self-KlassPtr type
4859     const TypePtr *tp = t->is_ptr();
4860     int offset = meet_offset(tp->offset());
4861     PTR ptr = meet_ptr(tp->ptr());
4862     switch (tp->ptr()) {
4863     case TopPTR:
4864       return this;
4865     case Null:
4866       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4867     case AnyNull:
4868       return make( ptr, klass(), offset );
4869     case BotPTR:
4870     case NotNull:
4871       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4872     default: typerr(t);
4873     }
4874   }
4875 
4876   case RawPtr:
4877   case MetadataPtr:
4878   case OopPtr:
4879   case AryPtr:                  // Meet with AryPtr
4880   case InstPtr:                 // Meet with InstPtr
4881     return TypePtr::BOTTOM;
4882 
4883   //
4884   //             A-top         }
4885   //           /   |   \       }  Tops
4886   //       B-top A-any C-top   }
4887   //          | /  |  \ |      }  Any-nulls
4888   //       B-any   |   C-any   }
4889   //          |    |    |
4890   //       B-con A-con C-con   } constants; not comparable across classes
4891   //          |    |    |
4892   //       B-not   |   C-not   }
4893   //          | \  |  / |      }  not-nulls
4894   //       B-bot A-not C-bot   }
4895   //           \   |   /       }  Bottoms
4896   //             A-bot         }
4897   //
4898 
4899   case KlassPtr: {  // Meet two KlassPtr types
4900     const TypeKlassPtr *tkls = t->is_klassptr();
4901     int  off     = meet_offset(tkls->offset());
4902     PTR  ptr     = meet_ptr(tkls->ptr());
4903 
4904     // Check for easy case; klasses are equal (and perhaps not loaded!)
4905     // If we have constants, then we created oops so classes are loaded
4906     // and we can handle the constants further down.  This case handles
4907     // not-loaded classes
4908     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4909       return make( ptr, klass(), off );
4910     }
4911 
4912     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4913     ciKlass* tkls_klass = tkls->klass();
4914     ciKlass* this_klass = this->klass();
4915     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4916     assert( this_klass->is_loaded(), "This class should have been loaded.");
4917 
4918     // If 'this' type is above the centerline and is a superclass of the
4919     // other, we can treat 'this' as having the same type as the other.
4920     if ((above_centerline(this->ptr())) &&
4921         tkls_klass->is_subtype_of(this_klass)) {
4922       this_klass = tkls_klass;
4923     }
4924     // If 'tinst' type is above the centerline and is a superclass of the
4925     // other, we can treat 'tinst' as having the same type as the other.
4926     if ((above_centerline(tkls->ptr())) &&
4927         this_klass->is_subtype_of(tkls_klass)) {
4928       tkls_klass = this_klass;
4929     }
4930 
4931     // Check for classes now being equal
4932     if (tkls_klass->equals(this_klass)) {
4933       // If the klasses are equal, the constants may still differ.  Fall to
4934       // NotNull if they do (neither constant is NULL; that is a special case
4935       // handled elsewhere).
4936       if( ptr == Constant ) {
4937         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4938             this->klass()->equals(tkls->klass()));
4939         else if (above_centerline(this->ptr()));
4940         else if (above_centerline(tkls->ptr()));
4941         else
4942           ptr = NotNull;
4943       }
4944       return make( ptr, this_klass, off );
4945     } // Else classes are not equal
4946 
4947     // Since klasses are different, we require the LCA in the Java
4948     // class hierarchy - which means we have to fall to at least NotNull.
4949     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4950       ptr = NotNull;
4951     // Now we find the LCA of Java classes
4952     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4953     return   make( ptr, k, off );
4954   } // End of case KlassPtr
4955 
4956   } // End of switch
4957   return this;                  // Return the double constant
4958 }
4959 
4960 //------------------------------xdual------------------------------------------
4961 // Dual: compute field-by-field dual
4962 const Type    *TypeKlassPtr::xdual() const {
4963   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4964 }
4965 
4966 //------------------------------get_con----------------------------------------
4967 intptr_t TypeKlassPtr::get_con() const {
4968   assert( _ptr == Null || _ptr == Constant, "" );
4969   assert( _offset >= 0, "" );
4970 
4971   if (_offset != 0) {
4972     // After being ported to the compiler interface, the compiler no longer
4973     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4974     // to a handle at compile time.  This handle is embedded in the generated
4975     // code and dereferenced at the time the nmethod is made.  Until that time,
4976     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4977     // have access to the addresses!).  This does not seem to currently happen,
4978     // but this assertion here is to help prevent its occurence.
4979     tty->print_cr("Found oop constant with non-zero offset");
4980     ShouldNotReachHere();
4981   }
4982 
4983   return (intptr_t)klass()->constant_encoding();
4984 }
4985 //------------------------------dump2------------------------------------------
4986 // Dump Klass Type
4987 #ifndef PRODUCT
4988 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4989   switch( _ptr ) {
4990   case Constant:
4991     st->print("precise ");
4992   case NotNull:
4993     {
4994       const char *name = klass()->name()->as_utf8();
4995       if( name ) {
4996         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4997       } else {
4998         ShouldNotReachHere();
4999       }
5000     }
5001   case BotPTR:
5002     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5003   case TopPTR:
5004   case AnyNull:
5005     st->print(":%s", ptr_msg[_ptr]);
5006     if( _klass_is_exact ) st->print(":exact");
5007     break;
5008   }
5009 
5010   if( _offset ) {               // Dump offset, if any
5011     if( _offset == OffsetBot )      { st->print("+any"); }
5012     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5013     else                            { st->print("+%d", _offset); }
5014   }
5015 
5016   st->print(" *");
5017 }
5018 #endif
5019 
5020 
5021 
5022 //=============================================================================
5023 // Convenience common pre-built types.
5024 
5025 //------------------------------make-------------------------------------------
5026 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5027   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5028 }
5029 
5030 //------------------------------make-------------------------------------------
5031 const TypeFunc *TypeFunc::make(ciMethod* method) {
5032   Compile* C = Compile::current();
5033   const TypeFunc* tf = C->last_tf(method); // check cache
5034   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5035   const TypeTuple *domain;
5036   if (method->is_static()) {
5037     domain = TypeTuple::make_domain(NULL, method->signature());
5038   } else {
5039     domain = TypeTuple::make_domain(method->holder(), method->signature());
5040   }
5041   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5042   tf = TypeFunc::make(domain, range);
5043   C->set_last_tf(method, tf);  // fill cache
5044   return tf;
5045 }
5046 
5047 //------------------------------meet-------------------------------------------
5048 // Compute the MEET of two types.  It returns a new Type object.
5049 const Type *TypeFunc::xmeet( const Type *t ) const {
5050   // Perform a fast test for common case; meeting the same types together.
5051   if( this == t ) return this;  // Meeting same type-rep?
5052 
5053   // Current "this->_base" is Func
5054   switch (t->base()) {          // switch on original type
5055 
5056   case Bottom:                  // Ye Olde Default
5057     return t;
5058 
5059   default:                      // All else is a mistake
5060     typerr(t);
5061 
5062   case Top:
5063     break;
5064   }
5065   return this;                  // Return the double constant
5066 }
5067 
5068 //------------------------------xdual------------------------------------------
5069 // Dual: compute field-by-field dual
5070 const Type *TypeFunc::xdual() const {
5071   return this;
5072 }
5073 
5074 //------------------------------eq---------------------------------------------
5075 // Structural equality check for Type representations
5076 bool TypeFunc::eq( const Type *t ) const {
5077   const TypeFunc *a = (const TypeFunc*)t;
5078   return _domain == a->_domain &&
5079     _range == a->_range;
5080 }
5081 
5082 //------------------------------hash-------------------------------------------
5083 // Type-specific hashing function.
5084 int TypeFunc::hash(void) const {
5085   return (intptr_t)_domain + (intptr_t)_range;
5086 }
5087 
5088 //------------------------------dump2------------------------------------------
5089 // Dump Function Type
5090 #ifndef PRODUCT
5091 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5092   if( _range->cnt() <= Parms )
5093     st->print("void");
5094   else {
5095     uint i;
5096     for (i = Parms; i < _range->cnt()-1; i++) {
5097       _range->field_at(i)->dump2(d,depth,st);
5098       st->print("/");
5099     }
5100     _range->field_at(i)->dump2(d,depth,st);
5101   }
5102   st->print(" ");
5103   st->print("( ");
5104   if( !depth || d[this] ) {     // Check for recursive dump
5105     st->print("...)");
5106     return;
5107   }
5108   d.Insert((void*)this,(void*)this);    // Stop recursion
5109   if (Parms < _domain->cnt())
5110     _domain->field_at(Parms)->dump2(d,depth-1,st);
5111   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5112     st->print(", ");
5113     _domain->field_at(i)->dump2(d,depth-1,st);
5114   }
5115   st->print(" )");
5116 }
5117 #endif
5118 
5119 //------------------------------singleton--------------------------------------
5120 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5121 // constants (Ldi nodes).  Singletons are integer, float or double constants
5122 // or a single symbol.
5123 bool TypeFunc::singleton(void) const {
5124   return false;                 // Never a singleton
5125 }
5126 
5127 bool TypeFunc::empty(void) const {
5128   return false;                 // Never empty
5129 }
5130 
5131 
5132 BasicType TypeFunc::return_type() const{
5133   if (range()->cnt() == TypeFunc::Parms) {
5134     return T_VOID;
5135   }
5136   return range()->field_at(TypeFunc::Parms)->basic_type();
5137 }