/* * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_OOPS_CONSTANTPOOLOOP_HPP #define SHARE_VM_OOPS_CONSTANTPOOLOOP_HPP #include "oops/arrayOop.hpp" #include "oops/cpCache.hpp" #include "oops/objArrayOop.hpp" #include "oops/symbol.hpp" #include "oops/typeArrayOop.hpp" #include "runtime/handles.hpp" #include "utilities/bytes.hpp" #include "utilities/constantTag.hpp" // A ConstantPool is an array containing class constants as described in the // class file. // // Most of the constant pool entries are written during class parsing, which // is safe. For klass types, the constant pool entry is // modified when the entry is resolved. If a klass constant pool // entry is read without a lock, only the resolved state guarantees that // the entry in the constant pool is a klass object and not a Symbol*. class SymbolHashMap; class CPSlot VALUE_OBJ_CLASS_SPEC { friend class ConstantPool; intptr_t _ptr; enum TagBits {_pseudo_bit = 1}; public: CPSlot(intptr_t ptr): _ptr(ptr) {} CPSlot(Symbol* ptr, int tag_bits = 0): _ptr((intptr_t)ptr | tag_bits) {} intptr_t value() { return _ptr; } bool is_pseudo_string() { return (_ptr & _pseudo_bit) != 0; } Symbol* get_symbol() { return (Symbol*)(_ptr & ~_pseudo_bit); } }; // This represents a JVM_CONSTANT_Class, JVM_CONSTANT_UnresolvedClass, or // JVM_CONSTANT_UnresolvedClassInError slot in the constant pool. class CPKlassSlot VALUE_OBJ_CLASS_SPEC { // cp->symbol_at(_name_index) gives the name of the class. int _name_index; // cp->_resolved_klasses->at(_resolved_klass_index) gives the Klass* for the class. int _resolved_klass_index; public: enum { // This is used during constant pool merging where the resolved klass index is // not yet known, and will be computed at a later stage (during a call to // initialize_unresolved_klasses()). _temp_resolved_klass_index = 0xffff }; CPKlassSlot(int n, int rk) { _name_index = n; _resolved_klass_index = rk; } int name_index() const { return _name_index; } int resolved_klass_index() const { assert(_resolved_klass_index != _temp_resolved_klass_index, "constant pool merging was incomplete"); return _resolved_klass_index; } }; class KlassSizeStats; class ConstantPool : public Metadata { friend class VMStructs; friend class JVMCIVMStructs; friend class BytecodeInterpreter; // Directly extracts a klass in the pool for fast instanceof/checkcast friend class Universe; // For null constructor private: Array* _tags; // the tag array describing the constant pool's contents ConstantPoolCache* _cache; // the cache holding interpreter runtime information InstanceKlass* _pool_holder; // the corresponding class Array* _operands; // for variable-sized (InvokeDynamic) nodes, usually empty // Consider using an array of compressed klass pointers to // save space on 64-bit platforms. Array* _resolved_klasses; enum { _has_preresolution = 1, // Flags _on_stack = 2, _is_shared = 4 }; int _flags; // old fashioned bit twiddling int _length; // number of elements in the array union { // set for CDS to restore resolved references int _resolved_reference_length; // keeps version number for redefined classes (used in backtrace) int _version; } _saved; void set_tags(Array* tags) { _tags = tags; } void tag_at_put(int which, jbyte t) { tags()->at_put(which, t); } void release_tag_at_put(int which, jbyte t) { tags()->release_at_put(which, t); } u1* tag_addr_at(int which) const { return tags()->adr_at(which); } void set_operands(Array* operands) { _operands = operands; } int flags() const { return _flags; } void set_flags(int f) { _flags = f; } private: intptr_t* base() const { return (intptr_t*) (((char*) this) + sizeof(ConstantPool)); } CPSlot slot_at(int which) const { assert(is_within_bounds(which), "index out of bounds"); assert(!tag_at(which).is_unresolved_klass() && !tag_at(which).is_unresolved_klass_in_error(), "Corrupted constant pool"); // Uses volatile because the klass slot changes without a lock. volatile intptr_t adr = (intptr_t)OrderAccess::load_ptr_acquire(obj_at_addr_raw(which)); assert(adr != 0 || which == 0, "cp entry for klass should not be zero"); return CPSlot(adr); } void slot_at_put(int which, CPSlot s) const { assert(is_within_bounds(which), "index out of bounds"); assert(s.value() != 0, "Caught something"); *(intptr_t*)&base()[which] = s.value(); } intptr_t* obj_at_addr_raw(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (intptr_t*) &base()[which]; } jint* int_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jint*) &base()[which]; } jlong* long_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jlong*) &base()[which]; } jfloat* float_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jfloat*) &base()[which]; } jdouble* double_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (jdouble*) &base()[which]; } ConstantPool(Array* tags); ConstantPool() { assert(DumpSharedSpaces || UseSharedSpaces, "only for CDS"); } public: static ConstantPool* allocate(ClassLoaderData* loader_data, int length, TRAPS); bool is_constantPool() const volatile { return true; } Array* tags() const { return _tags; } Array* operands() const { return _operands; } bool has_preresolution() const { return (_flags & _has_preresolution) != 0; } void set_has_preresolution() { assert(!is_shared(), "should never be called on shared ConstantPools"); _flags |= _has_preresolution; } // Redefine classes support. If a method refering to this constant pool // is on the executing stack, or as a handle in vm code, this constant pool // can't be removed from the set of previous versions saved in the instance // class. bool on_stack() const { return (_flags &_on_stack) != 0; } void set_on_stack(const bool value); // Faster than MetaspaceObj::is_shared() - used by set_on_stack() bool is_shared() const { return (_flags & _is_shared) != 0; } // Klass holding pool InstanceKlass* pool_holder() const { return _pool_holder; } void set_pool_holder(InstanceKlass* k) { _pool_holder = k; } InstanceKlass** pool_holder_addr() { return &_pool_holder; } // Interpreter runtime support ConstantPoolCache* cache() const { return _cache; } void set_cache(ConstantPoolCache* cache){ _cache = cache; } // Create object cache in the constant pool void initialize_resolved_references(ClassLoaderData* loader_data, const intStack& reference_map, int constant_pool_map_length, TRAPS); // resolved strings, methodHandles and callsite objects from the constant pool objArrayOop resolved_references() const; // mapping resolved object array indexes to cp indexes and back. int object_to_cp_index(int index) { return reference_map()->at(index); } int cp_to_object_index(int index); void set_resolved_klasses(Array* rk) { _resolved_klasses = rk; } Array* resolved_klasses() const { return _resolved_klasses; } void allocate_resolved_klasses(ClassLoaderData* loader_data, int num_klasses, TRAPS); void initialize_unresolved_klasses(ClassLoaderData* loader_data, TRAPS); // Invokedynamic indexes. // They must look completely different from normal indexes. // The main reason is that byte swapping is sometimes done on normal indexes. // Finally, it is helpful for debugging to tell the two apart. static bool is_invokedynamic_index(int i) { return (i < 0); } static int decode_invokedynamic_index(int i) { assert(is_invokedynamic_index(i), ""); return ~i; } static int encode_invokedynamic_index(int i) { assert(!is_invokedynamic_index(i), ""); return ~i; } // The invokedynamic points at a CP cache entry. This entry points back // at the original CP entry (CONSTANT_InvokeDynamic) and also (via f2) at an entry // in the resolved_references array (which provides the appendix argument). int invokedynamic_cp_cache_index(int index) const { assert (is_invokedynamic_index(index), "should be a invokedynamic index"); int cache_index = decode_invokedynamic_index(index); return cache_index; } ConstantPoolCacheEntry* invokedynamic_cp_cache_entry_at(int index) const { // decode index that invokedynamic points to. int cp_cache_index = invokedynamic_cp_cache_index(index); return cache()->entry_at(cp_cache_index); } // Assembly code support static int tags_offset_in_bytes() { return offset_of(ConstantPool, _tags); } static int cache_offset_in_bytes() { return offset_of(ConstantPool, _cache); } static int pool_holder_offset_in_bytes() { return offset_of(ConstantPool, _pool_holder); } static int resolved_klasses_offset_in_bytes() { return offset_of(ConstantPool, _resolved_klasses); } // Storing constants // For temporary use while constructing constant pool void klass_index_at_put(int which, int name_index) { tag_at_put(which, JVM_CONSTANT_ClassIndex); *int_at_addr(which) = name_index; } // Anonymous class support: void klass_at_put(int class_index, int name_index, int resolved_klass_index, Klass* k, Symbol* name); void klass_at_put(int class_index, Klass* k); void unresolved_klass_at_put(int which, int name_index, int resolved_klass_index) { release_tag_at_put(which, JVM_CONSTANT_UnresolvedClass); assert((name_index & 0xffff0000) == 0, "must be"); assert((resolved_klass_index & 0xffff0000) == 0, "must be"); *int_at_addr(which) = build_int_from_shorts((jushort)resolved_klass_index, (jushort)name_index); } void method_handle_index_at_put(int which, int ref_kind, int ref_index) { tag_at_put(which, JVM_CONSTANT_MethodHandle); *int_at_addr(which) = ((jint) ref_index<<16) | ref_kind; } void method_type_index_at_put(int which, int ref_index) { tag_at_put(which, JVM_CONSTANT_MethodType); *int_at_addr(which) = ref_index; } void invoke_dynamic_at_put(int which, int bootstrap_specifier_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_InvokeDynamic); *int_at_addr(which) = ((jint) name_and_type_index<<16) | bootstrap_specifier_index; } void unresolved_string_at_put(int which, Symbol* s) { release_tag_at_put(which, JVM_CONSTANT_String); slot_at_put(which, CPSlot(s)); } void int_at_put(int which, jint i) { tag_at_put(which, JVM_CONSTANT_Integer); *int_at_addr(which) = i; } void long_at_put(int which, jlong l) { tag_at_put(which, JVM_CONSTANT_Long); // *long_at_addr(which) = l; Bytes::put_native_u8((address)long_at_addr(which), *((u8*) &l)); } void float_at_put(int which, jfloat f) { tag_at_put(which, JVM_CONSTANT_Float); *float_at_addr(which) = f; } void double_at_put(int which, jdouble d) { tag_at_put(which, JVM_CONSTANT_Double); // *double_at_addr(which) = d; // u8 temp = *(u8*) &d; Bytes::put_native_u8((address) double_at_addr(which), *((u8*) &d)); } Symbol** symbol_at_addr(int which) const { assert(is_within_bounds(which), "index out of bounds"); return (Symbol**) &base()[which]; } void symbol_at_put(int which, Symbol* s) { assert(s->refcount() != 0, "should have nonzero refcount"); tag_at_put(which, JVM_CONSTANT_Utf8); *symbol_at_addr(which) = s; } void string_at_put(int which, int obj_index, oop str); // For temporary use while constructing constant pool void string_index_at_put(int which, int string_index) { tag_at_put(which, JVM_CONSTANT_StringIndex); *int_at_addr(which) = string_index; } void field_at_put(int which, int class_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_Fieldref); *int_at_addr(which) = ((jint) name_and_type_index<<16) | class_index; } void method_at_put(int which, int class_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_Methodref); *int_at_addr(which) = ((jint) name_and_type_index<<16) | class_index; } void interface_method_at_put(int which, int class_index, int name_and_type_index) { tag_at_put(which, JVM_CONSTANT_InterfaceMethodref); *int_at_addr(which) = ((jint) name_and_type_index<<16) | class_index; // Not so nice } void name_and_type_at_put(int which, int name_index, int signature_index) { tag_at_put(which, JVM_CONSTANT_NameAndType); *int_at_addr(which) = ((jint) signature_index<<16) | name_index; // Not so nice } // Tag query constantTag tag_at(int which) const { return (constantTag)tags()->at_acquire(which); } // Fetching constants Klass* klass_at(int which, TRAPS) { constantPoolHandle h_this(THREAD, this); return klass_at_impl(h_this, which, true, THREAD); } // Version of klass_at that doesn't save the resolution error, called during deopt Klass* klass_at_ignore_error(int which, TRAPS) { constantPoolHandle h_this(THREAD, this); return klass_at_impl(h_this, which, false, THREAD); } CPKlassSlot klass_slot_at(int which) const { assert(tag_at(which).is_unresolved_klass() || tag_at(which).is_klass(), "Corrupted constant pool"); int value = *int_at_addr(which); int name_index = extract_high_short_from_int(value); int resolved_klass_index = extract_low_short_from_int(value); return CPKlassSlot(name_index, resolved_klass_index); } Symbol* klass_name_at(int which) const; // Returns the name, w/o resolving. int klass_name_index_at(int which) const { return klass_slot_at(which).name_index(); } Klass* resolved_klass_at(int which) const { // Used by Compiler guarantee(tag_at(which).is_klass(), "Corrupted constant pool"); // Must do an acquire here in case another thread resolved the klass // behind our back, lest we later load stale values thru the oop. CPKlassSlot kslot = klass_slot_at(which); assert(tag_at(kslot.name_index()).is_symbol(), "sanity"); Klass** adr = resolved_klasses()->adr_at(kslot.resolved_klass_index()); return (Klass*)OrderAccess::load_ptr_acquire(adr); } // RedefineClasses() API support: Symbol* klass_at_noresolve(int which) { return klass_name_at(which); } void temp_unresolved_klass_at_put(int which, int name_index) { // Used only during constant pool merging for class redefinition. The resolved klass index // will be initialized later by a call to initialize_unresolved_klasses(). unresolved_klass_at_put(which, name_index, CPKlassSlot::_temp_resolved_klass_index); } jint int_at(int which) { assert(tag_at(which).is_int(), "Corrupted constant pool"); return *int_at_addr(which); } jlong long_at(int which) { assert(tag_at(which).is_long(), "Corrupted constant pool"); // return *long_at_addr(which); u8 tmp = Bytes::get_native_u8((address)&base()[which]); return *((jlong*)&tmp); } jfloat float_at(int which) { assert(tag_at(which).is_float(), "Corrupted constant pool"); return *float_at_addr(which); } jdouble double_at(int which) { assert(tag_at(which).is_double(), "Corrupted constant pool"); u8 tmp = Bytes::get_native_u8((address)&base()[which]); return *((jdouble*)&tmp); } Symbol* symbol_at(int which) const { assert(tag_at(which).is_utf8(), "Corrupted constant pool"); return *symbol_at_addr(which); } oop string_at(int which, int obj_index, TRAPS) { constantPoolHandle h_this(THREAD, this); return string_at_impl(h_this, which, obj_index, THREAD); } oop string_at(int which, TRAPS) { int obj_index = cp_to_object_index(which); return string_at(which, obj_index, THREAD); } // Version that can be used before string oop array is created. oop uncached_string_at(int which, TRAPS); // A "pseudo-string" is an non-string oop that has found its way into // a String entry. // This can happen if the user patches a live // object into a CONSTANT_String entry of an anonymous class. // Method oops internally created for method handles may also // use pseudo-strings to link themselves to related metaobjects. bool is_pseudo_string_at(int which) { assert(tag_at(which).is_string(), "Corrupted constant pool"); return slot_at(which).is_pseudo_string(); } oop pseudo_string_at(int which, int obj_index) { assert(is_pseudo_string_at(which), "must be a pseudo-string"); oop s = resolved_references()->obj_at(obj_index); return s; } oop pseudo_string_at(int which) { assert(is_pseudo_string_at(which), "must be a pseudo-string"); int obj_index = cp_to_object_index(which); oop s = resolved_references()->obj_at(obj_index); return s; } void pseudo_string_at_put(int which, int obj_index, oop x) { assert(tag_at(which).is_string(), "Corrupted constant pool"); Symbol* sym = unresolved_string_at(which); slot_at_put(which, CPSlot(sym, CPSlot::_pseudo_bit)); string_at_put(which, obj_index, x); // this works just fine } // only called when we are sure a string entry is already resolved (via an // earlier string_at call. oop resolved_string_at(int which) { assert(tag_at(which).is_string(), "Corrupted constant pool"); // Must do an acquire here in case another thread resolved the klass // behind our back, lest we later load stale values thru the oop. // we might want a volatile_obj_at in ObjArrayKlass. int obj_index = cp_to_object_index(which); return resolved_references()->obj_at(obj_index); } Symbol* unresolved_string_at(int which) { assert(tag_at(which).is_string(), "Corrupted constant pool"); Symbol* sym = slot_at(which).get_symbol(); return sym; } // Returns an UTF8 for a CONSTANT_String entry at a given index. // UTF8 char* representation was chosen to avoid conversion of // java_lang_Strings at resolved entries into Symbol*s // or vice versa. char* string_at_noresolve(int which); jint name_and_type_at(int which) { assert(tag_at(which).is_name_and_type(), "Corrupted constant pool"); return *int_at_addr(which); } int method_handle_ref_kind_at(int which) { assert(tag_at(which).is_method_handle() || tag_at(which).is_method_handle_in_error(), "Corrupted constant pool"); return extract_low_short_from_int(*int_at_addr(which)); // mask out unwanted ref_index bits } int method_handle_index_at(int which) { assert(tag_at(which).is_method_handle() || tag_at(which).is_method_handle_in_error(), "Corrupted constant pool"); return extract_high_short_from_int(*int_at_addr(which)); // shift out unwanted ref_kind bits } int method_type_index_at(int which) { assert(tag_at(which).is_method_type() || tag_at(which).is_method_type_in_error(), "Corrupted constant pool"); return *int_at_addr(which); } // Derived queries: Symbol* method_handle_name_ref_at(int which) { int member = method_handle_index_at(which); return impl_name_ref_at(member, true); } Symbol* method_handle_signature_ref_at(int which) { int member = method_handle_index_at(which); return impl_signature_ref_at(member, true); } int method_handle_klass_index_at(int which) { int member = method_handle_index_at(which); return impl_klass_ref_index_at(member, true); } Symbol* method_type_signature_at(int which) { int sym = method_type_index_at(which); return symbol_at(sym); } int invoke_dynamic_name_and_type_ref_index_at(int which) { assert(tag_at(which).is_invoke_dynamic() || tag_at(which).is_invoke_dynamic_in_error(), "Corrupted constant pool"); return extract_high_short_from_int(*int_at_addr(which)); } int invoke_dynamic_bootstrap_specifier_index(int which) { assert(tag_at(which).is_invoke_dynamic() || tag_at(which).is_invoke_dynamic_in_error(), "Corrupted constant pool"); return extract_low_short_from_int(*int_at_addr(which)); } int invoke_dynamic_operand_base(int which) { int bootstrap_specifier_index = invoke_dynamic_bootstrap_specifier_index(which); return operand_offset_at(operands(), bootstrap_specifier_index); } // The first part of the operands array consists of an index into the second part. // Extract a 32-bit index value from the first part. static int operand_offset_at(Array* operands, int bootstrap_specifier_index) { int n = (bootstrap_specifier_index * 2); assert(n >= 0 && n+2 <= operands->length(), "oob"); // The first 32-bit index points to the beginning of the second part // of the operands array. Make sure this index is in the first part. DEBUG_ONLY(int second_part = build_int_from_shorts(operands->at(0), operands->at(1))); assert(second_part == 0 || n+2 <= second_part, "oob (2)"); int offset = build_int_from_shorts(operands->at(n+0), operands->at(n+1)); // The offset itself must point into the second part of the array. assert(offset == 0 || offset >= second_part && offset <= operands->length(), "oob (3)"); return offset; } static void operand_offset_at_put(Array* operands, int bootstrap_specifier_index, int offset) { int n = bootstrap_specifier_index * 2; assert(n >= 0 && n+2 <= operands->length(), "oob"); operands->at_put(n+0, extract_low_short_from_int(offset)); operands->at_put(n+1, extract_high_short_from_int(offset)); } static int operand_array_length(Array* operands) { if (operands == NULL || operands->length() == 0) return 0; int second_part = operand_offset_at(operands, 0); return (second_part / 2); } #ifdef ASSERT // operand tuples fit together exactly, end to end static int operand_limit_at(Array* operands, int bootstrap_specifier_index) { int nextidx = bootstrap_specifier_index + 1; if (nextidx == operand_array_length(operands)) return operands->length(); else return operand_offset_at(operands, nextidx); } int invoke_dynamic_operand_limit(int which) { int bootstrap_specifier_index = invoke_dynamic_bootstrap_specifier_index(which); return operand_limit_at(operands(), bootstrap_specifier_index); } #endif //ASSERT // layout of InvokeDynamic bootstrap method specifier (in second part of operands array): enum { _indy_bsm_offset = 0, // CONSTANT_MethodHandle bsm _indy_argc_offset = 1, // u2 argc _indy_argv_offset = 2 // u2 argv[argc] }; // These functions are used in RedefineClasses for CP merge int operand_offset_at(int bootstrap_specifier_index) { assert(0 <= bootstrap_specifier_index && bootstrap_specifier_index < operand_array_length(operands()), "Corrupted CP operands"); return operand_offset_at(operands(), bootstrap_specifier_index); } int operand_bootstrap_method_ref_index_at(int bootstrap_specifier_index) { int offset = operand_offset_at(bootstrap_specifier_index); return operands()->at(offset + _indy_bsm_offset); } int operand_argument_count_at(int bootstrap_specifier_index) { int offset = operand_offset_at(bootstrap_specifier_index); int argc = operands()->at(offset + _indy_argc_offset); return argc; } int operand_argument_index_at(int bootstrap_specifier_index, int j) { int offset = operand_offset_at(bootstrap_specifier_index); return operands()->at(offset + _indy_argv_offset + j); } int operand_next_offset_at(int bootstrap_specifier_index) { int offset = operand_offset_at(bootstrap_specifier_index) + _indy_argv_offset + operand_argument_count_at(bootstrap_specifier_index); return offset; } // Compare a bootsrap specifier in the operands arrays bool compare_operand_to(int bootstrap_specifier_index1, const constantPoolHandle& cp2, int bootstrap_specifier_index2, TRAPS); // Find a bootsrap specifier in the operands array int find_matching_operand(int bootstrap_specifier_index, const constantPoolHandle& search_cp, int operands_cur_len, TRAPS); // Resize the operands array with delta_len and delta_size void resize_operands(int delta_len, int delta_size, TRAPS); // Extend the operands array with the length and size of the ext_cp operands void extend_operands(const constantPoolHandle& ext_cp, TRAPS); // Shrink the operands array to a smaller array with new_len length void shrink_operands(int new_len, TRAPS); int invoke_dynamic_bootstrap_method_ref_index_at(int which) { assert(tag_at(which).is_invoke_dynamic() || tag_at(which).is_invoke_dynamic_in_error(), "Corrupted constant pool"); int op_base = invoke_dynamic_operand_base(which); return operands()->at(op_base + _indy_bsm_offset); } int invoke_dynamic_argument_count_at(int which) { assert(tag_at(which).is_invoke_dynamic() || tag_at(which).is_invoke_dynamic_in_error(), "Corrupted constant pool"); int op_base = invoke_dynamic_operand_base(which); int argc = operands()->at(op_base + _indy_argc_offset); DEBUG_ONLY(int end_offset = op_base + _indy_argv_offset + argc; int next_offset = invoke_dynamic_operand_limit(which)); assert(end_offset == next_offset, "matched ending"); return argc; } int invoke_dynamic_argument_index_at(int which, int j) { int op_base = invoke_dynamic_operand_base(which); DEBUG_ONLY(int argc = operands()->at(op_base + _indy_argc_offset)); assert((uint)j < (uint)argc, "oob"); return operands()->at(op_base + _indy_argv_offset + j); } // The following methods (name/signature/klass_ref_at, klass_ref_at_noresolve, // name_and_type_ref_index_at) all expect to be passed indices obtained // directly from the bytecode. // If the indices are meant to refer to fields or methods, they are // actually rewritten constant pool cache indices. // The routine remap_instruction_operand_from_cache manages the adjustment // of these values back to constant pool indices. // There are also "uncached" versions which do not adjust the operand index; see below. // FIXME: Consider renaming these with a prefix "cached_" to make the distinction clear. // In a few cases (the verifier) there are uses before a cpcache has been built, // which are handled by a dynamic check in remap_instruction_operand_from_cache. // FIXME: Remove the dynamic check, and adjust all callers to specify the correct mode. // Lookup for entries consisting of (klass_index, name_and_type index) Klass* klass_ref_at(int which, TRAPS); Symbol* klass_ref_at_noresolve(int which); Symbol* name_ref_at(int which) { return impl_name_ref_at(which, false); } Symbol* signature_ref_at(int which) { return impl_signature_ref_at(which, false); } int klass_ref_index_at(int which) { return impl_klass_ref_index_at(which, false); } int name_and_type_ref_index_at(int which) { return impl_name_and_type_ref_index_at(which, false); } int remap_instruction_operand_from_cache(int operand); // operand must be biased by CPCACHE_INDEX_TAG constantTag tag_ref_at(int cp_cache_index) { return impl_tag_ref_at(cp_cache_index, false); } // Lookup for entries consisting of (name_index, signature_index) int name_ref_index_at(int which_nt); // == low-order jshort of name_and_type_at(which_nt) int signature_ref_index_at(int which_nt); // == high-order jshort of name_and_type_at(which_nt) BasicType basic_type_for_signature_at(int which) const; // Resolve string constants (to prevent allocation during compilation) void resolve_string_constants(TRAPS) { constantPoolHandle h_this(THREAD, this); resolve_string_constants_impl(h_this, CHECK); } // CDS support void remove_unshareable_info(); void restore_unshareable_info(TRAPS); bool resolve_class_constants(TRAPS); // The ConstantPool vtable is restored by this call when the ConstantPool is // in the shared archive. See patch_klass_vtables() in metaspaceShared.cpp for // all the gory details. SA, dtrace and pstack helpers distinguish metadata // by their vtable. void restore_vtable() { guarantee(is_constantPool(), "vtable restored by this call"); } private: enum { _no_index_sentinel = -1, _possible_index_sentinel = -2 }; public: // Resolve late bound constants. oop resolve_constant_at(int index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_constant_at_impl(h_this, index, _no_index_sentinel, THREAD); } oop resolve_cached_constant_at(int cache_index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_constant_at_impl(h_this, _no_index_sentinel, cache_index, THREAD); } oop resolve_possibly_cached_constant_at(int pool_index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_constant_at_impl(h_this, pool_index, _possible_index_sentinel, THREAD); } oop resolve_bootstrap_specifier_at(int index, TRAPS) { constantPoolHandle h_this(THREAD, this); return resolve_bootstrap_specifier_at_impl(h_this, index, THREAD); } // Klass name matches name at offset bool klass_name_at_matches(const InstanceKlass* k, int which); // Sizing int length() const { return _length; } void set_length(int length) { _length = length; } // Tells whether index is within bounds. bool is_within_bounds(int index) const { return 0 <= index && index < length(); } // Sizing (in words) static int header_size() { return align_size_up(sizeof(ConstantPool), wordSize) / wordSize; } static int size(int length) { return align_metadata_size(header_size() + length); } int size() const { return size(length()); } #if INCLUDE_SERVICES void collect_statistics(KlassSizeStats *sz) const; #endif friend class ClassFileParser; friend class SystemDictionary; // Used by CDS. These classes need to access the private ConstantPool() constructor. template friend class CppVtableTesterA; template friend class CppVtableTesterB; template friend class CppVtableCloner; // Used by compiler to prevent classloading. static Method* method_at_if_loaded (const constantPoolHandle& this_cp, int which); static bool has_appendix_at_if_loaded (const constantPoolHandle& this_cp, int which); static oop appendix_at_if_loaded (const constantPoolHandle& this_cp, int which); static bool has_method_type_at_if_loaded (const constantPoolHandle& this_cp, int which); static oop method_type_at_if_loaded (const constantPoolHandle& this_cp, int which); static Klass* klass_at_if_loaded (const constantPoolHandle& this_cp, int which); static Klass* klass_ref_at_if_loaded (const constantPoolHandle& this_cp, int which); // Routines currently used for annotations (only called by jvm.cpp) but which might be used in the // future by other Java code. These take constant pool indices rather than // constant pool cache indices as do the peer methods above. Symbol* uncached_klass_ref_at_noresolve(int which); Symbol* uncached_name_ref_at(int which) { return impl_name_ref_at(which, true); } Symbol* uncached_signature_ref_at(int which) { return impl_signature_ref_at(which, true); } int uncached_klass_ref_index_at(int which) { return impl_klass_ref_index_at(which, true); } int uncached_name_and_type_ref_index_at(int which) { return impl_name_and_type_ref_index_at(which, true); } // Sharing int pre_resolve_shared_klasses(TRAPS); // Debugging const char* printable_name_at(int which) PRODUCT_RETURN0; #ifdef ASSERT enum { CPCACHE_INDEX_TAG = 0x10000 }; // helps keep CP cache indices distinct from CP indices #else enum { CPCACHE_INDEX_TAG = 0 }; // in product mode, this zero value is a no-op #endif //ASSERT static int decode_cpcache_index(int raw_index, bool invokedynamic_ok = false) { if (invokedynamic_ok && is_invokedynamic_index(raw_index)) return decode_invokedynamic_index(raw_index); else return raw_index - CPCACHE_INDEX_TAG; } private: void set_resolved_references(jobject s) { _cache->set_resolved_references(s); } Array* reference_map() const { return (_cache == NULL) ? NULL : _cache->reference_map(); } void set_reference_map(Array* o) { _cache->set_reference_map(o); } // patch JSR 292 resolved references after the class is linked. void patch_resolved_references(GrowableArray* cp_patches); Symbol* impl_name_ref_at(int which, bool uncached); Symbol* impl_signature_ref_at(int which, bool uncached); int impl_klass_ref_index_at(int which, bool uncached); int impl_name_and_type_ref_index_at(int which, bool uncached); constantTag impl_tag_ref_at(int which, bool uncached); // Used while constructing constant pool (only by ClassFileParser) jint klass_index_at(int which) { assert(tag_at(which).is_klass_index(), "Corrupted constant pool"); return *int_at_addr(which); } jint string_index_at(int which) { assert(tag_at(which).is_string_index(), "Corrupted constant pool"); return *int_at_addr(which); } // Performs the LinkResolver checks static void verify_constant_pool_resolve(const constantPoolHandle& this_cp, Klass* klass, TRAPS); // Implementation of methods that needs an exposed 'this' pointer, in order to // handle GC while executing the method static Klass* klass_at_impl(const constantPoolHandle& this_cp, int which, bool save_resolution_error, TRAPS); static oop string_at_impl(const constantPoolHandle& this_cp, int which, int obj_index, TRAPS); static void trace_class_resolution(const constantPoolHandle& this_cp, Klass* k); // Resolve string constants (to prevent allocation during compilation) static void resolve_string_constants_impl(const constantPoolHandle& this_cp, TRAPS); static oop resolve_constant_at_impl(const constantPoolHandle& this_cp, int index, int cache_index, TRAPS); static oop resolve_bootstrap_specifier_at_impl(const constantPoolHandle& this_cp, int index, TRAPS); // Exception handling static Symbol* exception_message(const constantPoolHandle& this_cp, int which, constantTag tag, oop pending_exception); public: // Exception handling static void throw_resolution_error(const constantPoolHandle& this_cp, int which, TRAPS); static void save_and_throw_exception(const constantPoolHandle& this_cp, int which, constantTag tag, TRAPS); // Merging ConstantPool* support: bool compare_entry_to(int index1, const constantPoolHandle& cp2, int index2, TRAPS); void copy_cp_to(int start_i, int end_i, const constantPoolHandle& to_cp, int to_i, TRAPS) { constantPoolHandle h_this(THREAD, this); copy_cp_to_impl(h_this, start_i, end_i, to_cp, to_i, THREAD); } static void copy_cp_to_impl(const constantPoolHandle& from_cp, int start_i, int end_i, const constantPoolHandle& to_cp, int to_i, TRAPS); static void copy_entry_to(const constantPoolHandle& from_cp, int from_i, const constantPoolHandle& to_cp, int to_i, TRAPS); static void copy_operands(const constantPoolHandle& from_cp, const constantPoolHandle& to_cp, TRAPS); int find_matching_entry(int pattern_i, const constantPoolHandle& search_cp, TRAPS); int version() const { return _saved._version; } void set_version(int version) { _saved._version = version; } void increment_and_save_version(int version) { _saved._version = version >= 0 ? (version + 1) : version; // keep overflow } void set_resolved_reference_length(int length) { _saved._resolved_reference_length = length; } int resolved_reference_length() const { return _saved._resolved_reference_length; } // Decrease ref counts of symbols that are in the constant pool // when the holder class is unloaded void unreference_symbols(); // Deallocate constant pool for RedefineClasses void deallocate_contents(ClassLoaderData* loader_data); void release_C_heap_structures(); // JVMTI accesss - GetConstantPool, RetransformClasses, ... friend class JvmtiConstantPoolReconstituter; private: jint cpool_entry_size(jint idx); jint hash_entries_to(SymbolHashMap *symmap, SymbolHashMap *classmap); // Copy cpool bytes into byte array. // Returns: // int > 0, count of the raw cpool bytes that have been copied // 0, OutOfMemory error // -1, Internal error int copy_cpool_bytes(int cpool_size, SymbolHashMap* tbl, unsigned char *bytes); public: // Verify void verify_on(outputStream* st); // Printing void print_on(outputStream* st) const; void print_value_on(outputStream* st) const; void print_entry_on(int index, outputStream* st); const char* internal_name() const { return "{constant pool}"; } #ifndef PRODUCT // Compile the world support static void preload_and_initialize_all_classes(ConstantPool* constant_pool, TRAPS); #endif }; class SymbolHashMapEntry : public CHeapObj { private: unsigned int _hash; // 32-bit hash for item SymbolHashMapEntry* _next; // Next element in the linked list for this bucket Symbol* _symbol; // 1-st part of the mapping: symbol => value u2 _value; // 2-nd part of the mapping: symbol => value public: unsigned int hash() const { return _hash; } void set_hash(unsigned int hash) { _hash = hash; } SymbolHashMapEntry* next() const { return _next; } void set_next(SymbolHashMapEntry* next) { _next = next; } Symbol* symbol() const { return _symbol; } void set_symbol(Symbol* sym) { _symbol = sym; } u2 value() const { return _value; } void set_value(u2 value) { _value = value; } SymbolHashMapEntry(unsigned int hash, Symbol* symbol, u2 value) : _hash(hash), _symbol(symbol), _value(value), _next(NULL) {} }; // End SymbolHashMapEntry class class SymbolHashMapBucket : public CHeapObj { private: SymbolHashMapEntry* _entry; public: SymbolHashMapEntry* entry() const { return _entry; } void set_entry(SymbolHashMapEntry* entry) { _entry = entry; } void clear() { _entry = NULL; } }; // End SymbolHashMapBucket class class SymbolHashMap: public CHeapObj { private: // Default number of entries in the table enum SymbolHashMap_Constants { _Def_HashMap_Size = 256 }; int _table_size; SymbolHashMapBucket* _buckets; void initialize_table(int table_size) { _table_size = table_size; _buckets = NEW_C_HEAP_ARRAY(SymbolHashMapBucket, table_size, mtSymbol); for (int index = 0; index < table_size; index++) { _buckets[index].clear(); } } public: int table_size() const { return _table_size; } SymbolHashMap() { initialize_table(_Def_HashMap_Size); } SymbolHashMap(int table_size) { initialize_table(table_size); } // hash P(31) from Kernighan & Ritchie static unsigned int compute_hash(const char* str, int len) { unsigned int hash = 0; while (len-- > 0) { hash = 31*hash + (unsigned) *str; str++; } return hash; } SymbolHashMapEntry* bucket(int i) { return _buckets[i].entry(); } void add_entry(Symbol* sym, u2 value); SymbolHashMapEntry* find_entry(Symbol* sym); u2 symbol_to_value(Symbol* sym) { SymbolHashMapEntry *entry = find_entry(sym); return (entry == NULL) ? 0 : entry->value(); } ~SymbolHashMap() { SymbolHashMapEntry* next; for (int i = 0; i < _table_size; i++) { for (SymbolHashMapEntry* cur = bucket(i); cur != NULL; cur = next) { next = cur->next(); delete(cur); } } delete _buckets; } }; // End SymbolHashMap class #endif // SHARE_VM_OOPS_CONSTANTPOOLOOP_HPP