1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/interpreterRuntime.hpp"
  41 #include "logging/log.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/klass.hpp"
  46 #include "oops/method.inline.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "prims/forte.hpp"
  50 #include "prims/jvmtiExport.hpp"
  51 #include "prims/methodHandles.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/biasedLocking.hpp"
  56 #include "runtime/compilationPolicy.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/init.hpp"
  59 #include "runtime/interfaceSupport.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/javaCalls.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/stubRoutines.hpp"
  64 #include "runtime/vframe.hpp"
  65 #include "runtime/vframeArray.hpp"
  66 #include "trace/tracing.hpp"
  67 #include "utilities/copy.hpp"
  68 #include "utilities/dtrace.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/hashtable.inline.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/xmlstream.hpp"
  73 #ifdef COMPILER1
  74 #include "c1/c1_Runtime1.hpp"
  75 #endif
  76 
  77 // Shared stub locations
  78 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  79 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  80 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  83 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  84 address             SharedRuntime::_resolve_static_call_entry;
  85 
  86 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  89 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  90 
  91 #ifdef COMPILER2
  92 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  93 #endif // COMPILER2
  94 
  95 
  96 //----------------------------generate_stubs-----------------------------------
  97 void SharedRuntime::generate_stubs() {
  98   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  99   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 100   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 101   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 102   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 103   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 104   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 105 
 106 #if COMPILER2_OR_JVMCI
 107   // Vectors are generated only by C2 and JVMCI.
 108   bool support_wide = is_wide_vector(MaxVectorSize);
 109   if (support_wide) {
 110     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 111   }
 112 #endif // COMPILER2_OR_JVMCI
 113   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 114   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 115 
 116   generate_deopt_blob();
 117 
 118 #ifdef COMPILER2
 119   generate_uncommon_trap_blob();
 120 #endif // COMPILER2
 121 }
 122 
 123 #include <math.h>
 124 
 125 // Implementation of SharedRuntime
 126 
 127 #ifndef PRODUCT
 128 // For statistics
 129 int SharedRuntime::_ic_miss_ctr = 0;
 130 int SharedRuntime::_wrong_method_ctr = 0;
 131 int SharedRuntime::_resolve_static_ctr = 0;
 132 int SharedRuntime::_resolve_virtual_ctr = 0;
 133 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 134 int SharedRuntime::_implicit_null_throws = 0;
 135 int SharedRuntime::_implicit_div0_throws = 0;
 136 int SharedRuntime::_throw_null_ctr = 0;
 137 
 138 int SharedRuntime::_nof_normal_calls = 0;
 139 int SharedRuntime::_nof_optimized_calls = 0;
 140 int SharedRuntime::_nof_inlined_calls = 0;
 141 int SharedRuntime::_nof_megamorphic_calls = 0;
 142 int SharedRuntime::_nof_static_calls = 0;
 143 int SharedRuntime::_nof_inlined_static_calls = 0;
 144 int SharedRuntime::_nof_interface_calls = 0;
 145 int SharedRuntime::_nof_optimized_interface_calls = 0;
 146 int SharedRuntime::_nof_inlined_interface_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 148 int SharedRuntime::_nof_removable_exceptions = 0;
 149 
 150 int SharedRuntime::_new_instance_ctr=0;
 151 int SharedRuntime::_new_array_ctr=0;
 152 int SharedRuntime::_multi1_ctr=0;
 153 int SharedRuntime::_multi2_ctr=0;
 154 int SharedRuntime::_multi3_ctr=0;
 155 int SharedRuntime::_multi4_ctr=0;
 156 int SharedRuntime::_multi5_ctr=0;
 157 int SharedRuntime::_mon_enter_stub_ctr=0;
 158 int SharedRuntime::_mon_exit_stub_ctr=0;
 159 int SharedRuntime::_mon_enter_ctr=0;
 160 int SharedRuntime::_mon_exit_ctr=0;
 161 int SharedRuntime::_partial_subtype_ctr=0;
 162 int SharedRuntime::_jbyte_array_copy_ctr=0;
 163 int SharedRuntime::_jshort_array_copy_ctr=0;
 164 int SharedRuntime::_jint_array_copy_ctr=0;
 165 int SharedRuntime::_jlong_array_copy_ctr=0;
 166 int SharedRuntime::_oop_array_copy_ctr=0;
 167 int SharedRuntime::_checkcast_array_copy_ctr=0;
 168 int SharedRuntime::_unsafe_array_copy_ctr=0;
 169 int SharedRuntime::_generic_array_copy_ctr=0;
 170 int SharedRuntime::_slow_array_copy_ctr=0;
 171 int SharedRuntime::_find_handler_ctr=0;
 172 int SharedRuntime::_rethrow_ctr=0;
 173 
 174 int     SharedRuntime::_ICmiss_index                    = 0;
 175 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 176 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 177 
 178 
 179 void SharedRuntime::trace_ic_miss(address at) {
 180   for (int i = 0; i < _ICmiss_index; i++) {
 181     if (_ICmiss_at[i] == at) {
 182       _ICmiss_count[i]++;
 183       return;
 184     }
 185   }
 186   int index = _ICmiss_index++;
 187   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 188   _ICmiss_at[index] = at;
 189   _ICmiss_count[index] = 1;
 190 }
 191 
 192 void SharedRuntime::print_ic_miss_histogram() {
 193   if (ICMissHistogram) {
 194     tty->print_cr("IC Miss Histogram:");
 195     int tot_misses = 0;
 196     for (int i = 0; i < _ICmiss_index; i++) {
 197       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 198       tot_misses += _ICmiss_count[i];
 199     }
 200     tty->print_cr("Total IC misses: %7d", tot_misses);
 201   }
 202 }
 203 #endif // PRODUCT
 204 
 205 #if INCLUDE_ALL_GCS
 206 
 207 // G1 write-barrier pre: executed before a pointer store.
 208 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 209   if (orig == NULL) {
 210     assert(false, "should be optimized out");
 211     return;
 212   }
 213   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 214   // store the original value that was in the field reference
 215   thread->satb_mark_queue().enqueue(orig);
 216 JRT_END
 217 
 218 // G1 write-barrier post: executed after a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 220   thread->dirty_card_queue().enqueue(card_addr);
 221 JRT_END
 222 
 223 #endif // INCLUDE_ALL_GCS
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 227   return x * y;
 228 JRT_END
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 232   if (x == min_jlong && y == CONST64(-1)) {
 233     return x;
 234   } else {
 235     return x / y;
 236   }
 237 JRT_END
 238 
 239 
 240 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 241   if (x == min_jlong && y == CONST64(-1)) {
 242     return 0;
 243   } else {
 244     return x % y;
 245   }
 246 JRT_END
 247 
 248 
 249 const juint  float_sign_mask  = 0x7FFFFFFF;
 250 const juint  float_infinity   = 0x7F800000;
 251 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 252 const julong double_infinity  = CONST64(0x7FF0000000000000);
 253 
 254 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 255 #ifdef _WIN64
 256   // 64-bit Windows on amd64 returns the wrong values for
 257   // infinity operands.
 258   union { jfloat f; juint i; } xbits, ybits;
 259   xbits.f = x;
 260   ybits.f = y;
 261   // x Mod Infinity == x unless x is infinity
 262   if (((xbits.i & float_sign_mask) != float_infinity) &&
 263        ((ybits.i & float_sign_mask) == float_infinity) ) {
 264     return x;
 265   }
 266   return ((jfloat)fmod_winx64((double)x, (double)y));
 267 #else
 268   return ((jfloat)fmod((double)x,(double)y));
 269 #endif
 270 JRT_END
 271 
 272 
 273 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 274 #ifdef _WIN64
 275   union { jdouble d; julong l; } xbits, ybits;
 276   xbits.d = x;
 277   ybits.d = y;
 278   // x Mod Infinity == x unless x is infinity
 279   if (((xbits.l & double_sign_mask) != double_infinity) &&
 280        ((ybits.l & double_sign_mask) == double_infinity) ) {
 281     return x;
 282   }
 283   return ((jdouble)fmod_winx64((double)x, (double)y));
 284 #else
 285   return ((jdouble)fmod((double)x,(double)y));
 286 #endif
 287 JRT_END
 288 
 289 #ifdef __SOFTFP__
 290 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 307   return x + y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 311   return x - y;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 315   return x * y;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 319   return x / y;
 320 JRT_END
 321 
 322 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 323   return (jfloat)x;
 324 JRT_END
 325 
 326 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 327   return (jdouble)x;
 328 JRT_END
 329 
 330 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 331   return (jdouble)x;
 332 JRT_END
 333 
 334 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 335   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 339   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 340 JRT_END
 341 
 342 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 343   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 344 JRT_END
 345 
 346 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 347   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 348 JRT_END
 349 
 350 // Functions to return the opposite of the aeabi functions for nan.
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 352   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 356   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 360   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 364   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 368   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 372   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 376   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 377 JRT_END
 378 
 379 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 380   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 // Intrinsics make gcc generate code for these.
 384 float  SharedRuntime::fneg(float f)   {
 385   return -f;
 386 }
 387 
 388 double SharedRuntime::dneg(double f)  {
 389   return -f;
 390 }
 391 
 392 #endif // __SOFTFP__
 393 
 394 #if defined(__SOFTFP__) || defined(E500V2)
 395 // Intrinsics make gcc generate code for these.
 396 double SharedRuntime::dabs(double f)  {
 397   return (f <= (double)0.0) ? (double)0.0 - f : f;
 398 }
 399 
 400 #endif
 401 
 402 #if defined(__SOFTFP__) || defined(PPC)
 403 double SharedRuntime::dsqrt(double f) {
 404   return sqrt(f);
 405 }
 406 #endif
 407 
 408 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 409   if (g_isnan(x))
 410     return 0;
 411   if (x >= (jfloat) max_jint)
 412     return max_jint;
 413   if (x <= (jfloat) min_jint)
 414     return min_jint;
 415   return (jint) x;
 416 JRT_END
 417 
 418 
 419 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jlong)
 423     return max_jlong;
 424   if (x <= (jfloat) min_jlong)
 425     return min_jlong;
 426   return (jlong) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jdouble) max_jint)
 434     return max_jint;
 435   if (x <= (jdouble) min_jint)
 436     return min_jint;
 437   return (jint) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jlong)
 445     return max_jlong;
 446   if (x <= (jdouble) min_jlong)
 447     return min_jlong;
 448   return (jlong) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 453   return (jfloat)x;
 454 JRT_END
 455 
 456 
 457 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 458   return (jfloat)x;
 459 JRT_END
 460 
 461 
 462 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 463   return (jdouble)x;
 464 JRT_END
 465 
 466 // Exception handling across interpreter/compiler boundaries
 467 //
 468 // exception_handler_for_return_address(...) returns the continuation address.
 469 // The continuation address is the entry point of the exception handler of the
 470 // previous frame depending on the return address.
 471 
 472 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 473   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 474   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 475 
 476   // Reset method handle flag.
 477   thread->set_is_method_handle_return(false);
 478 
 479 #if INCLUDE_JVMCI
 480   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 481   // and other exception handler continuations do not read it
 482   thread->set_exception_pc(NULL);
 483 #endif // INCLUDE_JVMCI
 484 
 485   // The fastest case first
 486   CodeBlob* blob = CodeCache::find_blob(return_address);
 487   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 488   if (nm != NULL) {
 489     // Set flag if return address is a method handle call site.
 490     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 491     // native nmethods don't have exception handlers
 492     assert(!nm->is_native_method(), "no exception handler");
 493     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 494     if (nm->is_deopt_pc(return_address)) {
 495       // If we come here because of a stack overflow, the stack may be
 496       // unguarded. Reguard the stack otherwise if we return to the
 497       // deopt blob and the stack bang causes a stack overflow we
 498       // crash.
 499       bool guard_pages_enabled = thread->stack_guards_enabled();
 500       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 501       if (thread->reserved_stack_activation() != thread->stack_base()) {
 502         thread->set_reserved_stack_activation(thread->stack_base());
 503       }
 504       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 505       return SharedRuntime::deopt_blob()->unpack_with_exception();
 506     } else {
 507       return nm->exception_begin();
 508     }
 509   }
 510 
 511   // Entry code
 512   if (StubRoutines::returns_to_call_stub(return_address)) {
 513     return StubRoutines::catch_exception_entry();
 514   }
 515   // Interpreted code
 516   if (Interpreter::contains(return_address)) {
 517     return Interpreter::rethrow_exception_entry();
 518   }
 519 
 520   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 521   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 522 
 523 #ifndef PRODUCT
 524   { ResourceMark rm;
 525     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 526     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 527     tty->print_cr("b) other problem");
 528   }
 529 #endif // PRODUCT
 530 
 531   ShouldNotReachHere();
 532   return NULL;
 533 }
 534 
 535 
 536 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 537   return raw_exception_handler_for_return_address(thread, return_address);
 538 JRT_END
 539 
 540 
 541 address SharedRuntime::get_poll_stub(address pc) {
 542   address stub;
 543   // Look up the code blob
 544   CodeBlob *cb = CodeCache::find_blob(pc);
 545 
 546   // Should be an nmethod
 547   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 548 
 549   // Look up the relocation information
 550   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 551     "safepoint polling: type must be poll");
 552 
 553 #ifdef ASSERT
 554   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 555     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 556     Disassembler::decode(cb);
 557     fatal("Only polling locations are used for safepoint");
 558   }
 559 #endif
 560 
 561   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 562   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 563   if (at_poll_return) {
 564     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 565            "polling page return stub not created yet");
 566     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 567   } else if (has_wide_vectors) {
 568     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 569            "polling page vectors safepoint stub not created yet");
 570     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 571   } else {
 572     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 573            "polling page safepoint stub not created yet");
 574     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 575   }
 576   log_debug(safepoint)("... found polling page %s exception at pc = "
 577                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 578                        at_poll_return ? "return" : "loop",
 579                        (intptr_t)pc, (intptr_t)stub);
 580   return stub;
 581 }
 582 
 583 
 584 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 585   assert(caller.is_interpreted_frame(), "");
 586   int args_size = ArgumentSizeComputer(sig).size() + 1;
 587   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 588   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 589   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 590   return result;
 591 }
 592 
 593 
 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 595   if (JvmtiExport::can_post_on_exceptions()) {
 596     vframeStream vfst(thread, true);
 597     methodHandle method = methodHandle(thread, vfst.method());
 598     address bcp = method()->bcp_from(vfst.bci());
 599     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 600   }
 601   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 602 }
 603 
 604 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 605   Handle h_exception = Exceptions::new_exception(thread, name, message);
 606   throw_and_post_jvmti_exception(thread, h_exception);
 607 }
 608 
 609 // The interpreter code to call this tracing function is only
 610 // called/generated when UL is on for redefine, class and has the right level
 611 // and tags. Since obsolete methods are never compiled, we don't have
 612 // to modify the compilers to generate calls to this function.
 613 //
 614 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 615     JavaThread* thread, Method* method))
 616   if (method->is_obsolete()) {
 617     // We are calling an obsolete method, but this is not necessarily
 618     // an error. Our method could have been redefined just after we
 619     // fetched the Method* from the constant pool.
 620     ResourceMark rm;
 621     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 622   }
 623   return 0;
 624 JRT_END
 625 
 626 // ret_pc points into caller; we are returning caller's exception handler
 627 // for given exception
 628 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 629                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 630   assert(cm != NULL, "must exist");
 631   ResourceMark rm;
 632 
 633 #if INCLUDE_JVMCI
 634   if (cm->is_compiled_by_jvmci()) {
 635     // lookup exception handler for this pc
 636     int catch_pco = ret_pc - cm->code_begin();
 637     ExceptionHandlerTable table(cm);
 638     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 639     if (t != NULL) {
 640       return cm->code_begin() + t->pco();
 641     } else {
 642       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 643     }
 644   }
 645 #endif // INCLUDE_JVMCI
 646 
 647   nmethod* nm = cm->as_nmethod();
 648   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 649   // determine handler bci, if any
 650   EXCEPTION_MARK;
 651 
 652   int handler_bci = -1;
 653   int scope_depth = 0;
 654   if (!force_unwind) {
 655     int bci = sd->bci();
 656     bool recursive_exception = false;
 657     do {
 658       bool skip_scope_increment = false;
 659       // exception handler lookup
 660       Klass* ek = exception->klass();
 661       methodHandle mh(THREAD, sd->method());
 662       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 663       if (HAS_PENDING_EXCEPTION) {
 664         recursive_exception = true;
 665         // We threw an exception while trying to find the exception handler.
 666         // Transfer the new exception to the exception handle which will
 667         // be set into thread local storage, and do another lookup for an
 668         // exception handler for this exception, this time starting at the
 669         // BCI of the exception handler which caused the exception to be
 670         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 671         // argument to ensure that the correct exception is thrown (4870175).
 672         recursive_exception_occurred = true;
 673         exception = Handle(THREAD, PENDING_EXCEPTION);
 674         CLEAR_PENDING_EXCEPTION;
 675         if (handler_bci >= 0) {
 676           bci = handler_bci;
 677           handler_bci = -1;
 678           skip_scope_increment = true;
 679         }
 680       }
 681       else {
 682         recursive_exception = false;
 683       }
 684       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 685         sd = sd->sender();
 686         if (sd != NULL) {
 687           bci = sd->bci();
 688         }
 689         ++scope_depth;
 690       }
 691     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 692   }
 693 
 694   // found handling method => lookup exception handler
 695   int catch_pco = ret_pc - nm->code_begin();
 696 
 697   ExceptionHandlerTable table(nm);
 698   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 699   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 700     // Allow abbreviated catch tables.  The idea is to allow a method
 701     // to materialize its exceptions without committing to the exact
 702     // routing of exceptions.  In particular this is needed for adding
 703     // a synthetic handler to unlock monitors when inlining
 704     // synchronized methods since the unlock path isn't represented in
 705     // the bytecodes.
 706     t = table.entry_for(catch_pco, -1, 0);
 707   }
 708 
 709 #ifdef COMPILER1
 710   if (t == NULL && nm->is_compiled_by_c1()) {
 711     assert(nm->unwind_handler_begin() != NULL, "");
 712     return nm->unwind_handler_begin();
 713   }
 714 #endif
 715 
 716   if (t == NULL) {
 717     ttyLocker ttyl;
 718     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 719     tty->print_cr("   Exception:");
 720     exception->print();
 721     tty->cr();
 722     tty->print_cr(" Compiled exception table :");
 723     table.print();
 724     nm->print_code();
 725     guarantee(false, "missing exception handler");
 726     return NULL;
 727   }
 728 
 729   return nm->code_begin() + t->pco();
 730 }
 731 
 732 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 733   // These errors occur only at call sites
 734   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 735 JRT_END
 736 
 737 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 738   // These errors occur only at call sites
 739   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 740 JRT_END
 741 
 742 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 743   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 744 JRT_END
 745 
 746 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 751   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 752   // cache sites (when the callee activation is not yet set up) so we are at a call site
 753   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 754 JRT_END
 755 
 756 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 757   throw_StackOverflowError_common(thread, false);
 758 JRT_END
 759 
 760 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 761   throw_StackOverflowError_common(thread, true);
 762 JRT_END
 763 
 764 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 765   // We avoid using the normal exception construction in this case because
 766   // it performs an upcall to Java, and we're already out of stack space.
 767   Thread* THREAD = thread;
 768   Klass* k = SystemDictionary::StackOverflowError_klass();
 769   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 770   if (delayed) {
 771     java_lang_Throwable::set_message(exception_oop,
 772                                      Universe::delayed_stack_overflow_error_message());
 773   }
 774   Handle exception (thread, exception_oop);
 775   if (StackTraceInThrowable) {
 776     java_lang_Throwable::fill_in_stack_trace(exception);
 777   }
 778   // Increment counter for hs_err file reporting
 779   Atomic::inc(&Exceptions::_stack_overflow_errors);
 780   throw_and_post_jvmti_exception(thread, exception);
 781 }
 782 
 783 #if INCLUDE_JVMCI
 784 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 785   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 786   thread->set_jvmci_implicit_exception_pc(pc);
 787   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 788   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 789 }
 790 #endif // INCLUDE_JVMCI
 791 
 792 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 793                                                            address pc,
 794                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 795 {
 796   address target_pc = NULL;
 797 
 798   if (Interpreter::contains(pc)) {
 799 #ifdef CC_INTERP
 800     // C++ interpreter doesn't throw implicit exceptions
 801     ShouldNotReachHere();
 802 #else
 803     switch (exception_kind) {
 804       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 805       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 806       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 807       default:                      ShouldNotReachHere();
 808     }
 809 #endif // !CC_INTERP
 810   } else {
 811     switch (exception_kind) {
 812       case STACK_OVERFLOW: {
 813         // Stack overflow only occurs upon frame setup; the callee is
 814         // going to be unwound. Dispatch to a shared runtime stub
 815         // which will cause the StackOverflowError to be fabricated
 816         // and processed.
 817         // Stack overflow should never occur during deoptimization:
 818         // the compiled method bangs the stack by as much as the
 819         // interpreter would need in case of a deoptimization. The
 820         // deoptimization blob and uncommon trap blob bang the stack
 821         // in a debug VM to verify the correctness of the compiled
 822         // method stack banging.
 823         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 824         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 825         return StubRoutines::throw_StackOverflowError_entry();
 826       }
 827 
 828       case IMPLICIT_NULL: {
 829         if (VtableStubs::contains(pc)) {
 830           // We haven't yet entered the callee frame. Fabricate an
 831           // exception and begin dispatching it in the caller. Since
 832           // the caller was at a call site, it's safe to destroy all
 833           // caller-saved registers, as these entry points do.
 834           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 835 
 836           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 837           if (vt_stub == NULL) return NULL;
 838 
 839           if (vt_stub->is_abstract_method_error(pc)) {
 840             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 841             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 842             return StubRoutines::throw_AbstractMethodError_entry();
 843           } else {
 844             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 845             return StubRoutines::throw_NullPointerException_at_call_entry();
 846           }
 847         } else {
 848           CodeBlob* cb = CodeCache::find_blob(pc);
 849 
 850           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 851           if (cb == NULL) return NULL;
 852 
 853           // Exception happened in CodeCache. Must be either:
 854           // 1. Inline-cache check in C2I handler blob,
 855           // 2. Inline-cache check in nmethod, or
 856           // 3. Implicit null exception in nmethod
 857 
 858           if (!cb->is_compiled()) {
 859             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 860             if (!is_in_blob) {
 861               // Allow normal crash reporting to handle this
 862               return NULL;
 863             }
 864             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 865             // There is no handler here, so we will simply unwind.
 866             return StubRoutines::throw_NullPointerException_at_call_entry();
 867           }
 868 
 869           // Otherwise, it's a compiled method.  Consult its exception handlers.
 870           CompiledMethod* cm = (CompiledMethod*)cb;
 871           if (cm->inlinecache_check_contains(pc)) {
 872             // exception happened inside inline-cache check code
 873             // => the nmethod is not yet active (i.e., the frame
 874             // is not set up yet) => use return address pushed by
 875             // caller => don't push another return address
 876             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 877             return StubRoutines::throw_NullPointerException_at_call_entry();
 878           }
 879 
 880           if (cm->method()->is_method_handle_intrinsic()) {
 881             // exception happened inside MH dispatch code, similar to a vtable stub
 882             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 883             return StubRoutines::throw_NullPointerException_at_call_entry();
 884           }
 885 
 886 #ifndef PRODUCT
 887           _implicit_null_throws++;
 888 #endif
 889 #if INCLUDE_JVMCI
 890           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 891             // If there's no PcDesc then we'll die way down inside of
 892             // deopt instead of just getting normal error reporting,
 893             // so only go there if it will succeed.
 894             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 895           } else {
 896 #endif // INCLUDE_JVMCI
 897           assert (cm->is_nmethod(), "Expect nmethod");
 898           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 899 #if INCLUDE_JVMCI
 900           }
 901 #endif // INCLUDE_JVMCI
 902           // If there's an unexpected fault, target_pc might be NULL,
 903           // in which case we want to fall through into the normal
 904           // error handling code.
 905         }
 906 
 907         break; // fall through
 908       }
 909 
 910 
 911       case IMPLICIT_DIVIDE_BY_ZERO: {
 912         CompiledMethod* cm = CodeCache::find_compiled(pc);
 913         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 914 #ifndef PRODUCT
 915         _implicit_div0_throws++;
 916 #endif
 917 #if INCLUDE_JVMCI
 918         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 919           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 920         } else {
 921 #endif // INCLUDE_JVMCI
 922         target_pc = cm->continuation_for_implicit_exception(pc);
 923 #if INCLUDE_JVMCI
 924         }
 925 #endif // INCLUDE_JVMCI
 926         // If there's an unexpected fault, target_pc might be NULL,
 927         // in which case we want to fall through into the normal
 928         // error handling code.
 929         break; // fall through
 930       }
 931 
 932       default: ShouldNotReachHere();
 933     }
 934 
 935     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 936 
 937     if (exception_kind == IMPLICIT_NULL) {
 938 #ifndef PRODUCT
 939       // for AbortVMOnException flag
 940       Exceptions::debug_check_abort("java.lang.NullPointerException");
 941 #endif //PRODUCT
 942       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 943     } else {
 944 #ifndef PRODUCT
 945       // for AbortVMOnException flag
 946       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 947 #endif //PRODUCT
 948       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 949     }
 950     return target_pc;
 951   }
 952 
 953   ShouldNotReachHere();
 954   return NULL;
 955 }
 956 
 957 
 958 /**
 959  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 960  * installed in the native function entry of all native Java methods before
 961  * they get linked to their actual native methods.
 962  *
 963  * \note
 964  * This method actually never gets called!  The reason is because
 965  * the interpreter's native entries call NativeLookup::lookup() which
 966  * throws the exception when the lookup fails.  The exception is then
 967  * caught and forwarded on the return from NativeLookup::lookup() call
 968  * before the call to the native function.  This might change in the future.
 969  */
 970 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 971 {
 972   // We return a bad value here to make sure that the exception is
 973   // forwarded before we look at the return value.
 974   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 975 }
 976 JNI_END
 977 
 978 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 979   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 980 }
 981 
 982 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 983 #if INCLUDE_JVMCI
 984   if (!obj->klass()->has_finalizer()) {
 985     return;
 986   }
 987 #endif // INCLUDE_JVMCI
 988   assert(oopDesc::is_oop(obj), "must be a valid oop");
 989   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 990   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 991 JRT_END
 992 
 993 
 994 jlong SharedRuntime::get_java_tid(Thread* thread) {
 995   if (thread != NULL) {
 996     if (thread->is_Java_thread()) {
 997       oop obj = ((JavaThread*)thread)->threadObj();
 998       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 999     }
1000   }
1001   return 0;
1002 }
1003 
1004 /**
1005  * This function ought to be a void function, but cannot be because
1006  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1007  * 6254741.  Once that is fixed we can remove the dummy return value.
1008  */
1009 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1010   return dtrace_object_alloc_base(Thread::current(), o, size);
1011 }
1012 
1013 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1014   assert(DTraceAllocProbes, "wrong call");
1015   Klass* klass = o->klass();
1016   Symbol* name = klass->name();
1017   HOTSPOT_OBJECT_ALLOC(
1018                    get_java_tid(thread),
1019                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1020   return 0;
1021 }
1022 
1023 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1024     JavaThread* thread, Method* method))
1025   assert(DTraceMethodProbes, "wrong call");
1026   Symbol* kname = method->klass_name();
1027   Symbol* name = method->name();
1028   Symbol* sig = method->signature();
1029   HOTSPOT_METHOD_ENTRY(
1030       get_java_tid(thread),
1031       (char *) kname->bytes(), kname->utf8_length(),
1032       (char *) name->bytes(), name->utf8_length(),
1033       (char *) sig->bytes(), sig->utf8_length());
1034   return 0;
1035 JRT_END
1036 
1037 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1038     JavaThread* thread, Method* method))
1039   assert(DTraceMethodProbes, "wrong call");
1040   Symbol* kname = method->klass_name();
1041   Symbol* name = method->name();
1042   Symbol* sig = method->signature();
1043   HOTSPOT_METHOD_RETURN(
1044       get_java_tid(thread),
1045       (char *) kname->bytes(), kname->utf8_length(),
1046       (char *) name->bytes(), name->utf8_length(),
1047       (char *) sig->bytes(), sig->utf8_length());
1048   return 0;
1049 JRT_END
1050 
1051 
1052 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1053 // for a call current in progress, i.e., arguments has been pushed on stack
1054 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1055 // vtable updates, etc.  Caller frame must be compiled.
1056 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1057   ResourceMark rm(THREAD);
1058 
1059   // last java frame on stack (which includes native call frames)
1060   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1061 
1062   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1063 }
1064 
1065 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1066   CompiledMethod* caller = vfst.nm();
1067 
1068   nmethodLocker caller_lock(caller);
1069 
1070   address pc = vfst.frame_pc();
1071   { // Get call instruction under lock because another thread may be busy patching it.
1072     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1073     return caller->attached_method_before_pc(pc);
1074   }
1075   return NULL;
1076 }
1077 
1078 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1079 // for a call current in progress, i.e., arguments has been pushed on stack
1080 // but callee has not been invoked yet.  Caller frame must be compiled.
1081 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1082                                               vframeStream& vfst,
1083                                               Bytecodes::Code& bc,
1084                                               CallInfo& callinfo, TRAPS) {
1085   Handle receiver;
1086   Handle nullHandle;  //create a handy null handle for exception returns
1087 
1088   assert(!vfst.at_end(), "Java frame must exist");
1089 
1090   // Find caller and bci from vframe
1091   methodHandle caller(THREAD, vfst.method());
1092   int          bci   = vfst.bci();
1093 
1094   Bytecode_invoke bytecode(caller, bci);
1095   int bytecode_index = bytecode.index();
1096 
1097   methodHandle attached_method = extract_attached_method(vfst);
1098   if (attached_method.not_null()) {
1099     methodHandle callee = bytecode.static_target(CHECK_NH);
1100     vmIntrinsics::ID id = callee->intrinsic_id();
1101     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1102     // it attaches statically resolved method to the call site.
1103     if (MethodHandles::is_signature_polymorphic(id) &&
1104         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1105       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1106 
1107       // Adjust invocation mode according to the attached method.
1108       switch (bc) {
1109         case Bytecodes::_invokeinterface:
1110           if (!attached_method->method_holder()->is_interface()) {
1111             bc = Bytecodes::_invokevirtual;
1112           }
1113           break;
1114         case Bytecodes::_invokehandle:
1115           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1116             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1117                                               : Bytecodes::_invokevirtual;
1118           }
1119           break;
1120         default:
1121           break;
1122       }
1123     }
1124   } else {
1125     bc = bytecode.invoke_code();
1126   }
1127 
1128   bool has_receiver = bc != Bytecodes::_invokestatic &&
1129                       bc != Bytecodes::_invokedynamic &&
1130                       bc != Bytecodes::_invokehandle;
1131 
1132   // Find receiver for non-static call
1133   if (has_receiver) {
1134     // This register map must be update since we need to find the receiver for
1135     // compiled frames. The receiver might be in a register.
1136     RegisterMap reg_map2(thread);
1137     frame stubFrame   = thread->last_frame();
1138     // Caller-frame is a compiled frame
1139     frame callerFrame = stubFrame.sender(&reg_map2);
1140 
1141     if (attached_method.is_null()) {
1142       methodHandle callee = bytecode.static_target(CHECK_NH);
1143       if (callee.is_null()) {
1144         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1145       }
1146     }
1147 
1148     // Retrieve from a compiled argument list
1149     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1150 
1151     if (receiver.is_null()) {
1152       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1153     }
1154   }
1155 
1156   // Resolve method
1157   if (attached_method.not_null()) {
1158     // Parameterized by attached method.
1159     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1160   } else {
1161     // Parameterized by bytecode.
1162     constantPoolHandle constants(THREAD, caller->constants());
1163     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1164   }
1165 
1166 #ifdef ASSERT
1167   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1168   if (has_receiver) {
1169     assert(receiver.not_null(), "should have thrown exception");
1170     Klass* receiver_klass = receiver->klass();
1171     Klass* rk = NULL;
1172     if (attached_method.not_null()) {
1173       // In case there's resolved method attached, use its holder during the check.
1174       rk = attached_method->method_holder();
1175     } else {
1176       // Klass is already loaded.
1177       constantPoolHandle constants(THREAD, caller->constants());
1178       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1179     }
1180     Klass* static_receiver_klass = rk;
1181     methodHandle callee = callinfo.selected_method();
1182     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1183            "actual receiver must be subclass of static receiver klass");
1184     if (receiver_klass->is_instance_klass()) {
1185       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1186         tty->print_cr("ERROR: Klass not yet initialized!!");
1187         receiver_klass->print();
1188       }
1189       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1190     }
1191   }
1192 #endif
1193 
1194   return receiver;
1195 }
1196 
1197 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1198   ResourceMark rm(THREAD);
1199   // We need first to check if any Java activations (compiled, interpreted)
1200   // exist on the stack since last JavaCall.  If not, we need
1201   // to get the target method from the JavaCall wrapper.
1202   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1203   methodHandle callee_method;
1204   if (vfst.at_end()) {
1205     // No Java frames were found on stack since we did the JavaCall.
1206     // Hence the stack can only contain an entry_frame.  We need to
1207     // find the target method from the stub frame.
1208     RegisterMap reg_map(thread, false);
1209     frame fr = thread->last_frame();
1210     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1211     fr = fr.sender(&reg_map);
1212     assert(fr.is_entry_frame(), "must be");
1213     // fr is now pointing to the entry frame.
1214     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1215   } else {
1216     Bytecodes::Code bc;
1217     CallInfo callinfo;
1218     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1219     callee_method = callinfo.selected_method();
1220   }
1221   assert(callee_method()->is_method(), "must be");
1222   return callee_method;
1223 }
1224 
1225 // Resolves a call.
1226 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1227                                            bool is_virtual,
1228                                            bool is_optimized, TRAPS) {
1229   methodHandle callee_method;
1230   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1231   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1232     int retry_count = 0;
1233     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1234            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1235       // If has a pending exception then there is no need to re-try to
1236       // resolve this method.
1237       // If the method has been redefined, we need to try again.
1238       // Hack: we have no way to update the vtables of arrays, so don't
1239       // require that java.lang.Object has been updated.
1240 
1241       // It is very unlikely that method is redefined more than 100 times
1242       // in the middle of resolve. If it is looping here more than 100 times
1243       // means then there could be a bug here.
1244       guarantee((retry_count++ < 100),
1245                 "Could not resolve to latest version of redefined method");
1246       // method is redefined in the middle of resolve so re-try.
1247       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1248     }
1249   }
1250   return callee_method;
1251 }
1252 
1253 // Resolves a call.  The compilers generate code for calls that go here
1254 // and are patched with the real destination of the call.
1255 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1256                                            bool is_virtual,
1257                                            bool is_optimized, TRAPS) {
1258 
1259   ResourceMark rm(thread);
1260   RegisterMap cbl_map(thread, false);
1261   frame caller_frame = thread->last_frame().sender(&cbl_map);
1262 
1263   CodeBlob* caller_cb = caller_frame.cb();
1264   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1265   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1266 
1267   // make sure caller is not getting deoptimized
1268   // and removed before we are done with it.
1269   // CLEANUP - with lazy deopt shouldn't need this lock
1270   nmethodLocker caller_lock(caller_nm);
1271 
1272   // determine call info & receiver
1273   // note: a) receiver is NULL for static calls
1274   //       b) an exception is thrown if receiver is NULL for non-static calls
1275   CallInfo call_info;
1276   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1277   Handle receiver = find_callee_info(thread, invoke_code,
1278                                      call_info, CHECK_(methodHandle()));
1279   methodHandle callee_method = call_info.selected_method();
1280 
1281   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1282          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1283          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1284          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1285          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1286 
1287   assert(caller_nm->is_alive(), "It should be alive");
1288 
1289 #ifndef PRODUCT
1290   // tracing/debugging/statistics
1291   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1292                 (is_virtual) ? (&_resolve_virtual_ctr) :
1293                                (&_resolve_static_ctr);
1294   Atomic::inc(addr);
1295 
1296   if (TraceCallFixup) {
1297     ResourceMark rm(thread);
1298     tty->print("resolving %s%s (%s) call to",
1299       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1300       Bytecodes::name(invoke_code));
1301     callee_method->print_short_name(tty);
1302     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1303                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1304   }
1305 #endif
1306 
1307   // JSR 292 key invariant:
1308   // If the resolved method is a MethodHandle invoke target, the call
1309   // site must be a MethodHandle call site, because the lambda form might tail-call
1310   // leaving the stack in a state unknown to either caller or callee
1311   // TODO detune for now but we might need it again
1312 //  assert(!callee_method->is_compiled_lambda_form() ||
1313 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1314 
1315   // Compute entry points. This might require generation of C2I converter
1316   // frames, so we cannot be holding any locks here. Furthermore, the
1317   // computation of the entry points is independent of patching the call.  We
1318   // always return the entry-point, but we only patch the stub if the call has
1319   // not been deoptimized.  Return values: For a virtual call this is an
1320   // (cached_oop, destination address) pair. For a static call/optimized
1321   // virtual this is just a destination address.
1322 
1323   StaticCallInfo static_call_info;
1324   CompiledICInfo virtual_call_info;
1325 
1326   // Make sure the callee nmethod does not get deoptimized and removed before
1327   // we are done patching the code.
1328   CompiledMethod* callee = callee_method->code();
1329 
1330   if (callee != NULL) {
1331     assert(callee->is_compiled(), "must be nmethod for patching");
1332   }
1333 
1334   if (callee != NULL && !callee->is_in_use()) {
1335     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1336     callee = NULL;
1337   }
1338   nmethodLocker nl_callee(callee);
1339 #ifdef ASSERT
1340   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1341 #endif
1342 
1343   bool is_nmethod = caller_nm->is_nmethod();
1344 
1345   if (is_virtual) {
1346     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1347     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1348     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1349     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1350                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1351                      CHECK_(methodHandle()));
1352   } else {
1353     // static call
1354     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1355   }
1356 
1357   // grab lock, check for deoptimization and potentially patch caller
1358   {
1359     MutexLocker ml_patch(CompiledIC_lock);
1360 
1361     // Lock blocks for safepoint during which both nmethods can change state.
1362 
1363     // Now that we are ready to patch if the Method* was redefined then
1364     // don't update call site and let the caller retry.
1365     // Don't update call site if callee nmethod was unloaded or deoptimized.
1366     // Don't update call site if callee nmethod was replaced by an other nmethod
1367     // which may happen when multiply alive nmethod (tiered compilation)
1368     // will be supported.
1369     if (!callee_method->is_old() &&
1370         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1371 #ifdef ASSERT
1372       // We must not try to patch to jump to an already unloaded method.
1373       if (dest_entry_point != 0) {
1374         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1375         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1376                "should not call unloaded nmethod");
1377       }
1378 #endif
1379       if (is_virtual) {
1380         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1381         if (inline_cache->is_clean()) {
1382           inline_cache->set_to_monomorphic(virtual_call_info);
1383         }
1384       } else {
1385         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1386         if (ssc->is_clean()) ssc->set(static_call_info);
1387       }
1388     }
1389 
1390   } // unlock CompiledIC_lock
1391 
1392   return callee_method;
1393 }
1394 
1395 
1396 // Inline caches exist only in compiled code
1397 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1398 #ifdef ASSERT
1399   RegisterMap reg_map(thread, false);
1400   frame stub_frame = thread->last_frame();
1401   assert(stub_frame.is_runtime_frame(), "sanity check");
1402   frame caller_frame = stub_frame.sender(&reg_map);
1403   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1404 #endif /* ASSERT */
1405 
1406   methodHandle callee_method;
1407   JRT_BLOCK
1408     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1409     // Return Method* through TLS
1410     thread->set_vm_result_2(callee_method());
1411   JRT_BLOCK_END
1412   // return compiled code entry point after potential safepoints
1413   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1414   return callee_method->verified_code_entry();
1415 JRT_END
1416 
1417 
1418 // Handle call site that has been made non-entrant
1419 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1420   // 6243940 We might end up in here if the callee is deoptimized
1421   // as we race to call it.  We don't want to take a safepoint if
1422   // the caller was interpreted because the caller frame will look
1423   // interpreted to the stack walkers and arguments are now
1424   // "compiled" so it is much better to make this transition
1425   // invisible to the stack walking code. The i2c path will
1426   // place the callee method in the callee_target. It is stashed
1427   // there because if we try and find the callee by normal means a
1428   // safepoint is possible and have trouble gc'ing the compiled args.
1429   RegisterMap reg_map(thread, false);
1430   frame stub_frame = thread->last_frame();
1431   assert(stub_frame.is_runtime_frame(), "sanity check");
1432   frame caller_frame = stub_frame.sender(&reg_map);
1433 
1434   if (caller_frame.is_interpreted_frame() ||
1435       caller_frame.is_entry_frame()) {
1436     Method* callee = thread->callee_target();
1437     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1438     thread->set_vm_result_2(callee);
1439     thread->set_callee_target(NULL);
1440     return callee->get_c2i_entry();
1441   }
1442 
1443   // Must be compiled to compiled path which is safe to stackwalk
1444   methodHandle callee_method;
1445   JRT_BLOCK
1446     // Force resolving of caller (if we called from compiled frame)
1447     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1448     thread->set_vm_result_2(callee_method());
1449   JRT_BLOCK_END
1450   // return compiled code entry point after potential safepoints
1451   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1452   return callee_method->verified_code_entry();
1453 JRT_END
1454 
1455 // Handle abstract method call
1456 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1457   return StubRoutines::throw_AbstractMethodError_entry();
1458 JRT_END
1459 
1460 
1461 // resolve a static call and patch code
1462 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1463   methodHandle callee_method;
1464   JRT_BLOCK
1465     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1466     thread->set_vm_result_2(callee_method());
1467   JRT_BLOCK_END
1468   // return compiled code entry point after potential safepoints
1469   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1470   return callee_method->verified_code_entry();
1471 JRT_END
1472 
1473 
1474 // resolve virtual call and update inline cache to monomorphic
1475 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1476   methodHandle callee_method;
1477   JRT_BLOCK
1478     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1479     thread->set_vm_result_2(callee_method());
1480   JRT_BLOCK_END
1481   // return compiled code entry point after potential safepoints
1482   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1483   return callee_method->verified_code_entry();
1484 JRT_END
1485 
1486 
1487 // Resolve a virtual call that can be statically bound (e.g., always
1488 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1489 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1490   methodHandle callee_method;
1491   JRT_BLOCK
1492     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1493     thread->set_vm_result_2(callee_method());
1494   JRT_BLOCK_END
1495   // return compiled code entry point after potential safepoints
1496   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1497   return callee_method->verified_code_entry();
1498 JRT_END
1499 
1500 
1501 
1502 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1503   ResourceMark rm(thread);
1504   CallInfo call_info;
1505   Bytecodes::Code bc;
1506 
1507   // receiver is NULL for static calls. An exception is thrown for NULL
1508   // receivers for non-static calls
1509   Handle receiver = find_callee_info(thread, bc, call_info,
1510                                      CHECK_(methodHandle()));
1511   // Compiler1 can produce virtual call sites that can actually be statically bound
1512   // If we fell thru to below we would think that the site was going megamorphic
1513   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1514   // we'd try and do a vtable dispatch however methods that can be statically bound
1515   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1516   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1517   // plain ic_miss) and the site will be converted to an optimized virtual call site
1518   // never to miss again. I don't believe C2 will produce code like this but if it
1519   // did this would still be the correct thing to do for it too, hence no ifdef.
1520   //
1521   if (call_info.resolved_method()->can_be_statically_bound()) {
1522     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1523     if (TraceCallFixup) {
1524       RegisterMap reg_map(thread, false);
1525       frame caller_frame = thread->last_frame().sender(&reg_map);
1526       ResourceMark rm(thread);
1527       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1528       callee_method->print_short_name(tty);
1529       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1530       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1531     }
1532     return callee_method;
1533   }
1534 
1535   methodHandle callee_method = call_info.selected_method();
1536 
1537   bool should_be_mono = false;
1538 
1539 #ifndef PRODUCT
1540   Atomic::inc(&_ic_miss_ctr);
1541 
1542   // Statistics & Tracing
1543   if (TraceCallFixup) {
1544     ResourceMark rm(thread);
1545     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1546     callee_method->print_short_name(tty);
1547     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1548   }
1549 
1550   if (ICMissHistogram) {
1551     MutexLocker m(VMStatistic_lock);
1552     RegisterMap reg_map(thread, false);
1553     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1554     // produce statistics under the lock
1555     trace_ic_miss(f.pc());
1556   }
1557 #endif
1558 
1559   // install an event collector so that when a vtable stub is created the
1560   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1561   // event can't be posted when the stub is created as locks are held
1562   // - instead the event will be deferred until the event collector goes
1563   // out of scope.
1564   JvmtiDynamicCodeEventCollector event_collector;
1565 
1566   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1567   { MutexLocker ml_patch (CompiledIC_lock);
1568     RegisterMap reg_map(thread, false);
1569     frame caller_frame = thread->last_frame().sender(&reg_map);
1570     CodeBlob* cb = caller_frame.cb();
1571     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1572     if (cb->is_compiled()) {
1573       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1574       bool should_be_mono = false;
1575       if (inline_cache->is_optimized()) {
1576         if (TraceCallFixup) {
1577           ResourceMark rm(thread);
1578           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1579           callee_method->print_short_name(tty);
1580           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1581         }
1582         should_be_mono = true;
1583       } else if (inline_cache->is_icholder_call()) {
1584         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1585         if (ic_oop != NULL) {
1586 
1587           if (receiver()->klass() == ic_oop->holder_klass()) {
1588             // This isn't a real miss. We must have seen that compiled code
1589             // is now available and we want the call site converted to a
1590             // monomorphic compiled call site.
1591             // We can't assert for callee_method->code() != NULL because it
1592             // could have been deoptimized in the meantime
1593             if (TraceCallFixup) {
1594               ResourceMark rm(thread);
1595               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1596               callee_method->print_short_name(tty);
1597               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1598             }
1599             should_be_mono = true;
1600           }
1601         }
1602       }
1603 
1604       if (should_be_mono) {
1605 
1606         // We have a path that was monomorphic but was going interpreted
1607         // and now we have (or had) a compiled entry. We correct the IC
1608         // by using a new icBuffer.
1609         CompiledICInfo info;
1610         Klass* receiver_klass = receiver()->klass();
1611         inline_cache->compute_monomorphic_entry(callee_method,
1612                                                 receiver_klass,
1613                                                 inline_cache->is_optimized(),
1614                                                 false, caller_nm->is_nmethod(),
1615                                                 info, CHECK_(methodHandle()));
1616         inline_cache->set_to_monomorphic(info);
1617       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1618         // Potential change to megamorphic
1619         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1620         if (!successful) {
1621           inline_cache->set_to_clean();
1622         }
1623       } else {
1624         // Either clean or megamorphic
1625       }
1626     } else {
1627       fatal("Unimplemented");
1628     }
1629   } // Release CompiledIC_lock
1630 
1631   return callee_method;
1632 }
1633 
1634 //
1635 // Resets a call-site in compiled code so it will get resolved again.
1636 // This routines handles both virtual call sites, optimized virtual call
1637 // sites, and static call sites. Typically used to change a call sites
1638 // destination from compiled to interpreted.
1639 //
1640 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1641   ResourceMark rm(thread);
1642   RegisterMap reg_map(thread, false);
1643   frame stub_frame = thread->last_frame();
1644   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1645   frame caller = stub_frame.sender(&reg_map);
1646 
1647   // Do nothing if the frame isn't a live compiled frame.
1648   // nmethod could be deoptimized by the time we get here
1649   // so no update to the caller is needed.
1650 
1651   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1652 
1653     address pc = caller.pc();
1654 
1655     // Check for static or virtual call
1656     bool is_static_call = false;
1657     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1658 
1659     // Default call_addr is the location of the "basic" call.
1660     // Determine the address of the call we a reresolving. With
1661     // Inline Caches we will always find a recognizable call.
1662     // With Inline Caches disabled we may or may not find a
1663     // recognizable call. We will always find a call for static
1664     // calls and for optimized virtual calls. For vanilla virtual
1665     // calls it depends on the state of the UseInlineCaches switch.
1666     //
1667     // With Inline Caches disabled we can get here for a virtual call
1668     // for two reasons:
1669     //   1 - calling an abstract method. The vtable for abstract methods
1670     //       will run us thru handle_wrong_method and we will eventually
1671     //       end up in the interpreter to throw the ame.
1672     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1673     //       call and between the time we fetch the entry address and
1674     //       we jump to it the target gets deoptimized. Similar to 1
1675     //       we will wind up in the interprter (thru a c2i with c2).
1676     //
1677     address call_addr = NULL;
1678     {
1679       // Get call instruction under lock because another thread may be
1680       // busy patching it.
1681       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1682       // Location of call instruction
1683       call_addr = caller_nm->call_instruction_address(pc);
1684     }
1685     // Make sure nmethod doesn't get deoptimized and removed until
1686     // this is done with it.
1687     // CLEANUP - with lazy deopt shouldn't need this lock
1688     nmethodLocker nmlock(caller_nm);
1689 
1690     if (call_addr != NULL) {
1691       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1692       int ret = iter.next(); // Get item
1693       if (ret) {
1694         assert(iter.addr() == call_addr, "must find call");
1695         if (iter.type() == relocInfo::static_call_type) {
1696           is_static_call = true;
1697         } else {
1698           assert(iter.type() == relocInfo::virtual_call_type ||
1699                  iter.type() == relocInfo::opt_virtual_call_type
1700                 , "unexpected relocInfo. type");
1701         }
1702       } else {
1703         assert(!UseInlineCaches, "relocation info. must exist for this address");
1704       }
1705 
1706       // Cleaning the inline cache will force a new resolve. This is more robust
1707       // than directly setting it to the new destination, since resolving of calls
1708       // is always done through the same code path. (experience shows that it
1709       // leads to very hard to track down bugs, if an inline cache gets updated
1710       // to a wrong method). It should not be performance critical, since the
1711       // resolve is only done once.
1712 
1713       bool is_nmethod = caller_nm->is_nmethod();
1714       MutexLocker ml(CompiledIC_lock);
1715       if (is_static_call) {
1716         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1717         ssc->set_to_clean();
1718       } else {
1719         // compiled, dispatched call (which used to call an interpreted method)
1720         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1721         inline_cache->set_to_clean();
1722       }
1723     }
1724   }
1725 
1726   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1727 
1728 
1729 #ifndef PRODUCT
1730   Atomic::inc(&_wrong_method_ctr);
1731 
1732   if (TraceCallFixup) {
1733     ResourceMark rm(thread);
1734     tty->print("handle_wrong_method reresolving call to");
1735     callee_method->print_short_name(tty);
1736     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1737   }
1738 #endif
1739 
1740   return callee_method;
1741 }
1742 
1743 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1744   // The faulting unsafe accesses should be changed to throw the error
1745   // synchronously instead. Meanwhile the faulting instruction will be
1746   // skipped over (effectively turning it into a no-op) and an
1747   // asynchronous exception will be raised which the thread will
1748   // handle at a later point. If the instruction is a load it will
1749   // return garbage.
1750 
1751   // Request an async exception.
1752   thread->set_pending_unsafe_access_error();
1753 
1754   // Return address of next instruction to execute.
1755   return next_pc;
1756 }
1757 
1758 #ifdef ASSERT
1759 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1760                                                                 const BasicType* sig_bt,
1761                                                                 const VMRegPair* regs) {
1762   ResourceMark rm;
1763   const int total_args_passed = method->size_of_parameters();
1764   const VMRegPair*    regs_with_member_name = regs;
1765         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1766 
1767   const int member_arg_pos = total_args_passed - 1;
1768   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1769   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1770 
1771   const bool is_outgoing = method->is_method_handle_intrinsic();
1772   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1773 
1774   for (int i = 0; i < member_arg_pos; i++) {
1775     VMReg a =    regs_with_member_name[i].first();
1776     VMReg b = regs_without_member_name[i].first();
1777     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1778   }
1779   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1780 }
1781 #endif
1782 
1783 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1784   if (destination != entry_point) {
1785     CodeBlob* callee = CodeCache::find_blob(destination);
1786     // callee == cb seems weird. It means calling interpreter thru stub.
1787     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1788       // static call or optimized virtual
1789       if (TraceCallFixup) {
1790         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1791         moop->print_short_name(tty);
1792         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1793       }
1794       return true;
1795     } else {
1796       if (TraceCallFixup) {
1797         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1798         moop->print_short_name(tty);
1799         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1800       }
1801       // assert is too strong could also be resolve destinations.
1802       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1803     }
1804   } else {
1805     if (TraceCallFixup) {
1806       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1807       moop->print_short_name(tty);
1808       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1809     }
1810   }
1811   return false;
1812 }
1813 
1814 // ---------------------------------------------------------------------------
1815 // We are calling the interpreter via a c2i. Normally this would mean that
1816 // we were called by a compiled method. However we could have lost a race
1817 // where we went int -> i2c -> c2i and so the caller could in fact be
1818 // interpreted. If the caller is compiled we attempt to patch the caller
1819 // so he no longer calls into the interpreter.
1820 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1821   Method* moop(method);
1822 
1823   address entry_point = moop->from_compiled_entry_no_trampoline();
1824 
1825   // It's possible that deoptimization can occur at a call site which hasn't
1826   // been resolved yet, in which case this function will be called from
1827   // an nmethod that has been patched for deopt and we can ignore the
1828   // request for a fixup.
1829   // Also it is possible that we lost a race in that from_compiled_entry
1830   // is now back to the i2c in that case we don't need to patch and if
1831   // we did we'd leap into space because the callsite needs to use
1832   // "to interpreter" stub in order to load up the Method*. Don't
1833   // ask me how I know this...
1834 
1835   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1836   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1837     return;
1838   }
1839 
1840   // The check above makes sure this is a nmethod.
1841   CompiledMethod* nm = cb->as_compiled_method_or_null();
1842   assert(nm, "must be");
1843 
1844   // Get the return PC for the passed caller PC.
1845   address return_pc = caller_pc + frame::pc_return_offset;
1846 
1847   // There is a benign race here. We could be attempting to patch to a compiled
1848   // entry point at the same time the callee is being deoptimized. If that is
1849   // the case then entry_point may in fact point to a c2i and we'd patch the
1850   // call site with the same old data. clear_code will set code() to NULL
1851   // at the end of it. If we happen to see that NULL then we can skip trying
1852   // to patch. If we hit the window where the callee has a c2i in the
1853   // from_compiled_entry and the NULL isn't present yet then we lose the race
1854   // and patch the code with the same old data. Asi es la vida.
1855 
1856   if (moop->code() == NULL) return;
1857 
1858   if (nm->is_in_use()) {
1859 
1860     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1861     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1862     if (NativeCall::is_call_before(return_pc)) {
1863       ResourceMark mark;
1864       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1865       //
1866       // bug 6281185. We might get here after resolving a call site to a vanilla
1867       // virtual call. Because the resolvee uses the verified entry it may then
1868       // see compiled code and attempt to patch the site by calling us. This would
1869       // then incorrectly convert the call site to optimized and its downhill from
1870       // there. If you're lucky you'll get the assert in the bugid, if not you've
1871       // just made a call site that could be megamorphic into a monomorphic site
1872       // for the rest of its life! Just another racing bug in the life of
1873       // fixup_callers_callsite ...
1874       //
1875       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1876       iter.next();
1877       assert(iter.has_current(), "must have a reloc at java call site");
1878       relocInfo::relocType typ = iter.reloc()->type();
1879       if (typ != relocInfo::static_call_type &&
1880            typ != relocInfo::opt_virtual_call_type &&
1881            typ != relocInfo::static_stub_type) {
1882         return;
1883       }
1884       address destination = call->destination();
1885       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1886         call->set_destination_mt_safe(entry_point);
1887       }
1888     }
1889   }
1890 IRT_END
1891 
1892 
1893 // same as JVM_Arraycopy, but called directly from compiled code
1894 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1895                                                 oopDesc* dest, jint dest_pos,
1896                                                 jint length,
1897                                                 JavaThread* thread)) {
1898 #ifndef PRODUCT
1899   _slow_array_copy_ctr++;
1900 #endif
1901   // Check if we have null pointers
1902   if (src == NULL || dest == NULL) {
1903     THROW(vmSymbols::java_lang_NullPointerException());
1904   }
1905   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1906   // even though the copy_array API also performs dynamic checks to ensure
1907   // that src and dest are truly arrays (and are conformable).
1908   // The copy_array mechanism is awkward and could be removed, but
1909   // the compilers don't call this function except as a last resort,
1910   // so it probably doesn't matter.
1911   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1912                                         (arrayOopDesc*)dest, dest_pos,
1913                                         length, thread);
1914 }
1915 JRT_END
1916 
1917 // The caller of generate_class_cast_message() (or one of its callers)
1918 // must use a ResourceMark in order to correctly free the result.
1919 char* SharedRuntime::generate_class_cast_message(
1920     JavaThread* thread, Klass* caster_klass) {
1921 
1922   // Get target class name from the checkcast instruction
1923   vframeStream vfst(thread, true);
1924   assert(!vfst.at_end(), "Java frame must exist");
1925   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1926   constantPoolHandle cpool(thread, vfst.method()->constants());
1927   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1928   Symbol* target_klass_name = NULL;
1929   if (target_klass == NULL) {
1930     // This klass should be resolved, but just in case, get the name in the klass slot.
1931     target_klass_name = cpool->klass_name_at(cc.index());
1932   }
1933   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1934 }
1935 
1936 
1937 // The caller of generate_class_cast_message() (or one of its callers)
1938 // must use a ResourceMark in order to correctly free the result.
1939 char* SharedRuntime::generate_class_cast_message(
1940     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1941 
1942   const char* caster_name = caster_klass->class_loader_and_module_name();
1943 
1944   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1945   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1946                                                    target_klass->class_loader_and_module_name();
1947 
1948   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
1949 
1950   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1951   if (message == NULL) {
1952     // Shouldn't happen, but don't cause even more problems if it does
1953     message = const_cast<char*>(caster_klass->external_name());
1954   } else {
1955     jio_snprintf(message,
1956                  msglen,
1957                  "%s cannot be cast to %s",
1958                  caster_name,
1959                  target_name);
1960   }
1961   return message;
1962 }
1963 
1964 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1965   (void) JavaThread::current()->reguard_stack();
1966 JRT_END
1967 
1968 
1969 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1970 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1971   // Disable ObjectSynchronizer::quick_enter() in default config
1972   // on AARCH64 and ARM until JDK-8153107 is resolved.
1973   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
1974       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
1975       !SafepointSynchronize::is_synchronizing()) {
1976     // Only try quick_enter() if we're not trying to reach a safepoint
1977     // so that the calling thread reaches the safepoint more quickly.
1978     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1979   }
1980   // NO_ASYNC required because an async exception on the state transition destructor
1981   // would leave you with the lock held and it would never be released.
1982   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1983   // and the model is that an exception implies the method failed.
1984   JRT_BLOCK_NO_ASYNC
1985   oop obj(_obj);
1986   if (PrintBiasedLockingStatistics) {
1987     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1988   }
1989   Handle h_obj(THREAD, obj);
1990   if (UseBiasedLocking) {
1991     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1992     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1993   } else {
1994     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1995   }
1996   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1997   JRT_BLOCK_END
1998 JRT_END
1999 
2000 // Handles the uncommon cases of monitor unlocking in compiled code
2001 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2002    oop obj(_obj);
2003   assert(JavaThread::current() == THREAD, "invariant");
2004   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2005   // testing was unable to ever fire the assert that guarded it so I have removed it.
2006   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2007 #undef MIGHT_HAVE_PENDING
2008 #ifdef MIGHT_HAVE_PENDING
2009   // Save and restore any pending_exception around the exception mark.
2010   // While the slow_exit must not throw an exception, we could come into
2011   // this routine with one set.
2012   oop pending_excep = NULL;
2013   const char* pending_file;
2014   int pending_line;
2015   if (HAS_PENDING_EXCEPTION) {
2016     pending_excep = PENDING_EXCEPTION;
2017     pending_file  = THREAD->exception_file();
2018     pending_line  = THREAD->exception_line();
2019     CLEAR_PENDING_EXCEPTION;
2020   }
2021 #endif /* MIGHT_HAVE_PENDING */
2022 
2023   {
2024     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2025     EXCEPTION_MARK;
2026     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2027   }
2028 
2029 #ifdef MIGHT_HAVE_PENDING
2030   if (pending_excep != NULL) {
2031     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2032   }
2033 #endif /* MIGHT_HAVE_PENDING */
2034 JRT_END
2035 
2036 #ifndef PRODUCT
2037 
2038 void SharedRuntime::print_statistics() {
2039   ttyLocker ttyl;
2040   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2041 
2042   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2043 
2044   SharedRuntime::print_ic_miss_histogram();
2045 
2046   if (CountRemovableExceptions) {
2047     if (_nof_removable_exceptions > 0) {
2048       Unimplemented(); // this counter is not yet incremented
2049       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2050     }
2051   }
2052 
2053   // Dump the JRT_ENTRY counters
2054   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2055   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2056   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2057   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2058   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2059   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2060   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2061 
2062   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2063   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2064   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2065   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2066   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2067 
2068   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2069   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2070   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2071   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2072   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2073   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2074   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2075   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2076   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2077   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2078   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2079   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2080   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2081   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2082   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2083   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2084 
2085   AdapterHandlerLibrary::print_statistics();
2086 
2087   if (xtty != NULL)  xtty->tail("statistics");
2088 }
2089 
2090 inline double percent(int x, int y) {
2091   return 100.0 * x / MAX2(y, 1);
2092 }
2093 
2094 class MethodArityHistogram {
2095  public:
2096   enum { MAX_ARITY = 256 };
2097  private:
2098   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2099   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2100   static int _max_arity;                      // max. arity seen
2101   static int _max_size;                       // max. arg size seen
2102 
2103   static void add_method_to_histogram(nmethod* nm) {
2104     Method* m = nm->method();
2105     ArgumentCount args(m->signature());
2106     int arity   = args.size() + (m->is_static() ? 0 : 1);
2107     int argsize = m->size_of_parameters();
2108     arity   = MIN2(arity, MAX_ARITY-1);
2109     argsize = MIN2(argsize, MAX_ARITY-1);
2110     int count = nm->method()->compiled_invocation_count();
2111     _arity_histogram[arity]  += count;
2112     _size_histogram[argsize] += count;
2113     _max_arity = MAX2(_max_arity, arity);
2114     _max_size  = MAX2(_max_size, argsize);
2115   }
2116 
2117   void print_histogram_helper(int n, int* histo, const char* name) {
2118     const int N = MIN2(5, n);
2119     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2120     double sum = 0;
2121     double weighted_sum = 0;
2122     int i;
2123     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2124     double rest = sum;
2125     double percent = sum / 100;
2126     for (i = 0; i <= N; i++) {
2127       rest -= histo[i];
2128       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2129     }
2130     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2131     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2132   }
2133 
2134   void print_histogram() {
2135     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2136     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2137     tty->print_cr("\nSame for parameter size (in words):");
2138     print_histogram_helper(_max_size, _size_histogram, "size");
2139     tty->cr();
2140   }
2141 
2142  public:
2143   MethodArityHistogram() {
2144     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2145     _max_arity = _max_size = 0;
2146     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2147     CodeCache::nmethods_do(add_method_to_histogram);
2148     print_histogram();
2149   }
2150 };
2151 
2152 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2153 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2154 int MethodArityHistogram::_max_arity;
2155 int MethodArityHistogram::_max_size;
2156 
2157 void SharedRuntime::print_call_statistics(int comp_total) {
2158   tty->print_cr("Calls from compiled code:");
2159   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2160   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2161   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2162   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2163   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2164   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2165   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2166   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2167   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2168   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2169   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2170   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2171   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2172   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2173   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2174   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2175   tty->cr();
2176   tty->print_cr("Note 1: counter updates are not MT-safe.");
2177   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2178   tty->print_cr("        %% in nested categories are relative to their category");
2179   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2180   tty->cr();
2181 
2182   MethodArityHistogram h;
2183 }
2184 #endif
2185 
2186 
2187 // A simple wrapper class around the calling convention information
2188 // that allows sharing of adapters for the same calling convention.
2189 class AdapterFingerPrint : public CHeapObj<mtCode> {
2190  private:
2191   enum {
2192     _basic_type_bits = 4,
2193     _basic_type_mask = right_n_bits(_basic_type_bits),
2194     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2195     _compact_int_count = 3
2196   };
2197   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2198   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2199 
2200   union {
2201     int  _compact[_compact_int_count];
2202     int* _fingerprint;
2203   } _value;
2204   int _length; // A negative length indicates the fingerprint is in the compact form,
2205                // Otherwise _value._fingerprint is the array.
2206 
2207   // Remap BasicTypes that are handled equivalently by the adapters.
2208   // These are correct for the current system but someday it might be
2209   // necessary to make this mapping platform dependent.
2210   static int adapter_encoding(BasicType in) {
2211     switch (in) {
2212       case T_BOOLEAN:
2213       case T_BYTE:
2214       case T_SHORT:
2215       case T_CHAR:
2216         // There are all promoted to T_INT in the calling convention
2217         return T_INT;
2218 
2219       case T_OBJECT:
2220       case T_ARRAY:
2221         // In other words, we assume that any register good enough for
2222         // an int or long is good enough for a managed pointer.
2223 #ifdef _LP64
2224         return T_LONG;
2225 #else
2226         return T_INT;
2227 #endif
2228 
2229       case T_INT:
2230       case T_LONG:
2231       case T_FLOAT:
2232       case T_DOUBLE:
2233       case T_VOID:
2234         return in;
2235 
2236       default:
2237         ShouldNotReachHere();
2238         return T_CONFLICT;
2239     }
2240   }
2241 
2242  public:
2243   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2244     // The fingerprint is based on the BasicType signature encoded
2245     // into an array of ints with eight entries per int.
2246     int* ptr;
2247     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2248     if (len <= _compact_int_count) {
2249       assert(_compact_int_count == 3, "else change next line");
2250       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2251       // Storing the signature encoded as signed chars hits about 98%
2252       // of the time.
2253       _length = -len;
2254       ptr = _value._compact;
2255     } else {
2256       _length = len;
2257       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2258       ptr = _value._fingerprint;
2259     }
2260 
2261     // Now pack the BasicTypes with 8 per int
2262     int sig_index = 0;
2263     for (int index = 0; index < len; index++) {
2264       int value = 0;
2265       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2266         int bt = ((sig_index < total_args_passed)
2267                   ? adapter_encoding(sig_bt[sig_index++])
2268                   : 0);
2269         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2270         value = (value << _basic_type_bits) | bt;
2271       }
2272       ptr[index] = value;
2273     }
2274   }
2275 
2276   ~AdapterFingerPrint() {
2277     if (_length > 0) {
2278       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2279     }
2280   }
2281 
2282   int value(int index) {
2283     if (_length < 0) {
2284       return _value._compact[index];
2285     }
2286     return _value._fingerprint[index];
2287   }
2288   int length() {
2289     if (_length < 0) return -_length;
2290     return _length;
2291   }
2292 
2293   bool is_compact() {
2294     return _length <= 0;
2295   }
2296 
2297   unsigned int compute_hash() {
2298     int hash = 0;
2299     for (int i = 0; i < length(); i++) {
2300       int v = value(i);
2301       hash = (hash << 8) ^ v ^ (hash >> 5);
2302     }
2303     return (unsigned int)hash;
2304   }
2305 
2306   const char* as_string() {
2307     stringStream st;
2308     st.print("0x");
2309     for (int i = 0; i < length(); i++) {
2310       st.print("%08x", value(i));
2311     }
2312     return st.as_string();
2313   }
2314 
2315   bool equals(AdapterFingerPrint* other) {
2316     if (other->_length != _length) {
2317       return false;
2318     }
2319     if (_length < 0) {
2320       assert(_compact_int_count == 3, "else change next line");
2321       return _value._compact[0] == other->_value._compact[0] &&
2322              _value._compact[1] == other->_value._compact[1] &&
2323              _value._compact[2] == other->_value._compact[2];
2324     } else {
2325       for (int i = 0; i < _length; i++) {
2326         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2327           return false;
2328         }
2329       }
2330     }
2331     return true;
2332   }
2333 };
2334 
2335 
2336 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2337 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2338   friend class AdapterHandlerTableIterator;
2339 
2340  private:
2341 
2342 #ifndef PRODUCT
2343   static int _lookups; // number of calls to lookup
2344   static int _buckets; // number of buckets checked
2345   static int _equals;  // number of buckets checked with matching hash
2346   static int _hits;    // number of successful lookups
2347   static int _compact; // number of equals calls with compact signature
2348 #endif
2349 
2350   AdapterHandlerEntry* bucket(int i) {
2351     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2352   }
2353 
2354  public:
2355   AdapterHandlerTable()
2356     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2357 
2358   // Create a new entry suitable for insertion in the table
2359   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2360     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2361     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2362     if (DumpSharedSpaces) {
2363       ((CDSAdapterHandlerEntry*)entry)->init();
2364     }
2365     return entry;
2366   }
2367 
2368   // Insert an entry into the table
2369   void add(AdapterHandlerEntry* entry) {
2370     int index = hash_to_index(entry->hash());
2371     add_entry(index, entry);
2372   }
2373 
2374   void free_entry(AdapterHandlerEntry* entry) {
2375     entry->deallocate();
2376     BasicHashtable<mtCode>::free_entry(entry);
2377   }
2378 
2379   // Find a entry with the same fingerprint if it exists
2380   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2381     NOT_PRODUCT(_lookups++);
2382     AdapterFingerPrint fp(total_args_passed, sig_bt);
2383     unsigned int hash = fp.compute_hash();
2384     int index = hash_to_index(hash);
2385     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2386       NOT_PRODUCT(_buckets++);
2387       if (e->hash() == hash) {
2388         NOT_PRODUCT(_equals++);
2389         if (fp.equals(e->fingerprint())) {
2390 #ifndef PRODUCT
2391           if (fp.is_compact()) _compact++;
2392           _hits++;
2393 #endif
2394           return e;
2395         }
2396       }
2397     }
2398     return NULL;
2399   }
2400 
2401 #ifndef PRODUCT
2402   void print_statistics() {
2403     ResourceMark rm;
2404     int longest = 0;
2405     int empty = 0;
2406     int total = 0;
2407     int nonempty = 0;
2408     for (int index = 0; index < table_size(); index++) {
2409       int count = 0;
2410       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2411         count++;
2412       }
2413       if (count != 0) nonempty++;
2414       if (count == 0) empty++;
2415       if (count > longest) longest = count;
2416       total += count;
2417     }
2418     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2419                   empty, longest, total, total / (double)nonempty);
2420     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2421                   _lookups, _buckets, _equals, _hits, _compact);
2422   }
2423 #endif
2424 };
2425 
2426 
2427 #ifndef PRODUCT
2428 
2429 int AdapterHandlerTable::_lookups;
2430 int AdapterHandlerTable::_buckets;
2431 int AdapterHandlerTable::_equals;
2432 int AdapterHandlerTable::_hits;
2433 int AdapterHandlerTable::_compact;
2434 
2435 #endif
2436 
2437 class AdapterHandlerTableIterator : public StackObj {
2438  private:
2439   AdapterHandlerTable* _table;
2440   int _index;
2441   AdapterHandlerEntry* _current;
2442 
2443   void scan() {
2444     while (_index < _table->table_size()) {
2445       AdapterHandlerEntry* a = _table->bucket(_index);
2446       _index++;
2447       if (a != NULL) {
2448         _current = a;
2449         return;
2450       }
2451     }
2452   }
2453 
2454  public:
2455   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2456     scan();
2457   }
2458   bool has_next() {
2459     return _current != NULL;
2460   }
2461   AdapterHandlerEntry* next() {
2462     if (_current != NULL) {
2463       AdapterHandlerEntry* result = _current;
2464       _current = _current->next();
2465       if (_current == NULL) scan();
2466       return result;
2467     } else {
2468       return NULL;
2469     }
2470   }
2471 };
2472 
2473 
2474 // ---------------------------------------------------------------------------
2475 // Implementation of AdapterHandlerLibrary
2476 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2477 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2478 const int AdapterHandlerLibrary_size = 16*K;
2479 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2480 
2481 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2482   // Should be called only when AdapterHandlerLibrary_lock is active.
2483   if (_buffer == NULL) // Initialize lazily
2484       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2485   return _buffer;
2486 }
2487 
2488 extern "C" void unexpected_adapter_call() {
2489   ShouldNotCallThis();
2490 }
2491 
2492 void AdapterHandlerLibrary::initialize() {
2493   if (_adapters != NULL) return;
2494   _adapters = new AdapterHandlerTable();
2495 
2496   // Create a special handler for abstract methods.  Abstract methods
2497   // are never compiled so an i2c entry is somewhat meaningless, but
2498   // throw AbstractMethodError just in case.
2499   // Pass wrong_method_abstract for the c2i transitions to return
2500   // AbstractMethodError for invalid invocations.
2501   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2502   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2503                                                               StubRoutines::throw_AbstractMethodError_entry(),
2504                                                               wrong_method_abstract, wrong_method_abstract);
2505 }
2506 
2507 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2508                                                       address i2c_entry,
2509                                                       address c2i_entry,
2510                                                       address c2i_unverified_entry) {
2511   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2512 }
2513 
2514 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2515   AdapterHandlerEntry* entry = get_adapter0(method);
2516   if (method->is_shared()) {
2517     // See comments around Method::link_method()
2518     MutexLocker mu(AdapterHandlerLibrary_lock);
2519     if (method->adapter() == NULL) {
2520       method->update_adapter_trampoline(entry);
2521     }
2522     address trampoline = method->from_compiled_entry();
2523     if (*(int*)trampoline == 0) {
2524       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2525       MacroAssembler _masm(&buffer);
2526       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2527       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2528 
2529       if (PrintInterpreter) {
2530         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2531       }
2532     }
2533   }
2534 
2535   return entry;
2536 }
2537 
2538 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2539   // Use customized signature handler.  Need to lock around updates to
2540   // the AdapterHandlerTable (it is not safe for concurrent readers
2541   // and a single writer: this could be fixed if it becomes a
2542   // problem).
2543 
2544   ResourceMark rm;
2545 
2546   NOT_PRODUCT(int insts_size);
2547   AdapterBlob* new_adapter = NULL;
2548   AdapterHandlerEntry* entry = NULL;
2549   AdapterFingerPrint* fingerprint = NULL;
2550   {
2551     MutexLocker mu(AdapterHandlerLibrary_lock);
2552     // make sure data structure is initialized
2553     initialize();
2554 
2555     if (method->is_abstract()) {
2556       return _abstract_method_handler;
2557     }
2558 
2559     // Fill in the signature array, for the calling-convention call.
2560     int total_args_passed = method->size_of_parameters(); // All args on stack
2561 
2562     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2563     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2564     int i = 0;
2565     if (!method->is_static())  // Pass in receiver first
2566       sig_bt[i++] = T_OBJECT;
2567     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2568       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2569       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2570         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2571     }
2572     assert(i == total_args_passed, "");
2573 
2574     // Lookup method signature's fingerprint
2575     entry = _adapters->lookup(total_args_passed, sig_bt);
2576 
2577 #ifdef ASSERT
2578     AdapterHandlerEntry* shared_entry = NULL;
2579     // Start adapter sharing verification only after the VM is booted.
2580     if (VerifyAdapterSharing && (entry != NULL)) {
2581       shared_entry = entry;
2582       entry = NULL;
2583     }
2584 #endif
2585 
2586     if (entry != NULL) {
2587       return entry;
2588     }
2589 
2590     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2591     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2592 
2593     // Make a C heap allocated version of the fingerprint to store in the adapter
2594     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2595 
2596     // StubRoutines::code2() is initialized after this function can be called. As a result,
2597     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2598     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2599     // stub that ensure that an I2C stub is called from an interpreter frame.
2600     bool contains_all_checks = StubRoutines::code2() != NULL;
2601 
2602     // Create I2C & C2I handlers
2603     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2604     if (buf != NULL) {
2605       CodeBuffer buffer(buf);
2606       short buffer_locs[20];
2607       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2608                                              sizeof(buffer_locs)/sizeof(relocInfo));
2609 
2610       MacroAssembler _masm(&buffer);
2611       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2612                                                      total_args_passed,
2613                                                      comp_args_on_stack,
2614                                                      sig_bt,
2615                                                      regs,
2616                                                      fingerprint);
2617 #ifdef ASSERT
2618       if (VerifyAdapterSharing) {
2619         if (shared_entry != NULL) {
2620           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2621           // Release the one just created and return the original
2622           _adapters->free_entry(entry);
2623           return shared_entry;
2624         } else  {
2625           entry->save_code(buf->code_begin(), buffer.insts_size());
2626         }
2627       }
2628 #endif
2629 
2630       new_adapter = AdapterBlob::create(&buffer);
2631       NOT_PRODUCT(insts_size = buffer.insts_size());
2632     }
2633     if (new_adapter == NULL) {
2634       // CodeCache is full, disable compilation
2635       // Ought to log this but compile log is only per compile thread
2636       // and we're some non descript Java thread.
2637       return NULL; // Out of CodeCache space
2638     }
2639     entry->relocate(new_adapter->content_begin());
2640 #ifndef PRODUCT
2641     // debugging suppport
2642     if (PrintAdapterHandlers || PrintStubCode) {
2643       ttyLocker ttyl;
2644       entry->print_adapter_on(tty);
2645       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2646                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2647                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2648       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2649       if (Verbose || PrintStubCode) {
2650         address first_pc = entry->base_address();
2651         if (first_pc != NULL) {
2652           Disassembler::decode(first_pc, first_pc + insts_size);
2653           tty->cr();
2654         }
2655       }
2656     }
2657 #endif
2658     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2659     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2660     if (contains_all_checks || !VerifyAdapterCalls) {
2661       _adapters->add(entry);
2662     }
2663   }
2664   // Outside of the lock
2665   if (new_adapter != NULL) {
2666     char blob_id[256];
2667     jio_snprintf(blob_id,
2668                  sizeof(blob_id),
2669                  "%s(%s)@" PTR_FORMAT,
2670                  new_adapter->name(),
2671                  fingerprint->as_string(),
2672                  new_adapter->content_begin());
2673     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2674 
2675     if (JvmtiExport::should_post_dynamic_code_generated()) {
2676       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2677     }
2678   }
2679   return entry;
2680 }
2681 
2682 address AdapterHandlerEntry::base_address() {
2683   address base = _i2c_entry;
2684   if (base == NULL)  base = _c2i_entry;
2685   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2686   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2687   return base;
2688 }
2689 
2690 void AdapterHandlerEntry::relocate(address new_base) {
2691   address old_base = base_address();
2692   assert(old_base != NULL, "");
2693   ptrdiff_t delta = new_base - old_base;
2694   if (_i2c_entry != NULL)
2695     _i2c_entry += delta;
2696   if (_c2i_entry != NULL)
2697     _c2i_entry += delta;
2698   if (_c2i_unverified_entry != NULL)
2699     _c2i_unverified_entry += delta;
2700   assert(base_address() == new_base, "");
2701 }
2702 
2703 
2704 void AdapterHandlerEntry::deallocate() {
2705   delete _fingerprint;
2706 #ifdef ASSERT
2707   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2708 #endif
2709 }
2710 
2711 
2712 #ifdef ASSERT
2713 // Capture the code before relocation so that it can be compared
2714 // against other versions.  If the code is captured after relocation
2715 // then relative instructions won't be equivalent.
2716 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2717   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2718   _saved_code_length = length;
2719   memcpy(_saved_code, buffer, length);
2720 }
2721 
2722 
2723 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2724   if (length != _saved_code_length) {
2725     return false;
2726   }
2727 
2728   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2729 }
2730 #endif
2731 
2732 
2733 /**
2734  * Create a native wrapper for this native method.  The wrapper converts the
2735  * Java-compiled calling convention to the native convention, handles
2736  * arguments, and transitions to native.  On return from the native we transition
2737  * back to java blocking if a safepoint is in progress.
2738  */
2739 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2740   ResourceMark rm;
2741   nmethod* nm = NULL;
2742 
2743   assert(method->is_native(), "must be native");
2744   assert(method->is_method_handle_intrinsic() ||
2745          method->has_native_function(), "must have something valid to call!");
2746 
2747   {
2748     // Perform the work while holding the lock, but perform any printing outside the lock
2749     MutexLocker mu(AdapterHandlerLibrary_lock);
2750     // See if somebody beat us to it
2751     if (method->code() != NULL) {
2752       return;
2753     }
2754 
2755     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2756     assert(compile_id > 0, "Must generate native wrapper");
2757 
2758 
2759     ResourceMark rm;
2760     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2761     if (buf != NULL) {
2762       CodeBuffer buffer(buf);
2763       double locs_buf[20];
2764       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2765       MacroAssembler _masm(&buffer);
2766 
2767       // Fill in the signature array, for the calling-convention call.
2768       const int total_args_passed = method->size_of_parameters();
2769 
2770       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2771       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2772       int i=0;
2773       if (!method->is_static())  // Pass in receiver first
2774         sig_bt[i++] = T_OBJECT;
2775       SignatureStream ss(method->signature());
2776       for (; !ss.at_return_type(); ss.next()) {
2777         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2778         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2779           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2780       }
2781       assert(i == total_args_passed, "");
2782       BasicType ret_type = ss.type();
2783 
2784       // Now get the compiled-Java layout as input (or output) arguments.
2785       // NOTE: Stubs for compiled entry points of method handle intrinsics
2786       // are just trampolines so the argument registers must be outgoing ones.
2787       const bool is_outgoing = method->is_method_handle_intrinsic();
2788       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2789 
2790       // Generate the compiled-to-native wrapper code
2791       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2792 
2793       if (nm != NULL) {
2794         method->set_code(method, nm);
2795 
2796         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2797         if (directive->PrintAssemblyOption) {
2798           nm->print_code();
2799         }
2800         DirectivesStack::release(directive);
2801       }
2802     }
2803   } // Unlock AdapterHandlerLibrary_lock
2804 
2805 
2806   // Install the generated code.
2807   if (nm != NULL) {
2808     const char *msg = method->is_static() ? "(static)" : "";
2809     CompileTask::print_ul(nm, msg);
2810     if (PrintCompilation) {
2811       ttyLocker ttyl;
2812       CompileTask::print(tty, nm, msg);
2813     }
2814     nm->post_compiled_method_load_event();
2815   }
2816 }
2817 
2818 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2819   assert(thread == JavaThread::current(), "must be");
2820   // The code is about to enter a JNI lazy critical native method and
2821   // _needs_gc is true, so if this thread is already in a critical
2822   // section then just return, otherwise this thread should block
2823   // until needs_gc has been cleared.
2824   if (thread->in_critical()) {
2825     return;
2826   }
2827   // Lock and unlock a critical section to give the system a chance to block
2828   GCLocker::lock_critical(thread);
2829   GCLocker::unlock_critical(thread);
2830 JRT_END
2831 
2832 // -------------------------------------------------------------------------
2833 // Java-Java calling convention
2834 // (what you use when Java calls Java)
2835 
2836 //------------------------------name_for_receiver----------------------------------
2837 // For a given signature, return the VMReg for parameter 0.
2838 VMReg SharedRuntime::name_for_receiver() {
2839   VMRegPair regs;
2840   BasicType sig_bt = T_OBJECT;
2841   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2842   // Return argument 0 register.  In the LP64 build pointers
2843   // take 2 registers, but the VM wants only the 'main' name.
2844   return regs.first();
2845 }
2846 
2847 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2848   // This method is returning a data structure allocating as a
2849   // ResourceObject, so do not put any ResourceMarks in here.
2850   char *s = sig->as_C_string();
2851   int len = (int)strlen(s);
2852   s++; len--;                   // Skip opening paren
2853 
2854   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2855   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2856   int cnt = 0;
2857   if (has_receiver) {
2858     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2859   }
2860 
2861   while (*s != ')') {          // Find closing right paren
2862     switch (*s++) {            // Switch on signature character
2863     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2864     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2865     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2866     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2867     case 'I': sig_bt[cnt++] = T_INT;     break;
2868     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2869     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2870     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2871     case 'V': sig_bt[cnt++] = T_VOID;    break;
2872     case 'L':                   // Oop
2873       while (*s++ != ';');   // Skip signature
2874       sig_bt[cnt++] = T_OBJECT;
2875       break;
2876     case '[': {                 // Array
2877       do {                      // Skip optional size
2878         while (*s >= '0' && *s <= '9') s++;
2879       } while (*s++ == '[');   // Nested arrays?
2880       // Skip element type
2881       if (s[-1] == 'L')
2882         while (*s++ != ';'); // Skip signature
2883       sig_bt[cnt++] = T_ARRAY;
2884       break;
2885     }
2886     default : ShouldNotReachHere();
2887     }
2888   }
2889 
2890   if (has_appendix) {
2891     sig_bt[cnt++] = T_OBJECT;
2892   }
2893 
2894   assert(cnt < 256, "grow table size");
2895 
2896   int comp_args_on_stack;
2897   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2898 
2899   // the calling convention doesn't count out_preserve_stack_slots so
2900   // we must add that in to get "true" stack offsets.
2901 
2902   if (comp_args_on_stack) {
2903     for (int i = 0; i < cnt; i++) {
2904       VMReg reg1 = regs[i].first();
2905       if (reg1->is_stack()) {
2906         // Yuck
2907         reg1 = reg1->bias(out_preserve_stack_slots());
2908       }
2909       VMReg reg2 = regs[i].second();
2910       if (reg2->is_stack()) {
2911         // Yuck
2912         reg2 = reg2->bias(out_preserve_stack_slots());
2913       }
2914       regs[i].set_pair(reg2, reg1);
2915     }
2916   }
2917 
2918   // results
2919   *arg_size = cnt;
2920   return regs;
2921 }
2922 
2923 // OSR Migration Code
2924 //
2925 // This code is used convert interpreter frames into compiled frames.  It is
2926 // called from very start of a compiled OSR nmethod.  A temp array is
2927 // allocated to hold the interesting bits of the interpreter frame.  All
2928 // active locks are inflated to allow them to move.  The displaced headers and
2929 // active interpreter locals are copied into the temp buffer.  Then we return
2930 // back to the compiled code.  The compiled code then pops the current
2931 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2932 // copies the interpreter locals and displaced headers where it wants.
2933 // Finally it calls back to free the temp buffer.
2934 //
2935 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2936 
2937 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2938 
2939   //
2940   // This code is dependent on the memory layout of the interpreter local
2941   // array and the monitors. On all of our platforms the layout is identical
2942   // so this code is shared. If some platform lays the their arrays out
2943   // differently then this code could move to platform specific code or
2944   // the code here could be modified to copy items one at a time using
2945   // frame accessor methods and be platform independent.
2946 
2947   frame fr = thread->last_frame();
2948   assert(fr.is_interpreted_frame(), "");
2949   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2950 
2951   // Figure out how many monitors are active.
2952   int active_monitor_count = 0;
2953   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2954        kptr < fr.interpreter_frame_monitor_begin();
2955        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2956     if (kptr->obj() != NULL) active_monitor_count++;
2957   }
2958 
2959   // QQQ we could place number of active monitors in the array so that compiled code
2960   // could double check it.
2961 
2962   Method* moop = fr.interpreter_frame_method();
2963   int max_locals = moop->max_locals();
2964   // Allocate temp buffer, 1 word per local & 2 per active monitor
2965   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
2966   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2967 
2968   // Copy the locals.  Order is preserved so that loading of longs works.
2969   // Since there's no GC I can copy the oops blindly.
2970   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2971   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2972                        (HeapWord*)&buf[0],
2973                        max_locals);
2974 
2975   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2976   int i = max_locals;
2977   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2978        kptr2 < fr.interpreter_frame_monitor_begin();
2979        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2980     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2981       BasicLock *lock = kptr2->lock();
2982       // Inflate so the displaced header becomes position-independent
2983       if (lock->displaced_header()->is_unlocked())
2984         ObjectSynchronizer::inflate_helper(kptr2->obj());
2985       // Now the displaced header is free to move
2986       buf[i++] = (intptr_t)lock->displaced_header();
2987       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2988     }
2989   }
2990   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2991 
2992   return buf;
2993 JRT_END
2994 
2995 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2996   FREE_C_HEAP_ARRAY(intptr_t, buf);
2997 JRT_END
2998 
2999 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3000   AdapterHandlerTableIterator iter(_adapters);
3001   while (iter.has_next()) {
3002     AdapterHandlerEntry* a = iter.next();
3003     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3004   }
3005   return false;
3006 }
3007 
3008 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3009   AdapterHandlerTableIterator iter(_adapters);
3010   while (iter.has_next()) {
3011     AdapterHandlerEntry* a = iter.next();
3012     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3013       st->print("Adapter for signature: ");
3014       a->print_adapter_on(tty);
3015       return;
3016     }
3017   }
3018   assert(false, "Should have found handler");
3019 }
3020 
3021 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3022   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3023                p2i(this), fingerprint()->as_string(),
3024                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3025 
3026 }
3027 
3028 #if INCLUDE_CDS
3029 
3030 void CDSAdapterHandlerEntry::init() {
3031   assert(DumpSharedSpaces, "used during dump time only");
3032   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3033   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3034 };
3035 
3036 #endif // INCLUDE_CDS
3037 
3038 
3039 #ifndef PRODUCT
3040 
3041 void AdapterHandlerLibrary::print_statistics() {
3042   _adapters->print_statistics();
3043 }
3044 
3045 #endif /* PRODUCT */
3046 
3047 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3048   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3049   if (thread->stack_reserved_zone_disabled()) {
3050   thread->enable_stack_reserved_zone();
3051   }
3052   thread->set_reserved_stack_activation(thread->stack_base());
3053 JRT_END
3054 
3055 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3056   ResourceMark rm(thread);
3057   frame activation;
3058   CompiledMethod* nm = NULL;
3059   int count = 1;
3060 
3061   assert(fr.is_java_frame(), "Must start on Java frame");
3062 
3063   while (true) {
3064     Method* method = NULL;
3065     bool found = false;
3066     if (fr.is_interpreted_frame()) {
3067       method = fr.interpreter_frame_method();
3068       if (method != NULL && method->has_reserved_stack_access()) {
3069         found = true;
3070       }
3071     } else {
3072       CodeBlob* cb = fr.cb();
3073       if (cb != NULL && cb->is_compiled()) {
3074         nm = cb->as_compiled_method();
3075         method = nm->method();
3076         // scope_desc_near() must be used, instead of scope_desc_at() because on
3077         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3078         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3079           method = sd->method();
3080           if (method != NULL && method->has_reserved_stack_access()) {
3081             found = true;
3082       }
3083     }
3084       }
3085     }
3086     if (found) {
3087       activation = fr;
3088       warning("Potentially dangerous stack overflow in "
3089               "ReservedStackAccess annotated method %s [%d]",
3090               method->name_and_sig_as_C_string(), count++);
3091       EventReservedStackActivation event;
3092       if (event.should_commit()) {
3093         event.set_method(method);
3094         event.commit();
3095       }
3096     }
3097     if (fr.is_first_java_frame()) {
3098       break;
3099     } else {
3100       fr = fr.java_sender();
3101     }
3102   }
3103   return activation;
3104 }
3105 
3106 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3107   // After any safepoint, just before going back to compiled code,
3108   // we inform the GC that we will be doing initializing writes to
3109   // this object in the future without emitting card-marks, so
3110   // GC may take any compensating steps.
3111 
3112   oop new_obj = thread->vm_result();
3113   if (new_obj == NULL) return;
3114 
3115   BarrierSet *bs = Universe::heap()->barrier_set();
3116   bs->on_slowpath_allocation_exit(thread, new_obj);
3117 }