1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "jfr/support/jfrIntrinsics.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/access.inline.hpp"
  52 #include "oops/objArrayOop.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/compilationPolicy.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/vframe.inline.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/events.hpp"
  68 
  69 
  70 // Implementation of StubAssembler
  71 
  72 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  73   _name = name;
  74   _must_gc_arguments = false;
  75   _frame_size = no_frame_size;
  76   _num_rt_args = 0;
  77   _stub_id = stub_id;
  78 }
  79 
  80 
  81 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  82   _name = name;
  83   _must_gc_arguments = must_gc_arguments;
  84 }
  85 
  86 
  87 void StubAssembler::set_frame_size(int size) {
  88   if (_frame_size == no_frame_size) {
  89     _frame_size = size;
  90   }
  91   assert(_frame_size == size, "can't change the frame size");
  92 }
  93 
  94 
  95 void StubAssembler::set_num_rt_args(int args) {
  96   if (_num_rt_args == 0) {
  97     _num_rt_args = args;
  98   }
  99   assert(_num_rt_args == args, "can't change the number of args");
 100 }
 101 
 102 // Implementation of Runtime1
 103 
 104 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 105 const char *Runtime1::_blob_names[] = {
 106   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 107 };
 108 
 109 #ifndef PRODUCT
 110 // statistics
 111 int Runtime1::_generic_arraycopy_cnt = 0;
 112 int Runtime1::_generic_arraycopystub_cnt = 0;
 113 int Runtime1::_arraycopy_slowcase_cnt = 0;
 114 int Runtime1::_arraycopy_checkcast_cnt = 0;
 115 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 116 int Runtime1::_new_type_array_slowcase_cnt = 0;
 117 int Runtime1::_new_object_array_slowcase_cnt = 0;
 118 int Runtime1::_new_instance_slowcase_cnt = 0;
 119 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 120 int Runtime1::_monitorenter_slowcase_cnt = 0;
 121 int Runtime1::_monitorexit_slowcase_cnt = 0;
 122 int Runtime1::_patch_code_slowcase_cnt = 0;
 123 int Runtime1::_throw_range_check_exception_count = 0;
 124 int Runtime1::_throw_index_exception_count = 0;
 125 int Runtime1::_throw_div0_exception_count = 0;
 126 int Runtime1::_throw_null_pointer_exception_count = 0;
 127 int Runtime1::_throw_class_cast_exception_count = 0;
 128 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 129 int Runtime1::_throw_array_store_exception_count = 0;
 130 int Runtime1::_throw_count = 0;
 131 
 132 static int _byte_arraycopy_stub_cnt = 0;
 133 static int _short_arraycopy_stub_cnt = 0;
 134 static int _int_arraycopy_stub_cnt = 0;
 135 static int _long_arraycopy_stub_cnt = 0;
 136 static int _oop_arraycopy_stub_cnt = 0;
 137 
 138 address Runtime1::arraycopy_count_address(BasicType type) {
 139   switch (type) {
 140   case T_BOOLEAN:
 141   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 142   case T_CHAR:
 143   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 144   case T_FLOAT:
 145   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 146   case T_DOUBLE:
 147   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 148   case T_ARRAY:
 149   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 150   default:
 151     ShouldNotReachHere();
 152     return NULL;
 153   }
 154 }
 155 
 156 
 157 #endif
 158 
 159 // Simple helper to see if the caller of a runtime stub which
 160 // entered the VM has been deoptimized
 161 
 162 static bool caller_is_deopted() {
 163   JavaThread* thread = JavaThread::current();
 164   RegisterMap reg_map(thread, false);
 165   frame runtime_frame = thread->last_frame();
 166   frame caller_frame = runtime_frame.sender(&reg_map);
 167   assert(caller_frame.is_compiled_frame(), "must be compiled");
 168   return caller_frame.is_deoptimized_frame();
 169 }
 170 
 171 // Stress deoptimization
 172 static void deopt_caller() {
 173   if ( !caller_is_deopted()) {
 174     JavaThread* thread = JavaThread::current();
 175     RegisterMap reg_map(thread, false);
 176     frame runtime_frame = thread->last_frame();
 177     frame caller_frame = runtime_frame.sender(&reg_map);
 178     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 179     assert(caller_is_deopted(), "Must be deoptimized");
 180   }
 181 }
 182 
 183 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 184  private:
 185   Runtime1::StubID _id;
 186  public:
 187   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 188   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 189     return Runtime1::generate_code_for(_id, sasm);
 190   }
 191 };
 192 
 193 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 194   ResourceMark rm;
 195   // create code buffer for code storage
 196   CodeBuffer code(buffer_blob);
 197 
 198   OopMapSet* oop_maps;
 199   int frame_size;
 200   bool must_gc_arguments;
 201 
 202   Compilation::setup_code_buffer(&code, 0);
 203 
 204   // create assembler for code generation
 205   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 206   // generate code for runtime stub
 207   oop_maps = cl->generate_code(sasm);
 208   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 209          "if stub has an oop map it must have a valid frame size");
 210   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 211 
 212   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 213   sasm->align(BytesPerWord);
 214   // make sure all code is in code buffer
 215   sasm->flush();
 216 
 217   frame_size = sasm->frame_size();
 218   must_gc_arguments = sasm->must_gc_arguments();
 219   // create blob - distinguish a few special cases
 220   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 221                                                  &code,
 222                                                  CodeOffsets::frame_never_safe,
 223                                                  frame_size,
 224                                                  oop_maps,
 225                                                  must_gc_arguments);
 226   assert(blob != NULL, "blob must exist");
 227   return blob;
 228 }
 229 
 230 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 231   assert(0 <= id && id < number_of_ids, "illegal stub id");
 232   bool expect_oop_map = true;
 233 #ifdef ASSERT
 234   // Make sure that stubs that need oopmaps have them
 235   switch (id) {
 236     // These stubs don't need to have an oopmap
 237   case dtrace_object_alloc_id:
 238   case slow_subtype_check_id:
 239   case fpu2long_stub_id:
 240   case unwind_exception_id:
 241   case counter_overflow_id:
 242 #if defined(SPARC) || defined(PPC32)
 243   case handle_exception_nofpu_id:  // Unused on sparc
 244 #endif
 245     expect_oop_map = false;
 246     break;
 247   default:
 248     break;
 249   }
 250 #endif
 251   StubIDStubAssemblerCodeGenClosure cl(id);
 252   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 253   // install blob
 254   _blobs[id] = blob;
 255 }
 256 
 257 void Runtime1::initialize(BufferBlob* blob) {
 258   // platform-dependent initialization
 259   initialize_pd();
 260   // generate stubs
 261   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 262   // printing
 263 #ifndef PRODUCT
 264   if (PrintSimpleStubs) {
 265     ResourceMark rm;
 266     for (int id = 0; id < number_of_ids; id++) {
 267       _blobs[id]->print();
 268       if (_blobs[id]->oop_maps() != NULL) {
 269         _blobs[id]->oop_maps()->print();
 270       }
 271     }
 272   }
 273 #endif
 274   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 275   bs->generate_c1_runtime_stubs(blob);
 276 }
 277 
 278 CodeBlob* Runtime1::blob_for(StubID id) {
 279   assert(0 <= id && id < number_of_ids, "illegal stub id");
 280   return _blobs[id];
 281 }
 282 
 283 
 284 const char* Runtime1::name_for(StubID id) {
 285   assert(0 <= id && id < number_of_ids, "illegal stub id");
 286   return _blob_names[id];
 287 }
 288 
 289 const char* Runtime1::name_for_address(address entry) {
 290   for (int id = 0; id < number_of_ids; id++) {
 291     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 292   }
 293 
 294 #define FUNCTION_CASE(a, f) \
 295   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 296 
 297   FUNCTION_CASE(entry, os::javaTimeMillis);
 298   FUNCTION_CASE(entry, os::javaTimeNanos);
 299   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 300   FUNCTION_CASE(entry, SharedRuntime::d2f);
 301   FUNCTION_CASE(entry, SharedRuntime::d2i);
 302   FUNCTION_CASE(entry, SharedRuntime::d2l);
 303   FUNCTION_CASE(entry, SharedRuntime::dcos);
 304   FUNCTION_CASE(entry, SharedRuntime::dexp);
 305   FUNCTION_CASE(entry, SharedRuntime::dlog);
 306   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 307   FUNCTION_CASE(entry, SharedRuntime::dpow);
 308   FUNCTION_CASE(entry, SharedRuntime::drem);
 309   FUNCTION_CASE(entry, SharedRuntime::dsin);
 310   FUNCTION_CASE(entry, SharedRuntime::dtan);
 311   FUNCTION_CASE(entry, SharedRuntime::f2i);
 312   FUNCTION_CASE(entry, SharedRuntime::f2l);
 313   FUNCTION_CASE(entry, SharedRuntime::frem);
 314   FUNCTION_CASE(entry, SharedRuntime::l2d);
 315   FUNCTION_CASE(entry, SharedRuntime::l2f);
 316   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 317   FUNCTION_CASE(entry, SharedRuntime::lmul);
 318   FUNCTION_CASE(entry, SharedRuntime::lrem);
 319   FUNCTION_CASE(entry, SharedRuntime::lrem);
 320   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 321   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 322   FUNCTION_CASE(entry, is_instance_of);
 323   FUNCTION_CASE(entry, trace_block_entry);
 324 #ifdef JFR_HAVE_INTRINSICS
 325   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 326 #endif
 327   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 328   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 329   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 330   FUNCTION_CASE(entry, StubRoutines::dexp());
 331   FUNCTION_CASE(entry, StubRoutines::dlog());
 332   FUNCTION_CASE(entry, StubRoutines::dlog10());
 333   FUNCTION_CASE(entry, StubRoutines::dpow());
 334   FUNCTION_CASE(entry, StubRoutines::dsin());
 335   FUNCTION_CASE(entry, StubRoutines::dcos());
 336   FUNCTION_CASE(entry, StubRoutines::dtan());
 337 
 338 #undef FUNCTION_CASE
 339 
 340   // Soft float adds more runtime names.
 341   return pd_name_for_address(entry);
 342 }
 343 
 344 
 345 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 346   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 347 
 348   assert(klass->is_klass(), "not a class");
 349   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 350   InstanceKlass* h = InstanceKlass::cast(klass);
 351   h->check_valid_for_instantiation(true, CHECK);
 352   // make sure klass is initialized
 353   h->initialize(CHECK);
 354   // allocate instance and return via TLS
 355   oop obj = h->allocate_instance(CHECK);
 356   thread->set_vm_result(obj);
 357 JRT_END
 358 
 359 
 360 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 361   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 362   // Note: no handle for klass needed since they are not used
 363   //       anymore after new_typeArray() and no GC can happen before.
 364   //       (This may have to change if this code changes!)
 365   assert(klass->is_klass(), "not a class");
 366   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 367   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 368   thread->set_vm_result(obj);
 369   // This is pretty rare but this runtime patch is stressful to deoptimization
 370   // if we deoptimize here so force a deopt to stress the path.
 371   if (DeoptimizeALot) {
 372     deopt_caller();
 373   }
 374 
 375 JRT_END
 376 
 377 
 378 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 379   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 380 
 381   // Note: no handle for klass needed since they are not used
 382   //       anymore after new_objArray() and no GC can happen before.
 383   //       (This may have to change if this code changes!)
 384   assert(array_klass->is_klass(), "not a class");
 385   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 386   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 387   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 388   thread->set_vm_result(obj);
 389   // This is pretty rare but this runtime patch is stressful to deoptimization
 390   // if we deoptimize here so force a deopt to stress the path.
 391   if (DeoptimizeALot) {
 392     deopt_caller();
 393   }
 394 JRT_END
 395 
 396 
 397 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 398   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 399 
 400   assert(klass->is_klass(), "not a class");
 401   assert(rank >= 1, "rank must be nonzero");
 402   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 403   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 404   thread->set_vm_result(obj);
 405 JRT_END
 406 
 407 
 408 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 409   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 410 JRT_END
 411 
 412 
 413 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 414   ResourceMark rm(thread);
 415   const char* klass_name = obj->klass()->external_name();
 416   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 417 JRT_END
 418 
 419 
 420 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 421 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 422 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 423 // a constant.
 424 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 425   nmethod* osr_nm = NULL;
 426   methodHandle method(THREAD, m);
 427 
 428   RegisterMap map(THREAD, false);
 429   frame fr =  THREAD->last_frame().sender(&map);
 430   nmethod* nm = (nmethod*) fr.cb();
 431   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 432   methodHandle enclosing_method(THREAD, nm->method());
 433 
 434   CompLevel level = (CompLevel)nm->comp_level();
 435   int bci = InvocationEntryBci;
 436   if (branch_bci != InvocationEntryBci) {
 437     // Compute destination bci
 438     address pc = method()->code_base() + branch_bci;
 439     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 440     int offset = 0;
 441     switch (branch) {
 442       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 443       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 444       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 445       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 446       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 447       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 448       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 449         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 450         break;
 451       case Bytecodes::_goto_w:
 452         offset = Bytes::get_Java_u4(pc + 1);
 453         break;
 454       default: ;
 455     }
 456     bci = branch_bci + offset;
 457   }
 458   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 459   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 460   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 461   return osr_nm;
 462 }
 463 
 464 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 465   nmethod* osr_nm;
 466   JRT_BLOCK
 467     osr_nm = counter_overflow_helper(thread, bci, method);
 468     if (osr_nm != NULL) {
 469       RegisterMap map(thread, false);
 470       frame fr =  thread->last_frame().sender(&map);
 471       Deoptimization::deoptimize_frame(thread, fr.id());
 472     }
 473   JRT_BLOCK_END
 474   return NULL;
 475 JRT_END
 476 
 477 extern void vm_exit(int code);
 478 
 479 // Enter this method from compiled code handler below. This is where we transition
 480 // to VM mode. This is done as a helper routine so that the method called directly
 481 // from compiled code does not have to transition to VM. This allows the entry
 482 // method to see if the nmethod that we have just looked up a handler for has
 483 // been deoptimized while we were in the vm. This simplifies the assembly code
 484 // cpu directories.
 485 //
 486 // We are entering here from exception stub (via the entry method below)
 487 // If there is a compiled exception handler in this method, we will continue there;
 488 // otherwise we will unwind the stack and continue at the caller of top frame method
 489 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 490 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 491 // check to see if the handler we are going to return is now in a nmethod that has
 492 // been deoptimized. If that is the case we return the deopt blob
 493 // unpack_with_exception entry instead. This makes life for the exception blob easier
 494 // because making that same check and diverting is painful from assembly language.
 495 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 496   // Reset method handle flag.
 497   thread->set_is_method_handle_return(false);
 498 
 499   Handle exception(thread, ex);
 500   nm = CodeCache::find_nmethod(pc);
 501   assert(nm != NULL, "this is not an nmethod");
 502   // Adjust the pc as needed/
 503   if (nm->is_deopt_pc(pc)) {
 504     RegisterMap map(thread, false);
 505     frame exception_frame = thread->last_frame().sender(&map);
 506     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 507     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 508     pc = exception_frame.pc();
 509   }
 510 #ifdef ASSERT
 511   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 512   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 513   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 514     if (ExitVMOnVerifyError) vm_exit(-1);
 515     ShouldNotReachHere();
 516   }
 517 #endif
 518 
 519   // Check the stack guard pages and reenable them if necessary and there is
 520   // enough space on the stack to do so.  Use fast exceptions only if the guard
 521   // pages are enabled.
 522   bool guard_pages_enabled = thread->stack_guards_enabled();
 523   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 524 
 525   if (JvmtiExport::can_post_on_exceptions()) {
 526     // To ensure correct notification of exception catches and throws
 527     // we have to deoptimize here.  If we attempted to notify the
 528     // catches and throws during this exception lookup it's possible
 529     // we could deoptimize on the way out of the VM and end back in
 530     // the interpreter at the throw site.  This would result in double
 531     // notifications since the interpreter would also notify about
 532     // these same catches and throws as it unwound the frame.
 533 
 534     RegisterMap reg_map(thread);
 535     frame stub_frame = thread->last_frame();
 536     frame caller_frame = stub_frame.sender(&reg_map);
 537 
 538     // We don't really want to deoptimize the nmethod itself since we
 539     // can actually continue in the exception handler ourselves but I
 540     // don't see an easy way to have the desired effect.
 541     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 542     assert(caller_is_deopted(), "Must be deoptimized");
 543 
 544     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 545   }
 546 
 547   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 548   if (guard_pages_enabled) {
 549     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 550     if (fast_continuation != NULL) {
 551       // Set flag if return address is a method handle call site.
 552       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 553       return fast_continuation;
 554     }
 555   }
 556 
 557   // If the stack guard pages are enabled, check whether there is a handler in
 558   // the current method.  Otherwise (guard pages disabled), force an unwind and
 559   // skip the exception cache update (i.e., just leave continuation==NULL).
 560   address continuation = NULL;
 561   if (guard_pages_enabled) {
 562 
 563     // New exception handling mechanism can support inlined methods
 564     // with exception handlers since the mappings are from PC to PC
 565 
 566     // debugging support
 567     // tracing
 568     if (log_is_enabled(Info, exceptions)) {
 569       ResourceMark rm;
 570       stringStream tempst;
 571       assert(nm->method() != NULL, "Unexpected NULL method()");
 572       tempst.print("compiled method <%s>\n"
 573                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 574                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 575       Exceptions::log_exception(exception, tempst);
 576     }
 577     // for AbortVMOnException flag
 578     Exceptions::debug_check_abort(exception);
 579 
 580     // Clear out the exception oop and pc since looking up an
 581     // exception handler can cause class loading, which might throw an
 582     // exception and those fields are expected to be clear during
 583     // normal bytecode execution.
 584     thread->clear_exception_oop_and_pc();
 585 
 586     bool recursive_exception = false;
 587     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 588     // If an exception was thrown during exception dispatch, the exception oop may have changed
 589     thread->set_exception_oop(exception());
 590     thread->set_exception_pc(pc);
 591 
 592     // the exception cache is used only by non-implicit exceptions
 593     // Update the exception cache only when there didn't happen
 594     // another exception during the computation of the compiled
 595     // exception handler. Checking for exception oop equality is not
 596     // sufficient because some exceptions are pre-allocated and reused.
 597     if (continuation != NULL && !recursive_exception) {
 598       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 599     }
 600   }
 601 
 602   thread->set_vm_result(exception());
 603   // Set flag if return address is a method handle call site.
 604   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 605 
 606   if (log_is_enabled(Info, exceptions)) {
 607     ResourceMark rm;
 608     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 609                          " for exception thrown at PC " PTR_FORMAT,
 610                          p2i(thread), p2i(continuation), p2i(pc));
 611   }
 612 
 613   return continuation;
 614 JRT_END
 615 
 616 // Enter this method from compiled code only if there is a Java exception handler
 617 // in the method handling the exception.
 618 // We are entering here from exception stub. We don't do a normal VM transition here.
 619 // We do it in a helper. This is so we can check to see if the nmethod we have just
 620 // searched for an exception handler has been deoptimized in the meantime.
 621 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 622   oop exception = thread->exception_oop();
 623   address pc = thread->exception_pc();
 624   // Still in Java mode
 625   DEBUG_ONLY(ResetNoHandleMark rnhm);
 626   nmethod* nm = NULL;
 627   address continuation = NULL;
 628   {
 629     // Enter VM mode by calling the helper
 630     ResetNoHandleMark rnhm;
 631     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 632   }
 633   // Back in JAVA, use no oops DON'T safepoint
 634 
 635   // Now check to see if the nmethod we were called from is now deoptimized.
 636   // If so we must return to the deopt blob and deoptimize the nmethod
 637   if (nm != NULL && caller_is_deopted()) {
 638     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 639   }
 640 
 641   assert(continuation != NULL, "no handler found");
 642   return continuation;
 643 }
 644 
 645 
 646 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index, arrayOopDesc* a))
 647   NOT_PRODUCT(_throw_range_check_exception_count++;)
 648   const int len = 35;
 649   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 650   char message[2 * jintAsStringSize + len];
 651   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 652   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 653 JRT_END
 654 
 655 
 656 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 657   NOT_PRODUCT(_throw_index_exception_count++;)
 658   char message[16];
 659   sprintf(message, "%d", index);
 660   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 661 JRT_END
 662 
 663 
 664 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 665   NOT_PRODUCT(_throw_div0_exception_count++;)
 666   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 667 JRT_END
 668 
 669 
 670 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 671   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 672   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 673 JRT_END
 674 
 675 
 676 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 677   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 678   ResourceMark rm(thread);
 679   char* message = SharedRuntime::generate_class_cast_message(
 680     thread, object->klass());
 681   SharedRuntime::throw_and_post_jvmti_exception(
 682     thread, vmSymbols::java_lang_ClassCastException(), message);
 683 JRT_END
 684 
 685 
 686 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 687   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 688   ResourceMark rm(thread);
 689   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 690 JRT_END
 691 
 692 
 693 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 694   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 695   if (PrintBiasedLockingStatistics) {
 696     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 697   }
 698   Handle h_obj(thread, obj);
 699   if (UseBiasedLocking) {
 700     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 701     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 702   } else {
 703     if (UseFastLocking) {
 704       // When using fast locking, the compiled code has already tried the fast case
 705       assert(obj == lock->obj(), "must match");
 706       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 707     } else {
 708       lock->set_obj(obj);
 709       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 710     }
 711   }
 712 JRT_END
 713 
 714 
 715 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 716   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 717   assert(thread == JavaThread::current(), "threads must correspond");
 718   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 719   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 720   EXCEPTION_MARK;
 721 
 722   oop obj = lock->obj();
 723   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 724   if (UseFastLocking) {
 725     // When using fast locking, the compiled code has already tried the fast case
 726     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 727   } else {
 728     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 729   }
 730 JRT_END
 731 
 732 // Cf. OptoRuntime::deoptimize_caller_frame
 733 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 734   // Called from within the owner thread, so no need for safepoint
 735   RegisterMap reg_map(thread, false);
 736   frame stub_frame = thread->last_frame();
 737   assert(stub_frame.is_runtime_frame(), "Sanity check");
 738   frame caller_frame = stub_frame.sender(&reg_map);
 739   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 740   assert(nm != NULL, "Sanity check");
 741   methodHandle method(thread, nm->method());
 742   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 743   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 744   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 745 
 746   if (action == Deoptimization::Action_make_not_entrant) {
 747     if (nm->make_not_entrant()) {
 748       if (reason == Deoptimization::Reason_tenured) {
 749         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 750         if (trap_mdo != NULL) {
 751           trap_mdo->inc_tenure_traps();
 752         }
 753       }
 754     }
 755   }
 756 
 757   // Deoptimize the caller frame.
 758   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 759   // Return to the now deoptimized frame.
 760 JRT_END
 761 
 762 
 763 #ifndef DEOPTIMIZE_WHEN_PATCHING
 764 
 765 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 766   Bytecode_field field_access(caller, bci);
 767   // This can be static or non-static field access
 768   Bytecodes::Code code       = field_access.code();
 769 
 770   // We must load class, initialize class and resolve the field
 771   fieldDescriptor result; // initialize class if needed
 772   constantPoolHandle constants(THREAD, caller->constants());
 773   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 774   return result.field_holder();
 775 }
 776 
 777 
 778 //
 779 // This routine patches sites where a class wasn't loaded or
 780 // initialized at the time the code was generated.  It handles
 781 // references to classes, fields and forcing of initialization.  Most
 782 // of the cases are straightforward and involving simply forcing
 783 // resolution of a class, rewriting the instruction stream with the
 784 // needed constant and replacing the call in this function with the
 785 // patched code.  The case for static field is more complicated since
 786 // the thread which is in the process of initializing a class can
 787 // access it's static fields but other threads can't so the code
 788 // either has to deoptimize when this case is detected or execute a
 789 // check that the current thread is the initializing thread.  The
 790 // current
 791 //
 792 // Patches basically look like this:
 793 //
 794 //
 795 // patch_site: jmp patch stub     ;; will be patched
 796 // continue:   ...
 797 //             ...
 798 //             ...
 799 //             ...
 800 //
 801 // They have a stub which looks like this:
 802 //
 803 //             ;; patch body
 804 //             movl <const>, reg           (for class constants)
 805 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 806 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 807 //             <being_init offset> <bytes to copy> <bytes to skip>
 808 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 809 //             jmp patch_site
 810 //
 811 //
 812 // A normal patch is done by rewriting the patch body, usually a move,
 813 // and then copying it into place over top of the jmp instruction
 814 // being careful to flush caches and doing it in an MP-safe way.  The
 815 // constants following the patch body are used to find various pieces
 816 // of the patch relative to the call site for Runtime1::patch_code.
 817 // The case for getstatic and putstatic is more complicated because
 818 // getstatic and putstatic have special semantics when executing while
 819 // the class is being initialized.  getstatic/putstatic on a class
 820 // which is being_initialized may be executed by the initializing
 821 // thread but other threads have to block when they execute it.  This
 822 // is accomplished in compiled code by executing a test of the current
 823 // thread against the initializing thread of the class.  It's emitted
 824 // as boilerplate in their stub which allows the patched code to be
 825 // executed before it's copied back into the main body of the nmethod.
 826 //
 827 // being_init: get_thread(<tmp reg>
 828 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 829 //             jne patch_stub
 830 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 831 //             movl reg, [reg1 + <const>]  (for field offsets)
 832 //             jmp continue
 833 //             <being_init offset> <bytes to copy> <bytes to skip>
 834 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 835 //             jmp patch_site
 836 //
 837 // If the class is being initialized the patch body is rewritten and
 838 // the patch site is rewritten to jump to being_init, instead of
 839 // patch_stub.  Whenever this code is executed it checks the current
 840 // thread against the intializing thread so other threads will enter
 841 // the runtime and end up blocked waiting the class to finish
 842 // initializing inside the calls to resolve_field below.  The
 843 // initializing class will continue on it's way.  Once the class is
 844 // fully_initialized, the intializing_thread of the class becomes
 845 // NULL, so the next thread to execute this code will fail the test,
 846 // call into patch_code and complete the patching process by copying
 847 // the patch body back into the main part of the nmethod and resume
 848 // executing.
 849 //
 850 //
 851 
 852 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 853   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 854 
 855   ResourceMark rm(thread);
 856   RegisterMap reg_map(thread, false);
 857   frame runtime_frame = thread->last_frame();
 858   frame caller_frame = runtime_frame.sender(&reg_map);
 859 
 860   // last java frame on stack
 861   vframeStream vfst(thread, true);
 862   assert(!vfst.at_end(), "Java frame must exist");
 863 
 864   methodHandle caller_method(THREAD, vfst.method());
 865   // Note that caller_method->code() may not be same as caller_code because of OSR's
 866   // Note also that in the presence of inlining it is not guaranteed
 867   // that caller_method() == caller_code->method()
 868 
 869   int bci = vfst.bci();
 870   Bytecodes::Code code = caller_method()->java_code_at(bci);
 871 
 872   // this is used by assertions in the access_field_patching_id
 873   BasicType patch_field_type = T_ILLEGAL;
 874   bool deoptimize_for_volatile = false;
 875   bool deoptimize_for_atomic = false;
 876   int patch_field_offset = -1;
 877   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 878   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 879   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 880   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 881   bool load_klass_or_mirror_patch_id =
 882     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 883 
 884   if (stub_id == Runtime1::access_field_patching_id) {
 885 
 886     Bytecode_field field_access(caller_method, bci);
 887     fieldDescriptor result; // initialize class if needed
 888     Bytecodes::Code code = field_access.code();
 889     constantPoolHandle constants(THREAD, caller_method->constants());
 890     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 891     patch_field_offset = result.offset();
 892 
 893     // If we're patching a field which is volatile then at compile it
 894     // must not have been know to be volatile, so the generated code
 895     // isn't correct for a volatile reference.  The nmethod has to be
 896     // deoptimized so that the code can be regenerated correctly.
 897     // This check is only needed for access_field_patching since this
 898     // is the path for patching field offsets.  load_klass is only
 899     // used for patching references to oops which don't need special
 900     // handling in the volatile case.
 901 
 902     deoptimize_for_volatile = result.access_flags().is_volatile();
 903 
 904     // If we are patching a field which should be atomic, then
 905     // the generated code is not correct either, force deoptimizing.
 906     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 907     // break access atomicity only for them.
 908 
 909     // Strictly speaking, the deoptimizaation on 64-bit platforms
 910     // is unnecessary, and T_LONG stores on 32-bit platforms need
 911     // to be handled by special patching code when AlwaysAtomicAccesses
 912     // becomes product feature. At this point, we are still going
 913     // for the deoptimization for consistency against volatile
 914     // accesses.
 915 
 916     patch_field_type = result.field_type();
 917     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 918 
 919   } else if (load_klass_or_mirror_patch_id) {
 920     Klass* k = NULL;
 921     switch (code) {
 922       case Bytecodes::_putstatic:
 923       case Bytecodes::_getstatic:
 924         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 925           init_klass = klass;
 926           mirror = Handle(THREAD, klass->java_mirror());
 927         }
 928         break;
 929       case Bytecodes::_new:
 930         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 931           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 932         }
 933         break;
 934       case Bytecodes::_multianewarray:
 935         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 936           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 937         }
 938         break;
 939       case Bytecodes::_instanceof:
 940         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 941           k = caller_method->constants()->klass_at(io.index(), CHECK);
 942         }
 943         break;
 944       case Bytecodes::_checkcast:
 945         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 946           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 947         }
 948         break;
 949       case Bytecodes::_anewarray:
 950         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 951           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 952           k = ek->array_klass(CHECK);
 953         }
 954         break;
 955       case Bytecodes::_ldc:
 956       case Bytecodes::_ldc_w:
 957         {
 958           Bytecode_loadconstant cc(caller_method, bci);
 959           oop m = cc.resolve_constant(CHECK);
 960           mirror = Handle(THREAD, m);
 961         }
 962         break;
 963       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 964     }
 965     load_klass = k;
 966   } else if (stub_id == load_appendix_patching_id) {
 967     Bytecode_invoke bytecode(caller_method, bci);
 968     Bytecodes::Code bc = bytecode.invoke_code();
 969 
 970     CallInfo info;
 971     constantPoolHandle pool(thread, caller_method->constants());
 972     int index = bytecode.index();
 973     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 974     switch (bc) {
 975       case Bytecodes::_invokehandle: {
 976         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 977         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 978         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 979         cpce->set_method_handle(pool, info);
 980         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 981         break;
 982       }
 983       case Bytecodes::_invokedynamic: {
 984         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 985         cpce->set_dynamic_call(pool, info);
 986         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 987         break;
 988       }
 989       default: fatal("unexpected bytecode for load_appendix_patching_id");
 990     }
 991   } else {
 992     ShouldNotReachHere();
 993   }
 994 
 995   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 996     // At compile time we assumed the field wasn't volatile/atomic but after
 997     // loading it turns out it was volatile/atomic so we have to throw the
 998     // compiled code out and let it be regenerated.
 999     if (TracePatching) {
1000       if (deoptimize_for_volatile) {
1001         tty->print_cr("Deoptimizing for patching volatile field reference");
1002       }
1003       if (deoptimize_for_atomic) {
1004         tty->print_cr("Deoptimizing for patching atomic field reference");
1005       }
1006     }
1007 
1008     // It's possible the nmethod was invalidated in the last
1009     // safepoint, but if it's still alive then make it not_entrant.
1010     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1011     if (nm != NULL) {
1012       nm->make_not_entrant();
1013     }
1014 
1015     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1016 
1017     // Return to the now deoptimized frame.
1018   }
1019 
1020   // Now copy code back
1021 
1022   {
1023     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1024     //
1025     // Deoptimization may have happened while we waited for the lock.
1026     // In that case we don't bother to do any patching we just return
1027     // and let the deopt happen
1028     if (!caller_is_deopted()) {
1029       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1030       address instr_pc = jump->jump_destination();
1031       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1032       if (ni->is_jump() ) {
1033         // the jump has not been patched yet
1034         // The jump destination is slow case and therefore not part of the stubs
1035         // (stubs are only for StaticCalls)
1036 
1037         // format of buffer
1038         //    ....
1039         //    instr byte 0     <-- copy_buff
1040         //    instr byte 1
1041         //    ..
1042         //    instr byte n-1
1043         //      n
1044         //    ....             <-- call destination
1045 
1046         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1047         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1048         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1049         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1050         address copy_buff = stub_location - *byte_skip - *byte_count;
1051         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1052         if (TracePatching) {
1053           ttyLocker ttyl;
1054           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1055                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1056           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1057           assert(caller_code != NULL, "nmethod not found");
1058 
1059           // NOTE we use pc() not original_pc() because we already know they are
1060           // identical otherwise we'd have never entered this block of code
1061 
1062           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1063           assert(map != NULL, "null check");
1064           map->print();
1065           tty->cr();
1066 
1067           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1068         }
1069         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1070         bool do_patch = true;
1071         if (stub_id == Runtime1::access_field_patching_id) {
1072           // The offset may not be correct if the class was not loaded at code generation time.
1073           // Set it now.
1074           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1075           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1076           assert(patch_field_offset >= 0, "illegal offset");
1077           n_move->add_offset_in_bytes(patch_field_offset);
1078         } else if (load_klass_or_mirror_patch_id) {
1079           // If a getstatic or putstatic is referencing a klass which
1080           // isn't fully initialized, the patch body isn't copied into
1081           // place until initialization is complete.  In this case the
1082           // patch site is setup so that any threads besides the
1083           // initializing thread are forced to come into the VM and
1084           // block.
1085           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1086                      InstanceKlass::cast(init_klass)->is_initialized();
1087           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1088           if (jump->jump_destination() == being_initialized_entry) {
1089             assert(do_patch == true, "initialization must be complete at this point");
1090           } else {
1091             // patch the instruction <move reg, klass>
1092             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1093 
1094             assert(n_copy->data() == 0 ||
1095                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1096                    "illegal init value");
1097             if (stub_id == Runtime1::load_klass_patching_id) {
1098               assert(load_klass != NULL, "klass not set");
1099               n_copy->set_data((intx) (load_klass));
1100             } else {
1101               assert(mirror() != NULL, "klass not set");
1102               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1103               n_copy->set_data(cast_from_oop<intx>(mirror()));
1104             }
1105 
1106             if (TracePatching) {
1107               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1108             }
1109           }
1110         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1111           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1112           assert(n_copy->data() == 0 ||
1113                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1114                  "illegal init value");
1115           n_copy->set_data(cast_from_oop<intx>(appendix()));
1116 
1117           if (TracePatching) {
1118             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1119           }
1120         } else {
1121           ShouldNotReachHere();
1122         }
1123 
1124 #if defined(SPARC) || defined(PPC32)
1125         if (load_klass_or_mirror_patch_id ||
1126             stub_id == Runtime1::load_appendix_patching_id) {
1127           // Update the location in the nmethod with the proper
1128           // metadata.  When the code was generated, a NULL was stuffed
1129           // in the metadata table and that table needs to be update to
1130           // have the right value.  On intel the value is kept
1131           // directly in the instruction instead of in the metadata
1132           // table, so set_data above effectively updated the value.
1133           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1134           assert(nm != NULL, "invalid nmethod_pc");
1135           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1136           bool found = false;
1137           while (mds.next() && !found) {
1138             if (mds.type() == relocInfo::oop_type) {
1139               assert(stub_id == Runtime1::load_mirror_patching_id ||
1140                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1141               oop_Relocation* r = mds.oop_reloc();
1142               oop* oop_adr = r->oop_addr();
1143               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1144               r->fix_oop_relocation();
1145               found = true;
1146             } else if (mds.type() == relocInfo::metadata_type) {
1147               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1148               metadata_Relocation* r = mds.metadata_reloc();
1149               Metadata** metadata_adr = r->metadata_addr();
1150               *metadata_adr = load_klass;
1151               r->fix_metadata_relocation();
1152               found = true;
1153             }
1154           }
1155           assert(found, "the metadata must exist!");
1156         }
1157 #endif
1158         if (do_patch) {
1159           // replace instructions
1160           // first replace the tail, then the call
1161 #ifdef ARM
1162           if((load_klass_or_mirror_patch_id ||
1163               stub_id == Runtime1::load_appendix_patching_id) &&
1164               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1165             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1166             address addr = NULL;
1167             assert(nm != NULL, "invalid nmethod_pc");
1168             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1169             while (mds.next()) {
1170               if (mds.type() == relocInfo::oop_type) {
1171                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1172                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1173                 oop_Relocation* r = mds.oop_reloc();
1174                 addr = (address)r->oop_addr();
1175                 break;
1176               } else if (mds.type() == relocInfo::metadata_type) {
1177                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1178                 metadata_Relocation* r = mds.metadata_reloc();
1179                 addr = (address)r->metadata_addr();
1180                 break;
1181               }
1182             }
1183             assert(addr != NULL, "metadata relocation must exist");
1184             copy_buff -= *byte_count;
1185             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1186             n_copy2->set_pc_relative_offset(addr, instr_pc);
1187           }
1188 #endif
1189 
1190           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1191             address ptr = copy_buff + i;
1192             int a_byte = (*ptr) & 0xFF;
1193             address dst = instr_pc + i;
1194             *(unsigned char*)dst = (unsigned char) a_byte;
1195           }
1196           ICache::invalidate_range(instr_pc, *byte_count);
1197           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1198 
1199           if (load_klass_or_mirror_patch_id ||
1200               stub_id == Runtime1::load_appendix_patching_id) {
1201             relocInfo::relocType rtype =
1202               (stub_id == Runtime1::load_klass_patching_id) ?
1203                                    relocInfo::metadata_type :
1204                                    relocInfo::oop_type;
1205             // update relocInfo to metadata
1206             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1207             assert(nm != NULL, "invalid nmethod_pc");
1208 
1209             // The old patch site is now a move instruction so update
1210             // the reloc info so that it will get updated during
1211             // future GCs.
1212             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1213             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1214                                                      relocInfo::none, rtype);
1215 #ifdef SPARC
1216             // Sparc takes two relocations for an metadata so update the second one.
1217             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1218             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1219             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1220                                                      relocInfo::none, rtype);
1221 #endif
1222 #ifdef PPC32
1223           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1224             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1225             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1226                                                      relocInfo::none, rtype);
1227           }
1228 #endif
1229           }
1230 
1231         } else {
1232           ICache::invalidate_range(copy_buff, *byte_count);
1233           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1234         }
1235       }
1236     }
1237   }
1238 
1239   // If we are patching in a non-perm oop, make sure the nmethod
1240   // is on the right list.
1241   if (ScavengeRootsInCode) {
1242     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1243     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1244     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1245 
1246     // Since we've patched some oops in the nmethod,
1247     // (re)register it with the heap.
1248     Universe::heap()->register_nmethod(nm);
1249   }
1250 JRT_END
1251 
1252 #else // DEOPTIMIZE_WHEN_PATCHING
1253 
1254 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1255   RegisterMap reg_map(thread, false);
1256 
1257   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1258   if (TracePatching) {
1259     tty->print_cr("Deoptimizing because patch is needed");
1260   }
1261 
1262   frame runtime_frame = thread->last_frame();
1263   frame caller_frame = runtime_frame.sender(&reg_map);
1264 
1265   // It's possible the nmethod was invalidated in the last
1266   // safepoint, but if it's still alive then make it not_entrant.
1267   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1268   if (nm != NULL) {
1269     nm->make_not_entrant();
1270   }
1271 
1272   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1273 
1274   // Return to the now deoptimized frame.
1275 JRT_END
1276 
1277 #endif // DEOPTIMIZE_WHEN_PATCHING
1278 
1279 //
1280 // Entry point for compiled code. We want to patch a nmethod.
1281 // We don't do a normal VM transition here because we want to
1282 // know after the patching is complete and any safepoint(s) are taken
1283 // if the calling nmethod was deoptimized. We do this by calling a
1284 // helper method which does the normal VM transition and when it
1285 // completes we can check for deoptimization. This simplifies the
1286 // assembly code in the cpu directories.
1287 //
1288 int Runtime1::move_klass_patching(JavaThread* thread) {
1289 //
1290 // NOTE: we are still in Java
1291 //
1292   Thread* THREAD = thread;
1293   debug_only(NoHandleMark nhm;)
1294   {
1295     // Enter VM mode
1296 
1297     ResetNoHandleMark rnhm;
1298     patch_code(thread, load_klass_patching_id);
1299   }
1300   // Back in JAVA, use no oops DON'T safepoint
1301 
1302   // Return true if calling code is deoptimized
1303 
1304   return caller_is_deopted();
1305 }
1306 
1307 int Runtime1::move_mirror_patching(JavaThread* thread) {
1308 //
1309 // NOTE: we are still in Java
1310 //
1311   Thread* THREAD = thread;
1312   debug_only(NoHandleMark nhm;)
1313   {
1314     // Enter VM mode
1315 
1316     ResetNoHandleMark rnhm;
1317     patch_code(thread, load_mirror_patching_id);
1318   }
1319   // Back in JAVA, use no oops DON'T safepoint
1320 
1321   // Return true if calling code is deoptimized
1322 
1323   return caller_is_deopted();
1324 }
1325 
1326 int Runtime1::move_appendix_patching(JavaThread* thread) {
1327 //
1328 // NOTE: we are still in Java
1329 //
1330   Thread* THREAD = thread;
1331   debug_only(NoHandleMark nhm;)
1332   {
1333     // Enter VM mode
1334 
1335     ResetNoHandleMark rnhm;
1336     patch_code(thread, load_appendix_patching_id);
1337   }
1338   // Back in JAVA, use no oops DON'T safepoint
1339 
1340   // Return true if calling code is deoptimized
1341 
1342   return caller_is_deopted();
1343 }
1344 //
1345 // Entry point for compiled code. We want to patch a nmethod.
1346 // We don't do a normal VM transition here because we want to
1347 // know after the patching is complete and any safepoint(s) are taken
1348 // if the calling nmethod was deoptimized. We do this by calling a
1349 // helper method which does the normal VM transition and when it
1350 // completes we can check for deoptimization. This simplifies the
1351 // assembly code in the cpu directories.
1352 //
1353 
1354 int Runtime1::access_field_patching(JavaThread* thread) {
1355 //
1356 // NOTE: we are still in Java
1357 //
1358   Thread* THREAD = thread;
1359   debug_only(NoHandleMark nhm;)
1360   {
1361     // Enter VM mode
1362 
1363     ResetNoHandleMark rnhm;
1364     patch_code(thread, access_field_patching_id);
1365   }
1366   // Back in JAVA, use no oops DON'T safepoint
1367 
1368   // Return true if calling code is deoptimized
1369 
1370   return caller_is_deopted();
1371 JRT_END
1372 
1373 
1374 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1375   // for now we just print out the block id
1376   tty->print("%d ", block_id);
1377 JRT_END
1378 
1379 
1380 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1381   // had to return int instead of bool, otherwise there may be a mismatch
1382   // between the C calling convention and the Java one.
1383   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1384   // JVM takes the whole %eax as the return value, which may misinterpret
1385   // the return value as a boolean true.
1386 
1387   assert(mirror != NULL, "should null-check on mirror before calling");
1388   Klass* k = java_lang_Class::as_Klass(mirror);
1389   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1390 JRT_END
1391 
1392 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1393   ResourceMark rm;
1394 
1395   assert(!TieredCompilation, "incompatible with tiered compilation");
1396 
1397   RegisterMap reg_map(thread, false);
1398   frame runtime_frame = thread->last_frame();
1399   frame caller_frame = runtime_frame.sender(&reg_map);
1400 
1401   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1402   assert (nm != NULL, "no more nmethod?");
1403   nm->make_not_entrant();
1404 
1405   methodHandle m(nm->method());
1406   MethodData* mdo = m->method_data();
1407 
1408   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1409     // Build an MDO.  Ignore errors like OutOfMemory;
1410     // that simply means we won't have an MDO to update.
1411     Method::build_interpreter_method_data(m, THREAD);
1412     if (HAS_PENDING_EXCEPTION) {
1413       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1414       CLEAR_PENDING_EXCEPTION;
1415     }
1416     mdo = m->method_data();
1417   }
1418 
1419   if (mdo != NULL) {
1420     mdo->inc_trap_count(Deoptimization::Reason_none);
1421   }
1422 
1423   if (TracePredicateFailedTraps) {
1424     stringStream ss1, ss2;
1425     vframeStream vfst(thread);
1426     methodHandle inlinee = methodHandle(vfst.method());
1427     inlinee->print_short_name(&ss1);
1428     m->print_short_name(&ss2);
1429     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1430   }
1431 
1432 
1433   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1434 
1435 JRT_END
1436 
1437 #ifndef PRODUCT
1438 void Runtime1::print_statistics() {
1439   tty->print_cr("C1 Runtime statistics:");
1440   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1441   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1442   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1443   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1444   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1445   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1446   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1447   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1448   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1449   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1450   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1451   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1452   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1453   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1454   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1455 
1456   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1457   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1458   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1459   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1460   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1461   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1462   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1463 
1464   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1465   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1466   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1467   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1468   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1469   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1470   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1471   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1472 
1473   SharedRuntime::print_ic_miss_histogram();
1474   tty->cr();
1475 }
1476 #endif // PRODUCT