1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.*;
  29 import java.lang.reflect.Array;
  30 import java.util.function.BiConsumer;
  31 import java.util.function.BiFunction;
  32 import java.util.function.Consumer;
  33 
  34 /**
  35  * This class implements the <tt>Map</tt> interface with a hash table, using
  36  * reference-equality in place of object-equality when comparing keys (and
  37  * values).  In other words, in an <tt>IdentityHashMap</tt>, two keys
  38  * <tt>k1</tt> and <tt>k2</tt> are considered equal if and only if
  39  * <tt>(k1==k2)</tt>.  (In normal <tt>Map</tt> implementations (like
  40  * <tt>HashMap</tt>) two keys <tt>k1</tt> and <tt>k2</tt> are considered equal
  41  * if and only if <tt>(k1==null ? k2==null : k1.equals(k2))</tt>.)
  42  *
  43  * <p><b>This class is <i>not</i> a general-purpose <tt>Map</tt>
  44  * implementation!  While this class implements the <tt>Map</tt> interface, it
  45  * intentionally violates <tt>Map's</tt> general contract, which mandates the
  46  * use of the <tt>equals</tt> method when comparing objects.  This class is
  47  * designed for use only in the rare cases wherein reference-equality
  48  * semantics are required.</b>
  49  *
  50  * <p>A typical use of this class is <i>topology-preserving object graph
  51  * transformations</i>, such as serialization or deep-copying.  To perform such
  52  * a transformation, a program must maintain a "node table" that keeps track
  53  * of all the object references that have already been processed.  The node
  54  * table must not equate distinct objects even if they happen to be equal.
  55  * Another typical use of this class is to maintain <i>proxy objects</i>.  For
  56  * example, a debugging facility might wish to maintain a proxy object for
  57  * each object in the program being debugged.
  58  *
  59  * <p>This class provides all of the optional map operations, and permits
  60  * <tt>null</tt> values and the <tt>null</tt> key.  This class makes no
  61  * guarantees as to the order of the map; in particular, it does not guarantee
  62  * that the order will remain constant over time.
  63  *
  64  * <p>This class provides constant-time performance for the basic
  65  * operations (<tt>get</tt> and <tt>put</tt>), assuming the system
  66  * identity hash function ({@link System#identityHashCode(Object)})
  67  * disperses elements properly among the buckets.
  68  *
  69  * <p>This class has one tuning parameter (which affects performance but not
  70  * semantics): <i>expected maximum size</i>.  This parameter is the maximum
  71  * number of key-value mappings that the map is expected to hold.  Internally,
  72  * this parameter is used to determine the number of buckets initially
  73  * comprising the hash table.  The precise relationship between the expected
  74  * maximum size and the number of buckets is unspecified.
  75  *
  76  * <p>If the size of the map (the number of key-value mappings) sufficiently
  77  * exceeds the expected maximum size, the number of buckets is increased
  78  * Increasing the number of buckets ("rehashing") may be fairly expensive, so
  79  * it pays to create identity hash maps with a sufficiently large expected
  80  * maximum size.  On the other hand, iteration over collection views requires
  81  * time proportional to the number of buckets in the hash table, so it
  82  * pays not to set the expected maximum size too high if you are especially
  83  * concerned with iteration performance or memory usage.
  84  *
  85  * <p><strong>Note that this implementation is not synchronized.</strong>
  86  * If multiple threads access an identity hash map concurrently, and at
  87  * least one of the threads modifies the map structurally, it <i>must</i>
  88  * be synchronized externally.  (A structural modification is any operation
  89  * that adds or deletes one or more mappings; merely changing the value
  90  * associated with a key that an instance already contains is not a
  91  * structural modification.)  This is typically accomplished by
  92  * synchronizing on some object that naturally encapsulates the map.
  93  *
  94  * If no such object exists, the map should be "wrapped" using the
  95  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  96  * method.  This is best done at creation time, to prevent accidental
  97  * unsynchronized access to the map:<pre>
  98  *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
  99  *
 100  * <p>The iterators returned by the <tt>iterator</tt> method of the
 101  * collections returned by all of this class's "collection view
 102  * methods" are <i>fail-fast</i>: if the map is structurally modified
 103  * at any time after the iterator is created, in any way except
 104  * through the iterator's own <tt>remove</tt> method, the iterator
 105  * will throw a {@link ConcurrentModificationException}.  Thus, in the
 106  * face of concurrent modification, the iterator fails quickly and
 107  * cleanly, rather than risking arbitrary, non-deterministic behavior
 108  * at an undetermined time in the future.
 109  *
 110  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 111  * as it is, generally speaking, impossible to make any hard guarantees in the
 112  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 113  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 114  * Therefore, it would be wrong to write a program that depended on this
 115  * exception for its correctness: <i>fail-fast iterators should be used only
 116  * to detect bugs.</i>
 117  *
 118  * <p>Implementation note: This is a simple <i>linear-probe</i> hash table,
 119  * as described for example in texts by Sedgewick and Knuth.  The array
 120  * alternates holding keys and values.  (This has better locality for large
 121  * tables than does using separate arrays.)  For many JRE implementations
 122  * and operation mixes, this class will yield better performance than
 123  * {@link HashMap} (which uses <i>chaining</i> rather than linear-probing).
 124  *
 125  * <p>This class is a member of the
 126  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 127  * Java Collections Framework</a>.
 128  *
 129  * @see     System#identityHashCode(Object)
 130  * @see     Object#hashCode()
 131  * @see     Collection
 132  * @see     Map
 133  * @see     HashMap
 134  * @see     TreeMap
 135  * @author  Doug Lea and Josh Bloch
 136  * @since   1.4
 137  */
 138 
 139 public class IdentityHashMap<K,V>
 140     extends AbstractMap<K,V>
 141     implements Map<K,V>, java.io.Serializable, Cloneable
 142 {
 143     /**
 144      * The initial capacity used by the no-args constructor.
 145      * MUST be a power of two.  The value 32 corresponds to the
 146      * (specified) expected maximum size of 21, given a load factor
 147      * of 2/3.
 148      */
 149     private static final int DEFAULT_CAPACITY = 32;
 150 
 151     /**
 152      * The minimum capacity, used if a lower value is implicitly specified
 153      * by either of the constructors with arguments.  The value 4 corresponds
 154      * to an expected maximum size of 2, given a load factor of 2/3.
 155      * MUST be a power of two.
 156      */
 157     private static final int MINIMUM_CAPACITY = 4;
 158 
 159     /**
 160      * The maximum capacity, used if a higher value is implicitly specified
 161      * by either of the constructors with arguments.
 162      * MUST be a power of two <= 1<<29.
 163      *
 164      * In fact, the map can hold no more than MAXIMUM_CAPACITY-1 items
 165      * because it has to have at least one slot with the key == null
 166      * in order to avoid infinite loops in get(), put(), remove()
 167      */
 168     private static final int MAXIMUM_CAPACITY = 1 << 29;
 169 
 170     /**
 171      * The table, resized as necessary. Length MUST always be a power of two.
 172      */
 173     transient Object[] table; // non-private to simplify nested class access
 174 
 175     /**
 176      * The number of key-value mappings contained in this identity hash map.
 177      *
 178      * @serial
 179      */
 180     int size;
 181 
 182     /**
 183      * The number of modifications, to support fast-fail iterators
 184      */
 185     transient int modCount;
 186 
 187     /**
 188      * The next size value at which to resize (capacity * load factor).
 189      */
 190     private transient int threshold;
 191 
 192     /**
 193      * Value representing null keys inside tables.
 194      */
 195     static final Object NULL_KEY = new Object();
 196 
 197     /**
 198      * Use NULL_KEY for key if it is null.
 199      */
 200     private static Object maskNull(Object key) {
 201         return (key == null ? NULL_KEY : key);
 202     }
 203 
 204     /**
 205      * Returns internal representation of null key back to caller as null.
 206      */
 207     static final Object unmaskNull(Object key) {
 208         return (key == NULL_KEY ? null : key);
 209     }
 210 
 211     /**
 212      * Constructs a new, empty identity hash map with a default expected
 213      * maximum size (21).
 214      */
 215     public IdentityHashMap() {
 216         init(DEFAULT_CAPACITY);
 217     }
 218 
 219     /**
 220      * Constructs a new, empty map with the specified expected maximum size.
 221      * Putting more than the expected number of key-value mappings into
 222      * the map may cause the internal data structure to grow, which may be
 223      * somewhat time-consuming.
 224      *
 225      * @param expectedMaxSize the expected maximum size of the map
 226      * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative
 227      */
 228     public IdentityHashMap(int expectedMaxSize) {
 229         if (expectedMaxSize < 0)
 230             throw new IllegalArgumentException("expectedMaxSize is negative: "
 231                                                + expectedMaxSize);
 232         init(capacity(expectedMaxSize));
 233     }
 234 
 235     /**
 236      * Returns the appropriate capacity for the specified expected maximum
 237      * size.  Returns the smallest power of two between MINIMUM_CAPACITY
 238      * and MAXIMUM_CAPACITY, inclusive, that is greater than
 239      * (3 * expectedMaxSize)/2, if such a number exists.  Otherwise
 240      * returns MAXIMUM_CAPACITY.  If (3 * expectedMaxSize)/2 is negative, it
 241      * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
 242      */
 243     private static int capacity(int expectedMaxSize) {
 244         // Doubled minimum capacity given a load factor 2/3
 245         int minCapacityX2 = 3 * expectedMaxSize;
 246         return (minCapacityX2 >= 2 * MAXIMUM_CAPACITY || minCapacityX2 < 0)
 247                 ? MAXIMUM_CAPACITY : (minCapacityX2 <= 2 * MINIMUM_CAPACITY)
 248                 ? MINIMUM_CAPACITY : Integer.highestOneBit(minCapacityX2);
 249     }
 250 
 251     /**
 252      * Initializes object to be an empty map with the specified initial
 253      * capacity, which is assumed to be a power of two between
 254      * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
 255      */
 256     private void init(int initCapacity) {
 257         // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
 258         // assert initCapacity >= MINIMUM_CAPACITY;
 259         // assert initCapacity <= MAXIMUM_CAPACITY;
 260 
 261         threshold = (initCapacity * 2)/3;
 262         table = new Object[2 * initCapacity];
 263     }
 264 
 265     /**
 266      * Constructs a new identity hash map containing the keys-value mappings
 267      * in the specified map.
 268      *
 269      * @param m the map whose mappings are to be placed into this map
 270      * @throws NullPointerException if the specified map is null
 271      */
 272     public IdentityHashMap(Map<? extends K, ? extends V> m) {
 273         // Allow for a bit of growth
 274         this((int) ((1 + m.size()) * 1.1));
 275         putAll(m);
 276     }
 277 
 278     /**
 279      * Returns the number of key-value mappings in this identity hash map.
 280      *
 281      * @return the number of key-value mappings in this map
 282      */
 283     public int size() {
 284         return size;
 285     }
 286 
 287     /**
 288      * Returns <tt>true</tt> if this identity hash map contains no key-value
 289      * mappings.
 290      *
 291      * @return <tt>true</tt> if this identity hash map contains no key-value
 292      *         mappings
 293      */
 294     public boolean isEmpty() {
 295         return size == 0;
 296     }
 297 
 298     /**
 299      * Returns index for Object x.
 300      */
 301     private static int hash(Object x, int length) {
 302         int h = System.identityHashCode(x);
 303         // Multiply by -127, and left-shift to use least bit as part of hash
 304         return ((h << 1) - (h << 8)) & (length - 1);
 305     }
 306 
 307     /**
 308      * Circularly traverses table of size len.
 309      */
 310     private static int nextKeyIndex(int i, int len) {
 311         return (i + 2 < len ? i + 2 : 0);
 312     }
 313 
 314     /**
 315      * Returns the value to which the specified key is mapped,
 316      * or {@code null} if this map contains no mapping for the key.
 317      *
 318      * <p>More formally, if this map contains a mapping from a key
 319      * {@code k} to a value {@code v} such that {@code (key == k)},
 320      * then this method returns {@code v}; otherwise it returns
 321      * {@code null}.  (There can be at most one such mapping.)
 322      *
 323      * <p>A return value of {@code null} does not <i>necessarily</i>
 324      * indicate that the map contains no mapping for the key; it's also
 325      * possible that the map explicitly maps the key to {@code null}.
 326      * The {@link #containsKey containsKey} operation may be used to
 327      * distinguish these two cases.
 328      *
 329      * @see #put(Object, Object)
 330      */
 331     @SuppressWarnings("unchecked")
 332     public V get(Object key) {
 333         Object k = maskNull(key);
 334         Object[] tab = table;
 335         int len = tab.length;
 336         int i = hash(k, len);
 337         while (true) {
 338             Object item = tab[i];
 339             if (item == k)
 340                 return (V) tab[i + 1];
 341             if (item == null)
 342                 return null;
 343             i = nextKeyIndex(i, len);
 344         }
 345     }
 346 
 347     /**
 348      * Tests whether the specified object reference is a key in this identity
 349      * hash map.
 350      *
 351      * @param   key   possible key
 352      * @return  <code>true</code> if the specified object reference is a key
 353      *          in this map
 354      * @see     #containsValue(Object)
 355      */
 356     public boolean containsKey(Object key) {
 357         Object k = maskNull(key);
 358         Object[] tab = table;
 359         int len = tab.length;
 360         int i = hash(k, len);
 361         while (true) {
 362             Object item = tab[i];
 363             if (item == k)
 364                 return true;
 365             if (item == null)
 366                 return false;
 367             i = nextKeyIndex(i, len);
 368         }
 369     }
 370 
 371     /**
 372      * Tests whether the specified object reference is a value in this identity
 373      * hash map.
 374      *
 375      * @param value value whose presence in this map is to be tested
 376      * @return <tt>true</tt> if this map maps one or more keys to the
 377      *         specified object reference
 378      * @see     #containsKey(Object)
 379      */
 380     public boolean containsValue(Object value) {
 381         Object[] tab = table;
 382         for (int i = 1; i < tab.length; i += 2)
 383             if (tab[i] == value && tab[i - 1] != null)
 384                 return true;
 385 
 386         return false;
 387     }
 388 
 389     /**
 390      * Tests if the specified key-value mapping is in the map.
 391      *
 392      * @param   key   possible key
 393      * @param   value possible value
 394      * @return  <code>true</code> if and only if the specified key-value
 395      *          mapping is in the map
 396      */
 397     private boolean containsMapping(Object key, Object value) {
 398         Object k = maskNull(key);
 399         Object[] tab = table;
 400         int len = tab.length;
 401         int i = hash(k, len);
 402         while (true) {
 403             Object item = tab[i];
 404             if (item == k)
 405                 return tab[i + 1] == value;
 406             if (item == null)
 407                 return false;
 408             i = nextKeyIndex(i, len);
 409         }
 410     }
 411 
 412     /**
 413      * Associates the specified value with the specified key in this identity
 414      * hash map.  If the map previously contained a mapping for the key, the
 415      * old value is replaced.
 416      *
 417      * @param key the key with which the specified value is to be associated
 418      * @param value the value to be associated with the specified key
 419      * @return the previous value associated with <tt>key</tt>, or
 420      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 421      *         (A <tt>null</tt> return can also indicate that the map
 422      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 423      * @see     Object#equals(Object)
 424      * @see     #get(Object)
 425      * @see     #containsKey(Object)
 426      */
 427     public V put(K key, V value) {
 428         Object k = maskNull(key);
 429         Object[] tab = table;
 430         int len = tab.length;
 431         int i = hash(k, len);
 432 
 433         Object item;
 434         while ( (item = tab[i]) != null) {
 435             if (item == k) {
 436                 @SuppressWarnings("unchecked")
 437                     V oldValue = (V) tab[i + 1];
 438                 tab[i + 1] = value;
 439                 return oldValue;
 440             }
 441             i = nextKeyIndex(i, len);
 442         }
 443 
 444         if (size >= threshold) {
 445             if (size >= MAXIMUM_CAPACITY - 1) {
 446                 throw new IllegalStateException("Capacity exhausted.");
 447             }
 448             modCount++;
 449             resize(len); // len == 2 * current capacity.
 450             i = hash(k, len);
 451             while ((item = tab[i]) != null) {
 452                 i = nextKeyIndex(i, len);
 453             }
 454         }
 455         modCount++;
 456         tab[i] = k;
 457         tab[i + 1] = value;
 458         size++;
 459         return null;
 460     }
 461 
 462     /**
 463      * Resize the table to hold given capacity.
 464      *
 465      * @param newCapacity the new capacity, must be a power of two.
 466      */
 467     private void resize(int newCapacity) {
 468         // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
 469         int newLength = newCapacity * 2;
 470 
 471         Object[] oldTable = table;
 472         int oldLength = oldTable.length;
 473         if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further
 474             threshold = MAXIMUM_CAPACITY-1;  // Gigantic map!
 475             return;
 476         }
 477         if (oldLength >= newLength)
 478             return;
 479 
 480         Object[] newTable = new Object[newLength];
 481         threshold = newLength / 3;
 482 
 483         for (int j = 0; j < oldLength; j += 2) {
 484             Object key = oldTable[j];
 485             if (key != null) {
 486                 Object value = oldTable[j+1];
 487                 oldTable[j] = null;
 488                 oldTable[j+1] = null;
 489                 int i = hash(key, newLength);
 490                 while (newTable[i] != null)
 491                     i = nextKeyIndex(i, newLength);
 492                 newTable[i] = key;
 493                 newTable[i + 1] = value;
 494             }
 495         }
 496         table = newTable;
 497     }
 498 
 499     /**
 500      * Copies all of the mappings from the specified map to this map.
 501      * These mappings will replace any mappings that this map had for
 502      * any of the keys currently in the specified map.
 503      *
 504      * @param m mappings to be stored in this map
 505      * @throws NullPointerException if the specified map is null
 506      */
 507     public void putAll(Map<? extends K, ? extends V> m) {
 508         int n = m.size();
 509         if (n == 0)
 510             return;
 511         if (n > threshold) // conservatively pre-expand
 512             resize(capacity(n));
 513 
 514         for (Entry<? extends K, ? extends V> e : m.entrySet())
 515             put(e.getKey(), e.getValue());
 516     }
 517 
 518     /**
 519      * Removes the mapping for this key from this map if present.
 520      *
 521      * @param key key whose mapping is to be removed from the map
 522      * @return the previous value associated with <tt>key</tt>, or
 523      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 524      *         (A <tt>null</tt> return can also indicate that the map
 525      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 526      */
 527     public V remove(Object key) {
 528         Object k = maskNull(key);
 529         Object[] tab = table;
 530         int len = tab.length;
 531         int i = hash(k, len);
 532 
 533         while (true) {
 534             Object item = tab[i];
 535             if (item == k) {
 536                 modCount++;
 537                 size--;
 538                 @SuppressWarnings("unchecked")
 539                     V oldValue = (V) tab[i + 1];
 540                 tab[i + 1] = null;
 541                 tab[i] = null;
 542                 closeDeletion(i);
 543                 return oldValue;
 544             }
 545             if (item == null)
 546                 return null;
 547             i = nextKeyIndex(i, len);
 548         }
 549     }
 550 
 551     /**
 552      * Removes the specified key-value mapping from the map if it is present.
 553      *
 554      * @param   key   possible key
 555      * @param   value possible value
 556      * @return  <code>true</code> if and only if the specified key-value
 557      *          mapping was in the map
 558      */
 559     private boolean removeMapping(Object key, Object value) {
 560         Object k = maskNull(key);
 561         Object[] tab = table;
 562         int len = tab.length;
 563         int i = hash(k, len);
 564 
 565         while (true) {
 566             Object item = tab[i];
 567             if (item == k) {
 568                 if (tab[i + 1] != value)
 569                     return false;
 570                 modCount++;
 571                 size--;
 572                 tab[i] = null;
 573                 tab[i + 1] = null;
 574                 closeDeletion(i);
 575                 return true;
 576             }
 577             if (item == null)
 578                 return false;
 579             i = nextKeyIndex(i, len);
 580         }
 581     }
 582 
 583     /**
 584      * Rehash all possibly-colliding entries following a
 585      * deletion. This preserves the linear-probe
 586      * collision properties required by get, put, etc.
 587      *
 588      * @param d the index of a newly empty deleted slot
 589      */
 590     private void closeDeletion(int d) {
 591         // Adapted from Knuth Section 6.4 Algorithm R
 592         Object[] tab = table;
 593         int len = tab.length;
 594 
 595         // Look for items to swap into newly vacated slot
 596         // starting at index immediately following deletion,
 597         // and continuing until a null slot is seen, indicating
 598         // the end of a run of possibly-colliding keys.
 599         Object item;
 600         for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
 601              i = nextKeyIndex(i, len) ) {
 602             // The following test triggers if the item at slot i (which
 603             // hashes to be at slot r) should take the spot vacated by d.
 604             // If so, we swap it in, and then continue with d now at the
 605             // newly vacated i.  This process will terminate when we hit
 606             // the null slot at the end of this run.
 607             // The test is messy because we are using a circular table.
 608             int r = hash(item, len);
 609             if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
 610                 tab[d] = item;
 611                 tab[d + 1] = tab[i + 1];
 612                 tab[i] = null;
 613                 tab[i + 1] = null;
 614                 d = i;
 615             }
 616         }
 617     }
 618 
 619     /**
 620      * Removes all of the mappings from this map.
 621      * The map will be empty after this call returns.
 622      */
 623     public void clear() {
 624         modCount++;
 625         Object[] tab = table;
 626         for (int i = 0; i < tab.length; i++)
 627             tab[i] = null;
 628         size = 0;
 629     }
 630 
 631     /**
 632      * Compares the specified object with this map for equality.  Returns
 633      * <tt>true</tt> if the given object is also a map and the two maps
 634      * represent identical object-reference mappings.  More formally, this
 635      * map is equal to another map <tt>m</tt> if and only if
 636      * <tt>this.entrySet().equals(m.entrySet())</tt>.
 637      *
 638      * <p><b>Owing to the reference-equality-based semantics of this map it is
 639      * possible that the symmetry and transitivity requirements of the
 640      * <tt>Object.equals</tt> contract may be violated if this map is compared
 641      * to a normal map.  However, the <tt>Object.equals</tt> contract is
 642      * guaranteed to hold among <tt>IdentityHashMap</tt> instances.</b>
 643      *
 644      * @param  o object to be compared for equality with this map
 645      * @return <tt>true</tt> if the specified object is equal to this map
 646      * @see Object#equals(Object)
 647      */
 648     public boolean equals(Object o) {
 649         if (o == this) {
 650             return true;
 651         } else if (o instanceof IdentityHashMap) {
 652             IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) o;
 653             if (m.size() != size)
 654                 return false;
 655 
 656             Object[] tab = m.table;
 657             for (int i = 0; i < tab.length; i+=2) {
 658                 Object k = tab[i];
 659                 if (k != null && !containsMapping(k, tab[i + 1]))
 660                     return false;
 661             }
 662             return true;
 663         } else if (o instanceof Map) {
 664             Map<?,?> m = (Map<?,?>)o;
 665             return entrySet().equals(m.entrySet());
 666         } else {
 667             return false;  // o is not a Map
 668         }
 669     }
 670 
 671     /**
 672      * Returns the hash code value for this map.  The hash code of a map is
 673      * defined to be the sum of the hash codes of each entry in the map's
 674      * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
 675      * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two
 676      * <tt>IdentityHashMap</tt> instances <tt>m1</tt> and <tt>m2</tt>, as
 677      * required by the general contract of {@link Object#hashCode}.
 678      *
 679      * <p><b>Owing to the reference-equality-based semantics of the
 680      * <tt>Map.Entry</tt> instances in the set returned by this map's
 681      * <tt>entrySet</tt> method, it is possible that the contractual
 682      * requirement of <tt>Object.hashCode</tt> mentioned in the previous
 683      * paragraph will be violated if one of the two objects being compared is
 684      * an <tt>IdentityHashMap</tt> instance and the other is a normal map.</b>
 685      *
 686      * @return the hash code value for this map
 687      * @see Object#equals(Object)
 688      * @see #equals(Object)
 689      */
 690     public int hashCode() {
 691         int result = 0;
 692         Object[] tab = table;
 693         for (int i = 0; i < tab.length; i +=2) {
 694             Object key = tab[i];
 695             if (key != null) {
 696                 Object k = unmaskNull(key);
 697                 result += System.identityHashCode(k) ^
 698                           System.identityHashCode(tab[i + 1]);
 699             }
 700         }
 701         return result;
 702     }
 703 
 704     /**
 705      * Returns a shallow copy of this identity hash map: the keys and values
 706      * themselves are not cloned.
 707      *
 708      * @return a shallow copy of this map
 709      */
 710     public Object clone() {
 711         try {
 712             IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) super.clone();
 713             m.entrySet = null;
 714             m.table = table.clone();
 715             return m;
 716         } catch (CloneNotSupportedException e) {
 717             throw new InternalError(e);
 718         }
 719     }
 720 
 721     private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
 722         int index = (size != 0 ? 0 : table.length); // current slot.
 723         int expectedModCount = modCount; // to support fast-fail
 724         int lastReturnedIndex = -1;      // to allow remove()
 725         boolean indexValid; // To avoid unnecessary next computation
 726         Object[] traversalTable = table; // reference to main table or copy
 727 
 728         public boolean hasNext() {
 729             Object[] tab = traversalTable;
 730             for (int i = index; i < tab.length; i+=2) {
 731                 Object key = tab[i];
 732                 if (key != null) {
 733                     index = i;
 734                     return indexValid = true;
 735                 }
 736             }
 737             index = tab.length;
 738             return false;
 739         }
 740 
 741         protected int nextIndex() {
 742             if (modCount != expectedModCount)
 743                 throw new ConcurrentModificationException();
 744             if (!indexValid && !hasNext())
 745                 throw new NoSuchElementException();
 746 
 747             indexValid = false;
 748             lastReturnedIndex = index;
 749             index += 2;
 750             return lastReturnedIndex;
 751         }
 752 
 753         public void remove() {
 754             if (lastReturnedIndex == -1)
 755                 throw new IllegalStateException();
 756             if (modCount != expectedModCount)
 757                 throw new ConcurrentModificationException();
 758 
 759             expectedModCount = ++modCount;
 760             int deletedSlot = lastReturnedIndex;
 761             lastReturnedIndex = -1;
 762             // back up index to revisit new contents after deletion
 763             index = deletedSlot;
 764             indexValid = false;
 765 
 766             // Removal code proceeds as in closeDeletion except that
 767             // it must catch the rare case where an element already
 768             // seen is swapped into a vacant slot that will be later
 769             // traversed by this iterator. We cannot allow future
 770             // next() calls to return it again.  The likelihood of
 771             // this occurring under 2/3 load factor is very slim, but
 772             // when it does happen, we must make a copy of the rest of
 773             // the table to use for the rest of the traversal. Since
 774             // this can only happen when we are near the end of the table,
 775             // even in these rare cases, this is not very expensive in
 776             // time or space.
 777 
 778             Object[] tab = traversalTable;
 779             int len = tab.length;
 780 
 781             int d = deletedSlot;
 782             Object key = tab[d];
 783             tab[d] = null;        // vacate the slot
 784             tab[d + 1] = null;
 785 
 786             // If traversing a copy, remove in real table.
 787             // We can skip gap-closure on copy.
 788             if (tab != IdentityHashMap.this.table) {
 789                 IdentityHashMap.this.remove(key);
 790                 expectedModCount = modCount;
 791                 return;
 792             }
 793 
 794             size--;
 795 
 796             Object item;
 797             for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
 798                  i = nextKeyIndex(i, len)) {
 799                 int r = hash(item, len);
 800                 // See closeDeletion for explanation of this conditional
 801                 if ((i < r && (r <= d || d <= i)) ||
 802                     (r <= d && d <= i)) {
 803 
 804                     // If we are about to swap an already-seen element
 805                     // into a slot that may later be returned by next(),
 806                     // then clone the rest of table for use in future
 807                     // next() calls. It is OK that our copy will have
 808                     // a gap in the "wrong" place, since it will never
 809                     // be used for searching anyway.
 810 
 811                     if (i < deletedSlot && d >= deletedSlot &&
 812                         traversalTable == IdentityHashMap.this.table) {
 813                         int remaining = len - deletedSlot;
 814                         Object[] newTable = new Object[remaining];
 815                         System.arraycopy(tab, deletedSlot,
 816                                          newTable, 0, remaining);
 817                         traversalTable = newTable;
 818                         index = 0;
 819                     }
 820 
 821                     tab[d] = item;
 822                     tab[d + 1] = tab[i + 1];
 823                     tab[i] = null;
 824                     tab[i + 1] = null;
 825                     d = i;
 826                 }
 827             }
 828         }
 829     }
 830 
 831     private class KeyIterator extends IdentityHashMapIterator<K> {
 832         @SuppressWarnings("unchecked")
 833         public K next() {
 834             return (K) unmaskNull(traversalTable[nextIndex()]);
 835         }
 836     }
 837 
 838     private class ValueIterator extends IdentityHashMapIterator<V> {
 839         @SuppressWarnings("unchecked")
 840         public V next() {
 841             return (V) traversalTable[nextIndex() + 1];
 842         }
 843     }
 844 
 845     private class EntryIterator
 846         extends IdentityHashMapIterator<Map.Entry<K,V>>
 847     {
 848         private Entry lastReturnedEntry;
 849 
 850         public Map.Entry<K,V> next() {
 851             lastReturnedEntry = new Entry(nextIndex());
 852             return lastReturnedEntry;
 853         }
 854 
 855         public void remove() {
 856             lastReturnedIndex =
 857                 ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
 858             super.remove();
 859             lastReturnedEntry.index = lastReturnedIndex;
 860             lastReturnedEntry = null;
 861         }
 862 
 863         private class Entry implements Map.Entry<K,V> {
 864             private int index;
 865 
 866             private Entry(int index) {
 867                 this.index = index;
 868             }
 869 
 870             @SuppressWarnings("unchecked")
 871             public K getKey() {
 872                 checkIndexForEntryUse();
 873                 return (K) unmaskNull(traversalTable[index]);
 874             }
 875 
 876             @SuppressWarnings("unchecked")
 877             public V getValue() {
 878                 checkIndexForEntryUse();
 879                 return (V) traversalTable[index+1];
 880             }
 881 
 882             @SuppressWarnings("unchecked")
 883             public V setValue(V value) {
 884                 checkIndexForEntryUse();
 885                 V oldValue = (V) traversalTable[index+1];
 886                 traversalTable[index+1] = value;
 887                 // if shadowing, force into main table
 888                 if (traversalTable != IdentityHashMap.this.table)
 889                     put((K) traversalTable[index], value);
 890                 return oldValue;
 891             }
 892 
 893             public boolean equals(Object o) {
 894                 if (index < 0)
 895                     return super.equals(o);
 896 
 897                 if (!(o instanceof Map.Entry))
 898                     return false;
 899                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 900                 return (e.getKey() == unmaskNull(traversalTable[index]) &&
 901                        e.getValue() == traversalTable[index+1]);
 902             }
 903 
 904             public int hashCode() {
 905                 if (lastReturnedIndex < 0)
 906                     return super.hashCode();
 907 
 908                 return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
 909                        System.identityHashCode(traversalTable[index+1]));
 910             }
 911 
 912             public String toString() {
 913                 if (index < 0)
 914                     return super.toString();
 915 
 916                 return (unmaskNull(traversalTable[index]) + "="
 917                         + traversalTable[index+1]);
 918             }
 919 
 920             private void checkIndexForEntryUse() {
 921                 if (index < 0)
 922                     throw new IllegalStateException("Entry was removed");
 923             }
 924         }
 925     }
 926 
 927     // Views
 928 
 929     /**
 930      * This field is initialized to contain an instance of the entry set
 931      * view the first time this view is requested.  The view is stateless,
 932      * so there's no reason to create more than one.
 933      */
 934     private transient Set<Map.Entry<K,V>> entrySet;
 935 
 936     /**
 937      * Returns an identity-based set view of the keys contained in this map.
 938      * The set is backed by the map, so changes to the map are reflected in
 939      * the set, and vice-versa.  If the map is modified while an iteration
 940      * over the set is in progress, the results of the iteration are
 941      * undefined.  The set supports element removal, which removes the
 942      * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
 943      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
 944      * <tt>clear</tt> methods.  It does not support the <tt>add</tt> or
 945      * <tt>addAll</tt> methods.
 946      *
 947      * <p><b>While the object returned by this method implements the
 948      * <tt>Set</tt> interface, it does <i>not</i> obey <tt>Set's</tt> general
 949      * contract.  Like its backing map, the set returned by this method
 950      * defines element equality as reference-equality rather than
 951      * object-equality.  This affects the behavior of its <tt>contains</tt>,
 952      * <tt>remove</tt>, <tt>containsAll</tt>, <tt>equals</tt>, and
 953      * <tt>hashCode</tt> methods.</b>
 954      *
 955      * <p><b>The <tt>equals</tt> method of the returned set returns <tt>true</tt>
 956      * only if the specified object is a set containing exactly the same
 957      * object references as the returned set.  The symmetry and transitivity
 958      * requirements of the <tt>Object.equals</tt> contract may be violated if
 959      * the set returned by this method is compared to a normal set.  However,
 960      * the <tt>Object.equals</tt> contract is guaranteed to hold among sets
 961      * returned by this method.</b>
 962      *
 963      * <p>The <tt>hashCode</tt> method of the returned set returns the sum of
 964      * the <i>identity hashcodes</i> of the elements in the set, rather than
 965      * the sum of their hashcodes.  This is mandated by the change in the
 966      * semantics of the <tt>equals</tt> method, in order to enforce the
 967      * general contract of the <tt>Object.hashCode</tt> method among sets
 968      * returned by this method.
 969      *
 970      * @return an identity-based set view of the keys contained in this map
 971      * @see Object#equals(Object)
 972      * @see System#identityHashCode(Object)
 973      */
 974     public Set<K> keySet() {
 975         Set<K> ks = keySet;
 976         if (ks != null)
 977             return ks;
 978         else
 979             return keySet = new KeySet();
 980     }
 981 
 982     private class KeySet extends AbstractSet<K> {
 983         public Iterator<K> iterator() {
 984             return new KeyIterator();
 985         }
 986         public int size() {
 987             return size;
 988         }
 989         public boolean contains(Object o) {
 990             return containsKey(o);
 991         }
 992         public boolean remove(Object o) {
 993             int oldSize = size;
 994             IdentityHashMap.this.remove(o);
 995             return size != oldSize;
 996         }
 997         /*
 998          * Must revert from AbstractSet's impl to AbstractCollection's, as
 999          * the former contains an optimization that results in incorrect
1000          * behavior when c is a smaller "normal" (non-identity-based) Set.
1001          */
1002         public boolean removeAll(Collection<?> c) {
1003             Objects.requireNonNull(c);
1004             boolean modified = false;
1005             for (Iterator<K> i = iterator(); i.hasNext(); ) {
1006                 if (c.contains(i.next())) {
1007                     i.remove();
1008                     modified = true;
1009                 }
1010             }
1011             return modified;
1012         }
1013         public void clear() {
1014             IdentityHashMap.this.clear();
1015         }
1016         public int hashCode() {
1017             int result = 0;
1018             for (K key : this)
1019                 result += System.identityHashCode(key);
1020             return result;
1021         }
1022         public Object[] toArray() {
1023             return toArray(new Object[0]);
1024         }
1025         @SuppressWarnings("unchecked")
1026         public <T> T[] toArray(T[] a) {
1027             int expectedModCount = modCount;
1028             int size = size();
1029             if (a.length < size)
1030                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1031             Object[] tab = table;
1032             int ti = 0;
1033             for (int si = 0; si < tab.length; si += 2) {
1034                 Object key;
1035                 if ((key = tab[si]) != null) { // key present ?
1036                     // more elements than expected -> concurrent modification from other thread
1037                     if (ti >= size) {
1038                         throw new ConcurrentModificationException();
1039                     }
1040                     a[ti++] = (T) unmaskNull(key); // unmask key
1041                 }
1042             }
1043             // fewer elements than expected or concurrent modification from other thread detected
1044             if (ti < size || expectedModCount != modCount) {
1045                 throw new ConcurrentModificationException();
1046             }
1047             // final null marker as per spec
1048             if (ti < a.length) {
1049                 a[ti] = null;
1050             }
1051             return a;
1052         }
1053 
1054         public Spliterator<K> spliterator() {
1055             return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1056         }
1057     }
1058 
1059     /**
1060      * Returns a {@link Collection} view of the values contained in this map.
1061      * The collection is backed by the map, so changes to the map are
1062      * reflected in the collection, and vice-versa.  If the map is
1063      * modified while an iteration over the collection is in progress,
1064      * the results of the iteration are undefined.  The collection
1065      * supports element removal, which removes the corresponding
1066      * mapping from the map, via the <tt>Iterator.remove</tt>,
1067      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1068      * <tt>retainAll</tt> and <tt>clear</tt> methods.  It does not
1069      * support the <tt>add</tt> or <tt>addAll</tt> methods.
1070      *
1071      * <p><b>While the object returned by this method implements the
1072      * <tt>Collection</tt> interface, it does <i>not</i> obey
1073      * <tt>Collection's</tt> general contract.  Like its backing map,
1074      * the collection returned by this method defines element equality as
1075      * reference-equality rather than object-equality.  This affects the
1076      * behavior of its <tt>contains</tt>, <tt>remove</tt> and
1077      * <tt>containsAll</tt> methods.</b>
1078      */
1079     public Collection<V> values() {
1080         Collection<V> vs = values;
1081         if (vs != null)
1082             return vs;
1083         else
1084             return values = new Values();
1085     }
1086 
1087     private class Values extends AbstractCollection<V> {
1088         public Iterator<V> iterator() {
1089             return new ValueIterator();
1090         }
1091         public int size() {
1092             return size;
1093         }
1094         public boolean contains(Object o) {
1095             return containsValue(o);
1096         }
1097         public boolean remove(Object o) {
1098             for (Iterator<V> i = iterator(); i.hasNext(); ) {
1099                 if (i.next() == o) {
1100                     i.remove();
1101                     return true;
1102                 }
1103             }
1104             return false;
1105         }
1106         public void clear() {
1107             IdentityHashMap.this.clear();
1108         }
1109         public Object[] toArray() {
1110             return toArray(new Object[0]);
1111         }
1112         @SuppressWarnings("unchecked")
1113         public <T> T[] toArray(T[] a) {
1114             int expectedModCount = modCount;
1115             int size = size();
1116             if (a.length < size)
1117                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1118             Object[] tab = table;
1119             int ti = 0;
1120             for (int si = 0; si < tab.length; si += 2) {
1121                 if (tab[si] != null) { // key present ?
1122                     // more elements than expected -> concurrent modification from other thread
1123                     if (ti >= size) {
1124                         throw new ConcurrentModificationException();
1125                     }
1126                     a[ti++] = (T) tab[si+1]; // copy value
1127                 }
1128             }
1129             // fewer elements than expected or concurrent modification from other thread detected
1130             if (ti < size || expectedModCount != modCount) {
1131                 throw new ConcurrentModificationException();
1132             }
1133             // final null marker as per spec
1134             if (ti < a.length) {
1135                 a[ti] = null;
1136             }
1137             return a;
1138         }
1139 
1140         public Spliterator<V> spliterator() {
1141             return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1142         }
1143     }
1144 
1145     /**
1146      * Returns a {@link Set} view of the mappings contained in this map.
1147      * Each element in the returned set is a reference-equality-based
1148      * <tt>Map.Entry</tt>.  The set is backed by the map, so changes
1149      * to the map are reflected in the set, and vice-versa.  If the
1150      * map is modified while an iteration over the set is in progress,
1151      * the results of the iteration are undefined.  The set supports
1152      * element removal, which removes the corresponding mapping from
1153      * the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1154      * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1155      * methods.  It does not support the <tt>add</tt> or
1156      * <tt>addAll</tt> methods.
1157      *
1158      * <p>Like the backing map, the <tt>Map.Entry</tt> objects in the set
1159      * returned by this method define key and value equality as
1160      * reference-equality rather than object-equality.  This affects the
1161      * behavior of the <tt>equals</tt> and <tt>hashCode</tt> methods of these
1162      * <tt>Map.Entry</tt> objects.  A reference-equality based <tt>Map.Entry
1163      * e</tt> is equal to an object <tt>o</tt> if and only if <tt>o</tt> is a
1164      * <tt>Map.Entry</tt> and <tt>e.getKey()==o.getKey() &amp;&amp;
1165      * e.getValue()==o.getValue()</tt>.  To accommodate these equals
1166      * semantics, the <tt>hashCode</tt> method returns
1167      * <tt>System.identityHashCode(e.getKey()) ^
1168      * System.identityHashCode(e.getValue())</tt>.
1169      *
1170      * <p><b>Owing to the reference-equality-based semantics of the
1171      * <tt>Map.Entry</tt> instances in the set returned by this method,
1172      * it is possible that the symmetry and transitivity requirements of
1173      * the {@link Object#equals(Object)} contract may be violated if any of
1174      * the entries in the set is compared to a normal map entry, or if
1175      * the set returned by this method is compared to a set of normal map
1176      * entries (such as would be returned by a call to this method on a normal
1177      * map).  However, the <tt>Object.equals</tt> contract is guaranteed to
1178      * hold among identity-based map entries, and among sets of such entries.
1179      * </b>
1180      *
1181      * @return a set view of the identity-mappings contained in this map
1182      */
1183     public Set<Map.Entry<K,V>> entrySet() {
1184         Set<Map.Entry<K,V>> es = entrySet;
1185         if (es != null)
1186             return es;
1187         else
1188             return entrySet = new EntrySet();
1189     }
1190 
1191     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1192         public Iterator<Map.Entry<K,V>> iterator() {
1193             return new EntryIterator();
1194         }
1195         public boolean contains(Object o) {
1196             if (!(o instanceof Map.Entry))
1197                 return false;
1198             Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
1199             return containsMapping(entry.getKey(), entry.getValue());
1200         }
1201         public boolean remove(Object o) {
1202             if (!(o instanceof Map.Entry))
1203                 return false;
1204             Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
1205             return removeMapping(entry.getKey(), entry.getValue());
1206         }
1207         public int size() {
1208             return size;
1209         }
1210         public void clear() {
1211             IdentityHashMap.this.clear();
1212         }
1213         /*
1214          * Must revert from AbstractSet's impl to AbstractCollection's, as
1215          * the former contains an optimization that results in incorrect
1216          * behavior when c is a smaller "normal" (non-identity-based) Set.
1217          */
1218         public boolean removeAll(Collection<?> c) {
1219             Objects.requireNonNull(c);
1220             boolean modified = false;
1221             for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
1222                 if (c.contains(i.next())) {
1223                     i.remove();
1224                     modified = true;
1225                 }
1226             }
1227             return modified;
1228         }
1229 
1230         public Object[] toArray() {
1231             return toArray(new Object[0]);
1232         }
1233 
1234         @SuppressWarnings("unchecked")
1235         public <T> T[] toArray(T[] a) {
1236             int expectedModCount = modCount;
1237             int size = size();
1238             if (a.length < size)
1239                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1240             Object[] tab = table;
1241             int ti = 0;
1242             for (int si = 0; si < tab.length; si += 2) {
1243                 Object key;
1244                 if ((key = tab[si]) != null) { // key present ?
1245                     // more elements than expected -> concurrent modification from other thread
1246                     if (ti >= size) {
1247                         throw new ConcurrentModificationException();
1248                     }
1249                     a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
1250                 }
1251             }
1252             // fewer elements than expected or concurrent modification from other thread detected
1253             if (ti < size || expectedModCount != modCount) {
1254                 throw new ConcurrentModificationException();
1255             }
1256             // final null marker as per spec
1257             if (ti < a.length) {
1258                 a[ti] = null;
1259             }
1260             return a;
1261         }
1262 
1263         public Spliterator<Map.Entry<K,V>> spliterator() {
1264             return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1265         }
1266     }
1267 
1268 
1269     private static final long serialVersionUID = 8188218128353913216L;
1270 
1271     /**
1272      * Save the state of the <tt>IdentityHashMap</tt> instance to a stream
1273      * (i.e., serialize it).
1274      *
1275      * @serialData The <i>size</i> of the HashMap (the number of key-value
1276      *          mappings) (<tt>int</tt>), followed by the key (Object) and
1277      *          value (Object) for each key-value mapping represented by the
1278      *          IdentityHashMap.  The key-value mappings are emitted in no
1279      *          particular order.
1280      */
1281     private void writeObject(java.io.ObjectOutputStream s)
1282         throws java.io.IOException  {
1283         // Write out and any hidden stuff
1284         s.defaultWriteObject();
1285 
1286         // Write out size (number of Mappings)
1287         s.writeInt(size);
1288 
1289         // Write out keys and values (alternating)
1290         Object[] tab = table;
1291         for (int i = 0; i < tab.length; i += 2) {
1292             Object key = tab[i];
1293             if (key != null) {
1294                 s.writeObject(unmaskNull(key));
1295                 s.writeObject(tab[i + 1]);
1296             }
1297         }
1298     }
1299 
1300     /**
1301      * Reconstitute the <tt>IdentityHashMap</tt> instance from a stream (i.e.,
1302      * deserialize it).
1303      */
1304     private void readObject(java.io.ObjectInputStream s)
1305         throws java.io.IOException, ClassNotFoundException  {
1306         // Read in any hidden stuff
1307         s.defaultReadObject();
1308 
1309         // Read in size (number of Mappings)
1310         int size = s.readInt();
1311 
1312         // Allow for 33% growth (i.e., capacity is >= 2* size()).
1313         init(capacity((size*4)/3));
1314 
1315         // Read the keys and values, and put the mappings in the table
1316         for (int i=0; i<size; i++) {
1317             @SuppressWarnings("unchecked")
1318                 K key = (K) s.readObject();
1319             @SuppressWarnings("unchecked")
1320                 V value = (V) s.readObject();
1321             putForCreate(key, value);
1322         }
1323     }
1324 
1325     /**
1326      * The put method for readObject.  It does not resize the table,
1327      * update modCount, etc.
1328      */
1329     private void putForCreate(K key, V value)
1330         throws IOException
1331     {
1332         Object k = maskNull(key);
1333         Object[] tab = table;
1334         int len = tab.length;
1335         int i = hash(k, len);
1336 
1337         Object item;
1338         while ( (item = tab[i]) != null) {
1339             if (item == k)
1340                 throw new java.io.StreamCorruptedException();
1341             i = nextKeyIndex(i, len);
1342         }
1343         tab[i] = k;
1344         tab[i + 1] = value;
1345     }
1346 
1347     @SuppressWarnings("unchecked")
1348     @Override
1349     public void forEach(BiConsumer<? super K, ? super V> action) {
1350         Objects.requireNonNull(action);
1351         int expectedModCount = modCount;
1352 
1353         Object[] t = table;
1354         for (int index = 0; index < t.length; index += 2) {
1355             Object k = t[index];
1356             if (k != null) {
1357                 action.accept((K) unmaskNull(k), (V) t[index + 1]);
1358             }
1359 
1360             if (modCount != expectedModCount) {
1361                 throw new ConcurrentModificationException();
1362             }
1363         }
1364     }
1365 
1366     @SuppressWarnings("unchecked")
1367     @Override
1368     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1369         Objects.requireNonNull(function);
1370         int expectedModCount = modCount;
1371 
1372         Object[] t = table;
1373         for (int index = 0; index < t.length; index += 2) {
1374             Object k = t[index];
1375             if (k != null) {
1376                 t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
1377             }
1378 
1379             if (modCount != expectedModCount) {
1380                 throw new ConcurrentModificationException();
1381             }
1382         }
1383     }
1384 
1385     /**
1386      * Similar form as array-based Spliterators, but skips blank elements,
1387      * and guestimates size as decreasing by half per split.
1388      */
1389     static class IdentityHashMapSpliterator<K,V> {
1390         final IdentityHashMap<K,V> map;
1391         int index;             // current index, modified on advance/split
1392         int fence;             // -1 until first use; then one past last index
1393         int est;               // size estimate
1394         int expectedModCount;  // initialized when fence set
1395 
1396         IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
1397                                    int fence, int est, int expectedModCount) {
1398             this.map = map;
1399             this.index = origin;
1400             this.fence = fence;
1401             this.est = est;
1402             this.expectedModCount = expectedModCount;
1403         }
1404 
1405         final int getFence() { // initialize fence and size on first use
1406             int hi;
1407             if ((hi = fence) < 0) {
1408                 est = map.size;
1409                 expectedModCount = map.modCount;
1410                 hi = fence = map.table.length;
1411             }
1412             return hi;
1413         }
1414 
1415         public final long estimateSize() {
1416             getFence(); // force init
1417             return (long) est;
1418         }
1419     }
1420 
1421     static final class KeySpliterator<K,V>
1422         extends IdentityHashMapSpliterator<K,V>
1423         implements Spliterator<K> {
1424         KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
1425                        int expectedModCount) {
1426             super(map, origin, fence, est, expectedModCount);
1427         }
1428 
1429         public KeySpliterator<K,V> trySplit() {
1430             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1431             return (lo >= mid) ? null :
1432                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1433                                      expectedModCount);
1434         }
1435 
1436         @SuppressWarnings("unchecked")
1437         public void forEachRemaining(Consumer<? super K> action) {
1438             if (action == null)
1439                 throw new NullPointerException();
1440             int i, hi, mc; Object key;
1441             IdentityHashMap<K,V> m; Object[] a;
1442             if ((m = map) != null && (a = m.table) != null &&
1443                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1444                 for (; i < hi; i += 2) {
1445                     if ((key = a[i]) != null)
1446                         action.accept((K)unmaskNull(key));
1447                 }
1448                 if (m.modCount == expectedModCount)
1449                     return;
1450             }
1451             throw new ConcurrentModificationException();
1452         }
1453 
1454         @SuppressWarnings("unchecked")
1455         public boolean tryAdvance(Consumer<? super K> action) {
1456             if (action == null)
1457                 throw new NullPointerException();
1458             Object[] a = map.table;
1459             int hi = getFence();
1460             while (index < hi) {
1461                 Object key = a[index];
1462                 index += 2;
1463                 if (key != null) {
1464                     action.accept((K)unmaskNull(key));
1465                     if (map.modCount != expectedModCount)
1466                         throw new ConcurrentModificationException();
1467                     return true;
1468                 }
1469             }
1470             return false;
1471         }
1472 
1473         public int characteristics() {
1474             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1475         }
1476     }
1477 
1478     static final class ValueSpliterator<K,V>
1479         extends IdentityHashMapSpliterator<K,V>
1480         implements Spliterator<V> {
1481         ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1482                          int expectedModCount) {
1483             super(m, origin, fence, est, expectedModCount);
1484         }
1485 
1486         public ValueSpliterator<K,V> trySplit() {
1487             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1488             return (lo >= mid) ? null :
1489                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1490                                        expectedModCount);
1491         }
1492 
1493         public void forEachRemaining(Consumer<? super V> action) {
1494             if (action == null)
1495                 throw new NullPointerException();
1496             int i, hi, mc;
1497             IdentityHashMap<K,V> m; Object[] a;
1498             if ((m = map) != null && (a = m.table) != null &&
1499                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1500                 for (; i < hi; i += 2) {
1501                     if (a[i] != null) {
1502                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1503                         action.accept(v);
1504                     }
1505                 }
1506                 if (m.modCount == expectedModCount)
1507                     return;
1508             }
1509             throw new ConcurrentModificationException();
1510         }
1511 
1512         public boolean tryAdvance(Consumer<? super V> action) {
1513             if (action == null)
1514                 throw new NullPointerException();
1515             Object[] a = map.table;
1516             int hi = getFence();
1517             while (index < hi) {
1518                 Object key = a[index];
1519                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1520                 index += 2;
1521                 if (key != null) {
1522                     action.accept(v);
1523                     if (map.modCount != expectedModCount)
1524                         throw new ConcurrentModificationException();
1525                     return true;
1526                 }
1527             }
1528             return false;
1529         }
1530 
1531         public int characteristics() {
1532             return (fence < 0 || est == map.size ? SIZED : 0);
1533         }
1534 
1535     }
1536 
1537     static final class EntrySpliterator<K,V>
1538         extends IdentityHashMapSpliterator<K,V>
1539         implements Spliterator<Map.Entry<K,V>> {
1540         EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1541                          int expectedModCount) {
1542             super(m, origin, fence, est, expectedModCount);
1543         }
1544 
1545         public EntrySpliterator<K,V> trySplit() {
1546             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1547             return (lo >= mid) ? null :
1548                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1549                                        expectedModCount);
1550         }
1551 
1552         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1553             if (action == null)
1554                 throw new NullPointerException();
1555             int i, hi, mc;
1556             IdentityHashMap<K,V> m; Object[] a;
1557             if ((m = map) != null && (a = m.table) != null &&
1558                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1559                 for (; i < hi; i += 2) {
1560                     Object key = a[i];
1561                     if (key != null) {
1562                         @SuppressWarnings("unchecked") K k =
1563                             (K)unmaskNull(key);
1564                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1565                         action.accept
1566                             (new AbstractMap.SimpleImmutableEntry<>(k, v));
1567 
1568                     }
1569                 }
1570                 if (m.modCount == expectedModCount)
1571                     return;
1572             }
1573             throw new ConcurrentModificationException();
1574         }
1575 
1576         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1577             if (action == null)
1578                 throw new NullPointerException();
1579             Object[] a = map.table;
1580             int hi = getFence();
1581             while (index < hi) {
1582                 Object key = a[index];
1583                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1584                 index += 2;
1585                 if (key != null) {
1586                     @SuppressWarnings("unchecked") K k =
1587                         (K)unmaskNull(key);
1588                     action.accept
1589                         (new AbstractMap.SimpleImmutableEntry<>(k, v));
1590                     if (map.modCount != expectedModCount)
1591                         throw new ConcurrentModificationException();
1592                     return true;
1593                 }
1594             }
1595             return false;
1596         }
1597 
1598         public int characteristics() {
1599             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1600         }
1601     }
1602 
1603 }