1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.source.tree.IdentifierTree;
  34 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  35 import com.sun.source.tree.MemberSelectTree;
  36 import com.sun.source.tree.TreeVisitor;
  37 import com.sun.source.util.SimpleTreeVisitor;
  38 import com.sun.tools.javac.code.*;
  39 import com.sun.tools.javac.code.Lint.LintCategory;
  40 import com.sun.tools.javac.code.Symbol.*;
  41 import com.sun.tools.javac.code.Type.*;
  42 import com.sun.tools.javac.comp.Check.CheckContext;
  43 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  44 import com.sun.tools.javac.comp.Infer.InferenceContext;
  45 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  46 import com.sun.tools.javac.jvm.*;
  47 import com.sun.tools.javac.tree.*;
  48 import com.sun.tools.javac.tree.JCTree.*;
  49 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  50 import com.sun.tools.javac.util.*;
  51 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  52 import com.sun.tools.javac.util.List;
  53 import static com.sun.tools.javac.code.Flags.*;
  54 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  55 import static com.sun.tools.javac.code.Flags.BLOCK;
  56 import static com.sun.tools.javac.code.Kinds.*;
  57 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
  58 import static com.sun.tools.javac.code.TypeTag.*;
  59 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  60 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  61 
  62 /** This is the main context-dependent analysis phase in GJC. It
  63  *  encompasses name resolution, type checking and constant folding as
  64  *  subtasks. Some subtasks involve auxiliary classes.
  65  *  @see Check
  66  *  @see Resolve
  67  *  @see ConstFold
  68  *  @see Infer
  69  *
  70  *  <p><b>This is NOT part of any supported API.
  71  *  If you write code that depends on this, you do so at your own risk.
  72  *  This code and its internal interfaces are subject to change or
  73  *  deletion without notice.</b>
  74  */
  75 public class Attr extends JCTree.Visitor {
  76     protected static final Context.Key<Attr> attrKey =
  77         new Context.Key<Attr>();
  78 
  79     final Names names;
  80     final Log log;
  81     final Symtab syms;
  82     final Resolve rs;
  83     final Infer infer;
  84     final DeferredAttr deferredAttr;
  85     final Check chk;
  86     final Flow flow;
  87     final MemberEnter memberEnter;
  88     final TreeMaker make;
  89     final ConstFold cfolder;
  90     final Enter enter;
  91     final Target target;
  92     final Types types;
  93     final JCDiagnostic.Factory diags;
  94     final Annotate annotate;
  95     final TypeAnnotations typeAnnotations;
  96     final DeferredLintHandler deferredLintHandler;
  97 
  98     public static Attr instance(Context context) {
  99         Attr instance = context.get(attrKey);
 100         if (instance == null)
 101             instance = new Attr(context);
 102         return instance;
 103     }
 104 
 105     protected Attr(Context context) {
 106         context.put(attrKey, this);
 107 
 108         names = Names.instance(context);
 109         log = Log.instance(context);
 110         syms = Symtab.instance(context);
 111         rs = Resolve.instance(context);
 112         chk = Check.instance(context);
 113         flow = Flow.instance(context);
 114         memberEnter = MemberEnter.instance(context);
 115         make = TreeMaker.instance(context);
 116         enter = Enter.instance(context);
 117         infer = Infer.instance(context);
 118         deferredAttr = DeferredAttr.instance(context);
 119         cfolder = ConstFold.instance(context);
 120         target = Target.instance(context);
 121         types = Types.instance(context);
 122         diags = JCDiagnostic.Factory.instance(context);
 123         annotate = Annotate.instance(context);
 124         typeAnnotations = TypeAnnotations.instance(context);
 125         deferredLintHandler = DeferredLintHandler.instance(context);
 126 
 127         Options options = Options.instance(context);
 128 
 129         Source source = Source.instance(context);
 130         allowGenerics = source.allowGenerics();
 131         allowVarargs = source.allowVarargs();
 132         allowEnums = source.allowEnums();
 133         allowBoxing = source.allowBoxing();
 134         allowCovariantReturns = source.allowCovariantReturns();
 135         allowAnonOuterThis = source.allowAnonOuterThis();
 136         allowStringsInSwitch = source.allowStringsInSwitch();
 137         allowPoly = source.allowPoly();
 138         allowTypeAnnos = source.allowTypeAnnotations();
 139         allowLambda = source.allowLambda();
 140         allowDefaultMethods = source.allowDefaultMethods();
 141         sourceName = source.name;
 142         relax = (options.isSet("-retrofit") ||
 143                  options.isSet("-relax"));
 144         findDiamonds = options.get("findDiamond") != null &&
 145                  source.allowDiamond();
 146         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 147         identifyLambdaCandidate = options.getBoolean("identifyLambdaCandidate", false);
 148 
 149         statInfo = new ResultInfo(NIL, Type.noType);
 150         varInfo = new ResultInfo(VAR, Type.noType);
 151         unknownExprInfo = new ResultInfo(VAL, Type.noType);
 152         unknownAnyPolyInfo = new ResultInfo(VAL, Infer.anyPoly);
 153         unknownTypeInfo = new ResultInfo(TYP, Type.noType);
 154         unknownTypeExprInfo = new ResultInfo(Kinds.TYP | Kinds.VAL, Type.noType);
 155         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 156     }
 157 
 158     /** Switch: relax some constraints for retrofit mode.
 159      */
 160     boolean relax;
 161 
 162     /** Switch: support target-typing inference
 163      */
 164     boolean allowPoly;
 165 
 166     /** Switch: support type annotations.
 167      */
 168     boolean allowTypeAnnos;
 169 
 170     /** Switch: support generics?
 171      */
 172     boolean allowGenerics;
 173 
 174     /** Switch: allow variable-arity methods.
 175      */
 176     boolean allowVarargs;
 177 
 178     /** Switch: support enums?
 179      */
 180     boolean allowEnums;
 181 
 182     /** Switch: support boxing and unboxing?
 183      */
 184     boolean allowBoxing;
 185 
 186     /** Switch: support covariant result types?
 187      */
 188     boolean allowCovariantReturns;
 189 
 190     /** Switch: support lambda expressions ?
 191      */
 192     boolean allowLambda;
 193 
 194     /** Switch: support default methods ?
 195      */
 196     boolean allowDefaultMethods;
 197 
 198     /** Switch: allow references to surrounding object from anonymous
 199      * objects during constructor call?
 200      */
 201     boolean allowAnonOuterThis;
 202 
 203     /** Switch: generates a warning if diamond can be safely applied
 204      *  to a given new expression
 205      */
 206     boolean findDiamonds;
 207 
 208     /**
 209      * Internally enables/disables diamond finder feature
 210      */
 211     static final boolean allowDiamondFinder = true;
 212 
 213     /**
 214      * Switch: warn about use of variable before declaration?
 215      * RFE: 6425594
 216      */
 217     boolean useBeforeDeclarationWarning;
 218 
 219     /**
 220      * Switch: generate warnings whenever an anonymous inner class that is convertible
 221      * to a lambda expression is found
 222      */
 223     boolean identifyLambdaCandidate;
 224 
 225     /**
 226      * Switch: allow strings in switch?
 227      */
 228     boolean allowStringsInSwitch;
 229 
 230     /**
 231      * Switch: name of source level; used for error reporting.
 232      */
 233     String sourceName;
 234 
 235     /** Check kind and type of given tree against protokind and prototype.
 236      *  If check succeeds, store type in tree and return it.
 237      *  If check fails, store errType in tree and return it.
 238      *  No checks are performed if the prototype is a method type.
 239      *  It is not necessary in this case since we know that kind and type
 240      *  are correct.
 241      *
 242      *  @param tree     The tree whose kind and type is checked
 243      *  @param ownkind  The computed kind of the tree
 244      *  @param resultInfo  The expected result of the tree
 245      */
 246     Type check(final JCTree tree, final Type found, final int ownkind, final ResultInfo resultInfo) {
 247         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 248         Type owntype = found;
 249         if (!owntype.hasTag(ERROR) && !resultInfo.pt.hasTag(METHOD) && !resultInfo.pt.hasTag(FORALL)) {
 250             if (allowPoly && inferenceContext.free(found)) {
 251                 if ((ownkind & ~resultInfo.pkind) == 0) {
 252                     owntype = resultInfo.check(tree, inferenceContext.asFree(owntype));
 253                 } else {
 254                     log.error(tree.pos(), "unexpected.type",
 255                             kindNames(resultInfo.pkind),
 256                             kindName(ownkind));
 257                     owntype = types.createErrorType(owntype);
 258                 }
 259                 inferenceContext.addFreeTypeListener(List.of(found, resultInfo.pt), new FreeTypeListener() {
 260                     @Override
 261                     public void typesInferred(InferenceContext inferenceContext) {
 262                         ResultInfo pendingResult =
 263                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 264                         check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 265                     }
 266                 });
 267                 return tree.type = resultInfo.pt;
 268             } else {
 269                 if ((ownkind & ~resultInfo.pkind) == 0) {
 270                     owntype = resultInfo.check(tree, owntype);
 271                 } else {
 272                     log.error(tree.pos(), "unexpected.type",
 273                             kindNames(resultInfo.pkind),
 274                             kindName(ownkind));
 275                     owntype = types.createErrorType(owntype);
 276                 }
 277             }
 278         }
 279         tree.type = owntype;
 280         return owntype;
 281     }
 282 
 283     /** Is given blank final variable assignable, i.e. in a scope where it
 284      *  may be assigned to even though it is final?
 285      *  @param v      The blank final variable.
 286      *  @param env    The current environment.
 287      */
 288     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 289         Symbol owner = owner(env);
 290            // owner refers to the innermost variable, method or
 291            // initializer block declaration at this point.
 292         return
 293             v.owner == owner
 294             ||
 295             ((owner.name == names.init ||    // i.e. we are in a constructor
 296               owner.kind == VAR ||           // i.e. we are in a variable initializer
 297               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 298              &&
 299              v.owner == owner.owner
 300              &&
 301              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 302     }
 303 
 304     /**
 305      * Return the innermost enclosing owner symbol in a given attribution context
 306      */
 307     Symbol owner(Env<AttrContext> env) {
 308         while (true) {
 309             switch (env.tree.getTag()) {
 310                 case VARDEF:
 311                     //a field can be owner
 312                     VarSymbol vsym = ((JCVariableDecl)env.tree).sym;
 313                     if (vsym.owner.kind == TYP) {
 314                         return vsym;
 315                     }
 316                     break;
 317                 case METHODDEF:
 318                     //method def is always an owner
 319                     return ((JCMethodDecl)env.tree).sym;
 320                 case CLASSDEF:
 321                     //class def is always an owner
 322                     return ((JCClassDecl)env.tree).sym;
 323                 case BLOCK:
 324                     //static/instance init blocks are owner
 325                     Symbol blockSym = env.info.scope.owner;
 326                     if ((blockSym.flags() & BLOCK) != 0) {
 327                         return blockSym;
 328                     }
 329                     break;
 330                 case TOPLEVEL:
 331                     //toplevel is always an owner (for pkge decls)
 332                     return env.info.scope.owner;
 333             }
 334             Assert.checkNonNull(env.next);
 335             env = env.next;
 336         }
 337     }
 338 
 339     /** Check that variable can be assigned to.
 340      *  @param pos    The current source code position.
 341      *  @param v      The assigned varaible
 342      *  @param base   If the variable is referred to in a Select, the part
 343      *                to the left of the `.', null otherwise.
 344      *  @param env    The current environment.
 345      */
 346     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 347         if ((v.flags() & FINAL) != 0 &&
 348             ((v.flags() & HASINIT) != 0
 349              ||
 350              !((base == null ||
 351                (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
 352                isAssignableAsBlankFinal(v, env)))) {
 353             if (v.isResourceVariable()) { //TWR resource
 354                 log.error(pos, "try.resource.may.not.be.assigned", v);
 355             } else {
 356                 log.error(pos, "cant.assign.val.to.final.var", v);
 357             }
 358         }
 359     }
 360 
 361     /** Does tree represent a static reference to an identifier?
 362      *  It is assumed that tree is either a SELECT or an IDENT.
 363      *  We have to weed out selects from non-type names here.
 364      *  @param tree    The candidate tree.
 365      */
 366     boolean isStaticReference(JCTree tree) {
 367         if (tree.hasTag(SELECT)) {
 368             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 369             if (lsym == null || lsym.kind != TYP) {
 370                 return false;
 371             }
 372         }
 373         return true;
 374     }
 375 
 376     /** Is this symbol a type?
 377      */
 378     static boolean isType(Symbol sym) {
 379         return sym != null && sym.kind == TYP;
 380     }
 381 
 382     /** The current `this' symbol.
 383      *  @param env    The current environment.
 384      */
 385     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 386         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 387     }
 388 
 389     /** Attribute a parsed identifier.
 390      * @param tree Parsed identifier name
 391      * @param topLevel The toplevel to use
 392      */
 393     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 394         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 395         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 396                                            syms.errSymbol.name,
 397                                            null, null, null, null);
 398         localEnv.enclClass.sym = syms.errSymbol;
 399         return tree.accept(identAttributer, localEnv);
 400     }
 401     // where
 402         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 403         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 404             @Override
 405             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 406                 Symbol site = visit(node.getExpression(), env);
 407                 if (site.kind == ERR || site.kind == ABSENT_TYP)
 408                     return site;
 409                 Name name = (Name)node.getIdentifier();
 410                 if (site.kind == PCK) {
 411                     env.toplevel.packge = (PackageSymbol)site;
 412                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 413                 } else {
 414                     env.enclClass.sym = (ClassSymbol)site;
 415                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 416                 }
 417             }
 418 
 419             @Override
 420             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 421                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 422             }
 423         }
 424 
 425     public Type coerce(Type etype, Type ttype) {
 426         return cfolder.coerce(etype, ttype);
 427     }
 428 
 429     public Type attribType(JCTree node, TypeSymbol sym) {
 430         Env<AttrContext> env = enter.typeEnvs.get(sym);
 431         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 432         return attribTree(node, localEnv, unknownTypeInfo);
 433     }
 434 
 435     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 436         // Attribute qualifying package or class.
 437         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 438         return attribTree(s.selected,
 439                        env,
 440                        new ResultInfo(tree.staticImport ? TYP : (TYP | PCK),
 441                        Type.noType));
 442     }
 443 
 444     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 445         breakTree = tree;
 446         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 447         try {
 448             attribExpr(expr, env);
 449         } catch (BreakAttr b) {
 450             return b.env;
 451         } catch (AssertionError ae) {
 452             if (ae.getCause() instanceof BreakAttr) {
 453                 return ((BreakAttr)(ae.getCause())).env;
 454             } else {
 455                 throw ae;
 456             }
 457         } finally {
 458             breakTree = null;
 459             log.useSource(prev);
 460         }
 461         return env;
 462     }
 463 
 464     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 465         breakTree = tree;
 466         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 467         try {
 468             attribStat(stmt, env);
 469         } catch (BreakAttr b) {
 470             return b.env;
 471         } catch (AssertionError ae) {
 472             if (ae.getCause() instanceof BreakAttr) {
 473                 return ((BreakAttr)(ae.getCause())).env;
 474             } else {
 475                 throw ae;
 476             }
 477         } finally {
 478             breakTree = null;
 479             log.useSource(prev);
 480         }
 481         return env;
 482     }
 483 
 484     private JCTree breakTree = null;
 485 
 486     private static class BreakAttr extends RuntimeException {
 487         static final long serialVersionUID = -6924771130405446405L;
 488         private Env<AttrContext> env;
 489         private BreakAttr(Env<AttrContext> env) {
 490             this.env = env;
 491         }
 492     }
 493 
 494     class ResultInfo {
 495         final int pkind;
 496         final Type pt;
 497         final CheckContext checkContext;
 498 
 499         ResultInfo(int pkind, Type pt) {
 500             this(pkind, pt, chk.basicHandler);
 501         }
 502 
 503         protected ResultInfo(int pkind, Type pt, CheckContext checkContext) {
 504             this.pkind = pkind;
 505             this.pt = pt;
 506             this.checkContext = checkContext;
 507         }
 508 
 509         protected Type check(final DiagnosticPosition pos, final Type found) {
 510             return chk.checkType(pos, found, pt, checkContext);
 511         }
 512 
 513         protected ResultInfo dup(Type newPt) {
 514             return new ResultInfo(pkind, newPt, checkContext);
 515         }
 516 
 517         protected ResultInfo dup(CheckContext newContext) {
 518             return new ResultInfo(pkind, pt, newContext);
 519         }
 520 
 521         @Override
 522         public String toString() {
 523             if (pt != null) {
 524                 return pt.toString();
 525             } else {
 526                 return "";
 527             }
 528         }
 529     }
 530 
 531     class RecoveryInfo extends ResultInfo {
 532 
 533         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 534             super(Kinds.VAL, Type.recoveryType, new Check.NestedCheckContext(chk.basicHandler) {
 535                 @Override
 536                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 537                     return deferredAttrContext;
 538                 }
 539                 @Override
 540                 public boolean compatible(Type found, Type req, Warner warn) {
 541                     return true;
 542                 }
 543                 @Override
 544                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 545                     chk.basicHandler.report(pos, details);
 546                 }
 547             });
 548         }
 549     }
 550 
 551     final ResultInfo statInfo;
 552     final ResultInfo varInfo;
 553     final ResultInfo unknownAnyPolyInfo;
 554     final ResultInfo unknownExprInfo;
 555     final ResultInfo unknownTypeInfo;
 556     final ResultInfo unknownTypeExprInfo;
 557     final ResultInfo recoveryInfo;
 558 
 559     Type pt() {
 560         return resultInfo.pt;
 561     }
 562 
 563     int pkind() {
 564         return resultInfo.pkind;
 565     }
 566 
 567 /* ************************************************************************
 568  * Visitor methods
 569  *************************************************************************/
 570 
 571     /** Visitor argument: the current environment.
 572      */
 573     Env<AttrContext> env;
 574 
 575     /** Visitor argument: the currently expected attribution result.
 576      */
 577     ResultInfo resultInfo;
 578 
 579     /** Visitor result: the computed type.
 580      */
 581     Type result;
 582 
 583     /** Visitor method: attribute a tree, catching any completion failure
 584      *  exceptions. Return the tree's type.
 585      *
 586      *  @param tree    The tree to be visited.
 587      *  @param env     The environment visitor argument.
 588      *  @param resultInfo   The result info visitor argument.
 589      */
 590     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 591         Env<AttrContext> prevEnv = this.env;
 592         ResultInfo prevResult = this.resultInfo;
 593         try {
 594             this.env = env;
 595             this.resultInfo = resultInfo;
 596             tree.accept(this);
 597             if (tree == breakTree &&
 598                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 599                 throw new BreakAttr(copyEnv(env));
 600             }
 601             return result;
 602         } catch (CompletionFailure ex) {
 603             tree.type = syms.errType;
 604             return chk.completionError(tree.pos(), ex);
 605         } finally {
 606             this.env = prevEnv;
 607             this.resultInfo = prevResult;
 608         }
 609     }
 610 
 611     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 612         Env<AttrContext> newEnv =
 613                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 614         if (newEnv.outer != null) {
 615             newEnv.outer = copyEnv(newEnv.outer);
 616         }
 617         return newEnv;
 618     }
 619 
 620     Scope copyScope(Scope sc) {
 621         Scope newScope = new Scope(sc.owner);
 622         List<Symbol> elemsList = List.nil();
 623         while (sc != null) {
 624             for (Scope.Entry e = sc.elems ; e != null ; e = e.sibling) {
 625                 elemsList = elemsList.prepend(e.sym);
 626             }
 627             sc = sc.next;
 628         }
 629         for (Symbol s : elemsList) {
 630             newScope.enter(s);
 631         }
 632         return newScope;
 633     }
 634 
 635     /** Derived visitor method: attribute an expression tree.
 636      */
 637     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 638         return attribTree(tree, env, new ResultInfo(VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 639     }
 640 
 641     /** Derived visitor method: attribute an expression tree with
 642      *  no constraints on the computed type.
 643      */
 644     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 645         return attribTree(tree, env, unknownExprInfo);
 646     }
 647 
 648     /** Derived visitor method: attribute a type tree.
 649      */
 650     public Type attribType(JCTree tree, Env<AttrContext> env) {
 651         Type result = attribType(tree, env, Type.noType);
 652         return result;
 653     }
 654 
 655     /** Derived visitor method: attribute a type tree.
 656      */
 657     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 658         Type result = attribTree(tree, env, new ResultInfo(TYP, pt));
 659         return result;
 660     }
 661 
 662     /** Derived visitor method: attribute a statement or definition tree.
 663      */
 664     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 665         return attribTree(tree, env, statInfo);
 666     }
 667 
 668     /** Attribute a list of expressions, returning a list of types.
 669      */
 670     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 671         ListBuffer<Type> ts = new ListBuffer<Type>();
 672         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 673             ts.append(attribExpr(l.head, env, pt));
 674         return ts.toList();
 675     }
 676 
 677     /** Attribute a list of statements, returning nothing.
 678      */
 679     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 680         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 681             attribStat(l.head, env);
 682     }
 683 
 684     /** Attribute the arguments in a method call, returning the method kind.
 685      */
 686     int attribArgs(List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 687         int kind = VAL;
 688         for (JCExpression arg : trees) {
 689             Type argtype;
 690             if (allowPoly && deferredAttr.isDeferred(env, arg)) {
 691                 argtype = deferredAttr.new DeferredType(arg, env);
 692                 kind |= POLY;
 693             } else {
 694                 argtype = chk.checkNonVoid(arg, attribTree(arg, env, unknownAnyPolyInfo));
 695             }
 696             argtypes.append(argtype);
 697         }
 698         return kind;
 699     }
 700 
 701     /** Attribute a type argument list, returning a list of types.
 702      *  Caller is responsible for calling checkRefTypes.
 703      */
 704     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 705         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 706         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 707             argtypes.append(attribType(l.head, env));
 708         return argtypes.toList();
 709     }
 710 
 711     /** Attribute a type argument list, returning a list of types.
 712      *  Check that all the types are references.
 713      */
 714     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 715         List<Type> types = attribAnyTypes(trees, env);
 716         return chk.checkRefTypes(trees, types);
 717     }
 718 
 719     /**
 720      * Attribute type variables (of generic classes or methods).
 721      * Compound types are attributed later in attribBounds.
 722      * @param typarams the type variables to enter
 723      * @param env      the current environment
 724      */
 725     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 726         for (JCTypeParameter tvar : typarams) {
 727             TypeVar a = (TypeVar)tvar.type;
 728             a.tsym.flags_field |= UNATTRIBUTED;
 729             a.bound = Type.noType;
 730             if (!tvar.bounds.isEmpty()) {
 731                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 732                 for (JCExpression bound : tvar.bounds.tail)
 733                     bounds = bounds.prepend(attribType(bound, env));
 734                 types.setBounds(a, bounds.reverse());
 735             } else {
 736                 // if no bounds are given, assume a single bound of
 737                 // java.lang.Object.
 738                 types.setBounds(a, List.of(syms.objectType));
 739             }
 740             a.tsym.flags_field &= ~UNATTRIBUTED;
 741         }
 742         for (JCTypeParameter tvar : typarams) {
 743             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 744         }
 745     }
 746 
 747     /**
 748      * Attribute the type references in a list of annotations.
 749      */
 750     void attribAnnotationTypes(List<JCAnnotation> annotations,
 751                                Env<AttrContext> env) {
 752         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 753             JCAnnotation a = al.head;
 754             attribType(a.annotationType, env);
 755         }
 756     }
 757 
 758     /**
 759      * Attribute a "lazy constant value".
 760      *  @param env         The env for the const value
 761      *  @param initializer The initializer for the const value
 762      *  @param type        The expected type, or null
 763      *  @see VarSymbol#setLazyConstValue
 764      */
 765     public Object attribLazyConstantValue(Env<AttrContext> env,
 766                                       JCVariableDecl variable,
 767                                       Type type) {
 768 
 769         DiagnosticPosition prevLintPos
 770                 = deferredLintHandler.setPos(variable.pos());
 771 
 772         try {
 773             // Use null as symbol to not attach the type annotation to any symbol.
 774             // The initializer will later also be visited and then we'll attach
 775             // to the symbol.
 776             // This prevents having multiple type annotations, just because of
 777             // lazy constant value evaluation.
 778             memberEnter.typeAnnotate(variable.init, env, null, variable.pos());
 779             annotate.flush();
 780             Type itype = attribExpr(variable.init, env, type);
 781             if (itype.constValue() != null) {
 782                 return coerce(itype, type).constValue();
 783             } else {
 784                 return null;
 785             }
 786         } finally {
 787             deferredLintHandler.setPos(prevLintPos);
 788         }
 789     }
 790 
 791     /** Attribute type reference in an `extends' or `implements' clause.
 792      *  Supertypes of anonymous inner classes are usually already attributed.
 793      *
 794      *  @param tree              The tree making up the type reference.
 795      *  @param env               The environment current at the reference.
 796      *  @param classExpected     true if only a class is expected here.
 797      *  @param interfaceExpected true if only an interface is expected here.
 798      */
 799     Type attribBase(JCTree tree,
 800                     Env<AttrContext> env,
 801                     boolean classExpected,
 802                     boolean interfaceExpected,
 803                     boolean checkExtensible) {
 804         Type t = tree.type != null ?
 805             tree.type :
 806             attribType(tree, env);
 807         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 808     }
 809     Type checkBase(Type t,
 810                    JCTree tree,
 811                    Env<AttrContext> env,
 812                    boolean classExpected,
 813                    boolean interfaceExpected,
 814                    boolean checkExtensible) {
 815         if (t.isErroneous())
 816             return t;
 817         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 818             // check that type variable is already visible
 819             if (t.getUpperBound() == null) {
 820                 log.error(tree.pos(), "illegal.forward.ref");
 821                 return types.createErrorType(t);
 822             }
 823         } else {
 824             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 825         }
 826         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 827             log.error(tree.pos(), "intf.expected.here");
 828             // return errType is necessary since otherwise there might
 829             // be undetected cycles which cause attribution to loop
 830             return types.createErrorType(t);
 831         } else if (checkExtensible &&
 832                    classExpected &&
 833                    (t.tsym.flags() & INTERFACE) != 0) {
 834             log.error(tree.pos(), "no.intf.expected.here");
 835             return types.createErrorType(t);
 836         }
 837         if (checkExtensible &&
 838             ((t.tsym.flags() & FINAL) != 0)) {
 839             log.error(tree.pos(),
 840                       "cant.inherit.from.final", t.tsym);
 841         }
 842         chk.checkNonCyclic(tree.pos(), t);
 843         return t;
 844     }
 845 
 846     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 847         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 848         id.type = env.info.scope.owner.type;
 849         id.sym = env.info.scope.owner;
 850         return id.type;
 851     }
 852 
 853     public void visitClassDef(JCClassDecl tree) {
 854         // Local classes have not been entered yet, so we need to do it now:
 855         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 856             enter.classEnter(tree, env);
 857 
 858         ClassSymbol c = tree.sym;
 859         if (c == null) {
 860             // exit in case something drastic went wrong during enter.
 861             result = null;
 862         } else {
 863             // make sure class has been completed:
 864             c.complete();
 865 
 866             // If this class appears as an anonymous class
 867             // in a superclass constructor call where
 868             // no explicit outer instance is given,
 869             // disable implicit outer instance from being passed.
 870             // (This would be an illegal access to "this before super").
 871             if (env.info.isSelfCall &&
 872                 env.tree.hasTag(NEWCLASS) &&
 873                 ((JCNewClass) env.tree).encl == null)
 874             {
 875                 c.flags_field |= NOOUTERTHIS;
 876             }
 877             attribClass(tree.pos(), c);
 878             result = tree.type = c.type;
 879         }
 880     }
 881 
 882     public void visitMethodDef(JCMethodDecl tree) {
 883         MethodSymbol m = tree.sym;
 884         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 885 
 886         Lint lint = env.info.lint.augment(m);
 887         Lint prevLint = chk.setLint(lint);
 888         MethodSymbol prevMethod = chk.setMethod(m);
 889         try {
 890             deferredLintHandler.flush(tree.pos());
 891             chk.checkDeprecatedAnnotation(tree.pos(), m);
 892 
 893 
 894             // Create a new environment with local scope
 895             // for attributing the method.
 896             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 897             localEnv.info.lint = lint;
 898 
 899             attribStats(tree.typarams, localEnv);
 900 
 901             // If we override any other methods, check that we do so properly.
 902             // JLS ???
 903             if (m.isStatic()) {
 904                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 905             } else {
 906                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 907             }
 908             chk.checkOverride(tree, m);
 909 
 910             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 911                 log.error(tree, "default.overrides.object.member", m.name, Kinds.kindName(m.location()), m.location());
 912             }
 913 
 914             // Enter all type parameters into the local method scope.
 915             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 916                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 917 
 918             ClassSymbol owner = env.enclClass.sym;
 919             if ((owner.flags() & ANNOTATION) != 0 &&
 920                 tree.params.nonEmpty())
 921                 log.error(tree.params.head.pos(),
 922                           "intf.annotation.members.cant.have.params");
 923 
 924             // Attribute all value parameters.
 925             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 926                 attribStat(l.head, localEnv);
 927             }
 928 
 929             chk.checkVarargsMethodDecl(localEnv, tree);
 930 
 931             // Check that type parameters are well-formed.
 932             chk.validate(tree.typarams, localEnv);
 933 
 934             // Check that result type is well-formed.
 935             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
 936                 chk.validate(tree.restype, localEnv);
 937 
 938             // Check that receiver type is well-formed.
 939             if (tree.recvparam != null) {
 940                 // Use a new environment to check the receiver parameter.
 941                 // Otherwise I get "might not have been initialized" errors.
 942                 // Is there a better way?
 943                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
 944                 attribType(tree.recvparam, newEnv);
 945                 chk.validate(tree.recvparam, newEnv);
 946             }
 947 
 948             // annotation method checks
 949             if ((owner.flags() & ANNOTATION) != 0) {
 950                 // annotation method cannot have throws clause
 951                 if (tree.thrown.nonEmpty()) {
 952                     log.error(tree.thrown.head.pos(),
 953                             "throws.not.allowed.in.intf.annotation");
 954                 }
 955                 // annotation method cannot declare type-parameters
 956                 if (tree.typarams.nonEmpty()) {
 957                     log.error(tree.typarams.head.pos(),
 958                             "intf.annotation.members.cant.have.type.params");
 959                 }
 960                 // validate annotation method's return type (could be an annotation type)
 961                 chk.validateAnnotationType(tree.restype);
 962                 // ensure that annotation method does not clash with members of Object/Annotation
 963                 chk.validateAnnotationMethod(tree.pos(), m);
 964             }
 965 
 966             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 967                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 968 
 969             if (tree.body == null) {
 970                 // Empty bodies are only allowed for
 971                 // abstract, native, or interface methods, or for methods
 972                 // in a retrofit signature class.
 973                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0 &&
 974                     !relax)
 975                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 976                 if (tree.defaultValue != null) {
 977                     if ((owner.flags() & ANNOTATION) == 0)
 978                         log.error(tree.pos(),
 979                                   "default.allowed.in.intf.annotation.member");
 980                 }
 981             } else if ((tree.sym.flags() & ABSTRACT) != 0 && !isDefaultMethod) {
 982                 if ((owner.flags() & INTERFACE) != 0) {
 983                     log.error(tree.body.pos(), "intf.meth.cant.have.body");
 984                 } else {
 985                     log.error(tree.pos(), "abstract.meth.cant.have.body");
 986                 }
 987             } else if ((tree.mods.flags & NATIVE) != 0) {
 988                 log.error(tree.pos(), "native.meth.cant.have.body");
 989             } else {
 990                 // Add an implicit super() call unless an explicit call to
 991                 // super(...) or this(...) is given
 992                 // or we are compiling class java.lang.Object.
 993                 if (tree.name == names.init && owner.type != syms.objectType) {
 994                     JCBlock body = tree.body;
 995                     if (body.stats.isEmpty() ||
 996                         !TreeInfo.isSelfCall(body.stats.head)) {
 997                         body.stats = body.stats.
 998                             prepend(memberEnter.SuperCall(make.at(body.pos),
 999                                                           List.<Type>nil(),
1000                                                           List.<JCVariableDecl>nil(),
1001                                                           false));
1002                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1003                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1004                                TreeInfo.isSuperCall(body.stats.head)) {
1005                         // enum constructors are not allowed to call super
1006                         // directly, so make sure there aren't any super calls
1007                         // in enum constructors, except in the compiler
1008                         // generated one.
1009                         log.error(tree.body.stats.head.pos(),
1010                                   "call.to.super.not.allowed.in.enum.ctor",
1011                                   env.enclClass.sym);
1012                     }
1013                 }
1014 
1015                 // Attribute all type annotations in the body
1016                 memberEnter.typeAnnotate(tree.body, localEnv, m, null);
1017                 annotate.flush();
1018 
1019                 // Attribute method body.
1020                 attribStat(tree.body, localEnv);
1021             }
1022 
1023             localEnv.info.scope.leave();
1024             result = tree.type = m.type;
1025         }
1026         finally {
1027             chk.setLint(prevLint);
1028             chk.setMethod(prevMethod);
1029         }
1030     }
1031 
1032     public void visitVarDef(JCVariableDecl tree) {
1033         // Local variables have not been entered yet, so we need to do it now:
1034         if (env.info.scope.owner.kind == MTH) {
1035             if (tree.sym != null) {
1036                 // parameters have already been entered
1037                 env.info.scope.enter(tree.sym);
1038             } else {
1039                 memberEnter.memberEnter(tree, env);
1040                 annotate.flush();
1041             }
1042         } else {
1043             if (tree.init != null) {
1044                 // Field initializer expression need to be entered.
1045                 memberEnter.typeAnnotate(tree.init, env, tree.sym, tree.pos());
1046                 annotate.flush();
1047             }
1048         }
1049 
1050         VarSymbol v = tree.sym;
1051         Lint lint = env.info.lint.augment(v);
1052         Lint prevLint = chk.setLint(lint);
1053 
1054         // Check that the variable's declared type is well-formed.
1055         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1056                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1057                 (tree.sym.flags() & PARAMETER) != 0;
1058         chk.validate(tree.vartype, env, !isImplicitLambdaParameter);
1059 
1060         try {
1061             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1062             deferredLintHandler.flush(tree.pos());
1063             chk.checkDeprecatedAnnotation(tree.pos(), v);
1064 
1065             if (tree.init != null) {
1066                 if ((v.flags_field & FINAL) == 0 ||
1067                     !memberEnter.needsLazyConstValue(tree.init)) {
1068                     // Not a compile-time constant
1069                     // Attribute initializer in a new environment
1070                     // with the declared variable as owner.
1071                     // Check that initializer conforms to variable's declared type.
1072                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1073                     initEnv.info.lint = lint;
1074                     // In order to catch self-references, we set the variable's
1075                     // declaration position to maximal possible value, effectively
1076                     // marking the variable as undefined.
1077                     initEnv.info.enclVar = v;
1078                     attribExpr(tree.init, initEnv, v.type);
1079                 }
1080             }
1081             result = tree.type = v.type;
1082         }
1083         finally {
1084             chk.setLint(prevLint);
1085         }
1086     }
1087 
1088     public void visitSkip(JCSkip tree) {
1089         result = null;
1090     }
1091 
1092     public void visitBlock(JCBlock tree) {
1093         if (env.info.scope.owner.kind == TYP) {
1094             // Block is a static or instance initializer;
1095             // let the owner of the environment be a freshly
1096             // created BLOCK-method.
1097             Env<AttrContext> localEnv =
1098                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
1099             localEnv.info.scope.owner =
1100                 new MethodSymbol(tree.flags | BLOCK |
1101                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1102                     env.info.scope.owner);
1103             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1104 
1105             // Attribute all type annotations in the block
1106             memberEnter.typeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1107             annotate.flush();
1108 
1109             {
1110                 // Store init and clinit type annotations with the ClassSymbol
1111                 // to allow output in Gen.normalizeDefs.
1112                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1113                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1114                 if ((tree.flags & STATIC) != 0) {
1115                     cs.appendClassInitTypeAttributes(tas);
1116                 } else {
1117                     cs.appendInitTypeAttributes(tas);
1118                 }
1119             }
1120 
1121             attribStats(tree.stats, localEnv);
1122         } else {
1123             // Create a new local environment with a local scope.
1124             Env<AttrContext> localEnv =
1125                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1126             try {
1127                 attribStats(tree.stats, localEnv);
1128             } finally {
1129                 localEnv.info.scope.leave();
1130             }
1131         }
1132         result = null;
1133     }
1134 
1135     public void visitDoLoop(JCDoWhileLoop tree) {
1136         attribStat(tree.body, env.dup(tree));
1137         attribExpr(tree.cond, env, syms.booleanType);
1138         result = null;
1139     }
1140 
1141     public void visitWhileLoop(JCWhileLoop tree) {
1142         attribExpr(tree.cond, env, syms.booleanType);
1143         attribStat(tree.body, env.dup(tree));
1144         result = null;
1145     }
1146 
1147     public void visitForLoop(JCForLoop tree) {
1148         Env<AttrContext> loopEnv =
1149             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1150         try {
1151             attribStats(tree.init, loopEnv);
1152             if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
1153             loopEnv.tree = tree; // before, we were not in loop!
1154             attribStats(tree.step, loopEnv);
1155             attribStat(tree.body, loopEnv);
1156             result = null;
1157         }
1158         finally {
1159             loopEnv.info.scope.leave();
1160         }
1161     }
1162 
1163     public void visitForeachLoop(JCEnhancedForLoop tree) {
1164         Env<AttrContext> loopEnv =
1165             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1166         try {
1167             //the Formal Parameter of a for-each loop is not in the scope when
1168             //attributing the for-each expression; we mimick this by attributing
1169             //the for-each expression first (against original scope).
1170             Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
1171             attribStat(tree.var, loopEnv);
1172             chk.checkNonVoid(tree.pos(), exprType);
1173             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1174             if (elemtype == null) {
1175                 // or perhaps expr implements Iterable<T>?
1176                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1177                 if (base == null) {
1178                     log.error(tree.expr.pos(),
1179                             "foreach.not.applicable.to.type",
1180                             exprType,
1181                             diags.fragment("type.req.array.or.iterable"));
1182                     elemtype = types.createErrorType(exprType);
1183                 } else {
1184                     List<Type> iterableParams = base.allparams();
1185                     elemtype = iterableParams.isEmpty()
1186                         ? syms.objectType
1187                         : types.upperBound(iterableParams.head);
1188                 }
1189             }
1190             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1191             loopEnv.tree = tree; // before, we were not in loop!
1192             attribStat(tree.body, loopEnv);
1193             result = null;
1194         }
1195         finally {
1196             loopEnv.info.scope.leave();
1197         }
1198     }
1199 
1200     public void visitLabelled(JCLabeledStatement tree) {
1201         // Check that label is not used in an enclosing statement
1202         Env<AttrContext> env1 = env;
1203         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1204             if (env1.tree.hasTag(LABELLED) &&
1205                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1206                 log.error(tree.pos(), "label.already.in.use",
1207                           tree.label);
1208                 break;
1209             }
1210             env1 = env1.next;
1211         }
1212 
1213         attribStat(tree.body, env.dup(tree));
1214         result = null;
1215     }
1216 
1217     public void visitSwitch(JCSwitch tree) {
1218         Type seltype = attribExpr(tree.selector, env);
1219 
1220         Env<AttrContext> switchEnv =
1221             env.dup(tree, env.info.dup(env.info.scope.dup()));
1222 
1223         try {
1224 
1225             boolean enumSwitch =
1226                 allowEnums &&
1227                 (seltype.tsym.flags() & Flags.ENUM) != 0;
1228             boolean stringSwitch = false;
1229             if (types.isSameType(seltype, syms.stringType)) {
1230                 if (allowStringsInSwitch) {
1231                     stringSwitch = true;
1232                 } else {
1233                     log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
1234                 }
1235             }
1236             if (!enumSwitch && !stringSwitch)
1237                 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
1238 
1239             // Attribute all cases and
1240             // check that there are no duplicate case labels or default clauses.
1241             Set<Object> labels = new HashSet<Object>(); // The set of case labels.
1242             boolean hasDefault = false;      // Is there a default label?
1243             for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
1244                 JCCase c = l.head;
1245                 Env<AttrContext> caseEnv =
1246                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1247                 try {
1248                     if (c.pat != null) {
1249                         if (enumSwitch) {
1250                             Symbol sym = enumConstant(c.pat, seltype);
1251                             if (sym == null) {
1252                                 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
1253                             } else if (!labels.add(sym)) {
1254                                 log.error(c.pos(), "duplicate.case.label");
1255                             }
1256                         } else {
1257                             Type pattype = attribExpr(c.pat, switchEnv, seltype);
1258                             if (!pattype.hasTag(ERROR)) {
1259                                 if (pattype.constValue() == null) {
1260                                     log.error(c.pat.pos(),
1261                                               (stringSwitch ? "string.const.req" : "const.expr.req"));
1262                                 } else if (labels.contains(pattype.constValue())) {
1263                                     log.error(c.pos(), "duplicate.case.label");
1264                                 } else {
1265                                     labels.add(pattype.constValue());
1266                                 }
1267                             }
1268                         }
1269                     } else if (hasDefault) {
1270                         log.error(c.pos(), "duplicate.default.label");
1271                     } else {
1272                         hasDefault = true;
1273                     }
1274                     attribStats(c.stats, caseEnv);
1275                 } finally {
1276                     caseEnv.info.scope.leave();
1277                     addVars(c.stats, switchEnv.info.scope);
1278                 }
1279             }
1280 
1281             result = null;
1282         }
1283         finally {
1284             switchEnv.info.scope.leave();
1285         }
1286     }
1287     // where
1288         /** Add any variables defined in stats to the switch scope. */
1289         private static void addVars(List<JCStatement> stats, Scope switchScope) {
1290             for (;stats.nonEmpty(); stats = stats.tail) {
1291                 JCTree stat = stats.head;
1292                 if (stat.hasTag(VARDEF))
1293                     switchScope.enter(((JCVariableDecl) stat).sym);
1294             }
1295         }
1296     // where
1297     /** Return the selected enumeration constant symbol, or null. */
1298     private Symbol enumConstant(JCTree tree, Type enumType) {
1299         if (!tree.hasTag(IDENT)) {
1300             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
1301             return syms.errSymbol;
1302         }
1303         JCIdent ident = (JCIdent)tree;
1304         Name name = ident.name;
1305         for (Scope.Entry e = enumType.tsym.members().lookup(name);
1306              e.scope != null; e = e.next()) {
1307             if (e.sym.kind == VAR) {
1308                 Symbol s = ident.sym = e.sym;
1309                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1310                 ident.type = s.type;
1311                 return ((s.flags_field & Flags.ENUM) == 0)
1312                     ? null : s;
1313             }
1314         }
1315         return null;
1316     }
1317 
1318     public void visitSynchronized(JCSynchronized tree) {
1319         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1320         attribStat(tree.body, env);
1321         result = null;
1322     }
1323 
1324     public void visitTry(JCTry tree) {
1325         // Create a new local environment with a local
1326         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1327         try {
1328             boolean isTryWithResource = tree.resources.nonEmpty();
1329             // Create a nested environment for attributing the try block if needed
1330             Env<AttrContext> tryEnv = isTryWithResource ?
1331                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1332                 localEnv;
1333             try {
1334                 // Attribute resource declarations
1335                 for (JCTree resource : tree.resources) {
1336                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1337                         @Override
1338                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1339                             chk.basicHandler.report(pos, diags.fragment("try.not.applicable.to.type", details));
1340                         }
1341                     };
1342                     ResultInfo twrResult = new ResultInfo(VAL, syms.autoCloseableType, twrContext);
1343                     if (resource.hasTag(VARDEF)) {
1344                         attribStat(resource, tryEnv);
1345                         twrResult.check(resource, resource.type);
1346 
1347                         //check that resource type cannot throw InterruptedException
1348                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1349 
1350                         VarSymbol var = ((JCVariableDecl) resource).sym;
1351                         var.setData(ElementKind.RESOURCE_VARIABLE);
1352                     } else {
1353                         attribTree(resource, tryEnv, twrResult);
1354                     }
1355                 }
1356                 // Attribute body
1357                 attribStat(tree.body, tryEnv);
1358             } finally {
1359                 if (isTryWithResource)
1360                     tryEnv.info.scope.leave();
1361             }
1362 
1363             // Attribute catch clauses
1364             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1365                 JCCatch c = l.head;
1366                 Env<AttrContext> catchEnv =
1367                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1368                 try {
1369                     Type ctype = attribStat(c.param, catchEnv);
1370                     if (TreeInfo.isMultiCatch(c)) {
1371                         //multi-catch parameter is implicitly marked as final
1372                         c.param.sym.flags_field |= FINAL | UNION;
1373                     }
1374                     if (c.param.sym.kind == Kinds.VAR) {
1375                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1376                     }
1377                     chk.checkType(c.param.vartype.pos(),
1378                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1379                                   syms.throwableType);
1380                     attribStat(c.body, catchEnv);
1381                 } finally {
1382                     catchEnv.info.scope.leave();
1383                 }
1384             }
1385 
1386             // Attribute finalizer
1387             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1388             result = null;
1389         }
1390         finally {
1391             localEnv.info.scope.leave();
1392         }
1393     }
1394 
1395     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1396         if (!resource.isErroneous() &&
1397             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1398             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1399             Symbol close = syms.noSymbol;
1400             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1401             try {
1402                 close = rs.resolveQualifiedMethod(pos,
1403                         env,
1404                         resource,
1405                         names.close,
1406                         List.<Type>nil(),
1407                         List.<Type>nil());
1408             }
1409             finally {
1410                 log.popDiagnosticHandler(discardHandler);
1411             }
1412             if (close.kind == MTH &&
1413                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1414                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1415                     env.info.lint.isEnabled(LintCategory.TRY)) {
1416                 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
1417             }
1418         }
1419     }
1420 
1421     public void visitConditional(JCConditional tree) {
1422         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1423 
1424         tree.polyKind = (!allowPoly ||
1425                 pt().hasTag(NONE) && pt() != Type.recoveryType ||
1426                 isBooleanOrNumeric(env, tree)) ?
1427                 PolyKind.STANDALONE : PolyKind.POLY;
1428 
1429         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1430             //cannot get here (i.e. it means we are returning from void method - which is already an error)
1431             resultInfo.checkContext.report(tree, diags.fragment("conditional.target.cant.be.void"));
1432             result = tree.type = types.createErrorType(resultInfo.pt);
1433             return;
1434         }
1435 
1436         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1437                 unknownExprInfo :
1438                 resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
1439                     //this will use enclosing check context to check compatibility of
1440                     //subexpression against target type; if we are in a method check context,
1441                     //depending on whether boxing is allowed, we could have incompatibilities
1442                     @Override
1443                     public void report(DiagnosticPosition pos, JCDiagnostic details) {
1444                         enclosingContext.report(pos, diags.fragment("incompatible.type.in.conditional", details));
1445                     }
1446                 });
1447 
1448         Type truetype = attribTree(tree.truepart, env, condInfo);
1449         Type falsetype = attribTree(tree.falsepart, env, condInfo);
1450 
1451         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(tree, truetype, falsetype) : pt();
1452         if (condtype.constValue() != null &&
1453                 truetype.constValue() != null &&
1454                 falsetype.constValue() != null &&
1455                 !owntype.hasTag(NONE)) {
1456             //constant folding
1457             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1458         }
1459         result = check(tree, owntype, VAL, resultInfo);
1460     }
1461     //where
1462         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1463             switch (tree.getTag()) {
1464                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1465                               ((JCLiteral)tree).typetag == BOOLEAN ||
1466                               ((JCLiteral)tree).typetag == BOT;
1467                 case LAMBDA: case REFERENCE: return false;
1468                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1469                 case CONDEXPR:
1470                     JCConditional condTree = (JCConditional)tree;
1471                     return isBooleanOrNumeric(env, condTree.truepart) &&
1472                             isBooleanOrNumeric(env, condTree.falsepart);
1473                 case APPLY:
1474                     JCMethodInvocation speculativeMethodTree =
1475                             (JCMethodInvocation)deferredAttr.attribSpeculative(tree, env, unknownExprInfo);
1476                     Type owntype = TreeInfo.symbol(speculativeMethodTree.meth).type.getReturnType();
1477                     return types.unboxedTypeOrType(owntype).isPrimitive();
1478                 case NEWCLASS:
1479                     JCExpression className =
1480                             removeClassParams.translate(((JCNewClass)tree).clazz);
1481                     JCExpression speculativeNewClassTree =
1482                             (JCExpression)deferredAttr.attribSpeculative(className, env, unknownTypeInfo);
1483                     return types.unboxedTypeOrType(speculativeNewClassTree.type).isPrimitive();
1484                 default:
1485                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo).type;
1486                     speculativeType = types.unboxedTypeOrType(speculativeType);
1487                     return speculativeType.isPrimitive();
1488             }
1489         }
1490         //where
1491             TreeTranslator removeClassParams = new TreeTranslator() {
1492                 @Override
1493                 public void visitTypeApply(JCTypeApply tree) {
1494                     result = translate(tree.clazz);
1495                 }
1496             };
1497 
1498         /** Compute the type of a conditional expression, after
1499          *  checking that it exists.  See JLS 15.25. Does not take into
1500          *  account the special case where condition and both arms
1501          *  are constants.
1502          *
1503          *  @param pos      The source position to be used for error
1504          *                  diagnostics.
1505          *  @param thentype The type of the expression's then-part.
1506          *  @param elsetype The type of the expression's else-part.
1507          */
1508         private Type condType(DiagnosticPosition pos,
1509                                Type thentype, Type elsetype) {
1510             // If same type, that is the result
1511             if (types.isSameType(thentype, elsetype))
1512                 return thentype.baseType();
1513 
1514             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1515                 ? thentype : types.unboxedType(thentype);
1516             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1517                 ? elsetype : types.unboxedType(elsetype);
1518 
1519             // Otherwise, if both arms can be converted to a numeric
1520             // type, return the least numeric type that fits both arms
1521             // (i.e. return larger of the two, or return int if one
1522             // arm is short, the other is char).
1523             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1524                 // If one arm has an integer subrange type (i.e., byte,
1525                 // short, or char), and the other is an integer constant
1526                 // that fits into the subrange, return the subrange type.
1527                 if (thenUnboxed.getTag().isStrictSubRangeOf(INT) &&
1528                     elseUnboxed.hasTag(INT) &&
1529                     types.isAssignable(elseUnboxed, thenUnboxed)) {
1530                     return thenUnboxed.baseType();
1531                 }
1532                 if (elseUnboxed.getTag().isStrictSubRangeOf(INT) &&
1533                     thenUnboxed.hasTag(INT) &&
1534                     types.isAssignable(thenUnboxed, elseUnboxed)) {
1535                     return elseUnboxed.baseType();
1536                 }
1537 
1538                 for (TypeTag tag : primitiveTags) {
1539                     Type candidate = syms.typeOfTag[tag.ordinal()];
1540                     if (types.isSubtype(thenUnboxed, candidate) &&
1541                         types.isSubtype(elseUnboxed, candidate)) {
1542                         return candidate;
1543                     }
1544                 }
1545             }
1546 
1547             // Those were all the cases that could result in a primitive
1548             if (allowBoxing) {
1549                 if (thentype.isPrimitive())
1550                     thentype = types.boxedClass(thentype).type;
1551                 if (elsetype.isPrimitive())
1552                     elsetype = types.boxedClass(elsetype).type;
1553             }
1554 
1555             if (types.isSubtype(thentype, elsetype))
1556                 return elsetype.baseType();
1557             if (types.isSubtype(elsetype, thentype))
1558                 return thentype.baseType();
1559 
1560             if (!allowBoxing || thentype.hasTag(VOID) || elsetype.hasTag(VOID)) {
1561                 log.error(pos, "neither.conditional.subtype",
1562                           thentype, elsetype);
1563                 return thentype.baseType();
1564             }
1565 
1566             // both are known to be reference types.  The result is
1567             // lub(thentype,elsetype). This cannot fail, as it will
1568             // always be possible to infer "Object" if nothing better.
1569             return types.lub(thentype.baseType(), elsetype.baseType());
1570         }
1571 
1572     final static TypeTag[] primitiveTags = new TypeTag[]{
1573         BYTE,
1574         CHAR,
1575         SHORT,
1576         INT,
1577         LONG,
1578         FLOAT,
1579         DOUBLE,
1580         BOOLEAN,
1581     };
1582 
1583     public void visitIf(JCIf tree) {
1584         attribExpr(tree.cond, env, syms.booleanType);
1585         attribStat(tree.thenpart, env);
1586         if (tree.elsepart != null)
1587             attribStat(tree.elsepart, env);
1588         chk.checkEmptyIf(tree);
1589         result = null;
1590     }
1591 
1592     public void visitExec(JCExpressionStatement tree) {
1593         //a fresh environment is required for 292 inference to work properly ---
1594         //see Infer.instantiatePolymorphicSignatureInstance()
1595         Env<AttrContext> localEnv = env.dup(tree);
1596         attribExpr(tree.expr, localEnv);
1597         result = null;
1598     }
1599 
1600     public void visitBreak(JCBreak tree) {
1601         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1602         result = null;
1603     }
1604 
1605     public void visitContinue(JCContinue tree) {
1606         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1607         result = null;
1608     }
1609     //where
1610         /** Return the target of a break or continue statement, if it exists,
1611          *  report an error if not.
1612          *  Note: The target of a labelled break or continue is the
1613          *  (non-labelled) statement tree referred to by the label,
1614          *  not the tree representing the labelled statement itself.
1615          *
1616          *  @param pos     The position to be used for error diagnostics
1617          *  @param tag     The tag of the jump statement. This is either
1618          *                 Tree.BREAK or Tree.CONTINUE.
1619          *  @param label   The label of the jump statement, or null if no
1620          *                 label is given.
1621          *  @param env     The environment current at the jump statement.
1622          */
1623         private JCTree findJumpTarget(DiagnosticPosition pos,
1624                                     JCTree.Tag tag,
1625                                     Name label,
1626                                     Env<AttrContext> env) {
1627             // Search environments outwards from the point of jump.
1628             Env<AttrContext> env1 = env;
1629             LOOP:
1630             while (env1 != null) {
1631                 switch (env1.tree.getTag()) {
1632                     case LABELLED:
1633                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1634                         if (label == labelled.label) {
1635                             // If jump is a continue, check that target is a loop.
1636                             if (tag == CONTINUE) {
1637                                 if (!labelled.body.hasTag(DOLOOP) &&
1638                                         !labelled.body.hasTag(WHILELOOP) &&
1639                                         !labelled.body.hasTag(FORLOOP) &&
1640                                         !labelled.body.hasTag(FOREACHLOOP))
1641                                     log.error(pos, "not.loop.label", label);
1642                                 // Found labelled statement target, now go inwards
1643                                 // to next non-labelled tree.
1644                                 return TreeInfo.referencedStatement(labelled);
1645                             } else {
1646                                 return labelled;
1647                             }
1648                         }
1649                         break;
1650                     case DOLOOP:
1651                     case WHILELOOP:
1652                     case FORLOOP:
1653                     case FOREACHLOOP:
1654                         if (label == null) return env1.tree;
1655                         break;
1656                     case SWITCH:
1657                         if (label == null && tag == BREAK) return env1.tree;
1658                         break;
1659                     case LAMBDA:
1660                     case METHODDEF:
1661                     case CLASSDEF:
1662                         break LOOP;
1663                     default:
1664                 }
1665                 env1 = env1.next;
1666             }
1667             if (label != null)
1668                 log.error(pos, "undef.label", label);
1669             else if (tag == CONTINUE)
1670                 log.error(pos, "cont.outside.loop");
1671             else
1672                 log.error(pos, "break.outside.switch.loop");
1673             return null;
1674         }
1675 
1676     public void visitReturn(JCReturn tree) {
1677         // Check that there is an enclosing method which is
1678         // nested within than the enclosing class.
1679         if (env.info.returnResult == null) {
1680             log.error(tree.pos(), "ret.outside.meth");
1681         } else {
1682             // Attribute return expression, if it exists, and check that
1683             // it conforms to result type of enclosing method.
1684             if (tree.expr != null) {
1685                 if (env.info.returnResult.pt.hasTag(VOID)) {
1686                     env.info.returnResult.checkContext.report(tree.expr.pos(),
1687                               diags.fragment("unexpected.ret.val"));
1688                 }
1689                 attribTree(tree.expr, env, env.info.returnResult);
1690             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
1691                     !env.info.returnResult.pt.hasTag(NONE)) {
1692                 env.info.returnResult.checkContext.report(tree.pos(),
1693                               diags.fragment("missing.ret.val"));
1694             }
1695         }
1696         result = null;
1697     }
1698 
1699     public void visitThrow(JCThrow tree) {
1700         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
1701         if (allowPoly) {
1702             chk.checkType(tree, owntype, syms.throwableType);
1703         }
1704         result = null;
1705     }
1706 
1707     public void visitAssert(JCAssert tree) {
1708         attribExpr(tree.cond, env, syms.booleanType);
1709         if (tree.detail != null) {
1710             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1711         }
1712         result = null;
1713     }
1714 
1715      /** Visitor method for method invocations.
1716      *  NOTE: The method part of an application will have in its type field
1717      *        the return type of the method, not the method's type itself!
1718      */
1719     public void visitApply(JCMethodInvocation tree) {
1720         // The local environment of a method application is
1721         // a new environment nested in the current one.
1722         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1723 
1724         // The types of the actual method arguments.
1725         List<Type> argtypes;
1726 
1727         // The types of the actual method type arguments.
1728         List<Type> typeargtypes = null;
1729 
1730         Name methName = TreeInfo.name(tree.meth);
1731 
1732         boolean isConstructorCall =
1733             methName == names._this || methName == names._super;
1734 
1735         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
1736         if (isConstructorCall) {
1737             // We are seeing a ...this(...) or ...super(...) call.
1738             // Check that this is the first statement in a constructor.
1739             if (checkFirstConstructorStat(tree, env)) {
1740 
1741                 // Record the fact
1742                 // that this is a constructor call (using isSelfCall).
1743                 localEnv.info.isSelfCall = true;
1744 
1745                 // Attribute arguments, yielding list of argument types.
1746                 attribArgs(tree.args, localEnv, argtypesBuf);
1747                 argtypes = argtypesBuf.toList();
1748                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1749 
1750                 // Variable `site' points to the class in which the called
1751                 // constructor is defined.
1752                 Type site = env.enclClass.sym.type;
1753                 if (methName == names._super) {
1754                     if (site == syms.objectType) {
1755                         log.error(tree.meth.pos(), "no.superclass", site);
1756                         site = types.createErrorType(syms.objectType);
1757                     } else {
1758                         site = types.supertype(site);
1759                     }
1760                 }
1761 
1762                 if (site.hasTag(CLASS)) {
1763                     Type encl = site.getEnclosingType();
1764                     while (encl != null && encl.hasTag(TYPEVAR))
1765                         encl = encl.getUpperBound();
1766                     if (encl.hasTag(CLASS)) {
1767                         // we are calling a nested class
1768 
1769                         if (tree.meth.hasTag(SELECT)) {
1770                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1771 
1772                             // We are seeing a prefixed call, of the form
1773                             //     <expr>.super(...).
1774                             // Check that the prefix expression conforms
1775                             // to the outer instance type of the class.
1776                             chk.checkRefType(qualifier.pos(),
1777                                              attribExpr(qualifier, localEnv,
1778                                                         encl));
1779                         } else if (methName == names._super) {
1780                             // qualifier omitted; check for existence
1781                             // of an appropriate implicit qualifier.
1782                             rs.resolveImplicitThis(tree.meth.pos(),
1783                                                    localEnv, site, true);
1784                         }
1785                     } else if (tree.meth.hasTag(SELECT)) {
1786                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1787                                   site.tsym);
1788                     }
1789 
1790                     // if we're calling a java.lang.Enum constructor,
1791                     // prefix the implicit String and int parameters
1792                     if (site.tsym == syms.enumSym && allowEnums)
1793                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1794 
1795                     // Resolve the called constructor under the assumption
1796                     // that we are referring to a superclass instance of the
1797                     // current instance (JLS ???).
1798                     boolean selectSuperPrev = localEnv.info.selectSuper;
1799                     localEnv.info.selectSuper = true;
1800                     localEnv.info.pendingResolutionPhase = null;
1801                     Symbol sym = rs.resolveConstructor(
1802                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1803                     localEnv.info.selectSuper = selectSuperPrev;
1804 
1805                     // Set method symbol to resolved constructor...
1806                     TreeInfo.setSymbol(tree.meth, sym);
1807 
1808                     // ...and check that it is legal in the current context.
1809                     // (this will also set the tree's type)
1810                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1811                     checkId(tree.meth, site, sym, localEnv, new ResultInfo(MTH, mpt));
1812                 }
1813                 // Otherwise, `site' is an error type and we do nothing
1814             }
1815             result = tree.type = syms.voidType;
1816         } else {
1817             // Otherwise, we are seeing a regular method call.
1818             // Attribute the arguments, yielding list of argument types, ...
1819             int kind = attribArgs(tree.args, localEnv, argtypesBuf);
1820             argtypes = argtypesBuf.toList();
1821             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1822 
1823             // ... and attribute the method using as a prototype a methodtype
1824             // whose formal argument types is exactly the list of actual
1825             // arguments (this will also set the method symbol).
1826             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
1827             localEnv.info.pendingResolutionPhase = null;
1828             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
1829 
1830             // Compute the result type.
1831             Type restype = mtype.getReturnType();
1832             if (restype.hasTag(WILDCARD))
1833                 throw new AssertionError(mtype);
1834 
1835             Type qualifier = (tree.meth.hasTag(SELECT))
1836                     ? ((JCFieldAccess) tree.meth).selected.type
1837                     : env.enclClass.sym.type;
1838             restype = adjustMethodReturnType(qualifier, methName, argtypes, restype);
1839 
1840             chk.checkRefTypes(tree.typeargs, typeargtypes);
1841 
1842             // Check that value of resulting type is admissible in the
1843             // current context.  Also, capture the return type
1844             result = check(tree, capture(restype), VAL, resultInfo);
1845         }
1846         chk.validate(tree.typeargs, localEnv);
1847     }
1848     //where
1849         Type adjustMethodReturnType(Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
1850             if (allowCovariantReturns &&
1851                     methodName == names.clone &&
1852                 types.isArray(qualifierType)) {
1853                 // as a special case, array.clone() has a result that is
1854                 // the same as static type of the array being cloned
1855                 return qualifierType;
1856             } else if (allowGenerics &&
1857                     methodName == names.getClass &&
1858                     argtypes.isEmpty()) {
1859                 // as a special case, x.getClass() has type Class<? extends |X|>
1860                 return new ClassType(restype.getEnclosingType(),
1861                               List.<Type>of(new WildcardType(types.erasure(qualifierType),
1862                                                                BoundKind.EXTENDS,
1863                                                                syms.boundClass)),
1864                               restype.tsym);
1865             } else {
1866                 return restype;
1867             }
1868         }
1869 
1870         /** Check that given application node appears as first statement
1871          *  in a constructor call.
1872          *  @param tree   The application node
1873          *  @param env    The environment current at the application.
1874          */
1875         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1876             JCMethodDecl enclMethod = env.enclMethod;
1877             if (enclMethod != null && enclMethod.name == names.init) {
1878                 JCBlock body = enclMethod.body;
1879                 if (body.stats.head.hasTag(EXEC) &&
1880                     ((JCExpressionStatement) body.stats.head).expr == tree)
1881                     return true;
1882             }
1883             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1884                       TreeInfo.name(tree.meth));
1885             return false;
1886         }
1887 
1888         /** Obtain a method type with given argument types.
1889          */
1890         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
1891             MethodType mt = new MethodType(argtypes, restype, List.<Type>nil(), syms.methodClass);
1892             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1893         }
1894 
1895     public void visitNewClass(final JCNewClass tree) {
1896         Type owntype = types.createErrorType(tree.type);
1897 
1898         // The local environment of a class creation is
1899         // a new environment nested in the current one.
1900         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1901 
1902         // The anonymous inner class definition of the new expression,
1903         // if one is defined by it.
1904         JCClassDecl cdef = tree.def;
1905 
1906         // If enclosing class is given, attribute it, and
1907         // complete class name to be fully qualified
1908         JCExpression clazz = tree.clazz; // Class field following new
1909         JCExpression clazzid;            // Identifier in class field
1910         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
1911         annoclazzid = null;
1912 
1913         if (clazz.hasTag(TYPEAPPLY)) {
1914             clazzid = ((JCTypeApply) clazz).clazz;
1915             if (clazzid.hasTag(ANNOTATED_TYPE)) {
1916                 annoclazzid = (JCAnnotatedType) clazzid;
1917                 clazzid = annoclazzid.underlyingType;
1918             }
1919         } else {
1920             if (clazz.hasTag(ANNOTATED_TYPE)) {
1921                 annoclazzid = (JCAnnotatedType) clazz;
1922                 clazzid = annoclazzid.underlyingType;
1923             } else {
1924                 clazzid = clazz;
1925             }
1926         }
1927 
1928         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1929 
1930         if (tree.encl != null) {
1931             // We are seeing a qualified new, of the form
1932             //    <expr>.new C <...> (...) ...
1933             // In this case, we let clazz stand for the name of the
1934             // allocated class C prefixed with the type of the qualifier
1935             // expression, so that we can
1936             // resolve it with standard techniques later. I.e., if
1937             // <expr> has type T, then <expr>.new C <...> (...)
1938             // yields a clazz T.C.
1939             Type encltype = chk.checkRefType(tree.encl.pos(),
1940                                              attribExpr(tree.encl, env));
1941             // TODO 308: in <expr>.new C, do we also want to add the type annotations
1942             // from expr to the combined type, or not? Yes, do this.
1943             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1944                                                  ((JCIdent) clazzid).name);
1945 
1946             EndPosTable endPosTable = this.env.toplevel.endPositions;
1947             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
1948             if (clazz.hasTag(ANNOTATED_TYPE)) {
1949                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
1950                 List<JCAnnotation> annos = annoType.annotations;
1951 
1952                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
1953                     clazzid1 = make.at(tree.pos).
1954                         TypeApply(clazzid1,
1955                                   ((JCTypeApply) clazz).arguments);
1956                 }
1957 
1958                 clazzid1 = make.at(tree.pos).
1959                     AnnotatedType(annos, clazzid1);
1960             } else if (clazz.hasTag(TYPEAPPLY)) {
1961                 clazzid1 = make.at(tree.pos).
1962                     TypeApply(clazzid1,
1963                               ((JCTypeApply) clazz).arguments);
1964             }
1965 
1966             clazz = clazzid1;
1967         }
1968 
1969         // Attribute clazz expression and store
1970         // symbol + type back into the attributed tree.
1971         Type clazztype = TreeInfo.isEnumInit(env.tree) ?
1972             attribIdentAsEnumType(env, (JCIdent)clazz) :
1973             attribType(clazz, env);
1974 
1975         clazztype = chk.checkDiamond(tree, clazztype);
1976         chk.validate(clazz, localEnv);
1977         if (tree.encl != null) {
1978             // We have to work in this case to store
1979             // symbol + type back into the attributed tree.
1980             tree.clazz.type = clazztype;
1981             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1982             clazzid.type = ((JCIdent) clazzid).sym.type;
1983             if (annoclazzid != null) {
1984                 annoclazzid.type = clazzid.type;
1985             }
1986             if (!clazztype.isErroneous()) {
1987                 if (cdef != null && clazztype.tsym.isInterface()) {
1988                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1989                 } else if (clazztype.tsym.isStatic()) {
1990                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1991                 }
1992             }
1993         } else if (!clazztype.tsym.isInterface() &&
1994                    clazztype.getEnclosingType().hasTag(CLASS)) {
1995             // Check for the existence of an apropos outer instance
1996             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1997         }
1998 
1999         // Attribute constructor arguments.
2000         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2001         int pkind = attribArgs(tree.args, localEnv, argtypesBuf);
2002         List<Type> argtypes = argtypesBuf.toList();
2003         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2004 
2005         // If we have made no mistakes in the class type...
2006         if (clazztype.hasTag(CLASS)) {
2007             // Enums may not be instantiated except implicitly
2008             if (allowEnums &&
2009                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
2010                 (!env.tree.hasTag(VARDEF) ||
2011                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
2012                  ((JCVariableDecl) env.tree).init != tree))
2013                 log.error(tree.pos(), "enum.cant.be.instantiated");
2014             // Check that class is not abstract
2015             if (cdef == null &&
2016                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2017                 log.error(tree.pos(), "abstract.cant.be.instantiated",
2018                           clazztype.tsym);
2019             } else if (cdef != null && clazztype.tsym.isInterface()) {
2020                 // Check that no constructor arguments are given to
2021                 // anonymous classes implementing an interface
2022                 if (!argtypes.isEmpty())
2023                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
2024 
2025                 if (!typeargtypes.isEmpty())
2026                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
2027 
2028                 // Error recovery: pretend no arguments were supplied.
2029                 argtypes = List.nil();
2030                 typeargtypes = List.nil();
2031             } else if (TreeInfo.isDiamond(tree)) {
2032                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2033                             clazztype.tsym.type.getTypeArguments(),
2034                             clazztype.tsym);
2035 
2036                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2037                 diamondEnv.info.selectSuper = cdef != null;
2038                 diamondEnv.info.pendingResolutionPhase = null;
2039 
2040                 //if the type of the instance creation expression is a class type
2041                 //apply method resolution inference (JLS 15.12.2.7). The return type
2042                 //of the resolved constructor will be a partially instantiated type
2043                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2044                             diamondEnv,
2045                             site,
2046                             argtypes,
2047                             typeargtypes);
2048                 tree.constructor = constructor.baseSymbol();
2049 
2050                 final TypeSymbol csym = clazztype.tsym;
2051                 ResultInfo diamondResult = new ResultInfo(MTH, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes), new Check.NestedCheckContext(resultInfo.checkContext) {
2052                     @Override
2053                     public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2054                         enclosingContext.report(tree.clazz,
2055                                 diags.fragment("cant.apply.diamond.1", diags.fragment("diamond", csym), details));
2056                     }
2057                 });
2058                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2059                 constructorType = checkId(tree, site,
2060                         constructor,
2061                         diamondEnv,
2062                         diamondResult);
2063 
2064                 tree.clazz.type = types.createErrorType(clazztype);
2065                 if (!constructorType.isErroneous()) {
2066                     tree.clazz.type = clazztype = constructorType.getReturnType();
2067                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2068                 }
2069                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2070             }
2071 
2072             // Resolve the called constructor under the assumption
2073             // that we are referring to a superclass instance of the
2074             // current instance (JLS ???).
2075             else {
2076                 //the following code alters some of the fields in the current
2077                 //AttrContext - hence, the current context must be dup'ed in
2078                 //order to avoid downstream failures
2079                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2080                 rsEnv.info.selectSuper = cdef != null;
2081                 rsEnv.info.pendingResolutionPhase = null;
2082                 tree.constructor = rs.resolveConstructor(
2083                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2084                 if (cdef == null) { //do not check twice!
2085                     tree.constructorType = checkId(tree,
2086                             clazztype,
2087                             tree.constructor,
2088                             rsEnv,
2089                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2090                     if (rsEnv.info.lastResolveVarargs())
2091                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2092                 }
2093                 if (cdef == null &&
2094                         !clazztype.isErroneous() &&
2095                         clazztype.getTypeArguments().nonEmpty() &&
2096                         findDiamonds) {
2097                     findDiamond(localEnv, tree, clazztype);
2098                 }
2099             }
2100 
2101             if (cdef != null) {
2102                 // We are seeing an anonymous class instance creation.
2103                 // In this case, the class instance creation
2104                 // expression
2105                 //
2106                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2107                 //
2108                 // is represented internally as
2109                 //
2110                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2111                 //
2112                 // This expression is then *transformed* as follows:
2113                 //
2114                 // (1) add a STATIC flag to the class definition
2115                 //     if the current environment is static
2116                 // (2) add an extends or implements clause
2117                 // (3) add a constructor.
2118                 //
2119                 // For instance, if C is a class, and ET is the type of E,
2120                 // the expression
2121                 //
2122                 //    E.new <typeargs1>C<typargs2>(args) { ... }
2123                 //
2124                 // is translated to (where X is a fresh name and typarams is the
2125                 // parameter list of the super constructor):
2126                 //
2127                 //   new <typeargs1>X(<*nullchk*>E, args) where
2128                 //     X extends C<typargs2> {
2129                 //       <typarams> X(ET e, args) {
2130                 //         e.<typeargs1>super(args)
2131                 //       }
2132                 //       ...
2133                 //     }
2134                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
2135 
2136                 if (clazztype.tsym.isInterface()) {
2137                     cdef.implementing = List.of(clazz);
2138                 } else {
2139                     cdef.extending = clazz;
2140                 }
2141 
2142                 attribStat(cdef, localEnv);
2143 
2144                 checkLambdaCandidate(tree, cdef.sym, clazztype);
2145 
2146                 // If an outer instance is given,
2147                 // prefix it to the constructor arguments
2148                 // and delete it from the new expression
2149                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2150                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
2151                     argtypes = argtypes.prepend(tree.encl.type);
2152                     tree.encl = null;
2153                 }
2154 
2155                 // Reassign clazztype and recompute constructor.
2156                 clazztype = cdef.sym.type;
2157                 Symbol sym = tree.constructor = rs.resolveConstructor(
2158                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
2159                 Assert.check(sym.kind < AMBIGUOUS);
2160                 tree.constructor = sym;
2161                 tree.constructorType = checkId(tree,
2162                     clazztype,
2163                     tree.constructor,
2164                     localEnv,
2165                     new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes)));
2166             }
2167 
2168             if (tree.constructor != null && tree.constructor.kind == MTH)
2169                 owntype = clazztype;
2170         }
2171         result = check(tree, owntype, VAL, resultInfo);
2172         chk.validate(tree.typeargs, localEnv);
2173     }
2174     //where
2175         void findDiamond(Env<AttrContext> env, JCNewClass tree, Type clazztype) {
2176             JCTypeApply ta = (JCTypeApply)tree.clazz;
2177             List<JCExpression> prevTypeargs = ta.arguments;
2178             try {
2179                 //create a 'fake' diamond AST node by removing type-argument trees
2180                 ta.arguments = List.nil();
2181                 ResultInfo findDiamondResult = new ResultInfo(VAL,
2182                         resultInfo.checkContext.inferenceContext().free(resultInfo.pt) ? Type.noType : pt());
2183                 Type inferred = deferredAttr.attribSpeculative(tree, env, findDiamondResult).type;
2184                 Type polyPt = allowPoly ?
2185                         syms.objectType :
2186                         clazztype;
2187                 if (!inferred.isErroneous() &&
2188                     (allowPoly && pt() == Infer.anyPoly ?
2189                         types.isSameType(inferred, clazztype) :
2190                         types.isAssignable(inferred, pt().hasTag(NONE) ? polyPt : pt(), types.noWarnings))) {
2191                     String key = types.isSameType(clazztype, inferred) ?
2192                         "diamond.redundant.args" :
2193                         "diamond.redundant.args.1";
2194                     log.warning(tree.clazz.pos(), key, clazztype, inferred);
2195                 }
2196             } finally {
2197                 ta.arguments = prevTypeargs;
2198             }
2199         }
2200 
2201             private void checkLambdaCandidate(JCNewClass tree, ClassSymbol csym, Type clazztype) {
2202                 if (allowLambda &&
2203                         identifyLambdaCandidate &&
2204                         clazztype.hasTag(CLASS) &&
2205                         !pt().hasTag(NONE) &&
2206                         types.isFunctionalInterface(clazztype.tsym)) {
2207                     Symbol descriptor = types.findDescriptorSymbol(clazztype.tsym);
2208                     int count = 0;
2209                     boolean found = false;
2210                     for (Symbol sym : csym.members().getElements()) {
2211                         if ((sym.flags() & SYNTHETIC) != 0 ||
2212                                 sym.isConstructor()) continue;
2213                         count++;
2214                         if (sym.kind != MTH ||
2215                                 !sym.name.equals(descriptor.name)) continue;
2216                         Type mtype = types.memberType(clazztype, sym);
2217                         if (types.overrideEquivalent(mtype, types.memberType(clazztype, descriptor))) {
2218                             found = true;
2219                         }
2220                     }
2221                     if (found && count == 1) {
2222                         log.note(tree.def, "potential.lambda.found");
2223                     }
2224                 }
2225             }
2226 
2227     /** Make an attributed null check tree.
2228      */
2229     public JCExpression makeNullCheck(JCExpression arg) {
2230         // optimization: X.this is never null; skip null check
2231         Name name = TreeInfo.name(arg);
2232         if (name == names._this || name == names._super) return arg;
2233 
2234         JCTree.Tag optag = NULLCHK;
2235         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2236         tree.operator = syms.nullcheck;
2237         tree.type = arg.type;
2238         return tree;
2239     }
2240 
2241     public void visitNewArray(JCNewArray tree) {
2242         Type owntype = types.createErrorType(tree.type);
2243         Env<AttrContext> localEnv = env.dup(tree);
2244         Type elemtype;
2245         if (tree.elemtype != null) {
2246             elemtype = attribType(tree.elemtype, localEnv);
2247             chk.validate(tree.elemtype, localEnv);
2248             owntype = elemtype;
2249             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2250                 attribExpr(l.head, localEnv, syms.intType);
2251                 owntype = new ArrayType(owntype, syms.arrayClass);
2252             }
2253         } else {
2254             // we are seeing an untyped aggregate { ... }
2255             // this is allowed only if the prototype is an array
2256             if (pt().hasTag(ARRAY)) {
2257                 elemtype = types.elemtype(pt());
2258             } else {
2259                 if (!pt().hasTag(ERROR)) {
2260                     log.error(tree.pos(), "illegal.initializer.for.type",
2261                               pt());
2262                 }
2263                 elemtype = types.createErrorType(pt());
2264             }
2265         }
2266         if (tree.elems != null) {
2267             attribExprs(tree.elems, localEnv, elemtype);
2268             owntype = new ArrayType(elemtype, syms.arrayClass);
2269         }
2270         if (!types.isReifiable(elemtype))
2271             log.error(tree.pos(), "generic.array.creation");
2272         result = check(tree, owntype, VAL, resultInfo);
2273     }
2274 
2275     /*
2276      * A lambda expression can only be attributed when a target-type is available.
2277      * In addition, if the target-type is that of a functional interface whose
2278      * descriptor contains inference variables in argument position the lambda expression
2279      * is 'stuck' (see DeferredAttr).
2280      */
2281     @Override
2282     public void visitLambda(final JCLambda that) {
2283         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2284             if (pt().hasTag(NONE)) {
2285                 //lambda only allowed in assignment or method invocation/cast context
2286                 log.error(that.pos(), "unexpected.lambda");
2287             }
2288             result = that.type = types.createErrorType(pt());
2289             return;
2290         }
2291         //create an environment for attribution of the lambda expression
2292         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2293         boolean needsRecovery =
2294                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2295         try {
2296             Type currentTarget = pt();
2297             List<Type> explicitParamTypes = null;
2298             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2299                 //attribute lambda parameters
2300                 attribStats(that.params, localEnv);
2301                 explicitParamTypes = TreeInfo.types(that.params);
2302             }
2303 
2304             Type lambdaType;
2305             if (pt() != Type.recoveryType) {
2306                 /* We need to adjust the target. If the target is an
2307                  * intersection type, for example: SAM & I1 & I2 ...
2308                  * the target will be updated to SAM
2309                  */
2310                 currentTarget = targetChecker.visit(currentTarget, that);
2311                 if (explicitParamTypes != null) {
2312                     currentTarget = infer.instantiateFunctionalInterface(that,
2313                             currentTarget, explicitParamTypes, resultInfo.checkContext);
2314                 }
2315                 lambdaType = types.findDescriptorType(currentTarget);
2316             } else {
2317                 currentTarget = Type.recoveryType;
2318                 lambdaType = fallbackDescriptorType(that);
2319             }
2320 
2321             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2322 
2323             if (lambdaType.hasTag(FORALL)) {
2324                 //lambda expression target desc cannot be a generic method
2325                 resultInfo.checkContext.report(that, diags.fragment("invalid.generic.lambda.target",
2326                         lambdaType, kindName(currentTarget.tsym), currentTarget.tsym));
2327                 result = that.type = types.createErrorType(pt());
2328                 return;
2329             }
2330 
2331             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2332                 //add param type info in the AST
2333                 List<Type> actuals = lambdaType.getParameterTypes();
2334                 List<JCVariableDecl> params = that.params;
2335 
2336                 boolean arityMismatch = false;
2337 
2338                 while (params.nonEmpty()) {
2339                     if (actuals.isEmpty()) {
2340                         //not enough actuals to perform lambda parameter inference
2341                         arityMismatch = true;
2342                     }
2343                     //reset previously set info
2344                     Type argType = arityMismatch ?
2345                             syms.errType :
2346                             actuals.head;
2347                     params.head.vartype = make.at(params.head).Type(argType);
2348                     params.head.sym = null;
2349                     actuals = actuals.isEmpty() ?
2350                             actuals :
2351                             actuals.tail;
2352                     params = params.tail;
2353                 }
2354 
2355                 //attribute lambda parameters
2356                 attribStats(that.params, localEnv);
2357 
2358                 if (arityMismatch) {
2359                     resultInfo.checkContext.report(that, diags.fragment("incompatible.arg.types.in.lambda"));
2360                         result = that.type = types.createErrorType(currentTarget);
2361                         return;
2362                 }
2363             }
2364 
2365             //from this point on, no recovery is needed; if we are in assignment context
2366             //we will be able to attribute the whole lambda body, regardless of errors;
2367             //if we are in a 'check' method context, and the lambda is not compatible
2368             //with the target-type, it will be recovered anyway in Attr.checkId
2369             needsRecovery = false;
2370 
2371             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
2372                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
2373                     new FunctionalReturnContext(resultInfo.checkContext);
2374 
2375             ResultInfo bodyResultInfo = lambdaType.getReturnType() == Type.recoveryType ?
2376                 recoveryInfo :
2377                 new ResultInfo(VAL, lambdaType.getReturnType(), funcContext);
2378             localEnv.info.returnResult = bodyResultInfo;
2379 
2380             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2381                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2382             } else {
2383                 JCBlock body = (JCBlock)that.body;
2384                 attribStats(body.stats, localEnv);
2385             }
2386 
2387             result = check(that, currentTarget, VAL, resultInfo);
2388 
2389             boolean isSpeculativeRound =
2390                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2391 
2392             preFlow(that);
2393             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2394 
2395             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2396 
2397             if (!isSpeculativeRound) {
2398                 //add thrown types as bounds to the thrown types free variables if needed:
2399                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2400                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2401                     List<Type> thrownTypes = resultInfo.checkContext.inferenceContext().asFree(lambdaType.getThrownTypes());
2402 
2403                     chk.unhandled(inferredThrownTypes, thrownTypes);
2404                 }
2405 
2406                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
2407             }
2408             result = check(that, currentTarget, VAL, resultInfo);
2409         } catch (Types.FunctionDescriptorLookupError ex) {
2410             JCDiagnostic cause = ex.getDiagnostic();
2411             resultInfo.checkContext.report(that, cause);
2412             result = that.type = types.createErrorType(pt());
2413             return;
2414         } finally {
2415             localEnv.info.scope.leave();
2416             if (needsRecovery) {
2417                 attribTree(that, env, recoveryInfo);
2418             }
2419         }
2420     }
2421     //where
2422         void preFlow(JCLambda tree) {
2423             new PostAttrAnalyzer() {
2424                 @Override
2425                 public void scan(JCTree tree) {
2426                     if (tree == null ||
2427                             (tree.type != null &&
2428                             tree.type == Type.stuckType)) {
2429                         //don't touch stuck expressions!
2430                         return;
2431                     }
2432                     super.scan(tree);
2433                 }
2434             }.scan(tree);
2435         }
2436 
2437         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
2438 
2439             @Override
2440             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
2441                 return t.isCompound() ?
2442                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
2443             }
2444 
2445             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
2446                 Symbol desc = types.findDescriptorSymbol(makeNotionalInterface(ict));
2447                 Type target = null;
2448                 for (Type bound : ict.getExplicitComponents()) {
2449                     TypeSymbol boundSym = bound.tsym;
2450                     if (types.isFunctionalInterface(boundSym) &&
2451                             types.findDescriptorSymbol(boundSym) == desc) {
2452                         target = bound;
2453                     } else if (!boundSym.isInterface() || (boundSym.flags() & ANNOTATION) != 0) {
2454                         //bound must be an interface
2455                         reportIntersectionError(pos, "not.an.intf.component", boundSym);
2456                     }
2457                 }
2458                 return target != null ?
2459                         target :
2460                         ict.getExplicitComponents().head; //error recovery
2461             }
2462 
2463             private TypeSymbol makeNotionalInterface(IntersectionClassType ict) {
2464                 ListBuffer<Type> targs = new ListBuffer<>();
2465                 ListBuffer<Type> supertypes = new ListBuffer<>();
2466                 for (Type i : ict.interfaces_field) {
2467                     if (i.isParameterized()) {
2468                         targs.appendList(i.tsym.type.allparams());
2469                     }
2470                     supertypes.append(i.tsym.type);
2471                 }
2472                 IntersectionClassType notionalIntf =
2473                         (IntersectionClassType)types.makeCompoundType(supertypes.toList());
2474                 notionalIntf.allparams_field = targs.toList();
2475                 notionalIntf.tsym.flags_field |= INTERFACE;
2476                 return notionalIntf.tsym;
2477             }
2478 
2479             private void reportIntersectionError(DiagnosticPosition pos, String key, Object... args) {
2480                 resultInfo.checkContext.report(pos, diags.fragment("bad.intersection.target.for.functional.expr",
2481                         diags.fragment(key, args)));
2482             }
2483         };
2484 
2485         private Type fallbackDescriptorType(JCExpression tree) {
2486             switch (tree.getTag()) {
2487                 case LAMBDA:
2488                     JCLambda lambda = (JCLambda)tree;
2489                     List<Type> argtypes = List.nil();
2490                     for (JCVariableDecl param : lambda.params) {
2491                         argtypes = param.vartype != null ?
2492                                 argtypes.append(param.vartype.type) :
2493                                 argtypes.append(syms.errType);
2494                     }
2495                     return new MethodType(argtypes, Type.recoveryType,
2496                             List.of(syms.throwableType), syms.methodClass);
2497                 case REFERENCE:
2498                     return new MethodType(List.<Type>nil(), Type.recoveryType,
2499                             List.of(syms.throwableType), syms.methodClass);
2500                 default:
2501                     Assert.error("Cannot get here!");
2502             }
2503             return null;
2504         }
2505 
2506         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2507                 final InferenceContext inferenceContext, final Type... ts) {
2508             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
2509         }
2510 
2511         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
2512                 final InferenceContext inferenceContext, final List<Type> ts) {
2513             if (inferenceContext.free(ts)) {
2514                 inferenceContext.addFreeTypeListener(ts, new FreeTypeListener() {
2515                     @Override
2516                     public void typesInferred(InferenceContext inferenceContext) {
2517                         checkAccessibleTypes(pos, env, inferenceContext, inferenceContext.asInstTypes(ts));
2518                     }
2519                 });
2520             } else {
2521                 for (Type t : ts) {
2522                     rs.checkAccessibleType(env, t);
2523                 }
2524             }
2525         }
2526 
2527         /**
2528          * Lambda/method reference have a special check context that ensures
2529          * that i.e. a lambda return type is compatible with the expected
2530          * type according to both the inherited context and the assignment
2531          * context.
2532          */
2533         class FunctionalReturnContext extends Check.NestedCheckContext {
2534 
2535             FunctionalReturnContext(CheckContext enclosingContext) {
2536                 super(enclosingContext);
2537             }
2538 
2539             @Override
2540             public boolean compatible(Type found, Type req, Warner warn) {
2541                 //return type must be compatible in both current context and assignment context
2542                 return chk.basicHandler.compatible(found, inferenceContext().asFree(req), warn);
2543             }
2544 
2545             @Override
2546             public void report(DiagnosticPosition pos, JCDiagnostic details) {
2547                 enclosingContext.report(pos, diags.fragment("incompatible.ret.type.in.lambda", details));
2548             }
2549         }
2550 
2551         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
2552 
2553             JCExpression expr;
2554 
2555             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
2556                 super(enclosingContext);
2557                 this.expr = expr;
2558             }
2559 
2560             @Override
2561             public boolean compatible(Type found, Type req, Warner warn) {
2562                 //a void return is compatible with an expression statement lambda
2563                 return TreeInfo.isExpressionStatement(expr) && req.hasTag(VOID) ||
2564                         super.compatible(found, req, warn);
2565             }
2566         }
2567 
2568         /**
2569         * Lambda compatibility. Check that given return types, thrown types, parameter types
2570         * are compatible with the expected functional interface descriptor. This means that:
2571         * (i) parameter types must be identical to those of the target descriptor; (ii) return
2572         * types must be compatible with the return type of the expected descriptor.
2573         */
2574         private void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
2575             Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2576 
2577             //return values have already been checked - but if lambda has no return
2578             //values, we must ensure that void/value compatibility is correct;
2579             //this amounts at checking that, if a lambda body can complete normally,
2580             //the descriptor's return type must be void
2581             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
2582                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
2583                 checkContext.report(tree, diags.fragment("incompatible.ret.type.in.lambda",
2584                         diags.fragment("missing.ret.val", returnType)));
2585             }
2586 
2587             List<Type> argTypes = checkContext.inferenceContext().asFree(descriptor.getParameterTypes());
2588             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
2589                 checkContext.report(tree, diags.fragment("incompatible.arg.types.in.lambda"));
2590             }
2591         }
2592 
2593         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
2594          * static field and that lambda has type annotations, these annotations will
2595          * also be stored at these fake clinit methods.
2596          *
2597          * LambdaToMethod also use fake clinit methods so they can be reused.
2598          * Also as LTM is a phase subsequent to attribution, the methods from
2599          * clinits can be safely removed by LTM to save memory.
2600          */
2601         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
2602 
2603         public MethodSymbol removeClinit(ClassSymbol sym) {
2604             return clinits.remove(sym);
2605         }
2606 
2607         /* This method returns an environment to be used to attribute a lambda
2608          * expression.
2609          *
2610          * The owner of this environment is a method symbol. If the current owner
2611          * is not a method, for example if the lambda is used to initialize
2612          * a field, then if the field is:
2613          *
2614          * - an instance field, we use the first constructor.
2615          * - a static field, we create a fake clinit method.
2616          */
2617         private Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
2618             Env<AttrContext> lambdaEnv;
2619             Symbol owner = env.info.scope.owner;
2620             if (owner.kind == VAR && owner.owner.kind == TYP) {
2621                 //field initializer
2622                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared()));
2623                 ClassSymbol enclClass = owner.enclClass();
2624                 /* if the field isn't static, then we can get the first constructor
2625                  * and use it as the owner of the environment. This is what
2626                  * LTM code is doing to look for type annotations so we are fine.
2627                  */
2628                 if ((owner.flags() & STATIC) == 0) {
2629                     for (Symbol s : enclClass.members_field.getElementsByName(names.init)) {
2630                         lambdaEnv.info.scope.owner = s;
2631                         break;
2632                     }
2633                 } else {
2634                     /* if the field is static then we need to create a fake clinit
2635                      * method, this method can later be reused by LTM.
2636                      */
2637                     MethodSymbol clinit = clinits.get(enclClass);
2638                     if (clinit == null) {
2639                         Type clinitType = new MethodType(List.<Type>nil(),
2640                                 syms.voidType, List.<Type>nil(), syms.methodClass);
2641                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
2642                                 names.clinit, clinitType, enclClass);
2643                         clinit.params = List.<VarSymbol>nil();
2644                         clinits.put(enclClass, clinit);
2645                     }
2646                     lambdaEnv.info.scope.owner = clinit;
2647                 }
2648             } else {
2649                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
2650             }
2651             return lambdaEnv;
2652         }
2653 
2654     @Override
2655     public void visitReference(final JCMemberReference that) {
2656         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2657             if (pt().hasTag(NONE)) {
2658                 //method reference only allowed in assignment or method invocation/cast context
2659                 log.error(that.pos(), "unexpected.mref");
2660             }
2661             result = that.type = types.createErrorType(pt());
2662             return;
2663         }
2664         final Env<AttrContext> localEnv = env.dup(that);
2665         try {
2666             //attribute member reference qualifier - if this is a constructor
2667             //reference, the expected kind must be a type
2668             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
2669 
2670             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
2671                 exprType = chk.checkConstructorRefType(that.expr, exprType);
2672                 if (!exprType.isErroneous() &&
2673                     exprType.isRaw() &&
2674                     that.typeargs != null) {
2675                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2676                         diags.fragment("mref.infer.and.explicit.params"));
2677                     exprType = types.createErrorType(exprType);
2678                 }
2679             }
2680 
2681             if (exprType.isErroneous()) {
2682                 //if the qualifier expression contains problems,
2683                 //give up attribution of method reference
2684                 result = that.type = exprType;
2685                 return;
2686             }
2687 
2688             if (TreeInfo.isStaticSelector(that.expr, names)) {
2689                 //if the qualifier is a type, validate it; raw warning check is
2690                 //omitted as we don't know at this stage as to whether this is a
2691                 //raw selector (because of inference)
2692                 chk.validate(that.expr, env, false);
2693             }
2694 
2695             //attrib type-arguments
2696             List<Type> typeargtypes = List.nil();
2697             if (that.typeargs != null) {
2698                 typeargtypes = attribTypes(that.typeargs, localEnv);
2699             }
2700 
2701             Type target;
2702             Type desc;
2703             if (pt() != Type.recoveryType) {
2704                 target = targetChecker.visit(pt(), that);
2705                 desc = types.findDescriptorType(target);
2706             } else {
2707                 target = Type.recoveryType;
2708                 desc = fallbackDescriptorType(that);
2709             }
2710 
2711             setFunctionalInfo(localEnv, that, pt(), desc, target, resultInfo.checkContext);
2712             List<Type> argtypes = desc.getParameterTypes();
2713             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
2714 
2715             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
2716                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
2717             }
2718 
2719             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
2720             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
2721             try {
2722                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
2723                         that.name, argtypes, typeargtypes, referenceCheck,
2724                         resultInfo.checkContext.inferenceContext(),
2725                         resultInfo.checkContext.deferredAttrContext().mode);
2726             } finally {
2727                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
2728             }
2729 
2730             Symbol refSym = refResult.fst;
2731             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
2732 
2733             if (refSym.kind != MTH) {
2734                 boolean targetError;
2735                 switch (refSym.kind) {
2736                     case ABSENT_MTH:
2737                         targetError = false;
2738                         break;
2739                     case WRONG_MTH:
2740                     case WRONG_MTHS:
2741                     case AMBIGUOUS:
2742                     case HIDDEN:
2743                     case STATICERR:
2744                     case MISSING_ENCL:
2745                     case WRONG_STATICNESS:
2746                         targetError = true;
2747                         break;
2748                     default:
2749                         Assert.error("unexpected result kind " + refSym.kind);
2750                         targetError = false;
2751                 }
2752 
2753                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym).getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
2754                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
2755 
2756                 JCDiagnostic.DiagnosticType diagKind = targetError ?
2757                         JCDiagnostic.DiagnosticType.FRAGMENT : JCDiagnostic.DiagnosticType.ERROR;
2758 
2759                 JCDiagnostic diag = diags.create(diagKind, log.currentSource(), that,
2760                         "invalid.mref", Kinds.kindName(that.getMode()), detailsDiag);
2761 
2762                 if (targetError && target == Type.recoveryType) {
2763                     //a target error doesn't make sense during recovery stage
2764                     //as we don't know what actual parameter types are
2765                     result = that.type = target;
2766                     return;
2767                 } else {
2768                     if (targetError) {
2769                         resultInfo.checkContext.report(that, diag);
2770                     } else {
2771                         log.report(diag);
2772                     }
2773                     result = that.type = types.createErrorType(target);
2774                     return;
2775                 }
2776             }
2777 
2778             that.sym = refSym.baseSymbol();
2779             that.kind = lookupHelper.referenceKind(that.sym);
2780             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
2781 
2782             if (desc.getReturnType() == Type.recoveryType) {
2783                 // stop here
2784                 result = that.type = target;
2785                 return;
2786             }
2787 
2788             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2789 
2790                 if (that.getMode() == ReferenceMode.INVOKE &&
2791                         TreeInfo.isStaticSelector(that.expr, names) &&
2792                         that.kind.isUnbound() &&
2793                         !desc.getParameterTypes().head.isParameterized()) {
2794                     chk.checkRaw(that.expr, localEnv);
2795                 }
2796 
2797                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
2798                         exprType.getTypeArguments().nonEmpty()) {
2799                     //static ref with class type-args
2800                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2801                             diags.fragment("static.mref.with.targs"));
2802                     result = that.type = types.createErrorType(target);
2803                     return;
2804                 }
2805 
2806                 if (that.sym.isStatic() && !TreeInfo.isStaticSelector(that.expr, names) &&
2807                         !that.kind.isUnbound()) {
2808                     //no static bound mrefs
2809                     log.error(that.expr.pos(), "invalid.mref", Kinds.kindName(that.getMode()),
2810                             diags.fragment("static.bound.mref"));
2811                     result = that.type = types.createErrorType(target);
2812                     return;
2813                 }
2814 
2815                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
2816                     // Check that super-qualified symbols are not abstract (JLS)
2817                     rs.checkNonAbstract(that.pos(), that.sym);
2818                 }
2819             }
2820 
2821             ResultInfo checkInfo =
2822                     resultInfo.dup(newMethodTemplate(
2823                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
2824                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes));
2825 
2826             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
2827 
2828             if (that.kind.isUnbound() &&
2829                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
2830                 //re-generate inference constraints for unbound receiver
2831                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asFree(argtypes.head), exprType)) {
2832                     //cannot happen as this has already been checked - we just need
2833                     //to regenerate the inference constraints, as that has been lost
2834                     //as a result of the call to inferenceContext.save()
2835                     Assert.error("Can't get here");
2836                 }
2837             }
2838 
2839             if (!refType.isErroneous()) {
2840                 refType = types.createMethodTypeWithReturn(refType,
2841                         adjustMethodReturnType(lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
2842             }
2843 
2844             //go ahead with standard method reference compatibility check - note that param check
2845             //is a no-op (as this has been taken care during method applicability)
2846             boolean isSpeculativeRound =
2847                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2848             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
2849             if (!isSpeculativeRound) {
2850                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, target);
2851             }
2852             result = check(that, target, VAL, resultInfo);
2853         } catch (Types.FunctionDescriptorLookupError ex) {
2854             JCDiagnostic cause = ex.getDiagnostic();
2855             resultInfo.checkContext.report(that, cause);
2856             result = that.type = types.createErrorType(pt());
2857             return;
2858         }
2859     }
2860     //where
2861         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
2862             //if this is a constructor reference, the expected kind must be a type
2863             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ? VAL | TYP : TYP, Type.noType);
2864         }
2865 
2866 
2867     @SuppressWarnings("fallthrough")
2868     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
2869         Type returnType = checkContext.inferenceContext().asFree(descriptor.getReturnType());
2870 
2871         Type resType;
2872         switch (tree.getMode()) {
2873             case NEW:
2874                 if (!tree.expr.type.isRaw()) {
2875                     resType = tree.expr.type;
2876                     break;
2877                 }
2878             default:
2879                 resType = refType.getReturnType();
2880         }
2881 
2882         Type incompatibleReturnType = resType;
2883 
2884         if (returnType.hasTag(VOID)) {
2885             incompatibleReturnType = null;
2886         }
2887 
2888         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
2889             if (resType.isErroneous() ||
2890                     new FunctionalReturnContext(checkContext).compatible(resType, returnType, types.noWarnings)) {
2891                 incompatibleReturnType = null;
2892             }
2893         }
2894 
2895         if (incompatibleReturnType != null) {
2896             checkContext.report(tree, diags.fragment("incompatible.ret.type.in.mref",
2897                     diags.fragment("inconvertible.types", resType, descriptor.getReturnType())));
2898         }
2899 
2900         if (!speculativeAttr) {
2901             List<Type> thrownTypes = checkContext.inferenceContext().asFree(descriptor.getThrownTypes());
2902             if (chk.unhandled(refType.getThrownTypes(), thrownTypes).nonEmpty()) {
2903                 log.error(tree, "incompatible.thrown.types.in.mref", refType.getThrownTypes());
2904             }
2905         }
2906     }
2907 
2908     /**
2909      * Set functional type info on the underlying AST. Note: as the target descriptor
2910      * might contain inference variables, we might need to register an hook in the
2911      * current inference context.
2912      */
2913     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
2914             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
2915         if (checkContext.inferenceContext().free(descriptorType)) {
2916             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType), new FreeTypeListener() {
2917                 public void typesInferred(InferenceContext inferenceContext) {
2918                     setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
2919                             inferenceContext.asInstType(primaryTarget), checkContext);
2920                 }
2921             });
2922         } else {
2923             ListBuffer<Type> targets = new ListBuffer<>();
2924             if (pt.hasTag(CLASS)) {
2925                 if (pt.isCompound()) {
2926                     targets.append(types.removeWildcards(primaryTarget)); //this goes first
2927                     for (Type t : ((IntersectionClassType)pt()).interfaces_field) {
2928                         if (t != primaryTarget) {
2929                             targets.append(types.removeWildcards(t));
2930                         }
2931                     }
2932                 } else {
2933                     targets.append(types.removeWildcards(primaryTarget));
2934                 }
2935             }
2936             fExpr.targets = targets.toList();
2937             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2938                     pt != Type.recoveryType) {
2939                 //check that functional interface class is well-formed
2940                 ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
2941                         names.empty, List.of(fExpr.targets.head), ABSTRACT);
2942                 if (csym != null) {
2943                     chk.checkImplementations(env.tree, csym, csym);
2944                 }
2945             }
2946         }
2947     }
2948 
2949     public void visitParens(JCParens tree) {
2950         Type owntype = attribTree(tree.expr, env, resultInfo);
2951         result = check(tree, owntype, pkind(), resultInfo);
2952         Symbol sym = TreeInfo.symbol(tree);
2953         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
2954             log.error(tree.pos(), "illegal.start.of.type");
2955     }
2956 
2957     public void visitAssign(JCAssign tree) {
2958         Type owntype = attribTree(tree.lhs, env.dup(tree), varInfo);
2959         Type capturedType = capture(owntype);
2960         attribExpr(tree.rhs, env, owntype);
2961         result = check(tree, capturedType, VAL, resultInfo);
2962     }
2963 
2964     public void visitAssignop(JCAssignOp tree) {
2965         // Attribute arguments.
2966         Type owntype = attribTree(tree.lhs, env, varInfo);
2967         Type operand = attribExpr(tree.rhs, env);
2968         // Find operator.
2969         Symbol operator = tree.operator = rs.resolveBinaryOperator(
2970             tree.pos(), tree.getTag().noAssignOp(), env,
2971             owntype, operand);
2972 
2973         if (operator.kind == MTH &&
2974                 !owntype.isErroneous() &&
2975                 !operand.isErroneous()) {
2976             chk.checkOperator(tree.pos(),
2977                               (OperatorSymbol)operator,
2978                               tree.getTag().noAssignOp(),
2979                               owntype,
2980                               operand);
2981             chk.checkDivZero(tree.rhs.pos(), operator, operand);
2982             chk.checkCastable(tree.rhs.pos(),
2983                               operator.type.getReturnType(),
2984                               owntype);
2985         }
2986         result = check(tree, owntype, VAL, resultInfo);
2987     }
2988 
2989     public void visitUnary(JCUnary tree) {
2990         // Attribute arguments.
2991         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
2992             ? attribTree(tree.arg, env, varInfo)
2993             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
2994 
2995         // Find operator.
2996         Symbol operator = tree.operator =
2997             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
2998 
2999         Type owntype = types.createErrorType(tree.type);
3000         if (operator.kind == MTH &&
3001                 !argtype.isErroneous()) {
3002             owntype = (tree.getTag().isIncOrDecUnaryOp())
3003                 ? tree.arg.type
3004                 : operator.type.getReturnType();
3005             int opc = ((OperatorSymbol)operator).opcode;
3006 
3007             // If the argument is constant, fold it.
3008             if (argtype.constValue() != null) {
3009                 Type ctype = cfolder.fold1(opc, argtype);
3010                 if (ctype != null) {
3011                     owntype = cfolder.coerce(ctype, owntype);
3012 
3013                     // Remove constant types from arguments to
3014                     // conserve space. The parser will fold concatenations
3015                     // of string literals; the code here also
3016                     // gets rid of intermediate results when some of the
3017                     // operands are constant identifiers.
3018                     if (tree.arg.type.tsym == syms.stringType.tsym) {
3019                         tree.arg.type = syms.stringType;
3020                     }
3021                 }
3022             }
3023         }
3024         result = check(tree, owntype, VAL, resultInfo);
3025     }
3026 
3027     public void visitBinary(JCBinary tree) {
3028         // Attribute arguments.
3029         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3030         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
3031 
3032         // Find operator.
3033         Symbol operator = tree.operator =
3034             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
3035 
3036         Type owntype = types.createErrorType(tree.type);
3037         if (operator.kind == MTH &&
3038                 !left.isErroneous() &&
3039                 !right.isErroneous()) {
3040             owntype = operator.type.getReturnType();
3041             // This will figure out when unboxing can happen and
3042             // choose the right comparison operator.
3043             int opc = chk.checkOperator(tree.lhs.pos(),
3044                                         (OperatorSymbol)operator,
3045                                         tree.getTag(),
3046                                         left,
3047                                         right);
3048 
3049             // If both arguments are constants, fold them.
3050             if (left.constValue() != null && right.constValue() != null) {
3051                 Type ctype = cfolder.fold2(opc, left, right);
3052                 if (ctype != null) {
3053                     owntype = cfolder.coerce(ctype, owntype);
3054 
3055                     // Remove constant types from arguments to
3056                     // conserve space. The parser will fold concatenations
3057                     // of string literals; the code here also
3058                     // gets rid of intermediate results when some of the
3059                     // operands are constant identifiers.
3060                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
3061                         tree.lhs.type = syms.stringType;
3062                     }
3063                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
3064                         tree.rhs.type = syms.stringType;
3065                     }
3066                 }
3067             }
3068 
3069             // Check that argument types of a reference ==, != are
3070             // castable to each other, (JLS 15.21).  Note: unboxing
3071             // comparisons will not have an acmp* opc at this point.
3072             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3073                 if (!types.isEqualityComparable(left, right,
3074                                                 new Warner(tree.pos()))) {
3075                     log.error(tree.pos(), "incomparable.types", left, right);
3076                 }
3077             }
3078 
3079             chk.checkDivZero(tree.rhs.pos(), operator, right);
3080         }
3081         result = check(tree, owntype, VAL, resultInfo);
3082     }
3083 
3084     public void visitTypeCast(final JCTypeCast tree) {
3085         Type clazztype = attribType(tree.clazz, env);
3086         chk.validate(tree.clazz, env, false);
3087         //a fresh environment is required for 292 inference to work properly ---
3088         //see Infer.instantiatePolymorphicSignatureInstance()
3089         Env<AttrContext> localEnv = env.dup(tree);
3090         //should we propagate the target type?
3091         final ResultInfo castInfo;
3092         JCExpression expr = TreeInfo.skipParens(tree.expr);
3093         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3094         if (isPoly) {
3095             //expression is a poly - we need to propagate target type info
3096             castInfo = new ResultInfo(VAL, clazztype, new Check.NestedCheckContext(resultInfo.checkContext) {
3097                 @Override
3098                 public boolean compatible(Type found, Type req, Warner warn) {
3099                     return types.isCastable(found, req, warn);
3100                 }
3101             });
3102         } else {
3103             //standalone cast - target-type info is not propagated
3104             castInfo = unknownExprInfo;
3105         }
3106         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3107         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3108         if (exprtype.constValue() != null)
3109             owntype = cfolder.coerce(exprtype, owntype);
3110         result = check(tree, capture(owntype), VAL, resultInfo);
3111         if (!isPoly)
3112             chk.checkRedundantCast(localEnv, tree);
3113     }
3114 
3115     public void visitTypeTest(JCInstanceOf tree) {
3116         Type exprtype = chk.checkNullOrRefType(
3117             tree.expr.pos(), attribExpr(tree.expr, env));
3118         Type clazztype = attribType(tree.clazz, env);
3119         if (!clazztype.hasTag(TYPEVAR)) {
3120             clazztype = chk.checkClassOrArrayType(tree.clazz.pos(), clazztype);
3121         }
3122         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3123             log.error(tree.clazz.pos(), "illegal.generic.type.for.instof");
3124             clazztype = types.createErrorType(clazztype);
3125         }
3126         chk.validate(tree.clazz, env, false);
3127         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3128         result = check(tree, syms.booleanType, VAL, resultInfo);
3129     }
3130 
3131     public void visitIndexed(JCArrayAccess tree) {
3132         Type owntype = types.createErrorType(tree.type);
3133         Type atype = attribExpr(tree.indexed, env);
3134         attribExpr(tree.index, env, syms.intType);
3135         if (types.isArray(atype))
3136             owntype = types.elemtype(atype);
3137         else if (!atype.hasTag(ERROR))
3138             log.error(tree.pos(), "array.req.but.found", atype);
3139         if ((pkind() & VAR) == 0) owntype = capture(owntype);
3140         result = check(tree, owntype, VAR, resultInfo);
3141     }
3142 
3143     public void visitIdent(JCIdent tree) {
3144         Symbol sym;
3145 
3146         // Find symbol
3147         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3148             // If we are looking for a method, the prototype `pt' will be a
3149             // method type with the type of the call's arguments as parameters.
3150             env.info.pendingResolutionPhase = null;
3151             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3152         } else if (tree.sym != null && tree.sym.kind != VAR) {
3153             sym = tree.sym;
3154         } else {
3155             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3156         }
3157         tree.sym = sym;
3158 
3159         // (1) Also find the environment current for the class where
3160         //     sym is defined (`symEnv').
3161         // Only for pre-tiger versions (1.4 and earlier):
3162         // (2) Also determine whether we access symbol out of an anonymous
3163         //     class in a this or super call.  This is illegal for instance
3164         //     members since such classes don't carry a this$n link.
3165         //     (`noOuterThisPath').
3166         Env<AttrContext> symEnv = env;
3167         boolean noOuterThisPath = false;
3168         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3169             (sym.kind & (VAR | MTH | TYP)) != 0 &&
3170             sym.owner.kind == TYP &&
3171             tree.name != names._this && tree.name != names._super) {
3172 
3173             // Find environment in which identifier is defined.
3174             while (symEnv.outer != null &&
3175                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3176                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3177                     noOuterThisPath = !allowAnonOuterThis;
3178                 symEnv = symEnv.outer;
3179             }
3180         }
3181 
3182         // If symbol is a variable, ...
3183         if (sym.kind == VAR) {
3184             VarSymbol v = (VarSymbol)sym;
3185 
3186             // ..., evaluate its initializer, if it has one, and check for
3187             // illegal forward reference.
3188             checkInit(tree, env, v, false);
3189 
3190             // If we are expecting a variable (as opposed to a value), check
3191             // that the variable is assignable in the current environment.
3192             if (pkind() == VAR)
3193                 checkAssignable(tree.pos(), v, null, env);
3194         }
3195 
3196         // In a constructor body,
3197         // if symbol is a field or instance method, check that it is
3198         // not accessed before the supertype constructor is called.
3199         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3200             (sym.kind & (VAR | MTH)) != 0 &&
3201             sym.owner.kind == TYP &&
3202             (sym.flags() & STATIC) == 0) {
3203             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
3204         }
3205         Env<AttrContext> env1 = env;
3206         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
3207             // If the found symbol is inaccessible, then it is
3208             // accessed through an enclosing instance.  Locate this
3209             // enclosing instance:
3210             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
3211                 env1 = env1.outer;
3212         }
3213         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
3214     }
3215 
3216     public void visitSelect(JCFieldAccess tree) {
3217         // Determine the expected kind of the qualifier expression.
3218         int skind = 0;
3219         if (tree.name == names._this || tree.name == names._super ||
3220             tree.name == names._class)
3221         {
3222             skind = TYP;
3223         } else {
3224             if ((pkind() & PCK) != 0) skind = skind | PCK;
3225             if ((pkind() & TYP) != 0) skind = skind | TYP | PCK;
3226             if ((pkind() & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
3227         }
3228 
3229         // Attribute the qualifier expression, and determine its symbol (if any).
3230         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Infer.anyPoly));
3231         if ((pkind() & (PCK | TYP)) == 0)
3232             site = capture(site); // Capture field access
3233 
3234         // don't allow T.class T[].class, etc
3235         if (skind == TYP) {
3236             Type elt = site;
3237             while (elt.hasTag(ARRAY))
3238                 elt = ((ArrayType)elt.unannotatedType()).elemtype;
3239             if (elt.hasTag(TYPEVAR)) {
3240                 log.error(tree.pos(), "type.var.cant.be.deref");
3241                 result = types.createErrorType(tree.type);
3242                 return;
3243             }
3244         }
3245 
3246         // If qualifier symbol is a type or `super', assert `selectSuper'
3247         // for the selection. This is relevant for determining whether
3248         // protected symbols are accessible.
3249         Symbol sitesym = TreeInfo.symbol(tree.selected);
3250         boolean selectSuperPrev = env.info.selectSuper;
3251         env.info.selectSuper =
3252             sitesym != null &&
3253             sitesym.name == names._super;
3254 
3255         // Determine the symbol represented by the selection.
3256         env.info.pendingResolutionPhase = null;
3257         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
3258         if (sym.exists() && !isType(sym) && (pkind() & (PCK | TYP)) != 0) {
3259             site = capture(site);
3260             sym = selectSym(tree, sitesym, site, env, resultInfo);
3261         }
3262         boolean varArgs = env.info.lastResolveVarargs();
3263         tree.sym = sym;
3264 
3265         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
3266             while (site.hasTag(TYPEVAR)) site = site.getUpperBound();
3267             site = capture(site);
3268         }
3269 
3270         // If that symbol is a variable, ...
3271         if (sym.kind == VAR) {
3272             VarSymbol v = (VarSymbol)sym;
3273 
3274             // ..., evaluate its initializer, if it has one, and check for
3275             // illegal forward reference.
3276             checkInit(tree, env, v, true);
3277 
3278             // If we are expecting a variable (as opposed to a value), check
3279             // that the variable is assignable in the current environment.
3280             if (pkind() == VAR)
3281                 checkAssignable(tree.pos(), v, tree.selected, env);
3282         }
3283 
3284         if (sitesym != null &&
3285                 sitesym.kind == VAR &&
3286                 ((VarSymbol)sitesym).isResourceVariable() &&
3287                 sym.kind == MTH &&
3288                 sym.name.equals(names.close) &&
3289                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
3290                 env.info.lint.isEnabled(LintCategory.TRY)) {
3291             log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
3292         }
3293 
3294         // Disallow selecting a type from an expression
3295         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
3296             tree.type = check(tree.selected, pt(),
3297                               sitesym == null ? VAL : sitesym.kind, new ResultInfo(TYP|PCK, pt()));
3298         }
3299 
3300         if (isType(sitesym)) {
3301             if (sym.name == names._this) {
3302                 // If `C' is the currently compiled class, check that
3303                 // C.this' does not appear in a call to a super(...)
3304                 if (env.info.isSelfCall &&
3305                     site.tsym == env.enclClass.sym) {
3306                     chk.earlyRefError(tree.pos(), sym);
3307                 }
3308             } else {
3309                 // Check if type-qualified fields or methods are static (JLS)
3310                 if ((sym.flags() & STATIC) == 0 &&
3311                     !env.next.tree.hasTag(REFERENCE) &&
3312                     sym.name != names._super &&
3313                     (sym.kind == VAR || sym.kind == MTH)) {
3314                     rs.accessBase(rs.new StaticError(sym),
3315                               tree.pos(), site, sym.name, true);
3316                 }
3317             }
3318         } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
3319             // If the qualified item is not a type and the selected item is static, report
3320             // a warning. Make allowance for the class of an array type e.g. Object[].class)
3321             chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
3322         }
3323 
3324         // If we are selecting an instance member via a `super', ...
3325         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
3326 
3327             // Check that super-qualified symbols are not abstract (JLS)
3328             rs.checkNonAbstract(tree.pos(), sym);
3329 
3330             if (site.isRaw()) {
3331                 // Determine argument types for site.
3332                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
3333                 if (site1 != null) site = site1;
3334             }
3335         }
3336 
3337         env.info.selectSuper = selectSuperPrev;
3338         result = checkId(tree, site, sym, env, resultInfo);
3339     }
3340     //where
3341         /** Determine symbol referenced by a Select expression,
3342          *
3343          *  @param tree   The select tree.
3344          *  @param site   The type of the selected expression,
3345          *  @param env    The current environment.
3346          *  @param resultInfo The current result.
3347          */
3348         private Symbol selectSym(JCFieldAccess tree,
3349                                  Symbol location,
3350                                  Type site,
3351                                  Env<AttrContext> env,
3352                                  ResultInfo resultInfo) {
3353             DiagnosticPosition pos = tree.pos();
3354             Name name = tree.name;
3355             switch (site.getTag()) {
3356             case PACKAGE:
3357                 return rs.accessBase(
3358                     rs.findIdentInPackage(env, site.tsym, name, resultInfo.pkind),
3359                     pos, location, site, name, true);
3360             case ARRAY:
3361             case CLASS:
3362                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
3363                     return rs.resolveQualifiedMethod(
3364                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
3365                 } else if (name == names._this || name == names._super) {
3366                     return rs.resolveSelf(pos, env, site.tsym, name);
3367                 } else if (name == names._class) {
3368                     // In this case, we have already made sure in
3369                     // visitSelect that qualifier expression is a type.
3370                     Type t = syms.classType;
3371                     List<Type> typeargs = allowGenerics
3372                         ? List.of(types.erasure(site))
3373                         : List.<Type>nil();
3374                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
3375                     return new VarSymbol(
3376                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3377                 } else {
3378                     // We are seeing a plain identifier as selector.
3379                     Symbol sym = rs.findIdentInType(env, site, name, resultInfo.pkind);
3380                     if ((resultInfo.pkind & ERRONEOUS) == 0)
3381                         sym = rs.accessBase(sym, pos, location, site, name, true);
3382                     return sym;
3383                 }
3384             case WILDCARD:
3385                 throw new AssertionError(tree);
3386             case TYPEVAR:
3387                 // Normally, site.getUpperBound() shouldn't be null.
3388                 // It should only happen during memberEnter/attribBase
3389                 // when determining the super type which *must* beac
3390                 // done before attributing the type variables.  In
3391                 // other words, we are seeing this illegal program:
3392                 // class B<T> extends A<T.foo> {}
3393                 Symbol sym = (site.getUpperBound() != null)
3394                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
3395                     : null;
3396                 if (sym == null) {
3397                     log.error(pos, "type.var.cant.be.deref");
3398                     return syms.errSymbol;
3399                 } else {
3400                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
3401                         rs.new AccessError(env, site, sym) :
3402                                 sym;
3403                     rs.accessBase(sym2, pos, location, site, name, true);
3404                     return sym;
3405                 }
3406             case ERROR:
3407                 // preserve identifier names through errors
3408                 return types.createErrorType(name, site.tsym, site).tsym;
3409             default:
3410                 // The qualifier expression is of a primitive type -- only
3411                 // .class is allowed for these.
3412                 if (name == names._class) {
3413                     // In this case, we have already made sure in Select that
3414                     // qualifier expression is a type.
3415                     Type t = syms.classType;
3416                     Type arg = types.boxedClass(site).type;
3417                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
3418                     return new VarSymbol(
3419                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
3420                 } else {
3421                     log.error(pos, "cant.deref", site);
3422                     return syms.errSymbol;
3423                 }
3424             }
3425         }
3426 
3427         /** Determine type of identifier or select expression and check that
3428          *  (1) the referenced symbol is not deprecated
3429          *  (2) the symbol's type is safe (@see checkSafe)
3430          *  (3) if symbol is a variable, check that its type and kind are
3431          *      compatible with the prototype and protokind.
3432          *  (4) if symbol is an instance field of a raw type,
3433          *      which is being assigned to, issue an unchecked warning if its
3434          *      type changes under erasure.
3435          *  (5) if symbol is an instance method of a raw type, issue an
3436          *      unchecked warning if its argument types change under erasure.
3437          *  If checks succeed:
3438          *    If symbol is a constant, return its constant type
3439          *    else if symbol is a method, return its result type
3440          *    otherwise return its type.
3441          *  Otherwise return errType.
3442          *
3443          *  @param tree       The syntax tree representing the identifier
3444          *  @param site       If this is a select, the type of the selected
3445          *                    expression, otherwise the type of the current class.
3446          *  @param sym        The symbol representing the identifier.
3447          *  @param env        The current environment.
3448          *  @param resultInfo    The expected result
3449          */
3450         Type checkId(JCTree tree,
3451                      Type site,
3452                      Symbol sym,
3453                      Env<AttrContext> env,
3454                      ResultInfo resultInfo) {
3455             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
3456                     checkMethodId(tree, site, sym, env, resultInfo) :
3457                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3458         }
3459 
3460         Type checkMethodId(JCTree tree,
3461                      Type site,
3462                      Symbol sym,
3463                      Env<AttrContext> env,
3464                      ResultInfo resultInfo) {
3465             boolean isPolymorhicSignature =
3466                 (sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) != 0;
3467             return isPolymorhicSignature ?
3468                     checkSigPolyMethodId(tree, site, sym, env, resultInfo) :
3469                     checkMethodIdInternal(tree, site, sym, env, resultInfo);
3470         }
3471 
3472         Type checkSigPolyMethodId(JCTree tree,
3473                      Type site,
3474                      Symbol sym,
3475                      Env<AttrContext> env,
3476                      ResultInfo resultInfo) {
3477             //recover original symbol for signature polymorphic methods
3478             checkMethodIdInternal(tree, site, sym.baseSymbol(), env, resultInfo);
3479             env.info.pendingResolutionPhase = Resolve.MethodResolutionPhase.BASIC;
3480             return sym.type;
3481         }
3482 
3483         Type checkMethodIdInternal(JCTree tree,
3484                      Type site,
3485                      Symbol sym,
3486                      Env<AttrContext> env,
3487                      ResultInfo resultInfo) {
3488             if ((resultInfo.pkind & POLY) != 0) {
3489                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
3490                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
3491                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3492                 return owntype;
3493             } else {
3494                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
3495             }
3496         }
3497 
3498         Type checkIdInternal(JCTree tree,
3499                      Type site,
3500                      Symbol sym,
3501                      Type pt,
3502                      Env<AttrContext> env,
3503                      ResultInfo resultInfo) {
3504             if (pt.isErroneous()) {
3505                 return types.createErrorType(site);
3506             }
3507             Type owntype; // The computed type of this identifier occurrence.
3508             switch (sym.kind) {
3509             case TYP:
3510                 // For types, the computed type equals the symbol's type,
3511                 // except for two situations:
3512                 owntype = sym.type;
3513                 if (owntype.hasTag(CLASS)) {
3514                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
3515                     Type ownOuter = owntype.getEnclosingType();
3516 
3517                     // (a) If the symbol's type is parameterized, erase it
3518                     // because no type parameters were given.
3519                     // We recover generic outer type later in visitTypeApply.
3520                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
3521                         owntype = types.erasure(owntype);
3522                     }
3523 
3524                     // (b) If the symbol's type is an inner class, then
3525                     // we have to interpret its outer type as a superclass
3526                     // of the site type. Example:
3527                     //
3528                     // class Tree<A> { class Visitor { ... } }
3529                     // class PointTree extends Tree<Point> { ... }
3530                     // ...PointTree.Visitor...
3531                     //
3532                     // Then the type of the last expression above is
3533                     // Tree<Point>.Visitor.
3534                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
3535                         Type normOuter = site;
3536                         if (normOuter.hasTag(CLASS)) {
3537                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
3538                         }
3539                         if (normOuter == null) // perhaps from an import
3540                             normOuter = types.erasure(ownOuter);
3541                         if (normOuter != ownOuter)
3542                             owntype = new ClassType(
3543                                 normOuter, List.<Type>nil(), owntype.tsym);
3544                     }
3545                 }
3546                 break;
3547             case VAR:
3548                 VarSymbol v = (VarSymbol)sym;
3549                 // Test (4): if symbol is an instance field of a raw type,
3550                 // which is being assigned to, issue an unchecked warning if
3551                 // its type changes under erasure.
3552                 if (allowGenerics &&
3553                     resultInfo.pkind == VAR &&
3554                     v.owner.kind == TYP &&
3555                     (v.flags() & STATIC) == 0 &&
3556                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3557                     Type s = types.asOuterSuper(site, v.owner);
3558                     if (s != null &&
3559                         s.isRaw() &&
3560                         !types.isSameType(v.type, v.erasure(types))) {
3561                         chk.warnUnchecked(tree.pos(),
3562                                           "unchecked.assign.to.var",
3563                                           v, s);
3564                     }
3565                 }
3566                 // The computed type of a variable is the type of the
3567                 // variable symbol, taken as a member of the site type.
3568                 owntype = (sym.owner.kind == TYP &&
3569                            sym.name != names._this && sym.name != names._super)
3570                     ? types.memberType(site, sym)
3571                     : sym.type;
3572 
3573                 // If the variable is a constant, record constant value in
3574                 // computed type.
3575                 if (v.getConstValue() != null && isStaticReference(tree))
3576                     owntype = owntype.constType(v.getConstValue());
3577 
3578                 if (resultInfo.pkind == VAL) {
3579                     owntype = capture(owntype); // capture "names as expressions"
3580                 }
3581                 break;
3582             case MTH: {
3583                 owntype = checkMethod(site, sym,
3584                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext),
3585                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
3586                         resultInfo.pt.getTypeArguments());
3587                 break;
3588             }
3589             case PCK: case ERR:
3590                 owntype = sym.type;
3591                 break;
3592             default:
3593                 throw new AssertionError("unexpected kind: " + sym.kind +
3594                                          " in tree " + tree);
3595             }
3596 
3597             // Test (1): emit a `deprecation' warning if symbol is deprecated.
3598             // (for constructors, the error was given when the constructor was
3599             // resolved)
3600 
3601             if (sym.name != names.init) {
3602                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
3603                 chk.checkSunAPI(tree.pos(), sym);
3604                 chk.checkProfile(tree.pos(), sym);
3605             }
3606 
3607             // Test (3): if symbol is a variable, check that its type and
3608             // kind are compatible with the prototype and protokind.
3609             return check(tree, owntype, sym.kind, resultInfo);
3610         }
3611 
3612         /** Check that variable is initialized and evaluate the variable's
3613          *  initializer, if not yet done. Also check that variable is not
3614          *  referenced before it is defined.
3615          *  @param tree    The tree making up the variable reference.
3616          *  @param env     The current environment.
3617          *  @param v       The variable's symbol.
3618          */
3619         private void checkInit(JCTree tree,
3620                                Env<AttrContext> env,
3621                                VarSymbol v,
3622                                boolean onlyWarning) {
3623 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
3624 //                             tree.pos + " " + v.pos + " " +
3625 //                             Resolve.isStatic(env));//DEBUG
3626 
3627             // A forward reference is diagnosed if the declaration position
3628             // of the variable is greater than the current tree position
3629             // and the tree and variable definition occur in the same class
3630             // definition.  Note that writes don't count as references.
3631             // This check applies only to class and instance
3632             // variables.  Local variables follow different scope rules,
3633             // and are subject to definite assignment checking.
3634             if ((env.info.enclVar == v || v.pos > tree.pos) &&
3635                 v.owner.kind == TYP &&
3636                 canOwnInitializer(owner(env)) &&
3637                 v.owner == env.info.scope.owner.enclClass() &&
3638                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
3639                 (!env.tree.hasTag(ASSIGN) ||
3640                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
3641                 String suffix = (env.info.enclVar == v) ?
3642                                 "self.ref" : "forward.ref";
3643                 if (!onlyWarning || isStaticEnumField(v)) {
3644                     log.error(tree.pos(), "illegal." + suffix);
3645                 } else if (useBeforeDeclarationWarning) {
3646                     log.warning(tree.pos(), suffix, v);
3647                 }
3648             }
3649 
3650             v.getConstValue(); // ensure initializer is evaluated
3651 
3652             checkEnumInitializer(tree, env, v);
3653         }
3654 
3655         /**
3656          * Check for illegal references to static members of enum.  In
3657          * an enum type, constructors and initializers may not
3658          * reference its static members unless they are constant.
3659          *
3660          * @param tree    The tree making up the variable reference.
3661          * @param env     The current environment.
3662          * @param v       The variable's symbol.
3663          * @jls  section 8.9 Enums
3664          */
3665         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
3666             // JLS:
3667             //
3668             // "It is a compile-time error to reference a static field
3669             // of an enum type that is not a compile-time constant
3670             // (15.28) from constructors, instance initializer blocks,
3671             // or instance variable initializer expressions of that
3672             // type. It is a compile-time error for the constructors,
3673             // instance initializer blocks, or instance variable
3674             // initializer expressions of an enum constant e to refer
3675             // to itself or to an enum constant of the same type that
3676             // is declared to the right of e."
3677             if (isStaticEnumField(v)) {
3678                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
3679 
3680                 if (enclClass == null || enclClass.owner == null)
3681                     return;
3682 
3683                 // See if the enclosing class is the enum (or a
3684                 // subclass thereof) declaring v.  If not, this
3685                 // reference is OK.
3686                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
3687                     return;
3688 
3689                 // If the reference isn't from an initializer, then
3690                 // the reference is OK.
3691                 if (!Resolve.isInitializer(env))
3692                     return;
3693 
3694                 log.error(tree.pos(), "illegal.enum.static.ref");
3695             }
3696         }
3697 
3698         /** Is the given symbol a static, non-constant field of an Enum?
3699          *  Note: enum literals should not be regarded as such
3700          */
3701         private boolean isStaticEnumField(VarSymbol v) {
3702             return Flags.isEnum(v.owner) &&
3703                    Flags.isStatic(v) &&
3704                    !Flags.isConstant(v) &&
3705                    v.name != names._class;
3706         }
3707 
3708         /** Can the given symbol be the owner of code which forms part
3709          *  if class initialization? This is the case if the symbol is
3710          *  a type or field, or if the symbol is the synthetic method.
3711          *  owning a block.
3712          */
3713         private boolean canOwnInitializer(Symbol sym) {
3714             return
3715                 (sym.kind & (VAR | TYP)) != 0 ||
3716                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
3717         }
3718 
3719     Warner noteWarner = new Warner();
3720 
3721     /**
3722      * Check that method arguments conform to its instantiation.
3723      **/
3724     public Type checkMethod(Type site,
3725                             final Symbol sym,
3726                             ResultInfo resultInfo,
3727                             Env<AttrContext> env,
3728                             final List<JCExpression> argtrees,
3729                             List<Type> argtypes,
3730                             List<Type> typeargtypes) {
3731         // Test (5): if symbol is an instance method of a raw type, issue
3732         // an unchecked warning if its argument types change under erasure.
3733         if (allowGenerics &&
3734             (sym.flags() & STATIC) == 0 &&
3735             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
3736             Type s = types.asOuterSuper(site, sym.owner);
3737             if (s != null && s.isRaw() &&
3738                 !types.isSameTypes(sym.type.getParameterTypes(),
3739                                    sym.erasure(types).getParameterTypes())) {
3740                 chk.warnUnchecked(env.tree.pos(),
3741                                   "unchecked.call.mbr.of.raw.type",
3742                                   sym, s);
3743             }
3744         }
3745 
3746         if (env.info.defaultSuperCallSite != null) {
3747             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
3748                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
3749                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
3750                 List<MethodSymbol> icand_sup =
3751                         types.interfaceCandidates(sup, (MethodSymbol)sym);
3752                 if (icand_sup.nonEmpty() &&
3753                         icand_sup.head != sym &&
3754                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
3755                     log.error(env.tree.pos(), "illegal.default.super.call", env.info.defaultSuperCallSite,
3756                         diags.fragment("overridden.default", sym, sup));
3757                     break;
3758                 }
3759             }
3760             env.info.defaultSuperCallSite = null;
3761         }
3762 
3763         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
3764             JCMethodInvocation app = (JCMethodInvocation)env.tree;
3765             if (app.meth.hasTag(SELECT) &&
3766                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
3767                 log.error(env.tree.pos(), "illegal.static.intf.meth.call", site);
3768             }
3769         }
3770 
3771         // Compute the identifier's instantiated type.
3772         // For methods, we need to compute the instance type by
3773         // Resolve.instantiate from the symbol's type as well as
3774         // any type arguments and value arguments.
3775         noteWarner.clear();
3776         try {
3777             Type owntype = rs.checkMethod(
3778                     env,
3779                     site,
3780                     sym,
3781                     resultInfo,
3782                     argtypes,
3783                     typeargtypes,
3784                     noteWarner);
3785 
3786             DeferredAttr.DeferredTypeMap checkDeferredMap =
3787                 deferredAttr.new DeferredTypeMap(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
3788 
3789             argtypes = Type.map(argtypes, checkDeferredMap);
3790 
3791             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
3792                 chk.warnUnchecked(env.tree.pos(),
3793                         "unchecked.meth.invocation.applied",
3794                         kindName(sym),
3795                         sym.name,
3796                         rs.methodArguments(sym.type.getParameterTypes()),
3797                         rs.methodArguments(Type.map(argtypes, checkDeferredMap)),
3798                         kindName(sym.location()),
3799                         sym.location());
3800                owntype = new MethodType(owntype.getParameterTypes(),
3801                        types.erasure(owntype.getReturnType()),
3802                        types.erasure(owntype.getThrownTypes()),
3803                        syms.methodClass);
3804             }
3805 
3806             return chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
3807                     resultInfo.checkContext.inferenceContext());
3808         } catch (Infer.InferenceException ex) {
3809             //invalid target type - propagate exception outwards or report error
3810             //depending on the current check context
3811             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
3812             return types.createErrorType(site);
3813         } catch (Resolve.InapplicableMethodException ex) {
3814             final JCDiagnostic diag = ex.getDiagnostic();
3815             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
3816                 @Override
3817                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
3818                     return new Pair<Symbol, JCDiagnostic>(sym, diag);
3819                 }
3820             };
3821             List<Type> argtypes2 = Type.map(argtypes,
3822                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
3823             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3824                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
3825             log.report(errDiag);
3826             return types.createErrorType(site);
3827         }
3828     }
3829 
3830     public void visitLiteral(JCLiteral tree) {
3831         result = check(
3832             tree, litType(tree.typetag).constType(tree.value), VAL, resultInfo);
3833     }
3834     //where
3835     /** Return the type of a literal with given type tag.
3836      */
3837     Type litType(TypeTag tag) {
3838         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
3839     }
3840 
3841     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
3842         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], TYP, resultInfo);
3843     }
3844 
3845     public void visitTypeArray(JCArrayTypeTree tree) {
3846         Type etype = attribType(tree.elemtype, env);
3847         Type type = new ArrayType(etype, syms.arrayClass);
3848         result = check(tree, type, TYP, resultInfo);
3849     }
3850 
3851     /** Visitor method for parameterized types.
3852      *  Bound checking is left until later, since types are attributed
3853      *  before supertype structure is completely known
3854      */
3855     public void visitTypeApply(JCTypeApply tree) {
3856         Type owntype = types.createErrorType(tree.type);
3857 
3858         // Attribute functor part of application and make sure it's a class.
3859         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
3860 
3861         // Attribute type parameters
3862         List<Type> actuals = attribTypes(tree.arguments, env);
3863 
3864         if (clazztype.hasTag(CLASS)) {
3865             List<Type> formals = clazztype.tsym.type.getTypeArguments();
3866             if (actuals.isEmpty()) //diamond
3867                 actuals = formals;
3868 
3869             if (actuals.length() == formals.length()) {
3870                 List<Type> a = actuals;
3871                 List<Type> f = formals;
3872                 while (a.nonEmpty()) {
3873                     a.head = a.head.withTypeVar(f.head);
3874                     a = a.tail;
3875                     f = f.tail;
3876                 }
3877                 // Compute the proper generic outer
3878                 Type clazzOuter = clazztype.getEnclosingType();
3879                 if (clazzOuter.hasTag(CLASS)) {
3880                     Type site;
3881                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
3882                     if (clazz.hasTag(IDENT)) {
3883                         site = env.enclClass.sym.type;
3884                     } else if (clazz.hasTag(SELECT)) {
3885                         site = ((JCFieldAccess) clazz).selected.type;
3886                     } else throw new AssertionError(""+tree);
3887                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
3888                         if (site.hasTag(CLASS))
3889                             site = types.asOuterSuper(site, clazzOuter.tsym);
3890                         if (site == null)
3891                             site = types.erasure(clazzOuter);
3892                         clazzOuter = site;
3893                     }
3894                 }
3895                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
3896             } else {
3897                 if (formals.length() != 0) {
3898                     log.error(tree.pos(), "wrong.number.type.args",
3899                               Integer.toString(formals.length()));
3900                 } else {
3901                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
3902                 }
3903                 owntype = types.createErrorType(tree.type);
3904             }
3905         }
3906         result = check(tree, owntype, TYP, resultInfo);
3907     }
3908 
3909     public void visitTypeUnion(JCTypeUnion tree) {
3910         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
3911         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
3912         for (JCExpression typeTree : tree.alternatives) {
3913             Type ctype = attribType(typeTree, env);
3914             ctype = chk.checkType(typeTree.pos(),
3915                           chk.checkClassType(typeTree.pos(), ctype),
3916                           syms.throwableType);
3917             if (!ctype.isErroneous()) {
3918                 //check that alternatives of a union type are pairwise
3919                 //unrelated w.r.t. subtyping
3920                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
3921                     for (Type t : multicatchTypes) {
3922                         boolean sub = types.isSubtype(ctype, t);
3923                         boolean sup = types.isSubtype(t, ctype);
3924                         if (sub || sup) {
3925                             //assume 'a' <: 'b'
3926                             Type a = sub ? ctype : t;
3927                             Type b = sub ? t : ctype;
3928                             log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
3929                         }
3930                     }
3931                 }
3932                 multicatchTypes.append(ctype);
3933                 if (all_multicatchTypes != null)
3934                     all_multicatchTypes.append(ctype);
3935             } else {
3936                 if (all_multicatchTypes == null) {
3937                     all_multicatchTypes = new ListBuffer<>();
3938                     all_multicatchTypes.appendList(multicatchTypes);
3939                 }
3940                 all_multicatchTypes.append(ctype);
3941             }
3942         }
3943         Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, resultInfo);
3944         if (t.hasTag(CLASS)) {
3945             List<Type> alternatives =
3946                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
3947             t = new UnionClassType((ClassType) t, alternatives);
3948         }
3949         tree.type = result = t;
3950     }
3951 
3952     public void visitTypeIntersection(JCTypeIntersection tree) {
3953         attribTypes(tree.bounds, env);
3954         tree.type = result = checkIntersection(tree, tree.bounds);
3955     }
3956 
3957     public void visitTypeParameter(JCTypeParameter tree) {
3958         TypeVar typeVar = (TypeVar) tree.type;
3959 
3960         if (tree.annotations != null && tree.annotations.nonEmpty()) {
3961             annotateType(tree, tree.annotations);
3962         }
3963 
3964         if (!typeVar.bound.isErroneous()) {
3965             //fixup type-parameter bound computed in 'attribTypeVariables'
3966             typeVar.bound = checkIntersection(tree, tree.bounds);
3967         }
3968     }
3969 
3970     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
3971         Set<Type> boundSet = new HashSet<Type>();
3972         if (bounds.nonEmpty()) {
3973             // accept class or interface or typevar as first bound.
3974             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
3975             boundSet.add(types.erasure(bounds.head.type));
3976             if (bounds.head.type.isErroneous()) {
3977                 return bounds.head.type;
3978             }
3979             else if (bounds.head.type.hasTag(TYPEVAR)) {
3980                 // if first bound was a typevar, do not accept further bounds.
3981                 if (bounds.tail.nonEmpty()) {
3982                     log.error(bounds.tail.head.pos(),
3983                               "type.var.may.not.be.followed.by.other.bounds");
3984                     return bounds.head.type;
3985                 }
3986             } else {
3987                 // if first bound was a class or interface, accept only interfaces
3988                 // as further bounds.
3989                 for (JCExpression bound : bounds.tail) {
3990                     bound.type = checkBase(bound.type, bound, env, false, true, false);
3991                     if (bound.type.isErroneous()) {
3992                         bounds = List.of(bound);
3993                     }
3994                     else if (bound.type.hasTag(CLASS)) {
3995                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
3996                     }
3997                 }
3998             }
3999         }
4000 
4001         if (bounds.length() == 0) {
4002             return syms.objectType;
4003         } else if (bounds.length() == 1) {
4004             return bounds.head.type;
4005         } else {
4006             Type owntype = types.makeCompoundType(TreeInfo.types(bounds));
4007             // ... the variable's bound is a class type flagged COMPOUND
4008             // (see comment for TypeVar.bound).
4009             // In this case, generate a class tree that represents the
4010             // bound class, ...
4011             JCExpression extending;
4012             List<JCExpression> implementing;
4013             if (!bounds.head.type.isInterface()) {
4014                 extending = bounds.head;
4015                 implementing = bounds.tail;
4016             } else {
4017                 extending = null;
4018                 implementing = bounds;
4019             }
4020             JCClassDecl cd = make.at(tree).ClassDef(
4021                 make.Modifiers(PUBLIC | ABSTRACT),
4022                 names.empty, List.<JCTypeParameter>nil(),
4023                 extending, implementing, List.<JCTree>nil());
4024 
4025             ClassSymbol c = (ClassSymbol)owntype.tsym;
4026             Assert.check((c.flags() & COMPOUND) != 0);
4027             cd.sym = c;
4028             c.sourcefile = env.toplevel.sourcefile;
4029 
4030             // ... and attribute the bound class
4031             c.flags_field |= UNATTRIBUTED;
4032             Env<AttrContext> cenv = enter.classEnv(cd, env);
4033             enter.typeEnvs.put(c, cenv);
4034             attribClass(c);
4035             return owntype;
4036         }
4037     }
4038 
4039     public void visitWildcard(JCWildcard tree) {
4040         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4041         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4042             ? syms.objectType
4043             : attribType(tree.inner, env);
4044         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4045                                               tree.kind.kind,
4046                                               syms.boundClass),
4047                        TYP, resultInfo);
4048     }
4049 
4050     public void visitAnnotation(JCAnnotation tree) {
4051         Assert.error("should be handled in Annotate");
4052     }
4053 
4054     public void visitAnnotatedType(JCAnnotatedType tree) {
4055         Type underlyingType = attribType(tree.getUnderlyingType(), env);
4056         this.attribAnnotationTypes(tree.annotations, env);
4057         annotateType(tree, tree.annotations);
4058         result = tree.type = underlyingType;
4059     }
4060 
4061     /**
4062      * Apply the annotations to the particular type.
4063      */
4064     public void annotateType(final JCTree tree, final List<JCAnnotation> annotations) {
4065         annotate.typeAnnotation(new Annotate.Worker() {
4066             @Override
4067             public String toString() {
4068                 return "annotate " + annotations + " onto " + tree;
4069             }
4070             @Override
4071             public void run() {
4072                 List<Attribute.TypeCompound> compounds = fromAnnotations(annotations);
4073                 if (annotations.size() == compounds.size()) {
4074                     // All annotations were successfully converted into compounds
4075                     tree.type = tree.type.unannotatedType().annotatedType(compounds);
4076                 }
4077             }
4078         });
4079     }
4080 
4081     private static List<Attribute.TypeCompound> fromAnnotations(List<JCAnnotation> annotations) {
4082         if (annotations.isEmpty()) {
4083             return List.nil();
4084         }
4085 
4086         ListBuffer<Attribute.TypeCompound> buf = new ListBuffer<>();
4087         for (JCAnnotation anno : annotations) {
4088             if (anno.attribute != null) {
4089                 // TODO: this null-check is only needed for an obscure
4090                 // ordering issue, where annotate.flush is called when
4091                 // the attribute is not set yet. For an example failure
4092                 // try the referenceinfos/NestedTypes.java test.
4093                 // Any better solutions?
4094                 buf.append((Attribute.TypeCompound) anno.attribute);
4095             }
4096             // Eventually we will want to throw an exception here, but
4097             // we can't do that just yet, because it gets triggered
4098             // when attempting to attach an annotation that isn't
4099             // defined.
4100         }
4101         return buf.toList();
4102     }
4103 
4104     public void visitErroneous(JCErroneous tree) {
4105         if (tree.errs != null)
4106             for (JCTree err : tree.errs)
4107                 attribTree(err, env, new ResultInfo(ERR, pt()));
4108         result = tree.type = syms.errType;
4109     }
4110 
4111     /** Default visitor method for all other trees.
4112      */
4113     public void visitTree(JCTree tree) {
4114         throw new AssertionError();
4115     }
4116 
4117     /**
4118      * Attribute an env for either a top level tree or class declaration.
4119      */
4120     public void attrib(Env<AttrContext> env) {
4121         if (env.tree.hasTag(TOPLEVEL))
4122             attribTopLevel(env);
4123         else
4124             attribClass(env.tree.pos(), env.enclClass.sym);
4125     }
4126 
4127     /**
4128      * Attribute a top level tree. These trees are encountered when the
4129      * package declaration has annotations.
4130      */
4131     public void attribTopLevel(Env<AttrContext> env) {
4132         JCCompilationUnit toplevel = env.toplevel;
4133         try {
4134             annotate.flush();
4135         } catch (CompletionFailure ex) {
4136             chk.completionError(toplevel.pos(), ex);
4137         }
4138     }
4139 
4140     /** Main method: attribute class definition associated with given class symbol.
4141      *  reporting completion failures at the given position.
4142      *  @param pos The source position at which completion errors are to be
4143      *             reported.
4144      *  @param c   The class symbol whose definition will be attributed.
4145      */
4146     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4147         try {
4148             annotate.flush();
4149             attribClass(c);
4150         } catch (CompletionFailure ex) {
4151             chk.completionError(pos, ex);
4152         }
4153     }
4154 
4155     /** Attribute class definition associated with given class symbol.
4156      *  @param c   The class symbol whose definition will be attributed.
4157      */
4158     void attribClass(ClassSymbol c) throws CompletionFailure {
4159         if (c.type.hasTag(ERROR)) return;
4160 
4161         // Check for cycles in the inheritance graph, which can arise from
4162         // ill-formed class files.
4163         chk.checkNonCyclic(null, c.type);
4164 
4165         Type st = types.supertype(c.type);
4166         if ((c.flags_field & Flags.COMPOUND) == 0) {
4167             // First, attribute superclass.
4168             if (st.hasTag(CLASS))
4169                 attribClass((ClassSymbol)st.tsym);
4170 
4171             // Next attribute owner, if it is a class.
4172             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4173                 attribClass((ClassSymbol)c.owner);
4174         }
4175 
4176         // The previous operations might have attributed the current class
4177         // if there was a cycle. So we test first whether the class is still
4178         // UNATTRIBUTED.
4179         if ((c.flags_field & UNATTRIBUTED) != 0) {
4180             c.flags_field &= ~UNATTRIBUTED;
4181 
4182             // Get environment current at the point of class definition.
4183             Env<AttrContext> env = enter.typeEnvs.get(c);
4184 
4185             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
4186             // because the annotations were not available at the time the env was created. Therefore,
4187             // we look up the environment chain for the first enclosing environment for which the
4188             // lint value is set. Typically, this is the parent env, but might be further if there
4189             // are any envs created as a result of TypeParameter nodes.
4190             Env<AttrContext> lintEnv = env;
4191             while (lintEnv.info.lint == null)
4192                 lintEnv = lintEnv.next;
4193 
4194             // Having found the enclosing lint value, we can initialize the lint value for this class
4195             env.info.lint = lintEnv.info.lint.augment(c);
4196 
4197             Lint prevLint = chk.setLint(env.info.lint);
4198             JavaFileObject prev = log.useSource(c.sourcefile);
4199             ResultInfo prevReturnRes = env.info.returnResult;
4200 
4201             try {
4202                 deferredLintHandler.flush(env.tree);
4203                 env.info.returnResult = null;
4204                 // java.lang.Enum may not be subclassed by a non-enum
4205                 if (st.tsym == syms.enumSym &&
4206                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
4207                     log.error(env.tree.pos(), "enum.no.subclassing");
4208 
4209                 // Enums may not be extended by source-level classes
4210                 if (st.tsym != null &&
4211                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
4212                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
4213                     log.error(env.tree.pos(), "enum.types.not.extensible");
4214                 }
4215                 attribClassBody(env, c);
4216 
4217                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
4218                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
4219                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
4220             } finally {
4221                 env.info.returnResult = prevReturnRes;
4222                 log.useSource(prev);
4223                 chk.setLint(prevLint);
4224             }
4225 
4226         }
4227     }
4228 
4229     public void visitImport(JCImport tree) {
4230         // nothing to do
4231     }
4232 
4233     /** Finish the attribution of a class. */
4234     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
4235         JCClassDecl tree = (JCClassDecl)env.tree;
4236         Assert.check(c == tree.sym);
4237 
4238         // Validate type parameters, supertype and interfaces.
4239         attribStats(tree.typarams, env);
4240         if (!c.isAnonymous()) {
4241             //already checked if anonymous
4242             chk.validate(tree.typarams, env);
4243             chk.validate(tree.extending, env);
4244             chk.validate(tree.implementing, env);
4245         }
4246 
4247         // If this is a non-abstract class, check that it has no abstract
4248         // methods or unimplemented methods of an implemented interface.
4249         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
4250             if (!relax)
4251                 chk.checkAllDefined(tree.pos(), c);
4252         }
4253 
4254         if ((c.flags() & ANNOTATION) != 0) {
4255             if (tree.implementing.nonEmpty())
4256                 log.error(tree.implementing.head.pos(),
4257                           "cant.extend.intf.annotation");
4258             if (tree.typarams.nonEmpty())
4259                 log.error(tree.typarams.head.pos(),
4260                           "intf.annotation.cant.have.type.params");
4261 
4262             // If this annotation has a @Repeatable, validate
4263             Attribute.Compound repeatable = c.attribute(syms.repeatableType.tsym);
4264             if (repeatable != null) {
4265                 // get diagnostic position for error reporting
4266                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
4267                 Assert.checkNonNull(cbPos);
4268 
4269                 chk.validateRepeatable(c, repeatable, cbPos);
4270             }
4271         } else {
4272             // Check that all extended classes and interfaces
4273             // are compatible (i.e. no two define methods with same arguments
4274             // yet different return types).  (JLS 8.4.6.3)
4275             chk.checkCompatibleSupertypes(tree.pos(), c.type);
4276             if (allowDefaultMethods) {
4277                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
4278             }
4279         }
4280 
4281         // Check that class does not import the same parameterized interface
4282         // with two different argument lists.
4283         chk.checkClassBounds(tree.pos(), c.type);
4284 
4285         tree.type = c.type;
4286 
4287         for (List<JCTypeParameter> l = tree.typarams;
4288              l.nonEmpty(); l = l.tail) {
4289              Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
4290         }
4291 
4292         // Check that a generic class doesn't extend Throwable
4293         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
4294             log.error(tree.extending.pos(), "generic.throwable");
4295 
4296         // Check that all methods which implement some
4297         // method conform to the method they implement.
4298         chk.checkImplementations(tree);
4299 
4300         //check that a resource implementing AutoCloseable cannot throw InterruptedException
4301         checkAutoCloseable(tree.pos(), env, c.type);
4302 
4303         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
4304             // Attribute declaration
4305             attribStat(l.head, env);
4306             // Check that declarations in inner classes are not static (JLS 8.1.2)
4307             // Make an exception for static constants.
4308             if (c.owner.kind != PCK &&
4309                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
4310                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
4311                 Symbol sym = null;
4312                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
4313                 if (sym == null ||
4314                     sym.kind != VAR ||
4315                     ((VarSymbol) sym).getConstValue() == null)
4316                     log.error(l.head.pos(), "icls.cant.have.static.decl", c);
4317             }
4318         }
4319 
4320         // Check for cycles among non-initial constructors.
4321         chk.checkCyclicConstructors(tree);
4322 
4323         // Check for cycles among annotation elements.
4324         chk.checkNonCyclicElements(tree);
4325 
4326         // Check for proper use of serialVersionUID
4327         if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
4328             isSerializable(c) &&
4329             (c.flags() & Flags.ENUM) == 0 &&
4330             checkForSerial(c)) {
4331             checkSerialVersionUID(tree, c);
4332         }
4333         if (allowTypeAnnos) {
4334             // Correctly organize the postions of the type annotations
4335             typeAnnotations.organizeTypeAnnotationsBodies(tree);
4336 
4337             // Check type annotations applicability rules
4338             validateTypeAnnotations(tree, false);
4339         }
4340     }
4341         // where
4342         boolean checkForSerial(ClassSymbol c) {
4343             if ((c.flags() & ABSTRACT) == 0) {
4344                 return true;
4345             } else {
4346                 return c.members().anyMatch(anyNonAbstractOrDefaultMethod);
4347             }
4348         }
4349 
4350         public static final Filter<Symbol> anyNonAbstractOrDefaultMethod = new Filter<Symbol>() {
4351             @Override
4352             public boolean accepts(Symbol s) {
4353                 return s.kind == Kinds.MTH &&
4354                        (s.flags() & (DEFAULT | ABSTRACT)) != ABSTRACT;
4355             }
4356         };
4357 
4358         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
4359         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
4360             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
4361                 if (types.isSameType(al.head.annotationType.type, t))
4362                     return al.head.pos();
4363             }
4364 
4365             return null;
4366         }
4367 
4368         /** check if a class is a subtype of Serializable, if that is available. */
4369         private boolean isSerializable(ClassSymbol c) {
4370             try {
4371                 syms.serializableType.complete();
4372             }
4373             catch (CompletionFailure e) {
4374                 return false;
4375             }
4376             return types.isSubtype(c.type, syms.serializableType);
4377         }
4378 
4379         /** Check that an appropriate serialVersionUID member is defined. */
4380         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
4381 
4382             // check for presence of serialVersionUID
4383             Scope.Entry e = c.members().lookup(names.serialVersionUID);
4384             while (e.scope != null && e.sym.kind != VAR) e = e.next();
4385             if (e.scope == null) {
4386                 log.warning(LintCategory.SERIAL,
4387                         tree.pos(), "missing.SVUID", c);
4388                 return;
4389             }
4390 
4391             // check that it is static final
4392             VarSymbol svuid = (VarSymbol)e.sym;
4393             if ((svuid.flags() & (STATIC | FINAL)) !=
4394                 (STATIC | FINAL))
4395                 log.warning(LintCategory.SERIAL,
4396                         TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
4397 
4398             // check that it is long
4399             else if (!svuid.type.hasTag(LONG))
4400                 log.warning(LintCategory.SERIAL,
4401                         TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
4402 
4403             // check constant
4404             else if (svuid.getConstValue() == null)
4405                 log.warning(LintCategory.SERIAL,
4406                         TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
4407         }
4408 
4409     private Type capture(Type type) {
4410         return types.capture(type);
4411     }
4412 
4413     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
4414         tree.accept(new TypeAnnotationsValidator(sigOnly));
4415     }
4416     //where
4417     private final class TypeAnnotationsValidator extends TreeScanner {
4418 
4419         private final boolean sigOnly;
4420         public TypeAnnotationsValidator(boolean sigOnly) {
4421             this.sigOnly = sigOnly;
4422         }
4423 
4424         public void visitAnnotation(JCAnnotation tree) {
4425             chk.validateTypeAnnotation(tree, false);
4426             super.visitAnnotation(tree);
4427         }
4428         public void visitAnnotatedType(JCAnnotatedType tree) {
4429             if (!tree.underlyingType.type.isErroneous()) {
4430                 super.visitAnnotatedType(tree);
4431             }
4432         }
4433         public void visitTypeParameter(JCTypeParameter tree) {
4434             chk.validateTypeAnnotations(tree.annotations, true);
4435             scan(tree.bounds);
4436             // Don't call super.
4437             // This is needed because above we call validateTypeAnnotation with
4438             // false, which would forbid annotations on type parameters.
4439             // super.visitTypeParameter(tree);
4440         }
4441         public void visitMethodDef(JCMethodDecl tree) {
4442             if (tree.recvparam != null &&
4443                     !tree.recvparam.vartype.type.isErroneous()) {
4444                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
4445                         tree.recvparam.vartype.type.tsym);
4446             }
4447             if (tree.restype != null && tree.restype.type != null) {
4448                 validateAnnotatedType(tree.restype, tree.restype.type);
4449             }
4450             if (sigOnly) {
4451                 scan(tree.mods);
4452                 scan(tree.restype);
4453                 scan(tree.typarams);
4454                 scan(tree.recvparam);
4455                 scan(tree.params);
4456                 scan(tree.thrown);
4457             } else {
4458                 scan(tree.defaultValue);
4459                 scan(tree.body);
4460             }
4461         }
4462         public void visitVarDef(final JCVariableDecl tree) {
4463             if (tree.sym != null && tree.sym.type != null)
4464                 validateAnnotatedType(tree.vartype, tree.sym.type);
4465             scan(tree.mods);
4466             scan(tree.vartype);
4467             if (!sigOnly) {
4468                 scan(tree.init);
4469             }
4470         }
4471         public void visitTypeCast(JCTypeCast tree) {
4472             if (tree.clazz != null && tree.clazz.type != null)
4473                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4474             super.visitTypeCast(tree);
4475         }
4476         public void visitTypeTest(JCInstanceOf tree) {
4477             if (tree.clazz != null && tree.clazz.type != null)
4478                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4479             super.visitTypeTest(tree);
4480         }
4481         public void visitNewClass(JCNewClass tree) {
4482             if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
4483                 checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
4484                         tree.clazz.type.tsym);
4485             }
4486             if (tree.def != null) {
4487                 checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
4488             }
4489             if (tree.clazz.type != null) {
4490                 validateAnnotatedType(tree.clazz, tree.clazz.type);
4491             }
4492             super.visitNewClass(tree);
4493         }
4494         public void visitNewArray(JCNewArray tree) {
4495             if (tree.elemtype != null && tree.elemtype.type != null) {
4496                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
4497                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
4498                             tree.elemtype.type.tsym);
4499                 }
4500                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
4501             }
4502             super.visitNewArray(tree);
4503         }
4504         public void visitClassDef(JCClassDecl tree) {
4505             if (sigOnly) {
4506                 scan(tree.mods);
4507                 scan(tree.typarams);
4508                 scan(tree.extending);
4509                 scan(tree.implementing);
4510             }
4511             for (JCTree member : tree.defs) {
4512                 if (member.hasTag(Tag.CLASSDEF)) {
4513                     continue;
4514                 }
4515                 scan(member);
4516             }
4517         }
4518         public void visitBlock(JCBlock tree) {
4519             if (!sigOnly) {
4520                 scan(tree.stats);
4521             }
4522         }
4523 
4524         /* I would want to model this after
4525          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
4526          * and override visitSelect and visitTypeApply.
4527          * However, we only set the annotated type in the top-level type
4528          * of the symbol.
4529          * Therefore, we need to override each individual location where a type
4530          * can occur.
4531          */
4532         private void validateAnnotatedType(final JCTree errtree, final Type type) {
4533             // System.out.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
4534 
4535             if (type.isPrimitiveOrVoid()) {
4536                 return;
4537             }
4538 
4539             JCTree enclTr = errtree;
4540             Type enclTy = type;
4541 
4542             boolean repeat = true;
4543             while (repeat) {
4544                 if (enclTr.hasTag(TYPEAPPLY)) {
4545                     List<Type> tyargs = enclTy.getTypeArguments();
4546                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
4547                     if (trargs.length() > 0) {
4548                         // Nothing to do for diamonds
4549                         if (tyargs.length() == trargs.length()) {
4550                             for (int i = 0; i < tyargs.length(); ++i) {
4551                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
4552                             }
4553                         }
4554                         // If the lengths don't match, it's either a diamond
4555                         // or some nested type that redundantly provides
4556                         // type arguments in the tree.
4557                     }
4558 
4559                     // Look at the clazz part of a generic type
4560                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
4561                 }
4562 
4563                 if (enclTr.hasTag(SELECT)) {
4564                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
4565                     if (enclTy != null &&
4566                             !enclTy.hasTag(NONE)) {
4567                         enclTy = enclTy.getEnclosingType();
4568                     }
4569                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
4570                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
4571                     if (enclTy == null ||
4572                             enclTy.hasTag(NONE)) {
4573                         if (at.getAnnotations().size() == 1) {
4574                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping.1", at.getAnnotations().head.attribute);
4575                         } else {
4576                             ListBuffer<Attribute.Compound> comps = new ListBuffer<Attribute.Compound>();
4577                             for (JCAnnotation an : at.getAnnotations()) {
4578                                 comps.add(an.attribute);
4579                             }
4580                             log.error(at.underlyingType.pos(), "cant.type.annotate.scoping", comps.toList());
4581                         }
4582                         repeat = false;
4583                     }
4584                     enclTr = at.underlyingType;
4585                     // enclTy doesn't need to be changed
4586                 } else if (enclTr.hasTag(IDENT)) {
4587                     repeat = false;
4588                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
4589                     JCWildcard wc = (JCWildcard) enclTr;
4590                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD) {
4591                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getExtendsBound());
4592                     } else if (wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
4593                         validateAnnotatedType(wc.getBound(), ((WildcardType)enclTy.unannotatedType()).getSuperBound());
4594                     } else {
4595                         // Nothing to do for UNBOUND
4596                     }
4597                     repeat = false;
4598                 } else if (enclTr.hasTag(TYPEARRAY)) {
4599                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
4600                     validateAnnotatedType(art.getType(), ((ArrayType)enclTy.unannotatedType()).getComponentType());
4601                     repeat = false;
4602                 } else if (enclTr.hasTag(TYPEUNION)) {
4603                     JCTypeUnion ut = (JCTypeUnion) enclTr;
4604                     for (JCTree t : ut.getTypeAlternatives()) {
4605                         validateAnnotatedType(t, t.type);
4606                     }
4607                     repeat = false;
4608                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
4609                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
4610                     for (JCTree t : it.getBounds()) {
4611                         validateAnnotatedType(t, t.type);
4612                     }
4613                     repeat = false;
4614                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
4615                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
4616                     repeat = false;
4617                 } else {
4618                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
4619                             " within: "+ errtree + " with kind: " + errtree.getKind());
4620                 }
4621             }
4622         }
4623 
4624         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
4625                 Symbol sym) {
4626             // Ensure that no declaration annotations are present.
4627             // Note that a tree type might be an AnnotatedType with
4628             // empty annotations, if only declaration annotations were given.
4629             // This method will raise an error for such a type.
4630             for (JCAnnotation ai : annotations) {
4631                 if (!ai.type.isErroneous() &&
4632                         typeAnnotations.annotationType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
4633                     log.error(ai.pos(), "annotation.type.not.applicable");
4634                 }
4635             }
4636         }
4637     };
4638 
4639     // <editor-fold desc="post-attribution visitor">
4640 
4641     /**
4642      * Handle missing types/symbols in an AST. This routine is useful when
4643      * the compiler has encountered some errors (which might have ended up
4644      * terminating attribution abruptly); if the compiler is used in fail-over
4645      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
4646      * prevents NPE to be progagated during subsequent compilation steps.
4647      */
4648     public void postAttr(JCTree tree) {
4649         new PostAttrAnalyzer().scan(tree);
4650     }
4651 
4652     class PostAttrAnalyzer extends TreeScanner {
4653 
4654         private void initTypeIfNeeded(JCTree that) {
4655             if (that.type == null) {
4656                 if (that.hasTag(METHODDEF)) {
4657                     that.type = dummyMethodType();
4658                 } else {
4659                     that.type = syms.unknownType;
4660                 }
4661             }
4662         }
4663 
4664         private Type dummyMethodType() {
4665             return new MethodType(List.<Type>nil(), syms.unknownType,
4666                             List.<Type>nil(), syms.methodClass);
4667         }
4668 
4669         @Override
4670         public void scan(JCTree tree) {
4671             if (tree == null) return;
4672             if (tree instanceof JCExpression) {
4673                 initTypeIfNeeded(tree);
4674             }
4675             super.scan(tree);
4676         }
4677 
4678         @Override
4679         public void visitIdent(JCIdent that) {
4680             if (that.sym == null) {
4681                 that.sym = syms.unknownSymbol;
4682             }
4683         }
4684 
4685         @Override
4686         public void visitSelect(JCFieldAccess that) {
4687             if (that.sym == null) {
4688                 that.sym = syms.unknownSymbol;
4689             }
4690             super.visitSelect(that);
4691         }
4692 
4693         @Override
4694         public void visitClassDef(JCClassDecl that) {
4695             initTypeIfNeeded(that);
4696             if (that.sym == null) {
4697                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
4698             }
4699             super.visitClassDef(that);
4700         }
4701 
4702         @Override
4703         public void visitMethodDef(JCMethodDecl that) {
4704             initTypeIfNeeded(that);
4705             if (that.sym == null) {
4706                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
4707             }
4708             super.visitMethodDef(that);
4709         }
4710 
4711         @Override
4712         public void visitVarDef(JCVariableDecl that) {
4713             initTypeIfNeeded(that);
4714             if (that.sym == null) {
4715                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
4716                 that.sym.adr = 0;
4717             }
4718             super.visitVarDef(that);
4719         }
4720 
4721         @Override
4722         public void visitNewClass(JCNewClass that) {
4723             if (that.constructor == null) {
4724                 that.constructor = new MethodSymbol(0, names.init,
4725                         dummyMethodType(), syms.noSymbol);
4726             }
4727             if (that.constructorType == null) {
4728                 that.constructorType = syms.unknownType;
4729             }
4730             super.visitNewClass(that);
4731         }
4732 
4733         @Override
4734         public void visitAssignop(JCAssignOp that) {
4735             if (that.operator == null) {
4736                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4737                         -1, syms.noSymbol);
4738             }
4739             super.visitAssignop(that);
4740         }
4741 
4742         @Override
4743         public void visitBinary(JCBinary that) {
4744             if (that.operator == null) {
4745                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4746                         -1, syms.noSymbol);
4747             }
4748             super.visitBinary(that);
4749         }
4750 
4751         @Override
4752         public void visitUnary(JCUnary that) {
4753             if (that.operator == null) {
4754                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
4755                         -1, syms.noSymbol);
4756             }
4757             super.visitUnary(that);
4758         }
4759 
4760         @Override
4761         public void visitLambda(JCLambda that) {
4762             super.visitLambda(that);
4763             if (that.targets == null) {
4764                 that.targets = List.nil();
4765             }
4766         }
4767 
4768         @Override
4769         public void visitReference(JCMemberReference that) {
4770             super.visitReference(that);
4771             if (that.sym == null) {
4772                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
4773                         syms.noSymbol);
4774             }
4775             if (that.targets == null) {
4776                 that.targets = List.nil();
4777             }
4778         }
4779     }
4780     // </editor-fold>
4781 }