1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import javax.tools.JavaFileManager;
  31 
  32 import com.sun.tools.javac.code.*;
  33 import com.sun.tools.javac.code.Attribute.Compound;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.code.Lint;
  41 import com.sun.tools.javac.code.Lint.LintCategory;
  42 import com.sun.tools.javac.code.Type.*;
  43 import com.sun.tools.javac.code.Symbol.*;
  44 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  45 import com.sun.tools.javac.comp.Infer.InferenceContext;
  46 import com.sun.tools.javac.comp.Infer.FreeTypeListener;
  47 import com.sun.tools.javac.tree.JCTree.*;
  48 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  49 
  50 import static com.sun.tools.javac.code.Flags.*;
  51 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  52 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  53 import static com.sun.tools.javac.code.Kinds.*;
  54 import static com.sun.tools.javac.code.TypeTag.*;
  55 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  56 
  57 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  58 
  59 /** Type checking helper class for the attribution phase.
  60  *
  61  *  <p><b>This is NOT part of any supported API.
  62  *  If you write code that depends on this, you do so at your own risk.
  63  *  This code and its internal interfaces are subject to change or
  64  *  deletion without notice.</b>
  65  */
  66 public class Check {
  67     protected static final Context.Key<Check> checkKey =
  68         new Context.Key<Check>();
  69 
  70     private final Names names;
  71     private final Log log;
  72     private final Resolve rs;
  73     private final Symtab syms;
  74     private final Enter enter;
  75     private final DeferredAttr deferredAttr;
  76     private final Infer infer;
  77     private final Types types;
  78     private final JCDiagnostic.Factory diags;
  79     private boolean warnOnSyntheticConflicts;
  80     private boolean suppressAbortOnBadClassFile;
  81     private boolean enableSunApiLintControl;
  82     private final TreeInfo treeinfo;
  83     private final JavaFileManager fileManager;
  84     private final Profile profile;
  85 
  86     // The set of lint options currently in effect. It is initialized
  87     // from the context, and then is set/reset as needed by Attr as it
  88     // visits all the various parts of the trees during attribution.
  89     private Lint lint;
  90 
  91     // The method being analyzed in Attr - it is set/reset as needed by
  92     // Attr as it visits new method declarations.
  93     private MethodSymbol method;
  94 
  95     public static Check instance(Context context) {
  96         Check instance = context.get(checkKey);
  97         if (instance == null)
  98             instance = new Check(context);
  99         return instance;
 100     }
 101 
 102     protected Check(Context context) {
 103         context.put(checkKey, this);
 104 
 105         names = Names.instance(context);
 106         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
 107             names.FIELD, names.METHOD, names.CONSTRUCTOR,
 108             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
 109         log = Log.instance(context);
 110         rs = Resolve.instance(context);
 111         syms = Symtab.instance(context);
 112         enter = Enter.instance(context);
 113         deferredAttr = DeferredAttr.instance(context);
 114         infer = Infer.instance(context);
 115         types = Types.instance(context);
 116         diags = JCDiagnostic.Factory.instance(context);
 117         Options options = Options.instance(context);
 118         lint = Lint.instance(context);
 119         treeinfo = TreeInfo.instance(context);
 120         fileManager = context.get(JavaFileManager.class);
 121 
 122         Source source = Source.instance(context);
 123         allowGenerics = source.allowGenerics();
 124         allowVarargs = source.allowVarargs();
 125         allowAnnotations = source.allowAnnotations();
 126         allowCovariantReturns = source.allowCovariantReturns();
 127         allowSimplifiedVarargs = source.allowSimplifiedVarargs();
 128         allowDefaultMethods = source.allowDefaultMethods();
 129         allowStrictMethodClashCheck = source.allowStrictMethodClashCheck();
 130         complexInference = options.isSet("complexinference");
 131         warnOnSyntheticConflicts = options.isSet("warnOnSyntheticConflicts");
 132         suppressAbortOnBadClassFile = options.isSet("suppressAbortOnBadClassFile");
 133         enableSunApiLintControl = options.isSet("enableSunApiLintControl");
 134 
 135         Target target = Target.instance(context);
 136         syntheticNameChar = target.syntheticNameChar();
 137 
 138         profile = Profile.instance(context);
 139 
 140         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 141         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 142         boolean verboseSunApi = lint.isEnabled(LintCategory.SUNAPI);
 143         boolean enforceMandatoryWarnings = source.enforceMandatoryWarnings();
 144 
 145         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 146                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 147         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 148                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 149         sunApiHandler = new MandatoryWarningHandler(log, verboseSunApi,
 150                 enforceMandatoryWarnings, "sunapi", null);
 151 
 152         deferredLintHandler = DeferredLintHandler.instance(context);
 153     }
 154 
 155     /** Switch: generics enabled?
 156      */
 157     boolean allowGenerics;
 158 
 159     /** Switch: varargs enabled?
 160      */
 161     boolean allowVarargs;
 162 
 163     /** Switch: annotations enabled?
 164      */
 165     boolean allowAnnotations;
 166 
 167     /** Switch: covariant returns enabled?
 168      */
 169     boolean allowCovariantReturns;
 170 
 171     /** Switch: simplified varargs enabled?
 172      */
 173     boolean allowSimplifiedVarargs;
 174 
 175     /** Switch: default methods enabled?
 176      */
 177     boolean allowDefaultMethods;
 178 
 179     /** Switch: should unrelated return types trigger a method clash?
 180      */
 181     boolean allowStrictMethodClashCheck;
 182 
 183     /** Switch: -complexinference option set?
 184      */
 185     boolean complexInference;
 186 
 187     /** Character for synthetic names
 188      */
 189     char syntheticNameChar;
 190 
 191     /** A table mapping flat names of all compiled classes in this run to their
 192      *  symbols; maintained from outside.
 193      */
 194     public Map<Name,ClassSymbol> compiled = new HashMap<Name, ClassSymbol>();
 195 
 196     /** A handler for messages about deprecated usage.
 197      */
 198     private MandatoryWarningHandler deprecationHandler;
 199 
 200     /** A handler for messages about unchecked or unsafe usage.
 201      */
 202     private MandatoryWarningHandler uncheckedHandler;
 203 
 204     /** A handler for messages about using proprietary API.
 205      */
 206     private MandatoryWarningHandler sunApiHandler;
 207 
 208     /** A handler for deferred lint warnings.
 209      */
 210     private DeferredLintHandler deferredLintHandler;
 211 
 212 /* *************************************************************************
 213  * Errors and Warnings
 214  **************************************************************************/
 215 
 216     Lint setLint(Lint newLint) {
 217         Lint prev = lint;
 218         lint = newLint;
 219         return prev;
 220     }
 221 
 222     MethodSymbol setMethod(MethodSymbol newMethod) {
 223         MethodSymbol prev = method;
 224         method = newMethod;
 225         return prev;
 226     }
 227 
 228     /** Warn about deprecated symbol.
 229      *  @param pos        Position to be used for error reporting.
 230      *  @param sym        The deprecated symbol.
 231      */
 232     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 233         if (!lint.isSuppressed(LintCategory.DEPRECATION))
 234             deprecationHandler.report(pos, "has.been.deprecated", sym, sym.location());
 235     }
 236 
 237     /** Warn about unchecked operation.
 238      *  @param pos        Position to be used for error reporting.
 239      *  @param msg        A string describing the problem.
 240      */
 241     public void warnUnchecked(DiagnosticPosition pos, String msg, Object... args) {
 242         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 243             uncheckedHandler.report(pos, msg, args);
 244     }
 245 
 246     /** Warn about unsafe vararg method decl.
 247      *  @param pos        Position to be used for error reporting.
 248      */
 249     void warnUnsafeVararg(DiagnosticPosition pos, String key, Object... args) {
 250         if (lint.isEnabled(LintCategory.VARARGS) && allowSimplifiedVarargs)
 251             log.warning(LintCategory.VARARGS, pos, key, args);
 252     }
 253 
 254     /** Warn about using proprietary API.
 255      *  @param pos        Position to be used for error reporting.
 256      *  @param msg        A string describing the problem.
 257      */
 258     public void warnSunApi(DiagnosticPosition pos, String msg, Object... args) {
 259         if (!lint.isSuppressed(LintCategory.SUNAPI))
 260             sunApiHandler.report(pos, msg, args);
 261     }
 262 
 263     public void warnStatic(DiagnosticPosition pos, String msg, Object... args) {
 264         if (lint.isEnabled(LintCategory.STATIC))
 265             log.warning(LintCategory.STATIC, pos, msg, args);
 266     }
 267 
 268     /**
 269      * Report any deferred diagnostics.
 270      */
 271     public void reportDeferredDiagnostics() {
 272         deprecationHandler.reportDeferredDiagnostic();
 273         uncheckedHandler.reportDeferredDiagnostic();
 274         sunApiHandler.reportDeferredDiagnostic();
 275     }
 276 
 277 
 278     /** Report a failure to complete a class.
 279      *  @param pos        Position to be used for error reporting.
 280      *  @param ex         The failure to report.
 281      */
 282     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 283         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, "cant.access", ex.sym, ex.getDetailValue());
 284         if (ex instanceof ClassReader.BadClassFile
 285                 && !suppressAbortOnBadClassFile) throw new Abort();
 286         else return syms.errType;
 287     }
 288 
 289     /** Report an error that wrong type tag was found.
 290      *  @param pos        Position to be used for error reporting.
 291      *  @param required   An internationalized string describing the type tag
 292      *                    required.
 293      *  @param found      The type that was found.
 294      */
 295     Type typeTagError(DiagnosticPosition pos, Object required, Object found) {
 296         // this error used to be raised by the parser,
 297         // but has been delayed to this point:
 298         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
 299             log.error(pos, "illegal.start.of.type");
 300             return syms.errType;
 301         }
 302         log.error(pos, "type.found.req", found, required);
 303         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 304     }
 305 
 306     /** Report an error that symbol cannot be referenced before super
 307      *  has been called.
 308      *  @param pos        Position to be used for error reporting.
 309      *  @param sym        The referenced symbol.
 310      */
 311     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 312         log.error(pos, "cant.ref.before.ctor.called", sym);
 313     }
 314 
 315     /** Report duplicate declaration error.
 316      */
 317     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 318         if (!sym.type.isErroneous()) {
 319             Symbol location = sym.location();
 320             if (location.kind == MTH &&
 321                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 322                 log.error(pos, "already.defined.in.clinit", kindName(sym), sym,
 323                         kindName(sym.location()), kindName(sym.location().enclClass()),
 324                         sym.location().enclClass());
 325             } else {
 326                 log.error(pos, "already.defined", kindName(sym), sym,
 327                         kindName(sym.location()), sym.location());
 328             }
 329         }
 330     }
 331 
 332     /** Report array/varargs duplicate declaration
 333      */
 334     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 335         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 336             log.error(pos, "array.and.varargs", sym1, sym2, sym2.location());
 337         }
 338     }
 339 
 340 /* ************************************************************************
 341  * duplicate declaration checking
 342  *************************************************************************/
 343 
 344     /** Check that variable does not hide variable with same name in
 345      *  immediately enclosing local scope.
 346      *  @param pos           Position for error reporting.
 347      *  @param v             The symbol.
 348      *  @param s             The scope.
 349      */
 350     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 351         if (s.next != null) {
 352             for (Scope.Entry e = s.next.lookup(v.name);
 353                  e.scope != null && e.sym.owner == v.owner;
 354                  e = e.next()) {
 355                 if (e.sym.kind == VAR &&
 356                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 357                     v.name != names.error) {
 358                     duplicateError(pos, e.sym);
 359                     return;
 360                 }
 361             }
 362         }
 363     }
 364 
 365     /** Check that a class or interface does not hide a class or
 366      *  interface with same name in immediately enclosing local scope.
 367      *  @param pos           Position for error reporting.
 368      *  @param c             The symbol.
 369      *  @param s             The scope.
 370      */
 371     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 372         if (s.next != null) {
 373             for (Scope.Entry e = s.next.lookup(c.name);
 374                  e.scope != null && e.sym.owner == c.owner;
 375                  e = e.next()) {
 376                 if (e.sym.kind == TYP && !e.sym.type.hasTag(TYPEVAR) &&
 377                     (e.sym.owner.kind & (VAR | MTH)) != 0 &&
 378                     c.name != names.error) {
 379                     duplicateError(pos, e.sym);
 380                     return;
 381                 }
 382             }
 383         }
 384     }
 385 
 386     /** Check that class does not have the same name as one of
 387      *  its enclosing classes, or as a class defined in its enclosing scope.
 388      *  return true if class is unique in its enclosing scope.
 389      *  @param pos           Position for error reporting.
 390      *  @param name          The class name.
 391      *  @param s             The enclosing scope.
 392      */
 393     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 394         for (Scope.Entry e = s.lookup(name); e.scope == s; e = e.next()) {
 395             if (e.sym.kind == TYP && e.sym.name != names.error) {
 396                 duplicateError(pos, e.sym);
 397                 return false;
 398             }
 399         }
 400         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 401             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 402                 duplicateError(pos, sym);
 403                 return true;
 404             }
 405         }
 406         return true;
 407     }
 408 
 409 /* *************************************************************************
 410  * Class name generation
 411  **************************************************************************/
 412 
 413     /** Return name of local class.
 414      *  This is of the form   {@code <enclClass> $ n <classname> }
 415      *  where
 416      *    enclClass is the flat name of the enclosing class,
 417      *    classname is the simple name of the local class
 418      */
 419     Name localClassName(ClassSymbol c) {
 420         for (int i=1; ; i++) {
 421             Name flatname = names.
 422                 fromString("" + c.owner.enclClass().flatname +
 423                            syntheticNameChar + i +
 424                            c.name);
 425             if (compiled.get(flatname) == null) return flatname;
 426         }
 427     }
 428 
 429 /* *************************************************************************
 430  * Type Checking
 431  **************************************************************************/
 432 
 433     /**
 434      * A check context is an object that can be used to perform compatibility
 435      * checks - depending on the check context, meaning of 'compatibility' might
 436      * vary significantly.
 437      */
 438     public interface CheckContext {
 439         /**
 440          * Is type 'found' compatible with type 'req' in given context
 441          */
 442         boolean compatible(Type found, Type req, Warner warn);
 443         /**
 444          * Report a check error
 445          */
 446         void report(DiagnosticPosition pos, JCDiagnostic details);
 447         /**
 448          * Obtain a warner for this check context
 449          */
 450         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 451 
 452         public Infer.InferenceContext inferenceContext();
 453 
 454         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 455     }
 456 
 457     /**
 458      * This class represent a check context that is nested within another check
 459      * context - useful to check sub-expressions. The default behavior simply
 460      * redirects all method calls to the enclosing check context leveraging
 461      * the forwarding pattern.
 462      */
 463     static class NestedCheckContext implements CheckContext {
 464         CheckContext enclosingContext;
 465 
 466         NestedCheckContext(CheckContext enclosingContext) {
 467             this.enclosingContext = enclosingContext;
 468         }
 469 
 470         public boolean compatible(Type found, Type req, Warner warn) {
 471             return enclosingContext.compatible(found, req, warn);
 472         }
 473 
 474         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 475             enclosingContext.report(pos, details);
 476         }
 477 
 478         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 479             return enclosingContext.checkWarner(pos, found, req);
 480         }
 481 
 482         public Infer.InferenceContext inferenceContext() {
 483             return enclosingContext.inferenceContext();
 484         }
 485 
 486         public DeferredAttrContext deferredAttrContext() {
 487             return enclosingContext.deferredAttrContext();
 488         }
 489     }
 490 
 491     /**
 492      * Check context to be used when evaluating assignment/return statements
 493      */
 494     CheckContext basicHandler = new CheckContext() {
 495         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 496             log.error(pos, "prob.found.req", details);
 497         }
 498         public boolean compatible(Type found, Type req, Warner warn) {
 499             return types.isAssignable(found, req, warn);
 500         }
 501 
 502         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 503             return convertWarner(pos, found, req);
 504         }
 505 
 506         public InferenceContext inferenceContext() {
 507             return infer.emptyContext;
 508         }
 509 
 510         public DeferredAttrContext deferredAttrContext() {
 511             return deferredAttr.emptyDeferredAttrContext;
 512         }
 513     };
 514 
 515     /** Check that a given type is assignable to a given proto-type.
 516      *  If it is, return the type, otherwise return errType.
 517      *  @param pos        Position to be used for error reporting.
 518      *  @param found      The type that was found.
 519      *  @param req        The type that was required.
 520      */
 521     Type checkType(DiagnosticPosition pos, Type found, Type req) {
 522         return checkType(pos, found, req, basicHandler);
 523     }
 524 
 525     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 526         final Infer.InferenceContext inferenceContext = checkContext.inferenceContext();
 527         if (inferenceContext.free(req)) {
 528             inferenceContext.addFreeTypeListener(List.of(req), new FreeTypeListener() {
 529                 @Override
 530                 public void typesInferred(InferenceContext inferenceContext) {
 531                     checkType(pos, inferenceContext.asInstType(found), inferenceContext.asInstType(req), checkContext);
 532                 }
 533             });
 534         }
 535         if (req.hasTag(ERROR))
 536             return req;
 537         if (req.hasTag(NONE))
 538             return found;
 539         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 540             return found;
 541         } else {
 542             if (found.isNumeric() && req.isNumeric()) {
 543                 checkContext.report(pos, diags.fragment("possible.loss.of.precision", found, req));
 544                 return types.createErrorType(found);
 545             }
 546             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 547             return types.createErrorType(found);
 548         }
 549     }
 550 
 551     /** Check that a given type can be cast to a given target type.
 552      *  Return the result of the cast.
 553      *  @param pos        Position to be used for error reporting.
 554      *  @param found      The type that is being cast.
 555      *  @param req        The target type of the cast.
 556      */
 557     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 558         return checkCastable(pos, found, req, basicHandler);
 559     }
 560     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 561         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 562             return req;
 563         } else {
 564             checkContext.report(pos, diags.fragment("inconvertible.types", found, req));
 565             return types.createErrorType(found);
 566         }
 567     }
 568 
 569     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 570      * The problem should only be reported for non-292 cast
 571      */
 572     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 573         if (!tree.type.isErroneous()
 574                 && types.isSameType(tree.expr.type, tree.clazz.type)
 575                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 576                 && !is292targetTypeCast(tree)) {
 577             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
 578                 @Override
 579                 public void report() {
 580                     if (lint.isEnabled(Lint.LintCategory.CAST))
 581                         log.warning(Lint.LintCategory.CAST,
 582                                 tree.pos(), "redundant.cast", tree.expr.type);
 583                 }
 584             });
 585         }
 586     }
 587     //where
 588         private boolean is292targetTypeCast(JCTypeCast tree) {
 589             boolean is292targetTypeCast = false;
 590             JCExpression expr = TreeInfo.skipParens(tree.expr);
 591             if (expr.hasTag(APPLY)) {
 592                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 593                 Symbol sym = TreeInfo.symbol(apply.meth);
 594                 is292targetTypeCast = sym != null &&
 595                     sym.kind == MTH &&
 596                     (sym.flags() & HYPOTHETICAL) != 0;
 597             }
 598             return is292targetTypeCast;
 599         }
 600 
 601         private static final boolean ignoreAnnotatedCasts = true;
 602 
 603     /** Check that a type is within some bounds.
 604      *
 605      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 606      *  type argument.
 607      *  @param a             The type that should be bounded by bs.
 608      *  @param bound         The bound.
 609      */
 610     private boolean checkExtends(Type a, Type bound) {
 611          if (a.isUnbound()) {
 612              return true;
 613          } else if (!a.hasTag(WILDCARD)) {
 614              a = types.upperBound(a);
 615              return types.isSubtype(a, bound);
 616          } else if (a.isExtendsBound()) {
 617              return types.isCastable(bound, types.upperBound(a), types.noWarnings);
 618          } else if (a.isSuperBound()) {
 619              return !types.notSoftSubtype(types.lowerBound(a), bound);
 620          }
 621          return true;
 622      }
 623 
 624     /** Check that type is different from 'void'.
 625      *  @param pos           Position to be used for error reporting.
 626      *  @param t             The type to be checked.
 627      */
 628     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 629         if (t.hasTag(VOID)) {
 630             log.error(pos, "void.not.allowed.here");
 631             return types.createErrorType(t);
 632         } else {
 633             return t;
 634         }
 635     }
 636 
 637     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 638         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 639             return typeTagError(pos,
 640                                 diags.fragment("type.req.class.array"),
 641                                 asTypeParam(t));
 642         } else {
 643             return t;
 644         }
 645     }
 646 
 647     /** Check that type is a class or interface type.
 648      *  @param pos           Position to be used for error reporting.
 649      *  @param t             The type to be checked.
 650      */
 651     Type checkClassType(DiagnosticPosition pos, Type t) {
 652         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 653             return typeTagError(pos,
 654                                 diags.fragment("type.req.class"),
 655                                 asTypeParam(t));
 656         } else {
 657             return t;
 658         }
 659     }
 660     //where
 661         private Object asTypeParam(Type t) {
 662             return (t.hasTag(TYPEVAR))
 663                                     ? diags.fragment("type.parameter", t)
 664                                     : t;
 665         }
 666 
 667     /** Check that type is a valid qualifier for a constructor reference expression
 668      */
 669     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 670         t = checkClassOrArrayType(pos, t);
 671         if (t.hasTag(CLASS)) {
 672             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 673                 log.error(pos, "abstract.cant.be.instantiated", t.tsym);
 674                 t = types.createErrorType(t);
 675             } else if ((t.tsym.flags() & ENUM) != 0) {
 676                 log.error(pos, "enum.cant.be.instantiated");
 677                 t = types.createErrorType(t);
 678             } else {
 679                 t = checkClassType(pos, t, true);
 680             }
 681         } else if (t.hasTag(ARRAY)) {
 682             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 683                 log.error(pos, "generic.array.creation");
 684                 t = types.createErrorType(t);
 685             }
 686         }
 687         return t;
 688     }
 689 
 690     /** Check that type is a class or interface type.
 691      *  @param pos           Position to be used for error reporting.
 692      *  @param t             The type to be checked.
 693      *  @param noBounds    True if type bounds are illegal here.
 694      */
 695     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 696         t = checkClassType(pos, t);
 697         if (noBounds && t.isParameterized()) {
 698             List<Type> args = t.getTypeArguments();
 699             while (args.nonEmpty()) {
 700                 if (args.head.hasTag(WILDCARD))
 701                     return typeTagError(pos,
 702                                         diags.fragment("type.req.exact"),
 703                                         args.head);
 704                 args = args.tail;
 705             }
 706         }
 707         return t;
 708     }
 709 
 710     /** Check that type is a reference type, i.e. a class, interface or array type
 711      *  or a type variable.
 712      *  @param pos           Position to be used for error reporting.
 713      *  @param t             The type to be checked.
 714      */
 715     Type checkRefType(DiagnosticPosition pos, Type t) {
 716         if (t.isReference())
 717             return t;
 718         else
 719             return typeTagError(pos,
 720                                 diags.fragment("type.req.ref"),
 721                                 t);
 722     }
 723 
 724     /** Check that each type is a reference type, i.e. a class, interface or array type
 725      *  or a type variable.
 726      *  @param trees         Original trees, used for error reporting.
 727      *  @param types         The types to be checked.
 728      */
 729     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 730         List<JCExpression> tl = trees;
 731         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 732             l.head = checkRefType(tl.head.pos(), l.head);
 733             tl = tl.tail;
 734         }
 735         return types;
 736     }
 737 
 738     /** Check that type is a null or reference type.
 739      *  @param pos           Position to be used for error reporting.
 740      *  @param t             The type to be checked.
 741      */
 742     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 743         if (t.isReference() || t.hasTag(BOT))
 744             return t;
 745         else
 746             return typeTagError(pos,
 747                                 diags.fragment("type.req.ref"),
 748                                 t);
 749     }
 750 
 751     /** Check that flag set does not contain elements of two conflicting sets. s
 752      *  Return true if it doesn't.
 753      *  @param pos           Position to be used for error reporting.
 754      *  @param flags         The set of flags to be checked.
 755      *  @param set1          Conflicting flags set #1.
 756      *  @param set2          Conflicting flags set #2.
 757      */
 758     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 759         if ((flags & set1) != 0 && (flags & set2) != 0) {
 760             log.error(pos,
 761                       "illegal.combination.of.modifiers",
 762                       asFlagSet(TreeInfo.firstFlag(flags & set1)),
 763                       asFlagSet(TreeInfo.firstFlag(flags & set2)));
 764             return false;
 765         } else
 766             return true;
 767     }
 768 
 769     /** Check that usage of diamond operator is correct (i.e. diamond should not
 770      * be used with non-generic classes or in anonymous class creation expressions)
 771      */
 772     Type checkDiamond(JCNewClass tree, Type t) {
 773         if (!TreeInfo.isDiamond(tree) ||
 774                 t.isErroneous()) {
 775             return checkClassType(tree.clazz.pos(), t, true);
 776         } else if (tree.def != null) {
 777             log.error(tree.clazz.pos(),
 778                     "cant.apply.diamond.1",
 779                     t, diags.fragment("diamond.and.anon.class", t));
 780             return types.createErrorType(t);
 781         } else if (t.tsym.type.getTypeArguments().isEmpty()) {
 782             log.error(tree.clazz.pos(),
 783                 "cant.apply.diamond.1",
 784                 t, diags.fragment("diamond.non.generic", t));
 785             return types.createErrorType(t);
 786         } else if (tree.typeargs != null &&
 787                 tree.typeargs.nonEmpty()) {
 788             log.error(tree.clazz.pos(),
 789                 "cant.apply.diamond.1",
 790                 t, diags.fragment("diamond.and.explicit.params", t));
 791             return types.createErrorType(t);
 792         } else {
 793             return t;
 794         }
 795     }
 796 
 797     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 798         MethodSymbol m = tree.sym;
 799         if (!allowSimplifiedVarargs) return;
 800         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 801         Type varargElemType = null;
 802         if (m.isVarArgs()) {
 803             varargElemType = types.elemtype(tree.params.last().type);
 804         }
 805         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 806             if (varargElemType != null) {
 807                 log.error(tree,
 808                         "varargs.invalid.trustme.anno",
 809                         syms.trustMeType.tsym,
 810                         diags.fragment("varargs.trustme.on.virtual.varargs", m));
 811             } else {
 812                 log.error(tree,
 813                             "varargs.invalid.trustme.anno",
 814                             syms.trustMeType.tsym,
 815                             diags.fragment("varargs.trustme.on.non.varargs.meth", m));
 816             }
 817         } else if (hasTrustMeAnno && varargElemType != null &&
 818                             types.isReifiable(varargElemType)) {
 819             warnUnsafeVararg(tree,
 820                             "varargs.redundant.trustme.anno",
 821                             syms.trustMeType.tsym,
 822                             diags.fragment("varargs.trustme.on.reifiable.varargs", varargElemType));
 823         }
 824         else if (!hasTrustMeAnno && varargElemType != null &&
 825                 !types.isReifiable(varargElemType)) {
 826             warnUnchecked(tree.params.head.pos(), "unchecked.varargs.non.reifiable.type", varargElemType);
 827         }
 828     }
 829     //where
 830         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 831             return (s.flags() & VARARGS) != 0 &&
 832                 (s.isConstructor() ||
 833                     (s.flags() & (STATIC | FINAL)) != 0);
 834         }
 835 
 836     Type checkMethod(final Type mtype,
 837             final Symbol sym,
 838             final Env<AttrContext> env,
 839             final List<JCExpression> argtrees,
 840             final List<Type> argtypes,
 841             final boolean useVarargs,
 842             InferenceContext inferenceContext) {
 843         // System.out.println("call   : " + env.tree);
 844         // System.out.println("method : " + owntype);
 845         // System.out.println("actuals: " + argtypes);
 846         if (inferenceContext.free(mtype)) {
 847             inferenceContext.addFreeTypeListener(List.of(mtype), new FreeTypeListener() {
 848                 public void typesInferred(InferenceContext inferenceContext) {
 849                     checkMethod(inferenceContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, inferenceContext);
 850                 }
 851             });
 852             return mtype;
 853         }
 854         Type owntype = mtype;
 855         List<Type> formals = owntype.getParameterTypes();
 856         List<Type> nonInferred = sym.type.getParameterTypes();
 857         if (nonInferred.length() != formals.length()) nonInferred = formals;
 858         Type last = useVarargs ? formals.last() : null;
 859         if (sym.name == names.init && sym.owner == syms.enumSym) {
 860             formals = formals.tail.tail;
 861             nonInferred = nonInferred.tail.tail;
 862         }
 863         List<JCExpression> args = argtrees;
 864         if (args != null) {
 865             //this is null when type-checking a method reference
 866             while (formals.head != last) {
 867                 JCTree arg = args.head;
 868                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
 869                 assertConvertible(arg, arg.type, formals.head, warn);
 870                 args = args.tail;
 871                 formals = formals.tail;
 872                 nonInferred = nonInferred.tail;
 873             }
 874             if (useVarargs) {
 875                 Type varArg = types.elemtype(last);
 876                 while (args.tail != null) {
 877                     JCTree arg = args.head;
 878                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
 879                     assertConvertible(arg, arg.type, varArg, warn);
 880                     args = args.tail;
 881                 }
 882             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS &&
 883                     allowVarargs) {
 884                 // non-varargs call to varargs method
 885                 Type varParam = owntype.getParameterTypes().last();
 886                 Type lastArg = argtypes.last();
 887                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
 888                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
 889                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
 890                                 types.elemtype(varParam), varParam);
 891             }
 892         }
 893         if (useVarargs) {
 894             Type argtype = owntype.getParameterTypes().last();
 895             if (!types.isReifiable(argtype) &&
 896                 (!allowSimplifiedVarargs ||
 897                  sym.attribute(syms.trustMeType.tsym) == null ||
 898                  !isTrustMeAllowedOnMethod(sym))) {
 899                 warnUnchecked(env.tree.pos(),
 900                                   "unchecked.generic.array.creation",
 901                                   argtype);
 902             }
 903             if ((sym.baseSymbol().flags() & SIGNATURE_POLYMORPHIC) == 0) {
 904                 TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
 905             }
 906          }
 907          PolyKind pkind = (sym.type.hasTag(FORALL) &&
 908                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
 909                  PolyKind.POLY : PolyKind.STANDALONE;
 910          TreeInfo.setPolyKind(env.tree, pkind);
 911          return owntype;
 912     }
 913     //where
 914     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
 915         if (types.isConvertible(actual, formal, warn))
 916             return;
 917 
 918         if (formal.isCompound()
 919             && types.isSubtype(actual, types.supertype(formal))
 920             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
 921             return;
 922     }
 923 
 924     /**
 925      * Check that type 't' is a valid instantiation of a generic class
 926      * (see JLS 4.5)
 927      *
 928      * @param t class type to be checked
 929      * @return true if 't' is well-formed
 930      */
 931     public boolean checkValidGenericType(Type t) {
 932         return firstIncompatibleTypeArg(t) == null;
 933     }
 934     //WHERE
 935         private Type firstIncompatibleTypeArg(Type type) {
 936             List<Type> formals = type.tsym.type.allparams();
 937             List<Type> actuals = type.allparams();
 938             List<Type> args = type.getTypeArguments();
 939             List<Type> forms = type.tsym.type.getTypeArguments();
 940             ListBuffer<Type> bounds_buf = new ListBuffer<Type>();
 941 
 942             // For matching pairs of actual argument types `a' and
 943             // formal type parameters with declared bound `b' ...
 944             while (args.nonEmpty() && forms.nonEmpty()) {
 945                 // exact type arguments needs to know their
 946                 // bounds (for upper and lower bound
 947                 // calculations).  So we create new bounds where
 948                 // type-parameters are replaced with actuals argument types.
 949                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
 950                 args = args.tail;
 951                 forms = forms.tail;
 952             }
 953 
 954             args = type.getTypeArguments();
 955             List<Type> tvars_cap = types.substBounds(formals,
 956                                       formals,
 957                                       types.capture(type).allparams());
 958             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
 959                 // Let the actual arguments know their bound
 960                 args.head.withTypeVar((TypeVar)tvars_cap.head);
 961                 args = args.tail;
 962                 tvars_cap = tvars_cap.tail;
 963             }
 964 
 965             args = type.getTypeArguments();
 966             List<Type> bounds = bounds_buf.toList();
 967 
 968             while (args.nonEmpty() && bounds.nonEmpty()) {
 969                 Type actual = args.head;
 970                 if (!isTypeArgErroneous(actual) &&
 971                         !bounds.head.isErroneous() &&
 972                         !checkExtends(actual, bounds.head)) {
 973                     return args.head;
 974                 }
 975                 args = args.tail;
 976                 bounds = bounds.tail;
 977             }
 978 
 979             args = type.getTypeArguments();
 980             bounds = bounds_buf.toList();
 981 
 982             for (Type arg : types.capture(type).getTypeArguments()) {
 983                 if (arg.hasTag(TYPEVAR) &&
 984                         arg.getUpperBound().isErroneous() &&
 985                         !bounds.head.isErroneous() &&
 986                         !isTypeArgErroneous(args.head)) {
 987                     return args.head;
 988                 }
 989                 bounds = bounds.tail;
 990                 args = args.tail;
 991             }
 992 
 993             return null;
 994         }
 995         //where
 996         boolean isTypeArgErroneous(Type t) {
 997             return isTypeArgErroneous.visit(t);
 998         }
 999 
1000         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1001             public Boolean visitType(Type t, Void s) {
1002                 return t.isErroneous();
1003             }
1004             @Override
1005             public Boolean visitTypeVar(TypeVar t, Void s) {
1006                 return visit(t.getUpperBound());
1007             }
1008             @Override
1009             public Boolean visitCapturedType(CapturedType t, Void s) {
1010                 return visit(t.getUpperBound()) ||
1011                         visit(t.getLowerBound());
1012             }
1013             @Override
1014             public Boolean visitWildcardType(WildcardType t, Void s) {
1015                 return visit(t.type);
1016             }
1017         };
1018 
1019     /** Check that given modifiers are legal for given symbol and
1020      *  return modifiers together with any implicit modifiers for that symbol.
1021      *  Warning: we can't use flags() here since this method
1022      *  is called during class enter, when flags() would cause a premature
1023      *  completion.
1024      *  @param pos           Position to be used for error reporting.
1025      *  @param flags         The set of modifiers given in a definition.
1026      *  @param sym           The defined symbol.
1027      */
1028     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1029         long mask;
1030         long implicit = 0;
1031 
1032         switch (sym.kind) {
1033         case VAR:
1034             if (sym.owner.kind != TYP)
1035                 mask = LocalVarFlags;
1036             else if ((sym.owner.flags_field & INTERFACE) != 0)
1037                 mask = implicit = InterfaceVarFlags;
1038             else
1039                 mask = VarFlags;
1040             break;
1041         case MTH:
1042             if (sym.name == names.init) {
1043                 if ((sym.owner.flags_field & ENUM) != 0) {
1044                     // enum constructors cannot be declared public or
1045                     // protected and must be implicitly or explicitly
1046                     // private
1047                     implicit = PRIVATE;
1048                     mask = PRIVATE;
1049                 } else
1050                     mask = ConstructorFlags;
1051             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1052                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1053                     mask = AnnotationTypeElementMask;
1054                     implicit = PUBLIC | ABSTRACT;
1055                 } else if ((flags & (DEFAULT | STATIC)) != 0) {
1056                     mask = InterfaceMethodMask;
1057                     implicit = PUBLIC;
1058                     if ((flags & DEFAULT) != 0) {
1059                         implicit |= ABSTRACT;
1060                     }
1061                 } else {
1062                     mask = implicit = InterfaceMethodFlags;
1063                 }
1064             } else {
1065                 mask = MethodFlags;
1066             }
1067             // Imply STRICTFP if owner has STRICTFP set.
1068             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1069                 ((flags) & Flags.DEFAULT) != 0)
1070                 implicit |= sym.owner.flags_field & STRICTFP;
1071             break;
1072         case TYP:
1073             if (sym.isLocal()) {
1074                 mask = LocalClassFlags;
1075                 if (sym.name.isEmpty()) { // Anonymous class
1076                     // Anonymous classes in static methods are themselves static;
1077                     // that's why we admit STATIC here.
1078                     mask |= STATIC;
1079                     // JLS: Anonymous classes are final.
1080                     implicit |= FINAL;
1081                 }
1082                 if ((sym.owner.flags_field & STATIC) == 0 &&
1083                     (flags & ENUM) != 0)
1084                     log.error(pos, "enums.must.be.static");
1085             } else if (sym.owner.kind == TYP) {
1086                 mask = MemberClassFlags;
1087                 if (sym.owner.owner.kind == PCK ||
1088                     (sym.owner.flags_field & STATIC) != 0)
1089                     mask |= STATIC;
1090                 else if ((flags & ENUM) != 0)
1091                     log.error(pos, "enums.must.be.static");
1092                 // Nested interfaces and enums are always STATIC (Spec ???)
1093                 if ((flags & (INTERFACE | ENUM)) != 0 ) implicit = STATIC;
1094             } else {
1095                 mask = ClassFlags;
1096             }
1097             // Interfaces are always ABSTRACT
1098             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1099 
1100             if ((flags & ENUM) != 0) {
1101                 // enums can't be declared abstract or final
1102                 mask &= ~(ABSTRACT | FINAL);
1103                 implicit |= implicitEnumFinalFlag(tree);
1104             }
1105             // Imply STRICTFP if owner has STRICTFP set.
1106             implicit |= sym.owner.flags_field & STRICTFP;
1107             break;
1108         default:
1109             throw new AssertionError();
1110         }
1111         long illegal = flags & ExtendedStandardFlags & ~mask;
1112         if (illegal != 0) {
1113             if ((illegal & INTERFACE) != 0) {
1114                 log.error(pos, "intf.not.allowed.here");
1115                 mask |= INTERFACE;
1116             }
1117             else {
1118                 log.error(pos,
1119                           "mod.not.allowed.here", asFlagSet(illegal));
1120             }
1121         }
1122         else if ((sym.kind == TYP ||
1123                   // ISSUE: Disallowing abstract&private is no longer appropriate
1124                   // in the presence of inner classes. Should it be deleted here?
1125                   checkDisjoint(pos, flags,
1126                                 ABSTRACT,
1127                                 PRIVATE | STATIC | DEFAULT))
1128                  &&
1129                  checkDisjoint(pos, flags,
1130                                 STATIC,
1131                                 DEFAULT)
1132                  &&
1133                  checkDisjoint(pos, flags,
1134                                ABSTRACT | INTERFACE,
1135                                FINAL | NATIVE | SYNCHRONIZED)
1136                  &&
1137                  checkDisjoint(pos, flags,
1138                                PUBLIC,
1139                                PRIVATE | PROTECTED)
1140                  &&
1141                  checkDisjoint(pos, flags,
1142                                PRIVATE,
1143                                PUBLIC | PROTECTED)
1144                  &&
1145                  checkDisjoint(pos, flags,
1146                                FINAL,
1147                                VOLATILE)
1148                  &&
1149                  (sym.kind == TYP ||
1150                   checkDisjoint(pos, flags,
1151                                 ABSTRACT | NATIVE,
1152                                 STRICTFP))) {
1153             // skip
1154         }
1155         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1156     }
1157 
1158 
1159     /** Determine if this enum should be implicitly final.
1160      *
1161      *  If the enum has no specialized enum contants, it is final.
1162      *
1163      *  If the enum does have specialized enum contants, it is
1164      *  <i>not</i> final.
1165      */
1166     private long implicitEnumFinalFlag(JCTree tree) {
1167         if (!tree.hasTag(CLASSDEF)) return 0;
1168         class SpecialTreeVisitor extends JCTree.Visitor {
1169             boolean specialized;
1170             SpecialTreeVisitor() {
1171                 this.specialized = false;
1172             };
1173 
1174             @Override
1175             public void visitTree(JCTree tree) { /* no-op */ }
1176 
1177             @Override
1178             public void visitVarDef(JCVariableDecl tree) {
1179                 if ((tree.mods.flags & ENUM) != 0) {
1180                     if (tree.init instanceof JCNewClass &&
1181                         ((JCNewClass) tree.init).def != null) {
1182                         specialized = true;
1183                     }
1184                 }
1185             }
1186         }
1187 
1188         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1189         JCClassDecl cdef = (JCClassDecl) tree;
1190         for (JCTree defs: cdef.defs) {
1191             defs.accept(sts);
1192             if (sts.specialized) return 0;
1193         }
1194         return FINAL;
1195     }
1196 
1197 /* *************************************************************************
1198  * Type Validation
1199  **************************************************************************/
1200 
1201     /** Validate a type expression. That is,
1202      *  check that all type arguments of a parametric type are within
1203      *  their bounds. This must be done in a second phase after type attribution
1204      *  since a class might have a subclass as type parameter bound. E.g:
1205      *
1206      *  <pre>{@code
1207      *  class B<A extends C> { ... }
1208      *  class C extends B<C> { ... }
1209      *  }</pre>
1210      *
1211      *  and we can't make sure that the bound is already attributed because
1212      *  of possible cycles.
1213      *
1214      * Visitor method: Validate a type expression, if it is not null, catching
1215      *  and reporting any completion failures.
1216      */
1217     void validate(JCTree tree, Env<AttrContext> env) {
1218         validate(tree, env, true);
1219     }
1220     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1221         new Validator(env).validateTree(tree, checkRaw, true);
1222     }
1223 
1224     /** Visitor method: Validate a list of type expressions.
1225      */
1226     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1227         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1228             validate(l.head, env);
1229     }
1230 
1231     /** A visitor class for type validation.
1232      */
1233     class Validator extends JCTree.Visitor {
1234 
1235         boolean checkRaw;
1236         boolean isOuter;
1237         Env<AttrContext> env;
1238 
1239         Validator(Env<AttrContext> env) {
1240             this.env = env;
1241         }
1242 
1243         @Override
1244         public void visitTypeArray(JCArrayTypeTree tree) {
1245             validateTree(tree.elemtype, checkRaw, isOuter);
1246         }
1247 
1248         @Override
1249         public void visitTypeApply(JCTypeApply tree) {
1250             if (tree.type.hasTag(CLASS)) {
1251                 List<JCExpression> args = tree.arguments;
1252                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1253 
1254                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1255                 if (incompatibleArg != null) {
1256                     for (JCTree arg : tree.arguments) {
1257                         if (arg.type == incompatibleArg) {
1258                             log.error(arg, "not.within.bounds", incompatibleArg, forms.head);
1259                         }
1260                         forms = forms.tail;
1261                      }
1262                  }
1263 
1264                 forms = tree.type.tsym.type.getTypeArguments();
1265 
1266                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1267 
1268                 // For matching pairs of actual argument types `a' and
1269                 // formal type parameters with declared bound `b' ...
1270                 while (args.nonEmpty() && forms.nonEmpty()) {
1271                     validateTree(args.head,
1272                             !(isOuter && is_java_lang_Class),
1273                             false);
1274                     args = args.tail;
1275                     forms = forms.tail;
1276                 }
1277 
1278                 // Check that this type is either fully parameterized, or
1279                 // not parameterized at all.
1280                 if (tree.type.getEnclosingType().isRaw())
1281                     log.error(tree.pos(), "improperly.formed.type.inner.raw.param");
1282                 if (tree.clazz.hasTag(SELECT))
1283                     visitSelectInternal((JCFieldAccess)tree.clazz);
1284             }
1285         }
1286 
1287         @Override
1288         public void visitTypeParameter(JCTypeParameter tree) {
1289             validateTrees(tree.bounds, true, isOuter);
1290             checkClassBounds(tree.pos(), tree.type);
1291         }
1292 
1293         @Override
1294         public void visitWildcard(JCWildcard tree) {
1295             if (tree.inner != null)
1296                 validateTree(tree.inner, true, isOuter);
1297         }
1298 
1299         @Override
1300         public void visitSelect(JCFieldAccess tree) {
1301             if (tree.type.hasTag(CLASS)) {
1302                 visitSelectInternal(tree);
1303 
1304                 // Check that this type is either fully parameterized, or
1305                 // not parameterized at all.
1306                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1307                     log.error(tree.pos(), "improperly.formed.type.param.missing");
1308             }
1309         }
1310 
1311         public void visitSelectInternal(JCFieldAccess tree) {
1312             if (tree.type.tsym.isStatic() &&
1313                 tree.selected.type.isParameterized()) {
1314                 // The enclosing type is not a class, so we are
1315                 // looking at a static member type.  However, the
1316                 // qualifying expression is parameterized.
1317                 log.error(tree.pos(), "cant.select.static.class.from.param.type");
1318             } else {
1319                 // otherwise validate the rest of the expression
1320                 tree.selected.accept(this);
1321             }
1322         }
1323 
1324         @Override
1325         public void visitAnnotatedType(JCAnnotatedType tree) {
1326             tree.underlyingType.accept(this);
1327         }
1328 
1329         @Override
1330         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1331             if (that.type.hasTag(TypeTag.VOID)) {
1332                 log.error(that.pos(), "void.not.allowed.here");
1333             }
1334             super.visitTypeIdent(that);
1335         }
1336 
1337         /** Default visitor method: do nothing.
1338          */
1339         @Override
1340         public void visitTree(JCTree tree) {
1341         }
1342 
1343         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1344             if (tree != null) {
1345                 boolean prevCheckRaw = this.checkRaw;
1346                 this.checkRaw = checkRaw;
1347                 this.isOuter = isOuter;
1348 
1349                 try {
1350                     tree.accept(this);
1351                     if (checkRaw)
1352                         checkRaw(tree, env);
1353                 } catch (CompletionFailure ex) {
1354                     completionError(tree.pos(), ex);
1355                 } finally {
1356                     this.checkRaw = prevCheckRaw;
1357                 }
1358             }
1359         }
1360 
1361         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1362             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1363                 validateTree(l.head, checkRaw, isOuter);
1364         }
1365     }
1366 
1367     void checkRaw(JCTree tree, Env<AttrContext> env) {
1368         if (lint.isEnabled(LintCategory.RAW) &&
1369             tree.type.hasTag(CLASS) &&
1370             !TreeInfo.isDiamond(tree) &&
1371             !withinAnonConstr(env) &&
1372             tree.type.isRaw()) {
1373             log.warning(LintCategory.RAW,
1374                     tree.pos(), "raw.class.use", tree.type, tree.type.tsym.type);
1375         }
1376     }
1377     //where
1378         private boolean withinAnonConstr(Env<AttrContext> env) {
1379             return env.enclClass.name.isEmpty() &&
1380                     env.enclMethod != null && env.enclMethod.name == names.init;
1381         }
1382 
1383 /* *************************************************************************
1384  * Exception checking
1385  **************************************************************************/
1386 
1387     /* The following methods treat classes as sets that contain
1388      * the class itself and all their subclasses
1389      */
1390 
1391     /** Is given type a subtype of some of the types in given list?
1392      */
1393     boolean subset(Type t, List<Type> ts) {
1394         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1395             if (types.isSubtype(t, l.head)) return true;
1396         return false;
1397     }
1398 
1399     /** Is given type a subtype or supertype of
1400      *  some of the types in given list?
1401      */
1402     boolean intersects(Type t, List<Type> ts) {
1403         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1404             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1405         return false;
1406     }
1407 
1408     /** Add type set to given type list, unless it is a subclass of some class
1409      *  in the list.
1410      */
1411     List<Type> incl(Type t, List<Type> ts) {
1412         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1413     }
1414 
1415     /** Remove type set from type set list.
1416      */
1417     List<Type> excl(Type t, List<Type> ts) {
1418         if (ts.isEmpty()) {
1419             return ts;
1420         } else {
1421             List<Type> ts1 = excl(t, ts.tail);
1422             if (types.isSubtype(ts.head, t)) return ts1;
1423             else if (ts1 == ts.tail) return ts;
1424             else return ts1.prepend(ts.head);
1425         }
1426     }
1427 
1428     /** Form the union of two type set lists.
1429      */
1430     List<Type> union(List<Type> ts1, List<Type> ts2) {
1431         List<Type> ts = ts1;
1432         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1433             ts = incl(l.head, ts);
1434         return ts;
1435     }
1436 
1437     /** Form the difference of two type lists.
1438      */
1439     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1440         List<Type> ts = ts1;
1441         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1442             ts = excl(l.head, ts);
1443         return ts;
1444     }
1445 
1446     /** Form the intersection of two type lists.
1447      */
1448     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1449         List<Type> ts = List.nil();
1450         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1451             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1452         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1453             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1454         return ts;
1455     }
1456 
1457     /** Is exc an exception symbol that need not be declared?
1458      */
1459     boolean isUnchecked(ClassSymbol exc) {
1460         return
1461             exc.kind == ERR ||
1462             exc.isSubClass(syms.errorType.tsym, types) ||
1463             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1464     }
1465 
1466     /** Is exc an exception type that need not be declared?
1467      */
1468     boolean isUnchecked(Type exc) {
1469         return
1470             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1471             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1472             exc.hasTag(BOT);
1473     }
1474 
1475     /** Same, but handling completion failures.
1476      */
1477     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1478         try {
1479             return isUnchecked(exc);
1480         } catch (CompletionFailure ex) {
1481             completionError(pos, ex);
1482             return true;
1483         }
1484     }
1485 
1486     /** Is exc handled by given exception list?
1487      */
1488     boolean isHandled(Type exc, List<Type> handled) {
1489         return isUnchecked(exc) || subset(exc, handled);
1490     }
1491 
1492     /** Return all exceptions in thrown list that are not in handled list.
1493      *  @param thrown     The list of thrown exceptions.
1494      *  @param handled    The list of handled exceptions.
1495      */
1496     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1497         List<Type> unhandled = List.nil();
1498         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1499             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1500         return unhandled;
1501     }
1502 
1503 /* *************************************************************************
1504  * Overriding/Implementation checking
1505  **************************************************************************/
1506 
1507     /** The level of access protection given by a flag set,
1508      *  where PRIVATE is highest and PUBLIC is lowest.
1509      */
1510     static int protection(long flags) {
1511         switch ((short)(flags & AccessFlags)) {
1512         case PRIVATE: return 3;
1513         case PROTECTED: return 1;
1514         default:
1515         case PUBLIC: return 0;
1516         case 0: return 2;
1517         }
1518     }
1519 
1520     /** A customized "cannot override" error message.
1521      *  @param m      The overriding method.
1522      *  @param other  The overridden method.
1523      *  @return       An internationalized string.
1524      */
1525     Object cannotOverride(MethodSymbol m, MethodSymbol other) {
1526         String key;
1527         if ((other.owner.flags() & INTERFACE) == 0)
1528             key = "cant.override";
1529         else if ((m.owner.flags() & INTERFACE) == 0)
1530             key = "cant.implement";
1531         else
1532             key = "clashes.with";
1533         return diags.fragment(key, m, m.location(), other, other.location());
1534     }
1535 
1536     /** A customized "override" warning message.
1537      *  @param m      The overriding method.
1538      *  @param other  The overridden method.
1539      *  @return       An internationalized string.
1540      */
1541     Object uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1542         String key;
1543         if ((other.owner.flags() & INTERFACE) == 0)
1544             key = "unchecked.override";
1545         else if ((m.owner.flags() & INTERFACE) == 0)
1546             key = "unchecked.implement";
1547         else
1548             key = "unchecked.clash.with";
1549         return diags.fragment(key, m, m.location(), other, other.location());
1550     }
1551 
1552     /** A customized "override" warning message.
1553      *  @param m      The overriding method.
1554      *  @param other  The overridden method.
1555      *  @return       An internationalized string.
1556      */
1557     Object varargsOverrides(MethodSymbol m, MethodSymbol other) {
1558         String key;
1559         if ((other.owner.flags() & INTERFACE) == 0)
1560             key = "varargs.override";
1561         else  if ((m.owner.flags() & INTERFACE) == 0)
1562             key = "varargs.implement";
1563         else
1564             key = "varargs.clash.with";
1565         return diags.fragment(key, m, m.location(), other, other.location());
1566     }
1567 
1568     /** Check that this method conforms with overridden method 'other'.
1569      *  where `origin' is the class where checking started.
1570      *  Complications:
1571      *  (1) Do not check overriding of synthetic methods
1572      *      (reason: they might be final).
1573      *      todo: check whether this is still necessary.
1574      *  (2) Admit the case where an interface proxy throws fewer exceptions
1575      *      than the method it implements. Augment the proxy methods with the
1576      *      undeclared exceptions in this case.
1577      *  (3) When generics are enabled, admit the case where an interface proxy
1578      *      has a result type
1579      *      extended by the result type of the method it implements.
1580      *      Change the proxies result type to the smaller type in this case.
1581      *
1582      *  @param tree         The tree from which positions
1583      *                      are extracted for errors.
1584      *  @param m            The overriding method.
1585      *  @param other        The overridden method.
1586      *  @param origin       The class of which the overriding method
1587      *                      is a member.
1588      */
1589     void checkOverride(JCTree tree,
1590                        MethodSymbol m,
1591                        MethodSymbol other,
1592                        ClassSymbol origin) {
1593         // Don't check overriding of synthetic methods or by bridge methods.
1594         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1595             return;
1596         }
1597 
1598         // Error if static method overrides instance method (JLS 8.4.6.2).
1599         if ((m.flags() & STATIC) != 0 &&
1600                    (other.flags() & STATIC) == 0) {
1601             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.static",
1602                       cannotOverride(m, other));
1603             m.flags_field |= BAD_OVERRIDE;
1604             return;
1605         }
1606 
1607         // Error if instance method overrides static or final
1608         // method (JLS 8.4.6.1).
1609         if ((other.flags() & FINAL) != 0 ||
1610                  (m.flags() & STATIC) == 0 &&
1611                  (other.flags() & STATIC) != 0) {
1612             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.meth",
1613                       cannotOverride(m, other),
1614                       asFlagSet(other.flags() & (FINAL | STATIC)));
1615             m.flags_field |= BAD_OVERRIDE;
1616             return;
1617         }
1618 
1619         if ((m.owner.flags() & ANNOTATION) != 0) {
1620             // handled in validateAnnotationMethod
1621             return;
1622         }
1623 
1624         // Error if overriding method has weaker access (JLS 8.4.6.3).
1625         if ((origin.flags() & INTERFACE) == 0 &&
1626                  protection(m.flags()) > protection(other.flags())) {
1627             log.error(TreeInfo.diagnosticPositionFor(m, tree), "override.weaker.access",
1628                       cannotOverride(m, other),
1629                       other.flags() == 0 ?
1630                           "package" :
1631                           asFlagSet(other.flags() & AccessFlags));
1632             m.flags_field |= BAD_OVERRIDE;
1633             return;
1634         }
1635 
1636         Type mt = types.memberType(origin.type, m);
1637         Type ot = types.memberType(origin.type, other);
1638         // Error if overriding result type is different
1639         // (or, in the case of generics mode, not a subtype) of
1640         // overridden result type. We have to rename any type parameters
1641         // before comparing types.
1642         List<Type> mtvars = mt.getTypeArguments();
1643         List<Type> otvars = ot.getTypeArguments();
1644         Type mtres = mt.getReturnType();
1645         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1646 
1647         overrideWarner.clear();
1648         boolean resultTypesOK =
1649             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1650         if (!resultTypesOK) {
1651             if (!allowCovariantReturns &&
1652                 m.owner != origin &&
1653                 m.owner.isSubClass(other.owner, types)) {
1654                 // allow limited interoperability with covariant returns
1655             } else {
1656                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1657                           "override.incompatible.ret",
1658                           cannotOverride(m, other),
1659                           mtres, otres);
1660                 m.flags_field |= BAD_OVERRIDE;
1661                 return;
1662             }
1663         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1664             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1665                     "override.unchecked.ret",
1666                     uncheckedOverrides(m, other),
1667                     mtres, otres);
1668         }
1669 
1670         // Error if overriding method throws an exception not reported
1671         // by overridden method.
1672         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1673         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1674         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1675         if (unhandledErased.nonEmpty()) {
1676             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1677                       "override.meth.doesnt.throw",
1678                       cannotOverride(m, other),
1679                       unhandledUnerased.head);
1680             m.flags_field |= BAD_OVERRIDE;
1681             return;
1682         }
1683         else if (unhandledUnerased.nonEmpty()) {
1684             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1685                           "override.unchecked.thrown",
1686                          cannotOverride(m, other),
1687                          unhandledUnerased.head);
1688             return;
1689         }
1690 
1691         // Optional warning if varargs don't agree
1692         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1693             && lint.isEnabled(LintCategory.OVERRIDES)) {
1694             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1695                         ((m.flags() & Flags.VARARGS) != 0)
1696                         ? "override.varargs.missing"
1697                         : "override.varargs.extra",
1698                         varargsOverrides(m, other));
1699         }
1700 
1701         // Warn if instance method overrides bridge method (compiler spec ??)
1702         if ((other.flags() & BRIDGE) != 0) {
1703             log.warning(TreeInfo.diagnosticPositionFor(m, tree), "override.bridge",
1704                         uncheckedOverrides(m, other));
1705         }
1706 
1707         // Warn if a deprecated method overridden by a non-deprecated one.
1708         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1709             checkDeprecated(TreeInfo.diagnosticPositionFor(m, tree), m, other);
1710         }
1711     }
1712     // where
1713         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1714             // If the method, m, is defined in an interface, then ignore the issue if the method
1715             // is only inherited via a supertype and also implemented in the supertype,
1716             // because in that case, we will rediscover the issue when examining the method
1717             // in the supertype.
1718             // If the method, m, is not defined in an interface, then the only time we need to
1719             // address the issue is when the method is the supertype implemementation: any other
1720             // case, we will have dealt with when examining the supertype classes
1721             ClassSymbol mc = m.enclClass();
1722             Type st = types.supertype(origin.type);
1723             if (!st.hasTag(CLASS))
1724                 return true;
1725             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1726 
1727             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1728                 List<Type> intfs = types.interfaces(origin.type);
1729                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1730             }
1731             else
1732                 return (stimpl != m);
1733         }
1734 
1735 
1736     // used to check if there were any unchecked conversions
1737     Warner overrideWarner = new Warner();
1738 
1739     /** Check that a class does not inherit two concrete methods
1740      *  with the same signature.
1741      *  @param pos          Position to be used for error reporting.
1742      *  @param site         The class type to be checked.
1743      */
1744     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1745         Type sup = types.supertype(site);
1746         if (!sup.hasTag(CLASS)) return;
1747 
1748         for (Type t1 = sup;
1749              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1750              t1 = types.supertype(t1)) {
1751             for (Scope.Entry e1 = t1.tsym.members().elems;
1752                  e1 != null;
1753                  e1 = e1.sibling) {
1754                 Symbol s1 = e1.sym;
1755                 if (s1.kind != MTH ||
1756                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1757                     !s1.isInheritedIn(site.tsym, types) ||
1758                     ((MethodSymbol)s1).implementation(site.tsym,
1759                                                       types,
1760                                                       true) != s1)
1761                     continue;
1762                 Type st1 = types.memberType(t1, s1);
1763                 int s1ArgsLength = st1.getParameterTypes().length();
1764                 if (st1 == s1.type) continue;
1765 
1766                 for (Type t2 = sup;
1767                      t2.hasTag(CLASS);
1768                      t2 = types.supertype(t2)) {
1769                     for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name);
1770                          e2.scope != null;
1771                          e2 = e2.next()) {
1772                         Symbol s2 = e2.sym;
1773                         if (s2 == s1 ||
1774                             s2.kind != MTH ||
1775                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1776                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1777                             !s2.isInheritedIn(site.tsym, types) ||
1778                             ((MethodSymbol)s2).implementation(site.tsym,
1779                                                               types,
1780                                                               true) != s2)
1781                             continue;
1782                         Type st2 = types.memberType(t2, s2);
1783                         if (types.overrideEquivalent(st1, st2))
1784                             log.error(pos, "concrete.inheritance.conflict",
1785                                       s1, t1, s2, t2, sup);
1786                     }
1787                 }
1788             }
1789         }
1790     }
1791 
1792     /** Check that classes (or interfaces) do not each define an abstract
1793      *  method with same name and arguments but incompatible return types.
1794      *  @param pos          Position to be used for error reporting.
1795      *  @param t1           The first argument type.
1796      *  @param t2           The second argument type.
1797      */
1798     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1799                                             Type t1,
1800                                             Type t2) {
1801         return checkCompatibleAbstracts(pos, t1, t2,
1802                                         types.makeCompoundType(t1, t2));
1803     }
1804 
1805     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1806                                             Type t1,
1807                                             Type t2,
1808                                             Type site) {
1809         return firstIncompatibility(pos, t1, t2, site) == null;
1810     }
1811 
1812     /** Return the first method which is defined with same args
1813      *  but different return types in two given interfaces, or null if none
1814      *  exists.
1815      *  @param t1     The first type.
1816      *  @param t2     The second type.
1817      *  @param site   The most derived type.
1818      *  @returns symbol from t2 that conflicts with one in t1.
1819      */
1820     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1821         Map<TypeSymbol,Type> interfaces1 = new HashMap<TypeSymbol,Type>();
1822         closure(t1, interfaces1);
1823         Map<TypeSymbol,Type> interfaces2;
1824         if (t1 == t2)
1825             interfaces2 = interfaces1;
1826         else
1827             closure(t2, interfaces1, interfaces2 = new HashMap<TypeSymbol,Type>());
1828 
1829         for (Type t3 : interfaces1.values()) {
1830             for (Type t4 : interfaces2.values()) {
1831                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1832                 if (s != null) return s;
1833             }
1834         }
1835         return null;
1836     }
1837 
1838     /** Compute all the supertypes of t, indexed by type symbol. */
1839     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1840         if (!t.hasTag(CLASS)) return;
1841         if (typeMap.put(t.tsym, t) == null) {
1842             closure(types.supertype(t), typeMap);
1843             for (Type i : types.interfaces(t))
1844                 closure(i, typeMap);
1845         }
1846     }
1847 
1848     /** Compute all the supertypes of t, indexed by type symbol (except thise in typesSkip). */
1849     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1850         if (!t.hasTag(CLASS)) return;
1851         if (typesSkip.get(t.tsym) != null) return;
1852         if (typeMap.put(t.tsym, t) == null) {
1853             closure(types.supertype(t), typesSkip, typeMap);
1854             for (Type i : types.interfaces(t))
1855                 closure(i, typesSkip, typeMap);
1856         }
1857     }
1858 
1859     /** Return the first method in t2 that conflicts with a method from t1. */
1860     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1861         for (Scope.Entry e1 = t1.tsym.members().elems; e1 != null; e1 = e1.sibling) {
1862             Symbol s1 = e1.sym;
1863             Type st1 = null;
1864             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
1865                     (s1.flags() & SYNTHETIC) != 0) continue;
1866             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
1867             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
1868             for (Scope.Entry e2 = t2.tsym.members().lookup(s1.name); e2.scope != null; e2 = e2.next()) {
1869                 Symbol s2 = e2.sym;
1870                 if (s1 == s2) continue;
1871                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
1872                         (s2.flags() & SYNTHETIC) != 0) continue;
1873                 if (st1 == null) st1 = types.memberType(t1, s1);
1874                 Type st2 = types.memberType(t2, s2);
1875                 if (types.overrideEquivalent(st1, st2)) {
1876                     List<Type> tvars1 = st1.getTypeArguments();
1877                     List<Type> tvars2 = st2.getTypeArguments();
1878                     Type rt1 = st1.getReturnType();
1879                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
1880                     boolean compat =
1881                         types.isSameType(rt1, rt2) ||
1882                         !rt1.isPrimitiveOrVoid() &&
1883                         !rt2.isPrimitiveOrVoid() &&
1884                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
1885                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
1886                          checkCommonOverriderIn(s1,s2,site);
1887                     if (!compat) {
1888                         log.error(pos, "types.incompatible.diff.ret",
1889                             t1, t2, s2.name +
1890                             "(" + types.memberType(t2, s2).getParameterTypes() + ")");
1891                         return s2;
1892                     }
1893                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
1894                         !checkCommonOverriderIn(s1, s2, site)) {
1895                     log.error(pos,
1896                             "name.clash.same.erasure.no.override",
1897                             s1, s1.location(),
1898                             s2, s2.location());
1899                     return s2;
1900                 }
1901             }
1902         }
1903         return null;
1904     }
1905     //WHERE
1906     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
1907         Map<TypeSymbol,Type> supertypes = new HashMap<TypeSymbol,Type>();
1908         Type st1 = types.memberType(site, s1);
1909         Type st2 = types.memberType(site, s2);
1910         closure(site, supertypes);
1911         for (Type t : supertypes.values()) {
1912             for (Scope.Entry e = t.tsym.members().lookup(s1.name); e.scope != null; e = e.next()) {
1913                 Symbol s3 = e.sym;
1914                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
1915                 Type st3 = types.memberType(site,s3);
1916                 if (types.overrideEquivalent(st3, st1) &&
1917                         types.overrideEquivalent(st3, st2) &&
1918                         types.returnTypeSubstitutable(st3, st1) &&
1919                         types.returnTypeSubstitutable(st3, st2)) {
1920                     return true;
1921                 }
1922             }
1923         }
1924         return false;
1925     }
1926 
1927     /** Check that a given method conforms with any method it overrides.
1928      *  @param tree         The tree from which positions are extracted
1929      *                      for errors.
1930      *  @param m            The overriding method.
1931      */
1932     void checkOverride(JCMethodDecl tree, MethodSymbol m) {
1933         ClassSymbol origin = (ClassSymbol)m.owner;
1934         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
1935             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
1936                 log.error(tree.pos(), "enum.no.finalize");
1937                 return;
1938             }
1939         for (Type t = origin.type; t.hasTag(CLASS);
1940              t = types.supertype(t)) {
1941             if (t != origin.type) {
1942                 checkOverride(tree, t, origin, m);
1943             }
1944             for (Type t2 : types.interfaces(t)) {
1945                 checkOverride(tree, t2, origin, m);
1946             }
1947         }
1948 
1949         if (m.attribute(syms.overrideType.tsym) != null && !isOverrider(m)) {
1950             DiagnosticPosition pos = tree.pos();
1951             for (JCAnnotation a : tree.getModifiers().annotations) {
1952                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
1953                     pos = a.pos();
1954                     break;
1955                 }
1956             }
1957             log.error(pos, "method.does.not.override.superclass");
1958         }
1959     }
1960 
1961     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
1962         TypeSymbol c = site.tsym;
1963         Scope.Entry e = c.members().lookup(m.name);
1964         while (e.scope != null) {
1965             if (m.overrides(e.sym, origin, types, false)) {
1966                 if ((e.sym.flags() & ABSTRACT) == 0) {
1967                     checkOverride(tree, m, (MethodSymbol)e.sym, origin);
1968                 }
1969             }
1970             e = e.next();
1971         }
1972     }
1973 
1974     private Filter<Symbol> equalsHasCodeFilter = new Filter<Symbol>() {
1975         public boolean accepts(Symbol s) {
1976             return MethodSymbol.implementation_filter.accepts(s) &&
1977                     (s.flags() & BAD_OVERRIDE) == 0;
1978 
1979         }
1980     };
1981 
1982     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
1983             ClassSymbol someClass) {
1984         /* At present, annotations cannot possibly have a method that is override
1985          * equivalent with Object.equals(Object) but in any case the condition is
1986          * fine for completeness.
1987          */
1988         if (someClass == (ClassSymbol)syms.objectType.tsym ||
1989             someClass.isInterface() || someClass.isEnum() ||
1990             (someClass.flags() & ANNOTATION) != 0 ||
1991             (someClass.flags() & ABSTRACT) != 0) return;
1992         //anonymous inner classes implementing interfaces need especial treatment
1993         if (someClass.isAnonymous()) {
1994             List<Type> interfaces =  types.interfaces(someClass.type);
1995             if (interfaces != null && !interfaces.isEmpty() &&
1996                 interfaces.head.tsym == syms.comparatorType.tsym) return;
1997         }
1998         checkClassOverrideEqualsAndHash(pos, someClass);
1999     }
2000 
2001     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2002             ClassSymbol someClass) {
2003         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2004             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2005                     .tsym.members().lookup(names.equals).sym;
2006             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2007                     .tsym.members().lookup(names.hashCode).sym;
2008             boolean overridesEquals = types.implementation(equalsAtObject,
2009                 someClass, false, equalsHasCodeFilter).owner == someClass;
2010             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2011                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2012 
2013             if (overridesEquals && !overridesHashCode) {
2014                 log.warning(LintCategory.OVERRIDES, pos,
2015                         "override.equals.but.not.hashcode", someClass);
2016             }
2017         }
2018     }
2019 
2020     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2021         ClashFilter cf = new ClashFilter(origin.type);
2022         return (cf.accepts(s1) &&
2023                 cf.accepts(s2) &&
2024                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2025     }
2026 
2027 
2028     /** Check that all abstract members of given class have definitions.
2029      *  @param pos          Position to be used for error reporting.
2030      *  @param c            The class.
2031      */
2032     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2033         try {
2034             MethodSymbol undef = firstUndef(c, c);
2035             if (undef != null) {
2036                 if ((c.flags() & ENUM) != 0 &&
2037                     types.supertype(c.type).tsym == syms.enumSym &&
2038                     (c.flags() & FINAL) == 0) {
2039                     // add the ABSTRACT flag to an enum
2040                     c.flags_field |= ABSTRACT;
2041                 } else {
2042                     MethodSymbol undef1 =
2043                         new MethodSymbol(undef.flags(), undef.name,
2044                                          types.memberType(c.type, undef), undef.owner);
2045                     log.error(pos, "does.not.override.abstract",
2046                               c, undef1, undef1.location());
2047                 }
2048             }
2049         } catch (CompletionFailure ex) {
2050             completionError(pos, ex);
2051         }
2052     }
2053 //where
2054         /** Return first abstract member of class `c' that is not defined
2055          *  in `impl', null if there is none.
2056          */
2057         private MethodSymbol firstUndef(ClassSymbol impl, ClassSymbol c) {
2058             MethodSymbol undef = null;
2059             // Do not bother to search in classes that are not abstract,
2060             // since they cannot have abstract members.
2061             if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
2062                 Scope s = c.members();
2063                 for (Scope.Entry e = s.elems;
2064                      undef == null && e != null;
2065                      e = e.sibling) {
2066                     if (e.sym.kind == MTH &&
2067                         (e.sym.flags() & (ABSTRACT|IPROXY|DEFAULT)) == ABSTRACT) {
2068                         MethodSymbol absmeth = (MethodSymbol)e.sym;
2069                         MethodSymbol implmeth = absmeth.implementation(impl, types, true);
2070                         if (implmeth == null || implmeth == absmeth) {
2071                             //look for default implementations
2072                             if (allowDefaultMethods) {
2073                                 MethodSymbol prov = types.interfaceCandidates(impl.type, absmeth).head;
2074                                 if (prov != null && prov.overrides(absmeth, impl, types, true)) {
2075                                     implmeth = prov;
2076                                 }
2077                             }
2078                         }
2079                         if (implmeth == null || implmeth == absmeth) {
2080                             undef = absmeth;
2081                         }
2082                     }
2083                 }
2084                 if (undef == null) {
2085                     Type st = types.supertype(c.type);
2086                     if (st.hasTag(CLASS))
2087                         undef = firstUndef(impl, (ClassSymbol)st.tsym);
2088                 }
2089                 for (List<Type> l = types.interfaces(c.type);
2090                      undef == null && l.nonEmpty();
2091                      l = l.tail) {
2092                     undef = firstUndef(impl, (ClassSymbol)l.head.tsym);
2093                 }
2094             }
2095             return undef;
2096         }
2097 
2098     void checkNonCyclicDecl(JCClassDecl tree) {
2099         CycleChecker cc = new CycleChecker();
2100         cc.scan(tree);
2101         if (!cc.errorFound && !cc.partialCheck) {
2102             tree.sym.flags_field |= ACYCLIC;
2103         }
2104     }
2105 
2106     class CycleChecker extends TreeScanner {
2107 
2108         List<Symbol> seenClasses = List.nil();
2109         boolean errorFound = false;
2110         boolean partialCheck = false;
2111 
2112         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2113             if (sym != null && sym.kind == TYP) {
2114                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2115                 if (classEnv != null) {
2116                     DiagnosticSource prevSource = log.currentSource();
2117                     try {
2118                         log.useSource(classEnv.toplevel.sourcefile);
2119                         scan(classEnv.tree);
2120                     }
2121                     finally {
2122                         log.useSource(prevSource.getFile());
2123                     }
2124                 } else if (sym.kind == TYP) {
2125                     checkClass(pos, sym, List.<JCTree>nil());
2126                 }
2127             } else {
2128                 //not completed yet
2129                 partialCheck = true;
2130             }
2131         }
2132 
2133         @Override
2134         public void visitSelect(JCFieldAccess tree) {
2135             super.visitSelect(tree);
2136             checkSymbol(tree.pos(), tree.sym);
2137         }
2138 
2139         @Override
2140         public void visitIdent(JCIdent tree) {
2141             checkSymbol(tree.pos(), tree.sym);
2142         }
2143 
2144         @Override
2145         public void visitTypeApply(JCTypeApply tree) {
2146             scan(tree.clazz);
2147         }
2148 
2149         @Override
2150         public void visitTypeArray(JCArrayTypeTree tree) {
2151             scan(tree.elemtype);
2152         }
2153 
2154         @Override
2155         public void visitClassDef(JCClassDecl tree) {
2156             List<JCTree> supertypes = List.nil();
2157             if (tree.getExtendsClause() != null) {
2158                 supertypes = supertypes.prepend(tree.getExtendsClause());
2159             }
2160             if (tree.getImplementsClause() != null) {
2161                 for (JCTree intf : tree.getImplementsClause()) {
2162                     supertypes = supertypes.prepend(intf);
2163                 }
2164             }
2165             checkClass(tree.pos(), tree.sym, supertypes);
2166         }
2167 
2168         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2169             if ((c.flags_field & ACYCLIC) != 0)
2170                 return;
2171             if (seenClasses.contains(c)) {
2172                 errorFound = true;
2173                 noteCyclic(pos, (ClassSymbol)c);
2174             } else if (!c.type.isErroneous()) {
2175                 try {
2176                     seenClasses = seenClasses.prepend(c);
2177                     if (c.type.hasTag(CLASS)) {
2178                         if (supertypes.nonEmpty()) {
2179                             scan(supertypes);
2180                         }
2181                         else {
2182                             ClassType ct = (ClassType)c.type;
2183                             if (ct.supertype_field == null ||
2184                                     ct.interfaces_field == null) {
2185                                 //not completed yet
2186                                 partialCheck = true;
2187                                 return;
2188                             }
2189                             checkSymbol(pos, ct.supertype_field.tsym);
2190                             for (Type intf : ct.interfaces_field) {
2191                                 checkSymbol(pos, intf.tsym);
2192                             }
2193                         }
2194                         if (c.owner.kind == TYP) {
2195                             checkSymbol(pos, c.owner);
2196                         }
2197                     }
2198                 } finally {
2199                     seenClasses = seenClasses.tail;
2200                 }
2201             }
2202         }
2203     }
2204 
2205     /** Check for cyclic references. Issue an error if the
2206      *  symbol of the type referred to has a LOCKED flag set.
2207      *
2208      *  @param pos      Position to be used for error reporting.
2209      *  @param t        The type referred to.
2210      */
2211     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2212         checkNonCyclicInternal(pos, t);
2213     }
2214 
2215 
2216     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2217         checkNonCyclic1(pos, t, List.<TypeVar>nil());
2218     }
2219 
2220     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2221         final TypeVar tv;
2222         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2223             return;
2224         if (seen.contains(t)) {
2225             tv = (TypeVar)t.unannotatedType();
2226             tv.bound = types.createErrorType(t);
2227             log.error(pos, "cyclic.inheritance", t);
2228         } else if (t.hasTag(TYPEVAR)) {
2229             tv = (TypeVar)t.unannotatedType();
2230             seen = seen.prepend(tv);
2231             for (Type b : types.getBounds(tv))
2232                 checkNonCyclic1(pos, b, seen);
2233         }
2234     }
2235 
2236     /** Check for cyclic references. Issue an error if the
2237      *  symbol of the type referred to has a LOCKED flag set.
2238      *
2239      *  @param pos      Position to be used for error reporting.
2240      *  @param t        The type referred to.
2241      *  @returns        True if the check completed on all attributed classes
2242      */
2243     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2244         boolean complete = true; // was the check complete?
2245         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2246         Symbol c = t.tsym;
2247         if ((c.flags_field & ACYCLIC) != 0) return true;
2248 
2249         if ((c.flags_field & LOCKED) != 0) {
2250             noteCyclic(pos, (ClassSymbol)c);
2251         } else if (!c.type.isErroneous()) {
2252             try {
2253                 c.flags_field |= LOCKED;
2254                 if (c.type.hasTag(CLASS)) {
2255                     ClassType clazz = (ClassType)c.type;
2256                     if (clazz.interfaces_field != null)
2257                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2258                             complete &= checkNonCyclicInternal(pos, l.head);
2259                     if (clazz.supertype_field != null) {
2260                         Type st = clazz.supertype_field;
2261                         if (st != null && st.hasTag(CLASS))
2262                             complete &= checkNonCyclicInternal(pos, st);
2263                     }
2264                     if (c.owner.kind == TYP)
2265                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2266                 }
2267             } finally {
2268                 c.flags_field &= ~LOCKED;
2269             }
2270         }
2271         if (complete)
2272             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.completer == null;
2273         if (complete) c.flags_field |= ACYCLIC;
2274         return complete;
2275     }
2276 
2277     /** Note that we found an inheritance cycle. */
2278     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2279         log.error(pos, "cyclic.inheritance", c);
2280         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2281             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2282         Type st = types.supertype(c.type);
2283         if (st.hasTag(CLASS))
2284             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2285         c.type = types.createErrorType(c, c.type);
2286         c.flags_field |= ACYCLIC;
2287     }
2288 
2289     /** Check that all methods which implement some
2290      *  method conform to the method they implement.
2291      *  @param tree         The class definition whose members are checked.
2292      */
2293     void checkImplementations(JCClassDecl tree) {
2294         checkImplementations(tree, tree.sym, tree.sym);
2295     }
2296     //where
2297         /** Check that all methods which implement some
2298          *  method in `ic' conform to the method they implement.
2299          */
2300         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2301             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2302                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2303                 if ((allowGenerics || origin != lc) && (lc.flags() & ABSTRACT) != 0) {
2304                     for (Scope.Entry e=lc.members().elems; e != null; e=e.sibling) {
2305                         if (e.sym.kind == MTH &&
2306                             (e.sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2307                             MethodSymbol absmeth = (MethodSymbol)e.sym;
2308                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2309                             if (implmeth != null && implmeth != absmeth &&
2310                                 (implmeth.owner.flags() & INTERFACE) ==
2311                                 (origin.flags() & INTERFACE)) {
2312                                 // don't check if implmeth is in a class, yet
2313                                 // origin is an interface. This case arises only
2314                                 // if implmeth is declared in Object. The reason is
2315                                 // that interfaces really don't inherit from
2316                                 // Object it's just that the compiler represents
2317                                 // things that way.
2318                                 checkOverride(tree, implmeth, absmeth, origin);
2319                             }
2320                         }
2321                     }
2322                 }
2323             }
2324         }
2325 
2326     /** Check that all abstract methods implemented by a class are
2327      *  mutually compatible.
2328      *  @param pos          Position to be used for error reporting.
2329      *  @param c            The class whose interfaces are checked.
2330      */
2331     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2332         List<Type> supertypes = types.interfaces(c);
2333         Type supertype = types.supertype(c);
2334         if (supertype.hasTag(CLASS) &&
2335             (supertype.tsym.flags() & ABSTRACT) != 0)
2336             supertypes = supertypes.prepend(supertype);
2337         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2338             if (allowGenerics && !l.head.getTypeArguments().isEmpty() &&
2339                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2340                 return;
2341             for (List<Type> m = supertypes; m != l; m = m.tail)
2342                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2343                     return;
2344         }
2345         checkCompatibleConcretes(pos, c);
2346     }
2347 
2348     void checkConflicts(DiagnosticPosition pos, Symbol sym, TypeSymbol c) {
2349         for (Type ct = c.type; ct != Type.noType ; ct = types.supertype(ct)) {
2350             for (Scope.Entry e = ct.tsym.members().lookup(sym.name); e.scope == ct.tsym.members(); e = e.next()) {
2351                 // VM allows methods and variables with differing types
2352                 if (sym.kind == e.sym.kind &&
2353                     types.isSameType(types.erasure(sym.type), types.erasure(e.sym.type)) &&
2354                     sym != e.sym &&
2355                     (sym.flags() & Flags.SYNTHETIC) != (e.sym.flags() & Flags.SYNTHETIC) &&
2356                     (sym.flags() & IPROXY) == 0 && (e.sym.flags() & IPROXY) == 0 &&
2357                     (sym.flags() & BRIDGE) == 0 && (e.sym.flags() & BRIDGE) == 0) {
2358                     syntheticError(pos, (e.sym.flags() & SYNTHETIC) == 0 ? e.sym : sym);
2359                     return;
2360                 }
2361             }
2362         }
2363     }
2364 
2365     /** Check that all non-override equivalent methods accessible from 'site'
2366      *  are mutually compatible (JLS 8.4.8/9.4.1).
2367      *
2368      *  @param pos  Position to be used for error reporting.
2369      *  @param site The class whose methods are checked.
2370      *  @param sym  The method symbol to be checked.
2371      */
2372     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2373          ClashFilter cf = new ClashFilter(site);
2374         //for each method m1 that is overridden (directly or indirectly)
2375         //by method 'sym' in 'site'...
2376 
2377         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2378         boolean overridesAny = false;
2379         for (Symbol m1 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
2380             if (!sym.overrides(m1, site.tsym, types, false)) {
2381                 if (m1 == sym) {
2382                     continue;
2383                 }
2384 
2385                 if (!overridesAny) {
2386                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2387                 }
2388                 continue;
2389             }
2390 
2391             if (m1 != sym) {
2392                 overridesAny = true;
2393                 potentiallyAmbiguousList = List.nil();
2394             }
2395 
2396             //...check each method m2 that is a member of 'site'
2397             for (Symbol m2 : types.membersClosure(site, false).getElementsByName(sym.name, cf)) {
2398                 if (m2 == m1) continue;
2399                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2400                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2401                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), allowStrictMethodClashCheck) &&
2402                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2403                     sym.flags_field |= CLASH;
2404                     String key = m1 == sym ?
2405                             "name.clash.same.erasure.no.override" :
2406                             "name.clash.same.erasure.no.override.1";
2407                     log.error(pos,
2408                             key,
2409                             sym, sym.location(),
2410                             m2, m2.location(),
2411                             m1, m1.location());
2412                     return;
2413                 }
2414             }
2415         }
2416 
2417         if (!overridesAny) {
2418             for (MethodSymbol m: potentiallyAmbiguousList) {
2419                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2420             }
2421         }
2422     }
2423 
2424     /** Check that all static methods accessible from 'site' are
2425      *  mutually compatible (JLS 8.4.8).
2426      *
2427      *  @param pos  Position to be used for error reporting.
2428      *  @param site The class whose methods are checked.
2429      *  @param sym  The method symbol to be checked.
2430      */
2431     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2432         ClashFilter cf = new ClashFilter(site);
2433         //for each method m1 that is a member of 'site'...
2434         for (Symbol s : types.membersClosure(site, true).getElementsByName(sym.name, cf)) {
2435             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2436             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2437             if (!types.isSubSignature(sym.type, types.memberType(site, s), allowStrictMethodClashCheck)) {
2438                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2439                     log.error(pos,
2440                             "name.clash.same.erasure.no.hide",
2441                             sym, sym.location(),
2442                             s, s.location());
2443                     return;
2444                 } else {
2445                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2446                 }
2447             }
2448          }
2449      }
2450 
2451      //where
2452      private class ClashFilter implements Filter<Symbol> {
2453 
2454          Type site;
2455 
2456          ClashFilter(Type site) {
2457              this.site = site;
2458          }
2459 
2460          boolean shouldSkip(Symbol s) {
2461              return (s.flags() & CLASH) != 0 &&
2462                 s.owner == site.tsym;
2463          }
2464 
2465          public boolean accepts(Symbol s) {
2466              return s.kind == MTH &&
2467                      (s.flags() & SYNTHETIC) == 0 &&
2468                      !shouldSkip(s) &&
2469                      s.isInheritedIn(site.tsym, types) &&
2470                      !s.isConstructor();
2471          }
2472      }
2473 
2474     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2475         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2476         for (Symbol m : types.membersClosure(site, false).getElements(dcf)) {
2477             Assert.check(m.kind == MTH);
2478             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2479             if (prov.size() > 1) {
2480                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2481                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2482                 for (MethodSymbol provSym : prov) {
2483                     if ((provSym.flags() & DEFAULT) != 0) {
2484                         defaults = defaults.append(provSym);
2485                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2486                         abstracts = abstracts.append(provSym);
2487                     }
2488                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2489                         //strong semantics - issue an error if two sibling interfaces
2490                         //have two override-equivalent defaults - or if one is abstract
2491                         //and the other is default
2492                         String errKey;
2493                         Symbol s1 = defaults.first();
2494                         Symbol s2;
2495                         if (defaults.size() > 1) {
2496                             errKey = "types.incompatible.unrelated.defaults";
2497                             s2 = defaults.toList().tail.head;
2498                         } else {
2499                             errKey = "types.incompatible.abstract.default";
2500                             s2 = abstracts.first();
2501                         }
2502                         log.error(pos, errKey,
2503                                 Kinds.kindName(site.tsym), site,
2504                                 m.name, types.memberType(site, m).getParameterTypes(),
2505                                 s1.location(), s2.location());
2506                         break;
2507                     }
2508                 }
2509             }
2510         }
2511     }
2512 
2513     //where
2514      private class DefaultMethodClashFilter implements Filter<Symbol> {
2515 
2516          Type site;
2517 
2518          DefaultMethodClashFilter(Type site) {
2519              this.site = site;
2520          }
2521 
2522          public boolean accepts(Symbol s) {
2523              return s.kind == MTH &&
2524                      (s.flags() & DEFAULT) != 0 &&
2525                      s.isInheritedIn(site.tsym, types) &&
2526                      !s.isConstructor();
2527          }
2528      }
2529 
2530     /**
2531       * Report warnings for potentially ambiguous method declarations. Two declarations
2532       * are potentially ambiguous if they feature two unrelated functional interface
2533       * in same argument position (in which case, a call site passing an implicit
2534       * lambda would be ambiguous).
2535       */
2536     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2537             MethodSymbol msym1, MethodSymbol msym2) {
2538         if (msym1 != msym2 &&
2539                 allowDefaultMethods &&
2540                 lint.isEnabled(LintCategory.OVERLOADS) &&
2541                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2542                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2543             Type mt1 = types.memberType(site, msym1);
2544             Type mt2 = types.memberType(site, msym2);
2545             //if both generic methods, adjust type variables
2546             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2547                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2548                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2549             }
2550             //expand varargs methods if needed
2551             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2552             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2553             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2554             //if arities don't match, exit
2555             if (args1.length() != args2.length()) return;
2556             boolean potentiallyAmbiguous = false;
2557             while (args1.nonEmpty() && args2.nonEmpty()) {
2558                 Type s = args1.head;
2559                 Type t = args2.head;
2560                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2561                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2562                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2563                             types.findDescriptorType(s).getParameterTypes().length() ==
2564                             types.findDescriptorType(t).getParameterTypes().length()) {
2565                         potentiallyAmbiguous = true;
2566                     } else {
2567                         break;
2568                     }
2569                 }
2570                 args1 = args1.tail;
2571                 args2 = args2.tail;
2572             }
2573             if (potentiallyAmbiguous) {
2574                 //we found two incompatible functional interfaces with same arity
2575                 //this means a call site passing an implicit lambda would be ambigiuous
2576                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2577                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2578                 log.warning(LintCategory.OVERLOADS, pos, "potentially.ambiguous.overload",
2579                             msym1, msym1.location(),
2580                             msym2, msym2.location());
2581                 return;
2582             }
2583         }
2584     }
2585 
2586     /** Report a conflict between a user symbol and a synthetic symbol.
2587      */
2588     private void syntheticError(DiagnosticPosition pos, Symbol sym) {
2589         if (!sym.type.isErroneous()) {
2590             if (warnOnSyntheticConflicts) {
2591                 log.warning(pos, "synthetic.name.conflict", sym, sym.location());
2592             }
2593             else {
2594                 log.error(pos, "synthetic.name.conflict", sym, sym.location());
2595             }
2596         }
2597     }
2598 
2599     /** Check that class c does not implement directly or indirectly
2600      *  the same parameterized interface with two different argument lists.
2601      *  @param pos          Position to be used for error reporting.
2602      *  @param type         The type whose interfaces are checked.
2603      */
2604     void checkClassBounds(DiagnosticPosition pos, Type type) {
2605         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2606     }
2607 //where
2608         /** Enter all interfaces of type `type' into the hash table `seensofar'
2609          *  with their class symbol as key and their type as value. Make
2610          *  sure no class is entered with two different types.
2611          */
2612         void checkClassBounds(DiagnosticPosition pos,
2613                               Map<TypeSymbol,Type> seensofar,
2614                               Type type) {
2615             if (type.isErroneous()) return;
2616             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2617                 Type it = l.head;
2618                 Type oldit = seensofar.put(it.tsym, it);
2619                 if (oldit != null) {
2620                     List<Type> oldparams = oldit.allparams();
2621                     List<Type> newparams = it.allparams();
2622                     if (!types.containsTypeEquivalent(oldparams, newparams))
2623                         log.error(pos, "cant.inherit.diff.arg",
2624                                   it.tsym, Type.toString(oldparams),
2625                                   Type.toString(newparams));
2626                 }
2627                 checkClassBounds(pos, seensofar, it);
2628             }
2629             Type st = types.supertype(type);
2630             if (st != null) checkClassBounds(pos, seensofar, st);
2631         }
2632 
2633     /** Enter interface into into set.
2634      *  If it existed already, issue a "repeated interface" error.
2635      */
2636     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2637         if (its.contains(it))
2638             log.error(pos, "repeated.interface");
2639         else {
2640             its.add(it);
2641         }
2642     }
2643 
2644 /* *************************************************************************
2645  * Check annotations
2646  **************************************************************************/
2647 
2648     /**
2649      * Recursively validate annotations values
2650      */
2651     void validateAnnotationTree(JCTree tree) {
2652         class AnnotationValidator extends TreeScanner {
2653             @Override
2654             public void visitAnnotation(JCAnnotation tree) {
2655                 if (!tree.type.isErroneous()) {
2656                     super.visitAnnotation(tree);
2657                     validateAnnotation(tree);
2658                 }
2659             }
2660         }
2661         tree.accept(new AnnotationValidator());
2662     }
2663 
2664     /**
2665      *  {@literal
2666      *  Annotation types are restricted to primitives, String, an
2667      *  enum, an annotation, Class, Class<?>, Class<? extends
2668      *  Anything>, arrays of the preceding.
2669      *  }
2670      */
2671     void validateAnnotationType(JCTree restype) {
2672         // restype may be null if an error occurred, so don't bother validating it
2673         if (restype != null) {
2674             validateAnnotationType(restype.pos(), restype.type);
2675         }
2676     }
2677 
2678     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2679         if (type.isPrimitive()) return;
2680         if (types.isSameType(type, syms.stringType)) return;
2681         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2682         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2683         if (types.lowerBound(type).tsym == syms.classType.tsym) return;
2684         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2685             validateAnnotationType(pos, types.elemtype(type));
2686             return;
2687         }
2688         log.error(pos, "invalid.annotation.member.type");
2689     }
2690 
2691     /**
2692      * "It is also a compile-time error if any method declared in an
2693      * annotation type has a signature that is override-equivalent to
2694      * that of any public or protected method declared in class Object
2695      * or in the interface annotation.Annotation."
2696      *
2697      * @jls 9.6 Annotation Types
2698      */
2699     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2700         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2701             Scope s = sup.tsym.members();
2702             for (Scope.Entry e = s.lookup(m.name); e.scope != null; e = e.next()) {
2703                 if (e.sym.kind == MTH &&
2704                     (e.sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2705                     types.overrideEquivalent(m.type, e.sym.type))
2706                     log.error(pos, "intf.annotation.member.clash", e.sym, sup);
2707             }
2708         }
2709     }
2710 
2711     /** Check the annotations of a symbol.
2712      */
2713     public void validateAnnotations(List<JCAnnotation> annotations, Symbol s) {
2714         for (JCAnnotation a : annotations)
2715             validateAnnotation(a, s);
2716     }
2717 
2718     /** Check the type annotations.
2719      */
2720     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2721         for (JCAnnotation a : annotations)
2722             validateTypeAnnotation(a, isTypeParameter);
2723     }
2724 
2725     /** Check an annotation of a symbol.
2726      */
2727     private void validateAnnotation(JCAnnotation a, Symbol s) {
2728         validateAnnotationTree(a);
2729 
2730         if (!annotationApplicable(a, s))
2731             log.error(a.pos(), "annotation.type.not.applicable");
2732 
2733         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2734             if (s.kind != TYP) {
2735                 log.error(a.pos(), "bad.functional.intf.anno");
2736             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2737                 log.error(a.pos(), "bad.functional.intf.anno.1", diags.fragment("not.a.functional.intf", s));
2738             }
2739         }
2740     }
2741 
2742     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2743         Assert.checkNonNull(a.type, "annotation tree hasn't been attributed yet: " + a);
2744         validateAnnotationTree(a);
2745 
2746         if (a.hasTag(TYPE_ANNOTATION) &&
2747                 !a.annotationType.type.isErroneous() &&
2748                 !isTypeAnnotation(a, isTypeParameter)) {
2749             log.error(a.pos(), "annotation.type.not.applicable");
2750         }
2751     }
2752 
2753     /**
2754      * Validate the proposed container 'repeatable' on the
2755      * annotation type symbol 's'. Report errors at position
2756      * 'pos'.
2757      *
2758      * @param s The (annotation)type declaration annotated with a @Repeatable
2759      * @param repeatable the @Repeatable on 's'
2760      * @param pos where to report errors
2761      */
2762     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2763         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2764 
2765         Type t = null;
2766         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2767         if (!l.isEmpty()) {
2768             Assert.check(l.head.fst.name == names.value);
2769             t = ((Attribute.Class)l.head.snd).getValue();
2770         }
2771 
2772         if (t == null) {
2773             // errors should already have been reported during Annotate
2774             return;
2775         }
2776 
2777         validateValue(t.tsym, s, pos);
2778         validateRetention(t.tsym, s, pos);
2779         validateDocumented(t.tsym, s, pos);
2780         validateInherited(t.tsym, s, pos);
2781         validateTarget(t.tsym, s, pos);
2782         validateDefault(t.tsym, pos);
2783     }
2784 
2785     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
2786         Scope.Entry e = container.members().lookup(names.value);
2787         if (e.scope != null && e.sym.kind == MTH) {
2788             MethodSymbol m = (MethodSymbol) e.sym;
2789             Type ret = m.getReturnType();
2790             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
2791                 log.error(pos, "invalid.repeatable.annotation.value.return",
2792                         container, ret, types.makeArrayType(contained.type));
2793             }
2794         } else {
2795             log.error(pos, "invalid.repeatable.annotation.no.value", container);
2796         }
2797     }
2798 
2799     private void validateRetention(Symbol container, Symbol contained, DiagnosticPosition pos) {
2800         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
2801         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
2802 
2803         boolean error = false;
2804         switch (containedRetention) {
2805         case RUNTIME:
2806             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
2807                 error = true;
2808             }
2809             break;
2810         case CLASS:
2811             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
2812                 error = true;
2813             }
2814         }
2815         if (error ) {
2816             log.error(pos, "invalid.repeatable.annotation.retention",
2817                       container, containerRetention,
2818                       contained, containedRetention);
2819         }
2820     }
2821 
2822     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
2823         if (contained.attribute(syms.documentedType.tsym) != null) {
2824             if (container.attribute(syms.documentedType.tsym) == null) {
2825                 log.error(pos, "invalid.repeatable.annotation.not.documented", container, contained);
2826             }
2827         }
2828     }
2829 
2830     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
2831         if (contained.attribute(syms.inheritedType.tsym) != null) {
2832             if (container.attribute(syms.inheritedType.tsym) == null) {
2833                 log.error(pos, "invalid.repeatable.annotation.not.inherited", container, contained);
2834             }
2835         }
2836     }
2837 
2838     private void validateTarget(Symbol container, Symbol contained, DiagnosticPosition pos) {
2839         // The set of targets the container is applicable to must be a subset
2840         // (with respect to annotation target semantics) of the set of targets
2841         // the contained is applicable to. The target sets may be implicit or
2842         // explicit.
2843 
2844         Set<Name> containerTargets;
2845         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
2846         if (containerTarget == null) {
2847             containerTargets = getDefaultTargetSet();
2848         } else {
2849             containerTargets = new HashSet<Name>();
2850         for (Attribute app : containerTarget.values) {
2851             if (!(app instanceof Attribute.Enum)) {
2852                 continue; // recovery
2853             }
2854             Attribute.Enum e = (Attribute.Enum)app;
2855             containerTargets.add(e.value.name);
2856         }
2857         }
2858 
2859         Set<Name> containedTargets;
2860         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
2861         if (containedTarget == null) {
2862             containedTargets = getDefaultTargetSet();
2863         } else {
2864             containedTargets = new HashSet<Name>();
2865         for (Attribute app : containedTarget.values) {
2866             if (!(app instanceof Attribute.Enum)) {
2867                 continue; // recovery
2868             }
2869             Attribute.Enum e = (Attribute.Enum)app;
2870             containedTargets.add(e.value.name);
2871         }
2872         }
2873 
2874         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
2875             log.error(pos, "invalid.repeatable.annotation.incompatible.target", container, contained);
2876         }
2877     }
2878 
2879     /* get a set of names for the default target */
2880     private Set<Name> getDefaultTargetSet() {
2881         if (defaultTargets == null) {
2882             Set<Name> targets = new HashSet<Name>();
2883             targets.add(names.ANNOTATION_TYPE);
2884             targets.add(names.CONSTRUCTOR);
2885             targets.add(names.FIELD);
2886             targets.add(names.LOCAL_VARIABLE);
2887             targets.add(names.METHOD);
2888             targets.add(names.PACKAGE);
2889             targets.add(names.PARAMETER);
2890             targets.add(names.TYPE);
2891 
2892             defaultTargets = java.util.Collections.unmodifiableSet(targets);
2893         }
2894 
2895         return defaultTargets;
2896     }
2897     private Set<Name> defaultTargets;
2898 
2899 
2900     /** Checks that s is a subset of t, with respect to ElementType
2901      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
2902      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
2903      * TYPE_PARAMETER}.
2904      */
2905     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
2906         // Check that all elements in s are present in t
2907         for (Name n2 : s) {
2908             boolean currentElementOk = false;
2909             for (Name n1 : t) {
2910                 if (n1 == n2) {
2911                     currentElementOk = true;
2912                     break;
2913                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
2914                     currentElementOk = true;
2915                     break;
2916                 } else if (n1 == names.TYPE_USE &&
2917                         (n2 == names.TYPE ||
2918                          n2 == names.ANNOTATION_TYPE ||
2919                          n2 == names.TYPE_PARAMETER)) {
2920                     currentElementOk = true;
2921                     break;
2922                 }
2923             }
2924             if (!currentElementOk)
2925                 return false;
2926         }
2927         return true;
2928     }
2929 
2930     private void validateDefault(Symbol container, DiagnosticPosition pos) {
2931         // validate that all other elements of containing type has defaults
2932         Scope scope = container.members();
2933         for(Symbol elm : scope.getElements()) {
2934             if (elm.name != names.value &&
2935                 elm.kind == Kinds.MTH &&
2936                 ((MethodSymbol)elm).defaultValue == null) {
2937                 log.error(pos,
2938                           "invalid.repeatable.annotation.elem.nondefault",
2939                           container,
2940                           elm);
2941             }
2942         }
2943     }
2944 
2945     /** Is s a method symbol that overrides a method in a superclass? */
2946     boolean isOverrider(Symbol s) {
2947         if (s.kind != MTH || s.isStatic())
2948             return false;
2949         MethodSymbol m = (MethodSymbol)s;
2950         TypeSymbol owner = (TypeSymbol)m.owner;
2951         for (Type sup : types.closure(owner.type)) {
2952             if (sup == owner.type)
2953                 continue; // skip "this"
2954             Scope scope = sup.tsym.members();
2955             for (Scope.Entry e = scope.lookup(m.name); e.scope != null; e = e.next()) {
2956                 if (!e.sym.isStatic() && m.overrides(e.sym, owner, types, true))
2957                     return true;
2958             }
2959         }
2960         return false;
2961     }
2962 
2963     /** Is the annotation applicable to types? */
2964     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2965         Attribute.Compound atTarget =
2966             a.annotationType.type.tsym.attribute(syms.annotationTargetType.tsym);
2967         if (atTarget == null) {
2968             // An annotation without @Target is not a type annotation.
2969             return false;
2970         }
2971 
2972         Attribute atValue = atTarget.member(names.value);
2973         if (!(atValue instanceof Attribute.Array)) {
2974             return false; // error recovery
2975         }
2976 
2977         Attribute.Array arr = (Attribute.Array) atValue;
2978         for (Attribute app : arr.values) {
2979             if (!(app instanceof Attribute.Enum)) {
2980                 return false; // recovery
2981             }
2982             Attribute.Enum e = (Attribute.Enum) app;
2983 
2984             if (e.value.name == names.TYPE_USE)
2985                 return true;
2986             else if (isTypeParameter && e.value.name == names.TYPE_PARAMETER)
2987                 return true;
2988         }
2989         return false;
2990     }
2991 
2992     /** Is the annotation applicable to the symbol? */
2993     boolean annotationApplicable(JCAnnotation a, Symbol s) {
2994         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
2995         Name[] targets;
2996 
2997         if (arr == null) {
2998             targets = defaultTargetMetaInfo(a, s);
2999         } else {
3000             // TODO: can we optimize this?
3001             targets = new Name[arr.values.length];
3002             for (int i=0; i<arr.values.length; ++i) {
3003                 Attribute app = arr.values[i];
3004                 if (!(app instanceof Attribute.Enum)) {
3005                     return true; // recovery
3006                 }
3007                 Attribute.Enum e = (Attribute.Enum) app;
3008                 targets[i] = e.value.name;
3009             }
3010         }
3011         for (Name target : targets) {
3012             if (target == names.TYPE)
3013                 { if (s.kind == TYP) return true; }
3014             else if (target == names.FIELD)
3015                 { if (s.kind == VAR && s.owner.kind != MTH) return true; }
3016             else if (target == names.METHOD)
3017                 { if (s.kind == MTH && !s.isConstructor()) return true; }
3018             else if (target == names.PARAMETER)
3019                 { if (s.kind == VAR &&
3020                       s.owner.kind == MTH &&
3021                       (s.flags() & PARAMETER) != 0)
3022                     return true;
3023                 }
3024             else if (target == names.CONSTRUCTOR)
3025                 { if (s.kind == MTH && s.isConstructor()) return true; }
3026             else if (target == names.LOCAL_VARIABLE)
3027                 { if (s.kind == VAR && s.owner.kind == MTH &&
3028                       (s.flags() & PARAMETER) == 0)
3029                     return true;
3030                 }
3031             else if (target == names.ANNOTATION_TYPE)
3032                 { if (s.kind == TYP && (s.flags() & ANNOTATION) != 0)
3033                     return true;
3034                 }
3035             else if (target == names.PACKAGE)
3036                 { if (s.kind == PCK) return true; }
3037             else if (target == names.TYPE_USE)
3038                 { if (s.kind == TYP ||
3039                       s.kind == VAR ||
3040                       (s.kind == MTH && !s.isConstructor() &&
3041                       !s.type.getReturnType().hasTag(VOID)) ||
3042                       (s.kind == MTH && s.isConstructor()))
3043                     return true;
3044                 }
3045             else if (target == names.TYPE_PARAMETER)
3046                 { if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3047                     return true;
3048                 }
3049             else
3050                 return true; // recovery
3051         }
3052         return false;
3053     }
3054 
3055 
3056     Attribute.Array getAttributeTargetAttribute(Symbol s) {
3057         Attribute.Compound atTarget =
3058             s.attribute(syms.annotationTargetType.tsym);
3059         if (atTarget == null) return null; // ok, is applicable
3060         Attribute atValue = atTarget.member(names.value);
3061         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3062         return (Attribute.Array) atValue;
3063     }
3064 
3065     private final Name[] dfltTargetMeta;
3066     private Name[] defaultTargetMetaInfo(JCAnnotation a, Symbol s) {
3067         return dfltTargetMeta;
3068     }
3069 
3070     /** Check an annotation value.
3071      *
3072      * @param a The annotation tree to check
3073      * @return true if this annotation tree is valid, otherwise false
3074      */
3075     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3076         boolean res = false;
3077         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3078         try {
3079             res = validateAnnotation(a);
3080         } finally {
3081             log.popDiagnosticHandler(diagHandler);
3082         }
3083         return res;
3084     }
3085 
3086     private boolean validateAnnotation(JCAnnotation a) {
3087         boolean isValid = true;
3088         // collect an inventory of the annotation elements
3089         Set<MethodSymbol> members = new LinkedHashSet<MethodSymbol>();
3090         for (Scope.Entry e = a.annotationType.type.tsym.members().elems;
3091                 e != null;
3092                 e = e.sibling)
3093             if (e.sym.kind == MTH && e.sym.name != names.clinit &&
3094                     (e.sym.flags() & SYNTHETIC) == 0)
3095                 members.add((MethodSymbol) e.sym);
3096 
3097         // remove the ones that are assigned values
3098         for (JCTree arg : a.args) {
3099             if (!arg.hasTag(ASSIGN)) continue; // recovery
3100             JCAssign assign = (JCAssign) arg;
3101             Symbol m = TreeInfo.symbol(assign.lhs);
3102             if (m == null || m.type.isErroneous()) continue;
3103             if (!members.remove(m)) {
3104                 isValid = false;
3105                 log.error(assign.lhs.pos(), "duplicate.annotation.member.value",
3106                           m.name, a.type);
3107             }
3108         }
3109 
3110         // all the remaining ones better have default values
3111         List<Name> missingDefaults = List.nil();
3112         for (MethodSymbol m : members) {
3113             if (m.defaultValue == null && !m.type.isErroneous()) {
3114                 missingDefaults = missingDefaults.append(m.name);
3115             }
3116         }
3117         missingDefaults = missingDefaults.reverse();
3118         if (missingDefaults.nonEmpty()) {
3119             isValid = false;
3120             String key = (missingDefaults.size() > 1)
3121                     ? "annotation.missing.default.value.1"
3122                     : "annotation.missing.default.value";
3123             log.error(a.pos(), key, a.type, missingDefaults);
3124         }
3125 
3126         // special case: java.lang.annotation.Target must not have
3127         // repeated values in its value member
3128         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3129             a.args.tail == null)
3130             return isValid;
3131 
3132         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3133         JCAssign assign = (JCAssign) a.args.head;
3134         Symbol m = TreeInfo.symbol(assign.lhs);
3135         if (m.name != names.value) return false;
3136         JCTree rhs = assign.rhs;
3137         if (!rhs.hasTag(NEWARRAY)) return false;
3138         JCNewArray na = (JCNewArray) rhs;
3139         Set<Symbol> targets = new HashSet<Symbol>();
3140         for (JCTree elem : na.elems) {
3141             if (!targets.add(TreeInfo.symbol(elem))) {
3142                 isValid = false;
3143                 log.error(elem.pos(), "repeated.annotation.target");
3144             }
3145         }
3146         return isValid;
3147     }
3148 
3149     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3150         if (allowAnnotations &&
3151             lint.isEnabled(LintCategory.DEP_ANN) &&
3152             (s.flags() & DEPRECATED) != 0 &&
3153             !syms.deprecatedType.isErroneous() &&
3154             s.attribute(syms.deprecatedType.tsym) == null) {
3155             log.warning(LintCategory.DEP_ANN,
3156                     pos, "missing.deprecated.annotation");
3157         }
3158     }
3159 
3160     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3161         if ((s.flags() & DEPRECATED) != 0 &&
3162                 (other.flags() & DEPRECATED) == 0 &&
3163                 s.outermostClass() != other.outermostClass()) {
3164             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3165                 @Override
3166                 public void report() {
3167                     warnDeprecated(pos, s);
3168                 }
3169             });
3170         }
3171     }
3172 
3173     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3174         if ((s.flags() & PROPRIETARY) != 0) {
3175             deferredLintHandler.report(new DeferredLintHandler.LintLogger() {
3176                 public void report() {
3177                     if (enableSunApiLintControl)
3178                       warnSunApi(pos, "sun.proprietary", s);
3179                     else
3180                       log.mandatoryWarning(pos, "sun.proprietary", s);
3181                 }
3182             });
3183         }
3184     }
3185 
3186     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3187         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3188             log.error(pos, "not.in.profile", s, profile);
3189         }
3190     }
3191 
3192 /* *************************************************************************
3193  * Check for recursive annotation elements.
3194  **************************************************************************/
3195 
3196     /** Check for cycles in the graph of annotation elements.
3197      */
3198     void checkNonCyclicElements(JCClassDecl tree) {
3199         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3200         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3201         try {
3202             tree.sym.flags_field |= LOCKED;
3203             for (JCTree def : tree.defs) {
3204                 if (!def.hasTag(METHODDEF)) continue;
3205                 JCMethodDecl meth = (JCMethodDecl)def;
3206                 checkAnnotationResType(meth.pos(), meth.restype.type);
3207             }
3208         } finally {
3209             tree.sym.flags_field &= ~LOCKED;
3210             tree.sym.flags_field |= ACYCLIC_ANN;
3211         }
3212     }
3213 
3214     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3215         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3216             return;
3217         if ((tsym.flags_field & LOCKED) != 0) {
3218             log.error(pos, "cyclic.annotation.element");
3219             return;
3220         }
3221         try {
3222             tsym.flags_field |= LOCKED;
3223             for (Scope.Entry e = tsym.members().elems; e != null; e = e.sibling) {
3224                 Symbol s = e.sym;
3225                 if (s.kind != Kinds.MTH)
3226                     continue;
3227                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3228             }
3229         } finally {
3230             tsym.flags_field &= ~LOCKED;
3231             tsym.flags_field |= ACYCLIC_ANN;
3232         }
3233     }
3234 
3235     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3236         switch (type.getTag()) {
3237         case CLASS:
3238             if ((type.tsym.flags() & ANNOTATION) != 0)
3239                 checkNonCyclicElementsInternal(pos, type.tsym);
3240             break;
3241         case ARRAY:
3242             checkAnnotationResType(pos, types.elemtype(type));
3243             break;
3244         default:
3245             break; // int etc
3246         }
3247     }
3248 
3249 /* *************************************************************************
3250  * Check for cycles in the constructor call graph.
3251  **************************************************************************/
3252 
3253     /** Check for cycles in the graph of constructors calling other
3254      *  constructors.
3255      */
3256     void checkCyclicConstructors(JCClassDecl tree) {
3257         Map<Symbol,Symbol> callMap = new HashMap<Symbol, Symbol>();
3258 
3259         // enter each constructor this-call into the map
3260         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3261             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3262             if (app == null) continue;
3263             JCMethodDecl meth = (JCMethodDecl) l.head;
3264             if (TreeInfo.name(app.meth) == names._this) {
3265                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3266             } else {
3267                 meth.sym.flags_field |= ACYCLIC;
3268             }
3269         }
3270 
3271         // Check for cycles in the map
3272         Symbol[] ctors = new Symbol[0];
3273         ctors = callMap.keySet().toArray(ctors);
3274         for (Symbol caller : ctors) {
3275             checkCyclicConstructor(tree, caller, callMap);
3276         }
3277     }
3278 
3279     /** Look in the map to see if the given constructor is part of a
3280      *  call cycle.
3281      */
3282     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3283                                         Map<Symbol,Symbol> callMap) {
3284         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3285             if ((ctor.flags_field & LOCKED) != 0) {
3286                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3287                           "recursive.ctor.invocation");
3288             } else {
3289                 ctor.flags_field |= LOCKED;
3290                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3291                 ctor.flags_field &= ~LOCKED;
3292             }
3293             ctor.flags_field |= ACYCLIC;
3294         }
3295     }
3296 
3297 /* *************************************************************************
3298  * Miscellaneous
3299  **************************************************************************/
3300 
3301     /**
3302      * Return the opcode of the operator but emit an error if it is an
3303      * error.
3304      * @param pos        position for error reporting.
3305      * @param operator   an operator
3306      * @param tag        a tree tag
3307      * @param left       type of left hand side
3308      * @param right      type of right hand side
3309      */
3310     int checkOperator(DiagnosticPosition pos,
3311                        OperatorSymbol operator,
3312                        JCTree.Tag tag,
3313                        Type left,
3314                        Type right) {
3315         if (operator.opcode == ByteCodes.error) {
3316             log.error(pos,
3317                       "operator.cant.be.applied.1",
3318                       treeinfo.operatorName(tag),
3319                       left, right);
3320         }
3321         return operator.opcode;
3322     }
3323 
3324 
3325     /**
3326      *  Check for division by integer constant zero
3327      *  @param pos           Position for error reporting.
3328      *  @param operator      The operator for the expression
3329      *  @param operand       The right hand operand for the expression
3330      */
3331     void checkDivZero(DiagnosticPosition pos, Symbol operator, Type operand) {
3332         if (operand.constValue() != null
3333             && lint.isEnabled(LintCategory.DIVZERO)
3334             && operand.getTag().isSubRangeOf(LONG)
3335             && ((Number) (operand.constValue())).longValue() == 0) {
3336             int opc = ((OperatorSymbol)operator).opcode;
3337             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3338                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3339                 log.warning(LintCategory.DIVZERO, pos, "div.zero");
3340             }
3341         }
3342     }
3343 
3344     /**
3345      * Check for empty statements after if
3346      */
3347     void checkEmptyIf(JCIf tree) {
3348         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3349                 lint.isEnabled(LintCategory.EMPTY))
3350             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), "empty.if");
3351     }
3352 
3353     /** Check that symbol is unique in given scope.
3354      *  @param pos           Position for error reporting.
3355      *  @param sym           The symbol.
3356      *  @param s             The scope.
3357      */
3358     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3359         if (sym.type.isErroneous())
3360             return true;
3361         if (sym.owner.name == names.any) return false;
3362         for (Scope.Entry e = s.lookup(sym.name); e.scope == s; e = e.next()) {
3363             if (sym != e.sym &&
3364                     (e.sym.flags() & CLASH) == 0 &&
3365                     sym.kind == e.sym.kind &&
3366                     sym.name != names.error &&
3367                     (sym.kind != MTH ||
3368                      types.hasSameArgs(sym.type, e.sym.type) ||
3369                      types.hasSameArgs(types.erasure(sym.type), types.erasure(e.sym.type)))) {
3370                 if ((sym.flags() & VARARGS) != (e.sym.flags() & VARARGS)) {
3371                     varargsDuplicateError(pos, sym, e.sym);
3372                     return true;
3373                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, e.sym.type, false)) {
3374                     duplicateErasureError(pos, sym, e.sym);
3375                     sym.flags_field |= CLASH;
3376                     return true;
3377                 } else {
3378                     duplicateError(pos, e.sym);
3379                     return false;
3380                 }
3381             }
3382         }
3383         return true;
3384     }
3385 
3386     /** Report duplicate declaration error.
3387      */
3388     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3389         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3390             log.error(pos, "name.clash.same.erasure", sym1, sym2);
3391         }
3392     }
3393 
3394     /** Check that single-type import is not already imported or top-level defined,
3395      *  but make an exception for two single-type imports which denote the same type.
3396      *  @param pos           Position for error reporting.
3397      *  @param sym           The symbol.
3398      *  @param s             The scope
3399      */
3400     boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s) {
3401         return checkUniqueImport(pos, sym, s, false);
3402     }
3403 
3404     /** Check that static single-type import is not already imported or top-level defined,
3405      *  but make an exception for two single-type imports which denote the same type.
3406      *  @param pos           Position for error reporting.
3407      *  @param sym           The symbol.
3408      *  @param s             The scope
3409      */
3410     boolean checkUniqueStaticImport(DiagnosticPosition pos, Symbol sym, Scope s) {
3411         return checkUniqueImport(pos, sym, s, true);
3412     }
3413 
3414     /** Check that single-type import is not already imported or top-level defined,
3415      *  but make an exception for two single-type imports which denote the same type.
3416      *  @param pos           Position for error reporting.
3417      *  @param sym           The symbol.
3418      *  @param s             The scope.
3419      *  @param staticImport  Whether or not this was a static import
3420      */
3421     private boolean checkUniqueImport(DiagnosticPosition pos, Symbol sym, Scope s, boolean staticImport) {
3422         for (Scope.Entry e = s.lookup(sym.name); e.scope != null; e = e.next()) {
3423             // is encountered class entered via a class declaration?
3424             boolean isClassDecl = e.scope == s;
3425             if ((isClassDecl || sym != e.sym) &&
3426                 sym.kind == e.sym.kind &&
3427                 sym.name != names.error &&
3428                 (!staticImport || !e.isStaticallyImported())) {
3429                 if (!e.sym.type.isErroneous()) {
3430                     if (!isClassDecl) {
3431                         if (staticImport)
3432                             log.error(pos, "already.defined.static.single.import", e.sym);
3433                         else
3434                         log.error(pos, "already.defined.single.import", e.sym);
3435                     }
3436                     else if (sym != e.sym)
3437                         log.error(pos, "already.defined.this.unit", e.sym);
3438                 }
3439                 return false;
3440             }
3441         }
3442         return true;
3443     }
3444 
3445     /** Check that a qualified name is in canonical form (for import decls).
3446      */
3447     public void checkCanonical(JCTree tree) {
3448         if (!isCanonical(tree))
3449             log.error(tree.pos(), "import.requires.canonical",
3450                       TreeInfo.symbol(tree));
3451     }
3452         // where
3453         private boolean isCanonical(JCTree tree) {
3454             while (tree.hasTag(SELECT)) {
3455                 JCFieldAccess s = (JCFieldAccess) tree;
3456                 if (s.sym.owner != TreeInfo.symbol(s.selected))
3457                     return false;
3458                 tree = s.selected;
3459             }
3460             return true;
3461         }
3462 
3463     /** Check that an auxiliary class is not accessed from any other file than its own.
3464      */
3465     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3466         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3467             (c.flags() & AUXILIARY) != 0 &&
3468             rs.isAccessible(env, c) &&
3469             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3470         {
3471             log.warning(pos, "auxiliary.class.accessed.from.outside.of.its.source.file",
3472                         c, c.sourcefile);
3473         }
3474     }
3475 
3476     private class ConversionWarner extends Warner {
3477         final String uncheckedKey;
3478         final Type found;
3479         final Type expected;
3480         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3481             super(pos);
3482             this.uncheckedKey = uncheckedKey;
3483             this.found = found;
3484             this.expected = expected;
3485         }
3486 
3487         @Override
3488         public void warn(LintCategory lint) {
3489             boolean warned = this.warned;
3490             super.warn(lint);
3491             if (warned) return; // suppress redundant diagnostics
3492             switch (lint) {
3493                 case UNCHECKED:
3494                     Check.this.warnUnchecked(pos(), "prob.found.req", diags.fragment(uncheckedKey), found, expected);
3495                     break;
3496                 case VARARGS:
3497                     if (method != null &&
3498                             method.attribute(syms.trustMeType.tsym) != null &&
3499                             isTrustMeAllowedOnMethod(method) &&
3500                             !types.isReifiable(method.type.getParameterTypes().last())) {
3501                         Check.this.warnUnsafeVararg(pos(), "varargs.unsafe.use.varargs.param", method.params.last());
3502                     }
3503                     break;
3504                 default:
3505                     throw new AssertionError("Unexpected lint: " + lint);
3506             }
3507         }
3508     }
3509 
3510     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3511         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3512     }
3513 
3514     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3515         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3516     }
3517 
3518     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3519         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3520 
3521         if (functionalType != null) {
3522             try {
3523                 types.findDescriptorSymbol((TypeSymbol)cs);
3524             } catch (Types.FunctionDescriptorLookupError ex) {
3525                 DiagnosticPosition pos = tree.pos();
3526                 for (JCAnnotation a : tree.getModifiers().annotations) {
3527                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3528                         pos = a.pos();
3529                         break;
3530                     }
3531                 }
3532                 log.error(pos, "bad.functional.intf.anno.1", ex.getDiagnostic());
3533             }
3534         }
3535     }
3536 }