1 /*
   2  * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.lang.annotation.Native;
  29 import java.math.*;
  30 
  31 
  32 /**
  33  * The {@code Long} class wraps a value of the primitive type {@code
  34  * long} in an object. An object of type {@code Long} contains a
  35  * single field whose type is {@code long}.
  36  *
  37  * <p> In addition, this class provides several methods for converting
  38  * a {@code long} to a {@code String} and a {@code String} to a {@code
  39  * long}, as well as other constants and methods useful when dealing
  40  * with a {@code long}.
  41  *
  42  * <p>Implementation note: The implementations of the "bit twiddling"
  43  * methods (such as {@link #highestOneBit(long) highestOneBit} and
  44  * {@link #numberOfTrailingZeros(long) numberOfTrailingZeros}) are
  45  * based on material from Henry S. Warren, Jr.'s <i>Hacker's
  46  * Delight</i>, (Addison Wesley, 2002).
  47  *
  48  * @author  Lee Boynton
  49  * @author  Arthur van Hoff
  50  * @author  Josh Bloch
  51  * @author  Joseph D. Darcy
  52  * @since   1.0
  53  */
  54 public final class Long extends Number implements Comparable<Long> {
  55     /**
  56      * A constant holding the minimum value a {@code long} can
  57      * have, -2<sup>63</sup>.
  58      */
  59     @Native public static final long MIN_VALUE = 0x8000000000000000L;
  60 
  61     /**
  62      * A constant holding the maximum value a {@code long} can
  63      * have, 2<sup>63</sup>-1.
  64      */
  65     @Native public static final long MAX_VALUE = 0x7fffffffffffffffL;
  66 
  67     /**
  68      * The {@code Class} instance representing the primitive type
  69      * {@code long}.
  70      *
  71      * @since   1.1
  72      */
  73     @SuppressWarnings("unchecked")
  74     public static final Class<Long>     TYPE = (Class<Long>) Class.getPrimitiveClass("long");
  75 
  76     /**
  77      * Returns a string representation of the first argument in the
  78      * radix specified by the second argument.
  79      *
  80      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
  81      * or larger than {@code Character.MAX_RADIX}, then the radix
  82      * {@code 10} is used instead.
  83      *
  84      * <p>If the first argument is negative, the first element of the
  85      * result is the ASCII minus sign {@code '-'}
  86      * ({@code '\u005Cu002d'}). If the first argument is not
  87      * negative, no sign character appears in the result.
  88      *
  89      * <p>The remaining characters of the result represent the magnitude
  90      * of the first argument. If the magnitude is zero, it is
  91      * represented by a single zero character {@code '0'}
  92      * ({@code '\u005Cu0030'}); otherwise, the first character of
  93      * the representation of the magnitude will not be the zero
  94      * character.  The following ASCII characters are used as digits:
  95      *
  96      * <blockquote>
  97      *   {@code 0123456789abcdefghijklmnopqrstuvwxyz}
  98      * </blockquote>
  99      *
 100      * These are {@code '\u005Cu0030'} through
 101      * {@code '\u005Cu0039'} and {@code '\u005Cu0061'} through
 102      * {@code '\u005Cu007a'}. If {@code radix} is
 103      * <var>N</var>, then the first <var>N</var> of these characters
 104      * are used as radix-<var>N</var> digits in the order shown. Thus,
 105      * the digits for hexadecimal (radix 16) are
 106      * {@code 0123456789abcdef}. If uppercase letters are
 107      * desired, the {@link java.lang.String#toUpperCase()} method may
 108      * be called on the result:
 109      *
 110      * <blockquote>
 111      *  {@code Long.toString(n, 16).toUpperCase()}
 112      * </blockquote>
 113      *
 114      * @param   i       a {@code long} to be converted to a string.
 115      * @param   radix   the radix to use in the string representation.
 116      * @return  a string representation of the argument in the specified radix.
 117      * @see     java.lang.Character#MAX_RADIX
 118      * @see     java.lang.Character#MIN_RADIX
 119      */
 120     public static String toString(long i, int radix) {
 121         if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
 122             radix = 10;
 123         if (radix == 10)
 124             return toString(i);
 125         char[] buf = new char[65];
 126         int charPos = 64;
 127         boolean negative = (i < 0);
 128 
 129         if (!negative) {
 130             i = -i;
 131         }
 132 
 133         while (i <= -radix) {
 134             buf[charPos--] = Integer.digits[(int)(-(i % radix))];
 135             i = i / radix;
 136         }
 137         buf[charPos] = Integer.digits[(int)(-i)];
 138 
 139         if (negative) {
 140             buf[--charPos] = '-';
 141         }
 142 
 143         return new String(buf, charPos, (65 - charPos));
 144     }
 145 
 146     /**
 147      * Returns a string representation of the first argument as an
 148      * unsigned integer value in the radix specified by the second
 149      * argument.
 150      *
 151      * <p>If the radix is smaller than {@code Character.MIN_RADIX}
 152      * or larger than {@code Character.MAX_RADIX}, then the radix
 153      * {@code 10} is used instead.
 154      *
 155      * <p>Note that since the first argument is treated as an unsigned
 156      * value, no leading sign character is printed.
 157      *
 158      * <p>If the magnitude is zero, it is represented by a single zero
 159      * character {@code '0'} ({@code '\u005Cu0030'}); otherwise,
 160      * the first character of the representation of the magnitude will
 161      * not be the zero character.
 162      *
 163      * <p>The behavior of radixes and the characters used as digits
 164      * are the same as {@link #toString(long, int) toString}.
 165      *
 166      * @param   i       an integer to be converted to an unsigned string.
 167      * @param   radix   the radix to use in the string representation.
 168      * @return  an unsigned string representation of the argument in the specified radix.
 169      * @see     #toString(long, int)
 170      * @since 1.8
 171      */
 172     public static String toUnsignedString(long i, int radix) {
 173         if (i >= 0)
 174             return toString(i, radix);
 175         else {
 176             switch (radix) {
 177             case 2:
 178                 return toBinaryString(i);
 179 
 180             case 4:
 181                 return toUnsignedString0(i, 2);
 182 
 183             case 8:
 184                 return toOctalString(i);
 185 
 186             case 10:
 187                 /*
 188                  * We can get the effect of an unsigned division by 10
 189                  * on a long value by first shifting right, yielding a
 190                  * positive value, and then dividing by 5.  This
 191                  * allows the last digit and preceding digits to be
 192                  * isolated more quickly than by an initial conversion
 193                  * to BigInteger.
 194                  */
 195                 long quot = (i >>> 1) / 5;
 196                 long rem = i - quot * 10;
 197                 return toString(quot) + rem;
 198 
 199             case 16:
 200                 return toHexString(i);
 201 
 202             case 32:
 203                 return toUnsignedString0(i, 5);
 204 
 205             default:
 206                 return toUnsignedBigInteger(i).toString(radix);
 207             }
 208         }
 209     }
 210 
 211     /**
 212      * Return a BigInteger equal to the unsigned value of the
 213      * argument.
 214      */
 215     private static BigInteger toUnsignedBigInteger(long i) {
 216         if (i >= 0L)
 217             return BigInteger.valueOf(i);
 218         else {
 219             int upper = (int) (i >>> 32);
 220             int lower = (int) i;
 221 
 222             // return (upper << 32) + lower
 223             return (BigInteger.valueOf(Integer.toUnsignedLong(upper))).shiftLeft(32).
 224                 add(BigInteger.valueOf(Integer.toUnsignedLong(lower)));
 225         }
 226     }
 227 
 228     /**
 229      * Returns a string representation of the {@code long}
 230      * argument as an unsigned integer in base&nbsp;16.
 231      *
 232      * <p>The unsigned {@code long} value is the argument plus
 233      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 234      * equal to the argument.  This value is converted to a string of
 235      * ASCII digits in hexadecimal (base&nbsp;16) with no extra
 236      * leading {@code 0}s.
 237      *
 238      * <p>The value of the argument can be recovered from the returned
 239      * string {@code s} by calling {@link
 240      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 241      * 16)}.
 242      *
 243      * <p>If the unsigned magnitude is zero, it is represented by a
 244      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 245      * otherwise, the first character of the representation of the
 246      * unsigned magnitude will not be the zero character. The
 247      * following characters are used as hexadecimal digits:
 248      *
 249      * <blockquote>
 250      *  {@code 0123456789abcdef}
 251      * </blockquote>
 252      *
 253      * These are the characters {@code '\u005Cu0030'} through
 254      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 255      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 256      * the {@link java.lang.String#toUpperCase()} method may be called
 257      * on the result:
 258      *
 259      * <blockquote>
 260      *  {@code Long.toHexString(n).toUpperCase()}
 261      * </blockquote>
 262      *
 263      * @param   i   a {@code long} to be converted to a string.
 264      * @return  the string representation of the unsigned {@code long}
 265      *          value represented by the argument in hexadecimal
 266      *          (base&nbsp;16).
 267      * @see #parseUnsignedLong(String, int)
 268      * @see #toUnsignedString(long, int)
 269      * @see #toHexString(long, int)
 270      * @since   1.0.2
 271      */
 272     public static String toHexString(long i) {
 273         return toUnsignedString0(i, 4);
 274     }
 275 
 276     /**
 277      * Returns a string representation of the {@code long}
 278      * argument as an unsigned integer in base&nbsp;16, padded with
 279      * leading zeroes if necessary.
 280      *
 281      * <p>The unsigned {@code long} value is the argument plus
 282      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 283      * equal to the argument.  This value is converted to a string of
 284      * ASCII digits in hexadecimal (base&nbsp;16) with possibly
 285      * appended leading zeroes. A minimum amount of zeroes is appended
 286      * to ensure the length of the resulting string is at least
 287      * {@code minWidth}.
 288      *
 289      * <p>The value of the argument can be recovered from the returned
 290      * string {@code s} by calling {@link
 291      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 292      * 16)}.
 293      *
 294      * <p>If the unsigned magnitude is zero, it is represented by a
 295      * single zero character {@code '0'} ({@code '\u005Cu0030'}).
 296      * The following characters are used as hexadecimal digits:
 297      *
 298      * <blockquote>
 299      *  {@code 0123456789abcdef}
 300      * </blockquote>
 301      *
 302      * These are the characters {@code '\u005Cu0030'} through
 303      * {@code '\u005Cu0039'} and  {@code '\u005Cu0061'} through
 304      * {@code '\u005Cu0066'}.  If uppercase letters are desired,
 305      * the {@link java.lang.String#toUpperCase()} method may be called
 306      * on the result:
 307      *
 308      * <blockquote>
 309      *  {@code Long.toHexString(n, 12).toUpperCase()}
 310      * </blockquote>
 311      *
 312      * @param   i   a {@code long} to be converted to a string.
 313      * @param   minWidth a minimum required length of the resulting string.
 314      * @return  the string representation of the unsigned {@code long}
 315      *          value represented by the argument in hexadecimal
 316      *          (base&nbsp;16), padded with leading zeroes if necessary.
 317      * @see #parseUnsignedLong(String, int)
 318      * @see #toUnsignedString(long, int)
 319      * @see #toHexString(long)
 320      * @since 1.9
 321      */
 322     public static String toHexString(long i, int minWidth) {
 323         return toUnsignedString0(i, 4, minWidth);
 324     }
 325 
 326     /**
 327      * Returns a string representation of the {@code long}
 328      * argument as an unsigned integer in base&nbsp;8.
 329      *
 330      * <p>The unsigned {@code long} value is the argument plus
 331      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 332      * equal to the argument.  This value is converted to a string of
 333      * ASCII digits in octal (base&nbsp;8) with no extra leading
 334      * {@code 0}s.
 335      *
 336      * <p>The value of the argument can be recovered from the returned
 337      * string {@code s} by calling {@link
 338      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 339      * 8)}.
 340      *
 341      * <p>If the unsigned magnitude is zero, it is represented by a
 342      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 343      * otherwise, the first character of the representation of the
 344      * unsigned magnitude will not be the zero character. The
 345      * following characters are used as octal digits:
 346      *
 347      * <blockquote>
 348      *  {@code 01234567}
 349      * </blockquote>
 350      *
 351      * These are the characters {@code '\u005Cu0030'} through
 352      * {@code '\u005Cu0037'}.
 353      *
 354      * @param   i   a {@code long} to be converted to a string.
 355      * @return  the string representation of the unsigned {@code long}
 356      *          value represented by the argument in octal (base&nbsp;8).
 357      * @see #parseUnsignedLong(String, int)
 358      * @see #toUnsignedString(long, int)
 359      * @since   1.0.2
 360      */
 361     public static String toOctalString(long i) {
 362         return toUnsignedString0(i, 3);
 363     }
 364 
 365     /**
 366      * Returns a string representation of the {@code long}
 367      * argument as an unsigned integer in base&nbsp;2.
 368      *
 369      * <p>The unsigned {@code long} value is the argument plus
 370      * 2<sup>64</sup> if the argument is negative; otherwise, it is
 371      * equal to the argument.  This value is converted to a string of
 372      * ASCII digits in binary (base&nbsp;2) with no extra leading
 373      * {@code 0}s.
 374      *
 375      * <p>The value of the argument can be recovered from the returned
 376      * string {@code s} by calling {@link
 377      * Long#parseUnsignedLong(String, int) Long.parseUnsignedLong(s,
 378      * 2)}.
 379      *
 380      * <p>If the unsigned magnitude is zero, it is represented by a
 381      * single zero character {@code '0'} ({@code '\u005Cu0030'});
 382      * otherwise, the first character of the representation of the
 383      * unsigned magnitude will not be the zero character. The
 384      * characters {@code '0'} ({@code '\u005Cu0030'}) and {@code
 385      * '1'} ({@code '\u005Cu0031'}) are used as binary digits.
 386      *
 387      * @param   i   a {@code long} to be converted to a string.
 388      * @return  the string representation of the unsigned {@code long}
 389      *          value represented by the argument in binary (base&nbsp;2).
 390      * @see #parseUnsignedLong(String, int)
 391      * @see #toUnsignedString(long, int)
 392      * @since   1.0.2
 393      */
 394     public static String toBinaryString(long i) {
 395         return toUnsignedString0(i, 1);
 396     }
 397 
 398     /**
 399      * Format a long (treated as unsigned) into a String.
 400      * @param val the value to format
 401      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 402      */
 403     static String toUnsignedString0(long val, int shift) {
 404         // assert shift > 0 && shift <=5 : "Illegal shift value";
 405         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 406         int chars = Math.max(((mag + (shift - 1)) / shift), 1);
 407         char[] buf = new char[chars];
 408 
 409         formatUnsignedLong(val, shift, buf, 0, chars);
 410         return new String(buf, true);
 411     }
 412 
 413     /**
 414      * Format a long (treated as unsigned) into a String.
 415      * @param val the value to format
 416      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 417      * @param minWidth the minimum width of the produced String
 418      */
 419     static String toUnsignedString0(long val, int shift, int minWidth) {
 420         int mag = Long.SIZE - Long.numberOfLeadingZeros(val);
 421         int magLen = (mag + (shift - 1)) / shift;
 422         int zeroes = Math.max(Math.max(minWidth, 1) - magLen, 0);
 423         char[] buf = new char[magLen + zeroes];
 424 
 425         for (int i = 0; i < zeroes; ++i)
 426             buf[i] = '0';
 427         if (magLen > 0)
 428             formatUnsignedLong(val, shift, buf, zeroes, magLen);
 429         return new String(buf, true);
 430     }
 431 
 432     /**
 433      * Format a long (treated as unsigned) into a character buffer.
 434      * @param val the unsigned long to format
 435      * @param shift the log2 of the base to format in (4 for hex, 3 for octal, 1 for binary)
 436      * @param buf the character buffer to write to
 437      * @param offset the offset in the destination buffer to start at
 438      * @param len the number of characters to write
 439      * @return the lowest character location used
 440      */
 441      static int formatUnsignedLong(long val, int shift, char[] buf, int offset, int len) {
 442         int charPos = len;
 443         int radix = 1 << shift;
 444         int mask = radix - 1;
 445         do {
 446             buf[offset + --charPos] = Integer.digits[((int) val) & mask];
 447             val >>>= shift;
 448         } while (val != 0 && charPos > 0);
 449 
 450         return charPos;
 451     }
 452 
 453     /**
 454      * Returns a {@code String} object representing the specified
 455      * {@code long}.  The argument is converted to signed decimal
 456      * representation and returned as a string, exactly as if the
 457      * argument and the radix 10 were given as arguments to the {@link
 458      * #toString(long, int)} method.
 459      *
 460      * @param   i   a {@code long} to be converted.
 461      * @return  a string representation of the argument in base&nbsp;10.
 462      */
 463     public static String toString(long i) {
 464         if (i == Long.MIN_VALUE)
 465             return "-9223372036854775808";
 466         int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
 467         char[] buf = new char[size];
 468         getChars(i, size, buf);
 469         return new String(buf, true);
 470     }
 471 
 472     /**
 473      * Returns a string representation of the argument as an unsigned
 474      * decimal value.
 475      *
 476      * The argument is converted to unsigned decimal representation
 477      * and returned as a string exactly as if the argument and radix
 478      * 10 were given as arguments to the {@link #toUnsignedString(long,
 479      * int)} method.
 480      *
 481      * @param   i  an integer to be converted to an unsigned string.
 482      * @return  an unsigned string representation of the argument.
 483      * @see     #toUnsignedString(long, int)
 484      * @since 1.8
 485      */
 486     public static String toUnsignedString(long i) {
 487         return toUnsignedString(i, 10);
 488     }
 489 
 490     /**
 491      * Places characters representing the integer i into the
 492      * character array buf. The characters are placed into
 493      * the buffer backwards starting with the least significant
 494      * digit at the specified index (exclusive), and working
 495      * backwards from there.
 496      *
 497      * Will fail if i == Long.MIN_VALUE
 498      */
 499     static void getChars(long i, int index, char[] buf) {
 500         long q;
 501         int r;
 502         int charPos = index;
 503         char sign = 0;
 504 
 505         if (i < 0) {
 506             sign = '-';
 507             i = -i;
 508         }
 509 
 510         // Get 2 digits/iteration using longs until quotient fits into an int
 511         while (i > Integer.MAX_VALUE) {
 512             q = i / 100;
 513             // really: r = i - (q * 100);
 514             r = (int)(i - ((q << 6) + (q << 5) + (q << 2)));
 515             i = q;
 516             buf[--charPos] = Integer.DigitOnes[r];
 517             buf[--charPos] = Integer.DigitTens[r];
 518         }
 519 
 520         // Get 2 digits/iteration using ints
 521         int q2;
 522         int i2 = (int)i;
 523         while (i2 >= 65536) {
 524             q2 = i2 / 100;
 525             // really: r = i2 - (q * 100);
 526             r = i2 - ((q2 << 6) + (q2 << 5) + (q2 << 2));
 527             i2 = q2;
 528             buf[--charPos] = Integer.DigitOnes[r];
 529             buf[--charPos] = Integer.DigitTens[r];
 530         }
 531 
 532         // Fall thru to fast mode for smaller numbers
 533         // assert(i2 <= 65536, i2);
 534         for (;;) {
 535             q2 = (i2 * 52429) >>> (16+3);
 536             r = i2 - ((q2 << 3) + (q2 << 1));  // r = i2-(q2*10) ...
 537             buf[--charPos] = Integer.digits[r];
 538             i2 = q2;
 539             if (i2 == 0) break;
 540         }
 541         if (sign != 0) {
 542             buf[--charPos] = sign;
 543         }
 544     }
 545 
 546     // Requires positive x
 547     static int stringSize(long x) {
 548         long p = 10;
 549         for (int i=1; i<19; i++) {
 550             if (x < p)
 551                 return i;
 552             p = 10*p;
 553         }
 554         return 19;
 555     }
 556 
 557     /**
 558      * Parses the string argument as a signed {@code long} in the
 559      * radix specified by the second argument. The characters in the
 560      * string must all be digits of the specified radix (as determined
 561      * by whether {@link java.lang.Character#digit(char, int)} returns
 562      * a nonnegative value), except that the first character may be an
 563      * ASCII minus sign {@code '-'} ({@code '\u005Cu002D'}) to
 564      * indicate a negative value or an ASCII plus sign {@code '+'}
 565      * ({@code '\u005Cu002B'}) to indicate a positive value. The
 566      * resulting {@code long} value is returned.
 567      *
 568      * <p>Note that neither the character {@code L}
 569      * ({@code '\u005Cu004C'}) nor {@code l}
 570      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 571      * of the string as a type indicator, as would be permitted in
 572      * Java programming language source code - except that either
 573      * {@code L} or {@code l} may appear as a digit for a
 574      * radix greater than or equal to 22.
 575      *
 576      * <p>An exception of type {@code NumberFormatException} is
 577      * thrown if any of the following situations occurs:
 578      * <ul>
 579      *
 580      * <li>The first argument is {@code null} or is a string of
 581      * length zero.
 582      *
 583      * <li>The {@code radix} is either smaller than {@link
 584      * java.lang.Character#MIN_RADIX} or larger than {@link
 585      * java.lang.Character#MAX_RADIX}.
 586      *
 587      * <li>Any character of the string is not a digit of the specified
 588      * radix, except that the first character may be a minus sign
 589      * {@code '-'} ({@code '\u005Cu002d'}) or plus sign {@code
 590      * '+'} ({@code '\u005Cu002B'}) provided that the string is
 591      * longer than length 1.
 592      *
 593      * <li>The value represented by the string is not a value of type
 594      *      {@code long}.
 595      * </ul>
 596      *
 597      * <p>Examples:
 598      * <blockquote><pre>
 599      * parseLong("0", 10) returns 0L
 600      * parseLong("473", 10) returns 473L
 601      * parseLong("+42", 10) returns 42L
 602      * parseLong("-0", 10) returns 0L
 603      * parseLong("-FF", 16) returns -255L
 604      * parseLong("1100110", 2) returns 102L
 605      * parseLong("99", 8) throws a NumberFormatException
 606      * parseLong("Hazelnut", 10) throws a NumberFormatException
 607      * parseLong("Hazelnut", 36) returns 1356099454469L
 608      * </pre></blockquote>
 609      *
 610      * @param      s       the {@code String} containing the
 611      *                     {@code long} representation to be parsed.
 612      * @param      radix   the radix to be used while parsing {@code s}.
 613      * @return     the {@code long} represented by the string argument in
 614      *             the specified radix.
 615      * @throws     NumberFormatException  if the string does not contain a
 616      *             parsable {@code long}.
 617      */
 618     public static long parseLong(String s, int radix)
 619               throws NumberFormatException
 620     {
 621         if (s == null) {
 622             throw new NumberFormatException("null");
 623         }
 624 
 625         if (radix < Character.MIN_RADIX) {
 626             throw new NumberFormatException("radix " + radix +
 627                                             " less than Character.MIN_RADIX");
 628         }
 629         if (radix > Character.MAX_RADIX) {
 630             throw new NumberFormatException("radix " + radix +
 631                                             " greater than Character.MAX_RADIX");
 632         }
 633 
 634         long result = 0;
 635         boolean negative = false;
 636         int i = 0, len = s.length();
 637         long limit = -Long.MAX_VALUE;
 638         long multmin;
 639         int digit;
 640 
 641         if (len > 0) {
 642             char firstChar = s.charAt(0);
 643             if (firstChar < '0') { // Possible leading "+" or "-"
 644                 if (firstChar == '-') {
 645                     negative = true;
 646                     limit = Long.MIN_VALUE;
 647                 } else if (firstChar != '+')
 648                     throw NumberFormatException.forInputString(s);
 649 
 650                 if (len == 1) // Cannot have lone "+" or "-"
 651                     throw NumberFormatException.forInputString(s);
 652                 i++;
 653             }
 654             multmin = limit / radix;
 655             while (i < len) {
 656                 // Accumulating negatively avoids surprises near MAX_VALUE
 657                 digit = Character.digit(s.charAt(i++),radix);
 658                 if (digit < 0) {
 659                     throw NumberFormatException.forInputString(s);
 660                 }
 661                 if (result < multmin) {
 662                     throw NumberFormatException.forInputString(s);
 663                 }
 664                 result *= radix;
 665                 if (result < limit + digit) {
 666                     throw NumberFormatException.forInputString(s);
 667                 }
 668                 result -= digit;
 669             }
 670         } else {
 671             throw NumberFormatException.forInputString(s);
 672         }
 673         return negative ? result : -result;
 674     }
 675 
 676     /**
 677      * Parses the string argument as a signed decimal {@code long}.
 678      * The characters in the string must all be decimal digits, except
 679      * that the first character may be an ASCII minus sign {@code '-'}
 680      * ({@code \u005Cu002D'}) to indicate a negative value or an
 681      * ASCII plus sign {@code '+'} ({@code '\u005Cu002B'}) to
 682      * indicate a positive value. The resulting {@code long} value is
 683      * returned, exactly as if the argument and the radix {@code 10}
 684      * were given as arguments to the {@link
 685      * #parseLong(java.lang.String, int)} method.
 686      *
 687      * <p>Note that neither the character {@code L}
 688      * ({@code '\u005Cu004C'}) nor {@code l}
 689      * ({@code '\u005Cu006C'}) is permitted to appear at the end
 690      * of the string as a type indicator, as would be permitted in
 691      * Java programming language source code.
 692      *
 693      * @param      s   a {@code String} containing the {@code long}
 694      *             representation to be parsed
 695      * @return     the {@code long} represented by the argument in
 696      *             decimal.
 697      * @throws     NumberFormatException  if the string does not contain a
 698      *             parsable {@code long}.
 699      */
 700     public static long parseLong(String s) throws NumberFormatException {
 701         return parseLong(s, 10);
 702     }
 703 
 704     /**
 705      * Parses the string argument as an unsigned {@code long} in the
 706      * radix specified by the second argument.  An unsigned integer
 707      * maps the values usually associated with negative numbers to
 708      * positive numbers larger than {@code MAX_VALUE}.
 709      *
 710      * The characters in the string must all be digits of the
 711      * specified radix (as determined by whether {@link
 712      * java.lang.Character#digit(char, int)} returns a nonnegative
 713      * value), except that the first character may be an ASCII plus
 714      * sign {@code '+'} ({@code '\u005Cu002B'}). The resulting
 715      * integer value is returned.
 716      *
 717      * <p>An exception of type {@code NumberFormatException} is
 718      * thrown if any of the following situations occurs:
 719      * <ul>
 720      * <li>The first argument is {@code null} or is a string of
 721      * length zero.
 722      *
 723      * <li>The radix is either smaller than
 724      * {@link java.lang.Character#MIN_RADIX} or
 725      * larger than {@link java.lang.Character#MAX_RADIX}.
 726      *
 727      * <li>Any character of the string is not a digit of the specified
 728      * radix, except that the first character may be a plus sign
 729      * {@code '+'} ({@code '\u005Cu002B'}) provided that the
 730      * string is longer than length 1.
 731      *
 732      * <li>The value represented by the string is larger than the
 733      * largest unsigned {@code long}, 2<sup>64</sup>-1.
 734      *
 735      * </ul>
 736      *
 737      *
 738      * @param      s   the {@code String} containing the unsigned integer
 739      *                  representation to be parsed
 740      * @param      radix   the radix to be used while parsing {@code s}.
 741      * @return     the unsigned {@code long} represented by the string
 742      *             argument in the specified radix.
 743      * @throws     NumberFormatException if the {@code String}
 744      *             does not contain a parsable {@code long}.
 745      * @since 1.8
 746      */
 747     public static long parseUnsignedLong(String s, int radix)
 748                 throws NumberFormatException {
 749         if (s == null)  {
 750             throw new NumberFormatException("null");
 751         }
 752 
 753         int len = s.length();
 754         if (len > 0) {
 755             char firstChar = s.charAt(0);
 756             if (firstChar == '-') {
 757                 throw new
 758                     NumberFormatException(String.format("Illegal leading minus sign " +
 759                                                        "on unsigned string %s.", s));
 760             } else {
 761                 if (len <= 12 || // Long.MAX_VALUE in Character.MAX_RADIX is 13 digits
 762                     (radix == 10 && len <= 18) ) { // Long.MAX_VALUE in base 10 is 19 digits
 763                     return parseLong(s, radix);
 764                 }
 765 
 766                 // No need for range checks on len due to testing above.
 767                 long first = parseLong(s.substring(0, len - 1), radix);
 768                 int second = Character.digit(s.charAt(len - 1), radix);
 769                 if (second < 0) {
 770                     throw new NumberFormatException("Bad digit at end of " + s);
 771                 }
 772                 long result = first * radix + second;
 773 
 774                 /*
 775                  * Test leftmost bits of multiprecision extension of first*radix
 776                  * for overflow. The number of bits needed is defined by
 777                  * GUARD_BIT = ceil(log2(Character.MAX_RADIX)) + 1 = 7. Then
 778                  * int guard = radix*(int)(first >>> (64 - GUARD_BIT)) and
 779                  * overflow is tested by splitting guard in the ranges
 780                  * guard < 92, 92 <= guard < 128, and 128 <= guard, where
 781                  * 92 = 128 - Character.MAX_RADIX. Note that guard cannot take
 782                  * on a value which does not include a prime factor in the legal
 783                  * radix range.
 784                  */
 785                 int guard = radix * (int) (first >>> 57);
 786                 if (guard >= 128 ||
 787                     (result >= 0 && guard >= 128 - Character.MAX_RADIX)) {
 788                     /*
 789                      * For purposes of exposition, the programmatic statements
 790                      * below should be taken to be multi-precision, i.e., not
 791                      * subject to overflow.
 792                      *
 793                      * A) Condition guard >= 128:
 794                      * If guard >= 128 then first*radix >= 2^7 * 2^57 = 2^64
 795                      * hence always overflow.
 796                      *
 797                      * B) Condition guard < 92:
 798                      * Define left7 = first >>> 57.
 799                      * Given first = (left7 * 2^57) + (first & (2^57 - 1)) then
 800                      * result <= (radix*left7)*2^57 + radix*(2^57 - 1) + second.
 801                      * Thus if radix*left7 < 92, radix <= 36, and second < 36,
 802                      * then result < 92*2^57 + 36*(2^57 - 1) + 36 = 2^64 hence
 803                      * never overflow.
 804                      *
 805                      * C) Condition 92 <= guard < 128:
 806                      * first*radix + second >= radix*left7*2^57 + second
 807                      * so that first*radix + second >= 92*2^57 + 0 > 2^63
 808                      *
 809                      * D) Condition guard < 128:
 810                      * radix*first <= (radix*left7) * 2^57 + radix*(2^57 - 1)
 811                      * so
 812                      * radix*first + second <= (radix*left7) * 2^57 + radix*(2^57 - 1) + 36
 813                      * thus
 814                      * radix*first + second < 128 * 2^57 + 36*2^57 - radix + 36
 815                      * whence
 816                      * radix*first + second < 2^64 + 2^6*2^57 = 2^64 + 2^63
 817                      *
 818                      * E) Conditions C, D, and result >= 0:
 819                      * C and D combined imply the mathematical result
 820                      * 2^63 < first*radix + second < 2^64 + 2^63. The lower
 821                      * bound is therefore negative as a signed long, but the
 822                      * upper bound is too small to overflow again after the
 823                      * signed long overflows to positive above 2^64 - 1. Hence
 824                      * result >= 0 implies overflow given C and D.
 825                      */
 826                     throw new NumberFormatException(String.format("String value %s exceeds " +
 827                                                                   "range of unsigned long.", s));
 828                 }
 829                 return result;
 830             }
 831         } else {
 832             throw NumberFormatException.forInputString(s);
 833         }
 834     }
 835 
 836     /**
 837      * Parses the string argument as an unsigned decimal {@code long}. The
 838      * characters in the string must all be decimal digits, except
 839      * that the first character may be an an ASCII plus sign {@code
 840      * '+'} ({@code '\u005Cu002B'}). The resulting integer value
 841      * is returned, exactly as if the argument and the radix 10 were
 842      * given as arguments to the {@link
 843      * #parseUnsignedLong(java.lang.String, int)} method.
 844      *
 845      * @param s   a {@code String} containing the unsigned {@code long}
 846      *            representation to be parsed
 847      * @return    the unsigned {@code long} value represented by the decimal string argument
 848      * @throws    NumberFormatException  if the string does not contain a
 849      *            parsable unsigned integer.
 850      * @since 1.8
 851      */
 852     public static long parseUnsignedLong(String s) throws NumberFormatException {
 853         return parseUnsignedLong(s, 10);
 854     }
 855 
 856     /**
 857      * Returns a {@code Long} object holding the value
 858      * extracted from the specified {@code String} when parsed
 859      * with the radix given by the second argument.  The first
 860      * argument is interpreted as representing a signed
 861      * {@code long} in the radix specified by the second
 862      * argument, exactly as if the arguments were given to the {@link
 863      * #parseLong(java.lang.String, int)} method. The result is a
 864      * {@code Long} object that represents the {@code long}
 865      * value specified by the string.
 866      *
 867      * <p>In other words, this method returns a {@code Long} object equal
 868      * to the value of:
 869      *
 870      * <blockquote>
 871      *  {@code new Long(Long.parseLong(s, radix))}
 872      * </blockquote>
 873      *
 874      * @param      s       the string to be parsed
 875      * @param      radix   the radix to be used in interpreting {@code s}
 876      * @return     a {@code Long} object holding the value
 877      *             represented by the string argument in the specified
 878      *             radix.
 879      * @throws     NumberFormatException  If the {@code String} does not
 880      *             contain a parsable {@code long}.
 881      */
 882     public static Long valueOf(String s, int radix) throws NumberFormatException {
 883         return Long.valueOf(parseLong(s, radix));
 884     }
 885 
 886     /**
 887      * Returns a {@code Long} object holding the value
 888      * of the specified {@code String}. The argument is
 889      * interpreted as representing a signed decimal {@code long},
 890      * exactly as if the argument were given to the {@link
 891      * #parseLong(java.lang.String)} method. The result is a
 892      * {@code Long} object that represents the integer value
 893      * specified by the string.
 894      *
 895      * <p>In other words, this method returns a {@code Long} object
 896      * equal to the value of:
 897      *
 898      * <blockquote>
 899      *  {@code new Long(Long.parseLong(s))}
 900      * </blockquote>
 901      *
 902      * @param      s   the string to be parsed.
 903      * @return     a {@code Long} object holding the value
 904      *             represented by the string argument.
 905      * @throws     NumberFormatException  If the string cannot be parsed
 906      *             as a {@code long}.
 907      */
 908     public static Long valueOf(String s) throws NumberFormatException
 909     {
 910         return Long.valueOf(parseLong(s, 10));
 911     }
 912 
 913     private static class LongCache {
 914         private LongCache(){}
 915 
 916         static final Long cache[] = new Long[-(-128) + 127 + 1];
 917 
 918         static {
 919             for(int i = 0; i < cache.length; i++)
 920                 cache[i] = new Long(i - 128);
 921         }
 922     }
 923 
 924     /**
 925      * Returns a {@code Long} instance representing the specified
 926      * {@code long} value.
 927      * If a new {@code Long} instance is not required, this method
 928      * should generally be used in preference to the constructor
 929      * {@link #Long(long)}, as this method is likely to yield
 930      * significantly better space and time performance by caching
 931      * frequently requested values.
 932      *
 933      * Note that unlike the {@linkplain Integer#valueOf(int)
 934      * corresponding method} in the {@code Integer} class, this method
 935      * is <em>not</em> required to cache values within a particular
 936      * range.
 937      *
 938      * @param  l a long value.
 939      * @return a {@code Long} instance representing {@code l}.
 940      * @since  1.5
 941      */
 942     public static Long valueOf(long l) {
 943         final int offset = 128;
 944         if (l >= -128 && l <= 127) { // will cache
 945             return LongCache.cache[(int)l + offset];
 946         }
 947         return new Long(l);
 948     }
 949 
 950     /**
 951      * Decodes a {@code String} into a {@code Long}.
 952      * Accepts decimal, hexadecimal, and octal numbers given by the
 953      * following grammar:
 954      *
 955      * <blockquote>
 956      * <dl>
 957      * <dt><i>DecodableString:</i>
 958      * <dd><i>Sign<sub>opt</sub> DecimalNumeral</i>
 959      * <dd><i>Sign<sub>opt</sub></i> {@code 0x} <i>HexDigits</i>
 960      * <dd><i>Sign<sub>opt</sub></i> {@code 0X} <i>HexDigits</i>
 961      * <dd><i>Sign<sub>opt</sub></i> {@code #} <i>HexDigits</i>
 962      * <dd><i>Sign<sub>opt</sub></i> {@code 0} <i>OctalDigits</i>
 963      *
 964      * <dt><i>Sign:</i>
 965      * <dd>{@code -}
 966      * <dd>{@code +}
 967      * </dl>
 968      * </blockquote>
 969      *
 970      * <i>DecimalNumeral</i>, <i>HexDigits</i>, and <i>OctalDigits</i>
 971      * are as defined in section 3.10.1 of
 972      * <cite>The Java&trade; Language Specification</cite>,
 973      * except that underscores are not accepted between digits.
 974      *
 975      * <p>The sequence of characters following an optional
 976      * sign and/or radix specifier ("{@code 0x}", "{@code 0X}",
 977      * "{@code #}", or leading zero) is parsed as by the {@code
 978      * Long.parseLong} method with the indicated radix (10, 16, or 8).
 979      * This sequence of characters must represent a positive value or
 980      * a {@link NumberFormatException} will be thrown.  The result is
 981      * negated if first character of the specified {@code String} is
 982      * the minus sign.  No whitespace characters are permitted in the
 983      * {@code String}.
 984      *
 985      * @param     nm the {@code String} to decode.
 986      * @return    a {@code Long} object holding the {@code long}
 987      *            value represented by {@code nm}
 988      * @throws    NumberFormatException  if the {@code String} does not
 989      *            contain a parsable {@code long}.
 990      * @see java.lang.Long#parseLong(String, int)
 991      * @since 1.2
 992      */
 993     public static Long decode(String nm) throws NumberFormatException {
 994         int radix = 10;
 995         int index = 0;
 996         boolean negative = false;
 997         Long result;
 998 
 999         if (nm.length() == 0)
1000             throw new NumberFormatException("Zero length string");
1001         char firstChar = nm.charAt(0);
1002         // Handle sign, if present
1003         if (firstChar == '-') {
1004             negative = true;
1005             index++;
1006         } else if (firstChar == '+')
1007             index++;
1008 
1009         // Handle radix specifier, if present
1010         if (nm.startsWith("0x", index) || nm.startsWith("0X", index)) {
1011             index += 2;
1012             radix = 16;
1013         }
1014         else if (nm.startsWith("#", index)) {
1015             index ++;
1016             radix = 16;
1017         }
1018         else if (nm.startsWith("0", index) && nm.length() > 1 + index) {
1019             index ++;
1020             radix = 8;
1021         }
1022 
1023         if (nm.startsWith("-", index) || nm.startsWith("+", index))
1024             throw new NumberFormatException("Sign character in wrong position");
1025 
1026         try {
1027             result = Long.valueOf(nm.substring(index), radix);
1028             result = negative ? Long.valueOf(-result.longValue()) : result;
1029         } catch (NumberFormatException e) {
1030             // If number is Long.MIN_VALUE, we'll end up here. The next line
1031             // handles this case, and causes any genuine format error to be
1032             // rethrown.
1033             String constant = negative ? ("-" + nm.substring(index))
1034                                        : nm.substring(index);
1035             result = Long.valueOf(constant, radix);
1036         }
1037         return result;
1038     }
1039 
1040     /**
1041      * The value of the {@code Long}.
1042      *
1043      * @serial
1044      */
1045     private final long value;
1046 
1047     /**
1048      * Constructs a newly allocated {@code Long} object that
1049      * represents the specified {@code long} argument.
1050      *
1051      * @param   value   the value to be represented by the
1052      *          {@code Long} object.
1053      */
1054     public Long(long value) {
1055         this.value = value;
1056     }
1057 
1058     /**
1059      * Constructs a newly allocated {@code Long} object that
1060      * represents the {@code long} value indicated by the
1061      * {@code String} parameter. The string is converted to a
1062      * {@code long} value in exactly the manner used by the
1063      * {@code parseLong} method for radix 10.
1064      *
1065      * @param      s   the {@code String} to be converted to a
1066      *             {@code Long}.
1067      * @throws     NumberFormatException  if the {@code String} does not
1068      *             contain a parsable {@code long}.
1069      * @see        java.lang.Long#parseLong(java.lang.String, int)
1070      */
1071     public Long(String s) throws NumberFormatException {
1072         this.value = parseLong(s, 10);
1073     }
1074 
1075     /**
1076      * Returns the value of this {@code Long} as a {@code byte} after
1077      * a narrowing primitive conversion.
1078      * @jls 5.1.3 Narrowing Primitive Conversions
1079      */
1080     public byte byteValue() {
1081         return (byte)value;
1082     }
1083 
1084     /**
1085      * Returns the value of this {@code Long} as a {@code short} after
1086      * a narrowing primitive conversion.
1087      * @jls 5.1.3 Narrowing Primitive Conversions
1088      */
1089     public short shortValue() {
1090         return (short)value;
1091     }
1092 
1093     /**
1094      * Returns the value of this {@code Long} as an {@code int} after
1095      * a narrowing primitive conversion.
1096      * @jls 5.1.3 Narrowing Primitive Conversions
1097      */
1098     public int intValue() {
1099         return (int)value;
1100     }
1101 
1102     /**
1103      * Returns the value of this {@code Long} as a
1104      * {@code long} value.
1105      */
1106     public long longValue() {
1107         return value;
1108     }
1109 
1110     /**
1111      * Returns the value of this {@code Long} as a {@code float} after
1112      * a widening primitive conversion.
1113      * @jls 5.1.2 Widening Primitive Conversions
1114      */
1115     public float floatValue() {
1116         return (float)value;
1117     }
1118 
1119     /**
1120      * Returns the value of this {@code Long} as a {@code double}
1121      * after a widening primitive conversion.
1122      * @jls 5.1.2 Widening Primitive Conversions
1123      */
1124     public double doubleValue() {
1125         return (double)value;
1126     }
1127 
1128     /**
1129      * Returns a {@code String} object representing this
1130      * {@code Long}'s value.  The value is converted to signed
1131      * decimal representation and returned as a string, exactly as if
1132      * the {@code long} value were given as an argument to the
1133      * {@link java.lang.Long#toString(long)} method.
1134      *
1135      * @return  a string representation of the value of this object in
1136      *          base&nbsp;10.
1137      */
1138     public String toString() {
1139         return toString(value);
1140     }
1141 
1142     /**
1143      * Returns a hash code for this {@code Long}. The result is
1144      * the exclusive OR of the two halves of the primitive
1145      * {@code long} value held by this {@code Long}
1146      * object. That is, the hashcode is the value of the expression:
1147      *
1148      * <blockquote>
1149      *  {@code (int)(this.longValue()^(this.longValue()>>>32))}
1150      * </blockquote>
1151      *
1152      * @return  a hash code value for this object.
1153      */
1154     @Override
1155     public int hashCode() {
1156         return Long.hashCode(value);
1157     }
1158 
1159     /**
1160      * Returns a hash code for a {@code long} value; compatible with
1161      * {@code Long.hashCode()}.
1162      *
1163      * @param value the value to hash
1164      * @return a hash code value for a {@code long} value.
1165      * @since 1.8
1166      */
1167     public static int hashCode(long value) {
1168         return (int)(value ^ (value >>> 32));
1169     }
1170 
1171     /**
1172      * Compares this object to the specified object.  The result is
1173      * {@code true} if and only if the argument is not
1174      * {@code null} and is a {@code Long} object that
1175      * contains the same {@code long} value as this object.
1176      *
1177      * @param   obj   the object to compare with.
1178      * @return  {@code true} if the objects are the same;
1179      *          {@code false} otherwise.
1180      */
1181     public boolean equals(Object obj) {
1182         if (obj instanceof Long) {
1183             return value == ((Long)obj).longValue();
1184         }
1185         return false;
1186     }
1187 
1188     /**
1189      * Determines the {@code long} value of the system property
1190      * with the specified name.
1191      *
1192      * <p>The first argument is treated as the name of a system
1193      * property.  System properties are accessible through the {@link
1194      * java.lang.System#getProperty(java.lang.String)} method. The
1195      * string value of this property is then interpreted as a {@code
1196      * long} value using the grammar supported by {@link Long#decode decode}
1197      * and a {@code Long} object representing this value is returned.
1198      *
1199      * <p>If there is no property with the specified name, if the
1200      * specified name is empty or {@code null}, or if the property
1201      * does not have the correct numeric format, then {@code null} is
1202      * returned.
1203      *
1204      * <p>In other words, this method returns a {@code Long} object
1205      * equal to the value of:
1206      *
1207      * <blockquote>
1208      *  {@code getLong(nm, null)}
1209      * </blockquote>
1210      *
1211      * @param   nm   property name.
1212      * @return  the {@code Long} value of the property.
1213      * @throws  SecurityException for the same reasons as
1214      *          {@link System#getProperty(String) System.getProperty}
1215      * @see     java.lang.System#getProperty(java.lang.String)
1216      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1217      */
1218     public static Long getLong(String nm) {
1219         return getLong(nm, null);
1220     }
1221 
1222     /**
1223      * Determines the {@code long} value of the system property
1224      * with the specified name.
1225      *
1226      * <p>The first argument is treated as the name of a system
1227      * property.  System properties are accessible through the {@link
1228      * java.lang.System#getProperty(java.lang.String)} method. The
1229      * string value of this property is then interpreted as a {@code
1230      * long} value using the grammar supported by {@link Long#decode decode}
1231      * and a {@code Long} object representing this value is returned.
1232      *
1233      * <p>The second argument is the default value. A {@code Long} object
1234      * that represents the value of the second argument is returned if there
1235      * is no property of the specified name, if the property does not have
1236      * the correct numeric format, or if the specified name is empty or null.
1237      *
1238      * <p>In other words, this method returns a {@code Long} object equal
1239      * to the value of:
1240      *
1241      * <blockquote>
1242      *  {@code getLong(nm, new Long(val))}
1243      * </blockquote>
1244      *
1245      * but in practice it may be implemented in a manner such as:
1246      *
1247      * <blockquote><pre>
1248      * Long result = getLong(nm, null);
1249      * return (result == null) ? new Long(val) : result;
1250      * </pre></blockquote>
1251      *
1252      * to avoid the unnecessary allocation of a {@code Long} object when
1253      * the default value is not needed.
1254      *
1255      * @param   nm    property name.
1256      * @param   val   default value.
1257      * @return  the {@code Long} value of the property.
1258      * @throws  SecurityException for the same reasons as
1259      *          {@link System#getProperty(String) System.getProperty}
1260      * @see     java.lang.System#getProperty(java.lang.String)
1261      * @see     java.lang.System#getProperty(java.lang.String, java.lang.String)
1262      */
1263     public static Long getLong(String nm, long val) {
1264         Long result = Long.getLong(nm, null);
1265         return (result == null) ? Long.valueOf(val) : result;
1266     }
1267 
1268     /**
1269      * Returns the {@code long} value of the system property with
1270      * the specified name.  The first argument is treated as the name
1271      * of a system property.  System properties are accessible through
1272      * the {@link java.lang.System#getProperty(java.lang.String)}
1273      * method. The string value of this property is then interpreted
1274      * as a {@code long} value, as per the
1275      * {@link Long#decode decode} method, and a {@code Long} object
1276      * representing this value is returned; in summary:
1277      *
1278      * <ul>
1279      * <li>If the property value begins with the two ASCII characters
1280      * {@code 0x} or the ASCII character {@code #}, not followed by
1281      * a minus sign, then the rest of it is parsed as a hexadecimal integer
1282      * exactly as for the method {@link #valueOf(java.lang.String, int)}
1283      * with radix 16.
1284      * <li>If the property value begins with the ASCII character
1285      * {@code 0} followed by another character, it is parsed as
1286      * an octal integer exactly as by the method {@link
1287      * #valueOf(java.lang.String, int)} with radix 8.
1288      * <li>Otherwise the property value is parsed as a decimal
1289      * integer exactly as by the method
1290      * {@link #valueOf(java.lang.String, int)} with radix 10.
1291      * </ul>
1292      *
1293      * <p>Note that, in every case, neither {@code L}
1294      * ({@code '\u005Cu004C'}) nor {@code l}
1295      * ({@code '\u005Cu006C'}) is permitted to appear at the end
1296      * of the property value as a type indicator, as would be
1297      * permitted in Java programming language source code.
1298      *
1299      * <p>The second argument is the default value. The default value is
1300      * returned if there is no property of the specified name, if the
1301      * property does not have the correct numeric format, or if the
1302      * specified name is empty or {@code null}.
1303      *
1304      * @param   nm   property name.
1305      * @param   val   default value.
1306      * @return  the {@code Long} value of the property.
1307      * @throws  SecurityException for the same reasons as
1308      *          {@link System#getProperty(String) System.getProperty}
1309      * @see     System#getProperty(java.lang.String)
1310      * @see     System#getProperty(java.lang.String, java.lang.String)
1311      */
1312     public static Long getLong(String nm, Long val) {
1313         String v = null;
1314         try {
1315             v = System.getProperty(nm);
1316         } catch (IllegalArgumentException | NullPointerException e) {
1317         }
1318         if (v != null) {
1319             try {
1320                 return Long.decode(v);
1321             } catch (NumberFormatException e) {
1322             }
1323         }
1324         return val;
1325     }
1326 
1327     /**
1328      * Compares two {@code Long} objects numerically.
1329      *
1330      * @param   anotherLong   the {@code Long} to be compared.
1331      * @return  the value {@code 0} if this {@code Long} is
1332      *          equal to the argument {@code Long}; a value less than
1333      *          {@code 0} if this {@code Long} is numerically less
1334      *          than the argument {@code Long}; and a value greater
1335      *          than {@code 0} if this {@code Long} is numerically
1336      *           greater than the argument {@code Long} (signed
1337      *           comparison).
1338      * @since   1.2
1339      */
1340     public int compareTo(Long anotherLong) {
1341         return compare(this.value, anotherLong.value);
1342     }
1343 
1344     /**
1345      * Compares two {@code long} values numerically.
1346      * The value returned is identical to what would be returned by:
1347      * <pre>
1348      *    Long.valueOf(x).compareTo(Long.valueOf(y))
1349      * </pre>
1350      *
1351      * @param  x the first {@code long} to compare
1352      * @param  y the second {@code long} to compare
1353      * @return the value {@code 0} if {@code x == y};
1354      *         a value less than {@code 0} if {@code x < y}; and
1355      *         a value greater than {@code 0} if {@code x > y}
1356      * @since 1.7
1357      */
1358     public static int compare(long x, long y) {
1359         return (x < y) ? -1 : ((x == y) ? 0 : 1);
1360     }
1361 
1362     /**
1363      * Compares two {@code long} values numerically treating the values
1364      * as unsigned.
1365      *
1366      * @param  x the first {@code long} to compare
1367      * @param  y the second {@code long} to compare
1368      * @return the value {@code 0} if {@code x == y}; a value less
1369      *         than {@code 0} if {@code x < y} as unsigned values; and
1370      *         a value greater than {@code 0} if {@code x > y} as
1371      *         unsigned values
1372      * @since 1.8
1373      */
1374     public static int compareUnsigned(long x, long y) {
1375         return compare(x + MIN_VALUE, y + MIN_VALUE);
1376     }
1377 
1378 
1379     /**
1380      * Returns the unsigned quotient of dividing the first argument by
1381      * the second where each argument and the result is interpreted as
1382      * an unsigned value.
1383      *
1384      * <p>Note that in two's complement arithmetic, the three other
1385      * basic arithmetic operations of add, subtract, and multiply are
1386      * bit-wise identical if the two operands are regarded as both
1387      * being signed or both being unsigned.  Therefore separate {@code
1388      * addUnsigned}, etc. methods are not provided.
1389      *
1390      * @param dividend the value to be divided
1391      * @param divisor the value doing the dividing
1392      * @return the unsigned quotient of the first argument divided by
1393      * the second argument
1394      * @see #remainderUnsigned
1395      * @since 1.8
1396      */
1397     public static long divideUnsigned(long dividend, long divisor) {
1398         if (divisor < 0L) { // signed comparison
1399             // Answer must be 0 or 1 depending on relative magnitude
1400             // of dividend and divisor.
1401             return (compareUnsigned(dividend, divisor)) < 0 ? 0L :1L;
1402         }
1403 
1404         if (dividend > 0) //  Both inputs non-negative
1405             return dividend/divisor;
1406         else {
1407             /*
1408              * For simple code, leveraging BigInteger.  Longer and faster
1409              * code written directly in terms of operations on longs is
1410              * possible; see "Hacker's Delight" for divide and remainder
1411              * algorithms.
1412              */
1413             return toUnsignedBigInteger(dividend).
1414                 divide(toUnsignedBigInteger(divisor)).longValue();
1415         }
1416     }
1417 
1418     /**
1419      * Returns the unsigned remainder from dividing the first argument
1420      * by the second where each argument and the result is interpreted
1421      * as an unsigned value.
1422      *
1423      * @param dividend the value to be divided
1424      * @param divisor the value doing the dividing
1425      * @return the unsigned remainder of the first argument divided by
1426      * the second argument
1427      * @see #divideUnsigned
1428      * @since 1.8
1429      */
1430     public static long remainderUnsigned(long dividend, long divisor) {
1431         if (dividend > 0 && divisor > 0) { // signed comparisons
1432             return dividend % divisor;
1433         } else {
1434             if (compareUnsigned(dividend, divisor) < 0) // Avoid explicit check for 0 divisor
1435                 return dividend;
1436             else
1437                 return toUnsignedBigInteger(dividend).
1438                     remainder(toUnsignedBigInteger(divisor)).longValue();
1439         }
1440     }
1441 
1442     // Bit Twiddling
1443 
1444     /**
1445      * The number of bits used to represent a {@code long} value in two's
1446      * complement binary form.
1447      *
1448      * @since 1.5
1449      */
1450     @Native public static final int SIZE = 64;
1451 
1452     /**
1453      * The number of bytes used to represent a {@code long} value in two's
1454      * complement binary form.
1455      *
1456      * @since 1.8
1457      */
1458     public static final int BYTES = SIZE / Byte.SIZE;
1459 
1460     /**
1461      * Returns a {@code long} value with at most a single one-bit, in the
1462      * position of the highest-order ("leftmost") one-bit in the specified
1463      * {@code long} value.  Returns zero if the specified value has no
1464      * one-bits in its two's complement binary representation, that is, if it
1465      * is equal to zero.
1466      *
1467      * @param i the value whose highest one bit is to be computed
1468      * @return a {@code long} value with a single one-bit, in the position
1469      *     of the highest-order one-bit in the specified value, or zero if
1470      *     the specified value is itself equal to zero.
1471      * @since 1.5
1472      */
1473     public static long highestOneBit(long i) {
1474         // HD, Figure 3-1
1475         i |= (i >>  1);
1476         i |= (i >>  2);
1477         i |= (i >>  4);
1478         i |= (i >>  8);
1479         i |= (i >> 16);
1480         i |= (i >> 32);
1481         return i - (i >>> 1);
1482     }
1483 
1484     /**
1485      * Returns a {@code long} value with at most a single one-bit, in the
1486      * position of the lowest-order ("rightmost") one-bit in the specified
1487      * {@code long} value.  Returns zero if the specified value has no
1488      * one-bits in its two's complement binary representation, that is, if it
1489      * is equal to zero.
1490      *
1491      * @param i the value whose lowest one bit is to be computed
1492      * @return a {@code long} value with a single one-bit, in the position
1493      *     of the lowest-order one-bit in the specified value, or zero if
1494      *     the specified value is itself equal to zero.
1495      * @since 1.5
1496      */
1497     public static long lowestOneBit(long i) {
1498         // HD, Section 2-1
1499         return i & -i;
1500     }
1501 
1502     /**
1503      * Returns the number of zero bits preceding the highest-order
1504      * ("leftmost") one-bit in the two's complement binary representation
1505      * of the specified {@code long} value.  Returns 64 if the
1506      * specified value has no one-bits in its two's complement representation,
1507      * in other words if it is equal to zero.
1508      *
1509      * <p>Note that this method is closely related to the logarithm base 2.
1510      * For all positive {@code long} values x:
1511      * <ul>
1512      * <li>floor(log<sub>2</sub>(x)) = {@code 63 - numberOfLeadingZeros(x)}
1513      * <li>ceil(log<sub>2</sub>(x)) = {@code 64 - numberOfLeadingZeros(x - 1)}
1514      * </ul>
1515      *
1516      * @param i the value whose number of leading zeros is to be computed
1517      * @return the number of zero bits preceding the highest-order
1518      *     ("leftmost") one-bit in the two's complement binary representation
1519      *     of the specified {@code long} value, or 64 if the value
1520      *     is equal to zero.
1521      * @since 1.5
1522      */
1523     public static int numberOfLeadingZeros(long i) {
1524         // HD, Figure 5-6
1525          if (i == 0)
1526             return 64;
1527         int n = 1;
1528         int x = (int)(i >>> 32);
1529         if (x == 0) { n += 32; x = (int)i; }
1530         if (x >>> 16 == 0) { n += 16; x <<= 16; }
1531         if (x >>> 24 == 0) { n +=  8; x <<=  8; }
1532         if (x >>> 28 == 0) { n +=  4; x <<=  4; }
1533         if (x >>> 30 == 0) { n +=  2; x <<=  2; }
1534         n -= x >>> 31;
1535         return n;
1536     }
1537 
1538     /**
1539      * Returns the number of zero bits following the lowest-order ("rightmost")
1540      * one-bit in the two's complement binary representation of the specified
1541      * {@code long} value.  Returns 64 if the specified value has no
1542      * one-bits in its two's complement representation, in other words if it is
1543      * equal to zero.
1544      *
1545      * @param i the value whose number of trailing zeros is to be computed
1546      * @return the number of zero bits following the lowest-order ("rightmost")
1547      *     one-bit in the two's complement binary representation of the
1548      *     specified {@code long} value, or 64 if the value is equal
1549      *     to zero.
1550      * @since 1.5
1551      */
1552     public static int numberOfTrailingZeros(long i) {
1553         // HD, Figure 5-14
1554         int x, y;
1555         if (i == 0) return 64;
1556         int n = 63;
1557         y = (int)i; if (y != 0) { n = n -32; x = y; } else x = (int)(i>>>32);
1558         y = x <<16; if (y != 0) { n = n -16; x = y; }
1559         y = x << 8; if (y != 0) { n = n - 8; x = y; }
1560         y = x << 4; if (y != 0) { n = n - 4; x = y; }
1561         y = x << 2; if (y != 0) { n = n - 2; x = y; }
1562         return n - ((x << 1) >>> 31);
1563     }
1564 
1565     /**
1566      * Returns the number of one-bits in the two's complement binary
1567      * representation of the specified {@code long} value.  This function is
1568      * sometimes referred to as the <i>population count</i>.
1569      *
1570      * @param i the value whose bits are to be counted
1571      * @return the number of one-bits in the two's complement binary
1572      *     representation of the specified {@code long} value.
1573      * @since 1.5
1574      */
1575      public static int bitCount(long i) {
1576         // HD, Figure 5-14
1577         i = i - ((i >>> 1) & 0x5555555555555555L);
1578         i = (i & 0x3333333333333333L) + ((i >>> 2) & 0x3333333333333333L);
1579         i = (i + (i >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
1580         i = i + (i >>> 8);
1581         i = i + (i >>> 16);
1582         i = i + (i >>> 32);
1583         return (int)i & 0x7f;
1584      }
1585 
1586     /**
1587      * Returns the value obtained by rotating the two's complement binary
1588      * representation of the specified {@code long} value left by the
1589      * specified number of bits.  (Bits shifted out of the left hand, or
1590      * high-order, side reenter on the right, or low-order.)
1591      *
1592      * <p>Note that left rotation with a negative distance is equivalent to
1593      * right rotation: {@code rotateLeft(val, -distance) == rotateRight(val,
1594      * distance)}.  Note also that rotation by any multiple of 64 is a
1595      * no-op, so all but the last six bits of the rotation distance can be
1596      * ignored, even if the distance is negative: {@code rotateLeft(val,
1597      * distance) == rotateLeft(val, distance & 0x3F)}.
1598      *
1599      * @param i the value whose bits are to be rotated left
1600      * @param distance the number of bit positions to rotate left
1601      * @return the value obtained by rotating the two's complement binary
1602      *     representation of the specified {@code long} value left by the
1603      *     specified number of bits.
1604      * @since 1.5
1605      */
1606     public static long rotateLeft(long i, int distance) {
1607         return (i << distance) | (i >>> -distance);
1608     }
1609 
1610     /**
1611      * Returns the value obtained by rotating the two's complement binary
1612      * representation of the specified {@code long} value right by the
1613      * specified number of bits.  (Bits shifted out of the right hand, or
1614      * low-order, side reenter on the left, or high-order.)
1615      *
1616      * <p>Note that right rotation with a negative distance is equivalent to
1617      * left rotation: {@code rotateRight(val, -distance) == rotateLeft(val,
1618      * distance)}.  Note also that rotation by any multiple of 64 is a
1619      * no-op, so all but the last six bits of the rotation distance can be
1620      * ignored, even if the distance is negative: {@code rotateRight(val,
1621      * distance) == rotateRight(val, distance & 0x3F)}.
1622      *
1623      * @param i the value whose bits are to be rotated right
1624      * @param distance the number of bit positions to rotate right
1625      * @return the value obtained by rotating the two's complement binary
1626      *     representation of the specified {@code long} value right by the
1627      *     specified number of bits.
1628      * @since 1.5
1629      */
1630     public static long rotateRight(long i, int distance) {
1631         return (i >>> distance) | (i << -distance);
1632     }
1633 
1634     /**
1635      * Returns the value obtained by reversing the order of the bits in the
1636      * two's complement binary representation of the specified {@code long}
1637      * value.
1638      *
1639      * @param i the value to be reversed
1640      * @return the value obtained by reversing order of the bits in the
1641      *     specified {@code long} value.
1642      * @since 1.5
1643      */
1644     public static long reverse(long i) {
1645         // HD, Figure 7-1
1646         i = (i & 0x5555555555555555L) << 1 | (i >>> 1) & 0x5555555555555555L;
1647         i = (i & 0x3333333333333333L) << 2 | (i >>> 2) & 0x3333333333333333L;
1648         i = (i & 0x0f0f0f0f0f0f0f0fL) << 4 | (i >>> 4) & 0x0f0f0f0f0f0f0f0fL;
1649         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1650         i = (i << 48) | ((i & 0xffff0000L) << 16) |
1651             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1652         return i;
1653     }
1654 
1655     /**
1656      * Returns the signum function of the specified {@code long} value.  (The
1657      * return value is -1 if the specified value is negative; 0 if the
1658      * specified value is zero; and 1 if the specified value is positive.)
1659      *
1660      * @param i the value whose signum is to be computed
1661      * @return the signum function of the specified {@code long} value.
1662      * @since 1.5
1663      */
1664     public static int signum(long i) {
1665         // HD, Section 2-7
1666         return (int) ((i >> 63) | (-i >>> 63));
1667     }
1668 
1669     /**
1670      * Returns the value obtained by reversing the order of the bytes in the
1671      * two's complement representation of the specified {@code long} value.
1672      *
1673      * @param i the value whose bytes are to be reversed
1674      * @return the value obtained by reversing the bytes in the specified
1675      *     {@code long} value.
1676      * @since 1.5
1677      */
1678     public static long reverseBytes(long i) {
1679         i = (i & 0x00ff00ff00ff00ffL) << 8 | (i >>> 8) & 0x00ff00ff00ff00ffL;
1680         return (i << 48) | ((i & 0xffff0000L) << 16) |
1681             ((i >>> 16) & 0xffff0000L) | (i >>> 48);
1682     }
1683 
1684     /**
1685      * Adds two {@code long} values together as per the + operator.
1686      *
1687      * @param a the first operand
1688      * @param b the second operand
1689      * @return the sum of {@code a} and {@code b}
1690      * @see java.util.function.BinaryOperator
1691      * @since 1.8
1692      */
1693     public static long sum(long a, long b) {
1694         return a + b;
1695     }
1696 
1697     /**
1698      * Returns the greater of two {@code long} values
1699      * as if by calling {@link Math#max(long, long) Math.max}.
1700      *
1701      * @param a the first operand
1702      * @param b the second operand
1703      * @return the greater of {@code a} and {@code b}
1704      * @see java.util.function.BinaryOperator
1705      * @since 1.8
1706      */
1707     public static long max(long a, long b) {
1708         return Math.max(a, b);
1709     }
1710 
1711     /**
1712      * Returns the smaller of two {@code long} values
1713      * as if by calling {@link Math#min(long, long) Math.min}.
1714      *
1715      * @param a the first operand
1716      * @param b the second operand
1717      * @return the smaller of {@code a} and {@code b}
1718      * @see java.util.function.BinaryOperator
1719      * @since 1.8
1720      */
1721     public static long min(long a, long b) {
1722         return Math.min(a, b);
1723     }
1724 
1725     /** use serialVersionUID from JDK 1.0.2 for interoperability */
1726     @Native private static final long serialVersionUID = 4290774380558885855L;
1727 }