1 /*
   2  * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.math.FloatingDecimal;
  29 import java.util.Arrays;
  30 import java.util.Spliterator;
  31 import java.util.stream.IntStream;
  32 import java.util.stream.StreamSupport;
  33 
  34 import static java.lang.String.COMPACT_STRINGS;
  35 import static java.lang.String.UTF16;
  36 import static java.lang.String.LATIN1;
  37 import static java.lang.String.checkIndex;
  38 import static java.lang.String.checkOffset;
  39 
  40 /**
  41  * A mutable sequence of characters.
  42  * <p>
  43  * Implements a modifiable string. At any point in time it contains some
  44  * particular sequence of characters, but the length and content of the
  45  * sequence can be changed through certain method calls.
  46  *
  47  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
  48  * or method in this class will cause a {@link NullPointerException} to be
  49  * thrown.
  50  *
  51  * @author      Michael McCloskey
  52  * @author      Martin Buchholz
  53  * @author      Ulf Zibis
  54  * @since       1.5
  55  */
  56 abstract class AbstractStringBuilder implements Appendable, CharSequence {
  57     /**
  58      * The value is used for character storage.
  59      */
  60     byte[] value;
  61 
  62     /**
  63      * The id of the encoding used to encode the bytes in {@code value}.
  64      */
  65     byte coder;
  66 
  67     /**
  68      * The count is the number of characters used.
  69      */
  70     int count;
  71 
  72     private static final byte[] EMPTYVALUE = new byte[0];
  73 
  74     /**
  75      * This no-arg constructor is necessary for serialization of subclasses.
  76      */
  77     AbstractStringBuilder() {
  78         value = EMPTYVALUE;
  79     }
  80 
  81     /**
  82      * Creates an AbstractStringBuilder of the specified capacity.
  83      */
  84     AbstractStringBuilder(int capacity) {
  85         if (COMPACT_STRINGS) {
  86             value = new byte[capacity];
  87             coder = LATIN1;
  88         } else {
  89             value = StringUTF16.newBytesFor(capacity);
  90             coder = UTF16;
  91         }
  92     }
  93 
  94     /**
  95      * Constructs an AbstractStringBuilder that contains the same characters
  96      * as the specified {@code String}. The initial capacity of
  97      * the string builder is {@code 16} plus the length of the
  98      * {@code String} argument.
  99      *
 100      * @param      str   the string to copy.
 101      */
 102     AbstractStringBuilder(String str) {
 103         int length = str.length();
 104         int capacity = (length < Integer.MAX_VALUE - 16)
 105                 ? length + 16 : Integer.MAX_VALUE;
 106         final byte initCoder = str.coder();
 107         coder = initCoder;
 108         value = (initCoder == LATIN1)
 109                 ? new byte[capacity] : StringUTF16.newBytesFor(capacity);
 110         append(str);
 111     }
 112 
 113     /**
 114      * Constructs an AbstractStringBuilder that contains the same characters
 115      * as the specified {@code CharSequence}. The initial capacity of
 116      * the string builder is {@code 16} plus the length of the
 117      * {@code CharSequence} argument.
 118      *
 119      * @param      seq   the sequence to copy.
 120      */
 121     AbstractStringBuilder(CharSequence seq) {
 122         int length = seq.length();
 123         if (length < 0) {
 124             throw new NegativeArraySizeException("Negative length: " + length);
 125         }
 126         int capacity = (length < Integer.MAX_VALUE - 16)
 127                 ? length + 16 : Integer.MAX_VALUE;
 128 
 129         final byte initCoder;
 130         if (COMPACT_STRINGS) {
 131             if (seq instanceof String) {
 132                 initCoder = ((String)seq).coder();
 133             } else if (seq instanceof AbstractStringBuilder) {
 134                 initCoder = ((AbstractStringBuilder)seq).getCoder();
 135             } else {
 136                 initCoder = LATIN1;
 137             }
 138         } else {
 139             initCoder = UTF16;
 140         }
 141 
 142         coder = initCoder;
 143         value = (initCoder == LATIN1)
 144                 ? new byte[capacity] : StringUTF16.newBytesFor(capacity);
 145         append(seq);
 146     }
 147 
 148     /**
 149      * Compares the objects of two AbstractStringBuilder implementations lexicographically.
 150      *
 151      * @since 11
 152      */
 153     int compareTo(AbstractStringBuilder another) {
 154         if (this == another) {
 155             return 0;
 156         }
 157 
 158         byte val1[] = value;
 159         byte val2[] = another.value;
 160         int count1 = this.count;
 161         int count2 = another.count;
 162 
 163         if (coder == another.coder) {
 164             return isLatin1() ? StringLatin1.compareTo(val1, val2, count1, count2)
 165                               : StringUTF16.compareTo(val1, val2, count1, count2);
 166         }
 167         return isLatin1() ? StringLatin1.compareToUTF16(val1, val2, count1, count2)
 168                           : StringUTF16.compareToLatin1(val1, val2, count1, count2);
 169     }
 170 
 171     /**
 172      * Returns the length (character count).
 173      *
 174      * @return  the length of the sequence of characters currently
 175      *          represented by this object
 176      */
 177     @Override
 178     public int length() {
 179         return count;
 180     }
 181 
 182     /**
 183      * Returns the current capacity. The capacity is the amount of storage
 184      * available for newly inserted characters, beyond which an allocation
 185      * will occur.
 186      *
 187      * @return  the current capacity
 188      */
 189     public int capacity() {
 190         return value.length >> coder;
 191     }
 192 
 193     /**
 194      * Ensures that the capacity is at least equal to the specified minimum.
 195      * If the current capacity is less than the argument, then a new internal
 196      * array is allocated with greater capacity. The new capacity is the
 197      * larger of:
 198      * <ul>
 199      * <li>The {@code minimumCapacity} argument.
 200      * <li>Twice the old capacity, plus {@code 2}.
 201      * </ul>
 202      * If the {@code minimumCapacity} argument is nonpositive, this
 203      * method takes no action and simply returns.
 204      * Note that subsequent operations on this object can reduce the
 205      * actual capacity below that requested here.
 206      *
 207      * @param   minimumCapacity   the minimum desired capacity.
 208      */
 209     public void ensureCapacity(int minimumCapacity) {
 210         if (minimumCapacity > 0) {
 211             ensureCapacityInternal(minimumCapacity);
 212         }
 213     }
 214 
 215     /**
 216      * For positive values of {@code minimumCapacity}, this method
 217      * behaves like {@code ensureCapacity}, however it is never
 218      * synchronized.
 219      * If {@code minimumCapacity} is non positive due to numeric
 220      * overflow, this method throws {@code OutOfMemoryError}.
 221      */
 222     private void ensureCapacityInternal(int minimumCapacity) {
 223         // overflow-conscious code
 224         int oldCapacity = value.length >> coder;
 225         if (minimumCapacity - oldCapacity > 0) {
 226             value = Arrays.copyOf(value,
 227                     newCapacity(minimumCapacity) << coder);
 228         }
 229     }
 230 
 231     /**
 232      * The maximum size of array to allocate (unless necessary).
 233      * Some VMs reserve some header words in an array.
 234      * Attempts to allocate larger arrays may result in
 235      * OutOfMemoryError: Requested array size exceeds VM limit
 236      */
 237     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 238 
 239     /**
 240      * Returns a capacity at least as large as the given minimum capacity.
 241      * Returns the current capacity increased by the same amount + 2 if
 242      * that suffices.
 243      * Will not return a capacity greater than
 244      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
 245      * is greater than that.
 246      *
 247      * @param  minCapacity the desired minimum capacity
 248      * @throws OutOfMemoryError if minCapacity is less than zero or
 249      *         greater than (Integer.MAX_VALUE >> coder)
 250      */
 251     private int newCapacity(int minCapacity) {
 252         // overflow-conscious code
 253         int oldCapacity = value.length >> coder;
 254         int newCapacity = (oldCapacity << 1) + 2;
 255         if (newCapacity - minCapacity < 0) {
 256             newCapacity = minCapacity;
 257         }
 258         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 259         return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
 260             ? hugeCapacity(minCapacity)
 261             : newCapacity;
 262     }
 263 
 264     private int hugeCapacity(int minCapacity) {
 265         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 266         int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
 267         if (UNSAFE_BOUND - minCapacity < 0) { // overflow
 268             throw new OutOfMemoryError();
 269         }
 270         return (minCapacity > SAFE_BOUND)
 271             ? minCapacity : SAFE_BOUND;
 272     }
 273 
 274     /**
 275      * If the coder is "isLatin1", this inflates the internal 8-bit storage
 276      * to 16-bit <hi=0, low> pair storage.
 277      */
 278     private void inflate() {
 279         if (!isLatin1()) {
 280             return;
 281         }
 282         byte[] buf = StringUTF16.newBytesFor(value.length);
 283         StringLatin1.inflate(value, 0, buf, 0, count);
 284         this.value = buf;
 285         this.coder = UTF16;
 286     }
 287 
 288     /**
 289      * Attempts to reduce storage used for the character sequence.
 290      * If the buffer is larger than necessary to hold its current sequence of
 291      * characters, then it may be resized to become more space efficient.
 292      * Calling this method may, but is not required to, affect the value
 293      * returned by a subsequent call to the {@link #capacity()} method.
 294      */
 295     public void trimToSize() {
 296         int length = count << coder;
 297         if (length < value.length) {
 298             value = Arrays.copyOf(value, length);
 299         }
 300     }
 301 
 302     /**
 303      * Sets the length of the character sequence.
 304      * The sequence is changed to a new character sequence
 305      * whose length is specified by the argument. For every nonnegative
 306      * index <i>k</i> less than {@code newLength}, the character at
 307      * index <i>k</i> in the new character sequence is the same as the
 308      * character at index <i>k</i> in the old sequence if <i>k</i> is less
 309      * than the length of the old character sequence; otherwise, it is the
 310      * null character {@code '\u005Cu0000'}.
 311      *
 312      * In other words, if the {@code newLength} argument is less than
 313      * the current length, the length is changed to the specified length.
 314      * <p>
 315      * If the {@code newLength} argument is greater than or equal
 316      * to the current length, sufficient null characters
 317      * ({@code '\u005Cu0000'}) are appended so that
 318      * length becomes the {@code newLength} argument.
 319      * <p>
 320      * The {@code newLength} argument must be greater than or equal
 321      * to {@code 0}.
 322      *
 323      * @param      newLength   the new length
 324      * @throws     IndexOutOfBoundsException  if the
 325      *               {@code newLength} argument is negative.
 326      */
 327     public void setLength(int newLength) {
 328         if (newLength < 0) {
 329             throw new StringIndexOutOfBoundsException(newLength);
 330         }
 331         ensureCapacityInternal(newLength);
 332         if (count < newLength) {
 333             if (isLatin1()) {
 334                 StringLatin1.fillNull(value, count, newLength);
 335             } else {
 336                 StringUTF16.fillNull(value, count, newLength);
 337             }
 338         }
 339         count = newLength;
 340     }
 341 
 342     /**
 343      * Returns the {@code char} value in this sequence at the specified index.
 344      * The first {@code char} value is at index {@code 0}, the next at index
 345      * {@code 1}, and so on, as in array indexing.
 346      * <p>
 347      * The index argument must be greater than or equal to
 348      * {@code 0}, and less than the length of this sequence.
 349      *
 350      * <p>If the {@code char} value specified by the index is a
 351      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 352      * value is returned.
 353      *
 354      * @param      index   the index of the desired {@code char} value.
 355      * @return     the {@code char} value at the specified index.
 356      * @throws     IndexOutOfBoundsException  if {@code index} is
 357      *             negative or greater than or equal to {@code length()}.
 358      */
 359     @Override
 360     public char charAt(int index) {
 361         checkIndex(index, count);
 362         if (isLatin1()) {
 363             return (char)(value[index] & 0xff);
 364         }
 365         return StringUTF16.charAt(value, index);
 366     }
 367 
 368     /**
 369      * Returns the character (Unicode code point) at the specified
 370      * index. The index refers to {@code char} values
 371      * (Unicode code units) and ranges from {@code 0} to
 372      * {@link #length()}{@code  - 1}.
 373      *
 374      * <p> If the {@code char} value specified at the given index
 375      * is in the high-surrogate range, the following index is less
 376      * than the length of this sequence, and the
 377      * {@code char} value at the following index is in the
 378      * low-surrogate range, then the supplementary code point
 379      * corresponding to this surrogate pair is returned. Otherwise,
 380      * the {@code char} value at the given index is returned.
 381      *
 382      * @param      index the index to the {@code char} values
 383      * @return     the code point value of the character at the
 384      *             {@code index}
 385      * @throws     IndexOutOfBoundsException  if the {@code index}
 386      *             argument is negative or not less than the length of this
 387      *             sequence.
 388      */
 389     public int codePointAt(int index) {
 390         int count = this.count;
 391         byte[] value = this.value;
 392         checkIndex(index, count);
 393         if (isLatin1()) {
 394             return value[index] & 0xff;
 395         }
 396         return StringUTF16.codePointAtSB(value, index, count);
 397     }
 398 
 399     /**
 400      * Returns the character (Unicode code point) before the specified
 401      * index. The index refers to {@code char} values
 402      * (Unicode code units) and ranges from {@code 1} to {@link
 403      * #length()}.
 404      *
 405      * <p> If the {@code char} value at {@code (index - 1)}
 406      * is in the low-surrogate range, {@code (index - 2)} is not
 407      * negative, and the {@code char} value at {@code (index -
 408      * 2)} is in the high-surrogate range, then the
 409      * supplementary code point value of the surrogate pair is
 410      * returned. If the {@code char} value at {@code index -
 411      * 1} is an unpaired low-surrogate or a high-surrogate, the
 412      * surrogate value is returned.
 413      *
 414      * @param     index the index following the code point that should be returned
 415      * @return    the Unicode code point value before the given index.
 416      * @throws    IndexOutOfBoundsException if the {@code index}
 417      *            argument is less than 1 or greater than the length
 418      *            of this sequence.
 419      */
 420     public int codePointBefore(int index) {
 421         int i = index - 1;
 422         if (i < 0 || i >= count) {
 423             throw new StringIndexOutOfBoundsException(index);
 424         }
 425         if (isLatin1()) {
 426             return value[i] & 0xff;
 427         }
 428         return StringUTF16.codePointBeforeSB(value, index);
 429     }
 430 
 431     /**
 432      * Returns the number of Unicode code points in the specified text
 433      * range of this sequence. The text range begins at the specified
 434      * {@code beginIndex} and extends to the {@code char} at
 435      * index {@code endIndex - 1}. Thus the length (in
 436      * {@code char}s) of the text range is
 437      * {@code endIndex-beginIndex}. Unpaired surrogates within
 438      * this sequence count as one code point each.
 439      *
 440      * @param beginIndex the index to the first {@code char} of
 441      * the text range.
 442      * @param endIndex the index after the last {@code char} of
 443      * the text range.
 444      * @return the number of Unicode code points in the specified text
 445      * range
 446      * @throws    IndexOutOfBoundsException if the
 447      * {@code beginIndex} is negative, or {@code endIndex}
 448      * is larger than the length of this sequence, or
 449      * {@code beginIndex} is larger than {@code endIndex}.
 450      */
 451     public int codePointCount(int beginIndex, int endIndex) {
 452         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
 453             throw new IndexOutOfBoundsException();
 454         }
 455         if (isLatin1()) {
 456             return endIndex - beginIndex;
 457         }
 458         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
 459     }
 460 
 461     /**
 462      * Returns the index within this sequence that is offset from the
 463      * given {@code index} by {@code codePointOffset} code
 464      * points. Unpaired surrogates within the text range given by
 465      * {@code index} and {@code codePointOffset} count as
 466      * one code point each.
 467      *
 468      * @param index the index to be offset
 469      * @param codePointOffset the offset in code points
 470      * @return the index within this sequence
 471      * @throws    IndexOutOfBoundsException if {@code index}
 472      *   is negative or larger then the length of this sequence,
 473      *   or if {@code codePointOffset} is positive and the subsequence
 474      *   starting with {@code index} has fewer than
 475      *   {@code codePointOffset} code points,
 476      *   or if {@code codePointOffset} is negative and the subsequence
 477      *   before {@code index} has fewer than the absolute value of
 478      *   {@code codePointOffset} code points.
 479      */
 480     public int offsetByCodePoints(int index, int codePointOffset) {
 481         if (index < 0 || index > count) {
 482             throw new IndexOutOfBoundsException();
 483         }
 484         return Character.offsetByCodePoints(this,
 485                                             index, codePointOffset);
 486     }
 487 
 488     /**
 489      * Characters are copied from this sequence into the
 490      * destination character array {@code dst}. The first character to
 491      * be copied is at index {@code srcBegin}; the last character to
 492      * be copied is at index {@code srcEnd-1}. The total number of
 493      * characters to be copied is {@code srcEnd-srcBegin}. The
 494      * characters are copied into the subarray of {@code dst} starting
 495      * at index {@code dstBegin} and ending at index:
 496      * <pre>{@code
 497      * dstbegin + (srcEnd-srcBegin) - 1
 498      * }</pre>
 499      *
 500      * @param      srcBegin   start copying at this offset.
 501      * @param      srcEnd     stop copying at this offset.
 502      * @param      dst        the array to copy the data into.
 503      * @param      dstBegin   offset into {@code dst}.
 504      * @throws     IndexOutOfBoundsException  if any of the following is true:
 505      *             <ul>
 506      *             <li>{@code srcBegin} is negative
 507      *             <li>{@code dstBegin} is negative
 508      *             <li>the {@code srcBegin} argument is greater than
 509      *             the {@code srcEnd} argument.
 510      *             <li>{@code srcEnd} is greater than
 511      *             {@code this.length()}.
 512      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
 513      *             {@code dst.length}
 514      *             </ul>
 515      */
 516     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
 517     {
 518         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
 519         int n = srcEnd - srcBegin;
 520         checkRange(dstBegin, dstBegin + n, dst.length);
 521         if (isLatin1()) {
 522             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 523         } else {
 524             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 525         }
 526     }
 527 
 528     /**
 529      * The character at the specified index is set to {@code ch}. This
 530      * sequence is altered to represent a new character sequence that is
 531      * identical to the old character sequence, except that it contains the
 532      * character {@code ch} at position {@code index}.
 533      * <p>
 534      * The index argument must be greater than or equal to
 535      * {@code 0}, and less than the length of this sequence.
 536      *
 537      * @param      index   the index of the character to modify.
 538      * @param      ch      the new character.
 539      * @throws     IndexOutOfBoundsException  if {@code index} is
 540      *             negative or greater than or equal to {@code length()}.
 541      */
 542     public void setCharAt(int index, char ch) {
 543         checkIndex(index, count);
 544         if (isLatin1() && StringLatin1.canEncode(ch)) {
 545             value[index] = (byte)ch;
 546         } else {
 547             if (isLatin1()) {
 548                 inflate();
 549             }
 550             StringUTF16.putCharSB(value, index, ch);
 551         }
 552     }
 553 
 554     /**
 555      * Appends the string representation of the {@code Object} argument.
 556      * <p>
 557      * The overall effect is exactly as if the argument were converted
 558      * to a string by the method {@link String#valueOf(Object)},
 559      * and the characters of that string were then
 560      * {@link #append(String) appended} to this character sequence.
 561      *
 562      * @param   obj   an {@code Object}.
 563      * @return  a reference to this object.
 564      */
 565     public AbstractStringBuilder append(Object obj) {
 566         return append(String.valueOf(obj));
 567     }
 568 
 569     /**
 570      * Appends the specified string to this character sequence.
 571      * <p>
 572      * The characters of the {@code String} argument are appended, in
 573      * order, increasing the length of this sequence by the length of the
 574      * argument. If {@code str} is {@code null}, then the four
 575      * characters {@code "null"} are appended.
 576      * <p>
 577      * Let <i>n</i> be the length of this character sequence just prior to
 578      * execution of the {@code append} method. Then the character at
 579      * index <i>k</i> in the new character sequence is equal to the character
 580      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
 581      * than <i>n</i>; otherwise, it is equal to the character at index
 582      * <i>k-n</i> in the argument {@code str}.
 583      *
 584      * @param   str   a string.
 585      * @return  a reference to this object.
 586      */
 587     public AbstractStringBuilder append(String str) {
 588         if (str == null) {
 589             return appendNull();
 590         }
 591         int len = str.length();
 592         ensureCapacityInternal(count + len);
 593         putStringAt(count, str);
 594         count += len;
 595         return this;
 596     }
 597 
 598     // Documentation in subclasses because of synchro difference
 599     public AbstractStringBuilder append(StringBuffer sb) {
 600         return this.append((AbstractStringBuilder)sb);
 601     }
 602 
 603     /**
 604      * @since 1.8
 605      */
 606     AbstractStringBuilder append(AbstractStringBuilder asb) {
 607         if (asb == null) {
 608             return appendNull();
 609         }
 610         int len = asb.length();
 611         ensureCapacityInternal(count + len);
 612         if (getCoder() != asb.getCoder()) {
 613             inflate();
 614         }
 615         asb.getBytes(value, count, coder);
 616         count += len;
 617         return this;
 618     }
 619 
 620     // Documentation in subclasses because of synchro difference
 621     @Override
 622     public AbstractStringBuilder append(CharSequence s) {
 623         if (s == null) {
 624             return appendNull();
 625         }
 626         if (s instanceof String) {
 627             return this.append((String)s);
 628         }
 629         if (s instanceof AbstractStringBuilder) {
 630             return this.append((AbstractStringBuilder)s);
 631         }
 632         return this.append(s, 0, s.length());
 633     }
 634 
 635     private AbstractStringBuilder appendNull() {
 636         ensureCapacityInternal(count + 4);
 637         int count = this.count;
 638         byte[] val = this.value;
 639         if (isLatin1()) {
 640             val[count++] = 'n';
 641             val[count++] = 'u';
 642             val[count++] = 'l';
 643             val[count++] = 'l';
 644         } else {
 645             count = StringUTF16.putCharsAt(val, count, 'n', 'u', 'l', 'l');
 646         }
 647         this.count = count;
 648         return this;
 649     }
 650 
 651     /**
 652      * Appends a subsequence of the specified {@code CharSequence} to this
 653      * sequence.
 654      * <p>
 655      * Characters of the argument {@code s}, starting at
 656      * index {@code start}, are appended, in order, to the contents of
 657      * this sequence up to the (exclusive) index {@code end}. The length
 658      * of this sequence is increased by the value of {@code end - start}.
 659      * <p>
 660      * Let <i>n</i> be the length of this character sequence just prior to
 661      * execution of the {@code append} method. Then the character at
 662      * index <i>k</i> in this character sequence becomes equal to the
 663      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
 664      * <i>n</i>; otherwise, it is equal to the character at index
 665      * <i>k+start-n</i> in the argument {@code s}.
 666      * <p>
 667      * If {@code s} is {@code null}, then this method appends
 668      * characters as if the s parameter was a sequence containing the four
 669      * characters {@code "null"}.
 670      *
 671      * @param   s the sequence to append.
 672      * @param   start   the starting index of the subsequence to be appended.
 673      * @param   end     the end index of the subsequence to be appended.
 674      * @return  a reference to this object.
 675      * @throws     IndexOutOfBoundsException if
 676      *             {@code start} is negative, or
 677      *             {@code start} is greater than {@code end} or
 678      *             {@code end} is greater than {@code s.length()}
 679      */
 680     @Override
 681     public AbstractStringBuilder append(CharSequence s, int start, int end) {
 682         if (s == null) {
 683             s = "null";
 684         }
 685         checkRange(start, end, s.length());
 686         int len = end - start;
 687         ensureCapacityInternal(count + len);
 688         appendChars(s, start, end);
 689         return this;
 690     }
 691 
 692     /**
 693      * Appends the string representation of the {@code char} array
 694      * argument to this sequence.
 695      * <p>
 696      * The characters of the array argument are appended, in order, to
 697      * the contents of this sequence. The length of this sequence
 698      * increases by the length of the argument.
 699      * <p>
 700      * The overall effect is exactly as if the argument were converted
 701      * to a string by the method {@link String#valueOf(char[])},
 702      * and the characters of that string were then
 703      * {@link #append(String) appended} to this character sequence.
 704      *
 705      * @param   str   the characters to be appended.
 706      * @return  a reference to this object.
 707      */
 708     public AbstractStringBuilder append(char[] str) {
 709         int len = str.length;
 710         ensureCapacityInternal(count + len);
 711         appendChars(str, 0, len);
 712         return this;
 713     }
 714 
 715     /**
 716      * Appends the string representation of a subarray of the
 717      * {@code char} array argument to this sequence.
 718      * <p>
 719      * Characters of the {@code char} array {@code str}, starting at
 720      * index {@code offset}, are appended, in order, to the contents
 721      * of this sequence. The length of this sequence increases
 722      * by the value of {@code len}.
 723      * <p>
 724      * The overall effect is exactly as if the arguments were converted
 725      * to a string by the method {@link String#valueOf(char[],int,int)},
 726      * and the characters of that string were then
 727      * {@link #append(String) appended} to this character sequence.
 728      *
 729      * @param   str      the characters to be appended.
 730      * @param   offset   the index of the first {@code char} to append.
 731      * @param   len      the number of {@code char}s to append.
 732      * @return  a reference to this object.
 733      * @throws IndexOutOfBoundsException
 734      *         if {@code offset < 0} or {@code len < 0}
 735      *         or {@code offset+len > str.length}
 736      */
 737     public AbstractStringBuilder append(char str[], int offset, int len) {
 738         int end = offset + len;
 739         checkRange(offset, end, str.length);
 740         ensureCapacityInternal(count + len);
 741         appendChars(str, offset, end);
 742         return this;
 743     }
 744 
 745     /**
 746      * Appends the string representation of the {@code boolean}
 747      * argument to the sequence.
 748      * <p>
 749      * The overall effect is exactly as if the argument were converted
 750      * to a string by the method {@link String#valueOf(boolean)},
 751      * and the characters of that string were then
 752      * {@link #append(String) appended} to this character sequence.
 753      *
 754      * @param   b   a {@code boolean}.
 755      * @return  a reference to this object.
 756      */
 757     public AbstractStringBuilder append(boolean b) {
 758         ensureCapacityInternal(count + (b ? 4 : 5));
 759         int count = this.count;
 760         byte[] val = this.value;
 761         if (isLatin1()) {
 762             if (b) {
 763                 val[count++] = 't';
 764                 val[count++] = 'r';
 765                 val[count++] = 'u';
 766                 val[count++] = 'e';
 767             } else {
 768                 val[count++] = 'f';
 769                 val[count++] = 'a';
 770                 val[count++] = 'l';
 771                 val[count++] = 's';
 772                 val[count++] = 'e';
 773             }
 774         } else {
 775             if (b) {
 776                 count = StringUTF16.putCharsAt(val, count, 't', 'r', 'u', 'e');
 777             } else {
 778                 count = StringUTF16.putCharsAt(val, count, 'f', 'a', 'l', 's', 'e');
 779             }
 780         }
 781         this.count = count;
 782         return this;
 783     }
 784 
 785     /**
 786      * Appends the string representation of the {@code char}
 787      * argument to this sequence.
 788      * <p>
 789      * The argument is appended to the contents of this sequence.
 790      * The length of this sequence increases by {@code 1}.
 791      * <p>
 792      * The overall effect is exactly as if the argument were converted
 793      * to a string by the method {@link String#valueOf(char)},
 794      * and the character in that string were then
 795      * {@link #append(String) appended} to this character sequence.
 796      *
 797      * @param   c   a {@code char}.
 798      * @return  a reference to this object.
 799      */
 800     @Override
 801     public AbstractStringBuilder append(char c) {
 802         ensureCapacityInternal(count + 1);
 803         if (isLatin1() && StringLatin1.canEncode(c)) {
 804             value[count++] = (byte)c;
 805         } else {
 806             if (isLatin1()) {
 807                 inflate();
 808             }
 809             StringUTF16.putCharSB(value, count++, c);
 810         }
 811         return this;
 812     }
 813 
 814     /**
 815      * Appends the string representation of the {@code int}
 816      * argument to this sequence.
 817      * <p>
 818      * The overall effect is exactly as if the argument were converted
 819      * to a string by the method {@link String#valueOf(int)},
 820      * and the characters of that string were then
 821      * {@link #append(String) appended} to this character sequence.
 822      *
 823      * @param   i   an {@code int}.
 824      * @return  a reference to this object.
 825      */
 826     public AbstractStringBuilder append(int i) {
 827         int count = this.count;
 828         int spaceNeeded = count + Integer.stringSize(i);
 829         ensureCapacityInternal(spaceNeeded);
 830         if (isLatin1()) {
 831             Integer.getChars(i, spaceNeeded, value);
 832         } else {
 833             StringUTF16.getChars(i, count, spaceNeeded, value);
 834         }
 835         this.count = spaceNeeded;
 836         return this;
 837     }
 838 
 839     /**
 840      * Appends the string representation of the {@code long}
 841      * argument to this sequence.
 842      * <p>
 843      * The overall effect is exactly as if the argument were converted
 844      * to a string by the method {@link String#valueOf(long)},
 845      * and the characters of that string were then
 846      * {@link #append(String) appended} to this character sequence.
 847      *
 848      * @param   l   a {@code long}.
 849      * @return  a reference to this object.
 850      */
 851     public AbstractStringBuilder append(long l) {
 852         int count = this.count;
 853         int spaceNeeded = count + Long.stringSize(l);
 854         ensureCapacityInternal(spaceNeeded);
 855         if (isLatin1()) {
 856             Long.getChars(l, spaceNeeded, value);
 857         } else {
 858             StringUTF16.getChars(l, count, spaceNeeded, value);
 859         }
 860         this.count = spaceNeeded;
 861         return this;
 862     }
 863 
 864     /**
 865      * Appends the string representation of the {@code float}
 866      * argument to this sequence.
 867      * <p>
 868      * The overall effect is exactly as if the argument were converted
 869      * to a string by the method {@link String#valueOf(float)},
 870      * and the characters of that string were then
 871      * {@link #append(String) appended} to this character sequence.
 872      *
 873      * @param   f   a {@code float}.
 874      * @return  a reference to this object.
 875      */
 876     public AbstractStringBuilder append(float f) {
 877         FloatingDecimal.appendTo(f,this);
 878         return this;
 879     }
 880 
 881     /**
 882      * Appends the string representation of the {@code double}
 883      * argument to this sequence.
 884      * <p>
 885      * The overall effect is exactly as if the argument were converted
 886      * to a string by the method {@link String#valueOf(double)},
 887      * and the characters of that string were then
 888      * {@link #append(String) appended} to this character sequence.
 889      *
 890      * @param   d   a {@code double}.
 891      * @return  a reference to this object.
 892      */
 893     public AbstractStringBuilder append(double d) {
 894         FloatingDecimal.appendTo(d,this);
 895         return this;
 896     }
 897 
 898     /**
 899      * Removes the characters in a substring of this sequence.
 900      * The substring begins at the specified {@code start} and extends to
 901      * the character at index {@code end - 1} or to the end of the
 902      * sequence if no such character exists. If
 903      * {@code start} is equal to {@code end}, no changes are made.
 904      *
 905      * @param      start  The beginning index, inclusive.
 906      * @param      end    The ending index, exclusive.
 907      * @return     This object.
 908      * @throws     StringIndexOutOfBoundsException  if {@code start}
 909      *             is negative, greater than {@code length()}, or
 910      *             greater than {@code end}.
 911      */
 912     public AbstractStringBuilder delete(int start, int end) {
 913         int count = this.count;
 914         if (end > count) {
 915             end = count;
 916         }
 917         checkRangeSIOOBE(start, end, count);
 918         int len = end - start;
 919         if (len > 0) {
 920             shift(end, -len);
 921             this.count = count - len;
 922         }
 923         return this;
 924     }
 925 
 926     /**
 927      * Appends the string representation of the {@code codePoint}
 928      * argument to this sequence.
 929      *
 930      * <p> The argument is appended to the contents of this sequence.
 931      * The length of this sequence increases by
 932      * {@link Character#charCount(int) Character.charCount(codePoint)}.
 933      *
 934      * <p> The overall effect is exactly as if the argument were
 935      * converted to a {@code char} array by the method
 936      * {@link Character#toChars(int)} and the character in that array
 937      * were then {@link #append(char[]) appended} to this character
 938      * sequence.
 939      *
 940      * @param   codePoint   a Unicode code point
 941      * @return  a reference to this object.
 942      * @throws    IllegalArgumentException if the specified
 943      * {@code codePoint} isn't a valid Unicode code point
 944      */
 945     public AbstractStringBuilder appendCodePoint(int codePoint) {
 946         if (Character.isBmpCodePoint(codePoint)) {
 947             return append((char)codePoint);
 948         }
 949         return append(Character.toChars(codePoint));
 950     }
 951 
 952     /**
 953      * Removes the {@code char} at the specified position in this
 954      * sequence. This sequence is shortened by one {@code char}.
 955      *
 956      * <p>Note: If the character at the given index is a supplementary
 957      * character, this method does not remove the entire character. If
 958      * correct handling of supplementary characters is required,
 959      * determine the number of {@code char}s to remove by calling
 960      * {@code Character.charCount(thisSequence.codePointAt(index))},
 961      * where {@code thisSequence} is this sequence.
 962      *
 963      * @param       index  Index of {@code char} to remove
 964      * @return      This object.
 965      * @throws      StringIndexOutOfBoundsException  if the {@code index}
 966      *              is negative or greater than or equal to
 967      *              {@code length()}.
 968      */
 969     public AbstractStringBuilder deleteCharAt(int index) {
 970         checkIndex(index, count);
 971         shift(index + 1, -1);
 972         count--;
 973         return this;
 974     }
 975 
 976     /**
 977      * Replaces the characters in a substring of this sequence
 978      * with characters in the specified {@code String}. The substring
 979      * begins at the specified {@code start} and extends to the character
 980      * at index {@code end - 1} or to the end of the
 981      * sequence if no such character exists. First the
 982      * characters in the substring are removed and then the specified
 983      * {@code String} is inserted at {@code start}. (This
 984      * sequence will be lengthened to accommodate the
 985      * specified String if necessary.)
 986      *
 987      * @param      start    The beginning index, inclusive.
 988      * @param      end      The ending index, exclusive.
 989      * @param      str   String that will replace previous contents.
 990      * @return     This object.
 991      * @throws     StringIndexOutOfBoundsException  if {@code start}
 992      *             is negative, greater than {@code length()}, or
 993      *             greater than {@code end}.
 994      */
 995     public AbstractStringBuilder replace(int start, int end, String str) {
 996         int count = this.count;
 997         if (end > count) {
 998             end = count;
 999         }
1000         checkRangeSIOOBE(start, end, count);
1001         int len = str.length();
1002         int newCount = count + len - (end - start);
1003         ensureCapacityInternal(newCount);
1004         shift(end, newCount - count);
1005         this.count = newCount;
1006         putStringAt(start, str);
1007         return this;
1008     }
1009 
1010     /**
1011      * Returns a new {@code String} that contains a subsequence of
1012      * characters currently contained in this character sequence. The
1013      * substring begins at the specified index and extends to the end of
1014      * this sequence.
1015      *
1016      * @param      start    The beginning index, inclusive.
1017      * @return     The new string.
1018      * @throws     StringIndexOutOfBoundsException  if {@code start} is
1019      *             less than zero, or greater than the length of this object.
1020      */
1021     public String substring(int start) {
1022         return substring(start, count);
1023     }
1024 
1025     /**
1026      * Returns a new character sequence that is a subsequence of this sequence.
1027      *
1028      * <p> An invocation of this method of the form
1029      *
1030      * <pre>{@code
1031      * sb.subSequence(begin,&nbsp;end)}</pre>
1032      *
1033      * behaves in exactly the same way as the invocation
1034      *
1035      * <pre>{@code
1036      * sb.substring(begin,&nbsp;end)}</pre>
1037      *
1038      * This method is provided so that this class can
1039      * implement the {@link CharSequence} interface.
1040      *
1041      * @param      start   the start index, inclusive.
1042      * @param      end     the end index, exclusive.
1043      * @return     the specified subsequence.
1044      *
1045      * @throws  IndexOutOfBoundsException
1046      *          if {@code start} or {@code end} are negative,
1047      *          if {@code end} is greater than {@code length()},
1048      *          or if {@code start} is greater than {@code end}
1049      * @spec JSR-51
1050      */
1051     @Override
1052     public CharSequence subSequence(int start, int end) {
1053         return substring(start, end);
1054     }
1055 
1056     /**
1057      * Returns a new {@code String} that contains a subsequence of
1058      * characters currently contained in this sequence. The
1059      * substring begins at the specified {@code start} and
1060      * extends to the character at index {@code end - 1}.
1061      *
1062      * @param      start    The beginning index, inclusive.
1063      * @param      end      The ending index, exclusive.
1064      * @return     The new string.
1065      * @throws     StringIndexOutOfBoundsException  if {@code start}
1066      *             or {@code end} are negative or greater than
1067      *             {@code length()}, or {@code start} is
1068      *             greater than {@code end}.
1069      */
1070     public String substring(int start, int end) {
1071         checkRangeSIOOBE(start, end, count);
1072         if (isLatin1()) {
1073             return StringLatin1.newString(value, start, end - start);
1074         }
1075         return StringUTF16.newString(value, start, end - start);
1076     }
1077 
1078     private void shift(int offset, int n) {
1079         System.arraycopy(value, offset << coder,
1080                          value, (offset + n) << coder, (count - offset) << coder);
1081     }
1082 
1083     /**
1084      * Inserts the string representation of a subarray of the {@code str}
1085      * array argument into this sequence. The subarray begins at the
1086      * specified {@code offset} and extends {@code len} {@code char}s.
1087      * The characters of the subarray are inserted into this sequence at
1088      * the position indicated by {@code index}. The length of this
1089      * sequence increases by {@code len} {@code char}s.
1090      *
1091      * @param      index    position at which to insert subarray.
1092      * @param      str       A {@code char} array.
1093      * @param      offset   the index of the first {@code char} in subarray to
1094      *             be inserted.
1095      * @param      len      the number of {@code char}s in the subarray to
1096      *             be inserted.
1097      * @return     This object
1098      * @throws     StringIndexOutOfBoundsException  if {@code index}
1099      *             is negative or greater than {@code length()}, or
1100      *             {@code offset} or {@code len} are negative, or
1101      *             {@code (offset+len)} is greater than
1102      *             {@code str.length}.
1103      */
1104     public AbstractStringBuilder insert(int index, char[] str, int offset,
1105                                         int len)
1106     {
1107         checkOffset(index, count);
1108         checkRangeSIOOBE(offset, offset + len, str.length);
1109         ensureCapacityInternal(count + len);
1110         shift(index, len);
1111         count += len;
1112         putCharsAt(index, str, offset, offset + len);
1113         return this;
1114     }
1115 
1116     /**
1117      * Inserts the string representation of the {@code Object}
1118      * argument into this character sequence.
1119      * <p>
1120      * The overall effect is exactly as if the second argument were
1121      * converted to a string by the method {@link String#valueOf(Object)},
1122      * and the characters of that string were then
1123      * {@link #insert(int,String) inserted} into this character
1124      * sequence at the indicated offset.
1125      * <p>
1126      * The {@code offset} argument must be greater than or equal to
1127      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1128      * of this sequence.
1129      *
1130      * @param      offset   the offset.
1131      * @param      obj      an {@code Object}.
1132      * @return     a reference to this object.
1133      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1134      */
1135     public AbstractStringBuilder insert(int offset, Object obj) {
1136         return insert(offset, String.valueOf(obj));
1137     }
1138 
1139     /**
1140      * Inserts the string into this character sequence.
1141      * <p>
1142      * The characters of the {@code String} argument are inserted, in
1143      * order, into this sequence at the indicated offset, moving up any
1144      * characters originally above that position and increasing the length
1145      * of this sequence by the length of the argument. If
1146      * {@code str} is {@code null}, then the four characters
1147      * {@code "null"} are inserted into this sequence.
1148      * <p>
1149      * The character at index <i>k</i> in the new character sequence is
1150      * equal to:
1151      * <ul>
1152      * <li>the character at index <i>k</i> in the old character sequence, if
1153      * <i>k</i> is less than {@code offset}
1154      * <li>the character at index <i>k</i>{@code -offset} in the
1155      * argument {@code str}, if <i>k</i> is not less than
1156      * {@code offset} but is less than {@code offset+str.length()}
1157      * <li>the character at index <i>k</i>{@code -str.length()} in the
1158      * old character sequence, if <i>k</i> is not less than
1159      * {@code offset+str.length()}
1160      * </ul><p>
1161      * The {@code offset} argument must be greater than or equal to
1162      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1163      * of this sequence.
1164      *
1165      * @param      offset   the offset.
1166      * @param      str      a string.
1167      * @return     a reference to this object.
1168      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1169      */
1170     public AbstractStringBuilder insert(int offset, String str) {
1171         checkOffset(offset, count);
1172         if (str == null) {
1173             str = "null";
1174         }
1175         int len = str.length();
1176         ensureCapacityInternal(count + len);
1177         shift(offset, len);
1178         count += len;
1179         putStringAt(offset, str);
1180         return this;
1181     }
1182 
1183     /**
1184      * Inserts the string representation of the {@code char} array
1185      * argument into this sequence.
1186      * <p>
1187      * The characters of the array argument are inserted into the
1188      * contents of this sequence at the position indicated by
1189      * {@code offset}. The length of this sequence increases by
1190      * the length of the argument.
1191      * <p>
1192      * The overall effect is exactly as if the second argument were
1193      * converted to a string by the method {@link String#valueOf(char[])},
1194      * and the characters of that string were then
1195      * {@link #insert(int,String) inserted} into this character
1196      * sequence at the indicated offset.
1197      * <p>
1198      * The {@code offset} argument must be greater than or equal to
1199      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1200      * of this sequence.
1201      *
1202      * @param      offset   the offset.
1203      * @param      str      a character array.
1204      * @return     a reference to this object.
1205      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1206      */
1207     public AbstractStringBuilder insert(int offset, char[] str) {
1208         checkOffset(offset, count);
1209         int len = str.length;
1210         ensureCapacityInternal(count + len);
1211         shift(offset, len);
1212         count += len;
1213         putCharsAt(offset, str, 0, len);
1214         return this;
1215     }
1216 
1217     /**
1218      * Inserts the specified {@code CharSequence} into this sequence.
1219      * <p>
1220      * The characters of the {@code CharSequence} argument are inserted,
1221      * in order, into this sequence at the indicated offset, moving up
1222      * any characters originally above that position and increasing the length
1223      * of this sequence by the length of the argument s.
1224      * <p>
1225      * The result of this method is exactly the same as if it were an
1226      * invocation of this object's
1227      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1228      * method.
1229      *
1230      * <p>If {@code s} is {@code null}, then the four characters
1231      * {@code "null"} are inserted into this sequence.
1232      *
1233      * @param      dstOffset   the offset.
1234      * @param      s the sequence to be inserted
1235      * @return     a reference to this object.
1236      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1237      */
1238     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1239         if (s == null) {
1240             s = "null";
1241         }
1242         if (s instanceof String) {
1243             return this.insert(dstOffset, (String)s);
1244         }
1245         return this.insert(dstOffset, s, 0, s.length());
1246     }
1247 
1248     /**
1249      * Inserts a subsequence of the specified {@code CharSequence} into
1250      * this sequence.
1251      * <p>
1252      * The subsequence of the argument {@code s} specified by
1253      * {@code start} and {@code end} are inserted,
1254      * in order, into this sequence at the specified destination offset, moving
1255      * up any characters originally above that position. The length of this
1256      * sequence is increased by {@code end - start}.
1257      * <p>
1258      * The character at index <i>k</i> in this sequence becomes equal to:
1259      * <ul>
1260      * <li>the character at index <i>k</i> in this sequence, if
1261      * <i>k</i> is less than {@code dstOffset}
1262      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1263      * the argument {@code s}, if <i>k</i> is greater than or equal to
1264      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1265      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1266      * sequence, if <i>k</i> is greater than or equal to
1267      * {@code dstOffset+end-start}
1268      * </ul><p>
1269      * The {@code dstOffset} argument must be greater than or equal to
1270      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1271      * of this sequence.
1272      * <p>The start argument must be nonnegative, and not greater than
1273      * {@code end}.
1274      * <p>The end argument must be greater than or equal to
1275      * {@code start}, and less than or equal to the length of s.
1276      *
1277      * <p>If {@code s} is {@code null}, then this method inserts
1278      * characters as if the s parameter was a sequence containing the four
1279      * characters {@code "null"}.
1280      *
1281      * @param      dstOffset   the offset in this sequence.
1282      * @param      s       the sequence to be inserted.
1283      * @param      start   the starting index of the subsequence to be inserted.
1284      * @param      end     the end index of the subsequence to be inserted.
1285      * @return     a reference to this object.
1286      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1287      *             is negative or greater than {@code this.length()}, or
1288      *              {@code start} or {@code end} are negative, or
1289      *              {@code start} is greater than {@code end} or
1290      *              {@code end} is greater than {@code s.length()}
1291      */
1292     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1293                                         int start, int end)
1294     {
1295         if (s == null) {
1296             s = "null";
1297         }
1298         checkOffset(dstOffset, count);
1299         checkRange(start, end, s.length());
1300         int len = end - start;
1301         ensureCapacityInternal(count + len);
1302         shift(dstOffset, len);
1303         count += len;
1304         putCharsAt(dstOffset, s, start, end);
1305         return this;
1306     }
1307 
1308     /**
1309      * Inserts the string representation of the {@code boolean}
1310      * argument into this sequence.
1311      * <p>
1312      * The overall effect is exactly as if the second argument were
1313      * converted to a string by the method {@link String#valueOf(boolean)},
1314      * and the characters of that string were then
1315      * {@link #insert(int,String) inserted} into this character
1316      * sequence at the indicated offset.
1317      * <p>
1318      * The {@code offset} argument must be greater than or equal to
1319      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1320      * of this sequence.
1321      *
1322      * @param      offset   the offset.
1323      * @param      b        a {@code boolean}.
1324      * @return     a reference to this object.
1325      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1326      */
1327     public AbstractStringBuilder insert(int offset, boolean b) {
1328         return insert(offset, String.valueOf(b));
1329     }
1330 
1331     /**
1332      * Inserts the string representation of the {@code char}
1333      * argument into this sequence.
1334      * <p>
1335      * The overall effect is exactly as if the second argument were
1336      * converted to a string by the method {@link String#valueOf(char)},
1337      * and the character in that string were then
1338      * {@link #insert(int,String) inserted} into this character
1339      * sequence at the indicated offset.
1340      * <p>
1341      * The {@code offset} argument must be greater than or equal to
1342      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1343      * of this sequence.
1344      *
1345      * @param      offset   the offset.
1346      * @param      c        a {@code char}.
1347      * @return     a reference to this object.
1348      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1349      */
1350     public AbstractStringBuilder insert(int offset, char c) {
1351         checkOffset(offset, count);
1352         ensureCapacityInternal(count + 1);
1353         shift(offset, 1);
1354         count += 1;
1355         if (isLatin1() && StringLatin1.canEncode(c)) {
1356             value[offset] = (byte)c;
1357         } else {
1358             if (isLatin1()) {
1359                 inflate();
1360             }
1361             StringUTF16.putCharSB(value, offset, c);
1362         }
1363         return this;
1364     }
1365 
1366     /**
1367      * Inserts the string representation of the second {@code int}
1368      * argument into this sequence.
1369      * <p>
1370      * The overall effect is exactly as if the second argument were
1371      * converted to a string by the method {@link String#valueOf(int)},
1372      * and the characters of that string were then
1373      * {@link #insert(int,String) inserted} into this character
1374      * sequence at the indicated offset.
1375      * <p>
1376      * The {@code offset} argument must be greater than or equal to
1377      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1378      * of this sequence.
1379      *
1380      * @param      offset   the offset.
1381      * @param      i        an {@code int}.
1382      * @return     a reference to this object.
1383      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1384      */
1385     public AbstractStringBuilder insert(int offset, int i) {
1386         return insert(offset, String.valueOf(i));
1387     }
1388 
1389     /**
1390      * Inserts the string representation of the {@code long}
1391      * argument into this sequence.
1392      * <p>
1393      * The overall effect is exactly as if the second argument were
1394      * converted to a string by the method {@link String#valueOf(long)},
1395      * and the characters of that string were then
1396      * {@link #insert(int,String) inserted} into this character
1397      * sequence at the indicated offset.
1398      * <p>
1399      * The {@code offset} argument must be greater than or equal to
1400      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1401      * of this sequence.
1402      *
1403      * @param      offset   the offset.
1404      * @param      l        a {@code long}.
1405      * @return     a reference to this object.
1406      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1407      */
1408     public AbstractStringBuilder insert(int offset, long l) {
1409         return insert(offset, String.valueOf(l));
1410     }
1411 
1412     /**
1413      * Inserts the string representation of the {@code float}
1414      * argument into this sequence.
1415      * <p>
1416      * The overall effect is exactly as if the second argument were
1417      * converted to a string by the method {@link String#valueOf(float)},
1418      * and the characters of that string were then
1419      * {@link #insert(int,String) inserted} into this character
1420      * sequence at the indicated offset.
1421      * <p>
1422      * The {@code offset} argument must be greater than or equal to
1423      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1424      * of this sequence.
1425      *
1426      * @param      offset   the offset.
1427      * @param      f        a {@code float}.
1428      * @return     a reference to this object.
1429      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1430      */
1431     public AbstractStringBuilder insert(int offset, float f) {
1432         return insert(offset, String.valueOf(f));
1433     }
1434 
1435     /**
1436      * Inserts the string representation of the {@code double}
1437      * argument into this sequence.
1438      * <p>
1439      * The overall effect is exactly as if the second argument were
1440      * converted to a string by the method {@link String#valueOf(double)},
1441      * and the characters of that string were then
1442      * {@link #insert(int,String) inserted} into this character
1443      * sequence at the indicated offset.
1444      * <p>
1445      * The {@code offset} argument must be greater than or equal to
1446      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1447      * of this sequence.
1448      *
1449      * @param      offset   the offset.
1450      * @param      d        a {@code double}.
1451      * @return     a reference to this object.
1452      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1453      */
1454     public AbstractStringBuilder insert(int offset, double d) {
1455         return insert(offset, String.valueOf(d));
1456     }
1457 
1458     /**
1459      * Returns the index within this string of the first occurrence of the
1460      * specified substring.
1461      *
1462      * <p>The returned index is the smallest value {@code k} for which:
1463      * <pre>{@code
1464      * this.toString().startsWith(str, k)
1465      * }</pre>
1466      * If no such value of {@code k} exists, then {@code -1} is returned.
1467      *
1468      * @param   str   the substring to search for.
1469      * @return  the index of the first occurrence of the specified substring,
1470      *          or {@code -1} if there is no such occurrence.
1471      */
1472     public int indexOf(String str) {
1473         return indexOf(str, 0);
1474     }
1475 
1476     /**
1477      * Returns the index within this string of the first occurrence of the
1478      * specified substring, starting at the specified index.
1479      *
1480      * <p>The returned index is the smallest value {@code k} for which:
1481      * <pre>{@code
1482      *     k >= Math.min(fromIndex, this.length()) &&
1483      *                   this.toString().startsWith(str, k)
1484      * }</pre>
1485      * If no such value of {@code k} exists, then {@code -1} is returned.
1486      *
1487      * @param   str         the substring to search for.
1488      * @param   fromIndex   the index from which to start the search.
1489      * @return  the index of the first occurrence of the specified substring,
1490      *          starting at the specified index,
1491      *          or {@code -1} if there is no such occurrence.
1492      */
1493     public int indexOf(String str, int fromIndex) {
1494         return String.indexOf(value, coder, count, str, fromIndex);
1495     }
1496 
1497     /**
1498      * Returns the index within this string of the last occurrence of the
1499      * specified substring.  The last occurrence of the empty string "" is
1500      * considered to occur at the index value {@code this.length()}.
1501      *
1502      * <p>The returned index is the largest value {@code k} for which:
1503      * <pre>{@code
1504      * this.toString().startsWith(str, k)
1505      * }</pre>
1506      * If no such value of {@code k} exists, then {@code -1} is returned.
1507      *
1508      * @param   str   the substring to search for.
1509      * @return  the index of the last occurrence of the specified substring,
1510      *          or {@code -1} if there is no such occurrence.
1511      */
1512     public int lastIndexOf(String str) {
1513         return lastIndexOf(str, count);
1514     }
1515 
1516     /**
1517      * Returns the index within this string of the last occurrence of the
1518      * specified substring, searching backward starting at the specified index.
1519      *
1520      * <p>The returned index is the largest value {@code k} for which:
1521      * <pre>{@code
1522      *     k <= Math.min(fromIndex, this.length()) &&
1523      *                   this.toString().startsWith(str, k)
1524      * }</pre>
1525      * If no such value of {@code k} exists, then {@code -1} is returned.
1526      *
1527      * @param   str         the substring to search for.
1528      * @param   fromIndex   the index to start the search from.
1529      * @return  the index of the last occurrence of the specified substring,
1530      *          searching backward from the specified index,
1531      *          or {@code -1} if there is no such occurrence.
1532      */
1533     public int lastIndexOf(String str, int fromIndex) {
1534         return String.lastIndexOf(value, coder, count, str, fromIndex);
1535     }
1536 
1537     /**
1538      * Causes this character sequence to be replaced by the reverse of
1539      * the sequence. If there are any surrogate pairs included in the
1540      * sequence, these are treated as single characters for the
1541      * reverse operation. Thus, the order of the high-low surrogates
1542      * is never reversed.
1543      *
1544      * Let <i>n</i> be the character length of this character sequence
1545      * (not the length in {@code char} values) just prior to
1546      * execution of the {@code reverse} method. Then the
1547      * character at index <i>k</i> in the new character sequence is
1548      * equal to the character at index <i>n-k-1</i> in the old
1549      * character sequence.
1550      *
1551      * <p>Note that the reverse operation may result in producing
1552      * surrogate pairs that were unpaired low-surrogates and
1553      * high-surrogates before the operation. For example, reversing
1554      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1555      * a valid surrogate pair.
1556      *
1557      * @return  a reference to this object.
1558      */
1559     public AbstractStringBuilder reverse() {
1560         byte[] val = this.value;
1561         int count = this.count;
1562         int coder = this.coder;
1563         int n = count - 1;
1564         if (COMPACT_STRINGS && coder == LATIN1) {
1565             for (int j = (n-1) >> 1; j >= 0; j--) {
1566                 int k = n - j;
1567                 byte cj = val[j];
1568                 val[j] = val[k];
1569                 val[k] = cj;
1570             }
1571         } else {
1572             StringUTF16.reverse(val, count);
1573         }
1574         return this;
1575     }
1576 
1577     /**
1578      * Returns a string representing the data in this sequence.
1579      * A new {@code String} object is allocated and initialized to
1580      * contain the character sequence currently represented by this
1581      * object. This {@code String} is then returned. Subsequent
1582      * changes to this sequence do not affect the contents of the
1583      * {@code String}.
1584      *
1585      * @return  a string representation of this sequence of characters.
1586      */
1587     @Override
1588     public abstract String toString();
1589 
1590     /**
1591      * {@inheritDoc}
1592      * @since 9
1593      */
1594     @Override
1595     public IntStream chars() {
1596         // Reuse String-based spliterator. This requires a supplier to
1597         // capture the value and count when the terminal operation is executed
1598         return StreamSupport.intStream(
1599                 () -> {
1600                     // The combined set of field reads are not atomic and thread
1601                     // safe but bounds checks will ensure no unsafe reads from
1602                     // the byte array
1603                     byte[] val = this.value;
1604                     int count = this.count;
1605                     byte coder = this.coder;
1606                     return coder == LATIN1
1607                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1608                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1609                 },
1610                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1611                 false);
1612     }
1613 
1614     /**
1615      * {@inheritDoc}
1616      * @since 9
1617      */
1618     @Override
1619     public IntStream codePoints() {
1620         // Reuse String-based spliterator. This requires a supplier to
1621         // capture the value and count when the terminal operation is executed
1622         return StreamSupport.intStream(
1623                 () -> {
1624                     // The combined set of field reads are not atomic and thread
1625                     // safe but bounds checks will ensure no unsafe reads from
1626                     // the byte array
1627                     byte[] val = this.value;
1628                     int count = this.count;
1629                     byte coder = this.coder;
1630                     return coder == LATIN1
1631                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1632                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1633                 },
1634                 Spliterator.ORDERED,
1635                 false);
1636     }
1637 
1638     /**
1639      * Needed by {@code String} for the contentEquals method.
1640      */
1641     final byte[] getValue() {
1642         return value;
1643     }
1644 
1645     /*
1646      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1647      * coders are different and the dstBegin has enough space
1648      *
1649      * @param dstBegin  the char index, not offset of byte[]
1650      * @param coder     the coder of dst[]
1651      */
1652     void getBytes(byte dst[], int dstBegin, byte coder) {
1653         if (this.coder == coder) {
1654             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1655         } else {        // this.coder == LATIN && coder == UTF16
1656             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1657         }
1658     }
1659 
1660     /* for readObject() */
1661     void initBytes(char[] value, int off, int len) {
1662         if (String.COMPACT_STRINGS) {
1663             this.value = StringUTF16.compress(value, off, len);
1664             if (this.value != null) {
1665                 this.coder = LATIN1;
1666                 return;
1667             }
1668         }
1669         this.coder = UTF16;
1670         this.value = StringUTF16.toBytes(value, off, len);
1671     }
1672 
1673     final byte getCoder() {
1674         return COMPACT_STRINGS ? coder : UTF16;
1675     }
1676 
1677     final boolean isLatin1() {
1678         return COMPACT_STRINGS && coder == LATIN1;
1679     }
1680 
1681     private final void putCharsAt(int index, char[] s, int off, int end) {
1682         if (isLatin1()) {
1683             byte[] val = this.value;
1684             for (int i = off, j = index; i < end; i++) {
1685                 char c = s[i];
1686                 if (StringLatin1.canEncode(c)) {
1687                     val[j++] = (byte)c;
1688                 } else {
1689                     inflate();
1690                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1691                     return;
1692                 }
1693             }
1694         } else {
1695             StringUTF16.putCharsSB(this.value, index, s, off, end);
1696         }
1697     }
1698 
1699     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1700         if (isLatin1()) {
1701             byte[] val = this.value;
1702             for (int i = off, j = index; i < end; i++) {
1703                 char c = s.charAt(i);
1704                 if (StringLatin1.canEncode(c)) {
1705                     val[j++] = (byte)c;
1706                 } else {
1707                     inflate();
1708                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1709                     return;
1710                 }
1711             }
1712         } else {
1713             StringUTF16.putCharsSB(this.value, index, s, off, end);
1714         }
1715     }
1716 
1717     private final void putStringAt(int index, String str) {
1718         if (getCoder() != str.coder()) {
1719             inflate();
1720         }
1721         str.getBytes(value, index, coder);
1722     }
1723 
1724     private final void appendChars(char[] s, int off, int end) {
1725         int count = this.count;
1726         if (isLatin1()) {
1727             byte[] val = this.value;
1728             for (int i = off, j = count; i < end; i++) {
1729                 char c = s[i];
1730                 if (StringLatin1.canEncode(c)) {
1731                     val[j++] = (byte)c;
1732                 } else {
1733                     this.count = count = j;
1734                     inflate();
1735                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1736                     this.count = count + end - i;
1737                     return;
1738                 }
1739             }
1740         } else {
1741             StringUTF16.putCharsSB(this.value, count, s, off, end);
1742         }
1743         this.count = count + end - off;
1744     }
1745 
1746     private final void appendChars(CharSequence s, int off, int end) {
1747         if (isLatin1()) {
1748             byte[] val = this.value;
1749             for (int i = off, j = count; i < end; i++) {
1750                 char c = s.charAt(i);
1751                 if (StringLatin1.canEncode(c)) {
1752                     val[j++] = (byte)c;
1753                 } else {
1754                     count = j;
1755                     inflate();
1756                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1757                     count += end - i;
1758                     return;
1759                 }
1760             }
1761         } else {
1762             StringUTF16.putCharsSB(this.value, count, s, off, end);
1763         }
1764         count += end - off;
1765     }
1766 
1767     /* IndexOutOfBoundsException, if out of bounds */
1768     private static void checkRange(int start, int end, int len) {
1769         if (start < 0 || start > end || end > len) {
1770             throw new IndexOutOfBoundsException(
1771                 "start " + start + ", end " + end + ", length " + len);
1772         }
1773     }
1774 
1775     /* StringIndexOutOfBoundsException, if out of bounds */
1776     private static void checkRangeSIOOBE(int start, int end, int len) {
1777         if (start < 0 || start > end || end > len) {
1778             throw new StringIndexOutOfBoundsException(
1779                 "start " + start + ", end " + end + ", length " + len);
1780         }
1781     }
1782 }