1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.util.function.Consumer;
  29 import java.util.function.Predicate;
  30 import java.util.function.UnaryOperator;
  31 import jdk.internal.access.SharedSecrets;
  32 import jdk.internal.util.ArraysSupport;
  33 
  34 /**
  35  * Resizable-array implementation of the {@code List} interface.  Implements
  36  * all optional list operations, and permits all elements, including
  37  * {@code null}.  In addition to implementing the {@code List} interface,
  38  * this class provides methods to manipulate the size of the array that is
  39  * used internally to store the list.  (This class is roughly equivalent to
  40  * {@code Vector}, except that it is unsynchronized.)
  41  *
  42  * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
  43  * {@code iterator}, and {@code listIterator} operations run in constant
  44  * time.  The {@code add} operation runs in <i>amortized constant time</i>,
  45  * that is, adding n elements requires O(n) time.  All of the other operations
  46  * run in linear time (roughly speaking).  The constant factor is low compared
  47  * to that for the {@code LinkedList} implementation.
  48  *
  49  * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
  50  * the size of the array used to store the elements in the list.  It is always
  51  * at least as large as the list size.  As elements are added to an ArrayList,
  52  * its capacity grows automatically.  The details of the growth policy are not
  53  * specified beyond the fact that adding an element has constant amortized
  54  * time cost.
  55  *
  56  * <p>An application can increase the capacity of an {@code ArrayList} instance
  57  * before adding a large number of elements using the {@code ensureCapacity}
  58  * operation.  This may reduce the amount of incremental reallocation.
  59  *
  60  * <p><strong>Note that this implementation is not synchronized.</strong>
  61  * If multiple threads access an {@code ArrayList} instance concurrently,
  62  * and at least one of the threads modifies the list structurally, it
  63  * <i>must</i> be synchronized externally.  (A structural modification is
  64  * any operation that adds or deletes one or more elements, or explicitly
  65  * resizes the backing array; merely setting the value of an element is not
  66  * a structural modification.)  This is typically accomplished by
  67  * synchronizing on some object that naturally encapsulates the list.
  68  *
  69  * If no such object exists, the list should be "wrapped" using the
  70  * {@link Collections#synchronizedList Collections.synchronizedList}
  71  * method.  This is best done at creation time, to prevent accidental
  72  * unsynchronized access to the list:<pre>
  73  *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
  74  *
  75  * <p id="fail-fast">
  76  * The iterators returned by this class's {@link #iterator() iterator} and
  77  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
  78  * if the list is structurally modified at any time after the iterator is
  79  * created, in any way except through the iterator's own
  80  * {@link ListIterator#remove() remove} or
  81  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
  82  * {@link ConcurrentModificationException}.  Thus, in the face of
  83  * concurrent modification, the iterator fails quickly and cleanly, rather
  84  * than risking arbitrary, non-deterministic behavior at an undetermined
  85  * time in the future.
  86  *
  87  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  88  * as it is, generally speaking, impossible to make any hard guarantees in the
  89  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  90  * throw {@code ConcurrentModificationException} on a best-effort basis.
  91  * Therefore, it would be wrong to write a program that depended on this
  92  * exception for its correctness:  <i>the fail-fast behavior of iterators
  93  * should be used only to detect bugs.</i>
  94  *
  95  * <p>This class is a member of the
  96  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
  97  * Java Collections Framework</a>.
  98  *
  99  * @param <E> the type of elements in this list
 100  *
 101  * @author  Josh Bloch
 102  * @author  Neal Gafter
 103  * @see     Collection
 104  * @see     List
 105  * @see     LinkedList
 106  * @see     Vector
 107  * @since   1.2
 108  */
 109 public class ArrayList<E> extends AbstractList<E>
 110         implements List<E>, RandomAccess, Cloneable, java.io.Serializable
 111 {
 112     private static final long serialVersionUID = 8683452581122892189L;
 113 
 114     /**
 115      * Default initial capacity.
 116      */
 117     private static final int DEFAULT_CAPACITY = 10;
 118 
 119     /**
 120      * Shared empty array instance used for empty instances.
 121      */
 122     private static final Object[] EMPTY_ELEMENTDATA = {};
 123 
 124     /**
 125      * Shared empty array instance used for default sized empty instances. We
 126      * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
 127      * first element is added.
 128      */
 129     private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
 130 
 131     /**
 132      * The array buffer into which the elements of the ArrayList are stored.
 133      * The capacity of the ArrayList is the length of this array buffer. Any
 134      * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
 135      * will be expanded to DEFAULT_CAPACITY when the first element is added.
 136      */
 137     transient Object[] elementData; // non-private to simplify nested class access
 138 
 139     /**
 140      * The size of the ArrayList (the number of elements it contains).
 141      *
 142      * @serial
 143      */
 144     private int size;
 145 
 146     /**
 147      * Constructs an empty list with the specified initial capacity.
 148      *
 149      * @param  initialCapacity  the initial capacity of the list
 150      * @throws IllegalArgumentException if the specified initial capacity
 151      *         is negative
 152      */
 153     public ArrayList(int initialCapacity) {
 154         if (initialCapacity > 0) {
 155             this.elementData = new Object[initialCapacity];
 156         } else if (initialCapacity == 0) {
 157             this.elementData = EMPTY_ELEMENTDATA;
 158         } else {
 159             throw new IllegalArgumentException("Illegal Capacity: "+
 160                                                initialCapacity);
 161         }
 162     }
 163 
 164     /**
 165      * Constructs an empty list with an initial capacity of ten.
 166      */
 167     public ArrayList() {
 168         this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
 169     }
 170 
 171     /**
 172      * Constructs a list containing the elements of the specified
 173      * collection, in the order they are returned by the collection's
 174      * iterator.
 175      *
 176      * @param c the collection whose elements are to be placed into this list
 177      * @throws NullPointerException if the specified collection is null
 178      */
 179     public ArrayList(Collection<? extends E> c) {
 180         elementData = c.toArray();
 181         if ((size = elementData.length) != 0) {
 182             // defend against c.toArray (incorrectly) not returning Object[]
 183             // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
 184             if (elementData.getClass() != Object[].class)
 185                 elementData = Arrays.copyOf(elementData, size, Object[].class);
 186         } else {
 187             // replace with empty array.
 188             this.elementData = EMPTY_ELEMENTDATA;
 189         }
 190     }
 191 
 192     /**
 193      * Trims the capacity of this {@code ArrayList} instance to be the
 194      * list's current size.  An application can use this operation to minimize
 195      * the storage of an {@code ArrayList} instance.
 196      */
 197     public void trimToSize() {
 198         modCount++;
 199         if (size < elementData.length) {
 200             elementData = (size == 0)
 201               ? EMPTY_ELEMENTDATA
 202               : Arrays.copyOf(elementData, size);
 203         }
 204     }
 205 
 206     /**
 207      * Increases the capacity of this {@code ArrayList} instance, if
 208      * necessary, to ensure that it can hold at least the number of elements
 209      * specified by the minimum capacity argument.
 210      *
 211      * @param minCapacity the desired minimum capacity
 212      */
 213     public void ensureCapacity(int minCapacity) {
 214         if (minCapacity > elementData.length
 215             && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
 216                  && minCapacity <= DEFAULT_CAPACITY)) {
 217             modCount++;
 218             grow(minCapacity);
 219         }
 220     }
 221 
 222     /**
 223      * Increases the capacity to ensure that it can hold at least the
 224      * number of elements specified by the minimum capacity argument.
 225      *
 226      * @param minCapacity the desired minimum capacity
 227      * @throws OutOfMemoryError if minCapacity is less than zero
 228      */
 229     private Object[] grow(int minCapacity) {
 230         int oldCapacity = elementData.length;
 231         if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
 232             int newCapacity = ArraysSupport.newCapacity(oldCapacity,
 233                     minCapacity - oldCapacity, oldCapacity >> 1);
 234             return elementData = Arrays.copyOf(elementData, newCapacity);
 235         } else {
 236             return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
 237         }
 238     }
 239 
 240     private Object[] grow() {
 241         return grow(size + 1);
 242     }
 243 
 244     /**
 245      * Returns the number of elements in this list.
 246      *
 247      * @return the number of elements in this list
 248      */
 249     public int size() {
 250         return size;
 251     }
 252 
 253     /**
 254      * Returns {@code true} if this list contains no elements.
 255      *
 256      * @return {@code true} if this list contains no elements
 257      */
 258     public boolean isEmpty() {
 259         return size == 0;
 260     }
 261 
 262     /**
 263      * Returns {@code true} if this list contains the specified element.
 264      * More formally, returns {@code true} if and only if this list contains
 265      * at least one element {@code e} such that
 266      * {@code Objects.equals(o, e)}.
 267      *
 268      * @param o element whose presence in this list is to be tested
 269      * @return {@code true} if this list contains the specified element
 270      */
 271     public boolean contains(Object o) {
 272         return indexOf(o) >= 0;
 273     }
 274 
 275     /**
 276      * Returns the index of the first occurrence of the specified element
 277      * in this list, or -1 if this list does not contain the element.
 278      * More formally, returns the lowest index {@code i} such that
 279      * {@code Objects.equals(o, get(i))},
 280      * or -1 if there is no such index.
 281      */
 282     public int indexOf(Object o) {
 283         return indexOfRange(o, 0, size);
 284     }
 285 
 286     int indexOfRange(Object o, int start, int end) {
 287         Object[] es = elementData;
 288         if (o == null) {
 289             for (int i = start; i < end; i++) {
 290                 if (es[i] == null) {
 291                     return i;
 292                 }
 293             }
 294         } else {
 295             for (int i = start; i < end; i++) {
 296                 if (o.equals(es[i])) {
 297                     return i;
 298                 }
 299             }
 300         }
 301         return -1;
 302     }
 303 
 304     /**
 305      * Returns the index of the last occurrence of the specified element
 306      * in this list, or -1 if this list does not contain the element.
 307      * More formally, returns the highest index {@code i} such that
 308      * {@code Objects.equals(o, get(i))},
 309      * or -1 if there is no such index.
 310      */
 311     public int lastIndexOf(Object o) {
 312         return lastIndexOfRange(o, 0, size);
 313     }
 314 
 315     int lastIndexOfRange(Object o, int start, int end) {
 316         Object[] es = elementData;
 317         if (o == null) {
 318             for (int i = end - 1; i >= start; i--) {
 319                 if (es[i] == null) {
 320                     return i;
 321                 }
 322             }
 323         } else {
 324             for (int i = end - 1; i >= start; i--) {
 325                 if (o.equals(es[i])) {
 326                     return i;
 327                 }
 328             }
 329         }
 330         return -1;
 331     }
 332 
 333     /**
 334      * Returns a shallow copy of this {@code ArrayList} instance.  (The
 335      * elements themselves are not copied.)
 336      *
 337      * @return a clone of this {@code ArrayList} instance
 338      */
 339     public Object clone() {
 340         try {
 341             ArrayList<?> v = (ArrayList<?>) super.clone();
 342             v.elementData = Arrays.copyOf(elementData, size);
 343             v.modCount = 0;
 344             return v;
 345         } catch (CloneNotSupportedException e) {
 346             // this shouldn't happen, since we are Cloneable
 347             throw new InternalError(e);
 348         }
 349     }
 350 
 351     /**
 352      * Returns an array containing all of the elements in this list
 353      * in proper sequence (from first to last element).
 354      *
 355      * <p>The returned array will be "safe" in that no references to it are
 356      * maintained by this list.  (In other words, this method must allocate
 357      * a new array).  The caller is thus free to modify the returned array.
 358      *
 359      * <p>This method acts as bridge between array-based and collection-based
 360      * APIs.
 361      *
 362      * @return an array containing all of the elements in this list in
 363      *         proper sequence
 364      */
 365     public Object[] toArray() {
 366         return Arrays.copyOf(elementData, size);
 367     }
 368 
 369     /**
 370      * Returns an array containing all of the elements in this list in proper
 371      * sequence (from first to last element); the runtime type of the returned
 372      * array is that of the specified array.  If the list fits in the
 373      * specified array, it is returned therein.  Otherwise, a new array is
 374      * allocated with the runtime type of the specified array and the size of
 375      * this list.
 376      *
 377      * <p>If the list fits in the specified array with room to spare
 378      * (i.e., the array has more elements than the list), the element in
 379      * the array immediately following the end of the collection is set to
 380      * {@code null}.  (This is useful in determining the length of the
 381      * list <i>only</i> if the caller knows that the list does not contain
 382      * any null elements.)
 383      *
 384      * @param a the array into which the elements of the list are to
 385      *          be stored, if it is big enough; otherwise, a new array of the
 386      *          same runtime type is allocated for this purpose.
 387      * @return an array containing the elements of the list
 388      * @throws ArrayStoreException if the runtime type of the specified array
 389      *         is not a supertype of the runtime type of every element in
 390      *         this list
 391      * @throws NullPointerException if the specified array is null
 392      */
 393     @SuppressWarnings("unchecked")
 394     public <T> T[] toArray(T[] a) {
 395         if (a.length < size)
 396             // Make a new array of a's runtime type, but my contents:
 397             return (T[]) Arrays.copyOf(elementData, size, a.getClass());
 398         System.arraycopy(elementData, 0, a, 0, size);
 399         if (a.length > size)
 400             a[size] = null;
 401         return a;
 402     }
 403 
 404     // Positional Access Operations
 405 
 406     @SuppressWarnings("unchecked")
 407     E elementData(int index) {
 408         return (E) elementData[index];
 409     }
 410 
 411     @SuppressWarnings("unchecked")
 412     static <E> E elementAt(Object[] es, int index) {
 413         return (E) es[index];
 414     }
 415 
 416     /**
 417      * Returns the element at the specified position in this list.
 418      *
 419      * @param  index index of the element to return
 420      * @return the element at the specified position in this list
 421      * @throws IndexOutOfBoundsException {@inheritDoc}
 422      */
 423     public E get(int index) {
 424         Objects.checkIndex(index, size);
 425         return elementData(index);
 426     }
 427 
 428     /**
 429      * Replaces the element at the specified position in this list with
 430      * the specified element.
 431      *
 432      * @param index index of the element to replace
 433      * @param element element to be stored at the specified position
 434      * @return the element previously at the specified position
 435      * @throws IndexOutOfBoundsException {@inheritDoc}
 436      */
 437     public E set(int index, E element) {
 438         Objects.checkIndex(index, size);
 439         E oldValue = elementData(index);
 440         elementData[index] = element;
 441         return oldValue;
 442     }
 443 
 444     /**
 445      * This helper method split out from add(E) to keep method
 446      * bytecode size under 35 (the -XX:MaxInlineSize default value),
 447      * which helps when add(E) is called in a C1-compiled loop.
 448      */
 449     private void add(E e, Object[] elementData, int s) {
 450         if (s == elementData.length)
 451             elementData = grow();
 452         elementData[s] = e;
 453         size = s + 1;
 454     }
 455 
 456     /**
 457      * Appends the specified element to the end of this list.
 458      *
 459      * @param e element to be appended to this list
 460      * @return {@code true} (as specified by {@link Collection#add})
 461      */
 462     public boolean add(E e) {
 463         modCount++;
 464         add(e, elementData, size);
 465         return true;
 466     }
 467 
 468     /**
 469      * Inserts the specified element at the specified position in this
 470      * list. Shifts the element currently at that position (if any) and
 471      * any subsequent elements to the right (adds one to their indices).
 472      *
 473      * @param index index at which the specified element is to be inserted
 474      * @param element element to be inserted
 475      * @throws IndexOutOfBoundsException {@inheritDoc}
 476      */
 477     public void add(int index, E element) {
 478         rangeCheckForAdd(index);
 479         modCount++;
 480         final int s;
 481         Object[] elementData;
 482         if ((s = size) == (elementData = this.elementData).length)
 483             elementData = grow();
 484         System.arraycopy(elementData, index,
 485                          elementData, index + 1,
 486                          s - index);
 487         elementData[index] = element;
 488         size = s + 1;
 489     }
 490 
 491     /**
 492      * Removes the element at the specified position in this list.
 493      * Shifts any subsequent elements to the left (subtracts one from their
 494      * indices).
 495      *
 496      * @param index the index of the element to be removed
 497      * @return the element that was removed from the list
 498      * @throws IndexOutOfBoundsException {@inheritDoc}
 499      */
 500     public E remove(int index) {
 501         Objects.checkIndex(index, size);
 502         final Object[] es = elementData;
 503 
 504         @SuppressWarnings("unchecked") E oldValue = (E) es[index];
 505         fastRemove(es, index);
 506 
 507         return oldValue;
 508     }
 509 
 510     /**
 511      * {@inheritDoc}
 512      */
 513     public boolean equals(Object o) {
 514         if (o == this) {
 515             return true;
 516         }
 517 
 518         if (!(o instanceof List)) {
 519             return false;
 520         }
 521 
 522         final int expectedModCount = modCount;
 523         // ArrayList can be subclassed and given arbitrary behavior, but we can
 524         // still deal with the common case where o is ArrayList precisely
 525         boolean equal = (o.getClass() == ArrayList.class)
 526             ? equalsArrayList((ArrayList<?>) o)
 527             : equalsRange((List<?>) o, 0, size);
 528 
 529         checkForComodification(expectedModCount);
 530         return equal;
 531     }
 532 
 533     boolean equalsRange(List<?> other, int from, int to) {
 534         final Object[] es = elementData;
 535         if (to > es.length) {
 536             throw new ConcurrentModificationException();
 537         }
 538         var oit = other.iterator();
 539         for (; from < to; from++) {
 540             if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
 541                 return false;
 542             }
 543         }
 544         return !oit.hasNext();
 545     }
 546 
 547     private boolean equalsArrayList(ArrayList<?> other) {
 548         final int otherModCount = other.modCount;
 549         final int s = size;
 550         boolean equal;
 551         if (equal = (s == other.size)) {
 552             final Object[] otherEs = other.elementData;
 553             final Object[] es = elementData;
 554             if (s > es.length || s > otherEs.length) {
 555                 throw new ConcurrentModificationException();
 556             }
 557             for (int i = 0; i < s; i++) {
 558                 if (!Objects.equals(es[i], otherEs[i])) {
 559                     equal = false;
 560                     break;
 561                 }
 562             }
 563         }
 564         other.checkForComodification(otherModCount);
 565         return equal;
 566     }
 567 
 568     private void checkForComodification(final int expectedModCount) {
 569         if (modCount != expectedModCount) {
 570             throw new ConcurrentModificationException();
 571         }
 572     }
 573 
 574     /**
 575      * {@inheritDoc}
 576      */
 577     public int hashCode() {
 578         int expectedModCount = modCount;
 579         int hash = hashCodeRange(0, size);
 580         checkForComodification(expectedModCount);
 581         return hash;
 582     }
 583 
 584     int hashCodeRange(int from, int to) {
 585         final Object[] es = elementData;
 586         if (to > es.length) {
 587             throw new ConcurrentModificationException();
 588         }
 589         int hashCode = 1;
 590         for (int i = from; i < to; i++) {
 591             Object e = es[i];
 592             hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
 593         }
 594         return hashCode;
 595     }
 596 
 597     /**
 598      * Removes the first occurrence of the specified element from this list,
 599      * if it is present.  If the list does not contain the element, it is
 600      * unchanged.  More formally, removes the element with the lowest index
 601      * {@code i} such that
 602      * {@code Objects.equals(o, get(i))}
 603      * (if such an element exists).  Returns {@code true} if this list
 604      * contained the specified element (or equivalently, if this list
 605      * changed as a result of the call).
 606      *
 607      * @param o element to be removed from this list, if present
 608      * @return {@code true} if this list contained the specified element
 609      */
 610     public boolean remove(Object o) {
 611         final Object[] es = elementData;
 612         final int size = this.size;
 613         int i = 0;
 614         found: {
 615             if (o == null) {
 616                 for (; i < size; i++)
 617                     if (es[i] == null)
 618                         break found;
 619             } else {
 620                 for (; i < size; i++)
 621                     if (o.equals(es[i]))
 622                         break found;
 623             }
 624             return false;
 625         }
 626         fastRemove(es, i);
 627         return true;
 628     }
 629 
 630     /**
 631      * Private remove method that skips bounds checking and does not
 632      * return the value removed.
 633      */
 634     private void fastRemove(Object[] es, int i) {
 635         modCount++;
 636         final int newSize;
 637         if ((newSize = size - 1) > i)
 638             System.arraycopy(es, i + 1, es, i, newSize - i);
 639         es[size = newSize] = null;
 640     }
 641 
 642     /**
 643      * Removes all of the elements from this list.  The list will
 644      * be empty after this call returns.
 645      */
 646     public void clear() {
 647         modCount++;
 648         final Object[] es = elementData;
 649         for (int to = size, i = size = 0; i < to; i++)
 650             es[i] = null;
 651     }
 652 
 653     /**
 654      * Appends all of the elements in the specified collection to the end of
 655      * this list, in the order that they are returned by the
 656      * specified collection's Iterator.  The behavior of this operation is
 657      * undefined if the specified collection is modified while the operation
 658      * is in progress.  (This implies that the behavior of this call is
 659      * undefined if the specified collection is this list, and this
 660      * list is nonempty.)
 661      *
 662      * @param c collection containing elements to be added to this list
 663      * @return {@code true} if this list changed as a result of the call
 664      * @throws NullPointerException if the specified collection is null
 665      */
 666     public boolean addAll(Collection<? extends E> c) {
 667         Object[] a = c.toArray();
 668         modCount++;
 669         int numNew = a.length;
 670         if (numNew == 0)
 671             return false;
 672         Object[] elementData;
 673         final int s;
 674         if (numNew > (elementData = this.elementData).length - (s = size))
 675             elementData = grow(s + numNew);
 676         System.arraycopy(a, 0, elementData, s, numNew);
 677         size = s + numNew;
 678         return true;
 679     }
 680 
 681     /**
 682      * Inserts all of the elements in the specified collection into this
 683      * list, starting at the specified position.  Shifts the element
 684      * currently at that position (if any) and any subsequent elements to
 685      * the right (increases their indices).  The new elements will appear
 686      * in the list in the order that they are returned by the
 687      * specified collection's iterator.
 688      *
 689      * @param index index at which to insert the first element from the
 690      *              specified collection
 691      * @param c collection containing elements to be added to this list
 692      * @return {@code true} if this list changed as a result of the call
 693      * @throws IndexOutOfBoundsException {@inheritDoc}
 694      * @throws NullPointerException if the specified collection is null
 695      */
 696     public boolean addAll(int index, Collection<? extends E> c) {
 697         rangeCheckForAdd(index);
 698 
 699         Object[] a = c.toArray();
 700         modCount++;
 701         int numNew = a.length;
 702         if (numNew == 0)
 703             return false;
 704         Object[] elementData;
 705         final int s;
 706         if (numNew > (elementData = this.elementData).length - (s = size))
 707             elementData = grow(s + numNew);
 708 
 709         int numMoved = s - index;
 710         if (numMoved > 0)
 711             System.arraycopy(elementData, index,
 712                              elementData, index + numNew,
 713                              numMoved);
 714         System.arraycopy(a, 0, elementData, index, numNew);
 715         size = s + numNew;
 716         return true;
 717     }
 718 
 719     /**
 720      * Removes from this list all of the elements whose index is between
 721      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
 722      * Shifts any succeeding elements to the left (reduces their index).
 723      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
 724      * (If {@code toIndex==fromIndex}, this operation has no effect.)
 725      *
 726      * @throws IndexOutOfBoundsException if {@code fromIndex} or
 727      *         {@code toIndex} is out of range
 728      *         ({@code fromIndex < 0 ||
 729      *          toIndex > size() ||
 730      *          toIndex < fromIndex})
 731      */
 732     protected void removeRange(int fromIndex, int toIndex) {
 733         if (fromIndex > toIndex) {
 734             throw new IndexOutOfBoundsException(
 735                     outOfBoundsMsg(fromIndex, toIndex));
 736         }
 737         modCount++;
 738         shiftTailOverGap(elementData, fromIndex, toIndex);
 739     }
 740 
 741     /** Erases the gap from lo to hi, by sliding down following elements. */
 742     private void shiftTailOverGap(Object[] es, int lo, int hi) {
 743         System.arraycopy(es, hi, es, lo, size - hi);
 744         for (int to = size, i = (size -= hi - lo); i < to; i++)
 745             es[i] = null;
 746     }
 747 
 748     /**
 749      * A version of rangeCheck used by add and addAll.
 750      */
 751     private void rangeCheckForAdd(int index) {
 752         if (index > size || index < 0)
 753             throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
 754     }
 755 
 756     /**
 757      * Constructs an IndexOutOfBoundsException detail message.
 758      * Of the many possible refactorings of the error handling code,
 759      * this "outlining" performs best with both server and client VMs.
 760      */
 761     private String outOfBoundsMsg(int index) {
 762         return "Index: "+index+", Size: "+size;
 763     }
 764 
 765     /**
 766      * A version used in checking (fromIndex > toIndex) condition
 767      */
 768     private static String outOfBoundsMsg(int fromIndex, int toIndex) {
 769         return "From Index: " + fromIndex + " > To Index: " + toIndex;
 770     }
 771 
 772     /**
 773      * Removes from this list all of its elements that are contained in the
 774      * specified collection.
 775      *
 776      * @param c collection containing elements to be removed from this list
 777      * @return {@code true} if this list changed as a result of the call
 778      * @throws ClassCastException if the class of an element of this list
 779      *         is incompatible with the specified collection
 780      * (<a href="Collection.html#optional-restrictions">optional</a>)
 781      * @throws NullPointerException if this list contains a null element and the
 782      *         specified collection does not permit null elements
 783      * (<a href="Collection.html#optional-restrictions">optional</a>),
 784      *         or if the specified collection is null
 785      * @see Collection#contains(Object)
 786      */
 787     public boolean removeAll(Collection<?> c) {
 788         return batchRemove(c, false, 0, size);
 789     }
 790 
 791     /**
 792      * Retains only the elements in this list that are contained in the
 793      * specified collection.  In other words, removes from this list all
 794      * of its elements that are not contained in the specified collection.
 795      *
 796      * @param c collection containing elements to be retained in this list
 797      * @return {@code true} if this list changed as a result of the call
 798      * @throws ClassCastException if the class of an element of this list
 799      *         is incompatible with the specified collection
 800      * (<a href="Collection.html#optional-restrictions">optional</a>)
 801      * @throws NullPointerException if this list contains a null element and the
 802      *         specified collection does not permit null elements
 803      * (<a href="Collection.html#optional-restrictions">optional</a>),
 804      *         or if the specified collection is null
 805      * @see Collection#contains(Object)
 806      */
 807     public boolean retainAll(Collection<?> c) {
 808         return batchRemove(c, true, 0, size);
 809     }
 810 
 811     boolean batchRemove(Collection<?> c, boolean complement,
 812                         final int from, final int end) {
 813         Objects.requireNonNull(c);
 814         final Object[] es = elementData;
 815         int r;
 816         // Optimize for initial run of survivors
 817         for (r = from;; r++) {
 818             if (r == end)
 819                 return false;
 820             if (c.contains(es[r]) != complement)
 821                 break;
 822         }
 823         int w = r++;
 824         try {
 825             for (Object e; r < end; r++)
 826                 if (c.contains(e = es[r]) == complement)
 827                     es[w++] = e;
 828         } catch (Throwable ex) {
 829             // Preserve behavioral compatibility with AbstractCollection,
 830             // even if c.contains() throws.
 831             System.arraycopy(es, r, es, w, end - r);
 832             w += end - r;
 833             throw ex;
 834         } finally {
 835             modCount += end - w;
 836             shiftTailOverGap(es, w, end);
 837         }
 838         return true;
 839     }
 840 
 841     /**
 842      * Saves the state of the {@code ArrayList} instance to a stream
 843      * (that is, serializes it).
 844      *
 845      * @param s the stream
 846      * @throws java.io.IOException if an I/O error occurs
 847      * @serialData The length of the array backing the {@code ArrayList}
 848      *             instance is emitted (int), followed by all of its elements
 849      *             (each an {@code Object}) in the proper order.
 850      */
 851     private void writeObject(java.io.ObjectOutputStream s)
 852         throws java.io.IOException {
 853         // Write out element count, and any hidden stuff
 854         int expectedModCount = modCount;
 855         s.defaultWriteObject();
 856 
 857         // Write out size as capacity for behavioral compatibility with clone()
 858         s.writeInt(size);
 859 
 860         // Write out all elements in the proper order.
 861         for (int i=0; i<size; i++) {
 862             s.writeObject(elementData[i]);
 863         }
 864 
 865         if (modCount != expectedModCount) {
 866             throw new ConcurrentModificationException();
 867         }
 868     }
 869 
 870     /**
 871      * Reconstitutes the {@code ArrayList} instance from a stream (that is,
 872      * deserializes it).
 873      * @param s the stream
 874      * @throws ClassNotFoundException if the class of a serialized object
 875      *         could not be found
 876      * @throws java.io.IOException if an I/O error occurs
 877      */
 878     private void readObject(java.io.ObjectInputStream s)
 879         throws java.io.IOException, ClassNotFoundException {
 880 
 881         // Read in size, and any hidden stuff
 882         s.defaultReadObject();
 883 
 884         // Read in capacity
 885         s.readInt(); // ignored
 886 
 887         if (size > 0) {
 888             // like clone(), allocate array based upon size not capacity
 889             SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
 890             Object[] elements = new Object[size];
 891 
 892             // Read in all elements in the proper order.
 893             for (int i = 0; i < size; i++) {
 894                 elements[i] = s.readObject();
 895             }
 896 
 897             elementData = elements;
 898         } else if (size == 0) {
 899             elementData = EMPTY_ELEMENTDATA;
 900         } else {
 901             throw new java.io.InvalidObjectException("Invalid size: " + size);
 902         }
 903     }
 904 
 905     /**
 906      * Returns a list iterator over the elements in this list (in proper
 907      * sequence), starting at the specified position in the list.
 908      * The specified index indicates the first element that would be
 909      * returned by an initial call to {@link ListIterator#next next}.
 910      * An initial call to {@link ListIterator#previous previous} would
 911      * return the element with the specified index minus one.
 912      *
 913      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 914      *
 915      * @throws IndexOutOfBoundsException {@inheritDoc}
 916      */
 917     public ListIterator<E> listIterator(int index) {
 918         rangeCheckForAdd(index);
 919         return new ListItr(index);
 920     }
 921 
 922     /**
 923      * Returns a list iterator over the elements in this list (in proper
 924      * sequence).
 925      *
 926      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 927      *
 928      * @see #listIterator(int)
 929      */
 930     public ListIterator<E> listIterator() {
 931         return new ListItr(0);
 932     }
 933 
 934     /**
 935      * Returns an iterator over the elements in this list in proper sequence.
 936      *
 937      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
 938      *
 939      * @return an iterator over the elements in this list in proper sequence
 940      */
 941     public Iterator<E> iterator() {
 942         return new Itr();
 943     }
 944 
 945     /**
 946      * An optimized version of AbstractList.Itr
 947      */
 948     private class Itr implements Iterator<E> {
 949         int cursor;       // index of next element to return
 950         int lastRet = -1; // index of last element returned; -1 if no such
 951         int expectedModCount = modCount;
 952 
 953         // prevent creating a synthetic constructor
 954         Itr() {}
 955 
 956         public boolean hasNext() {
 957             return cursor != size;
 958         }
 959 
 960         @SuppressWarnings("unchecked")
 961         public E next() {
 962             checkForComodification();
 963             int i = cursor;
 964             if (i >= size)
 965                 throw new NoSuchElementException();
 966             Object[] elementData = ArrayList.this.elementData;
 967             if (i >= elementData.length)
 968                 throw new ConcurrentModificationException();
 969             cursor = i + 1;
 970             return (E) elementData[lastRet = i];
 971         }
 972 
 973         public void remove() {
 974             if (lastRet < 0)
 975                 throw new IllegalStateException();
 976             checkForComodification();
 977 
 978             try {
 979                 ArrayList.this.remove(lastRet);
 980                 cursor = lastRet;
 981                 lastRet = -1;
 982                 expectedModCount = modCount;
 983             } catch (IndexOutOfBoundsException ex) {
 984                 throw new ConcurrentModificationException();
 985             }
 986         }
 987 
 988         @Override
 989         public void forEachRemaining(Consumer<? super E> action) {
 990             Objects.requireNonNull(action);
 991             final int size = ArrayList.this.size;
 992             int i = cursor;
 993             if (i < size) {
 994                 final Object[] es = elementData;
 995                 if (i >= es.length)
 996                     throw new ConcurrentModificationException();
 997                 for (; i < size && modCount == expectedModCount; i++)
 998                     action.accept(elementAt(es, i));
 999                 // update once at end to reduce heap write traffic
1000                 cursor = i;
1001                 lastRet = i - 1;
1002                 checkForComodification();
1003             }
1004         }
1005 
1006         final void checkForComodification() {
1007             if (modCount != expectedModCount)
1008                 throw new ConcurrentModificationException();
1009         }
1010     }
1011 
1012     /**
1013      * An optimized version of AbstractList.ListItr
1014      */
1015     private class ListItr extends Itr implements ListIterator<E> {
1016         ListItr(int index) {
1017             super();
1018             cursor = index;
1019         }
1020 
1021         public boolean hasPrevious() {
1022             return cursor != 0;
1023         }
1024 
1025         public int nextIndex() {
1026             return cursor;
1027         }
1028 
1029         public int previousIndex() {
1030             return cursor - 1;
1031         }
1032 
1033         @SuppressWarnings("unchecked")
1034         public E previous() {
1035             checkForComodification();
1036             int i = cursor - 1;
1037             if (i < 0)
1038                 throw new NoSuchElementException();
1039             Object[] elementData = ArrayList.this.elementData;
1040             if (i >= elementData.length)
1041                 throw new ConcurrentModificationException();
1042             cursor = i;
1043             return (E) elementData[lastRet = i];
1044         }
1045 
1046         public void set(E e) {
1047             if (lastRet < 0)
1048                 throw new IllegalStateException();
1049             checkForComodification();
1050 
1051             try {
1052                 ArrayList.this.set(lastRet, e);
1053             } catch (IndexOutOfBoundsException ex) {
1054                 throw new ConcurrentModificationException();
1055             }
1056         }
1057 
1058         public void add(E e) {
1059             checkForComodification();
1060 
1061             try {
1062                 int i = cursor;
1063                 ArrayList.this.add(i, e);
1064                 cursor = i + 1;
1065                 lastRet = -1;
1066                 expectedModCount = modCount;
1067             } catch (IndexOutOfBoundsException ex) {
1068                 throw new ConcurrentModificationException();
1069             }
1070         }
1071     }
1072 
1073     /**
1074      * Returns a view of the portion of this list between the specified
1075      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1076      * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1077      * empty.)  The returned list is backed by this list, so non-structural
1078      * changes in the returned list are reflected in this list, and vice-versa.
1079      * The returned list supports all of the optional list operations.
1080      *
1081      * <p>This method eliminates the need for explicit range operations (of
1082      * the sort that commonly exist for arrays).  Any operation that expects
1083      * a list can be used as a range operation by passing a subList view
1084      * instead of a whole list.  For example, the following idiom
1085      * removes a range of elements from a list:
1086      * <pre>
1087      *      list.subList(from, to).clear();
1088      * </pre>
1089      * Similar idioms may be constructed for {@link #indexOf(Object)} and
1090      * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1091      * {@link Collections} class can be applied to a subList.
1092      *
1093      * <p>The semantics of the list returned by this method become undefined if
1094      * the backing list (i.e., this list) is <i>structurally modified</i> in
1095      * any way other than via the returned list.  (Structural modifications are
1096      * those that change the size of this list, or otherwise perturb it in such
1097      * a fashion that iterations in progress may yield incorrect results.)
1098      *
1099      * @throws IndexOutOfBoundsException {@inheritDoc}
1100      * @throws IllegalArgumentException {@inheritDoc}
1101      */
1102     public List<E> subList(int fromIndex, int toIndex) {
1103         subListRangeCheck(fromIndex, toIndex, size);
1104         return new SubList<>(this, fromIndex, toIndex);
1105     }
1106 
1107     private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1108         private final ArrayList<E> root;
1109         private final SubList<E> parent;
1110         private final int offset;
1111         private int size;
1112 
1113         /**
1114          * Constructs a sublist of an arbitrary ArrayList.
1115          */
1116         public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1117             this.root = root;
1118             this.parent = null;
1119             this.offset = fromIndex;
1120             this.size = toIndex - fromIndex;
1121             this.modCount = root.modCount;
1122         }
1123 
1124         /**
1125          * Constructs a sublist of another SubList.
1126          */
1127         private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1128             this.root = parent.root;
1129             this.parent = parent;
1130             this.offset = parent.offset + fromIndex;
1131             this.size = toIndex - fromIndex;
1132             this.modCount = root.modCount;
1133         }
1134 
1135         public E set(int index, E element) {
1136             Objects.checkIndex(index, size);
1137             checkForComodification();
1138             E oldValue = root.elementData(offset + index);
1139             root.elementData[offset + index] = element;
1140             return oldValue;
1141         }
1142 
1143         public E get(int index) {
1144             Objects.checkIndex(index, size);
1145             checkForComodification();
1146             return root.elementData(offset + index);
1147         }
1148 
1149         public int size() {
1150             checkForComodification();
1151             return size;
1152         }
1153 
1154         public void add(int index, E element) {
1155             rangeCheckForAdd(index);
1156             checkForComodification();
1157             root.add(offset + index, element);
1158             updateSizeAndModCount(1);
1159         }
1160 
1161         public E remove(int index) {
1162             Objects.checkIndex(index, size);
1163             checkForComodification();
1164             E result = root.remove(offset + index);
1165             updateSizeAndModCount(-1);
1166             return result;
1167         }
1168 
1169         protected void removeRange(int fromIndex, int toIndex) {
1170             checkForComodification();
1171             root.removeRange(offset + fromIndex, offset + toIndex);
1172             updateSizeAndModCount(fromIndex - toIndex);
1173         }
1174 
1175         public boolean addAll(Collection<? extends E> c) {
1176             return addAll(this.size, c);
1177         }
1178 
1179         public boolean addAll(int index, Collection<? extends E> c) {
1180             rangeCheckForAdd(index);
1181             int cSize = c.size();
1182             if (cSize==0)
1183                 return false;
1184             checkForComodification();
1185             root.addAll(offset + index, c);
1186             updateSizeAndModCount(cSize);
1187             return true;
1188         }
1189 
1190         public void replaceAll(UnaryOperator<E> operator) {
1191             root.replaceAllRange(operator, offset, offset + size);
1192         }
1193 
1194         public boolean removeAll(Collection<?> c) {
1195             return batchRemove(c, false);
1196         }
1197 
1198         public boolean retainAll(Collection<?> c) {
1199             return batchRemove(c, true);
1200         }
1201 
1202         private boolean batchRemove(Collection<?> c, boolean complement) {
1203             checkForComodification();
1204             int oldSize = root.size;
1205             boolean modified =
1206                 root.batchRemove(c, complement, offset, offset + size);
1207             if (modified)
1208                 updateSizeAndModCount(root.size - oldSize);
1209             return modified;
1210         }
1211 
1212         public boolean removeIf(Predicate<? super E> filter) {
1213             checkForComodification();
1214             int oldSize = root.size;
1215             boolean modified = root.removeIf(filter, offset, offset + size);
1216             if (modified)
1217                 updateSizeAndModCount(root.size - oldSize);
1218             return modified;
1219         }
1220 
1221         public Object[] toArray() {
1222             checkForComodification();
1223             return Arrays.copyOfRange(root.elementData, offset, offset + size);
1224         }
1225 
1226         @SuppressWarnings("unchecked")
1227         public <T> T[] toArray(T[] a) {
1228             checkForComodification();
1229             if (a.length < size)
1230                 return (T[]) Arrays.copyOfRange(
1231                         root.elementData, offset, offset + size, a.getClass());
1232             System.arraycopy(root.elementData, offset, a, 0, size);
1233             if (a.length > size)
1234                 a[size] = null;
1235             return a;
1236         }
1237 
1238         public boolean equals(Object o) {
1239             if (o == this) {
1240                 return true;
1241             }
1242 
1243             if (!(o instanceof List)) {
1244                 return false;
1245             }
1246 
1247             boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1248             checkForComodification();
1249             return equal;
1250         }
1251 
1252         public int hashCode() {
1253             int hash = root.hashCodeRange(offset, offset + size);
1254             checkForComodification();
1255             return hash;
1256         }
1257 
1258         public int indexOf(Object o) {
1259             int index = root.indexOfRange(o, offset, offset + size);
1260             checkForComodification();
1261             return index >= 0 ? index - offset : -1;
1262         }
1263 
1264         public int lastIndexOf(Object o) {
1265             int index = root.lastIndexOfRange(o, offset, offset + size);
1266             checkForComodification();
1267             return index >= 0 ? index - offset : -1;
1268         }
1269 
1270         public boolean contains(Object o) {
1271             return indexOf(o) >= 0;
1272         }
1273 
1274         public Iterator<E> iterator() {
1275             return listIterator();
1276         }
1277 
1278         public ListIterator<E> listIterator(int index) {
1279             checkForComodification();
1280             rangeCheckForAdd(index);
1281 
1282             return new ListIterator<E>() {
1283                 int cursor = index;
1284                 int lastRet = -1;
1285                 int expectedModCount = root.modCount;
1286 
1287                 public boolean hasNext() {
1288                     return cursor != SubList.this.size;
1289                 }
1290 
1291                 @SuppressWarnings("unchecked")
1292                 public E next() {
1293                     checkForComodification();
1294                     int i = cursor;
1295                     if (i >= SubList.this.size)
1296                         throw new NoSuchElementException();
1297                     Object[] elementData = root.elementData;
1298                     if (offset + i >= elementData.length)
1299                         throw new ConcurrentModificationException();
1300                     cursor = i + 1;
1301                     return (E) elementData[offset + (lastRet = i)];
1302                 }
1303 
1304                 public boolean hasPrevious() {
1305                     return cursor != 0;
1306                 }
1307 
1308                 @SuppressWarnings("unchecked")
1309                 public E previous() {
1310                     checkForComodification();
1311                     int i = cursor - 1;
1312                     if (i < 0)
1313                         throw new NoSuchElementException();
1314                     Object[] elementData = root.elementData;
1315                     if (offset + i >= elementData.length)
1316                         throw new ConcurrentModificationException();
1317                     cursor = i;
1318                     return (E) elementData[offset + (lastRet = i)];
1319                 }
1320 
1321                 public void forEachRemaining(Consumer<? super E> action) {
1322                     Objects.requireNonNull(action);
1323                     final int size = SubList.this.size;
1324                     int i = cursor;
1325                     if (i < size) {
1326                         final Object[] es = root.elementData;
1327                         if (offset + i >= es.length)
1328                             throw new ConcurrentModificationException();
1329                         for (; i < size && modCount == expectedModCount; i++)
1330                             action.accept(elementAt(es, offset + i));
1331                         // update once at end to reduce heap write traffic
1332                         cursor = i;
1333                         lastRet = i - 1;
1334                         checkForComodification();
1335                     }
1336                 }
1337 
1338                 public int nextIndex() {
1339                     return cursor;
1340                 }
1341 
1342                 public int previousIndex() {
1343                     return cursor - 1;
1344                 }
1345 
1346                 public void remove() {
1347                     if (lastRet < 0)
1348                         throw new IllegalStateException();
1349                     checkForComodification();
1350 
1351                     try {
1352                         SubList.this.remove(lastRet);
1353                         cursor = lastRet;
1354                         lastRet = -1;
1355                         expectedModCount = root.modCount;
1356                     } catch (IndexOutOfBoundsException ex) {
1357                         throw new ConcurrentModificationException();
1358                     }
1359                 }
1360 
1361                 public void set(E e) {
1362                     if (lastRet < 0)
1363                         throw new IllegalStateException();
1364                     checkForComodification();
1365 
1366                     try {
1367                         root.set(offset + lastRet, e);
1368                     } catch (IndexOutOfBoundsException ex) {
1369                         throw new ConcurrentModificationException();
1370                     }
1371                 }
1372 
1373                 public void add(E e) {
1374                     checkForComodification();
1375 
1376                     try {
1377                         int i = cursor;
1378                         SubList.this.add(i, e);
1379                         cursor = i + 1;
1380                         lastRet = -1;
1381                         expectedModCount = root.modCount;
1382                     } catch (IndexOutOfBoundsException ex) {
1383                         throw new ConcurrentModificationException();
1384                     }
1385                 }
1386 
1387                 final void checkForComodification() {
1388                     if (root.modCount != expectedModCount)
1389                         throw new ConcurrentModificationException();
1390                 }
1391             };
1392         }
1393 
1394         public List<E> subList(int fromIndex, int toIndex) {
1395             subListRangeCheck(fromIndex, toIndex, size);
1396             return new SubList<>(this, fromIndex, toIndex);
1397         }
1398 
1399         private void rangeCheckForAdd(int index) {
1400             if (index < 0 || index > this.size)
1401                 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1402         }
1403 
1404         private String outOfBoundsMsg(int index) {
1405             return "Index: "+index+", Size: "+this.size;
1406         }
1407 
1408         private void checkForComodification() {
1409             if (root.modCount != modCount)
1410                 throw new ConcurrentModificationException();
1411         }
1412 
1413         private void updateSizeAndModCount(int sizeChange) {
1414             SubList<E> slist = this;
1415             do {
1416                 slist.size += sizeChange;
1417                 slist.modCount = root.modCount;
1418                 slist = slist.parent;
1419             } while (slist != null);
1420         }
1421 
1422         public Spliterator<E> spliterator() {
1423             checkForComodification();
1424 
1425             // ArrayListSpliterator not used here due to late-binding
1426             return new Spliterator<E>() {
1427                 private int index = offset; // current index, modified on advance/split
1428                 private int fence = -1; // -1 until used; then one past last index
1429                 private int expectedModCount; // initialized when fence set
1430 
1431                 private int getFence() { // initialize fence to size on first use
1432                     int hi; // (a specialized variant appears in method forEach)
1433                     if ((hi = fence) < 0) {
1434                         expectedModCount = modCount;
1435                         hi = fence = offset + size;
1436                     }
1437                     return hi;
1438                 }
1439 
1440                 public ArrayList<E>.ArrayListSpliterator trySplit() {
1441                     int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1442                     // ArrayListSpliterator can be used here as the source is already bound
1443                     return (lo >= mid) ? null : // divide range in half unless too small
1444                         root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1445                 }
1446 
1447                 public boolean tryAdvance(Consumer<? super E> action) {
1448                     Objects.requireNonNull(action);
1449                     int hi = getFence(), i = index;
1450                     if (i < hi) {
1451                         index = i + 1;
1452                         @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1453                         action.accept(e);
1454                         if (root.modCount != expectedModCount)
1455                             throw new ConcurrentModificationException();
1456                         return true;
1457                     }
1458                     return false;
1459                 }
1460 
1461                 public void forEachRemaining(Consumer<? super E> action) {
1462                     Objects.requireNonNull(action);
1463                     int i, hi, mc; // hoist accesses and checks from loop
1464                     ArrayList<E> lst = root;
1465                     Object[] a;
1466                     if ((a = lst.elementData) != null) {
1467                         if ((hi = fence) < 0) {
1468                             mc = modCount;
1469                             hi = offset + size;
1470                         }
1471                         else
1472                             mc = expectedModCount;
1473                         if ((i = index) >= 0 && (index = hi) <= a.length) {
1474                             for (; i < hi; ++i) {
1475                                 @SuppressWarnings("unchecked") E e = (E) a[i];
1476                                 action.accept(e);
1477                             }
1478                             if (lst.modCount == mc)
1479                                 return;
1480                         }
1481                     }
1482                     throw new ConcurrentModificationException();
1483                 }
1484 
1485                 public long estimateSize() {
1486                     return getFence() - index;
1487                 }
1488 
1489                 public int characteristics() {
1490                     return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1491                 }
1492             };
1493         }
1494     }
1495 
1496     /**
1497      * @throws NullPointerException {@inheritDoc}
1498      */
1499     @Override
1500     public void forEach(Consumer<? super E> action) {
1501         Objects.requireNonNull(action);
1502         final int expectedModCount = modCount;
1503         final Object[] es = elementData;
1504         final int size = this.size;
1505         for (int i = 0; modCount == expectedModCount && i < size; i++)
1506             action.accept(elementAt(es, i));
1507         if (modCount != expectedModCount)
1508             throw new ConcurrentModificationException();
1509     }
1510 
1511     /**
1512      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1513      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1514      * list.
1515      *
1516      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1517      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1518      * Overriding implementations should document the reporting of additional
1519      * characteristic values.
1520      *
1521      * @return a {@code Spliterator} over the elements in this list
1522      * @since 1.8
1523      */
1524     @Override
1525     public Spliterator<E> spliterator() {
1526         return new ArrayListSpliterator(0, -1, 0);
1527     }
1528 
1529     /** Index-based split-by-two, lazily initialized Spliterator */
1530     final class ArrayListSpliterator implements Spliterator<E> {
1531 
1532         /*
1533          * If ArrayLists were immutable, or structurally immutable (no
1534          * adds, removes, etc), we could implement their spliterators
1535          * with Arrays.spliterator. Instead we detect as much
1536          * interference during traversal as practical without
1537          * sacrificing much performance. We rely primarily on
1538          * modCounts. These are not guaranteed to detect concurrency
1539          * violations, and are sometimes overly conservative about
1540          * within-thread interference, but detect enough problems to
1541          * be worthwhile in practice. To carry this out, we (1) lazily
1542          * initialize fence and expectedModCount until the latest
1543          * point that we need to commit to the state we are checking
1544          * against; thus improving precision.  (This doesn't apply to
1545          * SubLists, that create spliterators with current non-lazy
1546          * values).  (2) We perform only a single
1547          * ConcurrentModificationException check at the end of forEach
1548          * (the most performance-sensitive method). When using forEach
1549          * (as opposed to iterators), we can normally only detect
1550          * interference after actions, not before. Further
1551          * CME-triggering checks apply to all other possible
1552          * violations of assumptions for example null or too-small
1553          * elementData array given its size(), that could only have
1554          * occurred due to interference.  This allows the inner loop
1555          * of forEach to run without any further checks, and
1556          * simplifies lambda-resolution. While this does entail a
1557          * number of checks, note that in the common case of
1558          * list.stream().forEach(a), no checks or other computation
1559          * occur anywhere other than inside forEach itself.  The other
1560          * less-often-used methods cannot take advantage of most of
1561          * these streamlinings.
1562          */
1563 
1564         private int index; // current index, modified on advance/split
1565         private int fence; // -1 until used; then one past last index
1566         private int expectedModCount; // initialized when fence set
1567 
1568         /** Creates new spliterator covering the given range. */
1569         ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1570             this.index = origin;
1571             this.fence = fence;
1572             this.expectedModCount = expectedModCount;
1573         }
1574 
1575         private int getFence() { // initialize fence to size on first use
1576             int hi; // (a specialized variant appears in method forEach)
1577             if ((hi = fence) < 0) {
1578                 expectedModCount = modCount;
1579                 hi = fence = size;
1580             }
1581             return hi;
1582         }
1583 
1584         public ArrayListSpliterator trySplit() {
1585             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1586             return (lo >= mid) ? null : // divide range in half unless too small
1587                 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1588         }
1589 
1590         public boolean tryAdvance(Consumer<? super E> action) {
1591             if (action == null)
1592                 throw new NullPointerException();
1593             int hi = getFence(), i = index;
1594             if (i < hi) {
1595                 index = i + 1;
1596                 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1597                 action.accept(e);
1598                 if (modCount != expectedModCount)
1599                     throw new ConcurrentModificationException();
1600                 return true;
1601             }
1602             return false;
1603         }
1604 
1605         public void forEachRemaining(Consumer<? super E> action) {
1606             int i, hi, mc; // hoist accesses and checks from loop
1607             Object[] a;
1608             if (action == null)
1609                 throw new NullPointerException();
1610             if ((a = elementData) != null) {
1611                 if ((hi = fence) < 0) {
1612                     mc = modCount;
1613                     hi = size;
1614                 }
1615                 else
1616                     mc = expectedModCount;
1617                 if ((i = index) >= 0 && (index = hi) <= a.length) {
1618                     for (; i < hi; ++i) {
1619                         @SuppressWarnings("unchecked") E e = (E) a[i];
1620                         action.accept(e);
1621                     }
1622                     if (modCount == mc)
1623                         return;
1624                 }
1625             }
1626             throw new ConcurrentModificationException();
1627         }
1628 
1629         public long estimateSize() {
1630             return getFence() - index;
1631         }
1632 
1633         public int characteristics() {
1634             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1635         }
1636     }
1637 
1638     // A tiny bit set implementation
1639 
1640     private static long[] nBits(int n) {
1641         return new long[((n - 1) >> 6) + 1];
1642     }
1643     private static void setBit(long[] bits, int i) {
1644         bits[i >> 6] |= 1L << i;
1645     }
1646     private static boolean isClear(long[] bits, int i) {
1647         return (bits[i >> 6] & (1L << i)) == 0;
1648     }
1649 
1650     /**
1651      * @throws NullPointerException {@inheritDoc}
1652      */
1653     @Override
1654     public boolean removeIf(Predicate<? super E> filter) {
1655         return removeIf(filter, 0, size);
1656     }
1657 
1658     /**
1659      * Removes all elements satisfying the given predicate, from index
1660      * i (inclusive) to index end (exclusive).
1661      */
1662     boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1663         Objects.requireNonNull(filter);
1664         int expectedModCount = modCount;
1665         final Object[] es = elementData;
1666         // Optimize for initial run of survivors
1667         for (; i < end && !filter.test(elementAt(es, i)); i++)
1668             ;
1669         // Tolerate predicates that reentrantly access the collection for
1670         // read (but writers still get CME), so traverse once to find
1671         // elements to delete, a second pass to physically expunge.
1672         if (i < end) {
1673             final int beg = i;
1674             final long[] deathRow = nBits(end - beg);
1675             deathRow[0] = 1L;   // set bit 0
1676             for (i = beg + 1; i < end; i++)
1677                 if (filter.test(elementAt(es, i)))
1678                     setBit(deathRow, i - beg);
1679             if (modCount != expectedModCount)
1680                 throw new ConcurrentModificationException();
1681             modCount++;
1682             int w = beg;
1683             for (i = beg; i < end; i++)
1684                 if (isClear(deathRow, i - beg))
1685                     es[w++] = es[i];
1686             shiftTailOverGap(es, w, end);
1687             return true;
1688         } else {
1689             if (modCount != expectedModCount)
1690                 throw new ConcurrentModificationException();
1691             return false;
1692         }
1693     }
1694 
1695     @Override
1696     public void replaceAll(UnaryOperator<E> operator) {
1697         replaceAllRange(operator, 0, size);
1698         modCount++;
1699     }
1700 
1701     private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1702         Objects.requireNonNull(operator);
1703         final int expectedModCount = modCount;
1704         final Object[] es = elementData;
1705         for (; modCount == expectedModCount && i < end; i++)
1706             es[i] = operator.apply(elementAt(es, i));
1707         if (modCount != expectedModCount)
1708             throw new ConcurrentModificationException();
1709     }
1710 
1711     @Override
1712     @SuppressWarnings("unchecked")
1713     public void sort(Comparator<? super E> c) {
1714         final int expectedModCount = modCount;
1715         Arrays.sort((E[]) elementData, 0, size, c);
1716         if (modCount != expectedModCount)
1717             throw new ConcurrentModificationException();
1718         modCount++;
1719     }
1720 
1721     void checkInvariants() {
1722         // assert size >= 0;
1723         // assert size == elementData.length || elementData[size] == null;
1724     }
1725 }