1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.text.Normalizer;
  29 import java.text.Normalizer.Form;
  30 import java.util.Locale;
  31 import java.util.Iterator;
  32 import java.util.Map;
  33 import java.util.ArrayList;
  34 import java.util.HashMap;
  35 import java.util.LinkedHashSet;
  36 import java.util.List;
  37 import java.util.Set;
  38 import java.util.Arrays;
  39 import java.util.NoSuchElementException;
  40 import java.util.Spliterator;
  41 import java.util.Spliterators;
  42 import java.util.function.Predicate;
  43 import java.util.stream.Stream;
  44 import java.util.stream.StreamSupport;
  45 
  46 
  47 /**
  48  * A compiled representation of a regular expression.
  49  *
  50  * <p> A regular expression, specified as a string, must first be compiled into
  51  * an instance of this class.  The resulting pattern can then be used to create
  52  * a {@link Matcher} object that can match arbitrary {@linkplain
  53  * java.lang.CharSequence character sequences} against the regular
  54  * expression.  All of the state involved in performing a match resides in the
  55  * matcher, so many matchers can share the same pattern.
  56  *
  57  * <p> A typical invocation sequence is thus
  58  *
  59  * <blockquote><pre>
  60  * Pattern p = Pattern.{@link #compile compile}("a*b");
  61  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  62  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  63  *
  64  * <p> A {@link #matches matches} method is defined by this class as a
  65  * convenience for when a regular expression is used just once.  This method
  66  * compiles an expression and matches an input sequence against it in a single
  67  * invocation.  The statement
  68  *
  69  * <blockquote><pre>
  70  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  71  *
  72  * is equivalent to the three statements above, though for repeated matches it
  73  * is less efficient since it does not allow the compiled pattern to be reused.
  74  *
  75  * <p> Instances of this class are immutable and are safe for use by multiple
  76  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  77  * such use.
  78  *
  79  *
  80  * <h2><a id="sum">Summary of regular-expression constructs</a></h2>
  81  *
  82  * <table class="borderless">
  83  * <caption style="display:none">Regular expression constructs, and what they match</caption>
  84  * <thead style="text-align:left">
  85  * <tr>
  86  * <th id="construct">Construct</th>
  87  * <th id="matches">Matches</th>
  88  * </tr>
  89  * </thead>
  90  * <tbody style="text-align:left">
  91  *
  92  * <tr><th colspan="2" style="padding-top:20px" id="characters">Characters</th></tr>
  93  *
  94  * <tr><th style="vertical-align:top; font-weight: normal" id="x"><i>x</i></th>
  95  *     <td headers="matches characters x">The character <i>x</i></td></tr>
  96  * <tr><th style="vertical-align:top; font-weight: normal" id="backslash">{@code \\}</th>
  97  *     <td headers="matches characters backslash">The backslash character</td></tr>
  98  * <tr><th style="vertical-align:top; font-weight: normal" id="octal_n">{@code \0}<i>n</i></th>
  99  *     <td headers="matches characters octal_n">The character with octal value {@code 0}<i>n</i>
 100  *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 101  * <tr><th style="vertical-align:top; font-weight: normal" id="octal_nn">{@code \0}<i>nn</i></th>
 102  *     <td headers="matches characters octal_nn">The character with octal value {@code 0}<i>nn</i>
 103  *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 104  * <tr><th style="vertical-align:top; font-weight: normal" id="octal_nnn">{@code \0}<i>mnn</i></th>
 105  *     <td headers="matches characters octal_nnn">The character with octal value {@code 0}<i>mnn</i>
 106  *         (0&nbsp;{@code <=}&nbsp;<i>m</i>&nbsp;{@code <=}&nbsp;3,
 107  *         0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 108  * <tr><th style="vertical-align:top; font-weight: normal" id="hex_hh">{@code \x}<i>hh</i></th>
 109  *     <td headers="matches characters hex_hh">The character with hexadecimal value {@code 0x}<i>hh</i></td></tr>
 110  * <tr><th style="vertical-align:top; font-weight: normal" id="hex_hhhh"><code>\u</code><i>hhhh</i></th>
 111  *     <td headers="matches characters hex_hhhh">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hhhh</i></td></tr>
 112  * <tr><th style="vertical-align:top; font-weight: normal" id="hex_h_h"><code>\x</code><i>{h...h}</i></th>
 113  *     <td headers="matches characters hex_h_h">The character with hexadecimal value {@code 0x}<i>h...h</i>
 114  *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
 115  *         &nbsp;&lt;=&nbsp;{@code 0x}<i>h...h</i>&nbsp;&lt;=&nbsp;
 116  *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
 117  * <tr><th style="vertical-align:top; font-weight: normal" id="unicode_name"><code>\N{</code><i>name</i><code>}</code></th>
 118  *     <td headers="matches characters unicode_name">The character with Unicode character name <i>'name'</i></td></tr>
 119  * <tr><th style="vertical-align:top; font-weight:normal" id="tab">{@code \t}</th>
 120  *     <td headers="matches characters tab">The tab character (<code>'\u0009'</code>)</td></tr>
 121  * <tr><th style="vertical-align:top; font-weight:normal" id="newline">{@code \n}</th>
 122  *     <td headers="matches characters newline">The newline (line feed) character (<code>'\u000A'</code>)</td></tr>
 123  * <tr><th style="vertical-align:top; font-weight:normal" id="return">{@code \r}</th>
 124  *     <td headers="matches characters return">The carriage-return character (<code>'\u000D'</code>)</td></tr>
 125  * <tr><th style="vertical-align:top; font-weight:normal" id="form_feed">{@code \f}</th>
 126  *     <td headers="matches characters form_feed">The form-feed character (<code>'\u000C'</code>)</td></tr>
 127  * <tr><th style="vertical-align:top; font-weight:normal" id="bell">{@code \a}</th>
 128  *     <td headers="matches characters bell">The alert (bell) character (<code>'\u0007'</code>)</td></tr>
 129  * <tr><th style="vertical-align:top; font-weight:normal" id="escape">{@code \e}</th>
 130  *     <td headers="matches characters escape">The escape character (<code>'\u001B'</code>)</td></tr>
 131  * <tr><th style="vertical-align:top; font-weight:normal" id="ctrl_x">{@code \c}<i>x</i></th>
 132  *     <td headers="matches characters ctrl_x">The control character corresponding to <i>x</i></td></tr>
 133  *
 134  *  <tr><th colspan="2" style="padding-top:20px" id="classes">Character classes</th></tr>
 135  *
 136  * <tr><th style="vertical-align:top; font-weight:normal" id="simple">{@code [abc]}</th>
 137  *     <td headers="matches classes simple">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
 138  * <tr><th style="vertical-align:top; font-weight:normal" id="negation">{@code [^abc]}</th>
 139  *     <td headers="matches classes negation">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
 140  * <tr><th style="vertical-align:top; font-weight:normal" id="range">{@code [a-zA-Z]}</th>
 141  *     <td headers="matches classes range">{@code a} through {@code z}
 142  *         or {@code A} through {@code Z}, inclusive (range)</td></tr>
 143  * <tr><th style="vertical-align:top; font-weight:normal" id="union">{@code [a-d[m-p]]}</th>
 144  *     <td headers="matches classes union">{@code a} through {@code d},
 145  *      or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
 146  * <tr><th style="vertical-align:top; font-weight:normal" id="intersection">{@code [a-z&&[def]]}</th>
 147  *     <td headers="matches classes intersection">{@code d}, {@code e}, or {@code f} (intersection)</tr>
 148  * <tr><th style="vertical-align:top; font-weight:normal" id="subtraction1">{@code [a-z&&[^bc]]}</th>
 149  *     <td headers="matches classes subtraction1">{@code a} through {@code z},
 150  *         except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
 151  * <tr><th style="vertical-align:top; font-weight:normal" id="subtraction2">{@code [a-z&&[^m-p]]}</th>
 152  *     <td headers="matches classes subtraction2">{@code a} through {@code z},
 153  *          and not {@code m} through {@code p}: {@code [a-lq-z]}(subtraction)</td></tr>
 154  *
 155  * <tr><th colspan="2" style="padding-top:20px" id="predef">Predefined character classes</th></tr>
 156  *
 157  * <tr><th style="vertical-align:top; font-weight:normal" id="any">{@code .}</th>
 158  *     <td headers="matches predef any">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 159  * <tr><th style="vertical-align:top; font-weight:normal" id="digit">{@code \d}</th>
 160  *     <td headers="matches predef digit">A digit: {@code [0-9]}</td></tr>
 161  * <tr><th style="vertical-align:top; font-weight:normal" id="non_digit">{@code \D}</th>
 162  *     <td headers="matches predef non_digit">A non-digit: {@code [^0-9]}</td></tr>
 163  * <tr><th style="vertical-align:top; font-weight:normal" id="horiz_white">{@code \h}</th>
 164  *     <td headers="matches predef horiz_white">A horizontal whitespace character:
 165  *     <code>[ \t\xA0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]</code></td></tr>
 166  * <tr><th style="vertical-align:top; font-weight:normal" id="non_horiz_white">{@code \H}</th>
 167  *     <td headers="matches predef non_horiz_white">A non-horizontal whitespace character: {@code [^\h]}</td></tr>
 168  * <tr><th style="vertical-align:top; font-weight:normal" id="white">{@code \s}</th>
 169  *     <td headers="matches predef white">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 170  * <tr><th style="vertical-align:top; font-weight:normal" id="non_white">{@code \S}</th>
 171  *     <td headers="matches predef non_white">A non-whitespace character: {@code [^\s]}</td></tr>
 172  * <tr><th style="vertical-align:top; font-weight:normal" id="vert_white">{@code \v}</th>
 173  *     <td headers="matches predef vert_white">A vertical whitespace character: <code>[\n\x0B\f\r\x85\u2028\u2029]</code>
 174  *     </td></tr>
 175  * <tr><th style="vertical-align:top; font-weight:normal" id="non_vert_white">{@code \V}</th>
 176  *     <td headers="matches predef non_vert_white">A non-vertical whitespace character: {@code [^\v]}</td></tr>
 177  * <tr><th style="vertical-align:top; font-weight:normal" id="word">{@code \w}</th>
 178  *     <td headers="matches predef word">A word character: {@code [a-zA-Z_0-9]}</td></tr>
 179  * <tr><th style="vertical-align:top; font-weight:normal" id="non_word">{@code \W}</th>
 180  *     <td headers="matches predef non_word">A non-word character: {@code [^\w]}</td></tr>
 181  *
 182  * <tr><th colspan="2" style="padding-top:20px" id="posix"><b>POSIX character classes (US-ASCII only)</b></th></tr>
 183  *
 184  * <tr><th style="vertical-align:top; font-weight:normal" id="Lower">{@code \p{Lower}}</th>
 185  *     <td headers="matches posix Lower">A lower-case alphabetic character: {@code [a-z]}</td></tr>
 186  * <tr><th style="vertical-align:top; font-weight:normal" id="Upper">{@code \p{Upper}}</th>
 187  *     <td headers="matches posix Upper">An upper-case alphabetic character:{@code [A-Z]}</td></tr>
 188  * <tr><th style="vertical-align:top; font-weight:normal" id="ASCII">{@code \p{ASCII}}</th>
 189  *     <td headers="matches posix ASCII">All ASCII:{@code [\x00-\x7F]}</td></tr>
 190  * <tr><th style="vertical-align:top; font-weight:normal" id="Alpha">{@code \p{Alpha}}</th>
 191  *     <td headers="matches posix Alpha">An alphabetic character:{@code [\p{Lower}\p{Upper}]}</td></tr>
 192  * <tr><th style="vertical-align:top; font-weight:normal" id="Digit">{@code \p{Digit}}</th>
 193  *     <td headers="matches posix Digit">A decimal digit: {@code [0-9]}</td></tr>
 194  * <tr><th style="vertical-align:top; font-weight:normal" id="Alnum">{@code \p{Alnum}}</th>
 195  *     <td headers="matches posix Alnum">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
 196  * <tr><th style="vertical-align:top; font-weight:normal" id="Punct">{@code \p{Punct}}</th>
 197  *     <td headers="matches posix Punct">Punctuation: One of {@code !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~}</td></tr>
 198  *     <!-- {@code [\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]}
 199  *          {@code [\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]} -->
 200  * <tr><th style="vertical-align:top; font-weight:normal" id="Graph">{@code \p{Graph}}</th>
 201  *     <td headers="matches posix Graph">A visible character: {@code [\p{Alnum}\p{Punct}]}</td></tr>
 202  * <tr><th style="vertical-align:top; font-weight:normal" id="Print">{@code \p{Print}}</th>
 203  *     <td headers="matches posix Print">A printable character: {@code [\p{Graph}\x20]}</td></tr>
 204  * <tr><th style="vertical-align:top; font-weight:normal" id="Blank">{@code \p{Blank}}</th>
 205  *     <td headers="matches posix Blank">A space or a tab: {@code [ \t]}</td></tr>
 206  * <tr><th style="vertical-align:top; font-weight:normal" id="Cntrl">{@code \p{Cntrl}}</th>
 207  *     <td headers="matches posix Cntrl">A control character: {@code [\x00-\x1F\x7F]}</td></tr>
 208  * <tr><th style="vertical-align:top; font-weight:normal" id="XDigit">{@code \p{XDigit}}</th>
 209  *     <td headers="matches posix XDigit">A hexadecimal digit: {@code [0-9a-fA-F]}</td></tr>
 210  * <tr><th style="vertical-align:top; font-weight:normal" id="Space">{@code \p{Space}}</th>
 211  *     <td headers="matches posix Space">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 212  *
 213  * <tr><th colspan="2" style="padding-top:20px" id="java">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 214  *
 215  * <tr><th style="vertical-align:top; font-weight:normal" id="javaLowerCase">{@code \p{javaLowerCase}}</th>
 216  *     <td headers="matches java javaLowerCase">Equivalent to java.lang.Character.isLowerCase()</td></tr>
 217  * <tr><th style="vertical-align:top; font-weight:normal" id="javaUpperCase">{@code \p{javaUpperCase}}</th>
 218  *     <td headers="matches java javaUpperCase">Equivalent to java.lang.Character.isUpperCase()</td></tr>
 219  * <tr><th style="vertical-align:top; font-weight:normal" id="javaWhitespace">{@code \p{javaWhitespace}}</th>
 220  *     <td headers="matches java javaWhitespace">Equivalent to java.lang.Character.isWhitespace()</td></tr>
 221  * <tr><th style="vertical-align:top; font-weight:normal" id="javaMirrored">{@code \p{javaMirrored}}</th>
 222  *     <td headers="matches java javaMirrored">Equivalent to java.lang.Character.isMirrored()</td></tr>
 223  *
 224  * <tr><th colspan="2" style="padding-top:20px"  id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
 225  *
 226  * <tr><th style="vertical-align:top; font-weight:normal" id="IsLatin">{@code \p{IsLatin}}</th>
 227  *     <td headers="matches unicode IsLatin">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
 228  * <tr><th style="vertical-align:top; font-weight:normal" id="InGreek">{@code \p{InGreek}}</th>
 229  *     <td headers="matches unicode InGreek">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
 230  * <tr><th style="vertical-align:top; font-weight:normal" id="Lu">{@code \p{Lu}}</th>
 231  *     <td headers="matches unicode Lu">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
 232  * <tr><th style="vertical-align:top; font-weight:normal" id="IsAlphabetic">{@code \p{IsAlphabetic}}</th>
 233  *     <td headers="matches unicode IsAlphabetic">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
 234  * <tr><th style="vertical-align:top; font-weight:normal" id="Sc">{@code \p{Sc}}</th>
 235  *     <td headers="matches unicode Sc">A currency symbol</td></tr>
 236  * <tr><th style="vertical-align:top; font-weight:normal" id="not_InGreek">{@code \P{InGreek}}</th>
 237  *     <td headers="matches unicode not_InGreek">Any character except one in the Greek block (negation)</td></tr>
 238  * <tr><th style="vertical-align:top; font-weight:normal" id="not_uppercase">{@code [\p{L}&&[^\p{Lu}]]}</th>
 239  *     <td headers="matches unicode not_uppercase">Any letter except an uppercase letter (subtraction)</td></tr>
 240  *
 241  * <tr><th colspan="2" style="padding-top:20px" id="bounds">Boundary matchers</th></tr>
 242  *
 243  * <tr><th style="vertical-align:top; font-weight:normal" id="begin_line">{@code ^}</th>
 244  *     <td headers="matches bounds begin_line">The beginning of a line</td></tr>
 245  * <tr><th style="vertical-align:top; font-weight:normal" id="end_line">{@code $}</th>
 246  *     <td headers="matches bounds end_line">The end of a line</td></tr>
 247  * <tr><th style="vertical-align:top; font-weight:normal" id="word_boundary">{@code \b}</th>
 248  *     <td headers="matches bounds word_boundary">A word boundary</td></tr>
 249  * <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_cluster_boundary">{@code \b{g}}</th>
 250  *     <td headers="matches bounds grapheme_cluster_boundary">A Unicode extended grapheme cluster boundary</td></tr>
 251  * <tr><th style="vertical-align:top; font-weight:normal" id="non_word_boundary">{@code \B}</th>
 252  *     <td headers="matches bounds non_word_boundary">A non-word boundary</td></tr>
 253  * <tr><th style="vertical-align:top; font-weight:normal" id="begin_input">{@code \A}</th>
 254  *     <td headers="matches bounds begin_input">The beginning of the input</td></tr>
 255  * <tr><th style="vertical-align:top; font-weight:normal" id="end_prev_match">{@code \G}</th>
 256  *     <td headers="matches bounds end_prev_match">The end of the previous match</td></tr>
 257  * <tr><th style="vertical-align:top; font-weight:normal" id="end_input_except_term">{@code \Z}</th>
 258  *     <td headers="matches bounds end_input_except_term">The end of the input but for the final
 259  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 260  * <tr><th style="vertical-align:top; font-weight:normal" id="end_input">{@code \z}</th>
 261  *     <td headers="matches bounds end_input">The end of the input</td></tr>
 262  *
 263  * <tr><th colspan="2" style="padding-top:20px" id="linebreak">Linebreak matcher</th></tr>
 264  *
 265  * <tr><th style="vertical-align:top; font-weight:normal" id="any_unicode_linebreak">{@code \R}</th>
 266  *     <td headers="matches linebreak any_unicode_linebreak">Any Unicode linebreak sequence, is equivalent to
 267  *     <code>\u000D\u000A|[\u000A\u000B\u000C\u000D\u0085\u2028\u2029]
 268  *     </code></td></tr>
 269  *
 270  * <tr><th colspan="2" style="padding-top:20px" id="grapheme">Unicode Extended Grapheme matcher</th></tr>
 271  *
 272  * <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_any">{@code \X}</th>
 273  *     <td headers="matches grapheme grapheme_any">Any Unicode extended grapheme cluster</td></tr>
 274  *
 275  * <tr><th colspan="2" style="padding-top:20px" id="greedy">Greedy quantifiers</th></tr>
 276  *
 277  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_once_or_not"><i>X</i>{@code ?}</th>
 278  *     <td headers="matches greedy greedy_once_or_not"><i>X</i>, once or not at all</td></tr>
 279  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_zero_or_more"><i>X</i>{@code *}</th>
 280  *     <td headers="matches greedy greedy_zero_or_more"><i>X</i>, zero or more times</td></tr>
 281  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_one_or_more"><i>X</i>{@code +}</th>
 282  *     <td headers="matches greedy greedy_one_or_more"><i>X</i>, one or more times</td></tr>
 283  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_exactly"><i>X</i><code>{</code><i>n</i><code>}</code></th>
 284  *     <td headers="matches greedy greedy_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
 285  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least"><i>X</i><code>{</code><i>n</i>{@code ,}}</th>
 286  *     <td headers="matches greedy greedy_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
 287  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}</code></th>
 288  *     <td headers="matches greedy greedy_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 289  *
 290  * <tr><th colspan="2" style="padding-top:20px" id="reluc">Reluctant quantifiers</th></tr>
 291  *
 292  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_once_or_not"><i>X</i>{@code ??}</th>
 293  *     <td headers="matches reluc reluc_once_or_not"><i>X</i>, once or not at all</td></tr>
 294  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_zero_or_more"><i>X</i>{@code *?}</th>
 295  *     <td headers="matches reluc reluc_zero_or_more"><i>X</i>, zero or more times</td></tr>
 296  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_one_or_more"><i>X</i>{@code +?}</th>
 297  *     <td headers="matches reluc reluc_one_or_more"><i>X</i>, one or more times</td></tr>
 298  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_exactly"><i>X</i><code>{</code><i>n</i><code>}?</code></th>
 299  *     <td headers="matches reluc reluc_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
 300  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least"><i>X</i><code>{</code><i>n</i><code>,}?</code></th>
 301  *     <td headers="matches reluc reluc_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
 302  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}?</code></th>
 303  *     <td headers="matches reluc reluc_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 304  *
 305  * <tr><th colspan="2" style="padding-top:20px" id="poss">Possessive quantifiers</th></tr>
 306  *
 307  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_once_or_not"><i>X</i>{@code ?+}</th>
 308  *     <td headers="matches poss poss_once_or_not"><i>X</i>, once or not at all</td></tr>
 309  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_zero_or_more"><i>X</i>{@code *+}</th>
 310  *     <td headers="matches poss poss_zero_or_more"><i>X</i>, zero or more times</td></tr>
 311  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_one_or_more"><i>X</i>{@code ++}</th>
 312  *     <td headers="matches poss poss_one_or_more"><i>X</i>, one or more times</td></tr>
 313  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_exactly"><i>X</i><code>{</code><i>n</i><code>}+</code></th>
 314  *     <td headers="matches poss poss_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
 315  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least"><i>X</i><code>{</code><i>n</i><code>,}+</code></th>
 316  *     <td headers="matches poss poss_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
 317  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}+</code></th>
 318  *     <td headers="matches poss poss_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 319  *
 320  * <tr><th colspan="2" style="padding-top:20px" id="logical">Logical operators</th></tr>
 321  *
 322  * <tr><th style="vertical-align:top; font-weight:normal" id="concat"><i>XY</i></th>
 323  *     <td headers="matches logical concat"><i>X</i> followed by <i>Y</i></td></tr>
 324  * <tr><th style="vertical-align:top; font-weight:normal" id="alternate"><i>X</i>{@code |}<i>Y</i></th>
 325  *     <td headers="matches logical alternate">Either <i>X</i> or <i>Y</i></td></tr>
 326  * <tr><th style="vertical-align:top; font-weight:normal" id="group">{@code (}<i>X</i>{@code )}</th>
 327  *     <td headers="matches logical group">X, as a <a href="#cg">capturing group</a></td></tr>
 328  *
 329  * <tr><th colspan="2" style="padding-top:20px" id="backref">Back references</th></tr>
 330  *
 331  * <tr><th style="vertical-align:top; font-weight:normal" id="back_nth">{@code \}<i>n</i></th>
 332  *     <td headers="matches backref back_nth">Whatever the <i>n</i><sup>th</sup>
 333  *     <a href="#cg">capturing group</a> matched</td></tr>
 334  * <tr><th style="vertical-align:top; font-weight:normal" id="back_named">{@code \}<i>k</i>&lt;<i>name</i>&gt;</th>
 335  *     <td headers="matches backref back_named">Whatever the
 336  *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
 337  *
 338  * <tr><th colspan="2" style="padding-top:20px" id="quote">Quotation</th></tr>
 339  *
 340  * <tr><th style="vertical-align:top; font-weight:normal" id="quote_follow">{@code \}</th>
 341  *     <td headers="matches quote quote_follow">Nothing, but quotes the following character</td></tr>
 342  * <tr><th style="vertical-align:top; font-weight:normal" id="quote_begin">{@code \Q}</th>
 343  *     <td headers="matches quote quote_begin">Nothing, but quotes all characters until {@code \E}</td></tr>
 344  * <tr><th style="vertical-align:top; font-weight:normal" id="quote_end">{@code \E}</th>
 345  *     <td headers="matches quote quote_end">Nothing, but ends quoting started by {@code \Q}</td></tr>
 346  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 347  *
 348  * <tr><th colspan="2" style="padding-top:20px" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
 349  *
 350  * <tr><th style="vertical-align:top; font-weight:normal" id="named_group"><code>(?&lt;<a href="#groupname">name</a>&gt;</code><i>X</i>{@code )}</th>
 351  *     <td headers="matches special named_group"><i>X</i>, as a named-capturing group</td></tr>
 352  * <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group">{@code (?:}<i>X</i>{@code )}</th>
 353  *     <td headers="matches special non_capture_group"><i>X</i>, as a non-capturing group</td></tr>
 354  * <tr><th style="vertical-align:top; font-weight:normal" id="flags"><code>(?idmsuxU-idmsuxU)&nbsp;</code></th>
 355  *     <td headers="matches special flags">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 356  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 357  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
 358  * on - off</td></tr>
 359  * <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group_flags"><code>(?idmsux-idmsux:</code><i>X</i>{@code )}&nbsp;&nbsp;</th>
 360  *     <td headers="matches special non_capture_group_flags"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 361  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 362  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 363  * <a href="#COMMENTS">x</a> on - off</td></tr>
 364  * <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookahead">{@code (?=}<i>X</i>{@code )}</th>
 365  *     <td headers="matches special pos_lookahead"><i>X</i>, via zero-width positive lookahead</td></tr>
 366  * <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookahead">{@code (?!}<i>X</i>{@code )}</th>
 367  *     <td headers="matches special neg_lookahead"><i>X</i>, via zero-width negative lookahead</td></tr>
 368  * <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookbehind">{@code (?<=}<i>X</i>{@code )}</th>
 369  *     <td headers="matches special pos_lookbehind"><i>X</i>, via zero-width positive lookbehind</td></tr>
 370  * <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookbehind">{@code (?<!}<i>X</i>{@code )}</th>
 371  *     <td headers="matches special neg_lookbehind"><i>X</i>, via zero-width negative lookbehind</td></tr>
 372  * <tr><th style="vertical-align:top; font-weight:normal" id="indep_non_capture_group">{@code (?>}<i>X</i>{@code )}</th>
 373  *     <td headers="matches special indep_non_capture_group"><i>X</i>, as an independent, non-capturing group</td></tr>
 374  *
 375  * </tbody>
 376  * </table>
 377  *
 378  * <hr>
 379  *
 380  *
 381  * <h2><a id="bs">Backslashes, escapes, and quoting</a></h2>
 382  *
 383  * <p> The backslash character ({@code '\'}) serves to introduce escaped
 384  * constructs, as defined in the table above, as well as to quote characters
 385  * that otherwise would be interpreted as unescaped constructs.  Thus the
 386  * expression {@code \\} matches a single backslash and <code>\{</code> matches a
 387  * left brace.
 388  *
 389  * <p> It is an error to use a backslash prior to any alphabetic character that
 390  * does not denote an escaped construct; these are reserved for future
 391  * extensions to the regular-expression language.  A backslash may be used
 392  * prior to a non-alphabetic character regardless of whether that character is
 393  * part of an unescaped construct.
 394  *
 395  * <p> Backslashes within string literals in Java source code are interpreted
 396  * as required by
 397  * <cite>The Java&trade; Language Specification</cite>
 398  * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
 399  * It is therefore necessary to double backslashes in string
 400  * literals that represent regular expressions to protect them from
 401  * interpretation by the Java bytecode compiler.  The string literal
 402  * <code>"\b"</code>, for example, matches a single backspace character when
 403  * interpreted as a regular expression, while {@code "\\b"} matches a
 404  * word boundary.  The string literal {@code "\(hello\)"} is illegal
 405  * and leads to a compile-time error; in order to match the string
 406  * {@code (hello)} the string literal {@code "\\(hello\\)"}
 407  * must be used.
 408  *
 409  * <h2><a id="cc">Character Classes</a></h2>
 410  *
 411  *    <p> Character classes may appear within other character classes, and
 412  *    may be composed by the union operator (implicit) and the intersection
 413  *    operator ({@code &&}).
 414  *    The union operator denotes a class that contains every character that is
 415  *    in at least one of its operand classes.  The intersection operator
 416  *    denotes a class that contains every character that is in both of its
 417  *    operand classes.
 418  *
 419  *    <p> The precedence of character-class operators is as follows, from
 420  *    highest to lowest:
 421  *
 422  *    <table class="striped" style="margin-left: 2em;">
 423  *      <caption style="display:none">Precedence of character class operators.</caption>
 424  *      <thead>
 425  *      <tr><th scope="col">Precedence<th scope="col">Name<th scope="col">Example
 426  *      </thead>
 427  *      <tbody>
 428  *      <tr><th scope="row">1</th>
 429  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 430  *        <td>{@code \x}</td></tr>
 431  *     <tr><th scope="row">2</th>
 432  *        <td>Grouping</td>
 433  *        <td>{@code [...]}</td></tr>
 434  *     <tr><th scope="row">3</th>
 435  *        <td>Range</td>
 436  *        <td>{@code a-z}</td></tr>
 437  *      <tr><th scope="row">4</th>
 438  *        <td>Union</td>
 439  *        <td>{@code [a-e][i-u]}</td></tr>
 440  *      <tr><th scope="row">5</th>
 441  *        <td>Intersection</td>
 442  *        <td>{@code [a-z&&[aeiou]]}</td></tr>
 443  *      </tbody>
 444  *    </table>
 445  *
 446  *    <p> Note that a different set of metacharacters are in effect inside
 447  *    a character class than outside a character class. For instance, the
 448  *    regular expression {@code .} loses its special meaning inside a
 449  *    character class, while the expression {@code -} becomes a range
 450  *    forming metacharacter.
 451  *
 452  * <h2><a id="lt">Line terminators</a></h2>
 453  *
 454  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 455  * the end of a line of the input character sequence.  The following are
 456  * recognized as line terminators:
 457  *
 458  * <ul>
 459  *
 460  *   <li> A newline (line feed) character ({@code '\n'}),
 461  *
 462  *   <li> A carriage-return character followed immediately by a newline
 463  *   character ({@code "\r\n"}),
 464  *
 465  *   <li> A standalone carriage-return character ({@code '\r'}),
 466  *
 467  *   <li> A next-line character (<code>'\u0085'</code>),
 468  *
 469  *   <li> A line-separator character (<code>'\u2028'</code>), or
 470  *
 471  *   <li> A paragraph-separator character (<code>'\u2029'</code>).
 472  *
 473  * </ul>
 474  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 475  * recognized are newline characters.
 476  *
 477  * <p> The regular expression {@code .} matches any character except a line
 478  * terminator unless the {@link #DOTALL} flag is specified.
 479  *
 480  * <p> By default, the regular expressions {@code ^} and {@code $} ignore
 481  * line terminators and only match at the beginning and the end, respectively,
 482  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 483  * {@code ^} matches at the beginning of input and after any line terminator
 484  * except at the end of input. When in {@link #MULTILINE} mode {@code $}
 485  * matches just before a line terminator or the end of the input sequence.
 486  *
 487  * <h2><a id="cg">Groups and capturing</a></h2>
 488  *
 489  * <h3><a id="gnumber">Group number</a></h3>
 490  * <p> Capturing groups are numbered by counting their opening parentheses from
 491  * left to right.  In the expression {@code ((A)(B(C)))}, for example, there
 492  * are four such groups: </p>
 493  *
 494  * <ol style="margin-left:2em;">
 495  *   <li> {@code ((A)(B(C)))}
 496  *   <li> {@code (A)}
 497  *   <li> {@code (B(C))}
 498  *   <li> {@code (C)}
 499  * </ol>
 500  *
 501  * <p> Group zero always stands for the entire expression.
 502  *
 503  * <p> Capturing groups are so named because, during a match, each subsequence
 504  * of the input sequence that matches such a group is saved.  The captured
 505  * subsequence may be used later in the expression, via a back reference, and
 506  * may also be retrieved from the matcher once the match operation is complete.
 507  *
 508  * <h3><a id="groupname">Group name</a></h3>
 509  * <p>A capturing group can also be assigned a "name", a {@code named-capturing group},
 510  * and then be back-referenced later by the "name". Group names are composed of
 511  * the following characters. The first character must be a {@code letter}.
 512  *
 513  * <ul>
 514  *   <li> The uppercase letters {@code 'A'} through {@code 'Z'}
 515  *        (<code>'\u0041'</code>&nbsp;through&nbsp;<code>'\u005a'</code>),
 516  *   <li> The lowercase letters {@code 'a'} through {@code 'z'}
 517  *        (<code>'\u0061'</code>&nbsp;through&nbsp;<code>'\u007a'</code>),
 518  *   <li> The digits {@code '0'} through {@code '9'}
 519  *        (<code>'\u0030'</code>&nbsp;through&nbsp;<code>'\u0039'</code>),
 520  * </ul>
 521  *
 522  * <p> A {@code named-capturing group} is still numbered as described in
 523  * <a href="#gnumber">Group number</a>.
 524  *
 525  * <p> The captured input associated with a group is always the subsequence
 526  * that the group most recently matched.  If a group is evaluated a second time
 527  * because of quantification then its previously-captured value, if any, will
 528  * be retained if the second evaluation fails.  Matching the string
 529  * {@code "aba"} against the expression {@code (a(b)?)+}, for example, leaves
 530  * group two set to {@code "b"}.  All captured input is discarded at the
 531  * beginning of each match.
 532  *
 533  * <p> Groups beginning with {@code (?} are either pure, <i>non-capturing</i> groups
 534  * that do not capture text and do not count towards the group total, or
 535  * <i>named-capturing</i> group.
 536  *
 537  * <h2> Unicode support </h2>
 538  *
 539  * <p> This class is in conformance with Level 1 of <a
 540  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 541  * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
 542  * Canonical Equivalents.
 543  * <p>
 544  * <b>Unicode escape sequences</b> such as <code>\u2014</code> in Java source code
 545  * are processed as described in section 3.3 of
 546  * <cite>The Java&trade; Language Specification</cite>.
 547  * Such escape sequences are also implemented directly by the regular-expression
 548  * parser so that Unicode escapes can be used in expressions that are read from
 549  * files or from the keyboard.  Thus the strings <code>"\u2014"</code> and
 550  * {@code "\\u2014"}, while not equal, compile into the same pattern, which
 551  * matches the character with hexadecimal value {@code 0x2014}.
 552  * <p>
 553  * A Unicode character can also be represented by using its <b>Hex notation</b>
 554  * (hexadecimal code point value) directly as described in construct
 555  * <code>\x{...}</code>, for example a supplementary character U+2011F can be
 556  * specified as <code>\x{2011F}</code>, instead of two consecutive Unicode escape
 557  * sequences of the surrogate pair <code>\uD840</code><code>\uDD1F</code>.
 558  * <p>
 559  * <b>Unicode character names</b> are supported by the named character construct
 560  * <code>\N{</code>...<code>}</code>, for example, <code>\N{WHITE SMILING FACE}</code>
 561  * specifies character <code>\u263A</code>. The character names supported
 562  * by this class are the valid Unicode character names matched by
 563  * {@link java.lang.Character#codePointOf(String) Character.codePointOf(name)}.
 564  * <p>
 565  * <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
 566  * <b>Unicode extended grapheme clusters</b></a> are supported by the grapheme
 567  * cluster matcher {@code \X} and the corresponding boundary matcher {@code \b{g}}.
 568  * <p>
 569  * Unicode scripts, blocks, categories and binary properties are written with
 570  * the {@code \p} and {@code \P} constructs as in Perl.
 571  * <code>\p{</code><i>prop</i><code>}</code> matches if
 572  * the input has the property <i>prop</i>, while <code>\P{</code><i>prop</i><code>}</code>
 573  * does not match if the input has that property.
 574  * <p>
 575  * Scripts, blocks, categories and binary properties can be used both inside
 576  * and outside of a character class.
 577  *
 578  * <p>
 579  * <b><a id="usc">Scripts</a></b> are specified either with the prefix {@code Is}, as in
 580  * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
 581  * form {@code sc}) as in {@code script=Hiragana} or {@code sc=Hiragana}.
 582  * <p>
 583  * The script names supported by {@code Pattern} are the valid script names
 584  * accepted and defined by
 585  * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
 586  *
 587  * <p>
 588  * <b><a id="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
 589  * {@code InMongolian}, or by using the keyword {@code block} (or its short
 590  * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
 591  * <p>
 592  * The block names supported by {@code Pattern} are the valid block names
 593  * accepted and defined by
 594  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 595  * <p>
 596  *
 597  * <b><a id="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
 598  * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
 599  * letters. Same as scripts and blocks, categories can also be specified
 600  * by using the keyword {@code general_category} (or its short form
 601  * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
 602  * <p>
 603  * The supported categories are those of
 604  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 605  * <i>The Unicode Standard</i></a> in the version specified by the
 606  * {@link java.lang.Character Character} class. The category names are those
 607  * defined in the Standard, both normative and informative.
 608  * <p>
 609  *
 610  * <b><a id="ubpc">Binary properties</a></b> are specified with the prefix {@code Is}, as in
 611  * {@code IsAlphabetic}. The supported binary properties by {@code Pattern}
 612  * are
 613  * <ul>
 614  *   <li> Alphabetic
 615  *   <li> Ideographic
 616  *   <li> Letter
 617  *   <li> Lowercase
 618  *   <li> Uppercase
 619  *   <li> Titlecase
 620  *   <li> Punctuation
 621  *   <Li> Control
 622  *   <li> White_Space
 623  *   <li> Digit
 624  *   <li> Hex_Digit
 625  *   <li> Join_Control
 626  *   <li> Noncharacter_Code_Point
 627  *   <li> Assigned
 628  * </ul>
 629  * <p>
 630  * The following <b>Predefined Character classes</b> and <b>POSIX character classes</b>
 631  * are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
 632  * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
 633  * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
 634  *
 635  * <table class="striped">
 636  * <caption style="display:none">predefined and posix character classes in Unicode mode</caption>
 637  * <thead>
 638  * <tr>
 639  * <th scope="col" id="predef_classes">Classes</th>
 640  * <th scope="col" id="predef_matches">Matches</th>
 641  * </tr>
 642  * </thead>
 643  * <tbody>
 644  * <tr><th scope="row">{@code \p{Lower}}</th>
 645  *     <td>A lowercase character:{@code \p{IsLowercase}}</td></tr>
 646  * <tr><th scope="row">{@code \p{Upper}}</th>
 647  *     <td>An uppercase character:{@code \p{IsUppercase}}</td></tr>
 648  * <tr><th scope="row">{@code \p{ASCII}}</th>
 649  *     <td>All ASCII:{@code [\x00-\x7F]}</td></tr>
 650  * <tr><th scope="row">{@code \p{Alpha}}</th>
 651  *     <td>An alphabetic character:{@code \p{IsAlphabetic}}</td></tr>
 652  * <tr><th scope="row">{@code \p{Digit}}</th>
 653  *     <td>A decimal digit character:{@code \p{IsDigit}}</td></tr>
 654  * <tr><th scope="row">{@code \p{Alnum}}</th>
 655  *     <td>An alphanumeric character:{@code [\p{IsAlphabetic}\p{IsDigit}]}</td></tr>
 656  * <tr><th scope="row">{@code \p{Punct}}</th>
 657  *     <td>A punctuation character:{@code \p{IsPunctuation}}</td></tr>
 658  * <tr><th scope="row">{@code \p{Graph}}</th>
 659  *     <td>A visible character: {@code [^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]}</td></tr>
 660  * <tr><th scope="row">{@code \p{Print}}</th>
 661  *     <td>A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
 662  * <tr><th scope="row">{@code \p{Blank}}</th>
 663  *     <td>A space or a tab: {@code [\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]}</td></tr>
 664  * <tr><th scope="row">{@code \p{Cntrl}}</th>
 665  *     <td>A control character: {@code \p{gc=Cc}}</td></tr>
 666  * <tr><th scope="row">{@code \p{XDigit}}</th>
 667  *     <td>A hexadecimal digit: {@code [\p{gc=Nd}\p{IsHex_Digit}]}</td></tr>
 668  * <tr><th scope="row">{@code \p{Space}}</th>
 669  *     <td>A whitespace character:{@code \p{IsWhite_Space}}</td></tr>
 670  * <tr><th scope="row">{@code \d}</th>
 671  *     <td>A digit: {@code \p{IsDigit}}</td></tr>
 672  * <tr><th scope="row">{@code \D}</th>
 673  *     <td>A non-digit: {@code [^\d]}</td></tr>
 674  * <tr><th scope="row">{@code \s}</th>
 675  *     <td>A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
 676  * <tr><th scope="row">{@code \S}</th>
 677  *     <td>A non-whitespace character: {@code [^\s]}</td></tr>
 678  * <tr><th scope="row">{@code \w}</th>
 679  *     <td>A word character: {@code [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}\p{IsJoin_Control}]}</td></tr>
 680  * <tr><th scope="row">{@code \W}</th>
 681  *     <td>A non-word character: {@code [^\w]}</td></tr>
 682  * </tbody>
 683  * </table>
 684  * <p>
 685  * <a id="jcc">
 686  * Categories that behave like the java.lang.Character
 687  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 688  * available through the same <code>\p{</code><i>prop</i><code>}</code> syntax where
 689  * the specified property has the name <code>java<i>methodname</i></code></a>.
 690  *
 691  * <h2> Comparison to Perl 5 </h2>
 692  *
 693  * <p>The {@code Pattern} engine performs traditional NFA-based matching
 694  * with ordered alternation as occurs in Perl 5.
 695  *
 696  * <p> Perl constructs not supported by this class: </p>
 697  *
 698  * <ul>
 699  *    <li><p> The backreference constructs, <code>\g{</code><i>n</i><code>}</code> for
 700  *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
 701  *    <code>\g{</code><i>name</i><code>}</code> for
 702  *    <a href="#groupname">named-capturing group</a>.
 703  *    </p></li>
 704  *
 705  *    <li><p> The conditional constructs
 706  *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code )} and
 707  *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code |}<i>Y</i>{@code )},
 708  *    </p></li>
 709  *
 710  *    <li><p> The embedded code constructs <code>(?{</code><i>code</i><code>})</code>
 711  *    and <code>(??{</code><i>code</i><code>})</code>,</p></li>
 712  *
 713  *    <li><p> The embedded comment syntax {@code (?#comment)}, and </p></li>
 714  *
 715  *    <li><p> The preprocessing operations {@code \l} <code>\u</code>,
 716  *    {@code \L}, and {@code \U}.  </p></li>
 717  *
 718  * </ul>
 719  *
 720  * <p> Constructs supported by this class but not by Perl: </p>
 721  *
 722  * <ul>
 723  *
 724  *    <li><p> Character-class union and intersection as described
 725  *    <a href="#cc">above</a>.</p></li>
 726  *
 727  * </ul>
 728  *
 729  * <p> Notable differences from Perl: </p>
 730  *
 731  * <ul>
 732  *
 733  *    <li><p> In Perl, {@code \1} through {@code \9} are always interpreted
 734  *    as back references; a backslash-escaped number greater than {@code 9} is
 735  *    treated as a back reference if at least that many subexpressions exist,
 736  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 737  *    class octal escapes must always begin with a zero. In this class,
 738  *    {@code \1} through {@code \9} are always interpreted as back
 739  *    references, and a larger number is accepted as a back reference if at
 740  *    least that many subexpressions exist at that point in the regular
 741  *    expression, otherwise the parser will drop digits until the number is
 742  *    smaller or equal to the existing number of groups or it is one digit.
 743  *    </p></li>
 744  *
 745  *    <li><p> Perl uses the {@code g} flag to request a match that resumes
 746  *    where the last match left off.  This functionality is provided implicitly
 747  *    by the {@link Matcher} class: Repeated invocations of the {@link
 748  *    Matcher#find find} method will resume where the last match left off,
 749  *    unless the matcher is reset.  </p></li>
 750  *
 751  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 752  *    the whole expression.  In this class, embedded flags always take effect
 753  *    at the point at which they appear, whether they are at the top level or
 754  *    within a group; in the latter case, flags are restored at the end of the
 755  *    group just as in Perl.  </p></li>
 756  *
 757  * </ul>
 758  *
 759  *
 760  * <p> For a more precise description of the behavior of regular expression
 761  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 762  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 763  * O'Reilly and Associates, 2006.</a>
 764  * </p>
 765  *
 766  * @see java.lang.String#split(String, int)
 767  * @see java.lang.String#split(String)
 768  *
 769  * @author      Mike McCloskey
 770  * @author      Mark Reinhold
 771  * @author      JSR-51 Expert Group
 772  * @since       1.4
 773  * @spec        JSR-51
 774  */
 775 
 776 public final class Pattern
 777     implements java.io.Serializable
 778 {
 779 
 780     /**
 781      * Regular expression modifier values.  Instead of being passed as
 782      * arguments, they can also be passed as inline modifiers.
 783      * For example, the following statements have the same effect.
 784      * <pre>
 785      * Pattern p1 = Pattern.compile("abc", Pattern.CASE_INSENSITIVE|Pattern.MULTILINE);
 786      * Pattern p2 = Pattern.compile("(?im)abc", 0);
 787      * </pre>
 788      */
 789 
 790     /**
 791      * Enables Unix lines mode.
 792      *
 793      * <p> In this mode, only the {@code '\n'} line terminator is recognized
 794      * in the behavior of {@code .}, {@code ^}, and {@code $}.
 795      *
 796      * <p> Unix lines mode can also be enabled via the embedded flag
 797      * expression&nbsp;{@code (?d)}.
 798      */
 799     public static final int UNIX_LINES = 0x01;
 800 
 801     /**
 802      * Enables case-insensitive matching.
 803      *
 804      * <p> By default, case-insensitive matching assumes that only characters
 805      * in the US-ASCII charset are being matched.  Unicode-aware
 806      * case-insensitive matching can be enabled by specifying the {@link
 807      * #UNICODE_CASE} flag in conjunction with this flag.
 808      *
 809      * <p> Case-insensitive matching can also be enabled via the embedded flag
 810      * expression&nbsp;{@code (?i)}.
 811      *
 812      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 813      */
 814     public static final int CASE_INSENSITIVE = 0x02;
 815 
 816     /**
 817      * Permits whitespace and comments in pattern.
 818      *
 819      * <p> In this mode, whitespace is ignored, and embedded comments starting
 820      * with {@code #} are ignored until the end of a line.
 821      *
 822      * <p> Comments mode can also be enabled via the embedded flag
 823      * expression&nbsp;{@code (?x)}.
 824      */
 825     public static final int COMMENTS = 0x04;
 826 
 827     /**
 828      * Enables multiline mode.
 829      *
 830      * <p> In multiline mode the expressions {@code ^} and {@code $} match
 831      * just after or just before, respectively, a line terminator or the end of
 832      * the input sequence.  By default these expressions only match at the
 833      * beginning and the end of the entire input sequence.
 834      *
 835      * <p> Multiline mode can also be enabled via the embedded flag
 836      * expression&nbsp;{@code (?m)}.  </p>
 837      */
 838     public static final int MULTILINE = 0x08;
 839 
 840     /**
 841      * Enables literal parsing of the pattern.
 842      *
 843      * <p> When this flag is specified then the input string that specifies
 844      * the pattern is treated as a sequence of literal characters.
 845      * Metacharacters or escape sequences in the input sequence will be
 846      * given no special meaning.
 847      *
 848      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 849      * matching when used in conjunction with this flag. The other flags
 850      * become superfluous.
 851      *
 852      * <p> There is no embedded flag character for enabling literal parsing.
 853      * @since 1.5
 854      */
 855     public static final int LITERAL = 0x10;
 856 
 857     /**
 858      * Enables dotall mode.
 859      *
 860      * <p> In dotall mode, the expression {@code .} matches any character,
 861      * including a line terminator.  By default this expression does not match
 862      * line terminators.
 863      *
 864      * <p> Dotall mode can also be enabled via the embedded flag
 865      * expression&nbsp;{@code (?s)}.  (The {@code s} is a mnemonic for
 866      * "single-line" mode, which is what this is called in Perl.)  </p>
 867      */
 868     public static final int DOTALL = 0x20;
 869 
 870     /**
 871      * Enables Unicode-aware case folding.
 872      *
 873      * <p> When this flag is specified then case-insensitive matching, when
 874      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 875      * consistent with the Unicode Standard.  By default, case-insensitive
 876      * matching assumes that only characters in the US-ASCII charset are being
 877      * matched.
 878      *
 879      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 880      * expression&nbsp;{@code (?u)}.
 881      *
 882      * <p> Specifying this flag may impose a performance penalty.  </p>
 883      */
 884     public static final int UNICODE_CASE = 0x40;
 885 
 886     /**
 887      * Enables canonical equivalence.
 888      *
 889      * <p> When this flag is specified then two characters will be considered
 890      * to match if, and only if, their full canonical decompositions match.
 891      * The expression <code>"a\u030A"</code>, for example, will match the
 892      * string <code>"\u00E5"</code> when this flag is specified.  By default,
 893      * matching does not take canonical equivalence into account.
 894      *
 895      * <p> There is no embedded flag character for enabling canonical
 896      * equivalence.
 897      *
 898      * <p> Specifying this flag may impose a performance penalty.  </p>
 899      */
 900     public static final int CANON_EQ = 0x80;
 901 
 902     /**
 903      * Enables the Unicode version of <i>Predefined character classes</i> and
 904      * <i>POSIX character classes</i>.
 905      *
 906      * <p> When this flag is specified then the (US-ASCII only)
 907      * <i>Predefined character classes</i> and <i>POSIX character classes</i>
 908      * are in conformance with
 909      * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 910      * Standard #18: Unicode Regular Expression</i></a>
 911      * <i>Annex C: Compatibility Properties</i>.
 912      * <p>
 913      * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
 914      * flag expression&nbsp;{@code (?U)}.
 915      * <p>
 916      * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
 917      * folding.
 918      * <p>
 919      * Specifying this flag may impose a performance penalty.  </p>
 920      * @since 1.7
 921      */
 922     public static final int UNICODE_CHARACTER_CLASS = 0x100;
 923 
 924     /**
 925      * Contains all possible flags for compile(regex, flags).
 926      */
 927     private static final int ALL_FLAGS = CASE_INSENSITIVE | MULTILINE |
 928             DOTALL | UNICODE_CASE | CANON_EQ | UNIX_LINES | LITERAL |
 929             UNICODE_CHARACTER_CLASS | COMMENTS;
 930 
 931     /* Pattern has only two serialized components: The pattern string
 932      * and the flags, which are all that is needed to recompile the pattern
 933      * when it is deserialized.
 934      */
 935 
 936     /** use serialVersionUID from Merlin b59 for interoperability */
 937     private static final long serialVersionUID = 5073258162644648461L;
 938 
 939     /**
 940      * The original regular-expression pattern string.
 941      *
 942      * @serial
 943      */
 944     private String pattern;
 945 
 946     /**
 947      * The original pattern flags.
 948      *
 949      * @serial
 950      */
 951     private int flags;
 952 
 953     /**
 954      * The temporary pattern flags used during compiling. The flags might be turn
 955      * on and off by embedded flag.
 956      */
 957     private transient int flags0;
 958 
 959     /**
 960      * Boolean indicating this Pattern is compiled; this is necessary in order
 961      * to lazily compile deserialized Patterns.
 962      */
 963     private transient volatile boolean compiled;
 964 
 965     /**
 966      * The normalized pattern string.
 967      */
 968     private transient String normalizedPattern;
 969 
 970     /**
 971      * The starting point of state machine for the find operation.  This allows
 972      * a match to start anywhere in the input.
 973      */
 974     transient Node root;
 975 
 976     /**
 977      * The root of object tree for a match operation.  The pattern is matched
 978      * at the beginning.  This may include a find that uses BnM or a First
 979      * node.
 980      */
 981     transient Node matchRoot;
 982 
 983     /**
 984      * Temporary storage used by parsing pattern slice.
 985      */
 986     transient int[] buffer;
 987 
 988     /**
 989      * A temporary storage used for predicate for double return.
 990      */
 991     transient CharPredicate predicate;
 992 
 993     /**
 994      * Map the "name" of the "named capturing group" to its group id
 995      * node.
 996      */
 997     transient volatile Map<String, Integer> namedGroups;
 998 
 999     /**
1000      * Temporary storage used while parsing group references.
1001      */
1002     transient GroupHead[] groupNodes;
1003 
1004     /**
1005      * Temporary storage used to store the top level closure nodes.
1006      */
1007     transient List<Node> topClosureNodes;
1008 
1009     /**
1010      * The number of top greedy closure nodes in this Pattern. Used by
1011      * matchers to allocate storage needed for a IntHashSet to keep the
1012      * beginning pos {@code i} of all failed match.
1013      */
1014     transient int localTCNCount;
1015 
1016     /*
1017      * Turn off the stop-exponential-backtracking optimization if there
1018      * is a group ref in the pattern.
1019      */
1020     transient boolean hasGroupRef;
1021 
1022     /**
1023      * Temporary null terminated code point array used by pattern compiling.
1024      */
1025     private transient int[] temp;
1026 
1027     /**
1028      * The number of capturing groups in this Pattern. Used by matchers to
1029      * allocate storage needed to perform a match.
1030      */
1031     transient int capturingGroupCount;
1032 
1033     /**
1034      * The local variable count used by parsing tree. Used by matchers to
1035      * allocate storage needed to perform a match.
1036      */
1037     transient int localCount;
1038 
1039     /**
1040      * Index into the pattern string that keeps track of how much has been
1041      * parsed.
1042      */
1043     private transient int cursor;
1044 
1045     /**
1046      * Holds the length of the pattern string.
1047      */
1048     private transient int patternLength;
1049 
1050     /**
1051      * If the Start node might possibly match supplementary characters.
1052      * It is set to true during compiling if
1053      * (1) There is supplementary char in pattern, or
1054      * (2) There is complement node of a "family" CharProperty
1055      */
1056     private transient boolean hasSupplementary;
1057 
1058     /**
1059      * Compiles the given regular expression into a pattern.
1060      *
1061      * @param  regex
1062      *         The expression to be compiled
1063      * @return the given regular expression compiled into a pattern
1064      * @throws  PatternSyntaxException
1065      *          If the expression's syntax is invalid
1066      */
1067     public static Pattern compile(String regex) {
1068         return new Pattern(regex, 0);
1069     }
1070 
1071     /**
1072      * Compiles the given regular expression into a pattern with the given
1073      * flags.
1074      *
1075      * @param  regex
1076      *         The expression to be compiled
1077      *
1078      * @param  flags
1079      *         Match flags, a bit mask that may include
1080      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1081      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1082      *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1083      *         and {@link #COMMENTS}
1084      *
1085      * @return the given regular expression compiled into a pattern with the given flags
1086      * @throws  IllegalArgumentException
1087      *          If bit values other than those corresponding to the defined
1088      *          match flags are set in {@code flags}
1089      *
1090      * @throws  PatternSyntaxException
1091      *          If the expression's syntax is invalid
1092      */
1093     public static Pattern compile(String regex, int flags) {
1094         return new Pattern(regex, flags);
1095     }
1096 
1097     /**
1098      * Returns the regular expression from which this pattern was compiled.
1099      *
1100      * @return  The source of this pattern
1101      */
1102     public String pattern() {
1103         return pattern;
1104     }
1105 
1106     /**
1107      * <p>Returns the string representation of this pattern. This
1108      * is the regular expression from which this pattern was
1109      * compiled.</p>
1110      *
1111      * @return  The string representation of this pattern
1112      * @since 1.5
1113      */
1114     public String toString() {
1115         return pattern;
1116     }
1117 
1118     /**
1119      * Creates a matcher that will match the given input against this pattern.
1120      *
1121      * @param  input
1122      *         The character sequence to be matched
1123      *
1124      * @return  A new matcher for this pattern
1125      */
1126     public Matcher matcher(CharSequence input) {
1127         if (!compiled) {
1128             synchronized(this) {
1129                 if (!compiled)
1130                     compile();
1131             }
1132         }
1133         Matcher m = new Matcher(this, input);
1134         return m;
1135     }
1136 
1137     /**
1138      * Returns this pattern's match flags.
1139      *
1140      * @return  The match flags specified when this pattern was compiled
1141      */
1142     public int flags() {
1143         return flags0;
1144     }
1145 
1146     /**
1147      * Compiles the given regular expression and attempts to match the given
1148      * input against it.
1149      *
1150      * <p> An invocation of this convenience method of the form
1151      *
1152      * <blockquote><pre>
1153      * Pattern.matches(regex, input);</pre></blockquote>
1154      *
1155      * behaves in exactly the same way as the expression
1156      *
1157      * <blockquote><pre>
1158      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1159      *
1160      * <p> If a pattern is to be used multiple times, compiling it once and reusing
1161      * it will be more efficient than invoking this method each time.  </p>
1162      *
1163      * @param  regex
1164      *         The expression to be compiled
1165      *
1166      * @param  input
1167      *         The character sequence to be matched
1168      * @return whether or not the regular expression matches on the input
1169      * @throws  PatternSyntaxException
1170      *          If the expression's syntax is invalid
1171      */
1172     public static boolean matches(String regex, CharSequence input) {
1173         Pattern p = Pattern.compile(regex);
1174         Matcher m = p.matcher(input);
1175         return m.matches();
1176     }
1177 
1178     /**
1179      * Splits the given input sequence around matches of this pattern.
1180      *
1181      * <p> The array returned by this method contains each substring of the
1182      * input sequence that is terminated by another subsequence that matches
1183      * this pattern or is terminated by the end of the input sequence.  The
1184      * substrings in the array are in the order in which they occur in the
1185      * input. If this pattern does not match any subsequence of the input then
1186      * the resulting array has just one element, namely the input sequence in
1187      * string form.
1188      *
1189      * <p> When there is a positive-width match at the beginning of the input
1190      * sequence then an empty leading substring is included at the beginning
1191      * of the resulting array. A zero-width match at the beginning however
1192      * never produces such empty leading substring.
1193      *
1194      * <p> The {@code limit} parameter controls the number of times the
1195      * pattern is applied and therefore affects the length of the resulting
1196      * array.
1197      * <ul>
1198      *    <li><p>
1199      *    If the <i>limit</i> is positive then the pattern will be applied
1200      *    at most <i>limit</i>&nbsp;-&nbsp;1 times, the array's length will be
1201      *    no greater than <i>limit</i>, and the array's last entry will contain
1202      *    all input beyond the last matched delimiter.</p></li>
1203      *
1204      *    <li><p>
1205      *    If the <i>limit</i> is zero then the pattern will be applied as
1206      *    many times as possible, the array can have any length, and trailing
1207      *    empty strings will be discarded.</p></li>
1208      *
1209      *    <li><p>
1210      *    If the <i>limit</i> is negative then the pattern will be applied
1211      *    as many times as possible and the array can have any length.</p></li>
1212      * </ul>
1213      *
1214      * <p> The input {@code "boo:and:foo"}, for example, yields the following
1215      * results with these parameters:
1216      *
1217      * <table class="plain" style="margin-left:2em;">
1218      * <caption style="display:none">Split example showing regex, limit, and result</caption>
1219      * <thead>
1220      * <tr>
1221      *     <th scope="col">Regex</th>
1222      *     <th scope="col">Limit</th>
1223      *     <th scope="col">Result</th>
1224      * </tr>
1225      * </thead>
1226      * <tbody>
1227      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
1228      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
1229      *     <td>{@code { "boo", "and:foo" }}</td></tr>
1230      * <tr><!-- : -->
1231      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
1232      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1233      * <tr><!-- : -->
1234      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
1235      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1236      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
1237      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
1238      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1239      * <tr><!-- o -->
1240      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
1241      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1242      * <tr><!-- o -->
1243      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
1244      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1245      * </tbody>
1246      * </table>
1247      *
1248      * @param  input
1249      *         The character sequence to be split
1250      *
1251      * @param  limit
1252      *         The result threshold, as described above
1253      *
1254      * @return  The array of strings computed by splitting the input
1255      *          around matches of this pattern
1256      */
1257     public String[] split(CharSequence input, int limit) {
1258         int index = 0;
1259         boolean matchLimited = limit > 0;
1260         ArrayList<String> matchList = new ArrayList<>();
1261         Matcher m = matcher(input);
1262 
1263         // Add segments before each match found
1264         while(m.find()) {
1265             if (!matchLimited || matchList.size() < limit - 1) {
1266                 if (index == 0 && index == m.start() && m.start() == m.end()) {
1267                     // no empty leading substring included for zero-width match
1268                     // at the beginning of the input char sequence.
1269                     continue;
1270                 }
1271                 String match = input.subSequence(index, m.start()).toString();
1272                 matchList.add(match);
1273                 index = m.end();
1274             } else if (matchList.size() == limit - 1) { // last one
1275                 String match = input.subSequence(index,
1276                                                  input.length()).toString();
1277                 matchList.add(match);
1278                 index = m.end();
1279             }
1280         }
1281 
1282         // If no match was found, return this
1283         if (index == 0)
1284             return new String[] {input.toString()};
1285 
1286         // Add remaining segment
1287         if (!matchLimited || matchList.size() < limit)
1288             matchList.add(input.subSequence(index, input.length()).toString());
1289 
1290         // Construct result
1291         int resultSize = matchList.size();
1292         if (limit == 0)
1293             while (resultSize > 0 && matchList.get(resultSize-1).isEmpty())
1294                 resultSize--;
1295         String[] result = new String[resultSize];
1296         return matchList.subList(0, resultSize).toArray(result);
1297     }
1298 
1299     /**
1300      * Splits the given input sequence around matches of this pattern.
1301      *
1302      * <p> This method works as if by invoking the two-argument {@link
1303      * #split(java.lang.CharSequence, int) split} method with the given input
1304      * sequence and a limit argument of zero.  Trailing empty strings are
1305      * therefore not included in the resulting array. </p>
1306      *
1307      * <p> The input {@code "boo:and:foo"}, for example, yields the following
1308      * results with these expressions:
1309      *
1310      * <table class="plain" style="margin-left:2em">
1311      * <caption style="display:none">Split examples showing regex and result</caption>
1312      * <thead>
1313      * <tr>
1314      *  <th scope="col">Regex</th>
1315      *  <th scope="col">Result</th>
1316      * </tr>
1317      * </thead>
1318      * <tbody>
1319      * <tr><th scope="row" style="text-weight:normal">:</th>
1320      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1321      * <tr><th scope="row" style="text-weight:normal">o</th>
1322      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1323      * </tbody>
1324      * </table>
1325      *
1326      *
1327      * @param  input
1328      *         The character sequence to be split
1329      *
1330      * @return  The array of strings computed by splitting the input
1331      *          around matches of this pattern
1332      */
1333     public String[] split(CharSequence input) {
1334         return split(input, 0);
1335     }
1336 
1337     /**
1338      * Returns a literal pattern {@code String} for the specified
1339      * {@code String}.
1340      *
1341      * <p>This method produces a {@code String} that can be used to
1342      * create a {@code Pattern} that would match the string
1343      * {@code s} as if it were a literal pattern.</p> Metacharacters
1344      * or escape sequences in the input sequence will be given no special
1345      * meaning.
1346      *
1347      * @param  s The string to be literalized
1348      * @return  A literal string replacement
1349      * @since 1.5
1350      */
1351     public static String quote(String s) {
1352         int slashEIndex = s.indexOf("\\E");
1353         if (slashEIndex == -1)
1354             return "\\Q" + s + "\\E";
1355 
1356         int lenHint = s.length();
1357         lenHint = (lenHint < Integer.MAX_VALUE - 8 - lenHint) ?
1358                 (lenHint << 1) : (Integer.MAX_VALUE - 8);
1359 
1360         StringBuilder sb = new StringBuilder(lenHint);
1361         sb.append("\\Q");
1362         int current = 0;
1363         do {
1364             sb.append(s, current, slashEIndex)
1365                     .append("\\E\\\\E\\Q");
1366             current = slashEIndex + 2;
1367         } while ((slashEIndex = s.indexOf("\\E", current)) != -1);
1368 
1369         return sb.append(s, current, s.length())
1370                 .append("\\E")
1371                 .toString();
1372     }
1373 
1374     /**
1375      * Recompile the Pattern instance from a stream.  The original pattern
1376      * string is read in and the object tree is recompiled from it.
1377      */
1378     private void readObject(java.io.ObjectInputStream s)
1379         throws java.io.IOException, ClassNotFoundException {
1380 
1381         // Read in all fields
1382         s.defaultReadObject();
1383 
1384         // reset the flags
1385         flags0 = flags;
1386 
1387         // Initialize counts
1388         capturingGroupCount = 1;
1389         localCount = 0;
1390         localTCNCount = 0;
1391 
1392         // if length > 0, the Pattern is lazily compiled
1393         if (pattern.isEmpty()) {
1394             root = new Start(lastAccept);
1395             matchRoot = lastAccept;
1396             compiled = true;
1397         }
1398     }
1399 
1400     /**
1401      * This private constructor is used to create all Patterns. The pattern
1402      * string and match flags are all that is needed to completely describe
1403      * a Pattern. An empty pattern string results in an object tree with
1404      * only a Start node and a LastNode node.
1405      */
1406     private Pattern(String p, int f) {
1407         if ((f & ~ALL_FLAGS) != 0) {
1408             throw new IllegalArgumentException("Unknown flag 0x"
1409                                                + Integer.toHexString(f));
1410         }
1411         pattern = p;
1412         flags = f;
1413 
1414         // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1415         if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1416             flags |= UNICODE_CASE;
1417 
1418         // 'flags' for compiling
1419         flags0 = flags;
1420 
1421         // Reset group index count
1422         capturingGroupCount = 1;
1423         localCount = 0;
1424         localTCNCount = 0;
1425 
1426         if (!pattern.isEmpty()) {
1427             compile();
1428         } else {
1429             root = new Start(lastAccept);
1430             matchRoot = lastAccept;
1431         }
1432     }
1433 
1434     /**
1435      * The pattern is converted to normalized form ({@link
1436      * java.text.Normalizer.Form#NFC NFC}, canonical decomposition,
1437      * followed by canonical composition for the character class
1438      * part, and {@link java.text.Normalizer.Form#NFD NFD},
1439      * canonical decomposition for the rest), and then a pure
1440      * group is constructed to match canonical equivalences of the
1441      * characters.
1442      */
1443     private static String normalize(String pattern) {
1444         int plen = pattern.length();
1445         StringBuilder pbuf = new StringBuilder(plen);
1446         char last = 0;
1447         int lastStart = 0;
1448         char cc = 0;
1449         for (int i = 0; i < plen;) {
1450             char c = pattern.charAt(i);
1451             if (cc == 0 &&    // top level
1452                 c == '\\' && i + 1 < plen && pattern.charAt(i + 1) == '\\') {
1453                 i += 2; last = 0;
1454                 continue;
1455             }
1456             if (c == '[' && last != '\\') {
1457                 if (cc == 0) {
1458                     if (lastStart < i)
1459                         normalizeSlice(pattern, lastStart, i, pbuf);
1460                     lastStart = i;
1461                 }
1462                 cc++;
1463             } else if (c == ']' && last != '\\') {
1464                 cc--;
1465                 if (cc == 0) {
1466                     normalizeClazz(pattern, lastStart, i + 1, pbuf);
1467                     lastStart = i + 1;
1468                 }
1469             }
1470             last = c;
1471             i++;
1472         }
1473         assert (cc == 0);
1474         if (lastStart < plen)
1475             normalizeSlice(pattern, lastStart, plen, pbuf);
1476         return pbuf.toString();
1477     }
1478 
1479     private static void normalizeSlice(String src, int off, int limit,
1480                                        StringBuilder dst)
1481     {
1482         int len = src.length();
1483         int off0 = off;
1484         while (off < limit && ASCII.isAscii(src.charAt(off))) {
1485             off++;
1486         }
1487         if (off == limit) {
1488             dst.append(src, off0, limit);
1489             return;
1490         }
1491         off--;
1492         if (off < off0)
1493             off = off0;
1494         else
1495             dst.append(src, off0, off);
1496         while (off < limit) {
1497             int ch0 = src.codePointAt(off);
1498             if (".$|()[]{}^?*+\\".indexOf(ch0) != -1) {
1499                 dst.append((char)ch0);
1500                 off++;
1501                 continue;
1502             }
1503             int j = off + Character.charCount(ch0);
1504             int ch1;
1505             while (j < limit) {
1506                 ch1 = src.codePointAt(j);
1507                 if (Grapheme.isBoundary(ch0, ch1))
1508                     break;
1509                 ch0 = ch1;
1510                 j += Character.charCount(ch1);
1511             }
1512             String seq = src.substring(off, j);
1513             String nfd = Normalizer.normalize(seq, Normalizer.Form.NFD);
1514             off = j;
1515             if (nfd.length() > 1) {
1516                 ch0 = nfd.codePointAt(0);
1517                 ch1 = nfd.codePointAt(Character.charCount(ch0));
1518                 if (Character.getType(ch1) == Character.NON_SPACING_MARK) {
1519                     Set<String> altns = new LinkedHashSet<>();
1520                     altns.add(seq);
1521                     produceEquivalentAlternation(nfd, altns);
1522                     dst.append("(?:");
1523                     altns.forEach( s -> dst.append(s).append('|'));
1524                     dst.delete(dst.length() - 1, dst.length());
1525                     dst.append(")");
1526                     continue;
1527                 }
1528             }
1529             String nfc = Normalizer.normalize(seq, Normalizer.Form.NFC);
1530             if (!seq.equals(nfc) && !nfd.equals(nfc))
1531                 dst.append("(?:" + seq + "|" + nfd  + "|" + nfc + ")");
1532             else if (!seq.equals(nfd))
1533                 dst.append("(?:" + seq + "|" + nfd + ")");
1534             else
1535                 dst.append(seq);
1536         }
1537     }
1538 
1539     private static void normalizeClazz(String src, int off, int limit,
1540                                        StringBuilder dst)
1541     {
1542         dst.append(Normalizer.normalize(src.substring(off, limit), Form.NFC));
1543     }
1544 
1545     /**
1546      * Given a specific sequence composed of a regular character and
1547      * combining marks that follow it, produce the alternation that will
1548      * match all canonical equivalences of that sequence.
1549      */
1550     private static void produceEquivalentAlternation(String src,
1551                                                      Set<String> dst)
1552     {
1553         int len = countChars(src, 0, 1);
1554         if (src.length() == len) {
1555             dst.add(src);  // source has one character.
1556             return;
1557         }
1558         String base = src.substring(0,len);
1559         String combiningMarks = src.substring(len);
1560         String[] perms = producePermutations(combiningMarks);
1561         // Add combined permutations
1562         for(int x = 0; x < perms.length; x++) {
1563             String next = base + perms[x];
1564             dst.add(next);
1565             next = composeOneStep(next);
1566             if (next != null) {
1567                 produceEquivalentAlternation(next, dst);
1568             }
1569         }
1570     }
1571 
1572     /**
1573      * Returns an array of strings that have all the possible
1574      * permutations of the characters in the input string.
1575      * This is used to get a list of all possible orderings
1576      * of a set of combining marks. Note that some of the permutations
1577      * are invalid because of combining class collisions, and these
1578      * possibilities must be removed because they are not canonically
1579      * equivalent.
1580      */
1581     private static String[] producePermutations(String input) {
1582         if (input.length() == countChars(input, 0, 1))
1583             return new String[] {input};
1584 
1585         if (input.length() == countChars(input, 0, 2)) {
1586             int c0 = Character.codePointAt(input, 0);
1587             int c1 = Character.codePointAt(input, Character.charCount(c0));
1588             if (getClass(c1) == getClass(c0)) {
1589                 return new String[] {input};
1590             }
1591             String[] result = new String[2];
1592             result[0] = input;
1593             StringBuilder sb = new StringBuilder(2);
1594             sb.appendCodePoint(c1);
1595             sb.appendCodePoint(c0);
1596             result[1] = sb.toString();
1597             return result;
1598         }
1599 
1600         int length = 1;
1601         int nCodePoints = countCodePoints(input);
1602         for(int x=1; x<nCodePoints; x++)
1603             length = length * (x+1);
1604 
1605         String[] temp = new String[length];
1606 
1607         int combClass[] = new int[nCodePoints];
1608         for(int x=0, i=0; x<nCodePoints; x++) {
1609             int c = Character.codePointAt(input, i);
1610             combClass[x] = getClass(c);
1611             i +=  Character.charCount(c);
1612         }
1613 
1614         // For each char, take it out and add the permutations
1615         // of the remaining chars
1616         int index = 0;
1617         int len;
1618         // offset maintains the index in code units.
1619 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1620             len = countChars(input, offset, 1);
1621             for(int y=x-1; y>=0; y--) {
1622                 if (combClass[y] == combClass[x]) {
1623                     continue loop;
1624                 }
1625             }
1626             StringBuilder sb = new StringBuilder(input);
1627             String otherChars = sb.delete(offset, offset+len).toString();
1628             String[] subResult = producePermutations(otherChars);
1629 
1630             String prefix = input.substring(offset, offset+len);
1631             for (String sre : subResult)
1632                 temp[index++] = prefix + sre;
1633         }
1634         String[] result = new String[index];
1635         System.arraycopy(temp, 0, result, 0, index);
1636         return result;
1637     }
1638 
1639     private static int getClass(int c) {
1640         return sun.text.Normalizer.getCombiningClass(c);
1641     }
1642 
1643     /**
1644      * Attempts to compose input by combining the first character
1645      * with the first combining mark following it. Returns a String
1646      * that is the composition of the leading character with its first
1647      * combining mark followed by the remaining combining marks. Returns
1648      * null if the first two characters cannot be further composed.
1649      */
1650     private static String composeOneStep(String input) {
1651         int len = countChars(input, 0, 2);
1652         String firstTwoCharacters = input.substring(0, len);
1653         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1654         if (result.equals(firstTwoCharacters))
1655             return null;
1656         else {
1657             String remainder = input.substring(len);
1658             return result + remainder;
1659         }
1660     }
1661 
1662     /**
1663      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1664      * See the description of `quotemeta' in perlfunc(1).
1665      */
1666     private void RemoveQEQuoting() {
1667         final int pLen = patternLength;
1668         int i = 0;
1669         while (i < pLen-1) {
1670             if (temp[i] != '\\')
1671                 i += 1;
1672             else if (temp[i + 1] != 'Q')
1673                 i += 2;
1674             else
1675                 break;
1676         }
1677         if (i >= pLen - 1)    // No \Q sequence found
1678             return;
1679         int j = i;
1680         i += 2;
1681         int newTempLen;
1682         try {
1683             newTempLen = Math.addExact(j + 2, Math.multiplyExact(3, pLen - i));
1684         } catch (ArithmeticException ae) {
1685             throw new OutOfMemoryError();
1686         }
1687         int[] newtemp = new int[newTempLen];
1688         System.arraycopy(temp, 0, newtemp, 0, j);
1689 
1690         boolean inQuote = true;
1691         boolean beginQuote = true;
1692         while (i < pLen) {
1693             int c = temp[i++];
1694             if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
1695                 newtemp[j++] = c;
1696             } else if (ASCII.isDigit(c)) {
1697                 if (beginQuote) {
1698                     /*
1699                      * A unicode escape \[0xu] could be before this quote,
1700                      * and we don't want this numeric char to processed as
1701                      * part of the escape.
1702                      */
1703                     newtemp[j++] = '\\';
1704                     newtemp[j++] = 'x';
1705                     newtemp[j++] = '3';
1706                 }
1707                 newtemp[j++] = c;
1708             } else if (c != '\\') {
1709                 if (inQuote) newtemp[j++] = '\\';
1710                 newtemp[j++] = c;
1711             } else if (inQuote) {
1712                 if (temp[i] == 'E') {
1713                     i++;
1714                     inQuote = false;
1715                 } else {
1716                     newtemp[j++] = '\\';
1717                     newtemp[j++] = '\\';
1718                 }
1719             } else {
1720                 if (temp[i] == 'Q') {
1721                     i++;
1722                     inQuote = true;
1723                     beginQuote = true;
1724                     continue;
1725                 } else {
1726                     newtemp[j++] = c;
1727                     if (i != pLen)
1728                         newtemp[j++] = temp[i++];
1729                 }
1730             }
1731 
1732             beginQuote = false;
1733         }
1734 
1735         patternLength = j;
1736         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1737     }
1738 
1739     /**
1740      * Copies regular expression to an int array and invokes the parsing
1741      * of the expression which will create the object tree.
1742      */
1743     private void compile() {
1744         // Handle canonical equivalences
1745         if (has(CANON_EQ) && !has(LITERAL)) {
1746             normalizedPattern = normalize(pattern);
1747         } else {
1748             normalizedPattern = pattern;
1749         }
1750         patternLength = normalizedPattern.length();
1751 
1752         // Copy pattern to int array for convenience
1753         // Use double zero to terminate pattern
1754         temp = new int[patternLength + 2];
1755 
1756         hasSupplementary = false;
1757         int c, count = 0;
1758         // Convert all chars into code points
1759         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1760             c = normalizedPattern.codePointAt(x);
1761             if (isSupplementary(c)) {
1762                 hasSupplementary = true;
1763             }
1764             temp[count++] = c;
1765         }
1766 
1767         patternLength = count;   // patternLength now in code points
1768 
1769         if (! has(LITERAL))
1770             RemoveQEQuoting();
1771 
1772         // Allocate all temporary objects here.
1773         buffer = new int[32];
1774         groupNodes = new GroupHead[10];
1775         namedGroups = null;
1776         topClosureNodes = new ArrayList<>(10);
1777 
1778         if (has(LITERAL)) {
1779             // Literal pattern handling
1780             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1781             matchRoot.next = lastAccept;
1782         } else {
1783             // Start recursive descent parsing
1784             matchRoot = expr(lastAccept);
1785             // Check extra pattern characters
1786             if (patternLength != cursor) {
1787                 if (peek() == ')') {
1788                     throw error("Unmatched closing ')'");
1789                 } else {
1790                     throw error("Unexpected internal error");
1791                 }
1792             }
1793         }
1794 
1795         // Peephole optimization
1796         if (matchRoot instanceof Slice) {
1797             root = BnM.optimize(matchRoot);
1798             if (root == matchRoot) {
1799                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1800             }
1801         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1802             root = matchRoot;
1803         } else {
1804             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1805         }
1806 
1807         // Optimize the greedy Loop to prevent exponential backtracking, IF there
1808         // is no group ref in this pattern. With a non-negative localTCNCount value,
1809         // the greedy type Loop, Curly will skip the backtracking for any starting
1810         // position "i" that failed in the past.
1811         if (!hasGroupRef) {
1812             for (Node node : topClosureNodes) {
1813                 if (node instanceof Loop) {
1814                     // non-deterministic-greedy-group
1815                     ((Loop)node).posIndex = localTCNCount++;
1816                 }
1817             }
1818         }
1819 
1820         // Release temporary storage
1821         temp = null;
1822         buffer = null;
1823         groupNodes = null;
1824         patternLength = 0;
1825         compiled = true;
1826         topClosureNodes = null;
1827     }
1828 
1829     Map<String, Integer> namedGroups() {
1830         Map<String, Integer> groups = namedGroups;
1831         if (groups == null) {
1832             namedGroups = groups = new HashMap<>(2);
1833         }
1834         return groups;
1835     }
1836 
1837     /**
1838      * Used to accumulate information about a subtree of the object graph
1839      * so that optimizations can be applied to the subtree.
1840      */
1841     static final class TreeInfo {
1842         int minLength;
1843         int maxLength;
1844         boolean maxValid;
1845         boolean deterministic;
1846 
1847         TreeInfo() {
1848             reset();
1849         }
1850         void reset() {
1851             minLength = 0;
1852             maxLength = 0;
1853             maxValid = true;
1854             deterministic = true;
1855         }
1856     }
1857 
1858     /*
1859      * The following private methods are mainly used to improve the
1860      * readability of the code. In order to let the Java compiler easily
1861      * inline them, we should not put many assertions or error checks in them.
1862      */
1863 
1864     /**
1865      * Indicates whether a particular flag is set or not.
1866      */
1867     private boolean has(int f) {
1868         return (flags0 & f) != 0;
1869     }
1870 
1871     /**
1872      * Match next character, signal error if failed.
1873      */
1874     private void accept(int ch, String s) {
1875         int testChar = temp[cursor++];
1876         if (has(COMMENTS))
1877             testChar = parsePastWhitespace(testChar);
1878         if (ch != testChar) {
1879             throw error(s);
1880         }
1881     }
1882 
1883     /**
1884      * Mark the end of pattern with a specific character.
1885      */
1886     private void mark(int c) {
1887         temp[patternLength] = c;
1888     }
1889 
1890     /**
1891      * Peek the next character, and do not advance the cursor.
1892      */
1893     private int peek() {
1894         int ch = temp[cursor];
1895         if (has(COMMENTS))
1896             ch = peekPastWhitespace(ch);
1897         return ch;
1898     }
1899 
1900     /**
1901      * Read the next character, and advance the cursor by one.
1902      */
1903     private int read() {
1904         int ch = temp[cursor++];
1905         if (has(COMMENTS))
1906             ch = parsePastWhitespace(ch);
1907         return ch;
1908     }
1909 
1910     /**
1911      * Read the next character, and advance the cursor by one,
1912      * ignoring the COMMENTS setting
1913      */
1914     private int readEscaped() {
1915         int ch = temp[cursor++];
1916         return ch;
1917     }
1918 
1919     /**
1920      * Advance the cursor by one, and peek the next character.
1921      */
1922     private int next() {
1923         int ch = temp[++cursor];
1924         if (has(COMMENTS))
1925             ch = peekPastWhitespace(ch);
1926         return ch;
1927     }
1928 
1929     /**
1930      * Advance the cursor by one, and peek the next character,
1931      * ignoring the COMMENTS setting
1932      */
1933     private int nextEscaped() {
1934         int ch = temp[++cursor];
1935         return ch;
1936     }
1937 
1938     /**
1939      * If in xmode peek past whitespace and comments.
1940      */
1941     private int peekPastWhitespace(int ch) {
1942         while (ASCII.isSpace(ch) || ch == '#') {
1943             while (ASCII.isSpace(ch))
1944                 ch = temp[++cursor];
1945             if (ch == '#') {
1946                 ch = peekPastLine();
1947             }
1948         }
1949         return ch;
1950     }
1951 
1952     /**
1953      * If in xmode parse past whitespace and comments.
1954      */
1955     private int parsePastWhitespace(int ch) {
1956         while (ASCII.isSpace(ch) || ch == '#') {
1957             while (ASCII.isSpace(ch))
1958                 ch = temp[cursor++];
1959             if (ch == '#')
1960                 ch = parsePastLine();
1961         }
1962         return ch;
1963     }
1964 
1965     /**
1966      * xmode parse past comment to end of line.
1967      */
1968     private int parsePastLine() {
1969         int ch = temp[cursor++];
1970         while (ch != 0 && !isLineSeparator(ch))
1971             ch = temp[cursor++];
1972         return ch;
1973     }
1974 
1975     /**
1976      * xmode peek past comment to end of line.
1977      */
1978     private int peekPastLine() {
1979         int ch = temp[++cursor];
1980         while (ch != 0 && !isLineSeparator(ch))
1981             ch = temp[++cursor];
1982         return ch;
1983     }
1984 
1985     /**
1986      * Determines if character is a line separator in the current mode
1987      */
1988     private boolean isLineSeparator(int ch) {
1989         if (has(UNIX_LINES)) {
1990             return ch == '\n';
1991         } else {
1992             return (ch == '\n' ||
1993                     ch == '\r' ||
1994                     (ch|1) == '\u2029' ||
1995                     ch == '\u0085');
1996         }
1997     }
1998 
1999     /**
2000      * Read the character after the next one, and advance the cursor by two.
2001      */
2002     private int skip() {
2003         int i = cursor;
2004         int ch = temp[i+1];
2005         cursor = i + 2;
2006         return ch;
2007     }
2008 
2009     /**
2010      * Unread one next character, and retreat cursor by one.
2011      */
2012     private void unread() {
2013         cursor--;
2014     }
2015 
2016     /**
2017      * Internal method used for handling all syntax errors. The pattern is
2018      * displayed with a pointer to aid in locating the syntax error.
2019      */
2020     private PatternSyntaxException error(String s) {
2021         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
2022     }
2023 
2024     /**
2025      * Determines if there is any supplementary character or unpaired
2026      * surrogate in the specified range.
2027      */
2028     private boolean findSupplementary(int start, int end) {
2029         for (int i = start; i < end; i++) {
2030             if (isSupplementary(temp[i]))
2031                 return true;
2032         }
2033         return false;
2034     }
2035 
2036     /**
2037      * Determines if the specified code point is a supplementary
2038      * character or unpaired surrogate.
2039      */
2040     private static final boolean isSupplementary(int ch) {
2041         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
2042                Character.isSurrogate((char)ch);
2043     }
2044 
2045     /**
2046      *  The following methods handle the main parsing. They are sorted
2047      *  according to their precedence order, the lowest one first.
2048      */
2049 
2050     /**
2051      * The expression is parsed with branch nodes added for alternations.
2052      * This may be called recursively to parse sub expressions that may
2053      * contain alternations.
2054      */
2055     private Node expr(Node end) {
2056         Node prev = null;
2057         Node firstTail = null;
2058         Branch branch = null;
2059         Node branchConn = null;
2060 
2061         for (;;) {
2062             Node node = sequence(end);
2063             Node nodeTail = root;      //double return
2064             if (prev == null) {
2065                 prev = node;
2066                 firstTail = nodeTail;
2067             } else {
2068                 // Branch
2069                 if (branchConn == null) {
2070                     branchConn = new BranchConn();
2071                     branchConn.next = end;
2072                 }
2073                 if (node == end) {
2074                     // if the node returned from sequence() is "end"
2075                     // we have an empty expr, set a null atom into
2076                     // the branch to indicate to go "next" directly.
2077                     node = null;
2078                 } else {
2079                     // the "tail.next" of each atom goes to branchConn
2080                     nodeTail.next = branchConn;
2081                 }
2082                 if (prev == branch) {
2083                     branch.add(node);
2084                 } else {
2085                     if (prev == end) {
2086                         prev = null;
2087                     } else {
2088                         // replace the "end" with "branchConn" at its tail.next
2089                         // when put the "prev" into the branch as the first atom.
2090                         firstTail.next = branchConn;
2091                     }
2092                     prev = branch = new Branch(prev, node, branchConn);
2093                 }
2094             }
2095             if (peek() != '|') {
2096                 return prev;
2097             }
2098             next();
2099         }
2100     }
2101 
2102     @SuppressWarnings("fallthrough")
2103     /**
2104      * Parsing of sequences between alternations.
2105      */
2106     private Node sequence(Node end) {
2107         Node head = null;
2108         Node tail = null;
2109         Node node = null;
2110     LOOP:
2111         for (;;) {
2112             int ch = peek();
2113             switch (ch) {
2114             case '(':
2115                 // Because group handles its own closure,
2116                 // we need to treat it differently
2117                 node = group0();
2118                 // Check for comment or flag group
2119                 if (node == null)
2120                     continue;
2121                 if (head == null)
2122                     head = node;
2123                 else
2124                     tail.next = node;
2125                 // Double return: Tail was returned in root
2126                 tail = root;
2127                 continue;
2128             case '[':
2129                 if (has(CANON_EQ) && !has(LITERAL))
2130                     node = new NFCCharProperty(clazz(true));
2131                 else
2132                     node = newCharProperty(clazz(true));
2133                 break;
2134             case '\\':
2135                 ch = nextEscaped();
2136                 if (ch == 'p' || ch == 'P') {
2137                     boolean oneLetter = true;
2138                     boolean comp = (ch == 'P');
2139                     ch = next(); // Consume { if present
2140                     if (ch != '{') {
2141                         unread();
2142                     } else {
2143                         oneLetter = false;
2144                     }
2145                     // node = newCharProperty(family(oneLetter, comp));
2146                     if (has(CANON_EQ) && !has(LITERAL))
2147                         node = new NFCCharProperty(family(oneLetter, comp));
2148                     else
2149                         node = newCharProperty(family(oneLetter, comp));
2150                 } else {
2151                     unread();
2152                     node = atom();
2153                 }
2154                 break;
2155             case '^':
2156                 next();
2157                 if (has(MULTILINE)) {
2158                     if (has(UNIX_LINES))
2159                         node = new UnixCaret();
2160                     else
2161                         node = new Caret();
2162                 } else {
2163                     node = new Begin();
2164                 }
2165                 break;
2166             case '$':
2167                 next();
2168                 if (has(UNIX_LINES))
2169                     node = new UnixDollar(has(MULTILINE));
2170                 else
2171                     node = new Dollar(has(MULTILINE));
2172                 break;
2173             case '.':
2174                 next();
2175                 if (has(DOTALL)) {
2176                     node = new CharProperty(ALL());
2177                 } else {
2178                     if (has(UNIX_LINES)) {
2179                         node = new CharProperty(UNIXDOT());
2180                     } else {
2181                         node = new CharProperty(DOT());
2182                     }
2183                 }
2184                 break;
2185             case '|':
2186             case ')':
2187                 break LOOP;
2188             case ']': // Now interpreting dangling ] and } as literals
2189             case '}':
2190                 node = atom();
2191                 break;
2192             case '?':
2193             case '*':
2194             case '+':
2195                 next();
2196                 throw error("Dangling meta character '" + ((char)ch) + "'");
2197             case 0:
2198                 if (cursor >= patternLength) {
2199                     break LOOP;
2200                 }
2201                 // Fall through
2202             default:
2203                 node = atom();
2204                 break;
2205             }
2206 
2207             node = closure(node);
2208             /* save the top dot-greedy nodes (.*, .+) as well
2209             if (node instanceof GreedyCharProperty &&
2210                 ((GreedyCharProperty)node).cp instanceof Dot) {
2211                 topClosureNodes.add(node);
2212             }
2213             */
2214             if (head == null) {
2215                 head = tail = node;
2216             } else {
2217                 tail.next = node;
2218                 tail = node;
2219             }
2220         }
2221         if (head == null) {
2222             return end;
2223         }
2224         tail.next = end;
2225         root = tail;      //double return
2226         return head;
2227     }
2228 
2229     @SuppressWarnings("fallthrough")
2230     /**
2231      * Parse and add a new Single or Slice.
2232      */
2233     private Node atom() {
2234         int first = 0;
2235         int prev = -1;
2236         boolean hasSupplementary = false;
2237         int ch = peek();
2238         for (;;) {
2239             switch (ch) {
2240             case '*':
2241             case '+':
2242             case '?':
2243             case '{':
2244                 if (first > 1) {
2245                     cursor = prev;    // Unwind one character
2246                     first--;
2247                 }
2248                 break;
2249             case '$':
2250             case '.':
2251             case '^':
2252             case '(':
2253             case '[':
2254             case '|':
2255             case ')':
2256                 break;
2257             case '\\':
2258                 ch = nextEscaped();
2259                 if (ch == 'p' || ch == 'P') { // Property
2260                     if (first > 0) { // Slice is waiting; handle it first
2261                         unread();
2262                         break;
2263                     } else { // No slice; just return the family node
2264                         boolean comp = (ch == 'P');
2265                         boolean oneLetter = true;
2266                         ch = next(); // Consume { if present
2267                         if (ch != '{')
2268                             unread();
2269                         else
2270                             oneLetter = false;
2271                         if (has(CANON_EQ) && !has(LITERAL))
2272                             return new NFCCharProperty(family(oneLetter, comp));
2273                         else
2274                             return newCharProperty(family(oneLetter, comp));
2275                     }
2276                 }
2277                 unread();
2278                 prev = cursor;
2279                 ch = escape(false, first == 0, false);
2280                 if (ch >= 0) {
2281                     append(ch, first);
2282                     first++;
2283                     if (isSupplementary(ch)) {
2284                         hasSupplementary = true;
2285                     }
2286                     ch = peek();
2287                     continue;
2288                 } else if (first == 0) {
2289                     return root;
2290                 }
2291                 // Unwind meta escape sequence
2292                 cursor = prev;
2293                 break;
2294             case 0:
2295                 if (cursor >= patternLength) {
2296                     break;
2297                 }
2298                 // Fall through
2299             default:
2300                 prev = cursor;
2301                 append(ch, first);
2302                 first++;
2303                 if (isSupplementary(ch)) {
2304                     hasSupplementary = true;
2305                 }
2306                 ch = next();
2307                 continue;
2308             }
2309             break;
2310         }
2311         if (first == 1) {
2312             return newCharProperty(single(buffer[0]));
2313         } else {
2314             return newSlice(buffer, first, hasSupplementary);
2315         }
2316     }
2317 
2318     private void append(int ch, int len) {
2319         if (len >= buffer.length) {
2320             int[] tmp = new int[len+len];
2321             System.arraycopy(buffer, 0, tmp, 0, len);
2322             buffer = tmp;
2323         }
2324         buffer[len] = ch;
2325     }
2326 
2327     /**
2328      * Parses a backref greedily, taking as many numbers as it
2329      * can. The first digit is always treated as a backref, but
2330      * multi digit numbers are only treated as a backref if at
2331      * least that many backrefs exist at this point in the regex.
2332      */
2333     private Node ref(int refNum) {
2334         boolean done = false;
2335         while(!done) {
2336             int ch = peek();
2337             switch(ch) {
2338             case '0':
2339             case '1':
2340             case '2':
2341             case '3':
2342             case '4':
2343             case '5':
2344             case '6':
2345             case '7':
2346             case '8':
2347             case '9':
2348                 int newRefNum = (refNum * 10) + (ch - '0');
2349                 // Add another number if it doesn't make a group
2350                 // that doesn't exist
2351                 if (capturingGroupCount - 1 < newRefNum) {
2352                     done = true;
2353                     break;
2354                 }
2355                 refNum = newRefNum;
2356                 read();
2357                 break;
2358             default:
2359                 done = true;
2360                 break;
2361             }
2362         }
2363         hasGroupRef = true;
2364         if (has(CASE_INSENSITIVE))
2365             return new CIBackRef(refNum, has(UNICODE_CASE));
2366         else
2367             return new BackRef(refNum);
2368     }
2369 
2370     /**
2371      * Parses an escape sequence to determine the actual value that needs
2372      * to be matched.
2373      * If -1 is returned and create was true a new object was added to the tree
2374      * to handle the escape sequence.
2375      * If the returned value is greater than zero, it is the value that
2376      * matches the escape sequence.
2377      */
2378     private int escape(boolean inclass, boolean create, boolean isrange) {
2379         int ch = skip();
2380         switch (ch) {
2381         case '0':
2382             return o();
2383         case '1':
2384         case '2':
2385         case '3':
2386         case '4':
2387         case '5':
2388         case '6':
2389         case '7':
2390         case '8':
2391         case '9':
2392             if (inclass) break;
2393             if (create) {
2394                 root = ref((ch - '0'));
2395             }
2396             return -1;
2397         case 'A':
2398             if (inclass) break;
2399             if (create) root = new Begin();
2400             return -1;
2401         case 'B':
2402             if (inclass) break;
2403             if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2404             return -1;
2405         case 'C':
2406             break;
2407         case 'D':
2408             if (create) {
2409                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2410                             CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2411                 predicate = predicate.negate();
2412                 if (!inclass)
2413                     root = newCharProperty(predicate);
2414             }
2415             return -1;
2416         case 'E':
2417         case 'F':
2418             break;
2419         case 'G':
2420             if (inclass) break;
2421             if (create) root = new LastMatch();
2422             return -1;
2423         case 'H':
2424             if (create) {
2425                 predicate = HorizWS().negate();
2426                 if (!inclass)
2427                     root = newCharProperty(predicate);
2428             }
2429             return -1;
2430         case 'I':
2431         case 'J':
2432         case 'K':
2433         case 'L':
2434         case 'M':
2435             break;
2436         case 'N':
2437             return N();
2438         case 'O':
2439         case 'P':
2440         case 'Q':
2441             break;
2442         case 'R':
2443             if (inclass) break;
2444             if (create) root = new LineEnding();
2445             return -1;
2446         case 'S':
2447             if (create) {
2448                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2449                             CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2450                 predicate = predicate.negate();
2451                 if (!inclass)
2452                     root = newCharProperty(predicate);
2453             }
2454             return -1;
2455         case 'T':
2456         case 'U':
2457             break;
2458         case 'V':
2459             if (create) {
2460                 predicate = VertWS().negate();
2461                 if (!inclass)
2462                     root = newCharProperty(predicate);
2463             }
2464             return -1;
2465         case 'W':
2466             if (create) {
2467                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2468                             CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2469                 predicate = predicate.negate();
2470                 if (!inclass)
2471                     root = newCharProperty(predicate);
2472             }
2473             return -1;
2474         case 'X':
2475             if (inclass) break;
2476             if (create) {
2477                 root = new XGrapheme();
2478             }
2479             return -1;
2480         case 'Y':
2481             break;
2482         case 'Z':
2483             if (inclass) break;
2484             if (create) {
2485                 if (has(UNIX_LINES))
2486                     root = new UnixDollar(false);
2487                 else
2488                     root = new Dollar(false);
2489             }
2490             return -1;
2491         case 'a':
2492             return '\007';
2493         case 'b':
2494             if (inclass) break;
2495             if (create) {
2496                 if (peek() == '{') {
2497                     if (skip() == 'g') {
2498                         if (read() == '}') {
2499                             root = new GraphemeBound();
2500                             return -1;
2501                         }
2502                         break;  // error missing trailing }
2503                     }
2504                     unread(); unread();
2505                 }
2506                 root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2507             }
2508             return -1;
2509         case 'c':
2510             return c();
2511         case 'd':
2512             if (create) {
2513                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2514                             CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2515                 if (!inclass)
2516                     root = newCharProperty(predicate);
2517             }
2518             return -1;
2519         case 'e':
2520             return '\033';
2521         case 'f':
2522             return '\f';
2523         case 'g':
2524             break;
2525         case 'h':
2526             if (create) {
2527                 predicate = HorizWS();
2528                 if (!inclass)
2529                     root = newCharProperty(predicate);
2530             }
2531             return -1;
2532         case 'i':
2533         case 'j':
2534             break;
2535         case 'k':
2536             if (inclass)
2537                 break;
2538             if (read() != '<')
2539                 throw error("\\k is not followed by '<' for named capturing group");
2540             String name = groupname(read());
2541             if (!namedGroups().containsKey(name))
2542                 throw error("named capturing group <" + name + "> does not exist");
2543             if (create) {
2544                 hasGroupRef = true;
2545                 if (has(CASE_INSENSITIVE))
2546                     root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2547                 else
2548                     root = new BackRef(namedGroups().get(name));
2549             }
2550             return -1;
2551         case 'l':
2552         case 'm':
2553             break;
2554         case 'n':
2555             return '\n';
2556         case 'o':
2557         case 'p':
2558         case 'q':
2559             break;
2560         case 'r':
2561             return '\r';
2562         case 's':
2563             if (create) {
2564                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2565                             CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2566                 if (!inclass)
2567                     root = newCharProperty(predicate);
2568             }
2569             return -1;
2570         case 't':
2571             return '\t';
2572         case 'u':
2573             return u();
2574         case 'v':
2575             // '\v' was implemented as VT/0x0B in releases < 1.8 (though
2576             // undocumented). In JDK8 '\v' is specified as a predefined
2577             // character class for all vertical whitespace characters.
2578             // So [-1, root=VertWS node] pair is returned (instead of a
2579             // single 0x0B). This breaks the range if '\v' is used as
2580             // the start or end value, such as [\v-...] or [...-\v], in
2581             // which a single definite value (0x0B) is expected. For
2582             // compatibility concern '\013'/0x0B is returned if isrange.
2583             if (isrange)
2584                 return '\013';
2585             if (create) {
2586                 predicate = VertWS();
2587                 if (!inclass)
2588                     root = newCharProperty(predicate);
2589             }
2590             return -1;
2591         case 'w':
2592             if (create) {
2593                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2594                             CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2595                 if (!inclass)
2596                     root = newCharProperty(predicate);
2597             }
2598             return -1;
2599         case 'x':
2600             return x();
2601         case 'y':
2602             break;
2603         case 'z':
2604             if (inclass) break;
2605             if (create) root = new End();
2606             return -1;
2607         default:
2608             return ch;
2609         }
2610         throw error("Illegal/unsupported escape sequence");
2611     }
2612 
2613     /**
2614      * Parse a character class, and return the node that matches it.
2615      *
2616      * Consumes a ] on the way out if consume is true. Usually consume
2617      * is true except for the case of [abc&&def] where def is a separate
2618      * right hand node with "understood" brackets.
2619      */
2620     private CharPredicate clazz(boolean consume) {
2621         CharPredicate prev = null;
2622         CharPredicate curr = null;
2623         BitClass bits = new BitClass();
2624         BmpCharPredicate bitsP = ch -> ch < 256 && bits.bits[ch];
2625 
2626         boolean isNeg = false;
2627         boolean hasBits = false;
2628         int ch = next();
2629 
2630         // Negates if first char in a class, otherwise literal
2631         if (ch == '^' && temp[cursor-1] == '[') {
2632             ch = next();
2633             isNeg = true;
2634         }
2635         for (;;) {
2636             switch (ch) {
2637                 case '[':
2638                     curr = clazz(true);
2639                     if (prev == null)
2640                         prev = curr;
2641                     else
2642                         prev = prev.union(curr);
2643                     ch = peek();
2644                     continue;
2645                 case '&':
2646                     ch = next();
2647                     if (ch == '&') {
2648                         ch = next();
2649                         CharPredicate right = null;
2650                         while (ch != ']' && ch != '&') {
2651                             if (ch == '[') {
2652                                 if (right == null)
2653                                     right = clazz(true);
2654                                 else
2655                                     right = right.union(clazz(true));
2656                             } else { // abc&&def
2657                                 unread();
2658                                 right = clazz(false);
2659                             }
2660                             ch = peek();
2661                         }
2662                         if (hasBits) {
2663                             // bits used, union has high precedence
2664                             if (prev == null) {
2665                                 prev = curr = bitsP;
2666                             } else {
2667                                 prev = prev.union(bitsP);
2668                             }
2669                             hasBits = false;
2670                         }
2671                         if (right != null)
2672                             curr = right;
2673                         if (prev == null) {
2674                             if (right == null)
2675                                 throw error("Bad class syntax");
2676                             else
2677                                 prev = right;
2678                         } else {
2679                             prev = prev.and(curr);
2680                         }
2681                     } else {
2682                         // treat as a literal &
2683                         unread();
2684                         break;
2685                     }
2686                     continue;
2687                 case 0:
2688                     if (cursor >= patternLength)
2689                         throw error("Unclosed character class");
2690                     break;
2691                 case ']':
2692                     if (prev != null || hasBits) {
2693                         if (consume)
2694                             next();
2695                         if (prev == null)
2696                             prev = bitsP;
2697                         else if (hasBits)
2698                             prev = prev.union(bitsP);
2699                         if (isNeg)
2700                             return prev.negate();
2701                         return prev;
2702                     }
2703                     break;
2704                 default:
2705                     break;
2706             }
2707             curr = range(bits);
2708             if (curr == null) {    // the bits used
2709                 hasBits = true;
2710             } else {
2711                 if (prev == null)
2712                     prev = curr;
2713                 else if (prev != curr)
2714                     prev = prev.union(curr);
2715             }
2716             ch = peek();
2717         }
2718     }
2719 
2720     private CharPredicate bitsOrSingle(BitClass bits, int ch) {
2721         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2722            Use "single" node instead of bits when dealing with unicode
2723            case folding for codepoints listed below.
2724            (1)Uppercase out of range: u+00ff, u+00b5
2725               toUpperCase(u+00ff) -> u+0178
2726               toUpperCase(u+00b5) -> u+039c
2727            (2)LatinSmallLetterLongS u+17f
2728               toUpperCase(u+017f) -> u+0053
2729            (3)LatinSmallLetterDotlessI u+131
2730               toUpperCase(u+0131) -> u+0049
2731            (4)LatinCapitalLetterIWithDotAbove u+0130
2732               toLowerCase(u+0130) -> u+0069
2733            (5)KelvinSign u+212a
2734               toLowerCase(u+212a) ==> u+006B
2735            (6)AngstromSign u+212b
2736               toLowerCase(u+212b) ==> u+00e5
2737         */
2738         if (ch < 256 &&
2739             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2740               (ch == 0xff || ch == 0xb5 ||
2741                ch == 0x49 || ch == 0x69 ||    //I and i
2742                ch == 0x53 || ch == 0x73 ||    //S and s
2743                ch == 0x4b || ch == 0x6b ||    //K and k
2744                ch == 0xc5 || ch == 0xe5))) {  //A+ring
2745             bits.add(ch, flags0);
2746             return null;
2747         }
2748         return single(ch);
2749     }
2750 
2751     /**
2752      *  Returns a suitably optimized, single character predicate
2753      */
2754     private CharPredicate single(final int ch) {
2755         if (has(CASE_INSENSITIVE)) {
2756             int lower, upper;
2757             if (has(UNICODE_CASE)) {
2758                 upper = Character.toUpperCase(ch);
2759                 lower = Character.toLowerCase(upper);
2760                 // Unicode case insensitive matches
2761                 if (upper != lower)
2762                     return SingleU(lower);
2763             } else if (ASCII.isAscii(ch)) {
2764                 lower = ASCII.toLower(ch);
2765                 upper = ASCII.toUpper(ch);
2766                 // Case insensitive matches a given BMP character
2767                 if (lower != upper)
2768                     return SingleI(lower, upper);
2769             }
2770         }
2771         if (isSupplementary(ch))
2772             return SingleS(ch);
2773         return Single(ch);  // Match a given BMP character
2774     }
2775 
2776     /**
2777      * Parse a single character or a character range in a character class
2778      * and return its representative node.
2779      */
2780     private CharPredicate range(BitClass bits) {
2781         int ch = peek();
2782         if (ch == '\\') {
2783             ch = nextEscaped();
2784             if (ch == 'p' || ch == 'P') { // A property
2785                 boolean comp = (ch == 'P');
2786                 boolean oneLetter = true;
2787                 // Consume { if present
2788                 ch = next();
2789                 if (ch != '{')
2790                     unread();
2791                 else
2792                     oneLetter = false;
2793                 return family(oneLetter, comp);
2794             } else { // ordinary escape
2795                 boolean isrange = temp[cursor+1] == '-';
2796                 unread();
2797                 ch = escape(true, true, isrange);
2798                 if (ch == -1)
2799                     return predicate;
2800             }
2801         } else {
2802             next();
2803         }
2804         if (ch >= 0) {
2805             if (peek() == '-') {
2806                 int endRange = temp[cursor+1];
2807                 if (endRange == '[') {
2808                     return bitsOrSingle(bits, ch);
2809                 }
2810                 if (endRange != ']') {
2811                     next();
2812                     int m = peek();
2813                     if (m == '\\') {
2814                         m = escape(true, false, true);
2815                     } else {
2816                         next();
2817                     }
2818                     if (m < ch) {
2819                         throw error("Illegal character range");
2820                     }
2821                     if (has(CASE_INSENSITIVE)) {
2822                         if (has(UNICODE_CASE))
2823                             return CIRangeU(ch, m);
2824                         return CIRange(ch, m);
2825                     } else {
2826                         return Range(ch, m);
2827                     }
2828                 }
2829             }
2830             return bitsOrSingle(bits, ch);
2831         }
2832         throw error("Unexpected character '"+((char)ch)+"'");
2833     }
2834 
2835     /**
2836      * Parses a Unicode character family and returns its representative node.
2837      */
2838     private CharPredicate family(boolean singleLetter, boolean isComplement) {
2839         next();
2840         String name;
2841         CharPredicate p = null;
2842 
2843         if (singleLetter) {
2844             int c = temp[cursor];
2845             if (!Character.isSupplementaryCodePoint(c)) {
2846                 name = String.valueOf((char)c);
2847             } else {
2848                 name = new String(temp, cursor, 1);
2849             }
2850             read();
2851         } else {
2852             int i = cursor;
2853             mark('}');
2854             while(read() != '}') {
2855             }
2856             mark('\000');
2857             int j = cursor;
2858             if (j > patternLength)
2859                 throw error("Unclosed character family");
2860             if (i + 1 >= j)
2861                 throw error("Empty character family");
2862             name = new String(temp, i, j-i-1);
2863         }
2864 
2865         int i = name.indexOf('=');
2866         if (i != -1) {
2867             // property construct \p{name=value}
2868             String value = name.substring(i + 1);
2869             name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2870             switch (name) {
2871                 case "sc":
2872                 case "script":
2873                     p = CharPredicates.forUnicodeScript(value);
2874                     break;
2875                 case "blk":
2876                 case "block":
2877                     p = CharPredicates.forUnicodeBlock(value);
2878                     break;
2879                 case "gc":
2880                 case "general_category":
2881                     p = CharPredicates.forProperty(value);
2882                     break;
2883                 default:
2884                     break;
2885             }
2886             if (p == null)
2887                 throw error("Unknown Unicode property {name=<" + name + ">, "
2888                              + "value=<" + value + ">}");
2889 
2890         } else {
2891             if (name.startsWith("In")) {
2892                 // \p{InBlockName}
2893                 p = CharPredicates.forUnicodeBlock(name.substring(2));
2894             } else if (name.startsWith("Is")) {
2895                 // \p{IsGeneralCategory} and \p{IsScriptName}
2896                 name = name.substring(2);
2897                 p = CharPredicates.forUnicodeProperty(name);
2898                 if (p == null)
2899                     p = CharPredicates.forProperty(name);
2900                 if (p == null)
2901                     p = CharPredicates.forUnicodeScript(name);
2902             } else {
2903                 if (has(UNICODE_CHARACTER_CLASS)) {
2904                     p = CharPredicates.forPOSIXName(name);
2905                 }
2906                 if (p == null)
2907                     p = CharPredicates.forProperty(name);
2908             }
2909             if (p == null)
2910                 throw error("Unknown character property name {In/Is" + name + "}");
2911         }
2912         if (isComplement) {
2913             // it might be too expensive to detect if a complement of
2914             // CharProperty can match "certain" supplementary. So just
2915             // go with StartS.
2916             hasSupplementary = true;
2917             p = p.negate();
2918         }
2919         return p;
2920     }
2921 
2922     private CharProperty newCharProperty(CharPredicate p) {
2923         if (p == null)
2924             return null;
2925         if (p instanceof BmpCharPredicate)
2926             return new BmpCharProperty((BmpCharPredicate)p);
2927         else
2928             return new CharProperty(p);
2929     }
2930 
2931     /**
2932      * Parses and returns the name of a "named capturing group", the trailing
2933      * ">" is consumed after parsing.
2934      */
2935     private String groupname(int ch) {
2936         StringBuilder sb = new StringBuilder();
2937         if (!ASCII.isAlpha(ch))
2938             throw error("capturing group name does not start with a Latin letter");
2939         do {
2940             sb.append((char) ch);
2941         } while (ASCII.isAlnum(ch=read()));
2942         if (ch != '>')
2943             throw error("named capturing group is missing trailing '>'");
2944         return sb.toString();
2945     }
2946 
2947     /**
2948      * Parses a group and returns the head node of a set of nodes that process
2949      * the group. Sometimes a double return system is used where the tail is
2950      * returned in root.
2951      */
2952     private Node group0() {
2953         boolean capturingGroup = false;
2954         Node head = null;
2955         Node tail = null;
2956         int save = flags0;
2957         int saveTCNCount = topClosureNodes.size();
2958         root = null;
2959         int ch = next();
2960         if (ch == '?') {
2961             ch = skip();
2962             switch (ch) {
2963             case ':':   //  (?:xxx) pure group
2964                 head = createGroup(true);
2965                 tail = root;
2966                 head.next = expr(tail);
2967                 break;
2968             case '=':   // (?=xxx) and (?!xxx) lookahead
2969             case '!':
2970                 head = createGroup(true);
2971                 tail = root;
2972                 head.next = expr(tail);
2973                 if (ch == '=') {
2974                     head = tail = new Pos(head);
2975                 } else {
2976                     head = tail = new Neg(head);
2977                 }
2978                 break;
2979             case '>':   // (?>xxx)  independent group
2980                 head = createGroup(true);
2981                 tail = root;
2982                 head.next = expr(tail);
2983                 head = tail = new Ques(head, Qtype.INDEPENDENT);
2984                 break;
2985             case '<':   // (?<xxx)  look behind
2986                 ch = read();
2987                 if (ch != '=' && ch != '!') {
2988                     // named captured group
2989                     String name = groupname(ch);
2990                     if (namedGroups().containsKey(name))
2991                         throw error("Named capturing group <" + name
2992                                     + "> is already defined");
2993                     capturingGroup = true;
2994                     head = createGroup(false);
2995                     tail = root;
2996                     namedGroups().put(name, capturingGroupCount-1);
2997                     head.next = expr(tail);
2998                     break;
2999                 }
3000                 int start = cursor;
3001                 head = createGroup(true);
3002                 tail = root;
3003                 head.next = expr(tail);
3004                 tail.next = lookbehindEnd;
3005                 TreeInfo info = new TreeInfo();
3006                 head.study(info);
3007                 if (info.maxValid == false) {
3008                     throw error("Look-behind group does not have "
3009                                 + "an obvious maximum length");
3010                 }
3011                 boolean hasSupplementary = findSupplementary(start, patternLength);
3012                 if (ch == '=') {
3013                     head = tail = (hasSupplementary ?
3014                                    new BehindS(head, info.maxLength,
3015                                                info.minLength) :
3016                                    new Behind(head, info.maxLength,
3017                                               info.minLength));
3018                 } else { // if (ch == '!')
3019                     head = tail = (hasSupplementary ?
3020                                    new NotBehindS(head, info.maxLength,
3021                                                   info.minLength) :
3022                                    new NotBehind(head, info.maxLength,
3023                                                  info.minLength));
3024                 }
3025                 // clear all top-closure-nodes inside lookbehind
3026                 if (saveTCNCount < topClosureNodes.size())
3027                     topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3028                 break;
3029             case '$':
3030             case '@':
3031                 throw error("Unknown group type");
3032             default:    // (?xxx:) inlined match flags
3033                 unread();
3034                 addFlag();
3035                 ch = read();
3036                 if (ch == ')') {
3037                     return null;    // Inline modifier only
3038                 }
3039                 if (ch != ':') {
3040                     throw error("Unknown inline modifier");
3041                 }
3042                 head = createGroup(true);
3043                 tail = root;
3044                 head.next = expr(tail);
3045                 break;
3046             }
3047         } else { // (xxx) a regular group
3048             capturingGroup = true;
3049             head = createGroup(false);
3050             tail = root;
3051             head.next = expr(tail);
3052         }
3053 
3054         accept(')', "Unclosed group");
3055         flags0 = save;
3056 
3057         // Check for quantifiers
3058         Node node = closure(head);
3059         if (node == head) { // No closure
3060             root = tail;
3061             return node;    // Dual return
3062         }
3063         if (head == tail) { // Zero length assertion
3064             root = node;
3065             return node;    // Dual return
3066         }
3067 
3068         // have group closure, clear all inner closure nodes from the
3069         // top list (no backtracking stopper optimization for inner
3070         if (saveTCNCount < topClosureNodes.size())
3071             topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3072 
3073         if (node instanceof Ques) {
3074             Ques ques = (Ques) node;
3075             if (ques.type == Qtype.POSSESSIVE) {
3076                 root = node;
3077                 return node;
3078             }
3079             tail.next = new BranchConn();
3080             tail = tail.next;
3081             if (ques.type == Qtype.GREEDY) {
3082                 head = new Branch(head, null, tail);
3083             } else { // Reluctant quantifier
3084                 head = new Branch(null, head, tail);
3085             }
3086             root = tail;
3087             return head;
3088         } else if (node instanceof Curly) {
3089             Curly curly = (Curly) node;
3090             if (curly.type == Qtype.POSSESSIVE) {
3091                 root = node;
3092                 return node;
3093             }
3094             // Discover if the group is deterministic
3095             TreeInfo info = new TreeInfo();
3096             if (head.study(info)) { // Deterministic
3097                 GroupTail temp = (GroupTail) tail;
3098                 head = root = new GroupCurly(head.next, curly.cmin,
3099                                    curly.cmax, curly.type,
3100                                    ((GroupTail)tail).localIndex,
3101                                    ((GroupTail)tail).groupIndex,
3102                                              capturingGroup);
3103                 return head;
3104             } else { // Non-deterministic
3105                 int temp = ((GroupHead) head).localIndex;
3106                 Loop loop;
3107                 if (curly.type == Qtype.GREEDY) {
3108                     loop = new Loop(this.localCount, temp);
3109                     // add the max_reps greedy to the top-closure-node list
3110                     if (curly.cmax == MAX_REPS)
3111                         topClosureNodes.add(loop);
3112                 } else {  // Reluctant Curly
3113                     loop = new LazyLoop(this.localCount, temp);
3114                 }
3115                 Prolog prolog = new Prolog(loop);
3116                 this.localCount += 1;
3117                 loop.cmin = curly.cmin;
3118                 loop.cmax = curly.cmax;
3119                 loop.body = head;
3120                 tail.next = loop;
3121                 root = loop;
3122                 return prolog; // Dual return
3123             }
3124         }
3125         throw error("Internal logic error");
3126     }
3127 
3128     /**
3129      * Create group head and tail nodes using double return. If the group is
3130      * created with anonymous true then it is a pure group and should not
3131      * affect group counting.
3132      */
3133     private Node createGroup(boolean anonymous) {
3134         int localIndex = localCount++;
3135         int groupIndex = 0;
3136         if (!anonymous)
3137             groupIndex = capturingGroupCount++;
3138         GroupHead head = new GroupHead(localIndex);
3139         root = new GroupTail(localIndex, groupIndex);
3140 
3141         // for debug/print only, head.match does NOT need the "tail" info
3142         head.tail = (GroupTail)root;
3143 
3144         if (!anonymous && groupIndex < 10)
3145             groupNodes[groupIndex] = head;
3146         return head;
3147     }
3148 
3149     @SuppressWarnings("fallthrough")
3150     /**
3151      * Parses inlined match flags and set them appropriately.
3152      */
3153     private void addFlag() {
3154         int ch = peek();
3155         for (;;) {
3156             switch (ch) {
3157             case 'i':
3158                 flags0 |= CASE_INSENSITIVE;
3159                 break;
3160             case 'm':
3161                 flags0 |= MULTILINE;
3162                 break;
3163             case 's':
3164                 flags0 |= DOTALL;
3165                 break;
3166             case 'd':
3167                 flags0 |= UNIX_LINES;
3168                 break;
3169             case 'u':
3170                 flags0 |= UNICODE_CASE;
3171                 break;
3172             case 'c':
3173                 flags0 |= CANON_EQ;
3174                 break;
3175             case 'x':
3176                 flags0 |= COMMENTS;
3177                 break;
3178             case 'U':
3179                 flags0 |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3180                 break;
3181             case '-': // subFlag then fall through
3182                 ch = next();
3183                 subFlag();
3184             default:
3185                 return;
3186             }
3187             ch = next();
3188         }
3189     }
3190 
3191     @SuppressWarnings("fallthrough")
3192     /**
3193      * Parses the second part of inlined match flags and turns off
3194      * flags appropriately.
3195      */
3196     private void subFlag() {
3197         int ch = peek();
3198         for (;;) {
3199             switch (ch) {
3200             case 'i':
3201                 flags0 &= ~CASE_INSENSITIVE;
3202                 break;
3203             case 'm':
3204                 flags0 &= ~MULTILINE;
3205                 break;
3206             case 's':
3207                 flags0 &= ~DOTALL;
3208                 break;
3209             case 'd':
3210                 flags0 &= ~UNIX_LINES;
3211                 break;
3212             case 'u':
3213                 flags0 &= ~UNICODE_CASE;
3214                 break;
3215             case 'c':
3216                 flags0 &= ~CANON_EQ;
3217                 break;
3218             case 'x':
3219                 flags0 &= ~COMMENTS;
3220                 break;
3221             case 'U':
3222                 flags0 &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3223                 break;
3224             default:
3225                 return;
3226             }
3227             ch = next();
3228         }
3229     }
3230 
3231     static final int MAX_REPS   = 0x7FFFFFFF;
3232 
3233     static enum Qtype {
3234         GREEDY, LAZY, POSSESSIVE, INDEPENDENT
3235     }
3236 
3237     private Node curly(Node prev, int cmin) {
3238         int ch = next();
3239         if (ch == '?') {
3240             next();
3241             return new Curly(prev, cmin, MAX_REPS, Qtype.LAZY);
3242         } else if (ch == '+') {
3243             next();
3244             return new Curly(prev, cmin, MAX_REPS, Qtype.POSSESSIVE);
3245         }
3246         if (prev instanceof BmpCharProperty) {
3247             return new BmpCharPropertyGreedy((BmpCharProperty)prev, cmin);
3248         } else if (prev instanceof CharProperty) {
3249             return new CharPropertyGreedy((CharProperty)prev, cmin);
3250         }
3251         return new Curly(prev, cmin, MAX_REPS, Qtype.GREEDY);
3252     }
3253 
3254     /**
3255      * Processes repetition. If the next character peeked is a quantifier
3256      * then new nodes must be appended to handle the repetition.
3257      * Prev could be a single or a group, so it could be a chain of nodes.
3258      */
3259     private Node closure(Node prev) {
3260         Node atom;
3261         int ch = peek();
3262         switch (ch) {
3263         case '?':
3264             ch = next();
3265             if (ch == '?') {
3266                 next();
3267                 return new Ques(prev, Qtype.LAZY);
3268             } else if (ch == '+') {
3269                 next();
3270                 return new Ques(prev, Qtype.POSSESSIVE);
3271             }
3272             return new Ques(prev, Qtype.GREEDY);
3273         case '*':
3274             return curly(prev, 0);
3275         case '+':
3276             return curly(prev, 1);
3277         case '{':
3278             ch = temp[cursor+1];
3279             if (ASCII.isDigit(ch)) {
3280                 skip();
3281                 int cmin = 0;
3282                 do {
3283                     cmin = cmin * 10 + (ch - '0');
3284                 } while (ASCII.isDigit(ch = read()));
3285                 int cmax = cmin;
3286                 if (ch == ',') {
3287                     ch = read();
3288                     cmax = MAX_REPS;
3289                     if (ch != '}') {
3290                         cmax = 0;
3291                         while (ASCII.isDigit(ch)) {
3292                             cmax = cmax * 10 + (ch - '0');
3293                             ch = read();
3294                         }
3295                     }
3296                 }
3297                 if (ch != '}')
3298                     throw error("Unclosed counted closure");
3299                 if (((cmin) | (cmax) | (cmax - cmin)) < 0)
3300                     throw error("Illegal repetition range");
3301                 Curly curly;
3302                 ch = peek();
3303                 if (ch == '?') {
3304                     next();
3305                     curly = new Curly(prev, cmin, cmax, Qtype.LAZY);
3306                 } else if (ch == '+') {
3307                     next();
3308                     curly = new Curly(prev, cmin, cmax, Qtype.POSSESSIVE);
3309                 } else {
3310                     curly = new Curly(prev, cmin, cmax, Qtype.GREEDY);
3311                 }
3312                 return curly;
3313             } else {
3314                 throw error("Illegal repetition");
3315             }
3316         default:
3317             return prev;
3318         }
3319     }
3320 
3321     /**
3322      *  Utility method for parsing control escape sequences.
3323      */
3324     private int c() {
3325         if (cursor < patternLength) {
3326             return read() ^ 64;
3327         }
3328         throw error("Illegal control escape sequence");
3329     }
3330 
3331     /**
3332      *  Utility method for parsing octal escape sequences.
3333      */
3334     private int o() {
3335         int n = read();
3336         if (((n-'0')|('7'-n)) >= 0) {
3337             int m = read();
3338             if (((m-'0')|('7'-m)) >= 0) {
3339                 int o = read();
3340                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3341                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3342                 }
3343                 unread();
3344                 return (n - '0') * 8 + (m - '0');
3345             }
3346             unread();
3347             return (n - '0');
3348         }
3349         throw error("Illegal octal escape sequence");
3350     }
3351 
3352     /**
3353      *  Utility method for parsing hexadecimal escape sequences.
3354      */
3355     private int x() {
3356         int n = read();
3357         if (ASCII.isHexDigit(n)) {
3358             int m = read();
3359             if (ASCII.isHexDigit(m)) {
3360                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3361             }
3362         } else if (n == '{' && ASCII.isHexDigit(peek())) {
3363             int ch = 0;
3364             while (ASCII.isHexDigit(n = read())) {
3365                 ch = (ch << 4) + ASCII.toDigit(n);
3366                 if (ch > Character.MAX_CODE_POINT)
3367                     throw error("Hexadecimal codepoint is too big");
3368             }
3369             if (n != '}')
3370                 throw error("Unclosed hexadecimal escape sequence");
3371             return ch;
3372         }
3373         throw error("Illegal hexadecimal escape sequence");
3374     }
3375 
3376     /**
3377      *  Utility method for parsing unicode escape sequences.
3378      */
3379     private int cursor() {
3380         return cursor;
3381     }
3382 
3383     private void setcursor(int pos) {
3384         cursor = pos;
3385     }
3386 
3387     private int uxxxx() {
3388         int n = 0;
3389         for (int i = 0; i < 4; i++) {
3390             int ch = read();
3391             if (!ASCII.isHexDigit(ch)) {
3392                 throw error("Illegal Unicode escape sequence");
3393             }
3394             n = n * 16 + ASCII.toDigit(ch);
3395         }
3396         return n;
3397     }
3398 
3399     private int u() {
3400         int n = uxxxx();
3401         if (Character.isHighSurrogate((char)n)) {
3402             int cur = cursor();
3403             if (read() == '\\' && read() == 'u') {
3404                 int n2 = uxxxx();
3405                 if (Character.isLowSurrogate((char)n2))
3406                     return Character.toCodePoint((char)n, (char)n2);
3407             }
3408             setcursor(cur);
3409         }
3410         return n;
3411     }
3412 
3413     private int N() {
3414         if (read() == '{') {
3415             int i = cursor;
3416             while (cursor < patternLength && read() != '}') {}
3417             if (cursor > patternLength)
3418                 throw error("Unclosed character name escape sequence");
3419             String name = new String(temp, i, cursor - i - 1);
3420             try {
3421                 return Character.codePointOf(name);
3422             } catch (IllegalArgumentException x) {
3423                 throw error("Unknown character name [" + name + "]");
3424             }
3425         }
3426         throw error("Illegal character name escape sequence");
3427     }
3428 
3429     //
3430     // Utility methods for code point support
3431     //
3432     private static final int countChars(CharSequence seq, int index,
3433                                         int lengthInCodePoints) {
3434         // optimization
3435         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3436             assert (index >= 0 && index < seq.length());
3437             return 1;
3438         }
3439         int length = seq.length();
3440         int x = index;
3441         if (lengthInCodePoints >= 0) {
3442             assert (index >= 0 && index < length);
3443             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3444                 if (Character.isHighSurrogate(seq.charAt(x++))) {
3445                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3446                         x++;
3447                     }
3448                 }
3449             }
3450             return x - index;
3451         }
3452 
3453         assert (index >= 0 && index <= length);
3454         if (index == 0) {
3455             return 0;
3456         }
3457         int len = -lengthInCodePoints;
3458         for (int i = 0; x > 0 && i < len; i++) {
3459             if (Character.isLowSurrogate(seq.charAt(--x))) {
3460                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3461                     x--;
3462                 }
3463             }
3464         }
3465         return index - x;
3466     }
3467 
3468     private static final int countCodePoints(CharSequence seq) {
3469         int length = seq.length();
3470         int n = 0;
3471         for (int i = 0; i < length; ) {
3472             n++;
3473             if (Character.isHighSurrogate(seq.charAt(i++))) {
3474                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3475                     i++;
3476                 }
3477             }
3478         }
3479         return n;
3480     }
3481 
3482     /**
3483      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3484      *  never matches values above Latin-1, and a complemented BitClass always
3485      *  matches values above Latin-1.
3486      */
3487     static final class BitClass extends BmpCharProperty {
3488         final boolean[] bits;
3489         BitClass() {
3490             this(new boolean[256]);
3491         }
3492         private BitClass(boolean[] bits) {
3493             super( ch -> ch < 256 && bits[ch]);
3494             this.bits = bits;
3495         }
3496         BitClass add(int c, int flags) {
3497             assert c >= 0 && c <= 255;
3498             if ((flags & CASE_INSENSITIVE) != 0) {
3499                 if (ASCII.isAscii(c)) {
3500                     bits[ASCII.toUpper(c)] = true;
3501                     bits[ASCII.toLower(c)] = true;
3502                 } else if ((flags & UNICODE_CASE) != 0) {
3503                     bits[Character.toLowerCase(c)] = true;
3504                     bits[Character.toUpperCase(c)] = true;
3505                 }
3506             }
3507             bits[c] = true;
3508             return this;
3509         }
3510     }
3511 
3512     /**
3513      *  Utility method for creating a string slice matcher.
3514      */
3515     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3516         int[] tmp = new int[count];
3517         if (has(CASE_INSENSITIVE)) {
3518             if (has(UNICODE_CASE)) {
3519                 for (int i = 0; i < count; i++) {
3520                     tmp[i] = Character.toLowerCase(
3521                                  Character.toUpperCase(buf[i]));
3522                 }
3523                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3524             }
3525             for (int i = 0; i < count; i++) {
3526                 tmp[i] = ASCII.toLower(buf[i]);
3527             }
3528             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3529         }
3530         for (int i = 0; i < count; i++) {
3531             tmp[i] = buf[i];
3532         }
3533         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3534     }
3535 
3536     /**
3537      * The following classes are the building components of the object
3538      * tree that represents a compiled regular expression. The object tree
3539      * is made of individual elements that handle constructs in the Pattern.
3540      * Each type of object knows how to match its equivalent construct with
3541      * the match() method.
3542      */
3543 
3544     /**
3545      * Base class for all node classes. Subclasses should override the match()
3546      * method as appropriate. This class is an accepting node, so its match()
3547      * always returns true.
3548      */
3549     static class Node extends Object {
3550         Node next;
3551         Node() {
3552             next = Pattern.accept;
3553         }
3554         /**
3555          * This method implements the classic accept node.
3556          */
3557         boolean match(Matcher matcher, int i, CharSequence seq) {
3558             matcher.last = i;
3559             matcher.groups[0] = matcher.first;
3560             matcher.groups[1] = matcher.last;
3561             return true;
3562         }
3563         /**
3564          * This method is good for all zero length assertions.
3565          */
3566         boolean study(TreeInfo info) {
3567             if (next != null) {
3568                 return next.study(info);
3569             } else {
3570                 return info.deterministic;
3571             }
3572         }
3573     }
3574 
3575     static class LastNode extends Node {
3576         /**
3577          * This method implements the classic accept node with
3578          * the addition of a check to see if the match occurred
3579          * using all of the input.
3580          */
3581         boolean match(Matcher matcher, int i, CharSequence seq) {
3582             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3583                 return false;
3584             matcher.last = i;
3585             matcher.groups[0] = matcher.first;
3586             matcher.groups[1] = matcher.last;
3587             return true;
3588         }
3589     }
3590 
3591     /**
3592      * Used for REs that can start anywhere within the input string.
3593      * This basically tries to match repeatedly at each spot in the
3594      * input string, moving forward after each try. An anchored search
3595      * or a BnM will bypass this node completely.
3596      */
3597     static class Start extends Node {
3598         int minLength;
3599         Start(Node node) {
3600             this.next = node;
3601             TreeInfo info = new TreeInfo();
3602             next.study(info);
3603             minLength = info.minLength;
3604         }
3605         boolean match(Matcher matcher, int i, CharSequence seq) {
3606             if (i > matcher.to - minLength) {
3607                 matcher.hitEnd = true;
3608                 return false;
3609             }
3610             int guard = matcher.to - minLength;
3611             for (; i <= guard; i++) {
3612                 if (next.match(matcher, i, seq)) {
3613                     matcher.first = i;
3614                     matcher.groups[0] = matcher.first;
3615                     matcher.groups[1] = matcher.last;
3616                     return true;
3617                 }
3618             }
3619             matcher.hitEnd = true;
3620             return false;
3621         }
3622         boolean study(TreeInfo info) {
3623             next.study(info);
3624             info.maxValid = false;
3625             info.deterministic = false;
3626             return false;
3627         }
3628     }
3629 
3630     /*
3631      * StartS supports supplementary characters, including unpaired surrogates.
3632      */
3633     static final class StartS extends Start {
3634         StartS(Node node) {
3635             super(node);
3636         }
3637         boolean match(Matcher matcher, int i, CharSequence seq) {
3638             if (i > matcher.to - minLength) {
3639                 matcher.hitEnd = true;
3640                 return false;
3641             }
3642             int guard = matcher.to - minLength;
3643             while (i <= guard) {
3644                 //if ((ret = next.match(matcher, i, seq)) || i == guard)
3645                 if (next.match(matcher, i, seq)) {
3646                     matcher.first = i;
3647                     matcher.groups[0] = matcher.first;
3648                     matcher.groups[1] = matcher.last;
3649                     return true;
3650                 }
3651                 if (i == guard)
3652                     break;
3653                 // Optimization to move to the next character. This is
3654                 // faster than countChars(seq, i, 1).
3655                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3656                     if (i < seq.length() &&
3657                         Character.isLowSurrogate(seq.charAt(i))) {
3658                         i++;
3659                     }
3660                 }
3661             }
3662             matcher.hitEnd = true;
3663             return false;
3664         }
3665     }
3666 
3667     /**
3668      * Node to anchor at the beginning of input. This object implements the
3669      * match for a \A sequence, and the caret anchor will use this if not in
3670      * multiline mode.
3671      */
3672     static final class Begin extends Node {
3673         boolean match(Matcher matcher, int i, CharSequence seq) {
3674             int fromIndex = (matcher.anchoringBounds) ?
3675                 matcher.from : 0;
3676             if (i == fromIndex && next.match(matcher, i, seq)) {
3677                 matcher.first = i;
3678                 matcher.groups[0] = i;
3679                 matcher.groups[1] = matcher.last;
3680                 return true;
3681             } else {
3682                 return false;
3683             }
3684         }
3685     }
3686 
3687     /**
3688      * Node to anchor at the end of input. This is the absolute end, so this
3689      * should not match at the last newline before the end as $ will.
3690      */
3691     static final class End extends Node {
3692         boolean match(Matcher matcher, int i, CharSequence seq) {
3693             int endIndex = (matcher.anchoringBounds) ?
3694                 matcher.to : matcher.getTextLength();
3695             if (i == endIndex) {
3696                 matcher.hitEnd = true;
3697                 return next.match(matcher, i, seq);
3698             }
3699             return false;
3700         }
3701     }
3702 
3703     /**
3704      * Node to anchor at the beginning of a line. This is essentially the
3705      * object to match for the multiline ^.
3706      */
3707     static final class Caret extends Node {
3708         boolean match(Matcher matcher, int i, CharSequence seq) {
3709             int startIndex = matcher.from;
3710             int endIndex = matcher.to;
3711             if (!matcher.anchoringBounds) {
3712                 startIndex = 0;
3713                 endIndex = matcher.getTextLength();
3714             }
3715             // Perl does not match ^ at end of input even after newline
3716             if (i == endIndex) {
3717                 matcher.hitEnd = true;
3718                 return false;
3719             }
3720             if (i > startIndex) {
3721                 char ch = seq.charAt(i-1);
3722                 if (ch != '\n' && ch != '\r'
3723                     && (ch|1) != '\u2029'
3724                     && ch != '\u0085' ) {
3725                     return false;
3726                 }
3727                 // Should treat /r/n as one newline
3728                 if (ch == '\r' && seq.charAt(i) == '\n')
3729                     return false;
3730             }
3731             return next.match(matcher, i, seq);
3732         }
3733     }
3734 
3735     /**
3736      * Node to anchor at the beginning of a line when in unixdot mode.
3737      */
3738     static final class UnixCaret extends Node {
3739         boolean match(Matcher matcher, int i, CharSequence seq) {
3740             int startIndex = matcher.from;
3741             int endIndex = matcher.to;
3742             if (!matcher.anchoringBounds) {
3743                 startIndex = 0;
3744                 endIndex = matcher.getTextLength();
3745             }
3746             // Perl does not match ^ at end of input even after newline
3747             if (i == endIndex) {
3748                 matcher.hitEnd = true;
3749                 return false;
3750             }
3751             if (i > startIndex) {
3752                 char ch = seq.charAt(i-1);
3753                 if (ch != '\n') {
3754                     return false;
3755                 }
3756             }
3757             return next.match(matcher, i, seq);
3758         }
3759     }
3760 
3761     /**
3762      * Node to match the location where the last match ended.
3763      * This is used for the \G construct.
3764      */
3765     static final class LastMatch extends Node {
3766         boolean match(Matcher matcher, int i, CharSequence seq) {
3767             if (i != matcher.oldLast)
3768                 return false;
3769             return next.match(matcher, i, seq);
3770         }
3771     }
3772 
3773     /**
3774      * Node to anchor at the end of a line or the end of input based on the
3775      * multiline mode.
3776      *
3777      * When not in multiline mode, the $ can only match at the very end
3778      * of the input, unless the input ends in a line terminator in which
3779      * it matches right before the last line terminator.
3780      *
3781      * Note that \r\n is considered an atomic line terminator.
3782      *
3783      * Like ^ the $ operator matches at a position, it does not match the
3784      * line terminators themselves.
3785      */
3786     static final class Dollar extends Node {
3787         boolean multiline;
3788         Dollar(boolean mul) {
3789             multiline = mul;
3790         }
3791         boolean match(Matcher matcher, int i, CharSequence seq) {
3792             int endIndex = (matcher.anchoringBounds) ?
3793                 matcher.to : matcher.getTextLength();
3794             if (!multiline) {
3795                 if (i < endIndex - 2)
3796                     return false;
3797                 if (i == endIndex - 2) {
3798                     char ch = seq.charAt(i);
3799                     if (ch != '\r')
3800                         return false;
3801                     ch = seq.charAt(i + 1);
3802                     if (ch != '\n')
3803                         return false;
3804                 }
3805             }
3806             // Matches before any line terminator; also matches at the
3807             // end of input
3808             // Before line terminator:
3809             // If multiline, we match here no matter what
3810             // If not multiline, fall through so that the end
3811             // is marked as hit; this must be a /r/n or a /n
3812             // at the very end so the end was hit; more input
3813             // could make this not match here
3814             if (i < endIndex) {
3815                 char ch = seq.charAt(i);
3816                  if (ch == '\n') {
3817                      // No match between \r\n
3818                      if (i > 0 && seq.charAt(i-1) == '\r')
3819                          return false;
3820                      if (multiline)
3821                          return next.match(matcher, i, seq);
3822                  } else if (ch == '\r' || ch == '\u0085' ||
3823                             (ch|1) == '\u2029') {
3824                      if (multiline)
3825                          return next.match(matcher, i, seq);
3826                  } else { // No line terminator, no match
3827                      return false;
3828                  }
3829             }
3830             // Matched at current end so hit end
3831             matcher.hitEnd = true;
3832             // If a $ matches because of end of input, then more input
3833             // could cause it to fail!
3834             matcher.requireEnd = true;
3835             return next.match(matcher, i, seq);
3836         }
3837         boolean study(TreeInfo info) {
3838             next.study(info);
3839             return info.deterministic;
3840         }
3841     }
3842 
3843     /**
3844      * Node to anchor at the end of a line or the end of input based on the
3845      * multiline mode when in unix lines mode.
3846      */
3847     static final class UnixDollar extends Node {
3848         boolean multiline;
3849         UnixDollar(boolean mul) {
3850             multiline = mul;
3851         }
3852         boolean match(Matcher matcher, int i, CharSequence seq) {
3853             int endIndex = (matcher.anchoringBounds) ?
3854                 matcher.to : matcher.getTextLength();
3855             if (i < endIndex) {
3856                 char ch = seq.charAt(i);
3857                 if (ch == '\n') {
3858                     // If not multiline, then only possible to
3859                     // match at very end or one before end
3860                     if (multiline == false && i != endIndex - 1)
3861                         return false;
3862                     // If multiline return next.match without setting
3863                     // matcher.hitEnd
3864                     if (multiline)
3865                         return next.match(matcher, i, seq);
3866                 } else {
3867                     return false;
3868                 }
3869             }
3870             // Matching because at the end or 1 before the end;
3871             // more input could change this so set hitEnd
3872             matcher.hitEnd = true;
3873             // If a $ matches because of end of input, then more input
3874             // could cause it to fail!
3875             matcher.requireEnd = true;
3876             return next.match(matcher, i, seq);
3877         }
3878         boolean study(TreeInfo info) {
3879             next.study(info);
3880             return info.deterministic;
3881         }
3882     }
3883 
3884     /**
3885      * Node class that matches a Unicode line ending '\R'
3886      */
3887     static final class LineEnding extends Node {
3888         boolean match(Matcher matcher, int i, CharSequence seq) {
3889             // (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
3890             if (i < matcher.to) {
3891                 int ch = seq.charAt(i);
3892                 if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
3893                     ch == 0x85 || ch == 0x2028 || ch == 0x2029)
3894                     return next.match(matcher, i + 1, seq);
3895                 if (ch == 0x0D) {
3896                     i++;
3897                     if (i < matcher.to) {
3898                         if (seq.charAt(i) == 0x0A &&
3899                             next.match(matcher, i + 1, seq)) {
3900                             return true;
3901                         }
3902                     } else {
3903                         matcher.hitEnd = true;
3904                     }
3905                     return next.match(matcher, i, seq);
3906                 }
3907             } else {
3908                 matcher.hitEnd = true;
3909             }
3910             return false;
3911         }
3912         boolean study(TreeInfo info) {
3913             info.minLength++;
3914             info.maxLength += 2;
3915             return next.study(info);
3916         }
3917     }
3918 
3919     /**
3920      * Abstract node class to match one character satisfying some
3921      * boolean property.
3922      */
3923     static class CharProperty extends Node {
3924         CharPredicate predicate;
3925 
3926         CharProperty (CharPredicate predicate) {
3927             this.predicate = predicate;
3928         }
3929         boolean match(Matcher matcher, int i, CharSequence seq) {
3930             if (i < matcher.to) {
3931                 int ch = Character.codePointAt(seq, i);
3932                 return predicate.is(ch) &&
3933                        next.match(matcher, i + Character.charCount(ch), seq);
3934             } else {
3935                 matcher.hitEnd = true;
3936                 return false;
3937             }
3938         }
3939         boolean study(TreeInfo info) {
3940             info.minLength++;
3941             info.maxLength++;
3942             return next.study(info);
3943         }
3944     }
3945 
3946     /**
3947      * Optimized version of CharProperty that works only for
3948      * properties never satisfied by Supplementary characters.
3949      */
3950     private static class BmpCharProperty extends CharProperty {
3951         BmpCharProperty (BmpCharPredicate predicate) {
3952             super(predicate);
3953         }
3954         boolean match(Matcher matcher, int i, CharSequence seq) {
3955             if (i < matcher.to) {
3956                 return predicate.is(seq.charAt(i)) &&
3957                        next.match(matcher, i + 1, seq);
3958             } else {
3959                 matcher.hitEnd = true;
3960                 return false;
3961             }
3962         }
3963     }
3964 
3965     private static class NFCCharProperty extends Node {
3966         CharPredicate predicate;
3967         NFCCharProperty (CharPredicate predicate) {
3968             this.predicate = predicate;
3969         }
3970 
3971         boolean match(Matcher matcher, int i, CharSequence seq) {
3972             if (i < matcher.to) {
3973                 int ch0 = Character.codePointAt(seq, i);
3974                 int n = Character.charCount(ch0);
3975                 int j = i + n;
3976                 while (j < matcher.to) {
3977                     int ch1 = Character.codePointAt(seq, j);
3978                     if (Grapheme.isBoundary(ch0, ch1))
3979                         break;
3980                     ch0 = ch1;
3981                     j += Character.charCount(ch1);
3982                 }
3983                 if (i + n == j) {    // single, assume nfc cp
3984                     if (predicate.is(ch0))
3985                         return next.match(matcher, j, seq);
3986                 } else {
3987                     while (i + n < j) {
3988                         String nfc = Normalizer.normalize(
3989                             seq.toString().substring(i, j), Normalizer.Form.NFC);
3990                         if (nfc.codePointCount(0, nfc.length()) == 1) {
3991                             if (predicate.is(nfc.codePointAt(0)) &&
3992                                 next.match(matcher, j, seq)) {
3993                                 return true;
3994                             }
3995                         }
3996 
3997                         ch0 = Character.codePointBefore(seq, j);
3998                         j -= Character.charCount(ch0);
3999                     }
4000                 }
4001                 if (j < matcher.to)
4002                     return false;
4003             }
4004             matcher.hitEnd = true;
4005             return false;
4006         }
4007 
4008         boolean study(TreeInfo info) {
4009             info.minLength++;
4010             info.deterministic = false;
4011             return next.study(info);
4012         }
4013     }
4014 
4015     /**
4016      * Node class that matches an unicode extended grapheme cluster
4017      */
4018     static class XGrapheme extends Node {
4019         boolean match(Matcher matcher, int i, CharSequence seq) {
4020             if (i < matcher.to) {
4021                 int ch0 = Character.codePointAt(seq, i);
4022                     i += Character.charCount(ch0);
4023                 while (i < matcher.to) {
4024                     int ch1 = Character.codePointAt(seq, i);
4025                     if (Grapheme.isBoundary(ch0, ch1))
4026                         break;
4027                     ch0 = ch1;
4028                     i += Character.charCount(ch1);
4029                 }
4030                 return next.match(matcher, i, seq);
4031             }
4032             matcher.hitEnd = true;
4033             return false;
4034         }
4035 
4036         boolean study(TreeInfo info) {
4037             info.minLength++;
4038             info.deterministic = false;
4039             return next.study(info);
4040         }
4041     }
4042 
4043     /**
4044      * Node class that handles grapheme boundaries
4045      */
4046     static class GraphemeBound extends Node {
4047         boolean match(Matcher matcher, int i, CharSequence seq) {
4048             int startIndex = matcher.from;
4049             int endIndex = matcher.to;
4050             if (matcher.transparentBounds) {
4051                 startIndex = 0;
4052                 endIndex = matcher.getTextLength();
4053             }
4054             if (i == startIndex) {
4055                 return next.match(matcher, i, seq);
4056             }
4057             if (i < endIndex) {
4058                 if (Character.isSurrogatePair(seq.charAt(i-1), seq.charAt(i)) ||
4059                     !Grapheme.isBoundary(Character.codePointBefore(seq, i),
4060                                          Character.codePointAt(seq, i))) {
4061                     return false;
4062                 }
4063             } else {
4064                 matcher.hitEnd = true;
4065                 matcher.requireEnd = true;
4066             }
4067             return next.match(matcher, i, seq);
4068         }
4069     }
4070 
4071     /**
4072      * Base class for all Slice nodes
4073      */
4074     static class SliceNode extends Node {
4075         int[] buffer;
4076         SliceNode(int[] buf) {
4077             buffer = buf;
4078         }
4079         boolean study(TreeInfo info) {
4080             info.minLength += buffer.length;
4081             info.maxLength += buffer.length;
4082             return next.study(info);
4083         }
4084     }
4085 
4086     /**
4087      * Node class for a case sensitive/BMP-only sequence of literal
4088      * characters.
4089      */
4090     static class Slice extends SliceNode {
4091         Slice(int[] buf) {
4092             super(buf);
4093         }
4094         boolean match(Matcher matcher, int i, CharSequence seq) {
4095             int[] buf = buffer;
4096             int len = buf.length;
4097             for (int j=0; j<len; j++) {
4098                 if ((i+j) >= matcher.to) {
4099                     matcher.hitEnd = true;
4100                     return false;
4101                 }
4102                 if (buf[j] != seq.charAt(i+j))
4103                     return false;
4104             }
4105             return next.match(matcher, i+len, seq);
4106         }
4107     }
4108 
4109     /**
4110      * Node class for a case_insensitive/BMP-only sequence of literal
4111      * characters.
4112      */
4113     static class SliceI extends SliceNode {
4114         SliceI(int[] buf) {
4115             super(buf);
4116         }
4117         boolean match(Matcher matcher, int i, CharSequence seq) {
4118             int[] buf = buffer;
4119             int len = buf.length;
4120             for (int j=0; j<len; j++) {
4121                 if ((i+j) >= matcher.to) {
4122                     matcher.hitEnd = true;
4123                     return false;
4124                 }
4125                 int c = seq.charAt(i+j);
4126                 if (buf[j] != c &&
4127                     buf[j] != ASCII.toLower(c))
4128                     return false;
4129             }
4130             return next.match(matcher, i+len, seq);
4131         }
4132     }
4133 
4134     /**
4135      * Node class for a unicode_case_insensitive/BMP-only sequence of
4136      * literal characters. Uses unicode case folding.
4137      */
4138     static final class SliceU extends SliceNode {
4139         SliceU(int[] buf) {
4140             super(buf);
4141         }
4142         boolean match(Matcher matcher, int i, CharSequence seq) {
4143             int[] buf = buffer;
4144             int len = buf.length;
4145             for (int j=0; j<len; j++) {
4146                 if ((i+j) >= matcher.to) {
4147                     matcher.hitEnd = true;
4148                     return false;
4149                 }
4150                 int c = seq.charAt(i+j);
4151                 if (buf[j] != c &&
4152                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
4153                     return false;
4154             }
4155             return next.match(matcher, i+len, seq);
4156         }
4157     }
4158 
4159     /**
4160      * Node class for a case sensitive sequence of literal characters
4161      * including supplementary characters.
4162      */
4163     static final class SliceS extends Slice {
4164         SliceS(int[] buf) {
4165             super(buf);
4166         }
4167         boolean match(Matcher matcher, int i, CharSequence seq) {
4168             int[] buf = buffer;
4169             int x = i;
4170             for (int j = 0; j < buf.length; j++) {
4171                 if (x >= matcher.to) {
4172                     matcher.hitEnd = true;
4173                     return false;
4174                 }
4175                 int c = Character.codePointAt(seq, x);
4176                 if (buf[j] != c)
4177                     return false;
4178                 x += Character.charCount(c);
4179                 if (x > matcher.to) {
4180                     matcher.hitEnd = true;
4181                     return false;
4182                 }
4183             }
4184             return next.match(matcher, x, seq);
4185         }
4186     }
4187 
4188     /**
4189      * Node class for a case insensitive sequence of literal characters
4190      * including supplementary characters.
4191      */
4192     static class SliceIS extends SliceNode {
4193         SliceIS(int[] buf) {
4194             super(buf);
4195         }
4196         int toLower(int c) {
4197             return ASCII.toLower(c);
4198         }
4199         boolean match(Matcher matcher, int i, CharSequence seq) {
4200             int[] buf = buffer;
4201             int x = i;
4202             for (int j = 0; j < buf.length; j++) {
4203                 if (x >= matcher.to) {
4204                     matcher.hitEnd = true;
4205                     return false;
4206                 }
4207                 int c = Character.codePointAt(seq, x);
4208                 if (buf[j] != c && buf[j] != toLower(c))
4209                     return false;
4210                 x += Character.charCount(c);
4211                 if (x > matcher.to) {
4212                     matcher.hitEnd = true;
4213                     return false;
4214                 }
4215             }
4216             return next.match(matcher, x, seq);
4217         }
4218     }
4219 
4220     /**
4221      * Node class for a case insensitive sequence of literal characters.
4222      * Uses unicode case folding.
4223      */
4224     static final class SliceUS extends SliceIS {
4225         SliceUS(int[] buf) {
4226             super(buf);
4227         }
4228         int toLower(int c) {
4229             return Character.toLowerCase(Character.toUpperCase(c));
4230         }
4231     }
4232 
4233     /**
4234      * The 0 or 1 quantifier. This one class implements all three types.
4235      */
4236     static final class Ques extends Node {
4237         Node atom;
4238         Qtype type;
4239         Ques(Node node, Qtype type) {
4240             this.atom = node;
4241             this.type = type;
4242         }
4243         boolean match(Matcher matcher, int i, CharSequence seq) {
4244             switch (type) {
4245             case GREEDY:
4246                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4247                     || next.match(matcher, i, seq);
4248             case LAZY:
4249                 return next.match(matcher, i, seq)
4250                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4251             case POSSESSIVE:
4252                 if (atom.match(matcher, i, seq)) i = matcher.last;
4253                 return next.match(matcher, i, seq);
4254             default:
4255                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4256             }
4257         }
4258         boolean study(TreeInfo info) {
4259             if (type != Qtype.INDEPENDENT) {
4260                 int minL = info.minLength;
4261                 atom.study(info);
4262                 info.minLength = minL;
4263                 info.deterministic = false;
4264                 return next.study(info);
4265             } else {
4266                 atom.study(info);
4267                 return next.study(info);
4268             }
4269         }
4270     }
4271 
4272     /**
4273      * Handles the greedy style repetition with the minimum either be
4274      * 0 or 1 and the maximum be MAX_REPS, for * and + quantifier.
4275      */
4276     static class CharPropertyGreedy extends Node {
4277         final CharPredicate predicate;
4278         final int cmin;
4279 
4280         CharPropertyGreedy(CharProperty cp, int cmin) {
4281             this.predicate = cp.predicate;
4282             this.cmin = cmin;
4283         }
4284         boolean match(Matcher matcher, int i,  CharSequence seq) {
4285             int n = 0;
4286             int to = matcher.to;
4287             // greedy, all the way down
4288             while (i < to) {
4289                 int ch = Character.codePointAt(seq, i);
4290                 if (!predicate.is(ch))
4291                    break;
4292                 i += Character.charCount(ch);
4293                 n++;
4294             }
4295             if (i >= to) {
4296                 matcher.hitEnd = true;
4297             }
4298             while (n >= cmin) {
4299                 if (next.match(matcher, i, seq))
4300                     return true;
4301                 if (n == cmin)
4302                     return false;
4303                  // backing off if match fails
4304                 int ch = Character.codePointBefore(seq, i);
4305                 i -= Character.charCount(ch);
4306                 n--;
4307             }
4308             return false;
4309         }
4310 
4311         boolean study(TreeInfo info) {
4312             info.minLength += cmin;
4313             if (info.maxValid) {
4314                 info.maxLength += MAX_REPS;
4315             }
4316             info.deterministic = false;
4317             return next.study(info);
4318         }
4319     }
4320 
4321     static final class BmpCharPropertyGreedy extends CharPropertyGreedy {
4322 
4323         BmpCharPropertyGreedy(BmpCharProperty bcp, int cmin) {
4324             super(bcp, cmin);
4325         }
4326 
4327         boolean match(Matcher matcher, int i,  CharSequence seq) {
4328             int n = 0;
4329             int to = matcher.to;
4330             while (i < to && predicate.is(seq.charAt(i))) {
4331                 i++; n++;
4332             }
4333             if (i >= to) {
4334                 matcher.hitEnd = true;
4335             }
4336             while (n >= cmin) {
4337                 if (next.match(matcher, i, seq))
4338                     return true;
4339                 i--; n--;  // backing off if match fails
4340             }
4341             return false;
4342         }
4343     }
4344 
4345     /**
4346      * Handles the curly-brace style repetition with a specified minimum and
4347      * maximum occurrences. The * quantifier is handled as a special case.
4348      * This class handles the three types.
4349      */
4350     static final class Curly extends Node {
4351         Node atom;
4352         Qtype type;
4353         int cmin;
4354         int cmax;
4355 
4356         Curly(Node node, int cmin, int cmax, Qtype type) {
4357             this.atom = node;
4358             this.type = type;
4359             this.cmin = cmin;
4360             this.cmax = cmax;
4361         }
4362         boolean match(Matcher matcher, int i, CharSequence seq) {
4363             int j;
4364             for (j = 0; j < cmin; j++) {
4365                 if (atom.match(matcher, i, seq)) {
4366                     i = matcher.last;
4367                     continue;
4368                 }
4369                 return false;
4370             }
4371             if (type == Qtype.GREEDY)
4372                 return match0(matcher, i, j, seq);
4373             else if (type == Qtype.LAZY)
4374                 return match1(matcher, i, j, seq);
4375             else
4376                 return match2(matcher, i, j, seq);
4377         }
4378         // Greedy match.
4379         // i is the index to start matching at
4380         // j is the number of atoms that have matched
4381         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4382             if (j >= cmax) {
4383                 // We have matched the maximum... continue with the rest of
4384                 // the regular expression
4385                 return next.match(matcher, i, seq);
4386             }
4387             int backLimit = j;
4388             while (atom.match(matcher, i, seq)) {
4389                 // k is the length of this match
4390                 int k = matcher.last - i;
4391                 if (k == 0) // Zero length match
4392                     break;
4393                 // Move up index and number matched
4394                 i = matcher.last;
4395                 j++;
4396                 // We are greedy so match as many as we can
4397                 while (j < cmax) {
4398                     if (!atom.match(matcher, i, seq))
4399                         break;
4400                     if (i + k != matcher.last) {
4401                         if (match0(matcher, matcher.last, j+1, seq))
4402                             return true;
4403                         break;
4404                     }
4405                     i += k;
4406                     j++;
4407                 }
4408                 // Handle backing off if match fails
4409                 while (j >= backLimit) {
4410                    if (next.match(matcher, i, seq))
4411                         return true;
4412                     i -= k;
4413                     j--;
4414                 }
4415                 return false;
4416             }
4417             return next.match(matcher, i, seq);
4418         }
4419         // Reluctant match. At this point, the minimum has been satisfied.
4420         // i is the index to start matching at
4421         // j is the number of atoms that have matched
4422         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4423             for (;;) {
4424                 // Try finishing match without consuming any more
4425                 if (next.match(matcher, i, seq))
4426                     return true;
4427                 // At the maximum, no match found
4428                 if (j >= cmax)
4429                     return false;
4430                 // Okay, must try one more atom
4431                 if (!atom.match(matcher, i, seq))
4432                     return false;
4433                 // If we haven't moved forward then must break out
4434                 if (i == matcher.last)
4435                     return false;
4436                 // Move up index and number matched
4437                 i = matcher.last;
4438                 j++;
4439             }
4440         }
4441         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4442             for (; j < cmax; j++) {
4443                 if (!atom.match(matcher, i, seq))
4444                     break;
4445                 if (i == matcher.last)
4446                     break;
4447                 i = matcher.last;
4448             }
4449             return next.match(matcher, i, seq);
4450         }
4451         boolean study(TreeInfo info) {
4452             // Save original info
4453             int minL = info.minLength;
4454             int maxL = info.maxLength;
4455             boolean maxV = info.maxValid;
4456             boolean detm = info.deterministic;
4457             info.reset();
4458 
4459             atom.study(info);
4460 
4461             int temp = info.minLength * cmin + minL;
4462             if (temp < minL) {
4463                 temp = 0xFFFFFFF; // arbitrary large number
4464             }
4465             info.minLength = temp;
4466 
4467             if (maxV & info.maxValid) {
4468                 temp = info.maxLength * cmax + maxL;
4469                 info.maxLength = temp;
4470                 if (temp < maxL) {
4471                     info.maxValid = false;
4472                 }
4473             } else {
4474                 info.maxValid = false;
4475             }
4476 
4477             if (info.deterministic && cmin == cmax)
4478                 info.deterministic = detm;
4479             else
4480                 info.deterministic = false;
4481             return next.study(info);
4482         }
4483     }
4484 
4485     /**
4486      * Handles the curly-brace style repetition with a specified minimum and
4487      * maximum occurrences in deterministic cases. This is an iterative
4488      * optimization over the Prolog and Loop system which would handle this
4489      * in a recursive way. The * quantifier is handled as a special case.
4490      * If capture is true then this class saves group settings and ensures
4491      * that groups are unset when backing off of a group match.
4492      */
4493     static final class GroupCurly extends Node {
4494         Node atom;
4495         Qtype type;
4496         int cmin;
4497         int cmax;
4498         int localIndex;
4499         int groupIndex;
4500         boolean capture;
4501 
4502         GroupCurly(Node node, int cmin, int cmax, Qtype type, int local,
4503                    int group, boolean capture) {
4504             this.atom = node;
4505             this.type = type;
4506             this.cmin = cmin;
4507             this.cmax = cmax;
4508             this.localIndex = local;
4509             this.groupIndex = group;
4510             this.capture = capture;
4511         }
4512         boolean match(Matcher matcher, int i, CharSequence seq) {
4513             int[] groups = matcher.groups;
4514             int[] locals = matcher.locals;
4515             int save0 = locals[localIndex];
4516             int save1 = 0;
4517             int save2 = 0;
4518 
4519             if (capture) {
4520                 save1 = groups[groupIndex];
4521                 save2 = groups[groupIndex+1];
4522             }
4523 
4524             // Notify GroupTail there is no need to setup group info
4525             // because it will be set here
4526             locals[localIndex] = -1;
4527 
4528             boolean ret = true;
4529             for (int j = 0; j < cmin; j++) {
4530                 if (atom.match(matcher, i, seq)) {
4531                     if (capture) {
4532                         groups[groupIndex] = i;
4533                         groups[groupIndex+1] = matcher.last;
4534                     }
4535                     i = matcher.last;
4536                 } else {
4537                     ret = false;
4538                     break;
4539                 }
4540             }
4541             if (ret) {
4542                 if (type == Qtype.GREEDY) {
4543                     ret = match0(matcher, i, cmin, seq);
4544                 } else if (type == Qtype.LAZY) {
4545                     ret = match1(matcher, i, cmin, seq);
4546                 } else {
4547                     ret = match2(matcher, i, cmin, seq);
4548                 }
4549             }
4550             if (!ret) {
4551                 locals[localIndex] = save0;
4552                 if (capture) {
4553                     groups[groupIndex] = save1;
4554                     groups[groupIndex+1] = save2;
4555                 }
4556             }
4557             return ret;
4558         }
4559         // Aggressive group match
4560         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4561             // don't back off passing the starting "j"
4562             int min = j;
4563             int[] groups = matcher.groups;
4564             int save0 = 0;
4565             int save1 = 0;
4566             if (capture) {
4567                 save0 = groups[groupIndex];
4568                 save1 = groups[groupIndex+1];
4569             }
4570             for (;;) {
4571                 if (j >= cmax)
4572                     break;
4573                 if (!atom.match(matcher, i, seq))
4574                     break;
4575                 int k = matcher.last - i;
4576                 if (k <= 0) {
4577                     if (capture) {
4578                         groups[groupIndex] = i;
4579                         groups[groupIndex+1] = i + k;
4580                     }
4581                     i = i + k;
4582                     break;
4583                 }
4584                 for (;;) {
4585                     if (capture) {
4586                         groups[groupIndex] = i;
4587                         groups[groupIndex+1] = i + k;
4588                     }
4589                     i = i + k;
4590                     if (++j >= cmax)
4591                         break;
4592                     if (!atom.match(matcher, i, seq))
4593                         break;
4594                     if (i + k != matcher.last) {
4595                         if (match0(matcher, i, j, seq))
4596                             return true;
4597                         break;
4598                     }
4599                 }
4600                 while (j > min) {
4601                     if (next.match(matcher, i, seq)) {
4602                         if (capture) {
4603                             groups[groupIndex+1] = i;
4604                             groups[groupIndex] = i - k;
4605                         }
4606                         return true;
4607                     }
4608                     // backing off
4609                     i = i - k;
4610                     if (capture) {
4611                         groups[groupIndex+1] = i;
4612                         groups[groupIndex] = i - k;
4613                     }
4614                     j--;
4615 
4616                 }
4617                 break;
4618             }
4619             if (capture) {
4620                 groups[groupIndex] = save0;
4621                 groups[groupIndex+1] = save1;
4622             }
4623             return next.match(matcher, i, seq);
4624         }
4625         // Reluctant matching
4626         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4627             for (;;) {
4628                 if (next.match(matcher, i, seq))
4629                     return true;
4630                 if (j >= cmax)
4631                     return false;
4632                 if (!atom.match(matcher, i, seq))
4633                     return false;
4634                 if (i == matcher.last)
4635                     return false;
4636                 if (capture) {
4637                     matcher.groups[groupIndex] = i;
4638                     matcher.groups[groupIndex+1] = matcher.last;
4639                 }
4640                 i = matcher.last;
4641                 j++;
4642             }
4643         }
4644         // Possessive matching
4645         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4646             for (; j < cmax; j++) {
4647                 if (!atom.match(matcher, i, seq)) {
4648                     break;
4649                 }
4650                 if (capture) {
4651                     matcher.groups[groupIndex] = i;
4652                     matcher.groups[groupIndex+1] = matcher.last;
4653                 }
4654                 if (i == matcher.last) {
4655                     break;
4656                 }
4657                 i = matcher.last;
4658             }
4659             return next.match(matcher, i, seq);
4660         }
4661         boolean study(TreeInfo info) {
4662             // Save original info
4663             int minL = info.minLength;
4664             int maxL = info.maxLength;
4665             boolean maxV = info.maxValid;
4666             boolean detm = info.deterministic;
4667             info.reset();
4668 
4669             atom.study(info);
4670 
4671             int temp = info.minLength * cmin + minL;
4672             if (temp < minL) {
4673                 temp = 0xFFFFFFF; // Arbitrary large number
4674             }
4675             info.minLength = temp;
4676 
4677             if (maxV & info.maxValid) {
4678                 temp = info.maxLength * cmax + maxL;
4679                 info.maxLength = temp;
4680                 if (temp < maxL) {
4681                     info.maxValid = false;
4682                 }
4683             } else {
4684                 info.maxValid = false;
4685             }
4686 
4687             if (info.deterministic && cmin == cmax) {
4688                 info.deterministic = detm;
4689             } else {
4690                 info.deterministic = false;
4691             }
4692             return next.study(info);
4693         }
4694     }
4695 
4696     /**
4697      * A Guard node at the end of each atom node in a Branch. It
4698      * serves the purpose of chaining the "match" operation to
4699      * "next" but not the "study", so we can collect the TreeInfo
4700      * of each atom node without including the TreeInfo of the
4701      * "next".
4702      */
4703     static final class BranchConn extends Node {
4704         BranchConn() {};
4705         boolean match(Matcher matcher, int i, CharSequence seq) {
4706             return next.match(matcher, i, seq);
4707         }
4708         boolean study(TreeInfo info) {
4709             return info.deterministic;
4710         }
4711     }
4712 
4713     /**
4714      * Handles the branching of alternations. Note this is also used for
4715      * the ? quantifier to branch between the case where it matches once
4716      * and where it does not occur.
4717      */
4718     static final class Branch extends Node {
4719         Node[] atoms = new Node[2];
4720         int size = 2;
4721         Node conn;
4722         Branch(Node first, Node second, Node branchConn) {
4723             conn = branchConn;
4724             atoms[0] = first;
4725             atoms[1] = second;
4726         }
4727 
4728         void add(Node node) {
4729             if (size >= atoms.length) {
4730                 Node[] tmp = new Node[atoms.length*2];
4731                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4732                 atoms = tmp;
4733             }
4734             atoms[size++] = node;
4735         }
4736 
4737         boolean match(Matcher matcher, int i, CharSequence seq) {
4738             for (int n = 0; n < size; n++) {
4739                 if (atoms[n] == null) {
4740                     if (conn.next.match(matcher, i, seq))
4741                         return true;
4742                 } else if (atoms[n].match(matcher, i, seq)) {
4743                     return true;
4744                 }
4745             }
4746             return false;
4747         }
4748 
4749         boolean study(TreeInfo info) {
4750             int minL = info.minLength;
4751             int maxL = info.maxLength;
4752             boolean maxV = info.maxValid;
4753 
4754             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4755             int maxL2 = -1;
4756             for (int n = 0; n < size; n++) {
4757                 info.reset();
4758                 if (atoms[n] != null)
4759                     atoms[n].study(info);
4760                 minL2 = Math.min(minL2, info.minLength);
4761                 maxL2 = Math.max(maxL2, info.maxLength);
4762                 maxV = (maxV & info.maxValid);
4763             }
4764 
4765             minL += minL2;
4766             maxL += maxL2;
4767 
4768             info.reset();
4769             conn.next.study(info);
4770 
4771             info.minLength += minL;
4772             info.maxLength += maxL;
4773             info.maxValid &= maxV;
4774             info.deterministic = false;
4775             return false;
4776         }
4777     }
4778 
4779     /**
4780      * The GroupHead saves the location where the group begins in the locals
4781      * and restores them when the match is done.
4782      *
4783      * The matchRef is used when a reference to this group is accessed later
4784      * in the expression. The locals will have a negative value in them to
4785      * indicate that we do not want to unset the group if the reference
4786      * doesn't match.
4787      */
4788     static final class GroupHead extends Node {
4789         int localIndex;
4790         GroupTail tail;    // for debug/print only, match does not need to know
4791         GroupHead(int localCount) {
4792             localIndex = localCount;
4793         }
4794         boolean match(Matcher matcher, int i, CharSequence seq) {
4795             int save = matcher.locals[localIndex];
4796             matcher.locals[localIndex] = i;
4797             boolean ret = next.match(matcher, i, seq);
4798             matcher.locals[localIndex] = save;
4799             return ret;
4800         }
4801         boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4802             int save = matcher.locals[localIndex];
4803             matcher.locals[localIndex] = ~i; // HACK
4804             boolean ret = next.match(matcher, i, seq);
4805             matcher.locals[localIndex] = save;
4806             return ret;
4807         }
4808     }
4809 
4810     /**
4811      * Recursive reference to a group in the regular expression. It calls
4812      * matchRef because if the reference fails to match we would not unset
4813      * the group.
4814      */
4815     static final class GroupRef extends Node {
4816         GroupHead head;
4817         GroupRef(GroupHead head) {
4818             this.head = head;
4819         }
4820         boolean match(Matcher matcher, int i, CharSequence seq) {
4821             return head.matchRef(matcher, i, seq)
4822                 && next.match(matcher, matcher.last, seq);
4823         }
4824         boolean study(TreeInfo info) {
4825             info.maxValid = false;
4826             info.deterministic = false;
4827             return next.study(info);
4828         }
4829     }
4830 
4831     /**
4832      * The GroupTail handles the setting of group beginning and ending
4833      * locations when groups are successfully matched. It must also be able to
4834      * unset groups that have to be backed off of.
4835      *
4836      * The GroupTail node is also used when a previous group is referenced,
4837      * and in that case no group information needs to be set.
4838      */
4839     static final class GroupTail extends Node {
4840         int localIndex;
4841         int groupIndex;
4842         GroupTail(int localCount, int groupCount) {
4843             localIndex = localCount;
4844             groupIndex = groupCount + groupCount;
4845         }
4846         boolean match(Matcher matcher, int i, CharSequence seq) {
4847             int tmp = matcher.locals[localIndex];
4848             if (tmp >= 0) { // This is the normal group case.
4849                 // Save the group so we can unset it if it
4850                 // backs off of a match.
4851                 int groupStart = matcher.groups[groupIndex];
4852                 int groupEnd = matcher.groups[groupIndex+1];
4853 
4854                 matcher.groups[groupIndex] = tmp;
4855                 matcher.groups[groupIndex+1] = i;
4856                 if (next.match(matcher, i, seq)) {
4857                     return true;
4858                 }
4859                 matcher.groups[groupIndex] = groupStart;
4860                 matcher.groups[groupIndex+1] = groupEnd;
4861                 return false;
4862             } else {
4863                 // This is a group reference case. We don't need to save any
4864                 // group info because it isn't really a group.
4865                 matcher.last = i;
4866                 return true;
4867             }
4868         }
4869     }
4870 
4871     /**
4872      * This sets up a loop to handle a recursive quantifier structure.
4873      */
4874     static final class Prolog extends Node {
4875         Loop loop;
4876         Prolog(Loop loop) {
4877             this.loop = loop;
4878         }
4879         boolean match(Matcher matcher, int i, CharSequence seq) {
4880             return loop.matchInit(matcher, i, seq);
4881         }
4882         boolean study(TreeInfo info) {
4883             return loop.study(info);
4884         }
4885     }
4886 
4887     /**
4888      * Handles the repetition count for a greedy Curly. The matchInit
4889      * is called from the Prolog to save the index of where the group
4890      * beginning is stored. A zero length group check occurs in the
4891      * normal match but is skipped in the matchInit.
4892      */
4893     static class Loop extends Node {
4894         Node body;
4895         int countIndex; // local count index in matcher locals
4896         int beginIndex; // group beginning index
4897         int cmin, cmax;
4898         int posIndex;
4899         Loop(int countIndex, int beginIndex) {
4900             this.countIndex = countIndex;
4901             this.beginIndex = beginIndex;
4902             this.posIndex = -1;
4903         }
4904         boolean match(Matcher matcher, int i, CharSequence seq) {
4905             // Avoid infinite loop in zero-length case.
4906             if (i > matcher.locals[beginIndex]) {
4907                 int count = matcher.locals[countIndex];
4908 
4909                 // This block is for before we reach the minimum
4910                 // iterations required for the loop to match
4911                 if (count < cmin) {
4912                     matcher.locals[countIndex] = count + 1;
4913                     boolean b = body.match(matcher, i, seq);
4914                     // If match failed we must backtrack, so
4915                     // the loop count should NOT be incremented
4916                     if (!b)
4917                         matcher.locals[countIndex] = count;
4918                     // Return success or failure since we are under
4919                     // minimum
4920                     return b;
4921                 }
4922                 // This block is for after we have the minimum
4923                 // iterations required for the loop to match
4924                 if (count < cmax) {
4925                     // Let's check if we have already tried and failed
4926                     // at this starting position "i" in the past.
4927                     // If yes, then just return false wihtout trying
4928                     // again, to stop the exponential backtracking.
4929                     if (posIndex != -1 &&
4930                         matcher.localsPos[posIndex].contains(i)) {
4931                         return next.match(matcher, i, seq);
4932                     }
4933                     matcher.locals[countIndex] = count + 1;
4934                     boolean b = body.match(matcher, i, seq);
4935                     // If match failed we must backtrack, so
4936                     // the loop count should NOT be incremented
4937                     if (b)
4938                         return true;
4939                     matcher.locals[countIndex] = count;
4940                     // save the failed position
4941                     if (posIndex != -1) {
4942                         matcher.localsPos[posIndex].add(i);
4943                     }
4944                 }
4945             }
4946             return next.match(matcher, i, seq);
4947         }
4948         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4949             int save = matcher.locals[countIndex];
4950             boolean ret = false;
4951             if (posIndex != -1 && matcher.localsPos[posIndex] == null) {
4952                 matcher.localsPos[posIndex] = new IntHashSet();
4953             }
4954             if (0 < cmin) {
4955                 matcher.locals[countIndex] = 1;
4956                 ret = body.match(matcher, i, seq);
4957             } else if (0 < cmax) {
4958                 matcher.locals[countIndex] = 1;
4959                 ret = body.match(matcher, i, seq);
4960                 if (ret == false)
4961                     ret = next.match(matcher, i, seq);
4962             } else {
4963                 ret = next.match(matcher, i, seq);
4964             }
4965             matcher.locals[countIndex] = save;
4966             return ret;
4967         }
4968         boolean study(TreeInfo info) {
4969             info.maxValid = false;
4970             info.deterministic = false;
4971             return false;
4972         }
4973     }
4974 
4975     /**
4976      * Handles the repetition count for a reluctant Curly. The matchInit
4977      * is called from the Prolog to save the index of where the group
4978      * beginning is stored. A zero length group check occurs in the
4979      * normal match but is skipped in the matchInit.
4980      */
4981     static final class LazyLoop extends Loop {
4982         LazyLoop(int countIndex, int beginIndex) {
4983             super(countIndex, beginIndex);
4984         }
4985         boolean match(Matcher matcher, int i, CharSequence seq) {
4986             // Check for zero length group
4987             if (i > matcher.locals[beginIndex]) {
4988                 int count = matcher.locals[countIndex];
4989                 if (count < cmin) {
4990                     matcher.locals[countIndex] = count + 1;
4991                     boolean result = body.match(matcher, i, seq);
4992                     // If match failed we must backtrack, so
4993                     // the loop count should NOT be incremented
4994                     if (!result)
4995                         matcher.locals[countIndex] = count;
4996                     return result;
4997                 }
4998                 if (next.match(matcher, i, seq))
4999                     return true;
5000                 if (count < cmax) {
5001                     matcher.locals[countIndex] = count + 1;
5002                     boolean result = body.match(matcher, i, seq);
5003                     // If match failed we must backtrack, so
5004                     // the loop count should NOT be incremented
5005                     if (!result)
5006                         matcher.locals[countIndex] = count;
5007                     return result;
5008                 }
5009                 return false;
5010             }
5011             return next.match(matcher, i, seq);
5012         }
5013         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
5014             int save = matcher.locals[countIndex];
5015             boolean ret = false;
5016             if (0 < cmin) {
5017                 matcher.locals[countIndex] = 1;
5018                 ret = body.match(matcher, i, seq);
5019             } else if (next.match(matcher, i, seq)) {
5020                 ret = true;
5021             } else if (0 < cmax) {
5022                 matcher.locals[countIndex] = 1;
5023                 ret = body.match(matcher, i, seq);
5024             }
5025             matcher.locals[countIndex] = save;
5026             return ret;
5027         }
5028         boolean study(TreeInfo info) {
5029             info.maxValid = false;
5030             info.deterministic = false;
5031             return false;
5032         }
5033     }
5034 
5035     /**
5036      * Refers to a group in the regular expression. Attempts to match
5037      * whatever the group referred to last matched.
5038      */
5039     static class BackRef extends Node {
5040         int groupIndex;
5041         BackRef(int groupCount) {
5042             super();
5043             groupIndex = groupCount + groupCount;
5044         }
5045         boolean match(Matcher matcher, int i, CharSequence seq) {
5046             int j = matcher.groups[groupIndex];
5047             int k = matcher.groups[groupIndex+1];
5048 
5049             int groupSize = k - j;
5050             // If the referenced group didn't match, neither can this
5051             if (j < 0)
5052                 return false;
5053 
5054             // If there isn't enough input left no match
5055             if (i + groupSize > matcher.to) {
5056                 matcher.hitEnd = true;
5057                 return false;
5058             }
5059             // Check each new char to make sure it matches what the group
5060             // referenced matched last time around
5061             for (int index=0; index<groupSize; index++)
5062                 if (seq.charAt(i+index) != seq.charAt(j+index))
5063                     return false;
5064 
5065             return next.match(matcher, i+groupSize, seq);
5066         }
5067         boolean study(TreeInfo info) {
5068             info.maxValid = false;
5069             return next.study(info);
5070         }
5071     }
5072 
5073     static class CIBackRef extends Node {
5074         int groupIndex;
5075         boolean doUnicodeCase;
5076         CIBackRef(int groupCount, boolean doUnicodeCase) {
5077             super();
5078             groupIndex = groupCount + groupCount;
5079             this.doUnicodeCase = doUnicodeCase;
5080         }
5081         boolean match(Matcher matcher, int i, CharSequence seq) {
5082             int j = matcher.groups[groupIndex];
5083             int k = matcher.groups[groupIndex+1];
5084 
5085             int groupSize = k - j;
5086 
5087             // If the referenced group didn't match, neither can this
5088             if (j < 0)
5089                 return false;
5090 
5091             // If there isn't enough input left no match
5092             if (i + groupSize > matcher.to) {
5093                 matcher.hitEnd = true;
5094                 return false;
5095             }
5096 
5097             // Check each new char to make sure it matches what the group
5098             // referenced matched last time around
5099             int x = i;
5100             for (int index=0; index<groupSize; index++) {
5101                 int c1 = Character.codePointAt(seq, x);
5102                 int c2 = Character.codePointAt(seq, j);
5103                 if (c1 != c2) {
5104                     if (doUnicodeCase) {
5105                         int cc1 = Character.toUpperCase(c1);
5106                         int cc2 = Character.toUpperCase(c2);
5107                         if (cc1 != cc2 &&
5108                             Character.toLowerCase(cc1) !=
5109                             Character.toLowerCase(cc2))
5110                             return false;
5111                     } else {
5112                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
5113                             return false;
5114                     }
5115                 }
5116                 x += Character.charCount(c1);
5117                 j += Character.charCount(c2);
5118             }
5119 
5120             return next.match(matcher, i+groupSize, seq);
5121         }
5122         boolean study(TreeInfo info) {
5123             info.maxValid = false;
5124             return next.study(info);
5125         }
5126     }
5127 
5128     /**
5129      * Searches until the next instance of its atom. This is useful for
5130      * finding the atom efficiently without passing an instance of it
5131      * (greedy problem) and without a lot of wasted search time (reluctant
5132      * problem).
5133      */
5134     static final class First extends Node {
5135         Node atom;
5136         First(Node node) {
5137             this.atom = BnM.optimize(node);
5138         }
5139         boolean match(Matcher matcher, int i, CharSequence seq) {
5140             if (atom instanceof BnM) {
5141                 return atom.match(matcher, i, seq)
5142                     && next.match(matcher, matcher.last, seq);
5143             }
5144             for (;;) {
5145                 if (i > matcher.to) {
5146                     matcher.hitEnd = true;
5147                     return false;
5148                 }
5149                 if (atom.match(matcher, i, seq)) {
5150                     return next.match(matcher, matcher.last, seq);
5151                 }
5152                 i += countChars(seq, i, 1);
5153                 matcher.first++;
5154             }
5155         }
5156         boolean study(TreeInfo info) {
5157             atom.study(info);
5158             info.maxValid = false;
5159             info.deterministic = false;
5160             return next.study(info);
5161         }
5162     }
5163 
5164     static final class Conditional extends Node {
5165         Node cond, yes, not;
5166         Conditional(Node cond, Node yes, Node not) {
5167             this.cond = cond;
5168             this.yes = yes;
5169             this.not = not;
5170         }
5171         boolean match(Matcher matcher, int i, CharSequence seq) {
5172             if (cond.match(matcher, i, seq)) {
5173                 return yes.match(matcher, i, seq);
5174             } else {
5175                 return not.match(matcher, i, seq);
5176             }
5177         }
5178         boolean study(TreeInfo info) {
5179             int minL = info.minLength;
5180             int maxL = info.maxLength;
5181             boolean maxV = info.maxValid;
5182             info.reset();
5183             yes.study(info);
5184 
5185             int minL2 = info.minLength;
5186             int maxL2 = info.maxLength;
5187             boolean maxV2 = info.maxValid;
5188             info.reset();
5189             not.study(info);
5190 
5191             info.minLength = minL + Math.min(minL2, info.minLength);
5192             info.maxLength = maxL + Math.max(maxL2, info.maxLength);
5193             info.maxValid = (maxV & maxV2 & info.maxValid);
5194             info.deterministic = false;
5195             return next.study(info);
5196         }
5197     }
5198 
5199     /**
5200      * Zero width positive lookahead.
5201      */
5202     static final class Pos extends Node {
5203         Node cond;
5204         Pos(Node cond) {
5205             this.cond = cond;
5206         }
5207         boolean match(Matcher matcher, int i, CharSequence seq) {
5208             int savedTo = matcher.to;
5209             boolean conditionMatched = false;
5210 
5211             // Relax transparent region boundaries for lookahead
5212             if (matcher.transparentBounds)
5213                 matcher.to = matcher.getTextLength();
5214             try {
5215                 conditionMatched = cond.match(matcher, i, seq);
5216             } finally {
5217                 // Reinstate region boundaries
5218                 matcher.to = savedTo;
5219             }
5220             return conditionMatched && next.match(matcher, i, seq);
5221         }
5222     }
5223 
5224     /**
5225      * Zero width negative lookahead.
5226      */
5227     static final class Neg extends Node {
5228         Node cond;
5229         Neg(Node cond) {
5230             this.cond = cond;
5231         }
5232         boolean match(Matcher matcher, int i, CharSequence seq) {
5233             int savedTo = matcher.to;
5234             boolean conditionMatched = false;
5235 
5236             // Relax transparent region boundaries for lookahead
5237             if (matcher.transparentBounds)
5238                 matcher.to = matcher.getTextLength();
5239             try {
5240                 if (i < matcher.to) {
5241                     conditionMatched = !cond.match(matcher, i, seq);
5242                 } else {
5243                     // If a negative lookahead succeeds then more input
5244                     // could cause it to fail!
5245                     matcher.requireEnd = true;
5246                     conditionMatched = !cond.match(matcher, i, seq);
5247                 }
5248             } finally {
5249                 // Reinstate region boundaries
5250                 matcher.to = savedTo;
5251             }
5252             return conditionMatched && next.match(matcher, i, seq);
5253         }
5254     }
5255 
5256     /**
5257      * For use with lookbehinds; matches the position where the lookbehind
5258      * was encountered.
5259      */
5260     static Node lookbehindEnd = new Node() {
5261         boolean match(Matcher matcher, int i, CharSequence seq) {
5262             return i == matcher.lookbehindTo;
5263         }
5264     };
5265 
5266     /**
5267      * Zero width positive lookbehind.
5268      */
5269     static class Behind extends Node {
5270         Node cond;
5271         int rmax, rmin;
5272         Behind(Node cond, int rmax, int rmin) {
5273             this.cond = cond;
5274             this.rmax = rmax;
5275             this.rmin = rmin;
5276         }
5277 
5278         boolean match(Matcher matcher, int i, CharSequence seq) {
5279             int savedFrom = matcher.from;
5280             boolean conditionMatched = false;
5281             int startIndex = (!matcher.transparentBounds) ?
5282                              matcher.from : 0;
5283             int from = Math.max(i - rmax, startIndex);
5284             // Set end boundary
5285             int savedLBT = matcher.lookbehindTo;
5286             matcher.lookbehindTo = i;
5287             // Relax transparent region boundaries for lookbehind
5288             if (matcher.transparentBounds)
5289                 matcher.from = 0;
5290             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5291                 conditionMatched = cond.match(matcher, j, seq);
5292             }
5293             matcher.from = savedFrom;
5294             matcher.lookbehindTo = savedLBT;
5295             return conditionMatched && next.match(matcher, i, seq);
5296         }
5297     }
5298 
5299     /**
5300      * Zero width positive lookbehind, including supplementary
5301      * characters or unpaired surrogates.
5302      */
5303     static final class BehindS extends Behind {
5304         BehindS(Node cond, int rmax, int rmin) {
5305             super(cond, rmax, rmin);
5306         }
5307         boolean match(Matcher matcher, int i, CharSequence seq) {
5308             int rmaxChars = countChars(seq, i, -rmax);
5309             int rminChars = countChars(seq, i, -rmin);
5310             int savedFrom = matcher.from;
5311             int startIndex = (!matcher.transparentBounds) ?
5312                              matcher.from : 0;
5313             boolean conditionMatched = false;
5314             int from = Math.max(i - rmaxChars, startIndex);
5315             // Set end boundary
5316             int savedLBT = matcher.lookbehindTo;
5317             matcher.lookbehindTo = i;
5318             // Relax transparent region boundaries for lookbehind
5319             if (matcher.transparentBounds)
5320                 matcher.from = 0;
5321 
5322             for (int j = i - rminChars;
5323                  !conditionMatched && j >= from;
5324                  j -= j>from ? countChars(seq, j, -1) : 1) {
5325                 conditionMatched = cond.match(matcher, j, seq);
5326             }
5327             matcher.from = savedFrom;
5328             matcher.lookbehindTo = savedLBT;
5329             return conditionMatched && next.match(matcher, i, seq);
5330         }
5331     }
5332 
5333     /**
5334      * Zero width negative lookbehind.
5335      */
5336     static class NotBehind extends Node {
5337         Node cond;
5338         int rmax, rmin;
5339         NotBehind(Node cond, int rmax, int rmin) {
5340             this.cond = cond;
5341             this.rmax = rmax;
5342             this.rmin = rmin;
5343         }
5344 
5345         boolean match(Matcher matcher, int i, CharSequence seq) {
5346             int savedLBT = matcher.lookbehindTo;
5347             int savedFrom = matcher.from;
5348             boolean conditionMatched = false;
5349             int startIndex = (!matcher.transparentBounds) ?
5350                              matcher.from : 0;
5351             int from = Math.max(i - rmax, startIndex);
5352             matcher.lookbehindTo = i;
5353             // Relax transparent region boundaries for lookbehind
5354             if (matcher.transparentBounds)
5355                 matcher.from = 0;
5356             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5357                 conditionMatched = cond.match(matcher, j, seq);
5358             }
5359             // Reinstate region boundaries
5360             matcher.from = savedFrom;
5361             matcher.lookbehindTo = savedLBT;
5362             return !conditionMatched && next.match(matcher, i, seq);
5363         }
5364     }
5365 
5366     /**
5367      * Zero width negative lookbehind, including supplementary
5368      * characters or unpaired surrogates.
5369      */
5370     static final class NotBehindS extends NotBehind {
5371         NotBehindS(Node cond, int rmax, int rmin) {
5372             super(cond, rmax, rmin);
5373         }
5374         boolean match(Matcher matcher, int i, CharSequence seq) {
5375             int rmaxChars = countChars(seq, i, -rmax);
5376             int rminChars = countChars(seq, i, -rmin);
5377             int savedFrom = matcher.from;
5378             int savedLBT = matcher.lookbehindTo;
5379             boolean conditionMatched = false;
5380             int startIndex = (!matcher.transparentBounds) ?
5381                              matcher.from : 0;
5382             int from = Math.max(i - rmaxChars, startIndex);
5383             matcher.lookbehindTo = i;
5384             // Relax transparent region boundaries for lookbehind
5385             if (matcher.transparentBounds)
5386                 matcher.from = 0;
5387             for (int j = i - rminChars;
5388                  !conditionMatched && j >= from;
5389                  j -= j>from ? countChars(seq, j, -1) : 1) {
5390                 conditionMatched = cond.match(matcher, j, seq);
5391             }
5392             //Reinstate region boundaries
5393             matcher.from = savedFrom;
5394             matcher.lookbehindTo = savedLBT;
5395             return !conditionMatched && next.match(matcher, i, seq);
5396         }
5397     }
5398 
5399     /**
5400      * Handles word boundaries. Includes a field to allow this one class to
5401      * deal with the different types of word boundaries we can match. The word
5402      * characters include underscores, letters, and digits. Non spacing marks
5403      * can are also part of a word if they have a base character, otherwise
5404      * they are ignored for purposes of finding word boundaries.
5405      */
5406     static final class Bound extends Node {
5407         static int LEFT = 0x1;
5408         static int RIGHT= 0x2;
5409         static int BOTH = 0x3;
5410         static int NONE = 0x4;
5411         int type;
5412         boolean useUWORD;
5413         Bound(int n, boolean useUWORD) {
5414             type = n;
5415             this.useUWORD = useUWORD;
5416         }
5417 
5418         boolean isWord(int ch) {
5419             return useUWORD ? CharPredicates.WORD().is(ch)
5420                             : (ch == '_' || Character.isLetterOrDigit(ch));
5421         }
5422 
5423         int check(Matcher matcher, int i, CharSequence seq) {
5424             int ch;
5425             boolean left = false;
5426             int startIndex = matcher.from;
5427             int endIndex = matcher.to;
5428             if (matcher.transparentBounds) {
5429                 startIndex = 0;
5430                 endIndex = matcher.getTextLength();
5431             }
5432             if (i > startIndex) {
5433                 ch = Character.codePointBefore(seq, i);
5434                 left = (isWord(ch) ||
5435                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5436                      && hasBaseCharacter(matcher, i-1, seq)));
5437             }
5438             boolean right = false;
5439             if (i < endIndex) {
5440                 ch = Character.codePointAt(seq, i);
5441                 right = (isWord(ch) ||
5442                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5443                      && hasBaseCharacter(matcher, i, seq)));
5444             } else {
5445                 // Tried to access char past the end
5446                 matcher.hitEnd = true;
5447                 // The addition of another char could wreck a boundary
5448                 matcher.requireEnd = true;
5449             }
5450             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5451         }
5452         boolean match(Matcher matcher, int i, CharSequence seq) {
5453             return (check(matcher, i, seq) & type) > 0
5454                 && next.match(matcher, i, seq);
5455         }
5456     }
5457 
5458     /**
5459      * Non spacing marks only count as word characters in bounds calculations
5460      * if they have a base character.
5461      */
5462     private static boolean hasBaseCharacter(Matcher matcher, int i,
5463                                             CharSequence seq)
5464     {
5465         int start = (!matcher.transparentBounds) ?
5466             matcher.from : 0;
5467         for (int x=i; x >= start; x--) {
5468             int ch = Character.codePointAt(seq, x);
5469             if (Character.isLetterOrDigit(ch))
5470                 return true;
5471             if (Character.getType(ch) == Character.NON_SPACING_MARK)
5472                 continue;
5473             return false;
5474         }
5475         return false;
5476     }
5477 
5478     /**
5479      * Attempts to match a slice in the input using the Boyer-Moore string
5480      * matching algorithm. The algorithm is based on the idea that the
5481      * pattern can be shifted farther ahead in the search text if it is
5482      * matched right to left.
5483      * <p>
5484      * The pattern is compared to the input one character at a time, from
5485      * the rightmost character in the pattern to the left. If the characters
5486      * all match the pattern has been found. If a character does not match,
5487      * the pattern is shifted right a distance that is the maximum of two
5488      * functions, the bad character shift and the good suffix shift. This
5489      * shift moves the attempted match position through the input more
5490      * quickly than a naive one position at a time check.
5491      * <p>
5492      * The bad character shift is based on the character from the text that
5493      * did not match. If the character does not appear in the pattern, the
5494      * pattern can be shifted completely beyond the bad character. If the
5495      * character does occur in the pattern, the pattern can be shifted to
5496      * line the pattern up with the next occurrence of that character.
5497      * <p>
5498      * The good suffix shift is based on the idea that some subset on the right
5499      * side of the pattern has matched. When a bad character is found, the
5500      * pattern can be shifted right by the pattern length if the subset does
5501      * not occur again in pattern, or by the amount of distance to the
5502      * next occurrence of the subset in the pattern.
5503      *
5504      * Boyer-Moore search methods adapted from code by Amy Yu.
5505      */
5506     static class BnM extends Node {
5507         int[] buffer;
5508         int[] lastOcc;
5509         int[] optoSft;
5510 
5511         /**
5512          * Pre calculates arrays needed to generate the bad character
5513          * shift and the good suffix shift. Only the last seven bits
5514          * are used to see if chars match; This keeps the tables small
5515          * and covers the heavily used ASCII range, but occasionally
5516          * results in an aliased match for the bad character shift.
5517          */
5518         static Node optimize(Node node) {
5519             if (!(node instanceof Slice)) {
5520                 return node;
5521             }
5522 
5523             int[] src = ((Slice) node).buffer;
5524             int patternLength = src.length;
5525             // The BM algorithm requires a bit of overhead;
5526             // If the pattern is short don't use it, since
5527             // a shift larger than the pattern length cannot
5528             // be used anyway.
5529             if (patternLength < 4) {
5530                 return node;
5531             }
5532             int i, j, k;
5533             int[] lastOcc = new int[128];
5534             int[] optoSft = new int[patternLength];
5535             // Precalculate part of the bad character shift
5536             // It is a table for where in the pattern each
5537             // lower 7-bit value occurs
5538             for (i = 0; i < patternLength; i++) {
5539                 lastOcc[src[i]&0x7F] = i + 1;
5540             }
5541             // Precalculate the good suffix shift
5542             // i is the shift amount being considered
5543 NEXT:       for (i = patternLength; i > 0; i--) {
5544                 // j is the beginning index of suffix being considered
5545                 for (j = patternLength - 1; j >= i; j--) {
5546                     // Testing for good suffix
5547                     if (src[j] == src[j-i]) {
5548                         // src[j..len] is a good suffix
5549                         optoSft[j-1] = i;
5550                     } else {
5551                         // No match. The array has already been
5552                         // filled up with correct values before.
5553                         continue NEXT;
5554                     }
5555                 }
5556                 // This fills up the remaining of optoSft
5557                 // any suffix can not have larger shift amount
5558                 // then its sub-suffix. Why???
5559                 while (j > 0) {
5560                     optoSft[--j] = i;
5561                 }
5562             }
5563             // Set the guard value because of unicode compression
5564             optoSft[patternLength-1] = 1;
5565             if (node instanceof SliceS)
5566                 return new BnMS(src, lastOcc, optoSft, node.next);
5567             return new BnM(src, lastOcc, optoSft, node.next);
5568         }
5569         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5570             this.buffer = src;
5571             this.lastOcc = lastOcc;
5572             this.optoSft = optoSft;
5573             this.next = next;
5574         }
5575         boolean match(Matcher matcher, int i, CharSequence seq) {
5576             int[] src = buffer;
5577             int patternLength = src.length;
5578             int last = matcher.to - patternLength;
5579 
5580             // Loop over all possible match positions in text
5581 NEXT:       while (i <= last) {
5582                 // Loop over pattern from right to left
5583                 for (int j = patternLength - 1; j >= 0; j--) {
5584                     int ch = seq.charAt(i+j);
5585                     if (ch != src[j]) {
5586                         // Shift search to the right by the maximum of the
5587                         // bad character shift and the good suffix shift
5588                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5589                         continue NEXT;
5590                     }
5591                 }
5592                 // Entire pattern matched starting at i
5593                 matcher.first = i;
5594                 boolean ret = next.match(matcher, i + patternLength, seq);
5595                 if (ret) {
5596                     matcher.first = i;
5597                     matcher.groups[0] = matcher.first;
5598                     matcher.groups[1] = matcher.last;
5599                     return true;
5600                 }
5601                 i++;
5602             }
5603             // BnM is only used as the leading node in the unanchored case,
5604             // and it replaced its Start() which always searches to the end
5605             // if it doesn't find what it's looking for, so hitEnd is true.
5606             matcher.hitEnd = true;
5607             return false;
5608         }
5609         boolean study(TreeInfo info) {
5610             info.minLength += buffer.length;
5611             info.maxValid = false;
5612             return next.study(info);
5613         }
5614     }
5615 
5616     /**
5617      * Supplementary support version of BnM(). Unpaired surrogates are
5618      * also handled by this class.
5619      */
5620     static final class BnMS extends BnM {
5621         int lengthInChars;
5622 
5623         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5624             super(src, lastOcc, optoSft, next);
5625             for (int cp : buffer) {
5626                 lengthInChars += Character.charCount(cp);
5627             }
5628         }
5629         boolean match(Matcher matcher, int i, CharSequence seq) {
5630             int[] src = buffer;
5631             int patternLength = src.length;
5632             int last = matcher.to - lengthInChars;
5633 
5634             // Loop over all possible match positions in text
5635 NEXT:       while (i <= last) {
5636                 // Loop over pattern from right to left
5637                 int ch;
5638                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5639                      j > 0; j -= Character.charCount(ch), x--) {
5640                     ch = Character.codePointBefore(seq, i+j);
5641                     if (ch != src[x]) {
5642                         // Shift search to the right by the maximum of the
5643                         // bad character shift and the good suffix shift
5644                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5645                         i += countChars(seq, i, n);
5646                         continue NEXT;
5647                     }
5648                 }
5649                 // Entire pattern matched starting at i
5650                 matcher.first = i;
5651                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5652                 if (ret) {
5653                     matcher.first = i;
5654                     matcher.groups[0] = matcher.first;
5655                     matcher.groups[1] = matcher.last;
5656                     return true;
5657                 }
5658                 i += countChars(seq, i, 1);
5659             }
5660             matcher.hitEnd = true;
5661             return false;
5662         }
5663     }
5664 
5665     @FunctionalInterface
5666     static interface CharPredicate {
5667         boolean is(int ch);
5668 
5669         default CharPredicate and(CharPredicate p) {
5670             return ch -> is(ch) && p.is(ch);
5671         }
5672         default CharPredicate union(CharPredicate p) {
5673             return ch -> is(ch) || p.is(ch);
5674         }
5675         default CharPredicate union(CharPredicate p1,
5676                                     CharPredicate p2 ) {
5677             return ch -> is(ch) || p1.is(ch) || p2.is(ch);
5678         }
5679         default CharPredicate negate() {
5680             return ch -> !is(ch);
5681         }
5682     }
5683 
5684     static interface BmpCharPredicate extends CharPredicate {
5685 
5686         default CharPredicate and(CharPredicate p) {
5687             if(p instanceof BmpCharPredicate)
5688                 return (BmpCharPredicate)(ch -> is(ch) && p.is(ch));
5689             return ch -> is(ch) && p.is(ch);
5690         }
5691         default CharPredicate union(CharPredicate p) {
5692             if (p instanceof BmpCharPredicate)
5693                 return (BmpCharPredicate)(ch -> is(ch) || p.is(ch));
5694             return ch -> is(ch) || p.is(ch);
5695         }
5696         static CharPredicate union(CharPredicate... predicates) {
5697             CharPredicate cp = ch -> {
5698                 for (CharPredicate p : predicates) {
5699                     if (!p.is(ch))
5700                         return false;
5701                 }
5702                 return true;
5703             };
5704             for (CharPredicate p : predicates) {
5705                 if (! (p instanceof BmpCharPredicate))
5706                     return cp;
5707             }
5708             return (BmpCharPredicate)cp;
5709         }
5710     }
5711 
5712     /**
5713      * matches a Perl vertical whitespace
5714      */
5715     static BmpCharPredicate VertWS() {
5716         return cp -> (cp >= 0x0A && cp <= 0x0D) ||
5717             cp == 0x85 || cp == 0x2028 || cp == 0x2029;
5718     }
5719 
5720     /**
5721      * matches a Perl horizontal whitespace
5722      */
5723     static BmpCharPredicate HorizWS() {
5724         return cp ->
5725             cp == 0x09 || cp == 0x20 || cp == 0xa0 || cp == 0x1680 ||
5726             cp == 0x180e || cp >= 0x2000 && cp <= 0x200a ||  cp == 0x202f ||
5727             cp == 0x205f || cp == 0x3000;
5728     }
5729 
5730     /**
5731      *  for the Unicode category ALL and the dot metacharacter when
5732      *  in dotall mode.
5733      */
5734     static CharPredicate ALL() {
5735         return ch -> true;
5736     }
5737 
5738     /**
5739      * for the dot metacharacter when dotall is not enabled.
5740      */
5741     static CharPredicate DOT() {
5742         return ch ->
5743             (ch != '\n' && ch != '\r'
5744             && (ch|1) != '\u2029'
5745             && ch != '\u0085');
5746     }
5747 
5748     /**
5749      *  the dot metacharacter when dotall is not enabled but UNIX_LINES is enabled.
5750      */
5751     static CharPredicate UNIXDOT() {
5752         return ch ->  ch != '\n';
5753     }
5754 
5755     /**
5756      * Indicate that matches a Supplementary Unicode character
5757      */
5758     static CharPredicate SingleS(int c) {
5759         return ch -> ch == c;
5760     }
5761 
5762     /**
5763      * A bmp/optimized predicate of single
5764      */
5765     static BmpCharPredicate Single(int c) {
5766         return ch -> ch == c;
5767     }
5768 
5769     /**
5770      * Case insensitive matches a given BMP character
5771      */
5772     static BmpCharPredicate SingleI(int lower, int upper) {
5773         return ch -> ch == lower || ch == upper;
5774     }
5775 
5776     /**
5777      * Unicode case insensitive matches a given Unicode character
5778      */
5779     static CharPredicate SingleU(int lower) {
5780         return ch -> lower == ch ||
5781                      lower == Character.toLowerCase(Character.toUpperCase(ch));
5782     }
5783 
5784     private static boolean inRange(int lower, int ch, int upper) {
5785         return lower <= ch && ch <= upper;
5786     }
5787 
5788     /**
5789      * Charactrs within a explicit value range
5790      */
5791     static CharPredicate Range(int lower, int upper) {
5792         if (upper < Character.MIN_HIGH_SURROGATE ||
5793             lower > Character.MAX_HIGH_SURROGATE &&
5794             upper < Character.MIN_SUPPLEMENTARY_CODE_POINT)
5795             return (BmpCharPredicate)(ch -> inRange(lower, ch, upper));
5796         return ch -> inRange(lower, ch, upper);
5797     }
5798 
5799    /**
5800     * Charactrs within a explicit value range in a case insensitive manner.
5801     */
5802     static CharPredicate CIRange(int lower, int upper) {
5803         return ch -> inRange(lower, ch, upper) ||
5804                      ASCII.isAscii(ch) &&
5805                      (inRange(lower, ASCII.toUpper(ch), upper) ||
5806                       inRange(lower, ASCII.toLower(ch), upper));
5807     }
5808 
5809     static CharPredicate CIRangeU(int lower, int upper) {
5810         return ch -> {
5811             if (inRange(lower, ch, upper))
5812                 return true;
5813             int up = Character.toUpperCase(ch);
5814             return inRange(lower, up, upper) ||
5815                    inRange(lower, Character.toLowerCase(up), upper);
5816         };
5817     }
5818 
5819     /**
5820      *  This must be the very first initializer.
5821      */
5822     static final Node accept = new Node();
5823 
5824     static final Node lastAccept = new LastNode();
5825 
5826     /**
5827      * Creates a predicate that tests if this pattern is found in a given input
5828      * string.
5829      *
5830      * @apiNote
5831      * This method creates a predicate that behaves as if it creates a matcher
5832      * from the input sequence and then calls {@code find}, for example a
5833      * predicate of the form:
5834      * <pre>{@code
5835      *   s -> matcher(s).find();
5836      * }</pre>
5837      *
5838      * @return  The predicate which can be used for finding a match on a
5839      *          subsequence of a string
5840      * @since   1.8
5841      * @see     Matcher#find
5842      */
5843     public Predicate<String> asPredicate() {
5844         return s -> matcher(s).find();
5845     }
5846 
5847     /**
5848      * Creates a predicate that tests if this pattern matches a given input string.
5849      *
5850      * @apiNote
5851      * This method creates a predicate that behaves as if it creates a matcher
5852      * from the input sequence and then calls {@code matches}, for example a
5853      * predicate of the form:
5854      * <pre>{@code
5855      *   s -> matcher(s).matches();
5856      * }</pre>
5857      *
5858      * @return  The predicate which can be used for matching an input string
5859      *          against this pattern.
5860      * @since   11
5861      * @see     Matcher#matches
5862      */
5863     public Predicate<String> asMatchPredicate() {
5864         return s -> matcher(s).matches();
5865     }
5866 
5867     /**
5868      * Creates a stream from the given input sequence around matches of this
5869      * pattern.
5870      *
5871      * <p> The stream returned by this method contains each substring of the
5872      * input sequence that is terminated by another subsequence that matches
5873      * this pattern or is terminated by the end of the input sequence.  The
5874      * substrings in the stream are in the order in which they occur in the
5875      * input. Trailing empty strings will be discarded and not encountered in
5876      * the stream.
5877      *
5878      * <p> If this pattern does not match any subsequence of the input then
5879      * the resulting stream has just one element, namely the input sequence in
5880      * string form.
5881      *
5882      * <p> When there is a positive-width match at the beginning of the input
5883      * sequence then an empty leading substring is included at the beginning
5884      * of the stream. A zero-width match at the beginning however never produces
5885      * such empty leading substring.
5886      *
5887      * <p> If the input sequence is mutable, it must remain constant during the
5888      * execution of the terminal stream operation.  Otherwise, the result of the
5889      * terminal stream operation is undefined.
5890      *
5891      * @param   input
5892      *          The character sequence to be split
5893      *
5894      * @return  The stream of strings computed by splitting the input
5895      *          around matches of this pattern
5896      * @see     #split(CharSequence)
5897      * @since   1.8
5898      */
5899     public Stream<String> splitAsStream(final CharSequence input) {
5900         class MatcherIterator implements Iterator<String> {
5901             private Matcher matcher;
5902             // The start position of the next sub-sequence of input
5903             // when current == input.length there are no more elements
5904             private int current;
5905             // null if the next element, if any, needs to obtained
5906             private String nextElement;
5907             // > 0 if there are N next empty elements
5908             private int emptyElementCount;
5909 
5910             public String next() {
5911                 if (!hasNext())
5912                     throw new NoSuchElementException();
5913 
5914                 if (emptyElementCount == 0) {
5915                     String n = nextElement;
5916                     nextElement = null;
5917                     return n;
5918                 } else {
5919                     emptyElementCount--;
5920                     return "";
5921                 }
5922             }
5923 
5924             public boolean hasNext() {
5925                 if (matcher == null) {
5926                     matcher = matcher(input);
5927                     // If the input is an empty string then the result can only be a
5928                     // stream of the input.  Induce that by setting the empty
5929                     // element count to 1
5930                     emptyElementCount = input.length() == 0 ? 1 : 0;
5931                 }
5932                 if (nextElement != null || emptyElementCount > 0)
5933                     return true;
5934 
5935                 if (current == input.length())
5936                     return false;
5937 
5938                 // Consume the next matching element
5939                 // Count sequence of matching empty elements
5940                 while (matcher.find()) {
5941                     nextElement = input.subSequence(current, matcher.start()).toString();
5942                     current = matcher.end();
5943                     if (!nextElement.isEmpty()) {
5944                         return true;
5945                     } else if (current > 0) { // no empty leading substring for zero-width
5946                                               // match at the beginning of the input
5947                         emptyElementCount++;
5948                     }
5949                 }
5950 
5951                 // Consume last matching element
5952                 nextElement = input.subSequence(current, input.length()).toString();
5953                 current = input.length();
5954                 if (!nextElement.isEmpty()) {
5955                     return true;
5956                 } else {
5957                     // Ignore a terminal sequence of matching empty elements
5958                     emptyElementCount = 0;
5959                     nextElement = null;
5960                     return false;
5961                 }
5962             }
5963         }
5964         return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
5965                 new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
5966     }
5967 }