1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util.regex;
  27 
  28 import java.text.Normalizer;
  29 import java.text.Normalizer.Form;
  30 import java.util.Locale;
  31 import java.util.Iterator;
  32 import java.util.Map;
  33 import java.util.ArrayList;
  34 import java.util.HashMap;
  35 import java.util.LinkedHashSet;
  36 import java.util.List;
  37 import java.util.Set;
  38 import java.util.Arrays;
  39 import java.util.NoSuchElementException;
  40 import java.util.Spliterator;
  41 import java.util.Spliterators;
  42 import java.util.function.Predicate;
  43 import java.util.stream.Stream;
  44 import java.util.stream.StreamSupport;
  45 
  46 import jdk.internal.util.ArraysSupport;
  47 
  48 import sun.security.action.GetPropertyAction;
  49 
  50 /**
  51  * A compiled representation of a regular expression.
  52  *
  53  * <p> A regular expression, specified as a string, must first be compiled into
  54  * an instance of this class.  The resulting pattern can then be used to create
  55  * a {@link Matcher} object that can match arbitrary {@linkplain
  56  * java.lang.CharSequence character sequences} against the regular
  57  * expression.  All of the state involved in performing a match resides in the
  58  * matcher, so many matchers can share the same pattern.
  59  *
  60  * <p> A typical invocation sequence is thus
  61  *
  62  * <blockquote><pre>
  63  * Pattern p = Pattern.{@link #compile compile}("a*b");
  64  * Matcher m = p.{@link #matcher matcher}("aaaaab");
  65  * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
  66  *
  67  * <p> A {@link #matches matches} method is defined by this class as a
  68  * convenience for when a regular expression is used just once.  This method
  69  * compiles an expression and matches an input sequence against it in a single
  70  * invocation.  The statement
  71  *
  72  * <blockquote><pre>
  73  * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
  74  *
  75  * is equivalent to the three statements above, though for repeated matches it
  76  * is less efficient since it does not allow the compiled pattern to be reused.
  77  *
  78  * <p> Instances of this class are immutable and are safe for use by multiple
  79  * concurrent threads.  Instances of the {@link Matcher} class are not safe for
  80  * such use.
  81  *
  82  *
  83  * <h2><a id="sum">Summary of regular-expression constructs</a></h2>
  84  *
  85  * <table class="borderless">
  86  * <caption style="display:none">Regular expression constructs, and what they match</caption>
  87  * <thead style="text-align:left">
  88  * <tr>
  89  * <th id="construct">Construct</th>
  90  * <th id="matches">Matches</th>
  91  * </tr>
  92  * </thead>
  93  * <tbody style="text-align:left">
  94  *
  95  * <tr><th colspan="2" style="padding-top:20px" id="characters">Characters</th></tr>
  96  *
  97  * <tr><th style="vertical-align:top; font-weight: normal" id="x"><i>x</i></th>
  98  *     <td headers="matches characters x">The character <i>x</i></td></tr>
  99  * <tr><th style="vertical-align:top; font-weight: normal" id="backslash">{@code \\}</th>
 100  *     <td headers="matches characters backslash">The backslash character</td></tr>
 101  * <tr><th style="vertical-align:top; font-weight: normal" id="octal_n">{@code \0}<i>n</i></th>
 102  *     <td headers="matches characters octal_n">The character with octal value {@code 0}<i>n</i>
 103  *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 104  * <tr><th style="vertical-align:top; font-weight: normal" id="octal_nn">{@code \0}<i>nn</i></th>
 105  *     <td headers="matches characters octal_nn">The character with octal value {@code 0}<i>nn</i>
 106  *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 107  * <tr><th style="vertical-align:top; font-weight: normal" id="octal_nnn">{@code \0}<i>mnn</i></th>
 108  *     <td headers="matches characters octal_nnn">The character with octal value {@code 0}<i>mnn</i>
 109  *         (0&nbsp;{@code <=}&nbsp;<i>m</i>&nbsp;{@code <=}&nbsp;3,
 110  *         0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
 111  * <tr><th style="vertical-align:top; font-weight: normal" id="hex_hh">{@code \x}<i>hh</i></th>
 112  *     <td headers="matches characters hex_hh">The character with hexadecimal value {@code 0x}<i>hh</i></td></tr>
 113  * <tr><th style="vertical-align:top; font-weight: normal" id="hex_hhhh"><code>\u</code><i>hhhh</i></th>
 114  *     <td headers="matches characters hex_hhhh">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hhhh</i></td></tr>
 115  * <tr><th style="vertical-align:top; font-weight: normal" id="hex_h_h"><code>\x</code><i>{h...h}</i></th>
 116  *     <td headers="matches characters hex_h_h">The character with hexadecimal value {@code 0x}<i>h...h</i>
 117  *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
 118  *         &nbsp;&lt;=&nbsp;{@code 0x}<i>h...h</i>&nbsp;&lt;=&nbsp;
 119  *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
 120  * <tr><th style="vertical-align:top; font-weight: normal" id="unicode_name"><code>\N{</code><i>name</i><code>}</code></th>
 121  *     <td headers="matches characters unicode_name">The character with Unicode character name <i>'name'</i></td></tr>
 122  * <tr><th style="vertical-align:top; font-weight:normal" id="tab">{@code \t}</th>
 123  *     <td headers="matches characters tab">The tab character (<code>'\u0009'</code>)</td></tr>
 124  * <tr><th style="vertical-align:top; font-weight:normal" id="newline">{@code \n}</th>
 125  *     <td headers="matches characters newline">The newline (line feed) character (<code>'\u000A'</code>)</td></tr>
 126  * <tr><th style="vertical-align:top; font-weight:normal" id="return">{@code \r}</th>
 127  *     <td headers="matches characters return">The carriage-return character (<code>'\u000D'</code>)</td></tr>
 128  * <tr><th style="vertical-align:top; font-weight:normal" id="form_feed">{@code \f}</th>
 129  *     <td headers="matches characters form_feed">The form-feed character (<code>'\u000C'</code>)</td></tr>
 130  * <tr><th style="vertical-align:top; font-weight:normal" id="bell">{@code \a}</th>
 131  *     <td headers="matches characters bell">The alert (bell) character (<code>'\u0007'</code>)</td></tr>
 132  * <tr><th style="vertical-align:top; font-weight:normal" id="escape">{@code \e}</th>
 133  *     <td headers="matches characters escape">The escape character (<code>'\u001B'</code>)</td></tr>
 134  * <tr><th style="vertical-align:top; font-weight:normal" id="ctrl_x">{@code \c}<i>x</i></th>
 135  *     <td headers="matches characters ctrl_x">The control character corresponding to <i>x</i>
 136  *         (<i>x</i> is either {@code A} through {@code Z} or one of
 137  *          {@code ?}, {@code @}, {@code [}, {@code \\}, {@code ]}, {@code ^}, {@code _})</td></tr>
 138  *
 139  *  <tr><th colspan="2" style="padding-top:20px" id="classes">Character classes</th></tr>
 140  *
 141  * <tr><th style="vertical-align:top; font-weight:normal" id="simple">{@code [abc]}</th>
 142  *     <td headers="matches classes simple">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
 143  * <tr><th style="vertical-align:top; font-weight:normal" id="negation">{@code [^abc]}</th>
 144  *     <td headers="matches classes negation">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
 145  * <tr><th style="vertical-align:top; font-weight:normal" id="range">{@code [a-zA-Z]}</th>
 146  *     <td headers="matches classes range">{@code a} through {@code z}
 147  *         or {@code A} through {@code Z}, inclusive (range)</td></tr>
 148  * <tr><th style="vertical-align:top; font-weight:normal" id="union">{@code [a-d[m-p]]}</th>
 149  *     <td headers="matches classes union">{@code a} through {@code d},
 150  *      or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
 151  * <tr><th style="vertical-align:top; font-weight:normal" id="intersection">{@code [a-z&&[def]]}</th>
 152  *     <td headers="matches classes intersection">{@code d}, {@code e}, or {@code f} (intersection)</tr>
 153  * <tr><th style="vertical-align:top; font-weight:normal" id="subtraction1">{@code [a-z&&[^bc]]}</th>
 154  *     <td headers="matches classes subtraction1">{@code a} through {@code z},
 155  *         except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
 156  * <tr><th style="vertical-align:top; font-weight:normal" id="subtraction2">{@code [a-z&&[^m-p]]}</th>
 157  *     <td headers="matches classes subtraction2">{@code a} through {@code z},
 158  *          and not {@code m} through {@code p}: {@code [a-lq-z]} (subtraction)</td></tr>
 159  *
 160  * <tr><th colspan="2" style="padding-top:20px" id="predef">Predefined character classes</th></tr>
 161  *
 162  * <tr><th style="vertical-align:top; font-weight:normal" id="any">{@code .}</th>
 163  *     <td headers="matches predef any">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
 164  * <tr><th style="vertical-align:top; font-weight:normal" id="digit">{@code \d}</th>
 165  *     <td headers="matches predef digit">A digit: {@code [0-9]}</td></tr>
 166  * <tr><th style="vertical-align:top; font-weight:normal" id="non_digit">{@code \D}</th>
 167  *     <td headers="matches predef non_digit">A non-digit: {@code [^0-9]}</td></tr>
 168  * <tr><th style="vertical-align:top; font-weight:normal" id="horiz_white">{@code \h}</th>
 169  *     <td headers="matches predef horiz_white">A horizontal whitespace character:
 170  *     <code>[ \t\xA0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]</code></td></tr>
 171  * <tr><th style="vertical-align:top; font-weight:normal" id="non_horiz_white">{@code \H}</th>
 172  *     <td headers="matches predef non_horiz_white">A non-horizontal whitespace character: {@code [^\h]}</td></tr>
 173  * <tr><th style="vertical-align:top; font-weight:normal" id="white">{@code \s}</th>
 174  *     <td headers="matches predef white">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 175  * <tr><th style="vertical-align:top; font-weight:normal" id="non_white">{@code \S}</th>
 176  *     <td headers="matches predef non_white">A non-whitespace character: {@code [^\s]}</td></tr>
 177  * <tr><th style="vertical-align:top; font-weight:normal" id="vert_white">{@code \v}</th>
 178  *     <td headers="matches predef vert_white">A vertical whitespace character: <code>[\n\x0B\f\r\x85\u2028\u2029]</code>
 179  *     </td></tr>
 180  * <tr><th style="vertical-align:top; font-weight:normal" id="non_vert_white">{@code \V}</th>
 181  *     <td headers="matches predef non_vert_white">A non-vertical whitespace character: {@code [^\v]}</td></tr>
 182  * <tr><th style="vertical-align:top; font-weight:normal" id="word">{@code \w}</th>
 183  *     <td headers="matches predef word">A word character: {@code [a-zA-Z_0-9]}</td></tr>
 184  * <tr><th style="vertical-align:top; font-weight:normal" id="non_word">{@code \W}</th>
 185  *     <td headers="matches predef non_word">A non-word character: {@code [^\w]}</td></tr>
 186  *
 187  * <tr><th colspan="2" style="padding-top:20px" id="posix"><b>POSIX character classes (US-ASCII only)</b></th></tr>
 188  *
 189  * <tr><th style="vertical-align:top; font-weight:normal" id="Lower">{@code \p{Lower}}</th>
 190  *     <td headers="matches posix Lower">A lower-case alphabetic character: {@code [a-z]}</td></tr>
 191  * <tr><th style="vertical-align:top; font-weight:normal" id="Upper">{@code \p{Upper}}</th>
 192  *     <td headers="matches posix Upper">An upper-case alphabetic character:{@code [A-Z]}</td></tr>
 193  * <tr><th style="vertical-align:top; font-weight:normal" id="ASCII">{@code \p{ASCII}}</th>
 194  *     <td headers="matches posix ASCII">All ASCII:{@code [\x00-\x7F]}</td></tr>
 195  * <tr><th style="vertical-align:top; font-weight:normal" id="Alpha">{@code \p{Alpha}}</th>
 196  *     <td headers="matches posix Alpha">An alphabetic character:{@code [\p{Lower}\p{Upper}]}</td></tr>
 197  * <tr><th style="vertical-align:top; font-weight:normal" id="Digit">{@code \p{Digit}}</th>
 198  *     <td headers="matches posix Digit">A decimal digit: {@code [0-9]}</td></tr>
 199  * <tr><th style="vertical-align:top; font-weight:normal" id="Alnum">{@code \p{Alnum}}</th>
 200  *     <td headers="matches posix Alnum">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
 201  * <tr><th style="vertical-align:top; font-weight:normal" id="Punct">{@code \p{Punct}}</th>
 202  *     <td headers="matches posix Punct">Punctuation: One of {@code !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~}</td></tr>
 203  *     <!-- {@code [\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]}
 204  *          {@code [\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]} -->
 205  * <tr><th style="vertical-align:top; font-weight:normal" id="Graph">{@code \p{Graph}}</th>
 206  *     <td headers="matches posix Graph">A visible character: {@code [\p{Alnum}\p{Punct}]}</td></tr>
 207  * <tr><th style="vertical-align:top; font-weight:normal" id="Print">{@code \p{Print}}</th>
 208  *     <td headers="matches posix Print">A printable character: {@code [\p{Graph}\x20]}</td></tr>
 209  * <tr><th style="vertical-align:top; font-weight:normal" id="Blank">{@code \p{Blank}}</th>
 210  *     <td headers="matches posix Blank">A space or a tab: {@code [ \t]}</td></tr>
 211  * <tr><th style="vertical-align:top; font-weight:normal" id="Cntrl">{@code \p{Cntrl}}</th>
 212  *     <td headers="matches posix Cntrl">A control character: {@code [\x00-\x1F\x7F]}</td></tr>
 213  * <tr><th style="vertical-align:top; font-weight:normal" id="XDigit">{@code \p{XDigit}}</th>
 214  *     <td headers="matches posix XDigit">A hexadecimal digit: {@code [0-9a-fA-F]}</td></tr>
 215  * <tr><th style="vertical-align:top; font-weight:normal" id="Space">{@code \p{Space}}</th>
 216  *     <td headers="matches posix Space">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
 217  *
 218  * <tr><th colspan="2" style="padding-top:20px" id="java">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
 219  *
 220  * <tr><th style="vertical-align:top; font-weight:normal" id="javaLowerCase">{@code \p{javaLowerCase}}</th>
 221  *     <td headers="matches java javaLowerCase">Equivalent to java.lang.Character.isLowerCase()</td></tr>
 222  * <tr><th style="vertical-align:top; font-weight:normal" id="javaUpperCase">{@code \p{javaUpperCase}}</th>
 223  *     <td headers="matches java javaUpperCase">Equivalent to java.lang.Character.isUpperCase()</td></tr>
 224  * <tr><th style="vertical-align:top; font-weight:normal" id="javaWhitespace">{@code \p{javaWhitespace}}</th>
 225  *     <td headers="matches java javaWhitespace">Equivalent to java.lang.Character.isWhitespace()</td></tr>
 226  * <tr><th style="vertical-align:top; font-weight:normal" id="javaMirrored">{@code \p{javaMirrored}}</th>
 227  *     <td headers="matches java javaMirrored">Equivalent to java.lang.Character.isMirrored()</td></tr>
 228  *
 229  * <tr><th colspan="2" style="padding-top:20px"  id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
 230  *
 231  * <tr><th style="vertical-align:top; font-weight:normal" id="IsLatin">{@code \p{IsLatin}}</th>
 232  *     <td headers="matches unicode IsLatin">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
 233  * <tr><th style="vertical-align:top; font-weight:normal" id="InGreek">{@code \p{InGreek}}</th>
 234  *     <td headers="matches unicode InGreek">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
 235  * <tr><th style="vertical-align:top; font-weight:normal" id="Lu">{@code \p{Lu}}</th>
 236  *     <td headers="matches unicode Lu">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
 237  * <tr><th style="vertical-align:top; font-weight:normal" id="IsAlphabetic">{@code \p{IsAlphabetic}}</th>
 238  *     <td headers="matches unicode IsAlphabetic">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
 239  * <tr><th style="vertical-align:top; font-weight:normal" id="Sc">{@code \p{Sc}}</th>
 240  *     <td headers="matches unicode Sc">A currency symbol</td></tr>
 241  * <tr><th style="vertical-align:top; font-weight:normal" id="not_InGreek">{@code \P{InGreek}}</th>
 242  *     <td headers="matches unicode not_InGreek">Any character except one in the Greek block (negation)</td></tr>
 243  * <tr><th style="vertical-align:top; font-weight:normal" id="not_uppercase">{@code [\p{L}&&[^\p{Lu}]]}</th>
 244  *     <td headers="matches unicode not_uppercase">Any letter except an uppercase letter (subtraction)</td></tr>
 245  *
 246  * <tr><th colspan="2" style="padding-top:20px" id="bounds">Boundary matchers</th></tr>
 247  *
 248  * <tr><th style="vertical-align:top; font-weight:normal" id="begin_line">{@code ^}</th>
 249  *     <td headers="matches bounds begin_line">The beginning of a line</td></tr>
 250  * <tr><th style="vertical-align:top; font-weight:normal" id="end_line">{@code $}</th>
 251  *     <td headers="matches bounds end_line">The end of a line</td></tr>
 252  * <tr><th style="vertical-align:top; font-weight:normal" id="word_boundary">{@code \b}</th>
 253  *     <td headers="matches bounds word_boundary">A word boundary</td></tr>
 254  * <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_cluster_boundary">{@code \b{g}}</th>
 255  *     <td headers="matches bounds grapheme_cluster_boundary">A Unicode extended grapheme cluster boundary</td></tr>
 256  * <tr><th style="vertical-align:top; font-weight:normal" id="non_word_boundary">{@code \B}</th>
 257  *     <td headers="matches bounds non_word_boundary">A non-word boundary</td></tr>
 258  * <tr><th style="vertical-align:top; font-weight:normal" id="begin_input">{@code \A}</th>
 259  *     <td headers="matches bounds begin_input">The beginning of the input</td></tr>
 260  * <tr><th style="vertical-align:top; font-weight:normal" id="end_prev_match">{@code \G}</th>
 261  *     <td headers="matches bounds end_prev_match">The end of the previous match</td></tr>
 262  * <tr><th style="vertical-align:top; font-weight:normal" id="end_input_except_term">{@code \Z}</th>
 263  *     <td headers="matches bounds end_input_except_term">The end of the input but for the final
 264  *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
 265  * <tr><th style="vertical-align:top; font-weight:normal" id="end_input">{@code \z}</th>
 266  *     <td headers="matches bounds end_input">The end of the input</td></tr>
 267  *
 268  * <tr><th colspan="2" style="padding-top:20px" id="linebreak">Linebreak matcher</th></tr>
 269  *
 270  * <tr><th style="vertical-align:top; font-weight:normal" id="any_unicode_linebreak">{@code \R}</th>
 271  *     <td headers="matches linebreak any_unicode_linebreak">Any Unicode linebreak sequence, is equivalent to
 272  *     <code>\u000D\u000A|[\u000A\u000B\u000C\u000D\u0085\u2028\u2029]
 273  *     </code></td></tr>
 274  *
 275  * <tr><th colspan="2" style="padding-top:20px" id="grapheme">Unicode Extended Grapheme matcher</th></tr>
 276  *
 277  * <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_any">{@code \X}</th>
 278  *     <td headers="matches grapheme grapheme_any">Any Unicode extended grapheme cluster</td></tr>
 279  *
 280  * <tr><th colspan="2" style="padding-top:20px" id="greedy">Greedy quantifiers</th></tr>
 281  *
 282  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_once_or_not"><i>X</i>{@code ?}</th>
 283  *     <td headers="matches greedy greedy_once_or_not"><i>X</i>, once or not at all</td></tr>
 284  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_zero_or_more"><i>X</i>{@code *}</th>
 285  *     <td headers="matches greedy greedy_zero_or_more"><i>X</i>, zero or more times</td></tr>
 286  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_one_or_more"><i>X</i>{@code +}</th>
 287  *     <td headers="matches greedy greedy_one_or_more"><i>X</i>, one or more times</td></tr>
 288  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_exactly"><i>X</i><code>{</code><i>n</i><code>}</code></th>
 289  *     <td headers="matches greedy greedy_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
 290  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least"><i>X</i><code>{</code><i>n</i>{@code ,}}</th>
 291  *     <td headers="matches greedy greedy_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
 292  * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}</code></th>
 293  *     <td headers="matches greedy greedy_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 294  *
 295  * <tr><th colspan="2" style="padding-top:20px" id="reluc">Reluctant quantifiers</th></tr>
 296  *
 297  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_once_or_not"><i>X</i>{@code ??}</th>
 298  *     <td headers="matches reluc reluc_once_or_not"><i>X</i>, once or not at all</td></tr>
 299  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_zero_or_more"><i>X</i>{@code *?}</th>
 300  *     <td headers="matches reluc reluc_zero_or_more"><i>X</i>, zero or more times</td></tr>
 301  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_one_or_more"><i>X</i>{@code +?}</th>
 302  *     <td headers="matches reluc reluc_one_or_more"><i>X</i>, one or more times</td></tr>
 303  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_exactly"><i>X</i><code>{</code><i>n</i><code>}?</code></th>
 304  *     <td headers="matches reluc reluc_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
 305  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least"><i>X</i><code>{</code><i>n</i><code>,}?</code></th>
 306  *     <td headers="matches reluc reluc_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
 307  * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}?</code></th>
 308  *     <td headers="matches reluc reluc_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 309  *
 310  * <tr><th colspan="2" style="padding-top:20px" id="poss">Possessive quantifiers</th></tr>
 311  *
 312  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_once_or_not"><i>X</i>{@code ?+}</th>
 313  *     <td headers="matches poss poss_once_or_not"><i>X</i>, once or not at all</td></tr>
 314  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_zero_or_more"><i>X</i>{@code *+}</th>
 315  *     <td headers="matches poss poss_zero_or_more"><i>X</i>, zero or more times</td></tr>
 316  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_one_or_more"><i>X</i>{@code ++}</th>
 317  *     <td headers="matches poss poss_one_or_more"><i>X</i>, one or more times</td></tr>
 318  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_exactly"><i>X</i><code>{</code><i>n</i><code>}+</code></th>
 319  *     <td headers="matches poss poss_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
 320  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least"><i>X</i><code>{</code><i>n</i><code>,}+</code></th>
 321  *     <td headers="matches poss poss_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
 322  * <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}+</code></th>
 323  *     <td headers="matches poss poss_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
 324  *
 325  * <tr><th colspan="2" style="padding-top:20px" id="logical">Logical operators</th></tr>
 326  *
 327  * <tr><th style="vertical-align:top; font-weight:normal" id="concat"><i>XY</i></th>
 328  *     <td headers="matches logical concat"><i>X</i> followed by <i>Y</i></td></tr>
 329  * <tr><th style="vertical-align:top; font-weight:normal" id="alternate"><i>X</i>{@code |}<i>Y</i></th>
 330  *     <td headers="matches logical alternate">Either <i>X</i> or <i>Y</i></td></tr>
 331  * <tr><th style="vertical-align:top; font-weight:normal" id="group">{@code (}<i>X</i>{@code )}</th>
 332  *     <td headers="matches logical group">X, as a <a href="#cg">capturing group</a></td></tr>
 333  *
 334  * <tr><th colspan="2" style="padding-top:20px" id="backref">Back references</th></tr>
 335  *
 336  * <tr><th style="vertical-align:top; font-weight:normal" id="back_nth">{@code \}<i>n</i></th>
 337  *     <td headers="matches backref back_nth">Whatever the <i>n</i><sup>th</sup>
 338  *     <a href="#cg">capturing group</a> matched</td></tr>
 339  * <tr><th style="vertical-align:top; font-weight:normal" id="back_named">{@code \}<i>k</i>&lt;<i>name</i>&gt;</th>
 340  *     <td headers="matches backref back_named">Whatever the
 341  *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
 342  *
 343  * <tr><th colspan="2" style="padding-top:20px" id="quote">Quotation</th></tr>
 344  *
 345  * <tr><th style="vertical-align:top; font-weight:normal" id="quote_follow">{@code \}</th>
 346  *     <td headers="matches quote quote_follow">Nothing, but quotes the following character</td></tr>
 347  * <tr><th style="vertical-align:top; font-weight:normal" id="quote_begin">{@code \Q}</th>
 348  *     <td headers="matches quote quote_begin">Nothing, but quotes all characters until {@code \E}</td></tr>
 349  * <tr><th style="vertical-align:top; font-weight:normal" id="quote_end">{@code \E}</th>
 350  *     <td headers="matches quote quote_end">Nothing, but ends quoting started by {@code \Q}</td></tr>
 351  *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
 352  *
 353  * <tr><th colspan="2" style="padding-top:20px" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
 354  *
 355  * <tr><th style="vertical-align:top; font-weight:normal" id="named_group"><code>(?&lt;<a href="#groupname">name</a>&gt;</code><i>X</i>{@code )}</th>
 356  *     <td headers="matches special named_group"><i>X</i>, as a named-capturing group</td></tr>
 357  * <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group">{@code (?:}<i>X</i>{@code )}</th>
 358  *     <td headers="matches special non_capture_group"><i>X</i>, as a non-capturing group</td></tr>
 359  * <tr><th style="vertical-align:top; font-weight:normal" id="flags"><code>(?idmsuxU-idmsuxU)&nbsp;</code></th>
 360  *     <td headers="matches special flags">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
 361  * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
 362  * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
 363  * on - off</td></tr>
 364  * <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group_flags"><code>(?idmsuxU-idmsuxU:</code><i>X</i>{@code )}&nbsp;&nbsp;</th>
 365  *     <td headers="matches special non_capture_group_flags"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
 366  *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
 367  * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
 368  * <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a> on - off</td></tr>
 369  * <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookahead">{@code (?=}<i>X</i>{@code )}</th>
 370  *     <td headers="matches special pos_lookahead"><i>X</i>, via zero-width positive lookahead</td></tr>
 371  * <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookahead">{@code (?!}<i>X</i>{@code )}</th>
 372  *     <td headers="matches special neg_lookahead"><i>X</i>, via zero-width negative lookahead</td></tr>
 373  * <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookbehind">{@code (?<=}<i>X</i>{@code )}</th>
 374  *     <td headers="matches special pos_lookbehind"><i>X</i>, via zero-width positive lookbehind</td></tr>
 375  * <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookbehind">{@code (?<!}<i>X</i>{@code )}</th>
 376  *     <td headers="matches special neg_lookbehind"><i>X</i>, via zero-width negative lookbehind</td></tr>
 377  * <tr><th style="vertical-align:top; font-weight:normal" id="indep_non_capture_group">{@code (?>}<i>X</i>{@code )}</th>
 378  *     <td headers="matches special indep_non_capture_group"><i>X</i>, as an independent, non-capturing group</td></tr>
 379  *
 380  * </tbody>
 381  * </table>
 382  *
 383  * <hr>
 384  *
 385  *
 386  * <h2><a id="bs">Backslashes, escapes, and quoting</a></h2>
 387  *
 388  * <p> The backslash character ({@code '\'}) serves to introduce escaped
 389  * constructs, as defined in the table above, as well as to quote characters
 390  * that otherwise would be interpreted as unescaped constructs.  Thus the
 391  * expression {@code \\} matches a single backslash and <code>\{</code> matches a
 392  * left brace.
 393  *
 394  * <p> It is an error to use a backslash prior to any alphabetic character that
 395  * does not denote an escaped construct; these are reserved for future
 396  * extensions to the regular-expression language.  A backslash may be used
 397  * prior to a non-alphabetic character regardless of whether that character is
 398  * part of an unescaped construct.
 399  *
 400  * <p> Backslashes within string literals in Java source code are interpreted
 401  * as required by
 402  * <cite>The Java&trade; Language Specification</cite>
 403  * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
 404  * It is therefore necessary to double backslashes in string
 405  * literals that represent regular expressions to protect them from
 406  * interpretation by the Java bytecode compiler.  The string literal
 407  * <code>"\b"</code>, for example, matches a single backspace character when
 408  * interpreted as a regular expression, while {@code "\\b"} matches a
 409  * word boundary.  The string literal {@code "\(hello\)"} is illegal
 410  * and leads to a compile-time error; in order to match the string
 411  * {@code (hello)} the string literal {@code "\\(hello\\)"}
 412  * must be used.
 413  *
 414  * <h2><a id="cc">Character Classes</a></h2>
 415  *
 416  *    <p> Character classes may appear within other character classes, and
 417  *    may be composed by the union operator (implicit) and the intersection
 418  *    operator ({@code &&}).
 419  *    The union operator denotes a class that contains every character that is
 420  *    in at least one of its operand classes.  The intersection operator
 421  *    denotes a class that contains every character that is in both of its
 422  *    operand classes.
 423  *
 424  *    <p> The precedence of character-class operators is as follows, from
 425  *    highest to lowest:
 426  *
 427  *    <table class="striped" style="margin-left: 2em;">
 428  *      <caption style="display:none">Precedence of character class operators.</caption>
 429  *      <thead>
 430  *      <tr><th scope="col">Precedence<th scope="col">Name<th scope="col">Example
 431  *      </thead>
 432  *      <tbody>
 433  *      <tr><th scope="row">1</th>
 434  *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
 435  *        <td>{@code \x}</td></tr>
 436  *     <tr><th scope="row">2</th>
 437  *        <td>Grouping</td>
 438  *        <td>{@code [...]}</td></tr>
 439  *     <tr><th scope="row">3</th>
 440  *        <td>Range</td>
 441  *        <td>{@code a-z}</td></tr>
 442  *      <tr><th scope="row">4</th>
 443  *        <td>Union</td>
 444  *        <td>{@code [a-e][i-u]}</td></tr>
 445  *      <tr><th scope="row">5</th>
 446  *        <td>Intersection</td>
 447  *        <td>{@code [a-z&&[aeiou]]}</td></tr>
 448  *      </tbody>
 449  *    </table>
 450  *
 451  *    <p> Note that a different set of metacharacters are in effect inside
 452  *    a character class than outside a character class. For instance, the
 453  *    regular expression {@code .} loses its special meaning inside a
 454  *    character class, while the expression {@code -} becomes a range
 455  *    forming metacharacter.
 456  *
 457  * <h2><a id="lt">Line terminators</a></h2>
 458  *
 459  * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
 460  * the end of a line of the input character sequence.  The following are
 461  * recognized as line terminators:
 462  *
 463  * <ul>
 464  *
 465  *   <li> A newline (line feed) character ({@code '\n'}),
 466  *
 467  *   <li> A carriage-return character followed immediately by a newline
 468  *   character ({@code "\r\n"}),
 469  *
 470  *   <li> A standalone carriage-return character ({@code '\r'}),
 471  *
 472  *   <li> A next-line character (<code>'\u0085'</code>),
 473  *
 474  *   <li> A line-separator character (<code>'\u2028'</code>), or
 475  *
 476  *   <li> A paragraph-separator character (<code>'\u2029'</code>).
 477  *
 478  * </ul>
 479  * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
 480  * recognized are newline characters.
 481  *
 482  * <p> The regular expression {@code .} matches any character except a line
 483  * terminator unless the {@link #DOTALL} flag is specified.
 484  *
 485  * <p> By default, the regular expressions {@code ^} and {@code $} ignore
 486  * line terminators and only match at the beginning and the end, respectively,
 487  * of the entire input sequence. If {@link #MULTILINE} mode is activated then
 488  * {@code ^} matches at the beginning of input and after any line terminator
 489  * except at the end of input. When in {@link #MULTILINE} mode {@code $}
 490  * matches just before a line terminator or the end of the input sequence.
 491  *
 492  * <h2><a id="cg">Groups and capturing</a></h2>
 493  *
 494  * <h3><a id="gnumber">Group number</a></h3>
 495  * <p> Capturing groups are numbered by counting their opening parentheses from
 496  * left to right.  In the expression {@code ((A)(B(C)))}, for example, there
 497  * are four such groups: </p>
 498  *
 499  * <ol style="margin-left:2em;">
 500  *   <li> {@code ((A)(B(C)))}
 501  *   <li> {@code (A)}
 502  *   <li> {@code (B(C))}
 503  *   <li> {@code (C)}
 504  * </ol>
 505  *
 506  * <p> Group zero always stands for the entire expression.
 507  *
 508  * <p> Capturing groups are so named because, during a match, each subsequence
 509  * of the input sequence that matches such a group is saved.  The captured
 510  * subsequence may be used later in the expression, via a back reference, and
 511  * may also be retrieved from the matcher once the match operation is complete.
 512  *
 513  * <h3><a id="groupname">Group name</a></h3>
 514  * <p>A capturing group can also be assigned a "name", a {@code named-capturing group},
 515  * and then be back-referenced later by the "name". Group names are composed of
 516  * the following characters. The first character must be a {@code letter}.
 517  *
 518  * <ul>
 519  *   <li> The uppercase letters {@code 'A'} through {@code 'Z'}
 520  *        (<code>'\u0041'</code>&nbsp;through&nbsp;<code>'\u005a'</code>),
 521  *   <li> The lowercase letters {@code 'a'} through {@code 'z'}
 522  *        (<code>'\u0061'</code>&nbsp;through&nbsp;<code>'\u007a'</code>),
 523  *   <li> The digits {@code '0'} through {@code '9'}
 524  *        (<code>'\u0030'</code>&nbsp;through&nbsp;<code>'\u0039'</code>),
 525  * </ul>
 526  *
 527  * <p> A {@code named-capturing group} is still numbered as described in
 528  * <a href="#gnumber">Group number</a>.
 529  *
 530  * <p> The captured input associated with a group is always the subsequence
 531  * that the group most recently matched.  If a group is evaluated a second time
 532  * because of quantification then its previously-captured value, if any, will
 533  * be retained if the second evaluation fails.  Matching the string
 534  * {@code "aba"} against the expression {@code (a(b)?)+}, for example, leaves
 535  * group two set to {@code "b"}.  All captured input is discarded at the
 536  * beginning of each match.
 537  *
 538  * <p> Groups beginning with {@code (?} are either pure, <i>non-capturing</i> groups
 539  * that do not capture text and do not count towards the group total, or
 540  * <i>named-capturing</i> group.
 541  *
 542  * <h2> Unicode support </h2>
 543  *
 544  * <p> This class is in conformance with Level 1 of <a
 545  * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 546  * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
 547  * Canonical Equivalents and RL2.2 Extended Grapheme Clusters.
 548  * <p>
 549  * <b>Unicode escape sequences</b> such as <code>\u2014</code> in Java source code
 550  * are processed as described in section 3.3 of
 551  * <cite>The Java&trade; Language Specification</cite>.
 552  * Such escape sequences are also implemented directly by the regular-expression
 553  * parser so that Unicode escapes can be used in expressions that are read from
 554  * files or from the keyboard.  Thus the strings <code>"\u2014"</code> and
 555  * {@code "\\u2014"}, while not equal, compile into the same pattern, which
 556  * matches the character with hexadecimal value {@code 0x2014}.
 557  * <p>
 558  * A Unicode character can also be represented by using its <b>Hex notation</b>
 559  * (hexadecimal code point value) directly as described in construct
 560  * <code>\x{...}</code>, for example a supplementary character U+2011F can be
 561  * specified as <code>\x{2011F}</code>, instead of two consecutive Unicode escape
 562  * sequences of the surrogate pair <code>\uD840</code><code>\uDD1F</code>.
 563  * <p>
 564  * <b>Unicode character names</b> are supported by the named character construct
 565  * <code>\N{</code>...<code>}</code>, for example, <code>\N{WHITE SMILING FACE}</code>
 566  * specifies character <code>\u263A</code>. The character names supported
 567  * by this class are the valid Unicode character names matched by
 568  * {@link java.lang.Character#codePointOf(String) Character.codePointOf(name)}.
 569  * <p>
 570  * <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
 571  * <b>Unicode extended grapheme clusters</b></a> are supported by the grapheme
 572  * cluster matcher {@code \X} and the corresponding boundary matcher {@code \b{g}}.
 573  * <p>
 574  * Unicode scripts, blocks, categories and binary properties are written with
 575  * the {@code \p} and {@code \P} constructs as in Perl.
 576  * <code>\p{</code><i>prop</i><code>}</code> matches if
 577  * the input has the property <i>prop</i>, while <code>\P{</code><i>prop</i><code>}</code>
 578  * does not match if the input has that property.
 579  * <p>
 580  * Scripts, blocks, categories and binary properties can be used both inside
 581  * and outside of a character class.
 582  *
 583  * <p>
 584  * <b><a id="usc">Scripts</a></b> are specified either with the prefix {@code Is}, as in
 585  * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
 586  * form {@code sc}) as in {@code script=Hiragana} or {@code sc=Hiragana}.
 587  * <p>
 588  * The script names supported by {@code Pattern} are the valid script names
 589  * accepted and defined by
 590  * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
 591  *
 592  * <p>
 593  * <b><a id="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
 594  * {@code InMongolian}, or by using the keyword {@code block} (or its short
 595  * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
 596  * <p>
 597  * The block names supported by {@code Pattern} are the valid block names
 598  * accepted and defined by
 599  * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
 600  * <p>
 601  *
 602  * <b><a id="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
 603  * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
 604  * letters. Same as scripts and blocks, categories can also be specified
 605  * by using the keyword {@code general_category} (or its short form
 606  * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
 607  * <p>
 608  * The supported categories are those of
 609  * <a href="http://www.unicode.org/unicode/standard/standard.html">
 610  * <i>The Unicode Standard</i></a> in the version specified by the
 611  * {@link java.lang.Character Character} class. The category names are those
 612  * defined in the Standard, both normative and informative.
 613  * <p>
 614  *
 615  * <b><a id="ubpc">Binary properties</a></b> are specified with the prefix {@code Is}, as in
 616  * {@code IsAlphabetic}. The supported binary properties by {@code Pattern}
 617  * are
 618  * <ul>
 619  *   <li> Alphabetic
 620  *   <li> Ideographic
 621  *   <li> Letter
 622  *   <li> Lowercase
 623  *   <li> Uppercase
 624  *   <li> Titlecase
 625  *   <li> Punctuation
 626  *   <Li> Control
 627  *   <li> White_Space
 628  *   <li> Digit
 629  *   <li> Hex_Digit
 630  *   <li> Join_Control
 631  *   <li> Noncharacter_Code_Point
 632  *   <li> Assigned
 633  * </ul>
 634  * <p>
 635  * The following <b>Predefined Character classes</b> and <b>POSIX character classes</b>
 636  * are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
 637  * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
 638  * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
 639  *
 640  * <table class="striped">
 641  * <caption style="display:none">predefined and posix character classes in Unicode mode</caption>
 642  * <thead>
 643  * <tr>
 644  * <th scope="col" id="predef_classes">Classes</th>
 645  * <th scope="col" id="predef_matches">Matches</th>
 646  * </tr>
 647  * </thead>
 648  * <tbody>
 649  * <tr><th scope="row">{@code \p{Lower}}</th>
 650  *     <td>A lowercase character:{@code \p{IsLowercase}}</td></tr>
 651  * <tr><th scope="row">{@code \p{Upper}}</th>
 652  *     <td>An uppercase character:{@code \p{IsUppercase}}</td></tr>
 653  * <tr><th scope="row">{@code \p{ASCII}}</th>
 654  *     <td>All ASCII:{@code [\x00-\x7F]}</td></tr>
 655  * <tr><th scope="row">{@code \p{Alpha}}</th>
 656  *     <td>An alphabetic character:{@code \p{IsAlphabetic}}</td></tr>
 657  * <tr><th scope="row">{@code \p{Digit}}</th>
 658  *     <td>A decimal digit character:{@code \p{IsDigit}}</td></tr>
 659  * <tr><th scope="row">{@code \p{Alnum}}</th>
 660  *     <td>An alphanumeric character:{@code [\p{IsAlphabetic}\p{IsDigit}]}</td></tr>
 661  * <tr><th scope="row">{@code \p{Punct}}</th>
 662  *     <td>A punctuation character:{@code \p{IsPunctuation}}</td></tr>
 663  * <tr><th scope="row">{@code \p{Graph}}</th>
 664  *     <td>A visible character: {@code [^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]}</td></tr>
 665  * <tr><th scope="row">{@code \p{Print}}</th>
 666  *     <td>A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
 667  * <tr><th scope="row">{@code \p{Blank}}</th>
 668  *     <td>A space or a tab: {@code [\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]}</td></tr>
 669  * <tr><th scope="row">{@code \p{Cntrl}}</th>
 670  *     <td>A control character: {@code \p{gc=Cc}}</td></tr>
 671  * <tr><th scope="row">{@code \p{XDigit}}</th>
 672  *     <td>A hexadecimal digit: {@code [\p{gc=Nd}\p{IsHex_Digit}]}</td></tr>
 673  * <tr><th scope="row">{@code \p{Space}}</th>
 674  *     <td>A whitespace character:{@code \p{IsWhite_Space}}</td></tr>
 675  * <tr><th scope="row">{@code \d}</th>
 676  *     <td>A digit: {@code \p{IsDigit}}</td></tr>
 677  * <tr><th scope="row">{@code \D}</th>
 678  *     <td>A non-digit: {@code [^\d]}</td></tr>
 679  * <tr><th scope="row">{@code \s}</th>
 680  *     <td>A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
 681  * <tr><th scope="row">{@code \S}</th>
 682  *     <td>A non-whitespace character: {@code [^\s]}</td></tr>
 683  * <tr><th scope="row">{@code \w}</th>
 684  *     <td>A word character: {@code [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}\p{IsJoin_Control}]}</td></tr>
 685  * <tr><th scope="row">{@code \W}</th>
 686  *     <td>A non-word character: {@code [^\w]}</td></tr>
 687  * </tbody>
 688  * </table>
 689  * <p>
 690  * <a id="jcc">
 691  * Categories that behave like the java.lang.Character
 692  * boolean is<i>methodname</i> methods (except for the deprecated ones) are
 693  * available through the same <code>\p{</code><i>prop</i><code>}</code> syntax where
 694  * the specified property has the name <code>java<i>methodname</i></code></a>.
 695  *
 696  * <h2> Comparison to Perl 5 </h2>
 697  *
 698  * <p>The {@code Pattern} engine performs traditional NFA-based matching
 699  * with ordered alternation as occurs in Perl 5.
 700  *
 701  * <p> Perl constructs not supported by this class: </p>
 702  *
 703  * <ul>
 704  *    <li><p> The backreference constructs, <code>\g{</code><i>n</i><code>}</code> for
 705  *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
 706  *    <code>\g{</code><i>name</i><code>}</code> for
 707  *    <a href="#groupname">named-capturing group</a>.
 708  *    </p></li>
 709  *
 710  *    <li><p> The conditional constructs
 711  *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code )} and
 712  *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code |}<i>Y</i>{@code )},
 713  *    </p></li>
 714  *
 715  *    <li><p> The embedded code constructs <code>(?{</code><i>code</i><code>})</code>
 716  *    and <code>(??{</code><i>code</i><code>})</code>,</p></li>
 717  *
 718  *    <li><p> The embedded comment syntax {@code (?#comment)}, and </p></li>
 719  *
 720  *    <li><p> The preprocessing operations {@code \l} <code>\u</code>,
 721  *    {@code \L}, and {@code \U}.  </p></li>
 722  *
 723  * </ul>
 724  *
 725  * <p> Constructs supported by this class but not by Perl: </p>
 726  *
 727  * <ul>
 728  *
 729  *    <li><p> Character-class union and intersection as described
 730  *    <a href="#cc">above</a>.</p></li>
 731  *
 732  * </ul>
 733  *
 734  * <p> Notable differences from Perl: </p>
 735  *
 736  * <ul>
 737  *
 738  *    <li><p> In Perl, {@code \1} through {@code \9} are always interpreted
 739  *    as back references; a backslash-escaped number greater than {@code 9} is
 740  *    treated as a back reference if at least that many subexpressions exist,
 741  *    otherwise it is interpreted, if possible, as an octal escape.  In this
 742  *    class octal escapes must always begin with a zero. In this class,
 743  *    {@code \1} through {@code \9} are always interpreted as back
 744  *    references, and a larger number is accepted as a back reference if at
 745  *    least that many subexpressions exist at that point in the regular
 746  *    expression, otherwise the parser will drop digits until the number is
 747  *    smaller or equal to the existing number of groups or it is one digit.
 748  *    </p></li>
 749  *
 750  *    <li><p> Perl uses the {@code g} flag to request a match that resumes
 751  *    where the last match left off.  This functionality is provided implicitly
 752  *    by the {@link Matcher} class: Repeated invocations of the {@link
 753  *    Matcher#find find} method will resume where the last match left off,
 754  *    unless the matcher is reset.  </p></li>
 755  *
 756  *    <li><p> In Perl, embedded flags at the top level of an expression affect
 757  *    the whole expression.  In this class, embedded flags always take effect
 758  *    at the point at which they appear, whether they are at the top level or
 759  *    within a group; in the latter case, flags are restored at the end of the
 760  *    group just as in Perl.  </p></li>
 761  *
 762  * </ul>
 763  *
 764  *
 765  * <p> For a more precise description of the behavior of regular expression
 766  * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
 767  * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
 768  * O'Reilly and Associates, 2006.</a>
 769  * </p>
 770  *
 771  * @see java.lang.String#split(String, int)
 772  * @see java.lang.String#split(String)
 773  *
 774  * @author      Mike McCloskey
 775  * @author      Mark Reinhold
 776  * @author      JSR-51 Expert Group
 777  * @since       1.4
 778  * @spec        JSR-51
 779  */
 780 
 781 public final class Pattern
 782     implements java.io.Serializable
 783 {
 784 
 785     /**
 786      * Regular expression modifier values.  Instead of being passed as
 787      * arguments, they can also be passed as inline modifiers.
 788      * For example, the following statements have the same effect.
 789      * <pre>
 790      * Pattern p1 = Pattern.compile("abc", Pattern.CASE_INSENSITIVE|Pattern.MULTILINE);
 791      * Pattern p2 = Pattern.compile("(?im)abc", 0);
 792      * </pre>
 793      */
 794 
 795     /**
 796      * Enables Unix lines mode.
 797      *
 798      * <p> In this mode, only the {@code '\n'} line terminator is recognized
 799      * in the behavior of {@code .}, {@code ^}, and {@code $}.
 800      *
 801      * <p> Unix lines mode can also be enabled via the embedded flag
 802      * expression&nbsp;{@code (?d)}.
 803      */
 804     public static final int UNIX_LINES = 0x01;
 805 
 806     /**
 807      * Enables case-insensitive matching.
 808      *
 809      * <p> By default, case-insensitive matching assumes that only characters
 810      * in the US-ASCII charset are being matched.  Unicode-aware
 811      * case-insensitive matching can be enabled by specifying the {@link
 812      * #UNICODE_CASE} flag in conjunction with this flag.
 813      *
 814      * <p> Case-insensitive matching can also be enabled via the embedded flag
 815      * expression&nbsp;{@code (?i)}.
 816      *
 817      * <p> Specifying this flag may impose a slight performance penalty.  </p>
 818      */
 819     public static final int CASE_INSENSITIVE = 0x02;
 820 
 821     /**
 822      * Permits whitespace and comments in pattern.
 823      *
 824      * <p> In this mode, whitespace is ignored, and embedded comments starting
 825      * with {@code #} are ignored until the end of a line.
 826      *
 827      * <p> Comments mode can also be enabled via the embedded flag
 828      * expression&nbsp;{@code (?x)}.
 829      */
 830     public static final int COMMENTS = 0x04;
 831 
 832     /**
 833      * Enables multiline mode.
 834      *
 835      * <p> In multiline mode the expressions {@code ^} and {@code $} match
 836      * just after or just before, respectively, a line terminator or the end of
 837      * the input sequence.  By default these expressions only match at the
 838      * beginning and the end of the entire input sequence.
 839      *
 840      * <p> Multiline mode can also be enabled via the embedded flag
 841      * expression&nbsp;{@code (?m)}.  </p>
 842      */
 843     public static final int MULTILINE = 0x08;
 844 
 845     /**
 846      * Enables literal parsing of the pattern.
 847      *
 848      * <p> When this flag is specified then the input string that specifies
 849      * the pattern is treated as a sequence of literal characters.
 850      * Metacharacters or escape sequences in the input sequence will be
 851      * given no special meaning.
 852      *
 853      * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
 854      * matching when used in conjunction with this flag. The other flags
 855      * become superfluous.
 856      *
 857      * <p> There is no embedded flag character for enabling literal parsing.
 858      * @since 1.5
 859      */
 860     public static final int LITERAL = 0x10;
 861 
 862     /**
 863      * Enables dotall mode.
 864      *
 865      * <p> In dotall mode, the expression {@code .} matches any character,
 866      * including a line terminator.  By default this expression does not match
 867      * line terminators.
 868      *
 869      * <p> Dotall mode can also be enabled via the embedded flag
 870      * expression&nbsp;{@code (?s)}.  (The {@code s} is a mnemonic for
 871      * "single-line" mode, which is what this is called in Perl.)  </p>
 872      */
 873     public static final int DOTALL = 0x20;
 874 
 875     /**
 876      * Enables Unicode-aware case folding.
 877      *
 878      * <p> When this flag is specified then case-insensitive matching, when
 879      * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
 880      * consistent with the Unicode Standard.  By default, case-insensitive
 881      * matching assumes that only characters in the US-ASCII charset are being
 882      * matched.
 883      *
 884      * <p> Unicode-aware case folding can also be enabled via the embedded flag
 885      * expression&nbsp;{@code (?u)}.
 886      *
 887      * <p> Specifying this flag may impose a performance penalty.  </p>
 888      */
 889     public static final int UNICODE_CASE = 0x40;
 890 
 891     /**
 892      * Enables canonical equivalence.
 893      *
 894      * <p> When this flag is specified then two characters will be considered
 895      * to match if, and only if, their full canonical decompositions match.
 896      * The expression <code>"a\u030A"</code>, for example, will match the
 897      * string <code>"\u00E5"</code> when this flag is specified.  By default,
 898      * matching does not take canonical equivalence into account.
 899      *
 900      * <p> There is no embedded flag character for enabling canonical
 901      * equivalence.
 902      *
 903      * <p> Specifying this flag may impose a performance penalty.  </p>
 904      */
 905     public static final int CANON_EQ = 0x80;
 906 
 907     /**
 908      * Enables the Unicode version of <i>Predefined character classes</i> and
 909      * <i>POSIX character classes</i>.
 910      *
 911      * <p> When this flag is specified then the (US-ASCII only)
 912      * <i>Predefined character classes</i> and <i>POSIX character classes</i>
 913      * are in conformance with
 914      * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
 915      * Standard #18: Unicode Regular Expression</i></a>
 916      * <i>Annex C: Compatibility Properties</i>.
 917      * <p>
 918      * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
 919      * flag expression&nbsp;{@code (?U)}.
 920      * <p>
 921      * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
 922      * folding.
 923      * <p>
 924      * Specifying this flag may impose a performance penalty.  </p>
 925      * @since 1.7
 926      */
 927     public static final int UNICODE_CHARACTER_CLASS = 0x100;
 928 
 929     /**
 930      * Contains all possible flags for compile(regex, flags).
 931      */
 932     private static final int ALL_FLAGS = CASE_INSENSITIVE | MULTILINE |
 933             DOTALL | UNICODE_CASE | CANON_EQ | UNIX_LINES | LITERAL |
 934             UNICODE_CHARACTER_CLASS | COMMENTS;
 935 
 936     /* Pattern has only two serialized components: The pattern string
 937      * and the flags, which are all that is needed to recompile the pattern
 938      * when it is deserialized.
 939      */
 940 
 941     /** use serialVersionUID from Merlin b59 for interoperability */
 942     @java.io.Serial
 943     private static final long serialVersionUID = 5073258162644648461L;
 944 
 945     /**
 946      * The original regular-expression pattern string.
 947      *
 948      * @serial
 949      */
 950     private String pattern;
 951 
 952     /**
 953      * The original pattern flags.
 954      *
 955      * @serial
 956      */
 957     private int flags;
 958 
 959     /**
 960      * The temporary pattern flags used during compiling. The flags might be turn
 961      * on and off by embedded flag.
 962      */
 963     private transient int flags0;
 964 
 965     /**
 966      * Boolean indicating this Pattern is compiled; this is necessary in order
 967      * to lazily compile deserialized Patterns.
 968      */
 969     private transient volatile boolean compiled;
 970 
 971     /**
 972      * The normalized pattern string.
 973      */
 974     private transient String normalizedPattern;
 975 
 976     /**
 977      * The starting point of state machine for the find operation.  This allows
 978      * a match to start anywhere in the input.
 979      */
 980     transient Node root;
 981 
 982     /**
 983      * The root of object tree for a match operation.  The pattern is matched
 984      * at the beginning.  This may include a find that uses BnM or a First
 985      * node.
 986      */
 987     transient Node matchRoot;
 988 
 989     /**
 990      * Temporary storage used by parsing pattern slice.
 991      */
 992     transient int[] buffer;
 993 
 994     /**
 995      * A temporary storage used for predicate for double return.
 996      */
 997     transient CharPredicate predicate;
 998 
 999     /**
1000      * Map the "name" of the "named capturing group" to its group id
1001      * node.
1002      */
1003     transient volatile Map<String, Integer> namedGroups;
1004 
1005     /**
1006      * Temporary storage used while parsing group references.
1007      */
1008     transient GroupHead[] groupNodes;
1009 
1010     /**
1011      * Temporary storage used to store the top level closure nodes.
1012      */
1013     transient List<Node> topClosureNodes;
1014 
1015     /**
1016      * The number of top greedy closure nodes in this Pattern. Used by
1017      * matchers to allocate storage needed for a IntHashSet to keep the
1018      * beginning pos {@code i} of all failed match.
1019      */
1020     transient int localTCNCount;
1021 
1022     /*
1023      * Turn off the stop-exponential-backtracking optimization if there
1024      * is a group ref in the pattern.
1025      */
1026     transient boolean hasGroupRef;
1027 
1028     /**
1029      * Temporary null terminated code point array used by pattern compiling.
1030      */
1031     private transient int[] temp;
1032 
1033     /**
1034      * The number of capturing groups in this Pattern. Used by matchers to
1035      * allocate storage needed to perform a match.
1036      */
1037     transient int capturingGroupCount;
1038 
1039     /**
1040      * The local variable count used by parsing tree. Used by matchers to
1041      * allocate storage needed to perform a match.
1042      */
1043     transient int localCount;
1044 
1045     /**
1046      * Index into the pattern string that keeps track of how much has been
1047      * parsed.
1048      */
1049     private transient int cursor;
1050 
1051     /**
1052      * Holds the length of the pattern string.
1053      */
1054     private transient int patternLength;
1055 
1056     /**
1057      * If the Start node might possibly match supplementary characters.
1058      * It is set to true during compiling if
1059      * (1) There is supplementary char in pattern, or
1060      * (2) There is complement node of a "family" CharProperty
1061      */
1062     private transient boolean hasSupplementary;
1063 
1064     /**
1065      * If {@code true} then only limited list of chars is accepted as
1066      * control-character IDs in regular expressions of form "\\cX":
1067      * 'A' through 'Z', '?', '@', '[', '\\', ']', '^', '_'.
1068      * Otherwise, no restrictions on the IDs are exposed.
1069      */
1070     private static final boolean RESTRICTED_CONTROL_CHAR_IDS = Boolean.valueOf(
1071             GetPropertyAction.privilegedGetProperty(
1072                     "jdk.util.regex.restrictedControlCharIds", "true"));
1073 
1074     /**
1075      * If {@code true} then lower-case control-character ids are mapped to the
1076      * their upper-case counterparts.
1077      * For example, "\\ca" will be the same as "\\cA".
1078      */
1079     private static final boolean ALLOW_LOWERCASE_CONTROL_CHAR_IDS = Boolean.valueOf(
1080             GetPropertyAction.privilegedGetProperty(
1081                     "jdk.util.regex.allowLowerCaseControlCharIds", "false"));
1082 
1083     /**
1084      * Compiles the given regular expression into a pattern.
1085      *
1086      * @param  regex
1087      *         The expression to be compiled
1088      * @return the given regular expression compiled into a pattern
1089      * @throws  PatternSyntaxException
1090      *          If the expression's syntax is invalid
1091      */
1092     public static Pattern compile(String regex) {
1093         return new Pattern(regex, 0);
1094     }
1095 
1096     /**
1097      * Compiles the given regular expression into a pattern with the given
1098      * flags.
1099      *
1100      * @param  regex
1101      *         The expression to be compiled
1102      *
1103      * @param  flags
1104      *         Match flags, a bit mask that may include
1105      *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1106      *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1107      *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1108      *         and {@link #COMMENTS}
1109      *
1110      * @return the given regular expression compiled into a pattern with the given flags
1111      * @throws  IllegalArgumentException
1112      *          If bit values other than those corresponding to the defined
1113      *          match flags are set in {@code flags}
1114      *
1115      * @throws  PatternSyntaxException
1116      *          If the expression's syntax is invalid
1117      */
1118     public static Pattern compile(String regex, int flags) {
1119         return new Pattern(regex, flags);
1120     }
1121 
1122     /**
1123      * Returns the regular expression from which this pattern was compiled.
1124      *
1125      * @return  The source of this pattern
1126      */
1127     public String pattern() {
1128         return pattern;
1129     }
1130 
1131     /**
1132      * <p>Returns the string representation of this pattern. This
1133      * is the regular expression from which this pattern was
1134      * compiled.</p>
1135      *
1136      * @return  The string representation of this pattern
1137      * @since 1.5
1138      */
1139     public String toString() {
1140         return pattern;
1141     }
1142 
1143     /**
1144      * Creates a matcher that will match the given input against this pattern.
1145      *
1146      * @param  input
1147      *         The character sequence to be matched
1148      *
1149      * @return  A new matcher for this pattern
1150      */
1151     public Matcher matcher(CharSequence input) {
1152         if (!compiled) {
1153             synchronized(this) {
1154                 if (!compiled)
1155                     compile();
1156             }
1157         }
1158         Matcher m = new Matcher(this, input);
1159         return m;
1160     }
1161 
1162     /**
1163      * Returns this pattern's match flags.
1164      *
1165      * @return  The match flags specified when this pattern was compiled
1166      */
1167     public int flags() {
1168         return flags0;
1169     }
1170 
1171     /**
1172      * Compiles the given regular expression and attempts to match the given
1173      * input against it.
1174      *
1175      * <p> An invocation of this convenience method of the form
1176      *
1177      * <blockquote><pre>
1178      * Pattern.matches(regex, input);</pre></blockquote>
1179      *
1180      * behaves in exactly the same way as the expression
1181      *
1182      * <blockquote><pre>
1183      * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1184      *
1185      * <p> If a pattern is to be used multiple times, compiling it once and reusing
1186      * it will be more efficient than invoking this method each time.  </p>
1187      *
1188      * @param  regex
1189      *         The expression to be compiled
1190      *
1191      * @param  input
1192      *         The character sequence to be matched
1193      * @return whether or not the regular expression matches on the input
1194      * @throws  PatternSyntaxException
1195      *          If the expression's syntax is invalid
1196      */
1197     public static boolean matches(String regex, CharSequence input) {
1198         Pattern p = Pattern.compile(regex);
1199         Matcher m = p.matcher(input);
1200         return m.matches();
1201     }
1202 
1203     /**
1204      * Splits the given input sequence around matches of this pattern.
1205      *
1206      * <p> The array returned by this method contains each substring of the
1207      * input sequence that is terminated by another subsequence that matches
1208      * this pattern or is terminated by the end of the input sequence.  The
1209      * substrings in the array are in the order in which they occur in the
1210      * input. If this pattern does not match any subsequence of the input then
1211      * the resulting array has just one element, namely the input sequence in
1212      * string form.
1213      *
1214      * <p> When there is a positive-width match at the beginning of the input
1215      * sequence then an empty leading substring is included at the beginning
1216      * of the resulting array. A zero-width match at the beginning however
1217      * never produces such empty leading substring.
1218      *
1219      * <p> The {@code limit} parameter controls the number of times the
1220      * pattern is applied and therefore affects the length of the resulting
1221      * array.
1222      * <ul>
1223      *    <li><p>
1224      *    If the <i>limit</i> is positive then the pattern will be applied
1225      *    at most <i>limit</i>&nbsp;-&nbsp;1 times, the array's length will be
1226      *    no greater than <i>limit</i>, and the array's last entry will contain
1227      *    all input beyond the last matched delimiter.</p></li>
1228      *
1229      *    <li><p>
1230      *    If the <i>limit</i> is zero then the pattern will be applied as
1231      *    many times as possible, the array can have any length, and trailing
1232      *    empty strings will be discarded.</p></li>
1233      *
1234      *    <li><p>
1235      *    If the <i>limit</i> is negative then the pattern will be applied
1236      *    as many times as possible and the array can have any length.</p></li>
1237      * </ul>
1238      *
1239      * <p> The input {@code "boo:and:foo"}, for example, yields the following
1240      * results with these parameters:
1241      *
1242      * <table class="plain" style="margin-left:2em;">
1243      * <caption style="display:none">Split example showing regex, limit, and result</caption>
1244      * <thead>
1245      * <tr>
1246      *     <th scope="col">Regex</th>
1247      *     <th scope="col">Limit</th>
1248      *     <th scope="col">Result</th>
1249      * </tr>
1250      * </thead>
1251      * <tbody>
1252      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
1253      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
1254      *     <td>{@code { "boo", "and:foo" }}</td></tr>
1255      * <tr><!-- : -->
1256      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
1257      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1258      * <tr><!-- : -->
1259      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
1260      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1261      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
1262      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
1263      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1264      * <tr><!-- o -->
1265      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
1266      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1267      * <tr><!-- o -->
1268      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
1269      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1270      * </tbody>
1271      * </table>
1272      *
1273      * @param  input
1274      *         The character sequence to be split
1275      *
1276      * @param  limit
1277      *         The result threshold, as described above
1278      *
1279      * @return  The array of strings computed by splitting the input
1280      *          around matches of this pattern
1281      */
1282     public String[] split(CharSequence input, int limit) {
1283         int index = 0;
1284         boolean matchLimited = limit > 0;
1285         ArrayList<String> matchList = new ArrayList<>();
1286         Matcher m = matcher(input);
1287 
1288         // Add segments before each match found
1289         while(m.find()) {
1290             if (!matchLimited || matchList.size() < limit - 1) {
1291                 if (index == 0 && index == m.start() && m.start() == m.end()) {
1292                     // no empty leading substring included for zero-width match
1293                     // at the beginning of the input char sequence.
1294                     continue;
1295                 }
1296                 String match = input.subSequence(index, m.start()).toString();
1297                 matchList.add(match);
1298                 index = m.end();
1299             } else if (matchList.size() == limit - 1) { // last one
1300                 String match = input.subSequence(index,
1301                                                  input.length()).toString();
1302                 matchList.add(match);
1303                 index = m.end();
1304             }
1305         }
1306 
1307         // If no match was found, return this
1308         if (index == 0)
1309             return new String[] {input.toString()};
1310 
1311         // Add remaining segment
1312         if (!matchLimited || matchList.size() < limit)
1313             matchList.add(input.subSequence(index, input.length()).toString());
1314 
1315         // Construct result
1316         int resultSize = matchList.size();
1317         if (limit == 0)
1318             while (resultSize > 0 && matchList.get(resultSize-1).isEmpty())
1319                 resultSize--;
1320         String[] result = new String[resultSize];
1321         return matchList.subList(0, resultSize).toArray(result);
1322     }
1323 
1324     /**
1325      * Splits the given input sequence around matches of this pattern.
1326      *
1327      * <p> This method works as if by invoking the two-argument {@link
1328      * #split(java.lang.CharSequence, int) split} method with the given input
1329      * sequence and a limit argument of zero.  Trailing empty strings are
1330      * therefore not included in the resulting array. </p>
1331      *
1332      * <p> The input {@code "boo:and:foo"}, for example, yields the following
1333      * results with these expressions:
1334      *
1335      * <table class="plain" style="margin-left:2em">
1336      * <caption style="display:none">Split examples showing regex and result</caption>
1337      * <thead>
1338      * <tr>
1339      *  <th scope="col">Regex</th>
1340      *  <th scope="col">Result</th>
1341      * </tr>
1342      * </thead>
1343      * <tbody>
1344      * <tr><th scope="row" style="text-weight:normal">:</th>
1345      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1346      * <tr><th scope="row" style="text-weight:normal">o</th>
1347      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1348      * </tbody>
1349      * </table>
1350      *
1351      *
1352      * @param  input
1353      *         The character sequence to be split
1354      *
1355      * @return  The array of strings computed by splitting the input
1356      *          around matches of this pattern
1357      */
1358     public String[] split(CharSequence input) {
1359         return split(input, 0);
1360     }
1361 
1362     /**
1363      * Returns a literal pattern {@code String} for the specified
1364      * {@code String}.
1365      *
1366      * <p>This method produces a {@code String} that can be used to
1367      * create a {@code Pattern} that would match the string
1368      * {@code s} as if it were a literal pattern.</p> Metacharacters
1369      * or escape sequences in the input sequence will be given no special
1370      * meaning.
1371      *
1372      * @param  s The string to be literalized
1373      * @return  A literal string replacement
1374      * @since 1.5
1375      */
1376     public static String quote(String s) {
1377         int slashEIndex = s.indexOf("\\E");
1378         if (slashEIndex == -1)
1379             return "\\Q" + s + "\\E";
1380 
1381         int lenHint = s.length();
1382         lenHint = (lenHint < Integer.MAX_VALUE - 8 - lenHint) ?
1383                 (lenHint << 1) : (Integer.MAX_VALUE - 8);
1384 
1385         StringBuilder sb = new StringBuilder(lenHint);
1386         sb.append("\\Q");
1387         int current = 0;
1388         do {
1389             sb.append(s, current, slashEIndex)
1390                     .append("\\E\\\\E\\Q");
1391             current = slashEIndex + 2;
1392         } while ((slashEIndex = s.indexOf("\\E", current)) != -1);
1393 
1394         return sb.append(s, current, s.length())
1395                 .append("\\E")
1396                 .toString();
1397     }
1398 
1399     /**
1400      * Recompile the Pattern instance from a stream.  The original pattern
1401      * string is read in and the object tree is recompiled from it.
1402      */
1403     @java.io.Serial
1404     private void readObject(java.io.ObjectInputStream s)
1405         throws java.io.IOException, ClassNotFoundException {
1406 
1407         // Read in all fields
1408         s.defaultReadObject();
1409 
1410         // reset the flags
1411         flags0 = flags;
1412 
1413         // Initialize counts
1414         capturingGroupCount = 1;
1415         localCount = 0;
1416         localTCNCount = 0;
1417 
1418         // if length > 0, the Pattern is lazily compiled
1419         if (pattern.isEmpty()) {
1420             root = new Start(lastAccept);
1421             matchRoot = lastAccept;
1422             compiled = true;
1423         }
1424     }
1425 
1426     /**
1427      * This private constructor is used to create all Patterns. The pattern
1428      * string and match flags are all that is needed to completely describe
1429      * a Pattern. An empty pattern string results in an object tree with
1430      * only a Start node and a LastNode node.
1431      */
1432     private Pattern(String p, int f) {
1433         if ((f & ~ALL_FLAGS) != 0) {
1434             throw new IllegalArgumentException("Unknown flag 0x"
1435                                                + Integer.toHexString(f));
1436         }
1437         pattern = p;
1438         flags = f;
1439 
1440         // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1441         if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1442             flags |= UNICODE_CASE;
1443 
1444         // 'flags' for compiling
1445         flags0 = flags;
1446 
1447         // Reset group index count
1448         capturingGroupCount = 1;
1449         localCount = 0;
1450         localTCNCount = 0;
1451 
1452         if (!pattern.isEmpty()) {
1453             compile();
1454         } else {
1455             root = new Start(lastAccept);
1456             matchRoot = lastAccept;
1457         }
1458     }
1459 
1460     /**
1461      * The pattern is converted to normalized form ({@link
1462      * java.text.Normalizer.Form#NFC NFC}, canonical decomposition,
1463      * followed by canonical composition for the character class
1464      * part, and {@link java.text.Normalizer.Form#NFD NFD},
1465      * canonical decomposition for the rest), and then a pure
1466      * group is constructed to match canonical equivalences of the
1467      * characters.
1468      */
1469     private static String normalize(String pattern) {
1470         int plen = pattern.length();
1471         StringBuilder pbuf = new StringBuilder(plen);
1472         char last = 0;
1473         int lastStart = 0;
1474         char cc = 0;
1475         for (int i = 0; i < plen;) {
1476             char c = pattern.charAt(i);
1477             if (cc == 0 &&    // top level
1478                 c == '\\' && i + 1 < plen && pattern.charAt(i + 1) == '\\') {
1479                 i += 2; last = 0;
1480                 continue;
1481             }
1482             if (c == '[' && last != '\\') {
1483                 if (cc == 0) {
1484                     if (lastStart < i)
1485                         normalizeSlice(pattern, lastStart, i, pbuf);
1486                     lastStart = i;
1487                 }
1488                 cc++;
1489             } else if (c == ']' && last != '\\') {
1490                 cc--;
1491                 if (cc == 0) {
1492                     normalizeClazz(pattern, lastStart, i + 1, pbuf);
1493                     lastStart = i + 1;
1494                 }
1495             }
1496             last = c;
1497             i++;
1498         }
1499         assert (cc == 0);
1500         if (lastStart < plen)
1501             normalizeSlice(pattern, lastStart, plen, pbuf);
1502         return pbuf.toString();
1503     }
1504 
1505     private static void normalizeSlice(String src, int off, int limit,
1506                                        StringBuilder dst)
1507     {
1508         int len = src.length();
1509         int off0 = off;
1510         while (off < limit && ASCII.isAscii(src.charAt(off))) {
1511             off++;
1512         }
1513         if (off == limit) {
1514             dst.append(src, off0, limit);
1515             return;
1516         }
1517         off--;
1518         if (off < off0)
1519             off = off0;
1520         else
1521             dst.append(src, off0, off);
1522         while (off < limit) {
1523             int ch0 = src.codePointAt(off);
1524             if (".$|()[]{}^?*+\\".indexOf(ch0) != -1) {
1525                 dst.append((char)ch0);
1526                 off++;
1527                 continue;
1528             }
1529             int j = Grapheme.nextBoundary(src, off, limit);
1530             int ch1;
1531             String seq = src.substring(off, j);
1532             String nfd = Normalizer.normalize(seq, Normalizer.Form.NFD);
1533             off = j;
1534             if (nfd.codePointCount(0, nfd.length()) > 1) {
1535                 ch0 = nfd.codePointAt(0);
1536                 ch1 = nfd.codePointAt(Character.charCount(ch0));
1537                 if (Character.getType(ch1) == Character.NON_SPACING_MARK) {
1538                     Set<String> altns = new LinkedHashSet<>();
1539                     altns.add(seq);
1540                     produceEquivalentAlternation(nfd, altns);
1541                     dst.append("(?:");
1542                     altns.forEach( s -> dst.append(s).append('|'));
1543                     dst.delete(dst.length() - 1, dst.length());
1544                     dst.append(")");
1545                     continue;
1546                 }
1547             }
1548             String nfc = Normalizer.normalize(seq, Normalizer.Form.NFC);
1549             if (!seq.equals(nfc) && !nfd.equals(nfc))
1550                 dst.append("(?:" + seq + "|" + nfd  + "|" + nfc + ")");
1551             else if (!seq.equals(nfd))
1552                 dst.append("(?:" + seq + "|" + nfd + ")");
1553             else
1554                 dst.append(seq);
1555         }
1556     }
1557 
1558     private static void normalizeClazz(String src, int off, int limit,
1559                                        StringBuilder dst)
1560     {
1561         dst.append(Normalizer.normalize(src.substring(off, limit), Form.NFC));
1562     }
1563 
1564     /**
1565      * Given a specific sequence composed of a regular character and
1566      * combining marks that follow it, produce the alternation that will
1567      * match all canonical equivalences of that sequence.
1568      */
1569     private static void produceEquivalentAlternation(String src,
1570                                                      Set<String> dst)
1571     {
1572         int len = countChars(src, 0, 1);
1573         if (src.length() == len) {
1574             dst.add(src);  // source has one character.
1575             return;
1576         }
1577         String base = src.substring(0,len);
1578         String combiningMarks = src.substring(len);
1579         String[] perms = producePermutations(combiningMarks);
1580         // Add combined permutations
1581         for(int x = 0; x < perms.length; x++) {
1582             String next = base + perms[x];
1583             dst.add(next);
1584             next = composeOneStep(next);
1585             if (next != null) {
1586                 produceEquivalentAlternation(next, dst);
1587             }
1588         }
1589     }
1590 
1591     /**
1592      * Returns an array of strings that have all the possible
1593      * permutations of the characters in the input string.
1594      * This is used to get a list of all possible orderings
1595      * of a set of combining marks. Note that some of the permutations
1596      * are invalid because of combining class collisions, and these
1597      * possibilities must be removed because they are not canonically
1598      * equivalent.
1599      */
1600     private static String[] producePermutations(String input) {
1601         if (input.length() == countChars(input, 0, 1))
1602             return new String[] {input};
1603 
1604         if (input.length() == countChars(input, 0, 2)) {
1605             int c0 = Character.codePointAt(input, 0);
1606             int c1 = Character.codePointAt(input, Character.charCount(c0));
1607             if (getClass(c1) == getClass(c0)) {
1608                 return new String[] {input};
1609             }
1610             String[] result = new String[2];
1611             result[0] = input;
1612             StringBuilder sb = new StringBuilder(2);
1613             sb.appendCodePoint(c1);
1614             sb.appendCodePoint(c0);
1615             result[1] = sb.toString();
1616             return result;
1617         }
1618 
1619         int length = 1;
1620         int nCodePoints = countCodePoints(input);
1621         for(int x=1; x<nCodePoints; x++)
1622             length = length * (x+1);
1623 
1624         String[] temp = new String[length];
1625 
1626         int combClass[] = new int[nCodePoints];
1627         for(int x=0, i=0; x<nCodePoints; x++) {
1628             int c = Character.codePointAt(input, i);
1629             combClass[x] = getClass(c);
1630             i +=  Character.charCount(c);
1631         }
1632 
1633         // For each char, take it out and add the permutations
1634         // of the remaining chars
1635         int index = 0;
1636         int len;
1637         // offset maintains the index in code units.
1638 loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1639             len = countChars(input, offset, 1);
1640             for(int y=x-1; y>=0; y--) {
1641                 if (combClass[y] == combClass[x]) {
1642                     continue loop;
1643                 }
1644             }
1645             StringBuilder sb = new StringBuilder(input);
1646             String otherChars = sb.delete(offset, offset+len).toString();
1647             String[] subResult = producePermutations(otherChars);
1648 
1649             String prefix = input.substring(offset, offset+len);
1650             for (String sre : subResult)
1651                 temp[index++] = prefix + sre;
1652         }
1653         String[] result = new String[index];
1654         System.arraycopy(temp, 0, result, 0, index);
1655         return result;
1656     }
1657 
1658     private static int getClass(int c) {
1659         return sun.text.Normalizer.getCombiningClass(c);
1660     }
1661 
1662     /**
1663      * Attempts to compose input by combining the first character
1664      * with the first combining mark following it. Returns a String
1665      * that is the composition of the leading character with its first
1666      * combining mark followed by the remaining combining marks. Returns
1667      * null if the first two characters cannot be further composed.
1668      */
1669     private static String composeOneStep(String input) {
1670         int len = countChars(input, 0, 2);
1671         String firstTwoCharacters = input.substring(0, len);
1672         String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1673         if (result.equals(firstTwoCharacters))
1674             return null;
1675         else {
1676             String remainder = input.substring(len);
1677             return result + remainder;
1678         }
1679     }
1680 
1681     /**
1682      * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1683      * See the description of `quotemeta' in perlfunc(1).
1684      */
1685     private void RemoveQEQuoting() {
1686         final int pLen = patternLength;
1687         int i = 0;
1688         while (i < pLen-1) {
1689             if (temp[i] != '\\')
1690                 i += 1;
1691             else if (temp[i + 1] != 'Q')
1692                 i += 2;
1693             else
1694                 break;
1695         }
1696         if (i >= pLen - 1)    // No \Q sequence found
1697             return;
1698         int j = i;
1699         i += 2;
1700         int newTempLen;
1701         try {
1702             newTempLen = Math.addExact(j + 2, Math.multiplyExact(3, pLen - i));
1703         } catch (ArithmeticException ae) {
1704             throw new OutOfMemoryError();
1705         }
1706         int[] newtemp = new int[newTempLen];
1707         System.arraycopy(temp, 0, newtemp, 0, j);
1708 
1709         boolean inQuote = true;
1710         boolean beginQuote = true;
1711         while (i < pLen) {
1712             int c = temp[i++];
1713             if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
1714                 newtemp[j++] = c;
1715             } else if (ASCII.isDigit(c)) {
1716                 if (beginQuote) {
1717                     /*
1718                      * A unicode escape \[0xu] could be before this quote,
1719                      * and we don't want this numeric char to processed as
1720                      * part of the escape.
1721                      */
1722                     newtemp[j++] = '\\';
1723                     newtemp[j++] = 'x';
1724                     newtemp[j++] = '3';
1725                 }
1726                 newtemp[j++] = c;
1727             } else if (c != '\\') {
1728                 if (inQuote) newtemp[j++] = '\\';
1729                 newtemp[j++] = c;
1730             } else if (inQuote) {
1731                 if (temp[i] == 'E') {
1732                     i++;
1733                     inQuote = false;
1734                 } else {
1735                     newtemp[j++] = '\\';
1736                     newtemp[j++] = '\\';
1737                 }
1738             } else {
1739                 if (temp[i] == 'Q') {
1740                     i++;
1741                     inQuote = true;
1742                     beginQuote = true;
1743                     continue;
1744                 } else {
1745                     newtemp[j++] = c;
1746                     if (i != pLen)
1747                         newtemp[j++] = temp[i++];
1748                 }
1749             }
1750 
1751             beginQuote = false;
1752         }
1753 
1754         patternLength = j;
1755         temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1756     }
1757 
1758     /**
1759      * Copies regular expression to an int array and invokes the parsing
1760      * of the expression which will create the object tree.
1761      */
1762     private void compile() {
1763         // Handle canonical equivalences
1764         if (has(CANON_EQ) && !has(LITERAL)) {
1765             normalizedPattern = normalize(pattern);
1766         } else {
1767             normalizedPattern = pattern;
1768         }
1769         patternLength = normalizedPattern.length();
1770 
1771         // Copy pattern to int array for convenience
1772         // Use double zero to terminate pattern
1773         temp = new int[patternLength + 2];
1774 
1775         hasSupplementary = false;
1776         int c, count = 0;
1777         // Convert all chars into code points
1778         for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1779             c = normalizedPattern.codePointAt(x);
1780             if (isSupplementary(c)) {
1781                 hasSupplementary = true;
1782             }
1783             temp[count++] = c;
1784         }
1785 
1786         patternLength = count;   // patternLength now in code points
1787 
1788         if (! has(LITERAL))
1789             RemoveQEQuoting();
1790 
1791         // Allocate all temporary objects here.
1792         buffer = new int[32];
1793         groupNodes = new GroupHead[10];
1794         namedGroups = null;
1795         topClosureNodes = new ArrayList<>(10);
1796 
1797         if (has(LITERAL)) {
1798             // Literal pattern handling
1799             matchRoot = newSlice(temp, patternLength, hasSupplementary);
1800             matchRoot.next = lastAccept;
1801         } else {
1802             // Start recursive descent parsing
1803             matchRoot = expr(lastAccept);
1804             // Check extra pattern characters
1805             if (patternLength != cursor) {
1806                 if (peek() == ')') {
1807                     throw error("Unmatched closing ')'");
1808                 } else {
1809                     throw error("Unexpected internal error");
1810                 }
1811             }
1812         }
1813 
1814         // Peephole optimization
1815         if (matchRoot instanceof Slice) {
1816             root = BnM.optimize(matchRoot);
1817             if (root == matchRoot) {
1818                 root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1819             }
1820         } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1821             root = matchRoot;
1822         } else {
1823             root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1824         }
1825 
1826         // Optimize the greedy Loop to prevent exponential backtracking, IF there
1827         // is no group ref in this pattern. With a non-negative localTCNCount value,
1828         // the greedy type Loop, Curly will skip the backtracking for any starting
1829         // position "i" that failed in the past.
1830         if (!hasGroupRef) {
1831             for (Node node : topClosureNodes) {
1832                 if (node instanceof Loop) {
1833                     // non-deterministic-greedy-group
1834                     ((Loop)node).posIndex = localTCNCount++;
1835                 }
1836             }
1837         }
1838 
1839         // Release temporary storage
1840         temp = null;
1841         buffer = null;
1842         groupNodes = null;
1843         patternLength = 0;
1844         compiled = true;
1845         topClosureNodes = null;
1846     }
1847 
1848     Map<String, Integer> namedGroups() {
1849         Map<String, Integer> groups = namedGroups;
1850         if (groups == null) {
1851             namedGroups = groups = new HashMap<>(2);
1852         }
1853         return groups;
1854     }
1855 
1856     /**
1857      * Used to accumulate information about a subtree of the object graph
1858      * so that optimizations can be applied to the subtree.
1859      */
1860     static final class TreeInfo {
1861         int minLength;
1862         int maxLength;
1863         boolean maxValid;
1864         boolean deterministic;
1865 
1866         TreeInfo() {
1867             reset();
1868         }
1869         void reset() {
1870             minLength = 0;
1871             maxLength = 0;
1872             maxValid = true;
1873             deterministic = true;
1874         }
1875     }
1876 
1877     /*
1878      * The following private methods are mainly used to improve the
1879      * readability of the code. In order to let the Java compiler easily
1880      * inline them, we should not put many assertions or error checks in them.
1881      */
1882 
1883     /**
1884      * Indicates whether a particular flag is set or not.
1885      */
1886     private boolean has(int f) {
1887         return (flags0 & f) != 0;
1888     }
1889 
1890     /**
1891      * Match next character, signal error if failed.
1892      */
1893     private void accept(int ch, String s) {
1894         int testChar = temp[cursor++];
1895         if (has(COMMENTS))
1896             testChar = parsePastWhitespace(testChar);
1897         if (ch != testChar) {
1898             throw error(s);
1899         }
1900     }
1901 
1902     /**
1903      * Mark the end of pattern with a specific character.
1904      */
1905     private void mark(int c) {
1906         temp[patternLength] = c;
1907     }
1908 
1909     /**
1910      * Peek the next character, and do not advance the cursor.
1911      */
1912     private int peek() {
1913         int ch = temp[cursor];
1914         if (has(COMMENTS))
1915             ch = peekPastWhitespace(ch);
1916         return ch;
1917     }
1918 
1919     /**
1920      * Read the next character, and advance the cursor by one.
1921      */
1922     private int read() {
1923         int ch = temp[cursor++];
1924         if (has(COMMENTS))
1925             ch = parsePastWhitespace(ch);
1926         return ch;
1927     }
1928 
1929     /**
1930      * Read the next character, and advance the cursor by one,
1931      * ignoring the COMMENTS setting
1932      */
1933     private int readEscaped() {
1934         int ch = temp[cursor++];
1935         return ch;
1936     }
1937 
1938     /**
1939      * Advance the cursor by one, and peek the next character.
1940      */
1941     private int next() {
1942         int ch = temp[++cursor];
1943         if (has(COMMENTS))
1944             ch = peekPastWhitespace(ch);
1945         return ch;
1946     }
1947 
1948     /**
1949      * Advance the cursor by one, and peek the next character,
1950      * ignoring the COMMENTS setting
1951      */
1952     private int nextEscaped() {
1953         int ch = temp[++cursor];
1954         return ch;
1955     }
1956 
1957     /**
1958      * If in xmode peek past whitespace and comments.
1959      */
1960     private int peekPastWhitespace(int ch) {
1961         while (ASCII.isSpace(ch) || ch == '#') {
1962             while (ASCII.isSpace(ch))
1963                 ch = temp[++cursor];
1964             if (ch == '#') {
1965                 ch = peekPastLine();
1966             }
1967         }
1968         return ch;
1969     }
1970 
1971     /**
1972      * If in xmode parse past whitespace and comments.
1973      */
1974     private int parsePastWhitespace(int ch) {
1975         while (ASCII.isSpace(ch) || ch == '#') {
1976             while (ASCII.isSpace(ch))
1977                 ch = temp[cursor++];
1978             if (ch == '#')
1979                 ch = parsePastLine();
1980         }
1981         return ch;
1982     }
1983 
1984     /**
1985      * xmode parse past comment to end of line.
1986      */
1987     private int parsePastLine() {
1988         int ch = temp[cursor++];
1989         while (ch != 0 && !isLineSeparator(ch))
1990             ch = temp[cursor++];
1991         return ch;
1992     }
1993 
1994     /**
1995      * xmode peek past comment to end of line.
1996      */
1997     private int peekPastLine() {
1998         int ch = temp[++cursor];
1999         while (ch != 0 && !isLineSeparator(ch))
2000             ch = temp[++cursor];
2001         return ch;
2002     }
2003 
2004     /**
2005      * Determines if character is a line separator in the current mode
2006      */
2007     private boolean isLineSeparator(int ch) {
2008         if (has(UNIX_LINES)) {
2009             return ch == '\n';
2010         } else {
2011             return (ch == '\n' ||
2012                     ch == '\r' ||
2013                     (ch|1) == '\u2029' ||
2014                     ch == '\u0085');
2015         }
2016     }
2017 
2018     /**
2019      * Read the character after the next one, and advance the cursor by two.
2020      */
2021     private int skip() {
2022         int i = cursor;
2023         int ch = temp[i+1];
2024         cursor = i + 2;
2025         return ch;
2026     }
2027 
2028     /**
2029      * Unread one next character, and retreat cursor by one.
2030      */
2031     private void unread() {
2032         cursor--;
2033     }
2034 
2035     /**
2036      * Internal method used for handling all syntax errors. The pattern is
2037      * displayed with a pointer to aid in locating the syntax error.
2038      */
2039     private PatternSyntaxException error(String s) {
2040         return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
2041     }
2042 
2043     /**
2044      * Determines if there is any supplementary character or unpaired
2045      * surrogate in the specified range.
2046      */
2047     private boolean findSupplementary(int start, int end) {
2048         for (int i = start; i < end; i++) {
2049             if (isSupplementary(temp[i]))
2050                 return true;
2051         }
2052         return false;
2053     }
2054 
2055     /**
2056      * Determines if the specified code point is a supplementary
2057      * character or unpaired surrogate.
2058      */
2059     private static final boolean isSupplementary(int ch) {
2060         return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
2061                Character.isSurrogate((char)ch);
2062     }
2063 
2064     /**
2065      *  The following methods handle the main parsing. They are sorted
2066      *  according to their precedence order, the lowest one first.
2067      */
2068 
2069     /**
2070      * The expression is parsed with branch nodes added for alternations.
2071      * This may be called recursively to parse sub expressions that may
2072      * contain alternations.
2073      */
2074     private Node expr(Node end) {
2075         Node prev = null;
2076         Node firstTail = null;
2077         Branch branch = null;
2078         Node branchConn = null;
2079 
2080         for (;;) {
2081             Node node = sequence(end);
2082             Node nodeTail = root;      //double return
2083             if (prev == null) {
2084                 prev = node;
2085                 firstTail = nodeTail;
2086             } else {
2087                 // Branch
2088                 if (branchConn == null) {
2089                     branchConn = new BranchConn();
2090                     branchConn.next = end;
2091                 }
2092                 if (node == end) {
2093                     // if the node returned from sequence() is "end"
2094                     // we have an empty expr, set a null atom into
2095                     // the branch to indicate to go "next" directly.
2096                     node = null;
2097                 } else {
2098                     // the "tail.next" of each atom goes to branchConn
2099                     nodeTail.next = branchConn;
2100                 }
2101                 if (prev == branch) {
2102                     branch.add(node);
2103                 } else {
2104                     if (prev == end) {
2105                         prev = null;
2106                     } else {
2107                         // replace the "end" with "branchConn" at its tail.next
2108                         // when put the "prev" into the branch as the first atom.
2109                         firstTail.next = branchConn;
2110                     }
2111                     prev = branch = new Branch(prev, node, branchConn);
2112                 }
2113             }
2114             if (peek() != '|') {
2115                 return prev;
2116             }
2117             next();
2118         }
2119     }
2120 
2121     @SuppressWarnings("fallthrough")
2122     /**
2123      * Parsing of sequences between alternations.
2124      */
2125     private Node sequence(Node end) {
2126         Node head = null;
2127         Node tail = null;
2128         Node node;
2129     LOOP:
2130         for (;;) {
2131             int ch = peek();
2132             switch (ch) {
2133             case '(':
2134                 // Because group handles its own closure,
2135                 // we need to treat it differently
2136                 node = group0();
2137                 // Check for comment or flag group
2138                 if (node == null)
2139                     continue;
2140                 if (head == null)
2141                     head = node;
2142                 else
2143                     tail.next = node;
2144                 // Double return: Tail was returned in root
2145                 tail = root;
2146                 continue;
2147             case '[':
2148                 if (has(CANON_EQ) && !has(LITERAL))
2149                     node = new NFCCharProperty(clazz(true));
2150                 else
2151                     node = newCharProperty(clazz(true));
2152                 break;
2153             case '\\':
2154                 ch = nextEscaped();
2155                 if (ch == 'p' || ch == 'P') {
2156                     boolean oneLetter = true;
2157                     boolean comp = (ch == 'P');
2158                     ch = next(); // Consume { if present
2159                     if (ch != '{') {
2160                         unread();
2161                     } else {
2162                         oneLetter = false;
2163                     }
2164                     // node = newCharProperty(family(oneLetter, comp));
2165                     if (has(CANON_EQ) && !has(LITERAL))
2166                         node = new NFCCharProperty(family(oneLetter, comp));
2167                     else
2168                         node = newCharProperty(family(oneLetter, comp));
2169                 } else {
2170                     unread();
2171                     node = atom();
2172                 }
2173                 break;
2174             case '^':
2175                 next();
2176                 if (has(MULTILINE)) {
2177                     if (has(UNIX_LINES))
2178                         node = new UnixCaret();
2179                     else
2180                         node = new Caret();
2181                 } else {
2182                     node = new Begin();
2183                 }
2184                 break;
2185             case '$':
2186                 next();
2187                 if (has(UNIX_LINES))
2188                     node = new UnixDollar(has(MULTILINE));
2189                 else
2190                     node = new Dollar(has(MULTILINE));
2191                 break;
2192             case '.':
2193                 next();
2194                 if (has(DOTALL)) {
2195                     node = new CharProperty(ALL());
2196                 } else {
2197                     if (has(UNIX_LINES)) {
2198                         node = new CharProperty(UNIXDOT());
2199                     } else {
2200                         node = new CharProperty(DOT());
2201                     }
2202                 }
2203                 break;
2204             case '|':
2205             case ')':
2206                 break LOOP;
2207             case ']': // Now interpreting dangling ] and } as literals
2208             case '}':
2209                 node = atom();
2210                 break;
2211             case '?':
2212             case '*':
2213             case '+':
2214                 next();
2215                 throw error("Dangling meta character '" + ((char)ch) + "'");
2216             case 0:
2217                 if (cursor >= patternLength) {
2218                     break LOOP;
2219                 }
2220                 // Fall through
2221             default:
2222                 node = atom();
2223                 break;
2224             }
2225 
2226             node = closure(node);
2227             /* save the top dot-greedy nodes (.*, .+) as well
2228             if (node instanceof GreedyCharProperty &&
2229                 ((GreedyCharProperty)node).cp instanceof Dot) {
2230                 topClosureNodes.add(node);
2231             }
2232             */
2233             if (head == null) {
2234                 head = tail = node;
2235             } else {
2236                 tail.next = node;
2237                 tail = node;
2238             }
2239         }
2240         if (head == null) {
2241             return end;
2242         }
2243         tail.next = end;
2244         root = tail;      //double return
2245         return head;
2246     }
2247 
2248     @SuppressWarnings("fallthrough")
2249     /**
2250      * Parse and add a new Single or Slice.
2251      */
2252     private Node atom() {
2253         int first = 0;
2254         int prev = -1;
2255         boolean hasSupplementary = false;
2256         int ch = peek();
2257         for (;;) {
2258             switch (ch) {
2259             case '*':
2260             case '+':
2261             case '?':
2262             case '{':
2263                 if (first > 1) {
2264                     cursor = prev;    // Unwind one character
2265                     first--;
2266                 }
2267                 break;
2268             case '$':
2269             case '.':
2270             case '^':
2271             case '(':
2272             case '[':
2273             case '|':
2274             case ')':
2275                 break;
2276             case '\\':
2277                 ch = nextEscaped();
2278                 if (ch == 'p' || ch == 'P') { // Property
2279                     if (first > 0) { // Slice is waiting; handle it first
2280                         unread();
2281                         break;
2282                     } else { // No slice; just return the family node
2283                         boolean comp = (ch == 'P');
2284                         boolean oneLetter = true;
2285                         ch = next(); // Consume { if present
2286                         if (ch != '{')
2287                             unread();
2288                         else
2289                             oneLetter = false;
2290                         if (has(CANON_EQ) && !has(LITERAL))
2291                             return new NFCCharProperty(family(oneLetter, comp));
2292                         else
2293                             return newCharProperty(family(oneLetter, comp));
2294                     }
2295                 }
2296                 unread();
2297                 prev = cursor;
2298                 ch = escape(false, first == 0, false);
2299                 if (ch >= 0) {
2300                     append(ch, first);
2301                     first++;
2302                     if (isSupplementary(ch)) {
2303                         hasSupplementary = true;
2304                     }
2305                     ch = peek();
2306                     continue;
2307                 } else if (first == 0) {
2308                     return root;
2309                 }
2310                 // Unwind meta escape sequence
2311                 cursor = prev;
2312                 break;
2313             case 0:
2314                 if (cursor >= patternLength) {
2315                     break;
2316                 }
2317                 // Fall through
2318             default:
2319                 prev = cursor;
2320                 append(ch, first);
2321                 first++;
2322                 if (isSupplementary(ch)) {
2323                     hasSupplementary = true;
2324                 }
2325                 ch = next();
2326                 continue;
2327             }
2328             break;
2329         }
2330         if (first == 1) {
2331             return newCharProperty(single(buffer[0]));
2332         } else {
2333             return newSlice(buffer, first, hasSupplementary);
2334         }
2335     }
2336 
2337     private void append(int ch, int index) {
2338         int len = buffer.length;
2339         if (index - len >= 0) {
2340             len = ArraysSupport.newLength(len,
2341                     1 + index - len, /* minimum growth */
2342                     len              /* preferred growth */);
2343             buffer = Arrays.copyOf(buffer, len);
2344         }
2345         buffer[index] = ch;
2346     }
2347 
2348     /**
2349      * Parses a backref greedily, taking as many numbers as it
2350      * can. The first digit is always treated as a backref, but
2351      * multi digit numbers are only treated as a backref if at
2352      * least that many backrefs exist at this point in the regex.
2353      */
2354     private Node ref(int refNum) {
2355         boolean done = false;
2356         while(!done) {
2357             int ch = peek();
2358             switch(ch) {
2359             case '0':
2360             case '1':
2361             case '2':
2362             case '3':
2363             case '4':
2364             case '5':
2365             case '6':
2366             case '7':
2367             case '8':
2368             case '9':
2369                 int newRefNum = (refNum * 10) + (ch - '0');
2370                 // Add another number if it doesn't make a group
2371                 // that doesn't exist
2372                 if (capturingGroupCount - 1 < newRefNum) {
2373                     done = true;
2374                     break;
2375                 }
2376                 refNum = newRefNum;
2377                 read();
2378                 break;
2379             default:
2380                 done = true;
2381                 break;
2382             }
2383         }
2384         hasGroupRef = true;
2385         if (has(CASE_INSENSITIVE))
2386             return new CIBackRef(refNum, has(UNICODE_CASE));
2387         else
2388             return new BackRef(refNum);
2389     }
2390 
2391     /**
2392      * Parses an escape sequence to determine the actual value that needs
2393      * to be matched.
2394      * If -1 is returned and create was true a new object was added to the tree
2395      * to handle the escape sequence.
2396      * If the returned value is greater than zero, it is the value that
2397      * matches the escape sequence.
2398      */
2399     private int escape(boolean inclass, boolean create, boolean isrange) {
2400         int ch = skip();
2401         switch (ch) {
2402         case '0':
2403             return o();
2404         case '1':
2405         case '2':
2406         case '3':
2407         case '4':
2408         case '5':
2409         case '6':
2410         case '7':
2411         case '8':
2412         case '9':
2413             if (inclass) break;
2414             if (create) {
2415                 root = ref((ch - '0'));
2416             }
2417             return -1;
2418         case 'A':
2419             if (inclass) break;
2420             if (create) root = new Begin();
2421             return -1;
2422         case 'B':
2423             if (inclass) break;
2424             if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2425             return -1;
2426         case 'C':
2427             break;
2428         case 'D':
2429             if (create) {
2430                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2431                             CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2432                 predicate = predicate.negate();
2433                 if (!inclass)
2434                     root = newCharProperty(predicate);
2435             }
2436             return -1;
2437         case 'E':
2438         case 'F':
2439             break;
2440         case 'G':
2441             if (inclass) break;
2442             if (create) root = new LastMatch();
2443             return -1;
2444         case 'H':
2445             if (create) {
2446                 predicate = HorizWS().negate();
2447                 if (!inclass)
2448                     root = newCharProperty(predicate);
2449             }
2450             return -1;
2451         case 'I':
2452         case 'J':
2453         case 'K':
2454         case 'L':
2455         case 'M':
2456             break;
2457         case 'N':
2458             return N();
2459         case 'O':
2460         case 'P':
2461         case 'Q':
2462             break;
2463         case 'R':
2464             if (inclass) break;
2465             if (create) root = new LineEnding();
2466             return -1;
2467         case 'S':
2468             if (create) {
2469                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2470                             CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2471                 predicate = predicate.negate();
2472                 if (!inclass)
2473                     root = newCharProperty(predicate);
2474             }
2475             return -1;
2476         case 'T':
2477         case 'U':
2478             break;
2479         case 'V':
2480             if (create) {
2481                 predicate = VertWS().negate();
2482                 if (!inclass)
2483                     root = newCharProperty(predicate);
2484             }
2485             return -1;
2486         case 'W':
2487             if (create) {
2488                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2489                             CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2490                 predicate = predicate.negate();
2491                 if (!inclass)
2492                     root = newCharProperty(predicate);
2493             }
2494             return -1;
2495         case 'X':
2496             if (inclass) break;
2497             if (create) {
2498                 root = new XGrapheme();
2499             }
2500             return -1;
2501         case 'Y':
2502             break;
2503         case 'Z':
2504             if (inclass) break;
2505             if (create) {
2506                 if (has(UNIX_LINES))
2507                     root = new UnixDollar(false);
2508                 else
2509                     root = new Dollar(false);
2510             }
2511             return -1;
2512         case 'a':
2513             return '\007';
2514         case 'b':
2515             if (inclass) break;
2516             if (create) {
2517                 if (peek() == '{') {
2518                     if (skip() == 'g') {
2519                         if (read() == '}') {
2520                             root = new GraphemeBound();
2521                             return -1;
2522                         }
2523                         break;  // error missing trailing }
2524                     }
2525                     unread(); unread();
2526                 }
2527                 root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2528             }
2529             return -1;
2530         case 'c':
2531             return c();
2532         case 'd':
2533             if (create) {
2534                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2535                             CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2536                 if (!inclass)
2537                     root = newCharProperty(predicate);
2538             }
2539             return -1;
2540         case 'e':
2541             return '\033';
2542         case 'f':
2543             return '\f';
2544         case 'g':
2545             break;
2546         case 'h':
2547             if (create) {
2548                 predicate = HorizWS();
2549                 if (!inclass)
2550                     root = newCharProperty(predicate);
2551             }
2552             return -1;
2553         case 'i':
2554         case 'j':
2555             break;
2556         case 'k':
2557             if (inclass)
2558                 break;
2559             if (read() != '<')
2560                 throw error("\\k is not followed by '<' for named capturing group");
2561             String name = groupname(read());
2562             if (!namedGroups().containsKey(name))
2563                 throw error("named capturing group <" + name + "> does not exist");
2564             if (create) {
2565                 hasGroupRef = true;
2566                 if (has(CASE_INSENSITIVE))
2567                     root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2568                 else
2569                     root = new BackRef(namedGroups().get(name));
2570             }
2571             return -1;
2572         case 'l':
2573         case 'm':
2574             break;
2575         case 'n':
2576             return '\n';
2577         case 'o':
2578         case 'p':
2579         case 'q':
2580             break;
2581         case 'r':
2582             return '\r';
2583         case 's':
2584             if (create) {
2585                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2586                             CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2587                 if (!inclass)
2588                     root = newCharProperty(predicate);
2589             }
2590             return -1;
2591         case 't':
2592             return '\t';
2593         case 'u':
2594             return u();
2595         case 'v':
2596             // '\v' was implemented as VT/0x0B in releases < 1.8 (though
2597             // undocumented). In JDK8 '\v' is specified as a predefined
2598             // character class for all vertical whitespace characters.
2599             // So [-1, root=VertWS node] pair is returned (instead of a
2600             // single 0x0B). This breaks the range if '\v' is used as
2601             // the start or end value, such as [\v-...] or [...-\v], in
2602             // which a single definite value (0x0B) is expected. For
2603             // compatibility concern '\013'/0x0B is returned if isrange.
2604             if (isrange)
2605                 return '\013';
2606             if (create) {
2607                 predicate = VertWS();
2608                 if (!inclass)
2609                     root = newCharProperty(predicate);
2610             }
2611             return -1;
2612         case 'w':
2613             if (create) {
2614                 predicate = has(UNICODE_CHARACTER_CLASS) ?
2615                             CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2616                 if (!inclass)
2617                     root = newCharProperty(predicate);
2618             }
2619             return -1;
2620         case 'x':
2621             return x();
2622         case 'y':
2623             break;
2624         case 'z':
2625             if (inclass) break;
2626             if (create) root = new End();
2627             return -1;
2628         default:
2629             return ch;
2630         }
2631         throw error("Illegal/unsupported escape sequence");
2632     }
2633 
2634     /**
2635      * Parse a character class, and return the node that matches it.
2636      *
2637      * Consumes a ] on the way out if consume is true. Usually consume
2638      * is true except for the case of [abc&&def] where def is a separate
2639      * right hand node with "understood" brackets.
2640      */
2641     private CharPredicate clazz(boolean consume) {
2642         CharPredicate prev = null;
2643         CharPredicate curr = null;
2644         BitClass bits = new BitClass();
2645 
2646         boolean isNeg = false;
2647         boolean hasBits = false;
2648         int ch = next();
2649 
2650         // Negates if first char in a class, otherwise literal
2651         if (ch == '^' && temp[cursor-1] == '[') {
2652             ch = next();
2653             isNeg = true;
2654         }
2655         for (;;) {
2656             switch (ch) {
2657                 case '[':
2658                     curr = clazz(true);
2659                     if (prev == null)
2660                         prev = curr;
2661                     else
2662                         prev = prev.union(curr);
2663                     ch = peek();
2664                     continue;
2665                 case '&':
2666                     ch = next();
2667                     if (ch == '&') {
2668                         ch = next();
2669                         CharPredicate right = null;
2670                         while (ch != ']' && ch != '&') {
2671                             if (ch == '[') {
2672                                 if (right == null)
2673                                     right = clazz(true);
2674                                 else
2675                                     right = right.union(clazz(true));
2676                             } else { // abc&&def
2677                                 unread();
2678                                 right = clazz(false);
2679                             }
2680                             ch = peek();
2681                         }
2682                         if (hasBits) {
2683                             // bits used, union has high precedence
2684                             if (prev == null) {
2685                                 prev = curr = bits;
2686                             } else {
2687                                 prev = prev.union(bits);
2688                             }
2689                             hasBits = false;
2690                         }
2691                         if (right != null)
2692                             curr = right;
2693                         if (prev == null) {
2694                             if (right == null)
2695                                 throw error("Bad class syntax");
2696                             else
2697                                 prev = right;
2698                         } else {
2699                             prev = prev.and(curr);
2700                         }
2701                     } else {
2702                         // treat as a literal &
2703                         unread();
2704                         break;
2705                     }
2706                     continue;
2707                 case 0:
2708                     if (cursor >= patternLength)
2709                         throw error("Unclosed character class");
2710                     break;
2711                 case ']':
2712                     if (prev != null || hasBits) {
2713                         if (consume)
2714                             next();
2715                         if (prev == null)
2716                             prev = bits;
2717                         else if (hasBits)
2718                             prev = prev.union(bits);
2719                         if (isNeg)
2720                             return prev.negate();
2721                         return prev;
2722                     }
2723                     break;
2724                 default:
2725                     break;
2726             }
2727             curr = range(bits);
2728             if (curr == null) {    // the bits used
2729                 hasBits = true;
2730             } else {
2731                 if (prev == null)
2732                     prev = curr;
2733                 else if (prev != curr)
2734                     prev = prev.union(curr);
2735             }
2736             ch = peek();
2737         }
2738     }
2739 
2740     private CharPredicate bitsOrSingle(BitClass bits, int ch) {
2741         /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2742            Use "single" node instead of bits when dealing with unicode
2743            case folding for codepoints listed below.
2744            (1)Uppercase out of range: u+00ff, u+00b5
2745               toUpperCase(u+00ff) -> u+0178
2746               toUpperCase(u+00b5) -> u+039c
2747            (2)LatinSmallLetterLongS u+17f
2748               toUpperCase(u+017f) -> u+0053
2749            (3)LatinSmallLetterDotlessI u+131
2750               toUpperCase(u+0131) -> u+0049
2751            (4)LatinCapitalLetterIWithDotAbove u+0130
2752               toLowerCase(u+0130) -> u+0069
2753            (5)KelvinSign u+212a
2754               toLowerCase(u+212a) ==> u+006B
2755            (6)AngstromSign u+212b
2756               toLowerCase(u+212b) ==> u+00e5
2757         */
2758         if (ch < 256 &&
2759             !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2760               (ch == 0xff || ch == 0xb5 ||
2761                ch == 0x49 || ch == 0x69 ||    //I and i
2762                ch == 0x53 || ch == 0x73 ||    //S and s
2763                ch == 0x4b || ch == 0x6b ||    //K and k
2764                ch == 0xc5 || ch == 0xe5))) {  //A+ring
2765             bits.add(ch, flags0);
2766             return null;
2767         }
2768         return single(ch);
2769     }
2770 
2771     /**
2772      *  Returns a suitably optimized, single character predicate
2773      */
2774     private CharPredicate single(final int ch) {
2775         if (has(CASE_INSENSITIVE)) {
2776             int lower, upper;
2777             if (has(UNICODE_CASE)) {
2778                 upper = Character.toUpperCase(ch);
2779                 lower = Character.toLowerCase(upper);
2780                 // Unicode case insensitive matches
2781                 if (upper != lower)
2782                     return SingleU(lower);
2783             } else if (ASCII.isAscii(ch)) {
2784                 lower = ASCII.toLower(ch);
2785                 upper = ASCII.toUpper(ch);
2786                 // Case insensitive matches a given BMP character
2787                 if (lower != upper)
2788                     return SingleI(lower, upper);
2789             }
2790         }
2791         if (isSupplementary(ch))
2792             return SingleS(ch);
2793         return Single(ch);  // Match a given BMP character
2794     }
2795 
2796     /**
2797      * Parse a single character or a character range in a character class
2798      * and return its representative node.
2799      */
2800     private CharPredicate range(BitClass bits) {
2801         int ch = peek();
2802         if (ch == '\\') {
2803             ch = nextEscaped();
2804             if (ch == 'p' || ch == 'P') { // A property
2805                 boolean comp = (ch == 'P');
2806                 boolean oneLetter = true;
2807                 // Consume { if present
2808                 ch = next();
2809                 if (ch != '{')
2810                     unread();
2811                 else
2812                     oneLetter = false;
2813                 return family(oneLetter, comp);
2814             } else { // ordinary escape
2815                 boolean isrange = temp[cursor+1] == '-';
2816                 unread();
2817                 ch = escape(true, true, isrange);
2818                 if (ch == -1)
2819                     return predicate;
2820             }
2821         } else {
2822             next();
2823         }
2824         if (ch >= 0) {
2825             if (peek() == '-') {
2826                 int endRange = temp[cursor+1];
2827                 if (endRange == '[') {
2828                     return bitsOrSingle(bits, ch);
2829                 }
2830                 if (endRange != ']') {
2831                     next();
2832                     int m = peek();
2833                     if (m == '\\') {
2834                         m = escape(true, false, true);
2835                     } else {
2836                         next();
2837                     }
2838                     if (m < ch) {
2839                         throw error("Illegal character range");
2840                     }
2841                     if (has(CASE_INSENSITIVE)) {
2842                         if (has(UNICODE_CASE))
2843                             return CIRangeU(ch, m);
2844                         return CIRange(ch, m);
2845                     } else {
2846                         return Range(ch, m);
2847                     }
2848                 }
2849             }
2850             return bitsOrSingle(bits, ch);
2851         }
2852         throw error("Unexpected character '"+((char)ch)+"'");
2853     }
2854 
2855     /**
2856      * Parses a Unicode character family and returns its representative node.
2857      */
2858     private CharPredicate family(boolean singleLetter, boolean isComplement) {
2859         next();
2860         String name;
2861         CharPredicate p = null;
2862 
2863         if (singleLetter) {
2864             int c = temp[cursor];
2865             if (!Character.isSupplementaryCodePoint(c)) {
2866                 name = String.valueOf((char)c);
2867             } else {
2868                 name = new String(temp, cursor, 1);
2869             }
2870             read();
2871         } else {
2872             int i = cursor;
2873             mark('}');
2874             while(read() != '}') {
2875             }
2876             mark('\000');
2877             int j = cursor;
2878             if (j > patternLength)
2879                 throw error("Unclosed character family");
2880             if (i + 1 >= j)
2881                 throw error("Empty character family");
2882             name = new String(temp, i, j-i-1);
2883         }
2884 
2885         int i = name.indexOf('=');
2886         if (i != -1) {
2887             // property construct \p{name=value}
2888             String value = name.substring(i + 1);
2889             name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2890             switch (name) {
2891                 case "sc":
2892                 case "script":
2893                     p = CharPredicates.forUnicodeScript(value);
2894                     break;
2895                 case "blk":
2896                 case "block":
2897                     p = CharPredicates.forUnicodeBlock(value);
2898                     break;
2899                 case "gc":
2900                 case "general_category":
2901                     p = CharPredicates.forProperty(value);
2902                     break;
2903                 default:
2904                     break;
2905             }
2906             if (p == null)
2907                 throw error("Unknown Unicode property {name=<" + name + ">, "
2908                              + "value=<" + value + ">}");
2909 
2910         } else {
2911             if (name.startsWith("In")) {
2912                 // \p{InBlockName}
2913                 p = CharPredicates.forUnicodeBlock(name.substring(2));
2914             } else if (name.startsWith("Is")) {
2915                 // \p{IsGeneralCategory} and \p{IsScriptName}
2916                 String shortName = name.substring(2);
2917                 p = CharPredicates.forUnicodeProperty(shortName);
2918                 if (p == null)
2919                     p = CharPredicates.forProperty(shortName);
2920                 if (p == null)
2921                     p = CharPredicates.forUnicodeScript(shortName);
2922             } else {
2923                 if (has(UNICODE_CHARACTER_CLASS)) {
2924                     p = CharPredicates.forPOSIXName(name);
2925                 }
2926                 if (p == null)
2927                     p = CharPredicates.forProperty(name);
2928             }
2929             if (p == null)
2930                 throw error("Unknown character property name {" + name + "}");
2931         }
2932         if (isComplement) {
2933             // it might be too expensive to detect if a complement of
2934             // CharProperty can match "certain" supplementary. So just
2935             // go with StartS.
2936             hasSupplementary = true;
2937             p = p.negate();
2938         }
2939         return p;
2940     }
2941 
2942     private CharProperty newCharProperty(CharPredicate p) {
2943         if (p == null)
2944             return null;
2945         if (p instanceof BmpCharPredicate)
2946             return new BmpCharProperty((BmpCharPredicate)p);
2947         else
2948             return new CharProperty(p);
2949     }
2950 
2951     /**
2952      * Parses and returns the name of a "named capturing group", the trailing
2953      * ">" is consumed after parsing.
2954      */
2955     private String groupname(int ch) {
2956         StringBuilder sb = new StringBuilder();
2957         if (!ASCII.isAlpha(ch))
2958             throw error("capturing group name does not start with a Latin letter");
2959         do {
2960             sb.append((char) ch);
2961         } while (ASCII.isAlnum(ch=read()));
2962         if (ch != '>')
2963             throw error("named capturing group is missing trailing '>'");
2964         return sb.toString();
2965     }
2966 
2967     /**
2968      * Parses a group and returns the head node of a set of nodes that process
2969      * the group. Sometimes a double return system is used where the tail is
2970      * returned in root.
2971      */
2972     private Node group0() {
2973         boolean capturingGroup = false;
2974         Node head;
2975         Node tail;
2976         int save = flags0;
2977         int saveTCNCount = topClosureNodes.size();
2978         root = null;
2979         int ch = next();
2980         if (ch == '?') {
2981             ch = skip();
2982             switch (ch) {
2983             case ':':   //  (?:xxx) pure group
2984                 head = createGroup(true);
2985                 tail = root;
2986                 head.next = expr(tail);
2987                 break;
2988             case '=':   // (?=xxx) and (?!xxx) lookahead
2989             case '!':
2990                 head = createGroup(true);
2991                 tail = root;
2992                 head.next = expr(tail);
2993                 if (ch == '=') {
2994                     head = tail = new Pos(head);
2995                 } else {
2996                     head = tail = new Neg(head);
2997                 }
2998                 break;
2999             case '>':   // (?>xxx)  independent group
3000                 head = createGroup(true);
3001                 tail = root;
3002                 head.next = expr(tail);
3003                 head = tail = new Ques(head, Qtype.INDEPENDENT);
3004                 break;
3005             case '<':   // (?<xxx)  look behind
3006                 ch = read();
3007                 if (ch != '=' && ch != '!') {
3008                     // named captured group
3009                     String name = groupname(ch);
3010                     if (namedGroups().containsKey(name))
3011                         throw error("Named capturing group <" + name
3012                                     + "> is already defined");
3013                     capturingGroup = true;
3014                     head = createGroup(false);
3015                     tail = root;
3016                     namedGroups().put(name, capturingGroupCount-1);
3017                     head.next = expr(tail);
3018                     break;
3019                 }
3020                 int start = cursor;
3021                 head = createGroup(true);
3022                 tail = root;
3023                 head.next = expr(tail);
3024                 tail.next = LookBehindEndNode.INSTANCE;
3025                 TreeInfo info = new TreeInfo();
3026                 head.study(info);
3027                 if (info.maxValid == false) {
3028                     throw error("Look-behind group does not have "
3029                                 + "an obvious maximum length");
3030                 }
3031                 boolean hasSupplementary = findSupplementary(start, patternLength);
3032                 if (ch == '=') {
3033                     head = tail = (hasSupplementary ?
3034                                    new BehindS(head, info.maxLength,
3035                                                info.minLength) :
3036                                    new Behind(head, info.maxLength,
3037                                               info.minLength));
3038                 } else { // if (ch == '!')
3039                     head = tail = (hasSupplementary ?
3040                                    new NotBehindS(head, info.maxLength,
3041                                                   info.minLength) :
3042                                    new NotBehind(head, info.maxLength,
3043                                                  info.minLength));
3044                 }
3045                 // clear all top-closure-nodes inside lookbehind
3046                 if (saveTCNCount < topClosureNodes.size())
3047                     topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3048                 break;
3049             case '$':
3050             case '@':
3051                 throw error("Unknown group type");
3052             default:    // (?xxx:) inlined match flags
3053                 unread();
3054                 addFlag();
3055                 ch = read();
3056                 if (ch == ')') {
3057                     return null;    // Inline modifier only
3058                 }
3059                 if (ch != ':') {
3060                     throw error("Unknown inline modifier");
3061                 }
3062                 head = createGroup(true);
3063                 tail = root;
3064                 head.next = expr(tail);
3065                 break;
3066             }
3067         } else { // (xxx) a regular group
3068             capturingGroup = true;
3069             head = createGroup(false);
3070             tail = root;
3071             head.next = expr(tail);
3072         }
3073 
3074         accept(')', "Unclosed group");
3075         flags0 = save;
3076 
3077         // Check for quantifiers
3078         Node node = closure(head);
3079         if (node == head) { // No closure
3080             root = tail;
3081             return node;    // Dual return
3082         }
3083         if (head == tail) { // Zero length assertion
3084             root = node;
3085             return node;    // Dual return
3086         }
3087 
3088         // have group closure, clear all inner closure nodes from the
3089         // top list (no backtracking stopper optimization for inner
3090         if (saveTCNCount < topClosureNodes.size())
3091             topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3092 
3093         if (node instanceof Ques) {
3094             Ques ques = (Ques) node;
3095             if (ques.type == Qtype.POSSESSIVE) {
3096                 root = node;
3097                 return node;
3098             }
3099             tail.next = new BranchConn();
3100             tail = tail.next;
3101             if (ques.type == Qtype.GREEDY) {
3102                 head = new Branch(head, null, tail);
3103             } else { // Reluctant quantifier
3104                 head = new Branch(null, head, tail);
3105             }
3106             root = tail;
3107             return head;
3108         } else if (node instanceof Curly) {
3109             Curly curly = (Curly) node;
3110             if (curly.type == Qtype.POSSESSIVE) {
3111                 root = node;
3112                 return node;
3113             }
3114             // Discover if the group is deterministic
3115             TreeInfo info = new TreeInfo();
3116             if (head.study(info)) { // Deterministic
3117                 GroupTail temp = (GroupTail) tail;
3118                 head = root = new GroupCurly(head.next, curly.cmin,
3119                                    curly.cmax, curly.type,
3120                                    ((GroupTail)tail).localIndex,
3121                                    ((GroupTail)tail).groupIndex,
3122                                              capturingGroup);
3123                 return head;
3124             } else { // Non-deterministic
3125                 int temp = ((GroupHead) head).localIndex;
3126                 Loop loop;
3127                 if (curly.type == Qtype.GREEDY) {
3128                     loop = new Loop(this.localCount, temp);
3129                     // add the max_reps greedy to the top-closure-node list
3130                     if (curly.cmax == MAX_REPS)
3131                         topClosureNodes.add(loop);
3132                 } else {  // Reluctant Curly
3133                     loop = new LazyLoop(this.localCount, temp);
3134                 }
3135                 Prolog prolog = new Prolog(loop);
3136                 this.localCount += 1;
3137                 loop.cmin = curly.cmin;
3138                 loop.cmax = curly.cmax;
3139                 loop.body = head;
3140                 tail.next = loop;
3141                 root = loop;
3142                 return prolog; // Dual return
3143             }
3144         }
3145         throw error("Internal logic error");
3146     }
3147 
3148     /**
3149      * Create group head and tail nodes using double return. If the group is
3150      * created with anonymous true then it is a pure group and should not
3151      * affect group counting.
3152      */
3153     private Node createGroup(boolean anonymous) {
3154         int localIndex = localCount++;
3155         int groupIndex = 0;
3156         if (!anonymous)
3157             groupIndex = capturingGroupCount++;
3158         GroupHead head = new GroupHead(localIndex);
3159         root = new GroupTail(localIndex, groupIndex);
3160 
3161         // for debug/print only, head.match does NOT need the "tail" info
3162         head.tail = (GroupTail)root;
3163 
3164         if (!anonymous && groupIndex < 10)
3165             groupNodes[groupIndex] = head;
3166         return head;
3167     }
3168 
3169     @SuppressWarnings("fallthrough")
3170     /**
3171      * Parses inlined match flags and set them appropriately.
3172      */
3173     private void addFlag() {
3174         int ch = peek();
3175         for (;;) {
3176             switch (ch) {
3177             case 'i':
3178                 flags0 |= CASE_INSENSITIVE;
3179                 break;
3180             case 'm':
3181                 flags0 |= MULTILINE;
3182                 break;
3183             case 's':
3184                 flags0 |= DOTALL;
3185                 break;
3186             case 'd':
3187                 flags0 |= UNIX_LINES;
3188                 break;
3189             case 'u':
3190                 flags0 |= UNICODE_CASE;
3191                 break;
3192             case 'c':
3193                 flags0 |= CANON_EQ;
3194                 break;
3195             case 'x':
3196                 flags0 |= COMMENTS;
3197                 break;
3198             case 'U':
3199                 flags0 |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3200                 break;
3201             case '-': // subFlag then fall through
3202                 ch = next();
3203                 subFlag();
3204             default:
3205                 return;
3206             }
3207             ch = next();
3208         }
3209     }
3210 
3211     @SuppressWarnings("fallthrough")
3212     /**
3213      * Parses the second part of inlined match flags and turns off
3214      * flags appropriately.
3215      */
3216     private void subFlag() {
3217         int ch = peek();
3218         for (;;) {
3219             switch (ch) {
3220             case 'i':
3221                 flags0 &= ~CASE_INSENSITIVE;
3222                 break;
3223             case 'm':
3224                 flags0 &= ~MULTILINE;
3225                 break;
3226             case 's':
3227                 flags0 &= ~DOTALL;
3228                 break;
3229             case 'd':
3230                 flags0 &= ~UNIX_LINES;
3231                 break;
3232             case 'u':
3233                 flags0 &= ~UNICODE_CASE;
3234                 break;
3235             case 'c':
3236                 flags0 &= ~CANON_EQ;
3237                 break;
3238             case 'x':
3239                 flags0 &= ~COMMENTS;
3240                 break;
3241             case 'U':
3242                 flags0 &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3243                 break;
3244             default:
3245                 return;
3246             }
3247             ch = next();
3248         }
3249     }
3250 
3251     static final int MAX_REPS   = 0x7FFFFFFF;
3252 
3253     static enum Qtype {
3254         GREEDY, LAZY, POSSESSIVE, INDEPENDENT
3255     }
3256 
3257     private Node curly(Node prev, int cmin) {
3258         int ch = next();
3259         if (ch == '?') {
3260             next();
3261             return new Curly(prev, cmin, MAX_REPS, Qtype.LAZY);
3262         } else if (ch == '+') {
3263             next();
3264             return new Curly(prev, cmin, MAX_REPS, Qtype.POSSESSIVE);
3265         }
3266         if (prev instanceof BmpCharProperty) {
3267             return new BmpCharPropertyGreedy((BmpCharProperty)prev, cmin);
3268         } else if (prev instanceof CharProperty) {
3269             return new CharPropertyGreedy((CharProperty)prev, cmin);
3270         }
3271         return new Curly(prev, cmin, MAX_REPS, Qtype.GREEDY);
3272     }
3273 
3274     /**
3275      * Processes repetition. If the next character peeked is a quantifier
3276      * then new nodes must be appended to handle the repetition.
3277      * Prev could be a single or a group, so it could be a chain of nodes.
3278      */
3279     private Node closure(Node prev) {
3280         int ch = peek();
3281         switch (ch) {
3282         case '?':
3283             ch = next();
3284             if (ch == '?') {
3285                 next();
3286                 return new Ques(prev, Qtype.LAZY);
3287             } else if (ch == '+') {
3288                 next();
3289                 return new Ques(prev, Qtype.POSSESSIVE);
3290             }
3291             return new Ques(prev, Qtype.GREEDY);
3292         case '*':
3293             return curly(prev, 0);
3294         case '+':
3295             return curly(prev, 1);
3296         case '{':
3297             ch = skip();
3298             if (ASCII.isDigit(ch)) {
3299                 int cmin = 0, cmax;
3300                 try {
3301                     do {
3302                         cmin = Math.addExact(Math.multiplyExact(cmin, 10),
3303                                              ch - '0');
3304                     } while (ASCII.isDigit(ch = read()));
3305                     if (ch == ',') {
3306                         ch = read();
3307                         if (ch == '}') {
3308                             unread();
3309                             return curly(prev, cmin);
3310                         } else {
3311                             cmax = 0;
3312                             while (ASCII.isDigit(ch)) {
3313                                 cmax = Math.addExact(Math.multiplyExact(cmax, 10),
3314                                                      ch - '0');
3315                                 ch = read();
3316                             }
3317                         }
3318                     } else {
3319                         cmax = cmin;
3320                     }
3321                 } catch (ArithmeticException ae) {
3322                     throw error("Illegal repetition range");
3323                 }
3324                 if (ch != '}')
3325                     throw error("Unclosed counted closure");
3326                 if (cmax < cmin)
3327                     throw error("Illegal repetition range");
3328                 ch = peek();
3329                 if (ch == '?') {
3330                     next();
3331                     return new Curly(prev, cmin, cmax, Qtype.LAZY);
3332                 } else if (ch == '+') {
3333                     next();
3334                     return new Curly(prev, cmin, cmax, Qtype.POSSESSIVE);
3335                 } else {
3336                     return new Curly(prev, cmin, cmax, Qtype.GREEDY);
3337                 }
3338             } else {
3339                 throw error("Illegal repetition");
3340             }
3341         default:
3342             return prev;
3343         }
3344     }
3345 
3346     /**
3347      *  Utility method for parsing control escape sequences.
3348      */
3349     private int c() {
3350         if (cursor < patternLength) {
3351             int ch = read();
3352             if (ALLOW_LOWERCASE_CONTROL_CHAR_IDS && ASCII.isLower(ch))
3353                 return ch ^ 0x60;
3354             if (!RESTRICTED_CONTROL_CHAR_IDS || ASCII.isCntrlId(ch))
3355                 return ch ^ 0x40;
3356         }
3357         throw error("Illegal control escape sequence");
3358     }
3359 
3360     /**
3361      *  Utility method for parsing octal escape sequences.
3362      */
3363     private int o() {
3364         int n = read();
3365         if (((n-'0')|('7'-n)) >= 0) {
3366             int m = read();
3367             if (((m-'0')|('7'-m)) >= 0) {
3368                 int o = read();
3369                 if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3370                     return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3371                 }
3372                 unread();
3373                 return (n - '0') * 8 + (m - '0');
3374             }
3375             unread();
3376             return (n - '0');
3377         }
3378         throw error("Illegal octal escape sequence");
3379     }
3380 
3381     /**
3382      *  Utility method for parsing hexadecimal escape sequences.
3383      */
3384     private int x() {
3385         int n = read();
3386         if (ASCII.isHexDigit(n)) {
3387             int m = read();
3388             if (ASCII.isHexDigit(m)) {
3389                 return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3390             }
3391         } else if (n == '{' && ASCII.isHexDigit(peek())) {
3392             int ch = 0;
3393             while (ASCII.isHexDigit(n = read())) {
3394                 ch = (ch << 4) + ASCII.toDigit(n);
3395                 if (ch > Character.MAX_CODE_POINT)
3396                     throw error("Hexadecimal codepoint is too big");
3397             }
3398             if (n != '}')
3399                 throw error("Unclosed hexadecimal escape sequence");
3400             return ch;
3401         }
3402         throw error("Illegal hexadecimal escape sequence");
3403     }
3404 
3405     /**
3406      *  Utility method for parsing unicode escape sequences.
3407      */
3408     private int cursor() {
3409         return cursor;
3410     }
3411 
3412     private void setcursor(int pos) {
3413         cursor = pos;
3414     }
3415 
3416     private int uxxxx() {
3417         int n = 0;
3418         for (int i = 0; i < 4; i++) {
3419             int ch = read();
3420             if (!ASCII.isHexDigit(ch)) {
3421                 throw error("Illegal Unicode escape sequence");
3422             }
3423             n = n * 16 + ASCII.toDigit(ch);
3424         }
3425         return n;
3426     }
3427 
3428     private int u() {
3429         int n = uxxxx();
3430         if (Character.isHighSurrogate((char)n)) {
3431             int cur = cursor();
3432             if (read() == '\\' && read() == 'u') {
3433                 int n2 = uxxxx();
3434                 if (Character.isLowSurrogate((char)n2))
3435                     return Character.toCodePoint((char)n, (char)n2);
3436             }
3437             setcursor(cur);
3438         }
3439         return n;
3440     }
3441 
3442     private int N() {
3443         if (read() == '{') {
3444             int i = cursor;
3445             while (cursor < patternLength && read() != '}') {}
3446             if (cursor > patternLength)
3447                 throw error("Unclosed character name escape sequence");
3448             String name = new String(temp, i, cursor - i - 1);
3449             try {
3450                 return Character.codePointOf(name);
3451             } catch (IllegalArgumentException x) {
3452                 throw error("Unknown character name [" + name + "]");
3453             }
3454         }
3455         throw error("Illegal character name escape sequence");
3456     }
3457 
3458     //
3459     // Utility methods for code point support
3460     //
3461     private static final int countChars(CharSequence seq, int index,
3462                                         int lengthInCodePoints) {
3463         // optimization
3464         if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3465             assert (index >= 0 && index < seq.length());
3466             return 1;
3467         }
3468         int length = seq.length();
3469         int x = index;
3470         if (lengthInCodePoints >= 0) {
3471             assert (index >= 0 && index < length);
3472             for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3473                 if (Character.isHighSurrogate(seq.charAt(x++))) {
3474                     if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3475                         x++;
3476                     }
3477                 }
3478             }
3479             return x - index;
3480         }
3481 
3482         assert (index >= 0 && index <= length);
3483         if (index == 0) {
3484             return 0;
3485         }
3486         int len = -lengthInCodePoints;
3487         for (int i = 0; x > 0 && i < len; i++) {
3488             if (Character.isLowSurrogate(seq.charAt(--x))) {
3489                 if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3490                     x--;
3491                 }
3492             }
3493         }
3494         return index - x;
3495     }
3496 
3497     private static final int countCodePoints(CharSequence seq) {
3498         int length = seq.length();
3499         int n = 0;
3500         for (int i = 0; i < length; ) {
3501             n++;
3502             if (Character.isHighSurrogate(seq.charAt(i++))) {
3503                 if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3504                     i++;
3505                 }
3506             }
3507         }
3508         return n;
3509     }
3510 
3511     /**
3512      *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3513      *  never matches values above Latin-1, and a complemented BitClass always
3514      *  matches values above Latin-1.
3515      */
3516     static final class BitClass implements BmpCharPredicate {
3517         final boolean[] bits;
3518         BitClass() {
3519             bits = new boolean[256];
3520         }
3521         BitClass add(int c, int flags) {
3522             assert c >= 0 && c <= 255;
3523             if ((flags & CASE_INSENSITIVE) != 0) {
3524                 if (ASCII.isAscii(c)) {
3525                     bits[ASCII.toUpper(c)] = true;
3526                     bits[ASCII.toLower(c)] = true;
3527                 } else if ((flags & UNICODE_CASE) != 0) {
3528                     bits[Character.toLowerCase(c)] = true;
3529                     bits[Character.toUpperCase(c)] = true;
3530                 }
3531             }
3532             bits[c] = true;
3533             return this;
3534         }
3535         public boolean is(int ch) {
3536             return ch < 256 && bits[ch];
3537         }
3538     }
3539 
3540 
3541     /**
3542      *  Utility method for creating a string slice matcher.
3543      */
3544     private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3545         int[] tmp = new int[count];
3546         if (has(CASE_INSENSITIVE)) {
3547             if (has(UNICODE_CASE)) {
3548                 for (int i = 0; i < count; i++) {
3549                     tmp[i] = Character.toLowerCase(
3550                                  Character.toUpperCase(buf[i]));
3551                 }
3552                 return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3553             }
3554             for (int i = 0; i < count; i++) {
3555                 tmp[i] = ASCII.toLower(buf[i]);
3556             }
3557             return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3558         }
3559         for (int i = 0; i < count; i++) {
3560             tmp[i] = buf[i];
3561         }
3562         return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3563     }
3564 
3565     /**
3566      * The following classes are the building components of the object
3567      * tree that represents a compiled regular expression. The object tree
3568      * is made of individual elements that handle constructs in the Pattern.
3569      * Each type of object knows how to match its equivalent construct with
3570      * the match() method.
3571      */
3572 
3573     /**
3574      * Base class for all node classes. Subclasses should override the match()
3575      * method as appropriate. This class is an accepting node, so its match()
3576      * always returns true.
3577      */
3578     static class Node extends Object {
3579         Node next;
3580         Node() {
3581             next = Pattern.accept;
3582         }
3583         /**
3584          * This method implements the classic accept node.
3585          */
3586         boolean match(Matcher matcher, int i, CharSequence seq) {
3587             matcher.last = i;
3588             matcher.groups[0] = matcher.first;
3589             matcher.groups[1] = matcher.last;
3590             return true;
3591         }
3592         /**
3593          * This method is good for all zero length assertions.
3594          */
3595         boolean study(TreeInfo info) {
3596             if (next != null) {
3597                 return next.study(info);
3598             } else {
3599                 return info.deterministic;
3600             }
3601         }
3602     }
3603 
3604     static class LastNode extends Node {
3605         /**
3606          * This method implements the classic accept node with
3607          * the addition of a check to see if the match occurred
3608          * using all of the input.
3609          */
3610         boolean match(Matcher matcher, int i, CharSequence seq) {
3611             if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3612                 return false;
3613             matcher.last = i;
3614             matcher.groups[0] = matcher.first;
3615             matcher.groups[1] = matcher.last;
3616             return true;
3617         }
3618     }
3619 
3620     /**
3621      * Used for REs that can start anywhere within the input string.
3622      * This basically tries to match repeatedly at each spot in the
3623      * input string, moving forward after each try. An anchored search
3624      * or a BnM will bypass this node completely.
3625      */
3626     static class Start extends Node {
3627         int minLength;
3628         Start(Node node) {
3629             this.next = node;
3630             TreeInfo info = new TreeInfo();
3631             next.study(info);
3632             minLength = info.minLength;
3633         }
3634         boolean match(Matcher matcher, int i, CharSequence seq) {
3635             if (i > matcher.to - minLength) {
3636                 matcher.hitEnd = true;
3637                 return false;
3638             }
3639             int guard = matcher.to - minLength;
3640             for (; i <= guard; i++) {
3641                 if (next.match(matcher, i, seq)) {
3642                     matcher.first = i;
3643                     matcher.groups[0] = matcher.first;
3644                     matcher.groups[1] = matcher.last;
3645                     return true;
3646                 }
3647             }
3648             matcher.hitEnd = true;
3649             return false;
3650         }
3651         boolean study(TreeInfo info) {
3652             next.study(info);
3653             info.maxValid = false;
3654             info.deterministic = false;
3655             return false;
3656         }
3657     }
3658 
3659     /*
3660      * StartS supports supplementary characters, including unpaired surrogates.
3661      */
3662     static final class StartS extends Start {
3663         StartS(Node node) {
3664             super(node);
3665         }
3666         boolean match(Matcher matcher, int i, CharSequence seq) {
3667             if (i > matcher.to - minLength) {
3668                 matcher.hitEnd = true;
3669                 return false;
3670             }
3671             int guard = matcher.to - minLength;
3672             while (i <= guard) {
3673                 //if ((ret = next.match(matcher, i, seq)) || i == guard)
3674                 if (next.match(matcher, i, seq)) {
3675                     matcher.first = i;
3676                     matcher.groups[0] = matcher.first;
3677                     matcher.groups[1] = matcher.last;
3678                     return true;
3679                 }
3680                 if (i == guard)
3681                     break;
3682                 // Optimization to move to the next character. This is
3683                 // faster than countChars(seq, i, 1).
3684                 if (Character.isHighSurrogate(seq.charAt(i++))) {
3685                     if (i < seq.length() &&
3686                         Character.isLowSurrogate(seq.charAt(i))) {
3687                         i++;
3688                     }
3689                 }
3690             }
3691             matcher.hitEnd = true;
3692             return false;
3693         }
3694     }
3695 
3696     /**
3697      * Node to anchor at the beginning of input. This object implements the
3698      * match for a \A sequence, and the caret anchor will use this if not in
3699      * multiline mode.
3700      */
3701     static final class Begin extends Node {
3702         boolean match(Matcher matcher, int i, CharSequence seq) {
3703             int fromIndex = (matcher.anchoringBounds) ?
3704                 matcher.from : 0;
3705             if (i == fromIndex && next.match(matcher, i, seq)) {
3706                 matcher.first = i;
3707                 matcher.groups[0] = i;
3708                 matcher.groups[1] = matcher.last;
3709                 return true;
3710             } else {
3711                 return false;
3712             }
3713         }
3714     }
3715 
3716     /**
3717      * Node to anchor at the end of input. This is the absolute end, so this
3718      * should not match at the last newline before the end as $ will.
3719      */
3720     static final class End extends Node {
3721         boolean match(Matcher matcher, int i, CharSequence seq) {
3722             int endIndex = (matcher.anchoringBounds) ?
3723                 matcher.to : matcher.getTextLength();
3724             if (i == endIndex) {
3725                 matcher.hitEnd = true;
3726                 return next.match(matcher, i, seq);
3727             }
3728             return false;
3729         }
3730     }
3731 
3732     /**
3733      * Node to anchor at the beginning of a line. This is essentially the
3734      * object to match for the multiline ^.
3735      */
3736     static final class Caret extends Node {
3737         boolean match(Matcher matcher, int i, CharSequence seq) {
3738             int startIndex = matcher.from;
3739             int endIndex = matcher.to;
3740             if (!matcher.anchoringBounds) {
3741                 startIndex = 0;
3742                 endIndex = matcher.getTextLength();
3743             }
3744             // Perl does not match ^ at end of input even after newline
3745             if (i == endIndex) {
3746                 matcher.hitEnd = true;
3747                 return false;
3748             }
3749             if (i > startIndex) {
3750                 char ch = seq.charAt(i-1);
3751                 if (ch != '\n' && ch != '\r'
3752                     && (ch|1) != '\u2029'
3753                     && ch != '\u0085' ) {
3754                     return false;
3755                 }
3756                 // Should treat /r/n as one newline
3757                 if (ch == '\r' && seq.charAt(i) == '\n')
3758                     return false;
3759             }
3760             return next.match(matcher, i, seq);
3761         }
3762     }
3763 
3764     /**
3765      * Node to anchor at the beginning of a line when in unixdot mode.
3766      */
3767     static final class UnixCaret extends Node {
3768         boolean match(Matcher matcher, int i, CharSequence seq) {
3769             int startIndex = matcher.from;
3770             int endIndex = matcher.to;
3771             if (!matcher.anchoringBounds) {
3772                 startIndex = 0;
3773                 endIndex = matcher.getTextLength();
3774             }
3775             // Perl does not match ^ at end of input even after newline
3776             if (i == endIndex) {
3777                 matcher.hitEnd = true;
3778                 return false;
3779             }
3780             if (i > startIndex) {
3781                 char ch = seq.charAt(i-1);
3782                 if (ch != '\n') {
3783                     return false;
3784                 }
3785             }
3786             return next.match(matcher, i, seq);
3787         }
3788     }
3789 
3790     /**
3791      * Node to match the location where the last match ended.
3792      * This is used for the \G construct.
3793      */
3794     static final class LastMatch extends Node {
3795         boolean match(Matcher matcher, int i, CharSequence seq) {
3796             if (i != matcher.oldLast)
3797                 return false;
3798             return next.match(matcher, i, seq);
3799         }
3800     }
3801 
3802     /**
3803      * Node to anchor at the end of a line or the end of input based on the
3804      * multiline mode.
3805      *
3806      * When not in multiline mode, the $ can only match at the very end
3807      * of the input, unless the input ends in a line terminator in which
3808      * it matches right before the last line terminator.
3809      *
3810      * Note that \r\n is considered an atomic line terminator.
3811      *
3812      * Like ^ the $ operator matches at a position, it does not match the
3813      * line terminators themselves.
3814      */
3815     static final class Dollar extends Node {
3816         boolean multiline;
3817         Dollar(boolean mul) {
3818             multiline = mul;
3819         }
3820         boolean match(Matcher matcher, int i, CharSequence seq) {
3821             int endIndex = (matcher.anchoringBounds) ?
3822                 matcher.to : matcher.getTextLength();
3823             if (!multiline) {
3824                 if (i < endIndex - 2)
3825                     return false;
3826                 if (i == endIndex - 2) {
3827                     char ch = seq.charAt(i);
3828                     if (ch != '\r')
3829                         return false;
3830                     ch = seq.charAt(i + 1);
3831                     if (ch != '\n')
3832                         return false;
3833                 }
3834             }
3835             // Matches before any line terminator; also matches at the
3836             // end of input
3837             // Before line terminator:
3838             // If multiline, we match here no matter what
3839             // If not multiline, fall through so that the end
3840             // is marked as hit; this must be a /r/n or a /n
3841             // at the very end so the end was hit; more input
3842             // could make this not match here
3843             if (i < endIndex) {
3844                 char ch = seq.charAt(i);
3845                  if (ch == '\n') {
3846                      // No match between \r\n
3847                      if (i > 0 && seq.charAt(i-1) == '\r')
3848                          return false;
3849                      if (multiline)
3850                          return next.match(matcher, i, seq);
3851                  } else if (ch == '\r' || ch == '\u0085' ||
3852                             (ch|1) == '\u2029') {
3853                      if (multiline)
3854                          return next.match(matcher, i, seq);
3855                  } else { // No line terminator, no match
3856                      return false;
3857                  }
3858             }
3859             // Matched at current end so hit end
3860             matcher.hitEnd = true;
3861             // If a $ matches because of end of input, then more input
3862             // could cause it to fail!
3863             matcher.requireEnd = true;
3864             return next.match(matcher, i, seq);
3865         }
3866         boolean study(TreeInfo info) {
3867             next.study(info);
3868             return info.deterministic;
3869         }
3870     }
3871 
3872     /**
3873      * Node to anchor at the end of a line or the end of input based on the
3874      * multiline mode when in unix lines mode.
3875      */
3876     static final class UnixDollar extends Node {
3877         boolean multiline;
3878         UnixDollar(boolean mul) {
3879             multiline = mul;
3880         }
3881         boolean match(Matcher matcher, int i, CharSequence seq) {
3882             int endIndex = (matcher.anchoringBounds) ?
3883                 matcher.to : matcher.getTextLength();
3884             if (i < endIndex) {
3885                 char ch = seq.charAt(i);
3886                 if (ch == '\n') {
3887                     // If not multiline, then only possible to
3888                     // match at very end or one before end
3889                     if (multiline == false && i != endIndex - 1)
3890                         return false;
3891                     // If multiline return next.match without setting
3892                     // matcher.hitEnd
3893                     if (multiline)
3894                         return next.match(matcher, i, seq);
3895                 } else {
3896                     return false;
3897                 }
3898             }
3899             // Matching because at the end or 1 before the end;
3900             // more input could change this so set hitEnd
3901             matcher.hitEnd = true;
3902             // If a $ matches because of end of input, then more input
3903             // could cause it to fail!
3904             matcher.requireEnd = true;
3905             return next.match(matcher, i, seq);
3906         }
3907         boolean study(TreeInfo info) {
3908             next.study(info);
3909             return info.deterministic;
3910         }
3911     }
3912 
3913     /**
3914      * Node class that matches a Unicode line ending '\R'
3915      */
3916     static final class LineEnding extends Node {
3917         boolean match(Matcher matcher, int i, CharSequence seq) {
3918             // (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
3919             if (i < matcher.to) {
3920                 int ch = seq.charAt(i);
3921                 if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
3922                     ch == 0x85 || ch == 0x2028 || ch == 0x2029)
3923                     return next.match(matcher, i + 1, seq);
3924                 if (ch == 0x0D) {
3925                     i++;
3926                     if (i < matcher.to) {
3927                         if (seq.charAt(i) == 0x0A &&
3928                             next.match(matcher, i + 1, seq)) {
3929                             return true;
3930                         }
3931                     } else {
3932                         matcher.hitEnd = true;
3933                     }
3934                     return next.match(matcher, i, seq);
3935                 }
3936             } else {
3937                 matcher.hitEnd = true;
3938             }
3939             return false;
3940         }
3941         boolean study(TreeInfo info) {
3942             info.minLength++;
3943             info.maxLength += 2;
3944             return next.study(info);
3945         }
3946     }
3947 
3948     /**
3949      * Abstract node class to match one character satisfying some
3950      * boolean property.
3951      */
3952     static class CharProperty extends Node {
3953         final CharPredicate predicate;
3954 
3955         CharProperty (CharPredicate predicate) {
3956             this.predicate = predicate;
3957         }
3958         boolean match(Matcher matcher, int i, CharSequence seq) {
3959             if (i < matcher.to) {
3960                 int ch = Character.codePointAt(seq, i);
3961                 return predicate.is(ch) &&
3962                        next.match(matcher, i + Character.charCount(ch), seq);
3963             } else {
3964                 matcher.hitEnd = true;
3965                 return false;
3966             }
3967         }
3968         boolean study(TreeInfo info) {
3969             info.minLength++;
3970             info.maxLength++;
3971             return next.study(info);
3972         }
3973     }
3974 
3975     /**
3976      * Optimized version of CharProperty that works only for
3977      * properties never satisfied by Supplementary characters.
3978      */
3979     private static class BmpCharProperty extends CharProperty {
3980         BmpCharProperty (BmpCharPredicate predicate) {
3981             super(predicate);
3982         }
3983         boolean match(Matcher matcher, int i, CharSequence seq) {
3984             if (i < matcher.to) {
3985                 return predicate.is(seq.charAt(i)) &&
3986                        next.match(matcher, i + 1, seq);
3987             } else {
3988                 matcher.hitEnd = true;
3989                 return false;
3990             }
3991         }
3992     }
3993 
3994     private static class NFCCharProperty extends Node {
3995         CharPredicate predicate;
3996         NFCCharProperty (CharPredicate predicate) {
3997             this.predicate = predicate;
3998         }
3999 
4000         boolean match(Matcher matcher, int i, CharSequence seq) {
4001             if (i < matcher.to) {
4002                 int ch0 = Character.codePointAt(seq, i);
4003                 int n = Character.charCount(ch0);
4004                 int j = i + n;
4005                 // Fast check if it's necessary to call Normalizer;
4006                 // testing Grapheme.isBoundary is enough for this case
4007                 while (j < matcher.to) {
4008                     int ch1 = Character.codePointAt(seq, j);
4009                     if (Grapheme.isBoundary(ch0, ch1))
4010                         break;
4011                     ch0 = ch1;
4012                     j += Character.charCount(ch1);
4013                 }
4014                 if (i + n == j) {    // single, assume nfc cp
4015                     if (predicate.is(ch0))
4016                         return next.match(matcher, j, seq);
4017                 } else {
4018                     while (i + n < j) {
4019                         String nfc = Normalizer.normalize(
4020                             seq.toString().substring(i, j), Normalizer.Form.NFC);
4021                         if (nfc.codePointCount(0, nfc.length()) == 1) {
4022                             if (predicate.is(nfc.codePointAt(0)) &&
4023                                 next.match(matcher, j, seq)) {
4024                                 return true;
4025                             }
4026                         }
4027 
4028                         ch0 = Character.codePointBefore(seq, j);
4029                         j -= Character.charCount(ch0);
4030                     }
4031                 }
4032                 if (j < matcher.to)
4033                     return false;
4034             }
4035             matcher.hitEnd = true;
4036             return false;
4037         }
4038 
4039         boolean study(TreeInfo info) {
4040             info.minLength++;
4041             info.deterministic = false;
4042             return next.study(info);
4043         }
4044     }
4045 
4046     /**
4047      * Node class that matches an unicode extended grapheme cluster
4048      */
4049     static class XGrapheme extends Node {
4050         boolean match(Matcher matcher, int i, CharSequence seq) {
4051             if (i < matcher.to) {
4052                 i = Grapheme.nextBoundary(seq, i, matcher.to);
4053                 return next.match(matcher, i, seq);
4054             }
4055             matcher.hitEnd = true;
4056             return false;
4057         }
4058 
4059         boolean study(TreeInfo info) {
4060             info.minLength++;
4061             info.deterministic = false;
4062             return next.study(info);
4063         }
4064     }
4065 
4066     /**
4067      * Node class that handles grapheme boundaries
4068      */
4069     static class GraphemeBound extends Node {
4070         boolean match(Matcher matcher, int i, CharSequence seq) {
4071             int startIndex = matcher.from;
4072             int endIndex = matcher.to;
4073             if (matcher.transparentBounds) {
4074                 startIndex = 0;
4075                 endIndex = matcher.getTextLength();
4076             }
4077             if (i == startIndex) {
4078                 return next.match(matcher, i, seq);
4079             }
4080             if (i < endIndex) {
4081                 if (Character.isSurrogatePair(seq.charAt(i-1), seq.charAt(i)) ||
4082                     Grapheme.nextBoundary(seq,
4083                         i - Character.charCount(Character.codePointBefore(seq, i)),
4084                         i + Character.charCount(Character.codePointAt(seq, i))) > i) {
4085                     return false;
4086                 }
4087             } else {
4088                 matcher.hitEnd = true;
4089                 matcher.requireEnd = true;
4090             }
4091             return next.match(matcher, i, seq);
4092         }
4093     }
4094 
4095     /**
4096      * Base class for all Slice nodes
4097      */
4098     static class SliceNode extends Node {
4099         int[] buffer;
4100         SliceNode(int[] buf) {
4101             buffer = buf;
4102         }
4103         boolean study(TreeInfo info) {
4104             info.minLength += buffer.length;
4105             info.maxLength += buffer.length;
4106             return next.study(info);
4107         }
4108     }
4109 
4110     /**
4111      * Node class for a case sensitive/BMP-only sequence of literal
4112      * characters.
4113      */
4114     static class Slice extends SliceNode {
4115         Slice(int[] buf) {
4116             super(buf);
4117         }
4118         boolean match(Matcher matcher, int i, CharSequence seq) {
4119             int[] buf = buffer;
4120             int len = buf.length;
4121             for (int j=0; j<len; j++) {
4122                 if ((i+j) >= matcher.to) {
4123                     matcher.hitEnd = true;
4124                     return false;
4125                 }
4126                 if (buf[j] != seq.charAt(i+j))
4127                     return false;
4128             }
4129             return next.match(matcher, i+len, seq);
4130         }
4131     }
4132 
4133     /**
4134      * Node class for a case_insensitive/BMP-only sequence of literal
4135      * characters.
4136      */
4137     static class SliceI extends SliceNode {
4138         SliceI(int[] buf) {
4139             super(buf);
4140         }
4141         boolean match(Matcher matcher, int i, CharSequence seq) {
4142             int[] buf = buffer;
4143             int len = buf.length;
4144             for (int j=0; j<len; j++) {
4145                 if ((i+j) >= matcher.to) {
4146                     matcher.hitEnd = true;
4147                     return false;
4148                 }
4149                 int c = seq.charAt(i+j);
4150                 if (buf[j] != c &&
4151                     buf[j] != ASCII.toLower(c))
4152                     return false;
4153             }
4154             return next.match(matcher, i+len, seq);
4155         }
4156     }
4157 
4158     /**
4159      * Node class for a unicode_case_insensitive/BMP-only sequence of
4160      * literal characters. Uses unicode case folding.
4161      */
4162     static final class SliceU extends SliceNode {
4163         SliceU(int[] buf) {
4164             super(buf);
4165         }
4166         boolean match(Matcher matcher, int i, CharSequence seq) {
4167             int[] buf = buffer;
4168             int len = buf.length;
4169             for (int j=0; j<len; j++) {
4170                 if ((i+j) >= matcher.to) {
4171                     matcher.hitEnd = true;
4172                     return false;
4173                 }
4174                 int c = seq.charAt(i+j);
4175                 if (buf[j] != c &&
4176                     buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
4177                     return false;
4178             }
4179             return next.match(matcher, i+len, seq);
4180         }
4181     }
4182 
4183     /**
4184      * Node class for a case sensitive sequence of literal characters
4185      * including supplementary characters.
4186      */
4187     static final class SliceS extends Slice {
4188         SliceS(int[] buf) {
4189             super(buf);
4190         }
4191         boolean match(Matcher matcher, int i, CharSequence seq) {
4192             int[] buf = buffer;
4193             int x = i;
4194             for (int j = 0; j < buf.length; j++) {
4195                 if (x >= matcher.to) {
4196                     matcher.hitEnd = true;
4197                     return false;
4198                 }
4199                 int c = Character.codePointAt(seq, x);
4200                 if (buf[j] != c)
4201                     return false;
4202                 x += Character.charCount(c);
4203                 if (x > matcher.to) {
4204                     matcher.hitEnd = true;
4205                     return false;
4206                 }
4207             }
4208             return next.match(matcher, x, seq);
4209         }
4210     }
4211 
4212     /**
4213      * Node class for a case insensitive sequence of literal characters
4214      * including supplementary characters.
4215      */
4216     static class SliceIS extends SliceNode {
4217         SliceIS(int[] buf) {
4218             super(buf);
4219         }
4220         int toLower(int c) {
4221             return ASCII.toLower(c);
4222         }
4223         boolean match(Matcher matcher, int i, CharSequence seq) {
4224             int[] buf = buffer;
4225             int x = i;
4226             for (int j = 0; j < buf.length; j++) {
4227                 if (x >= matcher.to) {
4228                     matcher.hitEnd = true;
4229                     return false;
4230                 }
4231                 int c = Character.codePointAt(seq, x);
4232                 if (buf[j] != c && buf[j] != toLower(c))
4233                     return false;
4234                 x += Character.charCount(c);
4235                 if (x > matcher.to) {
4236                     matcher.hitEnd = true;
4237                     return false;
4238                 }
4239             }
4240             return next.match(matcher, x, seq);
4241         }
4242     }
4243 
4244     /**
4245      * Node class for a case insensitive sequence of literal characters.
4246      * Uses unicode case folding.
4247      */
4248     static final class SliceUS extends SliceIS {
4249         SliceUS(int[] buf) {
4250             super(buf);
4251         }
4252         int toLower(int c) {
4253             return Character.toLowerCase(Character.toUpperCase(c));
4254         }
4255     }
4256 
4257     /**
4258      * The 0 or 1 quantifier. This one class implements all three types.
4259      */
4260     static final class Ques extends Node {
4261         Node atom;
4262         Qtype type;
4263         Ques(Node node, Qtype type) {
4264             this.atom = node;
4265             this.type = type;
4266         }
4267         boolean match(Matcher matcher, int i, CharSequence seq) {
4268             switch (type) {
4269             case GREEDY:
4270                 return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4271                     || next.match(matcher, i, seq);
4272             case LAZY:
4273                 return next.match(matcher, i, seq)
4274                     || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4275             case POSSESSIVE:
4276                 if (atom.match(matcher, i, seq)) i = matcher.last;
4277                 return next.match(matcher, i, seq);
4278             default:
4279                 return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4280             }
4281         }
4282         boolean study(TreeInfo info) {
4283             if (type != Qtype.INDEPENDENT) {
4284                 int minL = info.minLength;
4285                 atom.study(info);
4286                 info.minLength = minL;
4287                 info.deterministic = false;
4288                 return next.study(info);
4289             } else {
4290                 atom.study(info);
4291                 return next.study(info);
4292             }
4293         }
4294     }
4295 
4296     /**
4297      * Handles the greedy style repetition with the specified minimum
4298      * and the maximum equal to MAX_REPS, for *, + and {N,} quantifiers.
4299      */
4300     static class CharPropertyGreedy extends Node {
4301         final CharPredicate predicate;
4302         final int cmin;
4303 
4304         CharPropertyGreedy(CharProperty cp, int cmin) {
4305             this.predicate = cp.predicate;
4306             this.cmin = cmin;
4307         }
4308         boolean match(Matcher matcher, int i, CharSequence seq) {
4309             int n = 0;
4310             int to = matcher.to;
4311             // greedy, all the way down
4312             while (i < to) {
4313                 int ch = Character.codePointAt(seq, i);
4314                 if (!predicate.is(ch))
4315                    break;
4316                 i += Character.charCount(ch);
4317                 n++;
4318             }
4319             if (i >= to) {
4320                 matcher.hitEnd = true;
4321             }
4322             while (n >= cmin) {
4323                 if (next.match(matcher, i, seq))
4324                     return true;
4325                 if (n == cmin)
4326                     return false;
4327                  // backing off if match fails
4328                 int ch = Character.codePointBefore(seq, i);
4329                 i -= Character.charCount(ch);
4330                 n--;
4331             }
4332             return false;
4333         }
4334 
4335         boolean study(TreeInfo info) {
4336             info.minLength += cmin;
4337             if (info.maxValid) {
4338                 info.maxLength += MAX_REPS;
4339             }
4340             info.deterministic = false;
4341             return next.study(info);
4342         }
4343     }
4344 
4345     static final class BmpCharPropertyGreedy extends CharPropertyGreedy {
4346 
4347         BmpCharPropertyGreedy(BmpCharProperty bcp, int cmin) {
4348             super(bcp, cmin);
4349         }
4350 
4351         boolean match(Matcher matcher, int i, CharSequence seq) {
4352             int n = 0;
4353             int to = matcher.to;
4354             while (i < to && predicate.is(seq.charAt(i))) {
4355                 i++; n++;
4356             }
4357             if (i >= to) {
4358                 matcher.hitEnd = true;
4359             }
4360             while (n >= cmin) {
4361                 if (next.match(matcher, i, seq))
4362                     return true;
4363                 i--; n--;  // backing off if match fails
4364             }
4365             return false;
4366         }
4367     }
4368 
4369     /**
4370      * Handles the curly-brace style repetition with a specified minimum and
4371      * maximum occurrences. The * quantifier is handled as a special case.
4372      * This class handles the three types.
4373      */
4374     static final class Curly extends Node {
4375         Node atom;
4376         Qtype type;
4377         int cmin;
4378         int cmax;
4379 
4380         Curly(Node node, int cmin, int cmax, Qtype type) {
4381             this.atom = node;
4382             this.type = type;
4383             this.cmin = cmin;
4384             this.cmax = cmax;
4385         }
4386         boolean match(Matcher matcher, int i, CharSequence seq) {
4387             int j;
4388             for (j = 0; j < cmin; j++) {
4389                 if (atom.match(matcher, i, seq)) {
4390                     i = matcher.last;
4391                     continue;
4392                 }
4393                 return false;
4394             }
4395             if (type == Qtype.GREEDY)
4396                 return match0(matcher, i, j, seq);
4397             else if (type == Qtype.LAZY)
4398                 return match1(matcher, i, j, seq);
4399             else
4400                 return match2(matcher, i, j, seq);
4401         }
4402         // Greedy match.
4403         // i is the index to start matching at
4404         // j is the number of atoms that have matched
4405         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4406             if (j >= cmax) {
4407                 // We have matched the maximum... continue with the rest of
4408                 // the regular expression
4409                 return next.match(matcher, i, seq);
4410             }
4411             int backLimit = j;
4412             while (atom.match(matcher, i, seq)) {
4413                 // k is the length of this match
4414                 int k = matcher.last - i;
4415                 if (k == 0) // Zero length match
4416                     break;
4417                 // Move up index and number matched
4418                 i = matcher.last;
4419                 j++;
4420                 // We are greedy so match as many as we can
4421                 while (j < cmax) {
4422                     if (!atom.match(matcher, i, seq))
4423                         break;
4424                     if (i + k != matcher.last) {
4425                         if (match0(matcher, matcher.last, j+1, seq))
4426                             return true;
4427                         break;
4428                     }
4429                     i += k;
4430                     j++;
4431                 }
4432                 // Handle backing off if match fails
4433                 while (j >= backLimit) {
4434                    if (next.match(matcher, i, seq))
4435                         return true;
4436                     i -= k;
4437                     j--;
4438                 }
4439                 return false;
4440             }
4441             return next.match(matcher, i, seq);
4442         }
4443         // Reluctant match. At this point, the minimum has been satisfied.
4444         // i is the index to start matching at
4445         // j is the number of atoms that have matched
4446         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4447             for (;;) {
4448                 // Try finishing match without consuming any more
4449                 if (next.match(matcher, i, seq))
4450                     return true;
4451                 // At the maximum, no match found
4452                 if (j >= cmax)
4453                     return false;
4454                 // Okay, must try one more atom
4455                 if (!atom.match(matcher, i, seq))
4456                     return false;
4457                 // If we haven't moved forward then must break out
4458                 if (i == matcher.last)
4459                     return false;
4460                 // Move up index and number matched
4461                 i = matcher.last;
4462                 j++;
4463             }
4464         }
4465         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4466             for (; j < cmax; j++) {
4467                 if (!atom.match(matcher, i, seq))
4468                     break;
4469                 if (i == matcher.last)
4470                     break;
4471                 i = matcher.last;
4472             }
4473             return next.match(matcher, i, seq);
4474         }
4475         boolean study(TreeInfo info) {
4476             // Save original info
4477             int minL = info.minLength;
4478             int maxL = info.maxLength;
4479             boolean maxV = info.maxValid;
4480             boolean detm = info.deterministic;
4481             info.reset();
4482 
4483             atom.study(info);
4484 
4485             int temp = info.minLength * cmin + minL;
4486             if (temp < minL) {
4487                 temp = 0xFFFFFFF; // arbitrary large number
4488             }
4489             info.minLength = temp;
4490 
4491             if (maxV & info.maxValid) {
4492                 temp = info.maxLength * cmax + maxL;
4493                 info.maxLength = temp;
4494                 if (temp < maxL) {
4495                     info.maxValid = false;
4496                 }
4497             } else {
4498                 info.maxValid = false;
4499             }
4500 
4501             if (info.deterministic && cmin == cmax)
4502                 info.deterministic = detm;
4503             else
4504                 info.deterministic = false;
4505             return next.study(info);
4506         }
4507     }
4508 
4509     /**
4510      * Handles the curly-brace style repetition with a specified minimum and
4511      * maximum occurrences in deterministic cases. This is an iterative
4512      * optimization over the Prolog and Loop system which would handle this
4513      * in a recursive way. The * quantifier is handled as a special case.
4514      * If capture is true then this class saves group settings and ensures
4515      * that groups are unset when backing off of a group match.
4516      */
4517     static final class GroupCurly extends Node {
4518         Node atom;
4519         Qtype type;
4520         int cmin;
4521         int cmax;
4522         int localIndex;
4523         int groupIndex;
4524         boolean capture;
4525 
4526         GroupCurly(Node node, int cmin, int cmax, Qtype type, int local,
4527                    int group, boolean capture) {
4528             this.atom = node;
4529             this.type = type;
4530             this.cmin = cmin;
4531             this.cmax = cmax;
4532             this.localIndex = local;
4533             this.groupIndex = group;
4534             this.capture = capture;
4535         }
4536         boolean match(Matcher matcher, int i, CharSequence seq) {
4537             int[] groups = matcher.groups;
4538             int[] locals = matcher.locals;
4539             int save0 = locals[localIndex];
4540             int save1 = 0;
4541             int save2 = 0;
4542 
4543             if (capture) {
4544                 save1 = groups[groupIndex];
4545                 save2 = groups[groupIndex+1];
4546             }
4547 
4548             // Notify GroupTail there is no need to setup group info
4549             // because it will be set here
4550             locals[localIndex] = -1;
4551 
4552             boolean ret = true;
4553             for (int j = 0; j < cmin; j++) {
4554                 if (atom.match(matcher, i, seq)) {
4555                     if (capture) {
4556                         groups[groupIndex] = i;
4557                         groups[groupIndex+1] = matcher.last;
4558                     }
4559                     i = matcher.last;
4560                 } else {
4561                     ret = false;
4562                     break;
4563                 }
4564             }
4565             if (ret) {
4566                 if (type == Qtype.GREEDY) {
4567                     ret = match0(matcher, i, cmin, seq);
4568                 } else if (type == Qtype.LAZY) {
4569                     ret = match1(matcher, i, cmin, seq);
4570                 } else {
4571                     ret = match2(matcher, i, cmin, seq);
4572                 }
4573             }
4574             if (!ret) {
4575                 locals[localIndex] = save0;
4576                 if (capture) {
4577                     groups[groupIndex] = save1;
4578                     groups[groupIndex+1] = save2;
4579                 }
4580             }
4581             return ret;
4582         }
4583         // Aggressive group match
4584         boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4585             // don't back off passing the starting "j"
4586             int min = j;
4587             int[] groups = matcher.groups;
4588             int save0 = 0;
4589             int save1 = 0;
4590             if (capture) {
4591                 save0 = groups[groupIndex];
4592                 save1 = groups[groupIndex+1];
4593             }
4594             for (;;) {
4595                 if (j >= cmax)
4596                     break;
4597                 if (!atom.match(matcher, i, seq))
4598                     break;
4599                 int k = matcher.last - i;
4600                 if (k <= 0) {
4601                     if (capture) {
4602                         groups[groupIndex] = i;
4603                         groups[groupIndex+1] = i + k;
4604                     }
4605                     i = i + k;
4606                     break;
4607                 }
4608                 for (;;) {
4609                     if (capture) {
4610                         groups[groupIndex] = i;
4611                         groups[groupIndex+1] = i + k;
4612                     }
4613                     i = i + k;
4614                     if (++j >= cmax)
4615                         break;
4616                     if (!atom.match(matcher, i, seq))
4617                         break;
4618                     if (i + k != matcher.last) {
4619                         if (match0(matcher, i, j, seq))
4620                             return true;
4621                         break;
4622                     }
4623                 }
4624                 while (j > min) {
4625                     if (next.match(matcher, i, seq)) {
4626                         if (capture) {
4627                             groups[groupIndex+1] = i;
4628                             groups[groupIndex] = i - k;
4629                         }
4630                         return true;
4631                     }
4632                     // backing off
4633                     i = i - k;
4634                     if (capture) {
4635                         groups[groupIndex+1] = i;
4636                         groups[groupIndex] = i - k;
4637                     }
4638                     j--;
4639 
4640                 }
4641                 break;
4642             }
4643             if (capture) {
4644                 groups[groupIndex] = save0;
4645                 groups[groupIndex+1] = save1;
4646             }
4647             return next.match(matcher, i, seq);
4648         }
4649         // Reluctant matching
4650         boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4651             for (;;) {
4652                 if (next.match(matcher, i, seq))
4653                     return true;
4654                 if (j >= cmax)
4655                     return false;
4656                 if (!atom.match(matcher, i, seq))
4657                     return false;
4658                 if (i == matcher.last)
4659                     return false;
4660                 if (capture) {
4661                     matcher.groups[groupIndex] = i;
4662                     matcher.groups[groupIndex+1] = matcher.last;
4663                 }
4664                 i = matcher.last;
4665                 j++;
4666             }
4667         }
4668         // Possessive matching
4669         boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4670             for (; j < cmax; j++) {
4671                 if (!atom.match(matcher, i, seq)) {
4672                     break;
4673                 }
4674                 if (capture) {
4675                     matcher.groups[groupIndex] = i;
4676                     matcher.groups[groupIndex+1] = matcher.last;
4677                 }
4678                 if (i == matcher.last) {
4679                     break;
4680                 }
4681                 i = matcher.last;
4682             }
4683             return next.match(matcher, i, seq);
4684         }
4685         boolean study(TreeInfo info) {
4686             // Save original info
4687             int minL = info.minLength;
4688             int maxL = info.maxLength;
4689             boolean maxV = info.maxValid;
4690             boolean detm = info.deterministic;
4691             info.reset();
4692 
4693             atom.study(info);
4694 
4695             int temp = info.minLength * cmin + minL;
4696             if (temp < minL) {
4697                 temp = 0xFFFFFFF; // Arbitrary large number
4698             }
4699             info.minLength = temp;
4700 
4701             if (maxV & info.maxValid) {
4702                 temp = info.maxLength * cmax + maxL;
4703                 info.maxLength = temp;
4704                 if (temp < maxL) {
4705                     info.maxValid = false;
4706                 }
4707             } else {
4708                 info.maxValid = false;
4709             }
4710 
4711             if (info.deterministic && cmin == cmax) {
4712                 info.deterministic = detm;
4713             } else {
4714                 info.deterministic = false;
4715             }
4716             return next.study(info);
4717         }
4718     }
4719 
4720     /**
4721      * A Guard node at the end of each atom node in a Branch. It
4722      * serves the purpose of chaining the "match" operation to
4723      * "next" but not the "study", so we can collect the TreeInfo
4724      * of each atom node without including the TreeInfo of the
4725      * "next".
4726      */
4727     static final class BranchConn extends Node {
4728         BranchConn() {}
4729         boolean match(Matcher matcher, int i, CharSequence seq) {
4730             return next.match(matcher, i, seq);
4731         }
4732         boolean study(TreeInfo info) {
4733             return info.deterministic;
4734         }
4735     }
4736 
4737     /**
4738      * Handles the branching of alternations. Note this is also used for
4739      * the ? quantifier to branch between the case where it matches once
4740      * and where it does not occur.
4741      */
4742     static final class Branch extends Node {
4743         Node[] atoms = new Node[2];
4744         int size = 2;
4745         Node conn;
4746         Branch(Node first, Node second, Node branchConn) {
4747             conn = branchConn;
4748             atoms[0] = first;
4749             atoms[1] = second;
4750         }
4751 
4752         void add(Node node) {
4753             if (size >= atoms.length) {
4754                 Node[] tmp = new Node[atoms.length*2];
4755                 System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4756                 atoms = tmp;
4757             }
4758             atoms[size++] = node;
4759         }
4760 
4761         boolean match(Matcher matcher, int i, CharSequence seq) {
4762             for (int n = 0; n < size; n++) {
4763                 if (atoms[n] == null) {
4764                     if (conn.next.match(matcher, i, seq))
4765                         return true;
4766                 } else if (atoms[n].match(matcher, i, seq)) {
4767                     return true;
4768                 }
4769             }
4770             return false;
4771         }
4772 
4773         boolean study(TreeInfo info) {
4774             int minL = info.minLength;
4775             int maxL = info.maxLength;
4776             boolean maxV = info.maxValid;
4777 
4778             int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4779             int maxL2 = -1;
4780             for (int n = 0; n < size; n++) {
4781                 info.reset();
4782                 if (atoms[n] != null)
4783                     atoms[n].study(info);
4784                 minL2 = Math.min(minL2, info.minLength);
4785                 maxL2 = Math.max(maxL2, info.maxLength);
4786                 maxV = (maxV & info.maxValid);
4787             }
4788 
4789             minL += minL2;
4790             maxL += maxL2;
4791 
4792             info.reset();
4793             conn.next.study(info);
4794 
4795             info.minLength += minL;
4796             info.maxLength += maxL;
4797             info.maxValid &= maxV;
4798             info.deterministic = false;
4799             return false;
4800         }
4801     }
4802 
4803     /**
4804      * The GroupHead saves the location where the group begins in the locals
4805      * and restores them when the match is done.
4806      *
4807      * The matchRef is used when a reference to this group is accessed later
4808      * in the expression. The locals will have a negative value in them to
4809      * indicate that we do not want to unset the group if the reference
4810      * doesn't match.
4811      */
4812     static final class GroupHead extends Node {
4813         int localIndex;
4814         GroupTail tail;    // for debug/print only, match does not need to know
4815         GroupHead(int localCount) {
4816             localIndex = localCount;
4817         }
4818         boolean match(Matcher matcher, int i, CharSequence seq) {
4819             int save = matcher.locals[localIndex];
4820             matcher.locals[localIndex] = i;
4821             boolean ret = next.match(matcher, i, seq);
4822             matcher.locals[localIndex] = save;
4823             return ret;
4824         }
4825     }
4826 
4827     /**
4828      * The GroupTail handles the setting of group beginning and ending
4829      * locations when groups are successfully matched. It must also be able to
4830      * unset groups that have to be backed off of.
4831      *
4832      * The GroupTail node is also used when a previous group is referenced,
4833      * and in that case no group information needs to be set.
4834      */
4835     static final class GroupTail extends Node {
4836         int localIndex;
4837         int groupIndex;
4838         GroupTail(int localCount, int groupCount) {
4839             localIndex = localCount;
4840             groupIndex = groupCount + groupCount;
4841         }
4842         boolean match(Matcher matcher, int i, CharSequence seq) {
4843             int tmp = matcher.locals[localIndex];
4844             if (tmp >= 0) { // This is the normal group case.
4845                 // Save the group so we can unset it if it
4846                 // backs off of a match.
4847                 int groupStart = matcher.groups[groupIndex];
4848                 int groupEnd = matcher.groups[groupIndex+1];
4849 
4850                 matcher.groups[groupIndex] = tmp;
4851                 matcher.groups[groupIndex+1] = i;
4852                 if (next.match(matcher, i, seq)) {
4853                     return true;
4854                 }
4855                 matcher.groups[groupIndex] = groupStart;
4856                 matcher.groups[groupIndex+1] = groupEnd;
4857                 return false;
4858             } else {
4859                 // This is a group reference case. We don't need to save any
4860                 // group info because it isn't really a group.
4861                 matcher.last = i;
4862                 return true;
4863             }
4864         }
4865     }
4866 
4867     /**
4868      * This sets up a loop to handle a recursive quantifier structure.
4869      */
4870     static final class Prolog extends Node {
4871         Loop loop;
4872         Prolog(Loop loop) {
4873             this.loop = loop;
4874         }
4875         boolean match(Matcher matcher, int i, CharSequence seq) {
4876             return loop.matchInit(matcher, i, seq);
4877         }
4878         boolean study(TreeInfo info) {
4879             return loop.study(info);
4880         }
4881     }
4882 
4883     /**
4884      * Handles the repetition count for a greedy Curly. The matchInit
4885      * is called from the Prolog to save the index of where the group
4886      * beginning is stored. A zero length group check occurs in the
4887      * normal match but is skipped in the matchInit.
4888      */
4889     static class Loop extends Node {
4890         Node body;
4891         int countIndex; // local count index in matcher locals
4892         int beginIndex; // group beginning index
4893         int cmin, cmax;
4894         int posIndex;
4895         Loop(int countIndex, int beginIndex) {
4896             this.countIndex = countIndex;
4897             this.beginIndex = beginIndex;
4898             this.posIndex = -1;
4899         }
4900         boolean match(Matcher matcher, int i, CharSequence seq) {
4901             // Avoid infinite loop in zero-length case.
4902             if (i > matcher.locals[beginIndex]) {
4903                 int count = matcher.locals[countIndex];
4904 
4905                 // This block is for before we reach the minimum
4906                 // iterations required for the loop to match
4907                 if (count < cmin) {
4908                     matcher.locals[countIndex] = count + 1;
4909                     boolean b = body.match(matcher, i, seq);
4910                     // If match failed we must backtrack, so
4911                     // the loop count should NOT be incremented
4912                     if (!b)
4913                         matcher.locals[countIndex] = count;
4914                     // Return success or failure since we are under
4915                     // minimum
4916                     return b;
4917                 }
4918                 // This block is for after we have the minimum
4919                 // iterations required for the loop to match
4920                 if (count < cmax) {
4921                     // Let's check if we have already tried and failed
4922                     // at this starting position "i" in the past.
4923                     // If yes, then just return false wihtout trying
4924                     // again, to stop the exponential backtracking.
4925                     if (posIndex != -1 &&
4926                         matcher.localsPos[posIndex].contains(i)) {
4927                         return next.match(matcher, i, seq);
4928                     }
4929                     matcher.locals[countIndex] = count + 1;
4930                     boolean b = body.match(matcher, i, seq);
4931                     // If match failed we must backtrack, so
4932                     // the loop count should NOT be incremented
4933                     if (b)
4934                         return true;
4935                     matcher.locals[countIndex] = count;
4936                     // save the failed position
4937                     if (posIndex != -1) {
4938                         matcher.localsPos[posIndex].add(i);
4939                     }
4940                 }
4941             }
4942             return next.match(matcher, i, seq);
4943         }
4944         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4945             int save = matcher.locals[countIndex];
4946             boolean ret;
4947             if (posIndex != -1 && matcher.localsPos[posIndex] == null) {
4948                 matcher.localsPos[posIndex] = new IntHashSet();
4949             }
4950             if (0 < cmin) {
4951                 matcher.locals[countIndex] = 1;
4952                 ret = body.match(matcher, i, seq);
4953             } else if (0 < cmax) {
4954                 matcher.locals[countIndex] = 1;
4955                 ret = body.match(matcher, i, seq);
4956                 if (ret == false)
4957                     ret = next.match(matcher, i, seq);
4958             } else {
4959                 ret = next.match(matcher, i, seq);
4960             }
4961             matcher.locals[countIndex] = save;
4962             return ret;
4963         }
4964         boolean study(TreeInfo info) {
4965             info.maxValid = false;
4966             info.deterministic = false;
4967             return false;
4968         }
4969     }
4970 
4971     /**
4972      * Handles the repetition count for a reluctant Curly. The matchInit
4973      * is called from the Prolog to save the index of where the group
4974      * beginning is stored. A zero length group check occurs in the
4975      * normal match but is skipped in the matchInit.
4976      */
4977     static final class LazyLoop extends Loop {
4978         LazyLoop(int countIndex, int beginIndex) {
4979             super(countIndex, beginIndex);
4980         }
4981         boolean match(Matcher matcher, int i, CharSequence seq) {
4982             // Check for zero length group
4983             if (i > matcher.locals[beginIndex]) {
4984                 int count = matcher.locals[countIndex];
4985                 if (count < cmin) {
4986                     matcher.locals[countIndex] = count + 1;
4987                     boolean result = body.match(matcher, i, seq);
4988                     // If match failed we must backtrack, so
4989                     // the loop count should NOT be incremented
4990                     if (!result)
4991                         matcher.locals[countIndex] = count;
4992                     return result;
4993                 }
4994                 if (next.match(matcher, i, seq))
4995                     return true;
4996                 if (count < cmax) {
4997                     matcher.locals[countIndex] = count + 1;
4998                     boolean result = body.match(matcher, i, seq);
4999                     // If match failed we must backtrack, so
5000                     // the loop count should NOT be incremented
5001                     if (!result)
5002                         matcher.locals[countIndex] = count;
5003                     return result;
5004                 }
5005                 return false;
5006             }
5007             return next.match(matcher, i, seq);
5008         }
5009         boolean matchInit(Matcher matcher, int i, CharSequence seq) {
5010             int save = matcher.locals[countIndex];
5011             boolean ret = false;
5012             if (0 < cmin) {
5013                 matcher.locals[countIndex] = 1;
5014                 ret = body.match(matcher, i, seq);
5015             } else if (next.match(matcher, i, seq)) {
5016                 ret = true;
5017             } else if (0 < cmax) {
5018                 matcher.locals[countIndex] = 1;
5019                 ret = body.match(matcher, i, seq);
5020             }
5021             matcher.locals[countIndex] = save;
5022             return ret;
5023         }
5024         boolean study(TreeInfo info) {
5025             info.maxValid = false;
5026             info.deterministic = false;
5027             return false;
5028         }
5029     }
5030 
5031     /**
5032      * Refers to a group in the regular expression. Attempts to match
5033      * whatever the group referred to last matched.
5034      */
5035     static class BackRef extends Node {
5036         int groupIndex;
5037         BackRef(int groupCount) {
5038             super();
5039             groupIndex = groupCount + groupCount;
5040         }
5041         boolean match(Matcher matcher, int i, CharSequence seq) {
5042             int j = matcher.groups[groupIndex];
5043             int k = matcher.groups[groupIndex+1];
5044 
5045             int groupSize = k - j;
5046             // If the referenced group didn't match, neither can this
5047             if (j < 0)
5048                 return false;
5049 
5050             // If there isn't enough input left no match
5051             if (i + groupSize > matcher.to) {
5052                 matcher.hitEnd = true;
5053                 return false;
5054             }
5055             // Check each new char to make sure it matches what the group
5056             // referenced matched last time around
5057             for (int index=0; index<groupSize; index++)
5058                 if (seq.charAt(i+index) != seq.charAt(j+index))
5059                     return false;
5060 
5061             return next.match(matcher, i+groupSize, seq);
5062         }
5063         boolean study(TreeInfo info) {
5064             info.maxValid = false;
5065             return next.study(info);
5066         }
5067     }
5068 
5069     static class CIBackRef extends Node {
5070         int groupIndex;
5071         boolean doUnicodeCase;
5072         CIBackRef(int groupCount, boolean doUnicodeCase) {
5073             super();
5074             groupIndex = groupCount + groupCount;
5075             this.doUnicodeCase = doUnicodeCase;
5076         }
5077         boolean match(Matcher matcher, int i, CharSequence seq) {
5078             int j = matcher.groups[groupIndex];
5079             int k = matcher.groups[groupIndex+1];
5080 
5081             int groupSize = k - j;
5082 
5083             // If the referenced group didn't match, neither can this
5084             if (j < 0)
5085                 return false;
5086 
5087             // If there isn't enough input left no match
5088             if (i + groupSize > matcher.to) {
5089                 matcher.hitEnd = true;
5090                 return false;
5091             }
5092 
5093             // Check each new char to make sure it matches what the group
5094             // referenced matched last time around
5095             int x = i;
5096             for (int index=0; index<groupSize; index++) {
5097                 int c1 = Character.codePointAt(seq, x);
5098                 int c2 = Character.codePointAt(seq, j);
5099                 if (c1 != c2) {
5100                     if (doUnicodeCase) {
5101                         int cc1 = Character.toUpperCase(c1);
5102                         int cc2 = Character.toUpperCase(c2);
5103                         if (cc1 != cc2 &&
5104                             Character.toLowerCase(cc1) !=
5105                             Character.toLowerCase(cc2))
5106                             return false;
5107                     } else {
5108                         if (ASCII.toLower(c1) != ASCII.toLower(c2))
5109                             return false;
5110                     }
5111                 }
5112                 x += Character.charCount(c1);
5113                 j += Character.charCount(c2);
5114             }
5115 
5116             return next.match(matcher, i+groupSize, seq);
5117         }
5118         boolean study(TreeInfo info) {
5119             info.maxValid = false;
5120             return next.study(info);
5121         }
5122     }
5123 
5124     /**
5125      * Searches until the next instance of its atom. This is useful for
5126      * finding the atom efficiently without passing an instance of it
5127      * (greedy problem) and without a lot of wasted search time (reluctant
5128      * problem).
5129      */
5130     static final class First extends Node {
5131         Node atom;
5132         First(Node node) {
5133             this.atom = BnM.optimize(node);
5134         }
5135         boolean match(Matcher matcher, int i, CharSequence seq) {
5136             if (atom instanceof BnM) {
5137                 return atom.match(matcher, i, seq)
5138                     && next.match(matcher, matcher.last, seq);
5139             }
5140             for (;;) {
5141                 if (i > matcher.to) {
5142                     matcher.hitEnd = true;
5143                     return false;
5144                 }
5145                 if (atom.match(matcher, i, seq)) {
5146                     return next.match(matcher, matcher.last, seq);
5147                 }
5148                 i += countChars(seq, i, 1);
5149                 matcher.first++;
5150             }
5151         }
5152         boolean study(TreeInfo info) {
5153             atom.study(info);
5154             info.maxValid = false;
5155             info.deterministic = false;
5156             return next.study(info);
5157         }
5158     }
5159 
5160     /**
5161      * Zero width positive lookahead.
5162      */
5163     static final class Pos extends Node {
5164         Node cond;
5165         Pos(Node cond) {
5166             this.cond = cond;
5167         }
5168         boolean match(Matcher matcher, int i, CharSequence seq) {
5169             int savedTo = matcher.to;
5170             boolean conditionMatched;
5171 
5172             // Relax transparent region boundaries for lookahead
5173             if (matcher.transparentBounds)
5174                 matcher.to = matcher.getTextLength();
5175             try {
5176                 conditionMatched = cond.match(matcher, i, seq);
5177             } finally {
5178                 // Reinstate region boundaries
5179                 matcher.to = savedTo;
5180             }
5181             return conditionMatched && next.match(matcher, i, seq);
5182         }
5183     }
5184 
5185     /**
5186      * Zero width negative lookahead.
5187      */
5188     static final class Neg extends Node {
5189         Node cond;
5190         Neg(Node cond) {
5191             this.cond = cond;
5192         }
5193         boolean match(Matcher matcher, int i, CharSequence seq) {
5194             int savedTo = matcher.to;
5195             boolean conditionMatched;
5196 
5197             // Relax transparent region boundaries for lookahead
5198             if (matcher.transparentBounds)
5199                 matcher.to = matcher.getTextLength();
5200             try {
5201                 if (i < matcher.to) {
5202                     conditionMatched = !cond.match(matcher, i, seq);
5203                 } else {
5204                     // If a negative lookahead succeeds then more input
5205                     // could cause it to fail!
5206                     matcher.requireEnd = true;
5207                     conditionMatched = !cond.match(matcher, i, seq);
5208                 }
5209             } finally {
5210                 // Reinstate region boundaries
5211                 matcher.to = savedTo;
5212             }
5213             return conditionMatched && next.match(matcher, i, seq);
5214         }
5215     }
5216 
5217     /**
5218      * For use with lookbehinds; matches the position where the lookbehind
5219      * was encountered.
5220      */
5221     static class LookBehindEndNode extends Node {
5222         private LookBehindEndNode() {} // Singleton
5223 
5224         static LookBehindEndNode INSTANCE = new LookBehindEndNode();
5225 
5226         boolean match(Matcher matcher, int i, CharSequence seq) {
5227             return i == matcher.lookbehindTo;
5228         }
5229     }
5230 
5231     /**
5232      * Zero width positive lookbehind.
5233      */
5234     static class Behind extends Node {
5235         Node cond;
5236         int rmax, rmin;
5237         Behind(Node cond, int rmax, int rmin) {
5238             this.cond = cond;
5239             this.rmax = rmax;
5240             this.rmin = rmin;
5241         }
5242 
5243         boolean match(Matcher matcher, int i, CharSequence seq) {
5244             int savedFrom = matcher.from;
5245             boolean conditionMatched = false;
5246             int startIndex = (!matcher.transparentBounds) ?
5247                              matcher.from : 0;
5248             int from = Math.max(i - rmax, startIndex);
5249             // Set end boundary
5250             int savedLBT = matcher.lookbehindTo;
5251             matcher.lookbehindTo = i;
5252             // Relax transparent region boundaries for lookbehind
5253             if (matcher.transparentBounds)
5254                 matcher.from = 0;
5255             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5256                 conditionMatched = cond.match(matcher, j, seq);
5257             }
5258             matcher.from = savedFrom;
5259             matcher.lookbehindTo = savedLBT;
5260             return conditionMatched && next.match(matcher, i, seq);
5261         }
5262     }
5263 
5264     /**
5265      * Zero width positive lookbehind, including supplementary
5266      * characters or unpaired surrogates.
5267      */
5268     static final class BehindS extends Behind {
5269         BehindS(Node cond, int rmax, int rmin) {
5270             super(cond, rmax, rmin);
5271         }
5272         boolean match(Matcher matcher, int i, CharSequence seq) {
5273             int rmaxChars = countChars(seq, i, -rmax);
5274             int rminChars = countChars(seq, i, -rmin);
5275             int savedFrom = matcher.from;
5276             int startIndex = (!matcher.transparentBounds) ?
5277                              matcher.from : 0;
5278             boolean conditionMatched = false;
5279             int from = Math.max(i - rmaxChars, startIndex);
5280             // Set end boundary
5281             int savedLBT = matcher.lookbehindTo;
5282             matcher.lookbehindTo = i;
5283             // Relax transparent region boundaries for lookbehind
5284             if (matcher.transparentBounds)
5285                 matcher.from = 0;
5286 
5287             for (int j = i - rminChars;
5288                  !conditionMatched && j >= from;
5289                  j -= j>from ? countChars(seq, j, -1) : 1) {
5290                 conditionMatched = cond.match(matcher, j, seq);
5291             }
5292             matcher.from = savedFrom;
5293             matcher.lookbehindTo = savedLBT;
5294             return conditionMatched && next.match(matcher, i, seq);
5295         }
5296     }
5297 
5298     /**
5299      * Zero width negative lookbehind.
5300      */
5301     static class NotBehind extends Node {
5302         Node cond;
5303         int rmax, rmin;
5304         NotBehind(Node cond, int rmax, int rmin) {
5305             this.cond = cond;
5306             this.rmax = rmax;
5307             this.rmin = rmin;
5308         }
5309 
5310         boolean match(Matcher matcher, int i, CharSequence seq) {
5311             int savedLBT = matcher.lookbehindTo;
5312             int savedFrom = matcher.from;
5313             boolean conditionMatched = false;
5314             int startIndex = (!matcher.transparentBounds) ?
5315                              matcher.from : 0;
5316             int from = Math.max(i - rmax, startIndex);
5317             matcher.lookbehindTo = i;
5318             // Relax transparent region boundaries for lookbehind
5319             if (matcher.transparentBounds)
5320                 matcher.from = 0;
5321             for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5322                 conditionMatched = cond.match(matcher, j, seq);
5323             }
5324             // Reinstate region boundaries
5325             matcher.from = savedFrom;
5326             matcher.lookbehindTo = savedLBT;
5327             return !conditionMatched && next.match(matcher, i, seq);
5328         }
5329     }
5330 
5331     /**
5332      * Zero width negative lookbehind, including supplementary
5333      * characters or unpaired surrogates.
5334      */
5335     static final class NotBehindS extends NotBehind {
5336         NotBehindS(Node cond, int rmax, int rmin) {
5337             super(cond, rmax, rmin);
5338         }
5339         boolean match(Matcher matcher, int i, CharSequence seq) {
5340             int rmaxChars = countChars(seq, i, -rmax);
5341             int rminChars = countChars(seq, i, -rmin);
5342             int savedFrom = matcher.from;
5343             int savedLBT = matcher.lookbehindTo;
5344             boolean conditionMatched = false;
5345             int startIndex = (!matcher.transparentBounds) ?
5346                              matcher.from : 0;
5347             int from = Math.max(i - rmaxChars, startIndex);
5348             matcher.lookbehindTo = i;
5349             // Relax transparent region boundaries for lookbehind
5350             if (matcher.transparentBounds)
5351                 matcher.from = 0;
5352             for (int j = i - rminChars;
5353                  !conditionMatched && j >= from;
5354                  j -= j>from ? countChars(seq, j, -1) : 1) {
5355                 conditionMatched = cond.match(matcher, j, seq);
5356             }
5357             //Reinstate region boundaries
5358             matcher.from = savedFrom;
5359             matcher.lookbehindTo = savedLBT;
5360             return !conditionMatched && next.match(matcher, i, seq);
5361         }
5362     }
5363 
5364     /**
5365      * Handles word boundaries. Includes a field to allow this one class to
5366      * deal with the different types of word boundaries we can match. The word
5367      * characters include underscores, letters, and digits. Non spacing marks
5368      * can are also part of a word if they have a base character, otherwise
5369      * they are ignored for purposes of finding word boundaries.
5370      */
5371     static final class Bound extends Node {
5372         static int LEFT = 0x1;
5373         static int RIGHT= 0x2;
5374         static int BOTH = 0x3;
5375         static int NONE = 0x4;
5376         int type;
5377         boolean useUWORD;
5378         Bound(int n, boolean useUWORD) {
5379             type = n;
5380             this.useUWORD = useUWORD;
5381         }
5382 
5383         boolean isWord(int ch) {
5384             return useUWORD ? CharPredicates.WORD().is(ch)
5385                             : (ch == '_' || Character.isLetterOrDigit(ch));
5386         }
5387 
5388         int check(Matcher matcher, int i, CharSequence seq) {
5389             int ch;
5390             boolean left = false;
5391             int startIndex = matcher.from;
5392             int endIndex = matcher.to;
5393             if (matcher.transparentBounds) {
5394                 startIndex = 0;
5395                 endIndex = matcher.getTextLength();
5396             }
5397             if (i > startIndex) {
5398                 ch = Character.codePointBefore(seq, i);
5399                 left = (isWord(ch) ||
5400                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5401                      && hasBaseCharacter(matcher, i-1, seq)));
5402             }
5403             boolean right = false;
5404             if (i < endIndex) {
5405                 ch = Character.codePointAt(seq, i);
5406                 right = (isWord(ch) ||
5407                     ((Character.getType(ch) == Character.NON_SPACING_MARK)
5408                      && hasBaseCharacter(matcher, i, seq)));
5409             } else {
5410                 // Tried to access char past the end
5411                 matcher.hitEnd = true;
5412                 // The addition of another char could wreck a boundary
5413                 matcher.requireEnd = true;
5414             }
5415             return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5416         }
5417         boolean match(Matcher matcher, int i, CharSequence seq) {
5418             return (check(matcher, i, seq) & type) > 0
5419                 && next.match(matcher, i, seq);
5420         }
5421     }
5422 
5423     /**
5424      * Non spacing marks only count as word characters in bounds calculations
5425      * if they have a base character.
5426      */
5427     private static boolean hasBaseCharacter(Matcher matcher, int i,
5428                                             CharSequence seq)
5429     {
5430         int start = (!matcher.transparentBounds) ?
5431             matcher.from : 0;
5432         for (int x=i; x >= start; x--) {
5433             int ch = Character.codePointAt(seq, x);
5434             if (Character.isLetterOrDigit(ch))
5435                 return true;
5436             if (Character.getType(ch) == Character.NON_SPACING_MARK)
5437                 continue;
5438             return false;
5439         }
5440         return false;
5441     }
5442 
5443     /**
5444      * Attempts to match a slice in the input using the Boyer-Moore string
5445      * matching algorithm. The algorithm is based on the idea that the
5446      * pattern can be shifted farther ahead in the search text if it is
5447      * matched right to left.
5448      * <p>
5449      * The pattern is compared to the input one character at a time, from
5450      * the rightmost character in the pattern to the left. If the characters
5451      * all match the pattern has been found. If a character does not match,
5452      * the pattern is shifted right a distance that is the maximum of two
5453      * functions, the bad character shift and the good suffix shift. This
5454      * shift moves the attempted match position through the input more
5455      * quickly than a naive one position at a time check.
5456      * <p>
5457      * The bad character shift is based on the character from the text that
5458      * did not match. If the character does not appear in the pattern, the
5459      * pattern can be shifted completely beyond the bad character. If the
5460      * character does occur in the pattern, the pattern can be shifted to
5461      * line the pattern up with the next occurrence of that character.
5462      * <p>
5463      * The good suffix shift is based on the idea that some subset on the right
5464      * side of the pattern has matched. When a bad character is found, the
5465      * pattern can be shifted right by the pattern length if the subset does
5466      * not occur again in pattern, or by the amount of distance to the
5467      * next occurrence of the subset in the pattern.
5468      *
5469      * Boyer-Moore search methods adapted from code by Amy Yu.
5470      */
5471     static class BnM extends Node {
5472         int[] buffer;
5473         int[] lastOcc;
5474         int[] optoSft;
5475 
5476         /**
5477          * Pre calculates arrays needed to generate the bad character
5478          * shift and the good suffix shift. Only the last seven bits
5479          * are used to see if chars match; This keeps the tables small
5480          * and covers the heavily used ASCII range, but occasionally
5481          * results in an aliased match for the bad character shift.
5482          */
5483         static Node optimize(Node node) {
5484             if (!(node instanceof Slice)) {
5485                 return node;
5486             }
5487 
5488             int[] src = ((Slice) node).buffer;
5489             int patternLength = src.length;
5490             // The BM algorithm requires a bit of overhead;
5491             // If the pattern is short don't use it, since
5492             // a shift larger than the pattern length cannot
5493             // be used anyway.
5494             if (patternLength < 4) {
5495                 return node;
5496             }
5497             int i, j;
5498             int[] lastOcc = new int[128];
5499             int[] optoSft = new int[patternLength];
5500             // Precalculate part of the bad character shift
5501             // It is a table for where in the pattern each
5502             // lower 7-bit value occurs
5503             for (i = 0; i < patternLength; i++) {
5504                 lastOcc[src[i]&0x7F] = i + 1;
5505             }
5506             // Precalculate the good suffix shift
5507             // i is the shift amount being considered
5508 NEXT:       for (i = patternLength; i > 0; i--) {
5509                 // j is the beginning index of suffix being considered
5510                 for (j = patternLength - 1; j >= i; j--) {
5511                     // Testing for good suffix
5512                     if (src[j] == src[j-i]) {
5513                         // src[j..len] is a good suffix
5514                         optoSft[j-1] = i;
5515                     } else {
5516                         // No match. The array has already been
5517                         // filled up with correct values before.
5518                         continue NEXT;
5519                     }
5520                 }
5521                 // This fills up the remaining of optoSft
5522                 // any suffix can not have larger shift amount
5523                 // then its sub-suffix. Why???
5524                 while (j > 0) {
5525                     optoSft[--j] = i;
5526                 }
5527             }
5528             // Set the guard value because of unicode compression
5529             optoSft[patternLength-1] = 1;
5530             if (node instanceof SliceS)
5531                 return new BnMS(src, lastOcc, optoSft, node.next);
5532             return new BnM(src, lastOcc, optoSft, node.next);
5533         }
5534         BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5535             this.buffer = src;
5536             this.lastOcc = lastOcc;
5537             this.optoSft = optoSft;
5538             this.next = next;
5539         }
5540         boolean match(Matcher matcher, int i, CharSequence seq) {
5541             int[] src = buffer;
5542             int patternLength = src.length;
5543             int last = matcher.to - patternLength;
5544 
5545             // Loop over all possible match positions in text
5546 NEXT:       while (i <= last) {
5547                 // Loop over pattern from right to left
5548                 for (int j = patternLength - 1; j >= 0; j--) {
5549                     int ch = seq.charAt(i+j);
5550                     if (ch != src[j]) {
5551                         // Shift search to the right by the maximum of the
5552                         // bad character shift and the good suffix shift
5553                         i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5554                         continue NEXT;
5555                     }
5556                 }
5557                 // Entire pattern matched starting at i
5558                 matcher.first = i;
5559                 boolean ret = next.match(matcher, i + patternLength, seq);
5560                 if (ret) {
5561                     matcher.first = i;
5562                     matcher.groups[0] = matcher.first;
5563                     matcher.groups[1] = matcher.last;
5564                     return true;
5565                 }
5566                 i++;
5567             }
5568             // BnM is only used as the leading node in the unanchored case,
5569             // and it replaced its Start() which always searches to the end
5570             // if it doesn't find what it's looking for, so hitEnd is true.
5571             matcher.hitEnd = true;
5572             return false;
5573         }
5574         boolean study(TreeInfo info) {
5575             info.minLength += buffer.length;
5576             info.maxValid = false;
5577             return next.study(info);
5578         }
5579     }
5580 
5581     /**
5582      * Supplementary support version of BnM(). Unpaired surrogates are
5583      * also handled by this class.
5584      */
5585     static final class BnMS extends BnM {
5586         int lengthInChars;
5587 
5588         BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5589             super(src, lastOcc, optoSft, next);
5590             for (int cp : buffer) {
5591                 lengthInChars += Character.charCount(cp);
5592             }
5593         }
5594         boolean match(Matcher matcher, int i, CharSequence seq) {
5595             int[] src = buffer;
5596             int patternLength = src.length;
5597             int last = matcher.to - lengthInChars;
5598 
5599             // Loop over all possible match positions in text
5600 NEXT:       while (i <= last) {
5601                 // Loop over pattern from right to left
5602                 int ch;
5603                 for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5604                      j > 0; j -= Character.charCount(ch), x--) {
5605                     ch = Character.codePointBefore(seq, i+j);
5606                     if (ch != src[x]) {
5607                         // Shift search to the right by the maximum of the
5608                         // bad character shift and the good suffix shift
5609                         int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5610                         i += countChars(seq, i, n);
5611                         continue NEXT;
5612                     }
5613                 }
5614                 // Entire pattern matched starting at i
5615                 matcher.first = i;
5616                 boolean ret = next.match(matcher, i + lengthInChars, seq);
5617                 if (ret) {
5618                     matcher.first = i;
5619                     matcher.groups[0] = matcher.first;
5620                     matcher.groups[1] = matcher.last;
5621                     return true;
5622                 }
5623                 i += countChars(seq, i, 1);
5624             }
5625             matcher.hitEnd = true;
5626             return false;
5627         }
5628     }
5629 
5630     @FunctionalInterface
5631     static interface CharPredicate {
5632         boolean is(int ch);
5633 
5634         default CharPredicate and(CharPredicate p) {
5635             return ch -> is(ch) && p.is(ch);
5636         }
5637         default CharPredicate union(CharPredicate p) {
5638             return ch -> is(ch) || p.is(ch);
5639         }
5640         default CharPredicate union(CharPredicate p1,
5641                                     CharPredicate p2 ) {
5642             return ch -> is(ch) || p1.is(ch) || p2.is(ch);
5643         }
5644         default CharPredicate negate() {
5645             return ch -> !is(ch);
5646         }
5647     }
5648 
5649     static interface BmpCharPredicate extends CharPredicate {
5650 
5651         default CharPredicate and(CharPredicate p) {
5652             if (p instanceof BmpCharPredicate)
5653                 return (BmpCharPredicate)(ch -> is(ch) && p.is(ch));
5654             return ch -> is(ch) && p.is(ch);
5655         }
5656         default CharPredicate union(CharPredicate p) {
5657             if (p instanceof BmpCharPredicate)
5658                 return (BmpCharPredicate)(ch -> is(ch) || p.is(ch));
5659             return ch -> is(ch) || p.is(ch);
5660         }
5661         static CharPredicate union(CharPredicate... predicates) {
5662             CharPredicate cp = ch -> {
5663                 for (CharPredicate p : predicates) {
5664                     if (!p.is(ch))
5665                         return false;
5666                 }
5667                 return true;
5668             };
5669             for (CharPredicate p : predicates) {
5670                 if (! (p instanceof BmpCharPredicate))
5671                     return cp;
5672             }
5673             return (BmpCharPredicate)cp;
5674         }
5675     }
5676 
5677     /**
5678      * matches a Perl vertical whitespace
5679      */
5680     static BmpCharPredicate VertWS() {
5681         return cp -> (cp >= 0x0A && cp <= 0x0D) ||
5682             cp == 0x85 || cp == 0x2028 || cp == 0x2029;
5683     }
5684 
5685     /**
5686      * matches a Perl horizontal whitespace
5687      */
5688     static BmpCharPredicate HorizWS() {
5689         return cp ->
5690             cp == 0x09 || cp == 0x20 || cp == 0xa0 || cp == 0x1680 ||
5691             cp == 0x180e || cp >= 0x2000 && cp <= 0x200a ||  cp == 0x202f ||
5692             cp == 0x205f || cp == 0x3000;
5693     }
5694 
5695     /**
5696      *  for the Unicode category ALL and the dot metacharacter when
5697      *  in dotall mode.
5698      */
5699     static CharPredicate ALL() {
5700         return ch -> true;
5701     }
5702 
5703     /**
5704      * for the dot metacharacter when dotall is not enabled.
5705      */
5706     static CharPredicate DOT() {
5707         return ch ->
5708             (ch != '\n' && ch != '\r'
5709             && (ch|1) != '\u2029'
5710             && ch != '\u0085');
5711     }
5712 
5713     /**
5714      *  the dot metacharacter when dotall is not enabled but UNIX_LINES is enabled.
5715      */
5716     static CharPredicate UNIXDOT() {
5717         return ch ->  ch != '\n';
5718     }
5719 
5720     /**
5721      * Indicate that matches a Supplementary Unicode character
5722      */
5723     static CharPredicate SingleS(int c) {
5724         return ch -> ch == c;
5725     }
5726 
5727     /**
5728      * A bmp/optimized predicate of single
5729      */
5730     static BmpCharPredicate Single(int c) {
5731         return ch -> ch == c;
5732     }
5733 
5734     /**
5735      * Case insensitive matches a given BMP character
5736      */
5737     static BmpCharPredicate SingleI(int lower, int upper) {
5738         return ch -> ch == lower || ch == upper;
5739     }
5740 
5741     /**
5742      * Unicode case insensitive matches a given Unicode character
5743      */
5744     static CharPredicate SingleU(int lower) {
5745         return ch -> lower == ch ||
5746                      lower == Character.toLowerCase(Character.toUpperCase(ch));
5747     }
5748 
5749     private static boolean inRange(int lower, int ch, int upper) {
5750         return lower <= ch && ch <= upper;
5751     }
5752 
5753     /**
5754      * Charactrs within a explicit value range
5755      */
5756     static CharPredicate Range(int lower, int upper) {
5757         if (upper < Character.MIN_HIGH_SURROGATE ||
5758             lower > Character.MAX_HIGH_SURROGATE &&
5759             upper < Character.MIN_SUPPLEMENTARY_CODE_POINT)
5760             return (BmpCharPredicate)(ch -> inRange(lower, ch, upper));
5761         return ch -> inRange(lower, ch, upper);
5762     }
5763 
5764    /**
5765     * Charactrs within a explicit value range in a case insensitive manner.
5766     */
5767     static CharPredicate CIRange(int lower, int upper) {
5768         return ch -> inRange(lower, ch, upper) ||
5769                      ASCII.isAscii(ch) &&
5770                      (inRange(lower, ASCII.toUpper(ch), upper) ||
5771                       inRange(lower, ASCII.toLower(ch), upper));
5772     }
5773 
5774     static CharPredicate CIRangeU(int lower, int upper) {
5775         return ch -> {
5776             if (inRange(lower, ch, upper))
5777                 return true;
5778             int up = Character.toUpperCase(ch);
5779             return inRange(lower, up, upper) ||
5780                    inRange(lower, Character.toLowerCase(up), upper);
5781         };
5782     }
5783 
5784     /**
5785      *  This must be the very first initializer.
5786      */
5787     static final Node accept = new Node();
5788 
5789     static final Node lastAccept = new LastNode();
5790 
5791     /**
5792      * Creates a predicate that tests if this pattern is found in a given input
5793      * string.
5794      *
5795      * @apiNote
5796      * This method creates a predicate that behaves as if it creates a matcher
5797      * from the input sequence and then calls {@code find}, for example a
5798      * predicate of the form:
5799      * <pre>{@code
5800      *   s -> matcher(s).find();
5801      * }</pre>
5802      *
5803      * @return  The predicate which can be used for finding a match on a
5804      *          subsequence of a string
5805      * @since   1.8
5806      * @see     Matcher#find
5807      */
5808     public Predicate<String> asPredicate() {
5809         return s -> matcher(s).find();
5810     }
5811 
5812     /**
5813      * Creates a predicate that tests if this pattern matches a given input string.
5814      *
5815      * @apiNote
5816      * This method creates a predicate that behaves as if it creates a matcher
5817      * from the input sequence and then calls {@code matches}, for example a
5818      * predicate of the form:
5819      * <pre>{@code
5820      *   s -> matcher(s).matches();
5821      * }</pre>
5822      *
5823      * @return  The predicate which can be used for matching an input string
5824      *          against this pattern.
5825      * @since   11
5826      * @see     Matcher#matches
5827      */
5828     public Predicate<String> asMatchPredicate() {
5829         return s -> matcher(s).matches();
5830     }
5831 
5832     /**
5833      * Creates a stream from the given input sequence around matches of this
5834      * pattern.
5835      *
5836      * <p> The stream returned by this method contains each substring of the
5837      * input sequence that is terminated by another subsequence that matches
5838      * this pattern or is terminated by the end of the input sequence.  The
5839      * substrings in the stream are in the order in which they occur in the
5840      * input. Trailing empty strings will be discarded and not encountered in
5841      * the stream.
5842      *
5843      * <p> If this pattern does not match any subsequence of the input then
5844      * the resulting stream has just one element, namely the input sequence in
5845      * string form.
5846      *
5847      * <p> When there is a positive-width match at the beginning of the input
5848      * sequence then an empty leading substring is included at the beginning
5849      * of the stream. A zero-width match at the beginning however never produces
5850      * such empty leading substring.
5851      *
5852      * <p> If the input sequence is mutable, it must remain constant during the
5853      * execution of the terminal stream operation.  Otherwise, the result of the
5854      * terminal stream operation is undefined.
5855      *
5856      * @param   input
5857      *          The character sequence to be split
5858      *
5859      * @return  The stream of strings computed by splitting the input
5860      *          around matches of this pattern
5861      * @see     #split(CharSequence)
5862      * @since   1.8
5863      */
5864     public Stream<String> splitAsStream(final CharSequence input) {
5865         class MatcherIterator implements Iterator<String> {
5866             private Matcher matcher;
5867             // The start position of the next sub-sequence of input
5868             // when current == input.length there are no more elements
5869             private int current;
5870             // null if the next element, if any, needs to obtained
5871             private String nextElement;
5872             // > 0 if there are N next empty elements
5873             private int emptyElementCount;
5874 
5875             public String next() {
5876                 if (!hasNext())
5877                     throw new NoSuchElementException();
5878 
5879                 if (emptyElementCount == 0) {
5880                     String n = nextElement;
5881                     nextElement = null;
5882                     return n;
5883                 } else {
5884                     emptyElementCount--;
5885                     return "";
5886                 }
5887             }
5888 
5889             public boolean hasNext() {
5890                 if (matcher == null) {
5891                     matcher = matcher(input);
5892                     // If the input is an empty string then the result can only be a
5893                     // stream of the input.  Induce that by setting the empty
5894                     // element count to 1
5895                     emptyElementCount = input.length() == 0 ? 1 : 0;
5896                 }
5897                 if (nextElement != null || emptyElementCount > 0)
5898                     return true;
5899 
5900                 if (current == input.length())
5901                     return false;
5902 
5903                 // Consume the next matching element
5904                 // Count sequence of matching empty elements
5905                 while (matcher.find()) {
5906                     nextElement = input.subSequence(current, matcher.start()).toString();
5907                     current = matcher.end();
5908                     if (!nextElement.isEmpty()) {
5909                         return true;
5910                     } else if (current > 0) { // no empty leading substring for zero-width
5911                                               // match at the beginning of the input
5912                         emptyElementCount++;
5913                     }
5914                 }
5915 
5916                 // Consume last matching element
5917                 nextElement = input.subSequence(current, input.length()).toString();
5918                 current = input.length();
5919                 if (!nextElement.isEmpty()) {
5920                     return true;
5921                 } else {
5922                     // Ignore a terminal sequence of matching empty elements
5923                     emptyElementCount = 0;
5924                     nextElement = null;
5925                     return false;
5926                 }
5927             }
5928         }
5929         return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
5930                 new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
5931     }
5932 }