1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_bsd.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_bsd.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/orderAccess.inline.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/growableArray.hpp"
  67 #include "utilities/vmError.hpp"
  68 
  69 // put OS-includes here
  70 # include <sys/types.h>
  71 # include <sys/mman.h>
  72 # include <sys/stat.h>
  73 # include <sys/select.h>
  74 # include <pthread.h>
  75 # include <signal.h>
  76 # include <errno.h>
  77 # include <dlfcn.h>
  78 # include <stdio.h>
  79 # include <unistd.h>
  80 # include <sys/resource.h>
  81 # include <pthread.h>
  82 # include <sys/stat.h>
  83 # include <sys/time.h>
  84 # include <sys/times.h>
  85 # include <sys/utsname.h>
  86 # include <sys/socket.h>
  87 # include <sys/wait.h>
  88 # include <time.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <sys/param.h>
  95 # include <sys/sysctl.h>
  96 # include <sys/ipc.h>
  97 # include <sys/shm.h>
  98 #ifndef __APPLE__
  99 # include <link.h>
 100 #endif
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 # include <sys/syscall.h>
 105 
 106 #if defined(__FreeBSD__) || defined(__NetBSD__)
 107 # include <elf.h>
 108 #endif
 109 
 110 #ifdef __APPLE__
 111 # include <mach/mach.h> // semaphore_* API
 112 # include <mach-o/dyld.h>
 113 # include <sys/proc_info.h>
 114 # include <objc/objc-auto.h>
 115 #endif
 116 
 117 #ifndef MAP_ANONYMOUS
 118 #define MAP_ANONYMOUS MAP_ANON
 119 #endif
 120 
 121 #define MAX_PATH    (2 * K)
 122 
 123 // for timer info max values which include all bits
 124 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 125 
 126 #define LARGEPAGES_BIT (1 << 6)
 127 
 128 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 129 
 130 ////////////////////////////////////////////////////////////////////////////////
 131 // global variables
 132 julong os::Bsd::_physical_memory = 0;
 133 
 134 #ifdef __APPLE__
 135 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 136 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 137 #else
 138 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 #endif
 140 pthread_t os::Bsd::_main_thread;
 141 int os::Bsd::_page_size = -1;
 142 
 143 static jlong initial_time_count=0;
 144 
 145 static int clock_tics_per_sec = 100;
 146 
 147 // For diagnostics to print a message once. see run_periodic_checks
 148 static sigset_t check_signal_done;
 149 static bool check_signals = true;
 150 
 151 static pid_t _initial_pid = 0;
 152 
 153 /* Signal number used to suspend/resume a thread */
 154 
 155 /* do not use any signal number less than SIGSEGV, see 4355769 */
 156 static int SR_signum = SIGUSR2;
 157 sigset_t SR_sigset;
 158 
 159 
 160 ////////////////////////////////////////////////////////////////////////////////
 161 // utility functions
 162 
 163 static int SR_initialize();
 164 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 165 
 166 julong os::available_memory() {
 167   return Bsd::available_memory();
 168 }
 169 
 170 // available here means free
 171 julong os::Bsd::available_memory() {
 172   uint64_t available = physical_memory() >> 2;
 173 #ifdef __APPLE__
 174   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 175   vm_statistics64_data_t vmstat;
 176   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 177                                          (host_info64_t)&vmstat, &count);
 178   assert(kerr == KERN_SUCCESS,
 179          "host_statistics64 failed - check mach_host_self() and count");
 180   if (kerr == KERN_SUCCESS) {
 181     available = vmstat.free_count * os::vm_page_size();
 182   }
 183 #endif
 184   return available;
 185 }
 186 
 187 julong os::physical_memory() {
 188   return Bsd::physical_memory();
 189 }
 190 
 191 ////////////////////////////////////////////////////////////////////////////////
 192 // environment support
 193 
 194 bool os::getenv(const char* name, char* buf, int len) {
 195   const char* val = ::getenv(name);
 196   if (val != NULL && strlen(val) < (size_t)len) {
 197     strcpy(buf, val);
 198     return true;
 199   }
 200   if (len > 0) buf[0] = 0;  // return a null string
 201   return false;
 202 }
 203 
 204 
 205 // Return true if user is running as root.
 206 
 207 bool os::have_special_privileges() {
 208   static bool init = false;
 209   static bool privileges = false;
 210   if (!init) {
 211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 212     init = true;
 213   }
 214   return privileges;
 215 }
 216 
 217 
 218 
 219 // Cpu architecture string
 220 #if   defined(ZERO)
 221 static char cpu_arch[] = ZERO_LIBARCH;
 222 #elif defined(IA64)
 223 static char cpu_arch[] = "ia64";
 224 #elif defined(IA32)
 225 static char cpu_arch[] = "i386";
 226 #elif defined(AMD64)
 227 static char cpu_arch[] = "amd64";
 228 #elif defined(ARM)
 229 static char cpu_arch[] = "arm";
 230 #elif defined(PPC32)
 231 static char cpu_arch[] = "ppc";
 232 #elif defined(SPARC)
 233 #  ifdef _LP64
 234 static char cpu_arch[] = "sparcv9";
 235 #  else
 236 static char cpu_arch[] = "sparc";
 237 #  endif
 238 #else
 239 #error Add appropriate cpu_arch setting
 240 #endif
 241 
 242 // Compiler variant
 243 #ifdef COMPILER2
 244 #define COMPILER_VARIANT "server"
 245 #else
 246 #define COMPILER_VARIANT "client"
 247 #endif
 248 
 249 
 250 void os::Bsd::initialize_system_info() {
 251   int mib[2];
 252   size_t len;
 253   int cpu_val;
 254   julong mem_val;
 255 
 256   /* get processors count via hw.ncpus sysctl */
 257   mib[0] = CTL_HW;
 258   mib[1] = HW_NCPU;
 259   len = sizeof(cpu_val);
 260   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 261        assert(len == sizeof(cpu_val), "unexpected data size");
 262        set_processor_count(cpu_val);
 263   }
 264   else {
 265        set_processor_count(1);   // fallback
 266   }
 267 
 268   /* get physical memory via hw.memsize sysctl (hw.memsize is used
 269    * since it returns a 64 bit value)
 270    */
 271   mib[0] = CTL_HW;
 272 
 273 #if defined (HW_MEMSIZE) // Apple
 274   mib[1] = HW_MEMSIZE;
 275 #elif defined(HW_PHYSMEM) // Most of BSD
 276   mib[1] = HW_PHYSMEM;
 277 #elif defined(HW_REALMEM) // Old FreeBSD
 278   mib[1] = HW_REALMEM;
 279 #else
 280   #error No ways to get physmem
 281 #endif
 282 
 283   len = sizeof(mem_val);
 284   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 285        assert(len == sizeof(mem_val), "unexpected data size");
 286        _physical_memory = mem_val;
 287   } else {
 288        _physical_memory = 256*1024*1024;       // fallback (XXXBSD?)
 289   }
 290 
 291 #ifdef __OpenBSD__
 292   {
 293        // limit _physical_memory memory view on OpenBSD since
 294        // datasize rlimit restricts us anyway.
 295        struct rlimit limits;
 296        getrlimit(RLIMIT_DATA, &limits);
 297        _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 298   }
 299 #endif
 300 }
 301 
 302 #ifdef __APPLE__
 303 static const char *get_home() {
 304   const char *home_dir = ::getenv("HOME");
 305   if ((home_dir == NULL) || (*home_dir == '\0')) {
 306     struct passwd *passwd_info = getpwuid(geteuid());
 307     if (passwd_info != NULL) {
 308       home_dir = passwd_info->pw_dir;
 309     }
 310   }
 311 
 312   return home_dir;
 313 }
 314 #endif
 315 
 316 void os::init_system_properties_values() {
 317   // The next steps are taken in the product version:
 318   //
 319   // Obtain the JAVA_HOME value from the location of libjvm.so.
 320   // This library should be located at:
 321   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 322   //
 323   // If "/jre/lib/" appears at the right place in the path, then we
 324   // assume libjvm.so is installed in a JDK and we use this path.
 325   //
 326   // Otherwise exit with message: "Could not create the Java virtual machine."
 327   //
 328   // The following extra steps are taken in the debugging version:
 329   //
 330   // If "/jre/lib/" does NOT appear at the right place in the path
 331   // instead of exit check for $JAVA_HOME environment variable.
 332   //
 333   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 334   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 335   // it looks like libjvm.so is installed there
 336   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 337   //
 338   // Otherwise exit.
 339   //
 340   // Important note: if the location of libjvm.so changes this
 341   // code needs to be changed accordingly.
 342 
 343 // See ld(1):
 344 //      The linker uses the following search paths to locate required
 345 //      shared libraries:
 346 //        1: ...
 347 //        ...
 348 //        7: The default directories, normally /lib and /usr/lib.
 349 #ifndef DEFAULT_LIBPATH
 350 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 351 #endif
 352 
 353 // Base path of extensions installed on the system.
 354 #define SYS_EXT_DIR     "/usr/java/packages"
 355 #define EXTENSIONS_DIR  "/lib/ext"
 356 #define ENDORSED_DIR    "/lib/endorsed"
 357 
 358 #ifndef __APPLE__
 359 
 360   // Buffer that fits several sprintfs.
 361   // Note that the space for the colon and the trailing null are provided
 362   // by the nulls included by the sizeof operator.
 363   const size_t bufsize =
 364     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 365          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 366          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 367   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 368 
 369   // sysclasspath, java_home, dll_dir
 370   {
 371     char *pslash;
 372     os::jvm_path(buf, bufsize);
 373 
 374     // Found the full path to libjvm.so.
 375     // Now cut the path to <java_home>/jre if we can.
 376     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 377     pslash = strrchr(buf, '/');
 378     if (pslash != NULL) {
 379       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 380     }
 381     Arguments::set_dll_dir(buf);
 382 
 383     if (pslash != NULL) {
 384       pslash = strrchr(buf, '/');
 385       if (pslash != NULL) {
 386         *pslash = '\0';          // Get rid of /<arch>.
 387         pslash = strrchr(buf, '/');
 388         if (pslash != NULL) {
 389           *pslash = '\0';        // Get rid of /lib.
 390         }
 391       }
 392     }
 393     Arguments::set_java_home(buf);
 394     set_boot_path('/', ':');
 395   }
 396 
 397   // Where to look for native libraries.
 398   //
 399   // Note: Due to a legacy implementation, most of the library path
 400   // is set in the launcher. This was to accomodate linking restrictions
 401   // on legacy Bsd implementations (which are no longer supported).
 402   // Eventually, all the library path setting will be done here.
 403   //
 404   // However, to prevent the proliferation of improperly built native
 405   // libraries, the new path component /usr/java/packages is added here.
 406   // Eventually, all the library path setting will be done here.
 407   {
 408     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 409     // should always exist (until the legacy problem cited above is
 410     // addressed).
 411     const char *v = ::getenv("LD_LIBRARY_PATH");
 412     const char *v_colon = ":";
 413     if (v == NULL) { v = ""; v_colon = ""; }
 414     // That's +1 for the colon and +1 for the trailing '\0'.
 415     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 416                                                      strlen(v) + 1 +
 417                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 418                                                      mtInternal);
 419     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 420     Arguments::set_library_path(ld_library_path);
 421     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 422   }
 423 
 424   // Extensions directories.
 425   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 426   Arguments::set_ext_dirs(buf);
 427 
 428   // Endorsed standards default directory.
 429   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 430   Arguments::set_endorsed_dirs(buf);
 431 
 432   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 433 
 434 #else // __APPLE__
 435 
 436 #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 437 #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 438 
 439   const char *user_home_dir = get_home();
 440   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 441   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 442     sizeof(SYS_EXTENSIONS_DIRS);
 443 
 444   // Buffer that fits several sprintfs.
 445   // Note that the space for the colon and the trailing null are provided
 446   // by the nulls included by the sizeof operator.
 447   const size_t bufsize =
 448     MAX3((size_t)MAXPATHLEN,  // for dll_dir & friends.
 449          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size, // extensions dir
 450          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 451   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 452 
 453   // sysclasspath, java_home, dll_dir
 454   {
 455     char *pslash;
 456     os::jvm_path(buf, bufsize);
 457 
 458     // Found the full path to libjvm.so.
 459     // Now cut the path to <java_home>/jre if we can.
 460     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 461     pslash = strrchr(buf, '/');
 462     if (pslash != NULL) {
 463       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 464     }
 465     Arguments::set_dll_dir(buf);
 466 
 467     if (pslash != NULL) {
 468       pslash = strrchr(buf, '/');
 469       if (pslash != NULL) {
 470         *pslash = '\0';          // Get rid of /lib.
 471       }
 472     }
 473     Arguments::set_java_home(buf);
 474     set_boot_path('/', ':');
 475   }
 476 
 477   // Where to look for native libraries.
 478   //
 479   // Note: Due to a legacy implementation, most of the library path
 480   // is set in the launcher. This was to accomodate linking restrictions
 481   // on legacy Bsd implementations (which are no longer supported).
 482   // Eventually, all the library path setting will be done here.
 483   //
 484   // However, to prevent the proliferation of improperly built native
 485   // libraries, the new path component /usr/java/packages is added here.
 486   // Eventually, all the library path setting will be done here.
 487   {
 488     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 489     // should always exist (until the legacy problem cited above is
 490     // addressed).
 491     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 492     // can specify a directory inside an app wrapper
 493     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 494     const char *l_colon = ":";
 495     if (l == NULL) { l = ""; l_colon = ""; }
 496 
 497     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 498     const char *v_colon = ":";
 499     if (v == NULL) { v = ""; v_colon = ""; }
 500 
 501     // Apple's Java6 has "." at the beginning of java.library.path.
 502     // OpenJDK on Windows has "." at the end of java.library.path.
 503     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 504     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 505     // "." is appended to the end of java.library.path. Yes, this
 506     // could cause a change in behavior, but Apple's Java6 behavior
 507     // can be achieved by putting "." at the beginning of the
 508     // JAVA_LIBRARY_PATH environment variable.
 509     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 510                                                      strlen(v) + 1 + strlen(l) + 1 +
 511                                                      system_ext_size + 3,
 512                                                      mtInternal);
 513     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 514             v, v_colon, l, l_colon, user_home_dir);
 515     Arguments::set_library_path(ld_library_path);
 516     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 517   }
 518 
 519   // Extensions directories.
 520   //
 521   // Note that the space for the colon and the trailing null are provided
 522   // by the nulls included by the sizeof operator (so actually one byte more
 523   // than necessary is allocated).
 524   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 525           user_home_dir, Arguments::get_java_home());
 526   Arguments::set_ext_dirs(buf);
 527 
 528   // Endorsed standards default directory.
 529   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 530   Arguments::set_endorsed_dirs(buf);
 531 
 532   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 533 
 534 #undef SYS_EXTENSIONS_DIR
 535 #undef SYS_EXTENSIONS_DIRS
 536 
 537 #endif // __APPLE__
 538 
 539 #undef SYS_EXT_DIR
 540 #undef EXTENSIONS_DIR
 541 #undef ENDORSED_DIR
 542 }
 543 
 544 ////////////////////////////////////////////////////////////////////////////////
 545 // breakpoint support
 546 
 547 void os::breakpoint() {
 548   BREAKPOINT;
 549 }
 550 
 551 extern "C" void breakpoint() {
 552   // use debugger to set breakpoint here
 553 }
 554 
 555 ////////////////////////////////////////////////////////////////////////////////
 556 // signal support
 557 
 558 debug_only(static bool signal_sets_initialized = false);
 559 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 560 
 561 bool os::Bsd::is_sig_ignored(int sig) {
 562       struct sigaction oact;
 563       sigaction(sig, (struct sigaction*)NULL, &oact);
 564       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 565                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 566       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 567            return true;
 568       else
 569            return false;
 570 }
 571 
 572 void os::Bsd::signal_sets_init() {
 573   // Should also have an assertion stating we are still single-threaded.
 574   assert(!signal_sets_initialized, "Already initialized");
 575   // Fill in signals that are necessarily unblocked for all threads in
 576   // the VM. Currently, we unblock the following signals:
 577   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 578   //                         by -Xrs (=ReduceSignalUsage));
 579   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 580   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 581   // the dispositions or masks wrt these signals.
 582   // Programs embedding the VM that want to use the above signals for their
 583   // own purposes must, at this time, use the "-Xrs" option to prevent
 584   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 585   // (See bug 4345157, and other related bugs).
 586   // In reality, though, unblocking these signals is really a nop, since
 587   // these signals are not blocked by default.
 588   sigemptyset(&unblocked_sigs);
 589   sigemptyset(&allowdebug_blocked_sigs);
 590   sigaddset(&unblocked_sigs, SIGILL);
 591   sigaddset(&unblocked_sigs, SIGSEGV);
 592   sigaddset(&unblocked_sigs, SIGBUS);
 593   sigaddset(&unblocked_sigs, SIGFPE);
 594   sigaddset(&unblocked_sigs, SR_signum);
 595 
 596   if (!ReduceSignalUsage) {
 597    if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 598       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 599       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 600    }
 601    if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 602       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 603       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 604    }
 605    if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 606       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 607       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 608    }
 609   }
 610   // Fill in signals that are blocked by all but the VM thread.
 611   sigemptyset(&vm_sigs);
 612   if (!ReduceSignalUsage)
 613     sigaddset(&vm_sigs, BREAK_SIGNAL);
 614   debug_only(signal_sets_initialized = true);
 615 
 616 }
 617 
 618 // These are signals that are unblocked while a thread is running Java.
 619 // (For some reason, they get blocked by default.)
 620 sigset_t* os::Bsd::unblocked_signals() {
 621   assert(signal_sets_initialized, "Not initialized");
 622   return &unblocked_sigs;
 623 }
 624 
 625 // These are the signals that are blocked while a (non-VM) thread is
 626 // running Java. Only the VM thread handles these signals.
 627 sigset_t* os::Bsd::vm_signals() {
 628   assert(signal_sets_initialized, "Not initialized");
 629   return &vm_sigs;
 630 }
 631 
 632 // These are signals that are blocked during cond_wait to allow debugger in
 633 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 634   assert(signal_sets_initialized, "Not initialized");
 635   return &allowdebug_blocked_sigs;
 636 }
 637 
 638 void os::Bsd::hotspot_sigmask(Thread* thread) {
 639 
 640   //Save caller's signal mask before setting VM signal mask
 641   sigset_t caller_sigmask;
 642   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 643 
 644   OSThread* osthread = thread->osthread();
 645   osthread->set_caller_sigmask(caller_sigmask);
 646 
 647   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 648 
 649   if (!ReduceSignalUsage) {
 650     if (thread->is_VM_thread()) {
 651       // Only the VM thread handles BREAK_SIGNAL ...
 652       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 653     } else {
 654       // ... all other threads block BREAK_SIGNAL
 655       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 656     }
 657   }
 658 }
 659 
 660 
 661 //////////////////////////////////////////////////////////////////////////////
 662 // create new thread
 663 
 664 // check if it's safe to start a new thread
 665 static bool _thread_safety_check(Thread* thread) {
 666   return true;
 667 }
 668 
 669 #ifdef __APPLE__
 670 // library handle for calling objc_registerThreadWithCollector()
 671 // without static linking to the libobjc library
 672 #define OBJC_LIB "/usr/lib/libobjc.dylib"
 673 #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 674 typedef void (*objc_registerThreadWithCollector_t)();
 675 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 676 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 677 #endif
 678 
 679 #ifdef __APPLE__
 680 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 681   // Additional thread_id used to correlate threads in SA
 682   thread_identifier_info_data_t     m_ident_info;
 683   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 684 
 685   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 686               (thread_info_t) &m_ident_info, &count);
 687 
 688   return m_ident_info.thread_id;
 689 }
 690 #endif
 691 
 692 // Thread start routine for all newly created threads
 693 static void *java_start(Thread *thread) {
 694   // Try to randomize the cache line index of hot stack frames.
 695   // This helps when threads of the same stack traces evict each other's
 696   // cache lines. The threads can be either from the same JVM instance, or
 697   // from different JVM instances. The benefit is especially true for
 698   // processors with hyperthreading technology.
 699   static int counter = 0;
 700   int pid = os::current_process_id();
 701   alloca(((pid ^ counter++) & 7) * 128);
 702 
 703   ThreadLocalStorage::set_thread(thread);
 704 
 705   OSThread* osthread = thread->osthread();
 706   Monitor* sync = osthread->startThread_lock();
 707 
 708   // non floating stack BsdThreads needs extra check, see above
 709   if (!_thread_safety_check(thread)) {
 710     // notify parent thread
 711     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 712     osthread->set_state(ZOMBIE);
 713     sync->notify_all();
 714     return NULL;
 715   }
 716 
 717   osthread->set_thread_id(os::Bsd::gettid());
 718 
 719 #ifdef __APPLE__
 720   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 721   guarantee(unique_thread_id != 0, "unique thread id was not found");
 722   osthread->set_unique_thread_id(unique_thread_id);
 723 #endif
 724   // initialize signal mask for this thread
 725   os::Bsd::hotspot_sigmask(thread);
 726 
 727   // initialize floating point control register
 728   os::Bsd::init_thread_fpu_state();
 729 
 730 #ifdef __APPLE__
 731   // register thread with objc gc
 732   if (objc_registerThreadWithCollectorFunction != NULL) {
 733     objc_registerThreadWithCollectorFunction();
 734   }
 735 #endif
 736 
 737   // handshaking with parent thread
 738   {
 739     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 740 
 741     // notify parent thread
 742     osthread->set_state(INITIALIZED);
 743     sync->notify_all();
 744 
 745     // wait until os::start_thread()
 746     while (osthread->get_state() == INITIALIZED) {
 747       sync->wait(Mutex::_no_safepoint_check_flag);
 748     }
 749   }
 750 
 751   // call one more level start routine
 752   thread->run();
 753 
 754   return 0;
 755 }
 756 
 757 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 758   assert(thread->osthread() == NULL, "caller responsible");
 759 
 760   // Allocate the OSThread object
 761   OSThread* osthread = new OSThread(NULL, NULL);
 762   if (osthread == NULL) {
 763     return false;
 764   }
 765 
 766   // set the correct thread state
 767   osthread->set_thread_type(thr_type);
 768 
 769   // Initial state is ALLOCATED but not INITIALIZED
 770   osthread->set_state(ALLOCATED);
 771 
 772   thread->set_osthread(osthread);
 773 
 774   // init thread attributes
 775   pthread_attr_t attr;
 776   pthread_attr_init(&attr);
 777   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 778 
 779   // stack size
 780   if (os::Bsd::supports_variable_stack_size()) {
 781     // calculate stack size if it's not specified by caller
 782     if (stack_size == 0) {
 783       stack_size = os::Bsd::default_stack_size(thr_type);
 784 
 785       switch (thr_type) {
 786       case os::java_thread:
 787         // Java threads use ThreadStackSize which default value can be
 788         // changed with the flag -Xss
 789         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 790         stack_size = JavaThread::stack_size_at_create();
 791         break;
 792       case os::compiler_thread:
 793         if (CompilerThreadStackSize > 0) {
 794           stack_size = (size_t)(CompilerThreadStackSize * K);
 795           break;
 796         } // else fall through:
 797           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 798       case os::vm_thread:
 799       case os::pgc_thread:
 800       case os::cgc_thread:
 801       case os::watcher_thread:
 802         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 803         break;
 804       }
 805     }
 806 
 807     stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 808     pthread_attr_setstacksize(&attr, stack_size);
 809   } else {
 810     // let pthread_create() pick the default value.
 811   }
 812 
 813   ThreadState state;
 814 
 815   {
 816     pthread_t tid;
 817     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 818 
 819     pthread_attr_destroy(&attr);
 820 
 821     if (ret != 0) {
 822       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 823         perror("pthread_create()");
 824       }
 825       // Need to clean up stuff we've allocated so far
 826       thread->set_osthread(NULL);
 827       delete osthread;
 828       return false;
 829     }
 830 
 831     // Store pthread info into the OSThread
 832     osthread->set_pthread_id(tid);
 833 
 834     // Wait until child thread is either initialized or aborted
 835     {
 836       Monitor* sync_with_child = osthread->startThread_lock();
 837       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 838       while ((state = osthread->get_state()) == ALLOCATED) {
 839         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 840       }
 841     }
 842 
 843   }
 844 
 845   // Aborted due to thread limit being reached
 846   if (state == ZOMBIE) {
 847       thread->set_osthread(NULL);
 848       delete osthread;
 849       return false;
 850   }
 851 
 852   // The thread is returned suspended (in state INITIALIZED),
 853   // and is started higher up in the call chain
 854   assert(state == INITIALIZED, "race condition");
 855   return true;
 856 }
 857 
 858 /////////////////////////////////////////////////////////////////////////////
 859 // attach existing thread
 860 
 861 // bootstrap the main thread
 862 bool os::create_main_thread(JavaThread* thread) {
 863   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 864   return create_attached_thread(thread);
 865 }
 866 
 867 bool os::create_attached_thread(JavaThread* thread) {
 868 #ifdef ASSERT
 869     thread->verify_not_published();
 870 #endif
 871 
 872   // Allocate the OSThread object
 873   OSThread* osthread = new OSThread(NULL, NULL);
 874 
 875   if (osthread == NULL) {
 876     return false;
 877   }
 878 
 879   osthread->set_thread_id(os::Bsd::gettid());
 880 
 881   // Store pthread info into the OSThread
 882 #ifdef __APPLE__
 883   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 884   guarantee(unique_thread_id != 0, "just checking");
 885   osthread->set_unique_thread_id(unique_thread_id);
 886 #endif
 887   osthread->set_pthread_id(::pthread_self());
 888 
 889   // initialize floating point control register
 890   os::Bsd::init_thread_fpu_state();
 891 
 892   // Initial thread state is RUNNABLE
 893   osthread->set_state(RUNNABLE);
 894 
 895   thread->set_osthread(osthread);
 896 
 897   // initialize signal mask for this thread
 898   // and save the caller's signal mask
 899   os::Bsd::hotspot_sigmask(thread);
 900 
 901   return true;
 902 }
 903 
 904 void os::pd_start_thread(Thread* thread) {
 905   OSThread * osthread = thread->osthread();
 906   assert(osthread->get_state() != INITIALIZED, "just checking");
 907   Monitor* sync_with_child = osthread->startThread_lock();
 908   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 909   sync_with_child->notify();
 910 }
 911 
 912 // Free Bsd resources related to the OSThread
 913 void os::free_thread(OSThread* osthread) {
 914   assert(osthread != NULL, "osthread not set");
 915 
 916   if (Thread::current()->osthread() == osthread) {
 917     // Restore caller's signal mask
 918     sigset_t sigmask = osthread->caller_sigmask();
 919     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 920    }
 921 
 922   delete osthread;
 923 }
 924 
 925 //////////////////////////////////////////////////////////////////////////////
 926 // thread local storage
 927 
 928 // Restore the thread pointer if the destructor is called. This is in case
 929 // someone from JNI code sets up a destructor with pthread_key_create to run
 930 // detachCurrentThread on thread death. Unless we restore the thread pointer we
 931 // will hang or crash. When detachCurrentThread is called the key will be set
 932 // to null and we will not be called again. If detachCurrentThread is never
 933 // called we could loop forever depending on the pthread implementation.
 934 static void restore_thread_pointer(void* p) {
 935   Thread* thread = (Thread*) p;
 936   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
 937 }
 938 
 939 int os::allocate_thread_local_storage() {
 940   pthread_key_t key;
 941   int rslt = pthread_key_create(&key, restore_thread_pointer);
 942   assert(rslt == 0, "cannot allocate thread local storage");
 943   return (int)key;
 944 }
 945 
 946 // Note: This is currently not used by VM, as we don't destroy TLS key
 947 // on VM exit.
 948 void os::free_thread_local_storage(int index) {
 949   int rslt = pthread_key_delete((pthread_key_t)index);
 950   assert(rslt == 0, "invalid index");
 951 }
 952 
 953 void os::thread_local_storage_at_put(int index, void* value) {
 954   int rslt = pthread_setspecific((pthread_key_t)index, value);
 955   assert(rslt == 0, "pthread_setspecific failed");
 956 }
 957 
 958 extern "C" Thread* get_thread() {
 959   return ThreadLocalStorage::thread();
 960 }
 961 
 962 
 963 ////////////////////////////////////////////////////////////////////////////////
 964 // time support
 965 
 966 // Time since start-up in seconds to a fine granularity.
 967 // Used by VMSelfDestructTimer and the MemProfiler.
 968 double os::elapsedTime() {
 969 
 970   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 971 }
 972 
 973 jlong os::elapsed_counter() {
 974   return javaTimeNanos() - initial_time_count;
 975 }
 976 
 977 jlong os::elapsed_frequency() {
 978   return NANOSECS_PER_SEC; // nanosecond resolution
 979 }
 980 
 981 bool os::supports_vtime() { return true; }
 982 bool os::enable_vtime()   { return false; }
 983 bool os::vtime_enabled()  { return false; }
 984 
 985 double os::elapsedVTime() {
 986   // better than nothing, but not much
 987   return elapsedTime();
 988 }
 989 
 990 jlong os::javaTimeMillis() {
 991   timeval time;
 992   int status = gettimeofday(&time, NULL);
 993   assert(status != -1, "bsd error");
 994   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 995 }
 996 
 997 #ifndef __APPLE__
 998 #ifndef CLOCK_MONOTONIC
 999 #define CLOCK_MONOTONIC (1)
1000 #endif
1001 #endif
1002 
1003 #ifdef __APPLE__
1004 void os::Bsd::clock_init() {
1005   mach_timebase_info(&_timebase_info);
1006 }
1007 #else
1008 void os::Bsd::clock_init() {
1009   struct timespec res;
1010   struct timespec tp;
1011   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
1012       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
1013     // yes, monotonic clock is supported
1014     _clock_gettime = ::clock_gettime;
1015   }
1016 }
1017 #endif
1018 
1019 
1020 
1021 #ifdef __APPLE__
1022 
1023 jlong os::javaTimeNanos() {
1024     const uint64_t tm = mach_absolute_time();
1025     const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
1026     const uint64_t prev = Bsd::_max_abstime;
1027     if (now <= prev) {
1028       return prev;   // same or retrograde time;
1029     }
1030     const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
1031     assert(obsv >= prev, "invariant");   // Monotonicity
1032     // If the CAS succeeded then we're done and return "now".
1033     // If the CAS failed and the observed value "obsv" is >= now then
1034     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1035     // some other thread raced this thread and installed a new value, in which case
1036     // we could either (a) retry the entire operation, (b) retry trying to install now
1037     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1038     // we might discard a higher "now" value in deference to a slightly lower but freshly
1039     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1040     // to (a) or (b) -- and greatly reduces coherence traffic.
1041     // We might also condition (c) on the magnitude of the delta between obsv and now.
1042     // Avoiding excessive CAS operations to hot RW locations is critical.
1043     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1044     return (prev == obsv) ? now : obsv;
1045 }
1046 
1047 #else // __APPLE__
1048 
1049 jlong os::javaTimeNanos() {
1050   if (os::supports_monotonic_clock()) {
1051     struct timespec tp;
1052     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1053     assert(status == 0, "gettime error");
1054     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1055     return result;
1056   } else {
1057     timeval time;
1058     int status = gettimeofday(&time, NULL);
1059     assert(status != -1, "bsd error");
1060     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1061     return 1000 * usecs;
1062   }
1063 }
1064 
1065 #endif // __APPLE__
1066 
1067 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1068   if (os::supports_monotonic_clock()) {
1069     info_ptr->max_value = ALL_64_BITS;
1070 
1071     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1072     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1073     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1074   } else {
1075     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1076     info_ptr->max_value = ALL_64_BITS;
1077 
1078     // gettimeofday is a real time clock so it skips
1079     info_ptr->may_skip_backward = true;
1080     info_ptr->may_skip_forward = true;
1081   }
1082 
1083   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1084 }
1085 
1086 // Return the real, user, and system times in seconds from an
1087 // arbitrary fixed point in the past.
1088 bool os::getTimesSecs(double* process_real_time,
1089                       double* process_user_time,
1090                       double* process_system_time) {
1091   struct tms ticks;
1092   clock_t real_ticks = times(&ticks);
1093 
1094   if (real_ticks == (clock_t) (-1)) {
1095     return false;
1096   } else {
1097     double ticks_per_second = (double) clock_tics_per_sec;
1098     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1099     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1100     *process_real_time = ((double) real_ticks) / ticks_per_second;
1101 
1102     return true;
1103   }
1104 }
1105 
1106 
1107 char * os::local_time_string(char *buf, size_t buflen) {
1108   struct tm t;
1109   time_t long_time;
1110   time(&long_time);
1111   localtime_r(&long_time, &t);
1112   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1113                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1114                t.tm_hour, t.tm_min, t.tm_sec);
1115   return buf;
1116 }
1117 
1118 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1119   return localtime_r(clock, res);
1120 }
1121 
1122 ////////////////////////////////////////////////////////////////////////////////
1123 // runtime exit support
1124 
1125 // Note: os::shutdown() might be called very early during initialization, or
1126 // called from signal handler. Before adding something to os::shutdown(), make
1127 // sure it is async-safe and can handle partially initialized VM.
1128 void os::shutdown() {
1129 
1130   // allow PerfMemory to attempt cleanup of any persistent resources
1131   perfMemory_exit();
1132 
1133   // needs to remove object in file system
1134   AttachListener::abort();
1135 
1136   // flush buffered output, finish log files
1137   ostream_abort();
1138 
1139   // Check for abort hook
1140   abort_hook_t abort_hook = Arguments::abort_hook();
1141   if (abort_hook != NULL) {
1142     abort_hook();
1143   }
1144 
1145 }
1146 
1147 // Note: os::abort() might be called very early during initialization, or
1148 // called from signal handler. Before adding something to os::abort(), make
1149 // sure it is async-safe and can handle partially initialized VM.
1150 void os::abort(bool dump_core) {
1151   os::shutdown();
1152   if (dump_core) {
1153 #ifndef PRODUCT
1154     fdStream out(defaultStream::output_fd());
1155     out.print_raw("Current thread is ");
1156     char buf[16];
1157     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1158     out.print_raw_cr(buf);
1159     out.print_raw_cr("Dumping core ...");
1160 #endif
1161     ::abort(); // dump core
1162   }
1163 
1164   ::exit(1);
1165 }
1166 
1167 // Die immediately, no exit hook, no abort hook, no cleanup.
1168 void os::die() {
1169   // _exit() on BsdThreads only kills current thread
1170   ::abort();
1171 }
1172 
1173 // unused on bsd for now.
1174 void os::set_error_file(const char *logfile) {}
1175 
1176 
1177 // This method is a copy of JDK's sysGetLastErrorString
1178 // from src/solaris/hpi/src/system_md.c
1179 
1180 size_t os::lasterror(char *buf, size_t len) {
1181 
1182   if (errno == 0)  return 0;
1183 
1184   const char *s = ::strerror(errno);
1185   size_t n = ::strlen(s);
1186   if (n >= len) {
1187     n = len - 1;
1188   }
1189   ::strncpy(buf, s, n);
1190   buf[n] = '\0';
1191   return n;
1192 }
1193 
1194 // Information of current thread in variety of formats
1195 pid_t os::Bsd::gettid() {
1196   int retval = -1;
1197 
1198 #ifdef __APPLE__ //XNU kernel
1199   // despite the fact mach port is actually not a thread id use it
1200   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1201   retval = ::pthread_mach_thread_np(::pthread_self());
1202   guarantee(retval != 0, "just checking");
1203   return retval;
1204 
1205 #elif __FreeBSD__
1206   retval = syscall(SYS_thr_self);
1207 #elif __OpenBSD__
1208   retval = syscall(SYS_getthrid);
1209 #elif __NetBSD__
1210   retval = (pid_t) syscall(SYS__lwp_self);
1211 #endif
1212 
1213   if (retval == -1) {
1214     return getpid();
1215   }
1216 }
1217 
1218 intx os::current_thread_id() {
1219 #ifdef __APPLE__
1220   return (intx)::pthread_mach_thread_np(::pthread_self());
1221 #else
1222   return (intx)::pthread_self();
1223 #endif
1224 }
1225 
1226 int os::current_process_id() {
1227 
1228   // Under the old bsd thread library, bsd gives each thread
1229   // its own process id. Because of this each thread will return
1230   // a different pid if this method were to return the result
1231   // of getpid(2). Bsd provides no api that returns the pid
1232   // of the launcher thread for the vm. This implementation
1233   // returns a unique pid, the pid of the launcher thread
1234   // that starts the vm 'process'.
1235 
1236   // Under the NPTL, getpid() returns the same pid as the
1237   // launcher thread rather than a unique pid per thread.
1238   // Use gettid() if you want the old pre NPTL behaviour.
1239 
1240   // if you are looking for the result of a call to getpid() that
1241   // returns a unique pid for the calling thread, then look at the
1242   // OSThread::thread_id() method in osThread_bsd.hpp file
1243 
1244   return (int)(_initial_pid ? _initial_pid : getpid());
1245 }
1246 
1247 // DLL functions
1248 
1249 #define JNI_LIB_PREFIX "lib"
1250 #ifdef __APPLE__
1251 #define JNI_LIB_SUFFIX ".dylib"
1252 #else
1253 #define JNI_LIB_SUFFIX ".so"
1254 #endif
1255 
1256 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1257 
1258 // This must be hard coded because it's the system's temporary
1259 // directory not the java application's temp directory, ala java.io.tmpdir.
1260 #ifdef __APPLE__
1261 // macosx has a secure per-user temporary directory
1262 char temp_path_storage[PATH_MAX];
1263 const char* os::get_temp_directory() {
1264   static char *temp_path = NULL;
1265   if (temp_path == NULL) {
1266     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1267     if (pathSize == 0 || pathSize > PATH_MAX) {
1268       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1269     }
1270     temp_path = temp_path_storage;
1271   }
1272   return temp_path;
1273 }
1274 #else /* __APPLE__ */
1275 const char* os::get_temp_directory() { return "/tmp"; }
1276 #endif /* __APPLE__ */
1277 
1278 static bool file_exists(const char* filename) {
1279   struct stat statbuf;
1280   if (filename == NULL || strlen(filename) == 0) {
1281     return false;
1282   }
1283   return os::stat(filename, &statbuf) == 0;
1284 }
1285 
1286 bool os::dll_build_name(char* buffer, size_t buflen,
1287                         const char* pname, const char* fname) {
1288   bool retval = false;
1289   // Copied from libhpi
1290   const size_t pnamelen = pname ? strlen(pname) : 0;
1291 
1292   // Return error on buffer overflow.
1293   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1294     return retval;
1295   }
1296 
1297   if (pnamelen == 0) {
1298     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1299     retval = true;
1300   } else if (strchr(pname, *os::path_separator()) != NULL) {
1301     int n;
1302     char** pelements = split_path(pname, &n);
1303     if (pelements == NULL) {
1304       return false;
1305     }
1306     for (int i = 0 ; i < n ; i++) {
1307       // Really shouldn't be NULL, but check can't hurt
1308       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1309         continue; // skip the empty path values
1310       }
1311       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1312           pelements[i], fname);
1313       if (file_exists(buffer)) {
1314         retval = true;
1315         break;
1316       }
1317     }
1318     // release the storage
1319     for (int i = 0 ; i < n ; i++) {
1320       if (pelements[i] != NULL) {
1321         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1322       }
1323     }
1324     if (pelements != NULL) {
1325       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1326     }
1327   } else {
1328     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1329     retval = true;
1330   }
1331   return retval;
1332 }
1333 
1334 // check if addr is inside libjvm.so
1335 bool os::address_is_in_vm(address addr) {
1336   static address libjvm_base_addr;
1337   Dl_info dlinfo;
1338 
1339   if (libjvm_base_addr == NULL) {
1340     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1341       libjvm_base_addr = (address)dlinfo.dli_fbase;
1342     }
1343     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1344   }
1345 
1346   if (dladdr((void *)addr, &dlinfo) != 0) {
1347     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1348   }
1349 
1350   return false;
1351 }
1352 
1353 
1354 #define MACH_MAXSYMLEN 256
1355 
1356 bool os::dll_address_to_function_name(address addr, char *buf,
1357                                       int buflen, int *offset) {
1358   // buf is not optional, but offset is optional
1359   assert(buf != NULL, "sanity check");
1360 
1361   Dl_info dlinfo;
1362   char localbuf[MACH_MAXSYMLEN];
1363 
1364   if (dladdr((void*)addr, &dlinfo) != 0) {
1365     // see if we have a matching symbol
1366     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1367       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1368         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1369       }
1370       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1371       return true;
1372     }
1373     // no matching symbol so try for just file info
1374     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1375       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1376                           buf, buflen, offset, dlinfo.dli_fname)) {
1377          return true;
1378       }
1379     }
1380 
1381     // Handle non-dynamic manually:
1382     if (dlinfo.dli_fbase != NULL &&
1383         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1384                         dlinfo.dli_fbase)) {
1385       if (!Decoder::demangle(localbuf, buf, buflen)) {
1386         jio_snprintf(buf, buflen, "%s", localbuf);
1387       }
1388       return true;
1389     }
1390   }
1391   buf[0] = '\0';
1392   if (offset != NULL) *offset = -1;
1393   return false;
1394 }
1395 
1396 // ported from solaris version
1397 bool os::dll_address_to_library_name(address addr, char* buf,
1398                                      int buflen, int* offset) {
1399   // buf is not optional, but offset is optional
1400   assert(buf != NULL, "sanity check");
1401 
1402   Dl_info dlinfo;
1403 
1404   if (dladdr((void*)addr, &dlinfo) != 0) {
1405     if (dlinfo.dli_fname != NULL) {
1406       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1407     }
1408     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1409       *offset = addr - (address)dlinfo.dli_fbase;
1410     }
1411     return true;
1412   }
1413 
1414   buf[0] = '\0';
1415   if (offset) *offset = -1;
1416   return false;
1417 }
1418 
1419 // Loads .dll/.so and
1420 // in case of error it checks if .dll/.so was built for the
1421 // same architecture as Hotspot is running on
1422 
1423 #ifdef __APPLE__
1424 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1425   void * result= ::dlopen(filename, RTLD_LAZY);
1426   if (result != NULL) {
1427     // Successful loading
1428     return result;
1429   }
1430 
1431   // Read system error message into ebuf
1432   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1433   ebuf[ebuflen-1]='\0';
1434 
1435   return NULL;
1436 }
1437 #else
1438 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1439 {
1440   void * result= ::dlopen(filename, RTLD_LAZY);
1441   if (result != NULL) {
1442     // Successful loading
1443     return result;
1444   }
1445 
1446   Elf32_Ehdr elf_head;
1447 
1448   // Read system error message into ebuf
1449   // It may or may not be overwritten below
1450   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1451   ebuf[ebuflen-1]='\0';
1452   int diag_msg_max_length=ebuflen-strlen(ebuf);
1453   char* diag_msg_buf=ebuf+strlen(ebuf);
1454 
1455   if (diag_msg_max_length==0) {
1456     // No more space in ebuf for additional diagnostics message
1457     return NULL;
1458   }
1459 
1460 
1461   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1462 
1463   if (file_descriptor < 0) {
1464     // Can't open library, report dlerror() message
1465     return NULL;
1466   }
1467 
1468   bool failed_to_read_elf_head=
1469     (sizeof(elf_head)!=
1470         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1471 
1472   ::close(file_descriptor);
1473   if (failed_to_read_elf_head) {
1474     // file i/o error - report dlerror() msg
1475     return NULL;
1476   }
1477 
1478   typedef struct {
1479     Elf32_Half  code;         // Actual value as defined in elf.h
1480     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1481     char        elf_class;    // 32 or 64 bit
1482     char        endianess;    // MSB or LSB
1483     char*       name;         // String representation
1484   } arch_t;
1485 
1486   #ifndef EM_486
1487   #define EM_486          6               /* Intel 80486 */
1488   #endif
1489 
1490   #ifndef EM_MIPS_RS3_LE
1491   #define EM_MIPS_RS3_LE  10              /* MIPS */
1492   #endif
1493 
1494   #ifndef EM_PPC64
1495   #define EM_PPC64        21              /* PowerPC64 */
1496   #endif
1497 
1498   #ifndef EM_S390
1499   #define EM_S390         22              /* IBM System/390 */
1500   #endif
1501 
1502   #ifndef EM_IA_64
1503   #define EM_IA_64        50              /* HP/Intel IA-64 */
1504   #endif
1505 
1506   #ifndef EM_X86_64
1507   #define EM_X86_64       62              /* AMD x86-64 */
1508   #endif
1509 
1510   static const arch_t arch_array[]={
1511     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1512     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1513     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1514     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1515     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1516     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1517     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1518     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1519     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1520     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1521     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1522     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1523     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1524     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1525     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1526     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1527   };
1528 
1529   #if  (defined IA32)
1530     static  Elf32_Half running_arch_code=EM_386;
1531   #elif   (defined AMD64)
1532     static  Elf32_Half running_arch_code=EM_X86_64;
1533   #elif  (defined IA64)
1534     static  Elf32_Half running_arch_code=EM_IA_64;
1535   #elif  (defined __sparc) && (defined _LP64)
1536     static  Elf32_Half running_arch_code=EM_SPARCV9;
1537   #elif  (defined __sparc) && (!defined _LP64)
1538     static  Elf32_Half running_arch_code=EM_SPARC;
1539   #elif  (defined __powerpc64__)
1540     static  Elf32_Half running_arch_code=EM_PPC64;
1541   #elif  (defined __powerpc__)
1542     static  Elf32_Half running_arch_code=EM_PPC;
1543   #elif  (defined ARM)
1544     static  Elf32_Half running_arch_code=EM_ARM;
1545   #elif  (defined S390)
1546     static  Elf32_Half running_arch_code=EM_S390;
1547   #elif  (defined ALPHA)
1548     static  Elf32_Half running_arch_code=EM_ALPHA;
1549   #elif  (defined MIPSEL)
1550     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1551   #elif  (defined PARISC)
1552     static  Elf32_Half running_arch_code=EM_PARISC;
1553   #elif  (defined MIPS)
1554     static  Elf32_Half running_arch_code=EM_MIPS;
1555   #elif  (defined M68K)
1556     static  Elf32_Half running_arch_code=EM_68K;
1557   #else
1558     #error Method os::dll_load requires that one of following is defined:\
1559          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1560   #endif
1561 
1562   // Identify compatability class for VM's architecture and library's architecture
1563   // Obtain string descriptions for architectures
1564 
1565   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1566   int running_arch_index=-1;
1567 
1568   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1569     if (running_arch_code == arch_array[i].code) {
1570       running_arch_index    = i;
1571     }
1572     if (lib_arch.code == arch_array[i].code) {
1573       lib_arch.compat_class = arch_array[i].compat_class;
1574       lib_arch.name         = arch_array[i].name;
1575     }
1576   }
1577 
1578   assert(running_arch_index != -1,
1579     "Didn't find running architecture code (running_arch_code) in arch_array");
1580   if (running_arch_index == -1) {
1581     // Even though running architecture detection failed
1582     // we may still continue with reporting dlerror() message
1583     return NULL;
1584   }
1585 
1586   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1587     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1588     return NULL;
1589   }
1590 
1591 #ifndef S390
1592   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1593     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1594     return NULL;
1595   }
1596 #endif // !S390
1597 
1598   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1599     if ( lib_arch.name!=NULL ) {
1600       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1601         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1602         lib_arch.name, arch_array[running_arch_index].name);
1603     } else {
1604       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1605       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1606         lib_arch.code,
1607         arch_array[running_arch_index].name);
1608     }
1609   }
1610 
1611   return NULL;
1612 }
1613 #endif /* !__APPLE__ */
1614 
1615 void* os::get_default_process_handle() {
1616 #ifdef __APPLE__
1617   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1618   // to avoid finding unexpected symbols on second (or later)
1619   // loads of a library.
1620   return (void*)::dlopen(NULL, RTLD_FIRST);
1621 #else
1622   return (void*)::dlopen(NULL, RTLD_LAZY);
1623 #endif
1624 }
1625 
1626 // XXX: Do we need a lock around this as per Linux?
1627 void* os::dll_lookup(void* handle, const char* name) {
1628   return dlsym(handle, name);
1629 }
1630 
1631 
1632 static bool _print_ascii_file(const char* filename, outputStream* st) {
1633   int fd = ::open(filename, O_RDONLY);
1634   if (fd == -1) {
1635      return false;
1636   }
1637 
1638   char buf[32];
1639   int bytes;
1640   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1641     st->print_raw(buf, bytes);
1642   }
1643 
1644   ::close(fd);
1645 
1646   return true;
1647 }
1648 
1649 void os::print_dll_info(outputStream *st) {
1650   st->print_cr("Dynamic libraries:");
1651 #ifdef RTLD_DI_LINKMAP
1652   Dl_info dli;
1653   void *handle;
1654   Link_map *map;
1655   Link_map *p;
1656 
1657   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1658       dli.dli_fname == NULL) {
1659     st->print_cr("Error: Cannot print dynamic libraries.");
1660     return;
1661   }
1662   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1663   if (handle == NULL) {
1664     st->print_cr("Error: Cannot print dynamic libraries.");
1665     return;
1666   }
1667   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1668   if (map == NULL) {
1669     st->print_cr("Error: Cannot print dynamic libraries.");
1670     return;
1671   }
1672 
1673   while (map->l_prev != NULL)
1674     map = map->l_prev;
1675 
1676   while (map != NULL) {
1677     st->print_cr(PTR_FORMAT " \t%s", map->l_addr, map->l_name);
1678     map = map->l_next;
1679   }
1680 
1681   dlclose(handle);
1682 #elif defined(__APPLE__)
1683   uint32_t count;
1684   uint32_t i;
1685 
1686   count = _dyld_image_count();
1687   for (i = 1; i < count; i++) {
1688     const char *name = _dyld_get_image_name(i);
1689     intptr_t slide = _dyld_get_image_vmaddr_slide(i);
1690     st->print_cr(PTR_FORMAT " \t%s", slide, name);
1691   }
1692 #else
1693   st->print_cr("Error: Cannot print dynamic libraries.");
1694 #endif
1695 }
1696 
1697 void os::print_os_info_brief(outputStream* st) {
1698   st->print("Bsd");
1699 
1700   os::Posix::print_uname_info(st);
1701 }
1702 
1703 void os::print_os_info(outputStream* st) {
1704   st->print("OS:");
1705   st->print("Bsd");
1706 
1707   os::Posix::print_uname_info(st);
1708 
1709   os::Posix::print_rlimit_info(st);
1710 
1711   os::Posix::print_load_average(st);
1712 }
1713 
1714 void os::pd_print_cpu_info(outputStream* st) {
1715   // Nothing to do for now.
1716 }
1717 
1718 void os::print_memory_info(outputStream* st) {
1719 
1720   st->print("Memory:");
1721   st->print(" %dk page", os::vm_page_size()>>10);
1722 
1723   st->print(", physical " UINT64_FORMAT "k",
1724             os::physical_memory() >> 10);
1725   st->print("(" UINT64_FORMAT "k free)",
1726             os::available_memory() >> 10);
1727   st->cr();
1728 
1729   // meminfo
1730   st->print("\n/proc/meminfo:\n");
1731   _print_ascii_file("/proc/meminfo", st);
1732   st->cr();
1733 }
1734 
1735 void os::print_siginfo(outputStream* st, void* siginfo) {
1736   const siginfo_t* si = (const siginfo_t*)siginfo;
1737 
1738   os::Posix::print_siginfo_brief(st, si);
1739 
1740   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
1741       UseSharedSpaces) {
1742     FileMapInfo* mapinfo = FileMapInfo::current_info();
1743     if (mapinfo->is_in_shared_space(si->si_addr)) {
1744       st->print("\n\nError accessing class data sharing archive."   \
1745                 " Mapped file inaccessible during execution, "      \
1746                 " possible disk/network problem.");
1747     }
1748   }
1749   st->cr();
1750 }
1751 
1752 
1753 static void print_signal_handler(outputStream* st, int sig,
1754                                  char* buf, size_t buflen);
1755 
1756 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1757   st->print_cr("Signal Handlers:");
1758   print_signal_handler(st, SIGSEGV, buf, buflen);
1759   print_signal_handler(st, SIGBUS , buf, buflen);
1760   print_signal_handler(st, SIGFPE , buf, buflen);
1761   print_signal_handler(st, SIGPIPE, buf, buflen);
1762   print_signal_handler(st, SIGXFSZ, buf, buflen);
1763   print_signal_handler(st, SIGILL , buf, buflen);
1764   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
1765   print_signal_handler(st, SR_signum, buf, buflen);
1766   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1767   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1768   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1769   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1770 }
1771 
1772 static char saved_jvm_path[MAXPATHLEN] = {0};
1773 
1774 // Find the full path to the current module, libjvm
1775 void os::jvm_path(char *buf, jint buflen) {
1776   // Error checking.
1777   if (buflen < MAXPATHLEN) {
1778     assert(false, "must use a large-enough buffer");
1779     buf[0] = '\0';
1780     return;
1781   }
1782   // Lazy resolve the path to current module.
1783   if (saved_jvm_path[0] != 0) {
1784     strcpy(buf, saved_jvm_path);
1785     return;
1786   }
1787 
1788   char dli_fname[MAXPATHLEN];
1789   bool ret = dll_address_to_library_name(
1790                 CAST_FROM_FN_PTR(address, os::jvm_path),
1791                 dli_fname, sizeof(dli_fname), NULL);
1792   assert(ret, "cannot locate libjvm");
1793   char *rp = NULL;
1794   if (ret && dli_fname[0] != '\0') {
1795     rp = realpath(dli_fname, buf);
1796   }
1797   if (rp == NULL)
1798     return;
1799 
1800   if (Arguments::sun_java_launcher_is_altjvm()) {
1801     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1802     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1803     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1804     // appears at the right place in the string, then assume we are
1805     // installed in a JDK and we're done. Otherwise, check for a
1806     // JAVA_HOME environment variable and construct a path to the JVM
1807     // being overridden.
1808 
1809     const char *p = buf + strlen(buf) - 1;
1810     for (int count = 0; p > buf && count < 5; ++count) {
1811       for (--p; p > buf && *p != '/'; --p)
1812         /* empty */ ;
1813     }
1814 
1815     if (strncmp(p, "/jre/lib/", 9) != 0) {
1816       // Look for JAVA_HOME in the environment.
1817       char* java_home_var = ::getenv("JAVA_HOME");
1818       if (java_home_var != NULL && java_home_var[0] != 0) {
1819         char* jrelib_p;
1820         int len;
1821 
1822         // Check the current module name "libjvm"
1823         p = strrchr(buf, '/');
1824         assert(strstr(p, "/libjvm") == p, "invalid library name");
1825 
1826         rp = realpath(java_home_var, buf);
1827         if (rp == NULL)
1828           return;
1829 
1830         // determine if this is a legacy image or modules image
1831         // modules image doesn't have "jre" subdirectory
1832         len = strlen(buf);
1833         jrelib_p = buf + len;
1834 
1835         // Add the appropriate library subdir
1836         snprintf(jrelib_p, buflen-len, "/jre/lib");
1837         if (0 != access(buf, F_OK)) {
1838           snprintf(jrelib_p, buflen-len, "/lib");
1839         }
1840 
1841         // Add the appropriate client or server subdir
1842         len = strlen(buf);
1843         jrelib_p = buf + len;
1844         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1845         if (0 != access(buf, F_OK)) {
1846           snprintf(jrelib_p, buflen-len, "%s", "");
1847         }
1848 
1849         // If the path exists within JAVA_HOME, add the JVM library name
1850         // to complete the path to JVM being overridden.  Otherwise fallback
1851         // to the path to the current library.
1852         if (0 == access(buf, F_OK)) {
1853           // Use current module name "libjvm"
1854           len = strlen(buf);
1855           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1856         } else {
1857           // Fall back to path of current library
1858           rp = realpath(dli_fname, buf);
1859           if (rp == NULL)
1860             return;
1861         }
1862       }
1863     }
1864   }
1865 
1866   strcpy(saved_jvm_path, buf);
1867 }
1868 
1869 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1870   // no prefix required, not even "_"
1871 }
1872 
1873 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1874   // no suffix required
1875 }
1876 
1877 ////////////////////////////////////////////////////////////////////////////////
1878 // sun.misc.Signal support
1879 
1880 static volatile jint sigint_count = 0;
1881 
1882 static void
1883 UserHandler(int sig, void *siginfo, void *context) {
1884   // 4511530 - sem_post is serialized and handled by the manager thread. When
1885   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1886   // don't want to flood the manager thread with sem_post requests.
1887   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1888       return;
1889 
1890   // Ctrl-C is pressed during error reporting, likely because the error
1891   // handler fails to abort. Let VM die immediately.
1892   if (sig == SIGINT && is_error_reported()) {
1893      os::die();
1894   }
1895 
1896   os::signal_notify(sig);
1897 }
1898 
1899 void* os::user_handler() {
1900   return CAST_FROM_FN_PTR(void*, UserHandler);
1901 }
1902 
1903 extern "C" {
1904   typedef void (*sa_handler_t)(int);
1905   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1906 }
1907 
1908 void* os::signal(int signal_number, void* handler) {
1909   struct sigaction sigAct, oldSigAct;
1910 
1911   sigfillset(&(sigAct.sa_mask));
1912   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1913   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1914 
1915   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1916     // -1 means registration failed
1917     return (void *)-1;
1918   }
1919 
1920   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1921 }
1922 
1923 void os::signal_raise(int signal_number) {
1924   ::raise(signal_number);
1925 }
1926 
1927 /*
1928  * The following code is moved from os.cpp for making this
1929  * code platform specific, which it is by its very nature.
1930  */
1931 
1932 // Will be modified when max signal is changed to be dynamic
1933 int os::sigexitnum_pd() {
1934   return NSIG;
1935 }
1936 
1937 // a counter for each possible signal value
1938 static volatile jint pending_signals[NSIG+1] = { 0 };
1939 
1940 // Bsd(POSIX) specific hand shaking semaphore.
1941 #ifdef __APPLE__
1942 typedef semaphore_t os_semaphore_t;
1943 #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1944 #define SEM_WAIT(sem)           semaphore_wait(sem)
1945 #define SEM_POST(sem)           semaphore_signal(sem)
1946 #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1947 #else
1948 typedef sem_t os_semaphore_t;
1949 #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1950 #define SEM_WAIT(sem)           sem_wait(&sem)
1951 #define SEM_POST(sem)           sem_post(&sem)
1952 #define SEM_DESTROY(sem)        sem_destroy(&sem)
1953 #endif
1954 
1955 class Semaphore : public StackObj {
1956   public:
1957     Semaphore();
1958     ~Semaphore();
1959     void signal();
1960     void wait();
1961     bool trywait();
1962     bool timedwait(unsigned int sec, int nsec);
1963   private:
1964     jlong currenttime() const;
1965     os_semaphore_t _semaphore;
1966 };
1967 
1968 Semaphore::Semaphore() : _semaphore(0) {
1969   SEM_INIT(_semaphore, 0);
1970 }
1971 
1972 Semaphore::~Semaphore() {
1973   SEM_DESTROY(_semaphore);
1974 }
1975 
1976 void Semaphore::signal() {
1977   SEM_POST(_semaphore);
1978 }
1979 
1980 void Semaphore::wait() {
1981   SEM_WAIT(_semaphore);
1982 }
1983 
1984 jlong Semaphore::currenttime() const {
1985     struct timeval tv;
1986     gettimeofday(&tv, NULL);
1987     return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1988 }
1989 
1990 #ifdef __APPLE__
1991 bool Semaphore::trywait() {
1992   return timedwait(0, 0);
1993 }
1994 
1995 bool Semaphore::timedwait(unsigned int sec, int nsec) {
1996   kern_return_t kr = KERN_ABORTED;
1997   mach_timespec_t waitspec;
1998   waitspec.tv_sec = sec;
1999   waitspec.tv_nsec = nsec;
2000 
2001   jlong starttime = currenttime();
2002 
2003   kr = semaphore_timedwait(_semaphore, waitspec);
2004   while (kr == KERN_ABORTED) {
2005     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
2006 
2007     jlong current = currenttime();
2008     jlong passedtime = current - starttime;
2009 
2010     if (passedtime >= totalwait) {
2011       waitspec.tv_sec = 0;
2012       waitspec.tv_nsec = 0;
2013     } else {
2014       jlong waittime = totalwait - (current - starttime);
2015       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2016       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2017     }
2018 
2019     kr = semaphore_timedwait(_semaphore, waitspec);
2020   }
2021 
2022   return kr == KERN_SUCCESS;
2023 }
2024 
2025 #else
2026 
2027 bool Semaphore::trywait() {
2028   return sem_trywait(&_semaphore) == 0;
2029 }
2030 
2031 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2032   struct timespec ts;
2033   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2034 
2035   while (1) {
2036     int result = sem_timedwait(&_semaphore, &ts);
2037     if (result == 0) {
2038       return true;
2039     } else if (errno == EINTR) {
2040       continue;
2041     } else if (errno == ETIMEDOUT) {
2042       return false;
2043     } else {
2044       return false;
2045     }
2046   }
2047 }
2048 
2049 #endif // __APPLE__
2050 
2051 static os_semaphore_t sig_sem;
2052 static Semaphore sr_semaphore;
2053 
2054 void os::signal_init_pd() {
2055   // Initialize signal structures
2056   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2057 
2058   // Initialize signal semaphore
2059   ::SEM_INIT(sig_sem, 0);
2060 }
2061 
2062 void os::signal_notify(int sig) {
2063   Atomic::inc(&pending_signals[sig]);
2064   ::SEM_POST(sig_sem);
2065 }
2066 
2067 static int check_pending_signals(bool wait) {
2068   Atomic::store(0, &sigint_count);
2069   for (;;) {
2070     for (int i = 0; i < NSIG + 1; i++) {
2071       jint n = pending_signals[i];
2072       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2073         return i;
2074       }
2075     }
2076     if (!wait) {
2077       return -1;
2078     }
2079     JavaThread *thread = JavaThread::current();
2080     ThreadBlockInVM tbivm(thread);
2081 
2082     bool threadIsSuspended;
2083     do {
2084       thread->set_suspend_equivalent();
2085       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2086       ::SEM_WAIT(sig_sem);
2087 
2088       // were we externally suspended while we were waiting?
2089       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2090       if (threadIsSuspended) {
2091         //
2092         // The semaphore has been incremented, but while we were waiting
2093         // another thread suspended us. We don't want to continue running
2094         // while suspended because that would surprise the thread that
2095         // suspended us.
2096         //
2097         ::SEM_POST(sig_sem);
2098 
2099         thread->java_suspend_self();
2100       }
2101     } while (threadIsSuspended);
2102   }
2103 }
2104 
2105 int os::signal_lookup() {
2106   return check_pending_signals(false);
2107 }
2108 
2109 int os::signal_wait() {
2110   return check_pending_signals(true);
2111 }
2112 
2113 ////////////////////////////////////////////////////////////////////////////////
2114 // Virtual Memory
2115 
2116 int os::vm_page_size() {
2117   // Seems redundant as all get out
2118   assert(os::Bsd::page_size() != -1, "must call os::init");
2119   return os::Bsd::page_size();
2120 }
2121 
2122 // Solaris allocates memory by pages.
2123 int os::vm_allocation_granularity() {
2124   assert(os::Bsd::page_size() != -1, "must call os::init");
2125   return os::Bsd::page_size();
2126 }
2127 
2128 // Rationale behind this function:
2129 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2130 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2131 //  samples for JITted code. Here we create private executable mapping over the code cache
2132 //  and then we can use standard (well, almost, as mapping can change) way to provide
2133 //  info for the reporting script by storing timestamp and location of symbol
2134 void bsd_wrap_code(char* base, size_t size) {
2135   static volatile jint cnt = 0;
2136 
2137   if (!UseOprofile) {
2138     return;
2139   }
2140 
2141   char buf[PATH_MAX + 1];
2142   int num = Atomic::add(1, &cnt);
2143 
2144   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2145            os::get_temp_directory(), os::current_process_id(), num);
2146   unlink(buf);
2147 
2148   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2149 
2150   if (fd != -1) {
2151     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2152     if (rv != (off_t)-1) {
2153       if (::write(fd, "", 1) == 1) {
2154         mmap(base, size,
2155              PROT_READ|PROT_WRITE|PROT_EXEC,
2156              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2157       }
2158     }
2159     ::close(fd);
2160     unlink(buf);
2161   }
2162 }
2163 
2164 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2165                                     int err) {
2166   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2167           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2168           strerror(err), err);
2169 }
2170 
2171 // NOTE: Bsd kernel does not really reserve the pages for us.
2172 //       All it does is to check if there are enough free pages
2173 //       left at the time of mmap(). This could be a potential
2174 //       problem.
2175 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2176   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2177 #ifdef __OpenBSD__
2178   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2179   if (::mprotect(addr, size, prot) == 0) {
2180     return true;
2181   }
2182 #else
2183   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2184                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2185   if (res != (uintptr_t) MAP_FAILED) {
2186     return true;
2187   }
2188 #endif
2189 
2190   // Warn about any commit errors we see in non-product builds just
2191   // in case mmap() doesn't work as described on the man page.
2192   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2193 
2194   return false;
2195 }
2196 
2197 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2198                        bool exec) {
2199   // alignment_hint is ignored on this OS
2200   return pd_commit_memory(addr, size, exec);
2201 }
2202 
2203 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2204                                   const char* mesg) {
2205   assert(mesg != NULL, "mesg must be specified");
2206   if (!pd_commit_memory(addr, size, exec)) {
2207     // add extra info in product mode for vm_exit_out_of_memory():
2208     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2209     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2210   }
2211 }
2212 
2213 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2214                                   size_t alignment_hint, bool exec,
2215                                   const char* mesg) {
2216   // alignment_hint is ignored on this OS
2217   pd_commit_memory_or_exit(addr, size, exec, mesg);
2218 }
2219 
2220 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2221 }
2222 
2223 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2224   ::madvise(addr, bytes, MADV_DONTNEED);
2225 }
2226 
2227 void os::numa_make_global(char *addr, size_t bytes) {
2228 }
2229 
2230 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2231 }
2232 
2233 bool os::numa_topology_changed()   { return false; }
2234 
2235 size_t os::numa_get_groups_num() {
2236   return 1;
2237 }
2238 
2239 int os::numa_get_group_id() {
2240   return 0;
2241 }
2242 
2243 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2244   if (size > 0) {
2245     ids[0] = 0;
2246     return 1;
2247   }
2248   return 0;
2249 }
2250 
2251 bool os::get_page_info(char *start, page_info* info) {
2252   return false;
2253 }
2254 
2255 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2256   return end;
2257 }
2258 
2259 
2260 bool os::pd_uncommit_memory(char* addr, size_t size) {
2261 #ifdef __OpenBSD__
2262   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2263   return ::mprotect(addr, size, PROT_NONE) == 0;
2264 #else
2265   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2266                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2267   return res  != (uintptr_t) MAP_FAILED;
2268 #endif
2269 }
2270 
2271 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2272   return os::commit_memory(addr, size, !ExecMem);
2273 }
2274 
2275 // If this is a growable mapping, remove the guard pages entirely by
2276 // munmap()ping them.  If not, just call uncommit_memory().
2277 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2278   return os::uncommit_memory(addr, size);
2279 }
2280 
2281 static address _highest_vm_reserved_address = NULL;
2282 
2283 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2284 // at 'requested_addr'. If there are existing memory mappings at the same
2285 // location, however, they will be overwritten. If 'fixed' is false,
2286 // 'requested_addr' is only treated as a hint, the return value may or
2287 // may not start from the requested address. Unlike Bsd mmap(), this
2288 // function returns NULL to indicate failure.
2289 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2290   char * addr;
2291   int flags;
2292 
2293   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2294   if (fixed) {
2295     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2296     flags |= MAP_FIXED;
2297   }
2298 
2299   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2300   // touch an uncommitted page. Otherwise, the read/write might
2301   // succeed if we have enough swap space to back the physical page.
2302   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2303                        flags, -1, 0);
2304 
2305   if (addr != MAP_FAILED) {
2306     // anon_mmap() should only get called during VM initialization,
2307     // don't need lock (actually we can skip locking even it can be called
2308     // from multiple threads, because _highest_vm_reserved_address is just a
2309     // hint about the upper limit of non-stack memory regions.)
2310     if ((address)addr + bytes > _highest_vm_reserved_address) {
2311       _highest_vm_reserved_address = (address)addr + bytes;
2312     }
2313   }
2314 
2315   return addr == MAP_FAILED ? NULL : addr;
2316 }
2317 
2318 // Don't update _highest_vm_reserved_address, because there might be memory
2319 // regions above addr + size. If so, releasing a memory region only creates
2320 // a hole in the address space, it doesn't help prevent heap-stack collision.
2321 //
2322 static int anon_munmap(char * addr, size_t size) {
2323   return ::munmap(addr, size) == 0;
2324 }
2325 
2326 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2327                          size_t alignment_hint) {
2328   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2329 }
2330 
2331 bool os::pd_release_memory(char* addr, size_t size) {
2332   return anon_munmap(addr, size);
2333 }
2334 
2335 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2336   // Bsd wants the mprotect address argument to be page aligned.
2337   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2338 
2339   // According to SUSv3, mprotect() should only be used with mappings
2340   // established by mmap(), and mmap() always maps whole pages. Unaligned
2341   // 'addr' likely indicates problem in the VM (e.g. trying to change
2342   // protection of malloc'ed or statically allocated memory). Check the
2343   // caller if you hit this assert.
2344   assert(addr == bottom, "sanity check");
2345 
2346   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2347   return ::mprotect(bottom, size, prot) == 0;
2348 }
2349 
2350 // Set protections specified
2351 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2352                         bool is_committed) {
2353   unsigned int p = 0;
2354   switch (prot) {
2355   case MEM_PROT_NONE: p = PROT_NONE; break;
2356   case MEM_PROT_READ: p = PROT_READ; break;
2357   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2358   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2359   default:
2360     ShouldNotReachHere();
2361   }
2362   // is_committed is unused.
2363   return bsd_mprotect(addr, bytes, p);
2364 }
2365 
2366 bool os::guard_memory(char* addr, size_t size) {
2367   return bsd_mprotect(addr, size, PROT_NONE);
2368 }
2369 
2370 bool os::unguard_memory(char* addr, size_t size) {
2371   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2372 }
2373 
2374 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2375   return false;
2376 }
2377 
2378 // Large page support
2379 
2380 static size_t _large_page_size = 0;
2381 
2382 void os::large_page_init() {
2383 }
2384 
2385 
2386 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2387   fatal("This code is not used or maintained.");
2388 
2389   // "exec" is passed in but not used.  Creating the shared image for
2390   // the code cache doesn't have an SHM_X executable permission to check.
2391   assert(UseLargePages && UseSHM, "only for SHM large pages");
2392 
2393   key_t key = IPC_PRIVATE;
2394   char *addr;
2395 
2396   bool warn_on_failure = UseLargePages &&
2397                         (!FLAG_IS_DEFAULT(UseLargePages) ||
2398                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
2399                         );
2400 
2401   // Create a large shared memory region to attach to based on size.
2402   // Currently, size is the total size of the heap
2403   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2404   if (shmid == -1) {
2405      // Possible reasons for shmget failure:
2406      // 1. shmmax is too small for Java heap.
2407      //    > check shmmax value: cat /proc/sys/kernel/shmmax
2408      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2409      // 2. not enough large page memory.
2410      //    > check available large pages: cat /proc/meminfo
2411      //    > increase amount of large pages:
2412      //          echo new_value > /proc/sys/vm/nr_hugepages
2413      //      Note 1: different Bsd may use different name for this property,
2414      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2415      //      Note 2: it's possible there's enough physical memory available but
2416      //            they are so fragmented after a long run that they can't
2417      //            coalesce into large pages. Try to reserve large pages when
2418      //            the system is still "fresh".
2419      if (warn_on_failure) {
2420        warning("Failed to reserve shared memory (errno = %d).", errno);
2421      }
2422      return NULL;
2423   }
2424 
2425   // attach to the region
2426   addr = (char*)shmat(shmid, req_addr, 0);
2427   int err = errno;
2428 
2429   // Remove shmid. If shmat() is successful, the actual shared memory segment
2430   // will be deleted when it's detached by shmdt() or when the process
2431   // terminates. If shmat() is not successful this will remove the shared
2432   // segment immediately.
2433   shmctl(shmid, IPC_RMID, NULL);
2434 
2435   if ((intptr_t)addr == -1) {
2436      if (warn_on_failure) {
2437        warning("Failed to attach shared memory (errno = %d).", err);
2438      }
2439      return NULL;
2440   }
2441 
2442   // The memory is committed
2443   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
2444 
2445   return addr;
2446 }
2447 
2448 bool os::release_memory_special(char* base, size_t bytes) {
2449   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2450   // detaching the SHM segment will also delete it, see reserve_memory_special()
2451   int rslt = shmdt(base);
2452   if (rslt == 0) {
2453     tkr.record((address)base, bytes);
2454     return true;
2455   } else {
2456     tkr.discard();
2457     return false;
2458   }
2459 
2460 }
2461 
2462 size_t os::large_page_size() {
2463   return _large_page_size;
2464 }
2465 
2466 // HugeTLBFS allows application to commit large page memory on demand;
2467 // with SysV SHM the entire memory region must be allocated as shared
2468 // memory.
2469 bool os::can_commit_large_page_memory() {
2470   return UseHugeTLBFS;
2471 }
2472 
2473 bool os::can_execute_large_page_memory() {
2474   return UseHugeTLBFS;
2475 }
2476 
2477 // Reserve memory at an arbitrary address, only if that area is
2478 // available (and not reserved for something else).
2479 
2480 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2481   const int max_tries = 10;
2482   char* base[max_tries];
2483   size_t size[max_tries];
2484   const size_t gap = 0x000000;
2485 
2486   // Assert only that the size is a multiple of the page size, since
2487   // that's all that mmap requires, and since that's all we really know
2488   // about at this low abstraction level.  If we need higher alignment,
2489   // we can either pass an alignment to this method or verify alignment
2490   // in one of the methods further up the call chain.  See bug 5044738.
2491   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2492 
2493   // Repeatedly allocate blocks until the block is allocated at the
2494   // right spot. Give up after max_tries. Note that reserve_memory() will
2495   // automatically update _highest_vm_reserved_address if the call is
2496   // successful. The variable tracks the highest memory address every reserved
2497   // by JVM. It is used to detect heap-stack collision if running with
2498   // fixed-stack BsdThreads. Because here we may attempt to reserve more
2499   // space than needed, it could confuse the collision detecting code. To
2500   // solve the problem, save current _highest_vm_reserved_address and
2501   // calculate the correct value before return.
2502   address old_highest = _highest_vm_reserved_address;
2503 
2504   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2505   // if kernel honors the hint then we can return immediately.
2506   char * addr = anon_mmap(requested_addr, bytes, false);
2507   if (addr == requested_addr) {
2508      return requested_addr;
2509   }
2510 
2511   if (addr != NULL) {
2512      // mmap() is successful but it fails to reserve at the requested address
2513      anon_munmap(addr, bytes);
2514   }
2515 
2516   int i;
2517   for (i = 0; i < max_tries; ++i) {
2518     base[i] = reserve_memory(bytes);
2519 
2520     if (base[i] != NULL) {
2521       // Is this the block we wanted?
2522       if (base[i] == requested_addr) {
2523         size[i] = bytes;
2524         break;
2525       }
2526 
2527       // Does this overlap the block we wanted? Give back the overlapped
2528       // parts and try again.
2529 
2530       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2531       if (top_overlap >= 0 && top_overlap < bytes) {
2532         unmap_memory(base[i], top_overlap);
2533         base[i] += top_overlap;
2534         size[i] = bytes - top_overlap;
2535       } else {
2536         size_t bottom_overlap = base[i] + bytes - requested_addr;
2537         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2538           unmap_memory(requested_addr, bottom_overlap);
2539           size[i] = bytes - bottom_overlap;
2540         } else {
2541           size[i] = bytes;
2542         }
2543       }
2544     }
2545   }
2546 
2547   // Give back the unused reserved pieces.
2548 
2549   for (int j = 0; j < i; ++j) {
2550     if (base[j] != NULL) {
2551       unmap_memory(base[j], size[j]);
2552     }
2553   }
2554 
2555   if (i < max_tries) {
2556     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
2557     return requested_addr;
2558   } else {
2559     _highest_vm_reserved_address = old_highest;
2560     return NULL;
2561   }
2562 }
2563 
2564 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2565   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2566 }
2567 
2568 void os::naked_short_sleep(jlong ms) {
2569   struct timespec req;
2570 
2571   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2572   req.tv_sec = 0;
2573   if (ms > 0) {
2574     req.tv_nsec = (ms % 1000) * 1000000;
2575   }
2576   else {
2577     req.tv_nsec = 1;
2578   }
2579 
2580   nanosleep(&req, NULL);
2581 
2582   return;
2583 }
2584 
2585 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2586 void os::infinite_sleep() {
2587   while (true) {    // sleep forever ...
2588     ::sleep(100);   // ... 100 seconds at a time
2589   }
2590 }
2591 
2592 // Used to convert frequent JVM_Yield() to nops
2593 bool os::dont_yield() {
2594   return DontYieldALot;
2595 }
2596 
2597 void os::yield() {
2598   sched_yield();
2599 }
2600 
2601 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
2602 
2603 void os::yield_all() {
2604   // Yields to all threads, including threads with lower priorities
2605   // Threads on Bsd are all with same priority. The Solaris style
2606   // os::yield_all() with nanosleep(1ms) is not necessary.
2607   sched_yield();
2608 }
2609 
2610 ////////////////////////////////////////////////////////////////////////////////
2611 // thread priority support
2612 
2613 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2614 // only supports dynamic priority, static priority must be zero. For real-time
2615 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2616 // However, for large multi-threaded applications, SCHED_RR is not only slower
2617 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2618 // of 5 runs - Sep 2005).
2619 //
2620 // The following code actually changes the niceness of kernel-thread/LWP. It
2621 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2622 // not the entire user process, and user level threads are 1:1 mapped to kernel
2623 // threads. It has always been the case, but could change in the future. For
2624 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2625 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2626 
2627 #if !defined(__APPLE__)
2628 int os::java_to_os_priority[CriticalPriority + 1] = {
2629   19,              // 0 Entry should never be used
2630 
2631    0,              // 1 MinPriority
2632    3,              // 2
2633    6,              // 3
2634 
2635   10,              // 4
2636   15,              // 5 NormPriority
2637   18,              // 6
2638 
2639   21,              // 7
2640   25,              // 8
2641   28,              // 9 NearMaxPriority
2642 
2643   31,              // 10 MaxPriority
2644 
2645   31               // 11 CriticalPriority
2646 };
2647 #else
2648 /* Using Mach high-level priority assignments */
2649 int os::java_to_os_priority[CriticalPriority + 1] = {
2650    0,              // 0 Entry should never be used (MINPRI_USER)
2651 
2652   27,              // 1 MinPriority
2653   28,              // 2
2654   29,              // 3
2655 
2656   30,              // 4
2657   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2658   32,              // 6
2659 
2660   33,              // 7
2661   34,              // 8
2662   35,              // 9 NearMaxPriority
2663 
2664   36,              // 10 MaxPriority
2665 
2666   36               // 11 CriticalPriority
2667 };
2668 #endif
2669 
2670 static int prio_init() {
2671   if (ThreadPriorityPolicy == 1) {
2672     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2673     // if effective uid is not root. Perhaps, a more elegant way of doing
2674     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2675     if (geteuid() != 0) {
2676       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2677         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2678       }
2679       ThreadPriorityPolicy = 0;
2680     }
2681   }
2682   if (UseCriticalJavaThreadPriority) {
2683     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2684   }
2685   return 0;
2686 }
2687 
2688 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2689   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
2690 
2691 #ifdef __OpenBSD__
2692   // OpenBSD pthread_setprio starves low priority threads
2693   return OS_OK;
2694 #elif defined(__FreeBSD__)
2695   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2696 #elif defined(__APPLE__) || defined(__NetBSD__)
2697   struct sched_param sp;
2698   int policy;
2699   pthread_t self = pthread_self();
2700 
2701   if (pthread_getschedparam(self, &policy, &sp) != 0)
2702     return OS_ERR;
2703 
2704   sp.sched_priority = newpri;
2705   if (pthread_setschedparam(self, policy, &sp) != 0)
2706     return OS_ERR;
2707 
2708   return OS_OK;
2709 #else
2710   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2711   return (ret == 0) ? OS_OK : OS_ERR;
2712 #endif
2713 }
2714 
2715 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2716   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
2717     *priority_ptr = java_to_os_priority[NormPriority];
2718     return OS_OK;
2719   }
2720 
2721   errno = 0;
2722 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2723   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2724 #elif defined(__APPLE__) || defined(__NetBSD__)
2725   int policy;
2726   struct sched_param sp;
2727 
2728   pthread_getschedparam(pthread_self(), &policy, &sp);
2729   *priority_ptr = sp.sched_priority;
2730 #else
2731   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2732 #endif
2733   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2734 }
2735 
2736 // Hint to the underlying OS that a task switch would not be good.
2737 // Void return because it's a hint and can fail.
2738 void os::hint_no_preempt() {}
2739 
2740 ////////////////////////////////////////////////////////////////////////////////
2741 // suspend/resume support
2742 
2743 //  the low-level signal-based suspend/resume support is a remnant from the
2744 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2745 //  within hotspot. Now there is a single use-case for this:
2746 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2747 //      that runs in the watcher thread.
2748 //  The remaining code is greatly simplified from the more general suspension
2749 //  code that used to be used.
2750 //
2751 //  The protocol is quite simple:
2752 //  - suspend:
2753 //      - sends a signal to the target thread
2754 //      - polls the suspend state of the osthread using a yield loop
2755 //      - target thread signal handler (SR_handler) sets suspend state
2756 //        and blocks in sigsuspend until continued
2757 //  - resume:
2758 //      - sets target osthread state to continue
2759 //      - sends signal to end the sigsuspend loop in the SR_handler
2760 //
2761 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2762 //
2763 
2764 static void resume_clear_context(OSThread *osthread) {
2765   osthread->set_ucontext(NULL);
2766   osthread->set_siginfo(NULL);
2767 }
2768 
2769 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2770   osthread->set_ucontext(context);
2771   osthread->set_siginfo(siginfo);
2772 }
2773 
2774 //
2775 // Handler function invoked when a thread's execution is suspended or
2776 // resumed. We have to be careful that only async-safe functions are
2777 // called here (Note: most pthread functions are not async safe and
2778 // should be avoided.)
2779 //
2780 // Note: sigwait() is a more natural fit than sigsuspend() from an
2781 // interface point of view, but sigwait() prevents the signal hander
2782 // from being run. libpthread would get very confused by not having
2783 // its signal handlers run and prevents sigwait()'s use with the
2784 // mutex granting granting signal.
2785 //
2786 // Currently only ever called on the VMThread or JavaThread
2787 //
2788 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2789   // Save and restore errno to avoid confusing native code with EINTR
2790   // after sigsuspend.
2791   int old_errno = errno;
2792 
2793   Thread* thread = Thread::current();
2794   OSThread* osthread = thread->osthread();
2795   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2796 
2797   os::SuspendResume::State current = osthread->sr.state();
2798   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2799     suspend_save_context(osthread, siginfo, context);
2800 
2801     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2802     os::SuspendResume::State state = osthread->sr.suspended();
2803     if (state == os::SuspendResume::SR_SUSPENDED) {
2804       sigset_t suspend_set;  // signals for sigsuspend()
2805 
2806       // get current set of blocked signals and unblock resume signal
2807       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2808       sigdelset(&suspend_set, SR_signum);
2809 
2810       sr_semaphore.signal();
2811       // wait here until we are resumed
2812       while (1) {
2813         sigsuspend(&suspend_set);
2814 
2815         os::SuspendResume::State result = osthread->sr.running();
2816         if (result == os::SuspendResume::SR_RUNNING) {
2817           sr_semaphore.signal();
2818           break;
2819         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2820           ShouldNotReachHere();
2821         }
2822       }
2823 
2824     } else if (state == os::SuspendResume::SR_RUNNING) {
2825       // request was cancelled, continue
2826     } else {
2827       ShouldNotReachHere();
2828     }
2829 
2830     resume_clear_context(osthread);
2831   } else if (current == os::SuspendResume::SR_RUNNING) {
2832     // request was cancelled, continue
2833   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2834     // ignore
2835   } else {
2836     // ignore
2837   }
2838 
2839   errno = old_errno;
2840 }
2841 
2842 
2843 static int SR_initialize() {
2844   struct sigaction act;
2845   char *s;
2846   /* Get signal number to use for suspend/resume */
2847   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2848     int sig = ::strtol(s, 0, 10);
2849     if (sig > 0 || sig < NSIG) {
2850         SR_signum = sig;
2851     }
2852   }
2853 
2854   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2855         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2856 
2857   sigemptyset(&SR_sigset);
2858   sigaddset(&SR_sigset, SR_signum);
2859 
2860   /* Set up signal handler for suspend/resume */
2861   act.sa_flags = SA_RESTART|SA_SIGINFO;
2862   act.sa_handler = (void (*)(int)) SR_handler;
2863 
2864   // SR_signum is blocked by default.
2865   // 4528190 - We also need to block pthread restart signal (32 on all
2866   // supported Bsd platforms). Note that BsdThreads need to block
2867   // this signal for all threads to work properly. So we don't have
2868   // to use hard-coded signal number when setting up the mask.
2869   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2870 
2871   if (sigaction(SR_signum, &act, 0) == -1) {
2872     return -1;
2873   }
2874 
2875   // Save signal flag
2876   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2877   return 0;
2878 }
2879 
2880 static int sr_notify(OSThread* osthread) {
2881   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2882   assert_status(status == 0, status, "pthread_kill");
2883   return status;
2884 }
2885 
2886 // "Randomly" selected value for how long we want to spin
2887 // before bailing out on suspending a thread, also how often
2888 // we send a signal to a thread we want to resume
2889 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2890 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2891 
2892 // returns true on success and false on error - really an error is fatal
2893 // but this seems the normal response to library errors
2894 static bool do_suspend(OSThread* osthread) {
2895   assert(osthread->sr.is_running(), "thread should be running");
2896   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2897 
2898   // mark as suspended and send signal
2899   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2900     // failed to switch, state wasn't running?
2901     ShouldNotReachHere();
2902     return false;
2903   }
2904 
2905   if (sr_notify(osthread) != 0) {
2906     ShouldNotReachHere();
2907   }
2908 
2909   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2910   while (true) {
2911     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2912       break;
2913     } else {
2914       // timeout
2915       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2916       if (cancelled == os::SuspendResume::SR_RUNNING) {
2917         return false;
2918       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2919         // make sure that we consume the signal on the semaphore as well
2920         sr_semaphore.wait();
2921         break;
2922       } else {
2923         ShouldNotReachHere();
2924         return false;
2925       }
2926     }
2927   }
2928 
2929   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2930   return true;
2931 }
2932 
2933 static void do_resume(OSThread* osthread) {
2934   assert(osthread->sr.is_suspended(), "thread should be suspended");
2935   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2936 
2937   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2938     // failed to switch to WAKEUP_REQUEST
2939     ShouldNotReachHere();
2940     return;
2941   }
2942 
2943   while (true) {
2944     if (sr_notify(osthread) == 0) {
2945       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2946         if (osthread->sr.is_running()) {
2947           return;
2948         }
2949       }
2950     } else {
2951       ShouldNotReachHere();
2952     }
2953   }
2954 
2955   guarantee(osthread->sr.is_running(), "Must be running!");
2956 }
2957 
2958 ///////////////////////////////////////////////////////////////////////////////////
2959 // signal handling (except suspend/resume)
2960 
2961 // This routine may be used by user applications as a "hook" to catch signals.
2962 // The user-defined signal handler must pass unrecognized signals to this
2963 // routine, and if it returns true (non-zero), then the signal handler must
2964 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2965 // routine will never retun false (zero), but instead will execute a VM panic
2966 // routine kill the process.
2967 //
2968 // If this routine returns false, it is OK to call it again.  This allows
2969 // the user-defined signal handler to perform checks either before or after
2970 // the VM performs its own checks.  Naturally, the user code would be making
2971 // a serious error if it tried to handle an exception (such as a null check
2972 // or breakpoint) that the VM was generating for its own correct operation.
2973 //
2974 // This routine may recognize any of the following kinds of signals:
2975 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2976 // It should be consulted by handlers for any of those signals.
2977 //
2978 // The caller of this routine must pass in the three arguments supplied
2979 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2980 // field of the structure passed to sigaction().  This routine assumes that
2981 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2982 //
2983 // Note that the VM will print warnings if it detects conflicting signal
2984 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2985 //
2986 extern "C" JNIEXPORT int
2987 JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2988                         void* ucontext, int abort_if_unrecognized);
2989 
2990 void signalHandler(int sig, siginfo_t* info, void* uc) {
2991   assert(info != NULL && uc != NULL, "it must be old kernel");
2992   int orig_errno = errno;  // Preserve errno value over signal handler.
2993   JVM_handle_bsd_signal(sig, info, uc, true);
2994   errno = orig_errno;
2995 }
2996 
2997 
2998 // This boolean allows users to forward their own non-matching signals
2999 // to JVM_handle_bsd_signal, harmlessly.
3000 bool os::Bsd::signal_handlers_are_installed = false;
3001 
3002 // For signal-chaining
3003 struct sigaction os::Bsd::sigact[MAXSIGNUM];
3004 unsigned int os::Bsd::sigs = 0;
3005 bool os::Bsd::libjsig_is_loaded = false;
3006 typedef struct sigaction *(*get_signal_t)(int);
3007 get_signal_t os::Bsd::get_signal_action = NULL;
3008 
3009 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
3010   struct sigaction *actp = NULL;
3011 
3012   if (libjsig_is_loaded) {
3013     // Retrieve the old signal handler from libjsig
3014     actp = (*get_signal_action)(sig);
3015   }
3016   if (actp == NULL) {
3017     // Retrieve the preinstalled signal handler from jvm
3018     actp = get_preinstalled_handler(sig);
3019   }
3020 
3021   return actp;
3022 }
3023 
3024 static bool call_chained_handler(struct sigaction *actp, int sig,
3025                                  siginfo_t *siginfo, void *context) {
3026   // Call the old signal handler
3027   if (actp->sa_handler == SIG_DFL) {
3028     // It's more reasonable to let jvm treat it as an unexpected exception
3029     // instead of taking the default action.
3030     return false;
3031   } else if (actp->sa_handler != SIG_IGN) {
3032     if ((actp->sa_flags & SA_NODEFER) == 0) {
3033       // automaticlly block the signal
3034       sigaddset(&(actp->sa_mask), sig);
3035     }
3036 
3037     sa_handler_t hand;
3038     sa_sigaction_t sa;
3039     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3040     // retrieve the chained handler
3041     if (siginfo_flag_set) {
3042       sa = actp->sa_sigaction;
3043     } else {
3044       hand = actp->sa_handler;
3045     }
3046 
3047     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3048       actp->sa_handler = SIG_DFL;
3049     }
3050 
3051     // try to honor the signal mask
3052     sigset_t oset;
3053     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3054 
3055     // call into the chained handler
3056     if (siginfo_flag_set) {
3057       (*sa)(sig, siginfo, context);
3058     } else {
3059       (*hand)(sig);
3060     }
3061 
3062     // restore the signal mask
3063     pthread_sigmask(SIG_SETMASK, &oset, 0);
3064   }
3065   // Tell jvm's signal handler the signal is taken care of.
3066   return true;
3067 }
3068 
3069 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3070   bool chained = false;
3071   // signal-chaining
3072   if (UseSignalChaining) {
3073     struct sigaction *actp = get_chained_signal_action(sig);
3074     if (actp != NULL) {
3075       chained = call_chained_handler(actp, sig, siginfo, context);
3076     }
3077   }
3078   return chained;
3079 }
3080 
3081 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3082   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3083     return &sigact[sig];
3084   }
3085   return NULL;
3086 }
3087 
3088 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3089   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3090   sigact[sig] = oldAct;
3091   sigs |= (unsigned int)1 << sig;
3092 }
3093 
3094 // for diagnostic
3095 int os::Bsd::sigflags[MAXSIGNUM];
3096 
3097 int os::Bsd::get_our_sigflags(int sig) {
3098   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3099   return sigflags[sig];
3100 }
3101 
3102 void os::Bsd::set_our_sigflags(int sig, int flags) {
3103   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3104   sigflags[sig] = flags;
3105 }
3106 
3107 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3108   // Check for overwrite.
3109   struct sigaction oldAct;
3110   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3111 
3112   void* oldhand = oldAct.sa_sigaction
3113                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3114                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3115   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3116       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3117       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3118     if (AllowUserSignalHandlers || !set_installed) {
3119       // Do not overwrite; user takes responsibility to forward to us.
3120       return;
3121     } else if (UseSignalChaining) {
3122       // save the old handler in jvm
3123       save_preinstalled_handler(sig, oldAct);
3124       // libjsig also interposes the sigaction() call below and saves the
3125       // old sigaction on it own.
3126     } else {
3127       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3128                     "%#lx for signal %d.", (long)oldhand, sig));
3129     }
3130   }
3131 
3132   struct sigaction sigAct;
3133   sigfillset(&(sigAct.sa_mask));
3134   sigAct.sa_handler = SIG_DFL;
3135   if (!set_installed) {
3136     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3137   } else {
3138     sigAct.sa_sigaction = signalHandler;
3139     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3140   }
3141 #ifdef __APPLE__
3142   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3143   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3144   // if the signal handler declares it will handle it on alternate stack.
3145   // Notice we only declare we will handle it on alt stack, but we are not
3146   // actually going to use real alt stack - this is just a workaround.
3147   // Please see ux_exception.c, method catch_mach_exception_raise for details
3148   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3149   if (sig == SIGSEGV) {
3150     sigAct.sa_flags |= SA_ONSTACK;
3151   }
3152 #endif
3153 
3154   // Save flags, which are set by ours
3155   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3156   sigflags[sig] = sigAct.sa_flags;
3157 
3158   int ret = sigaction(sig, &sigAct, &oldAct);
3159   assert(ret == 0, "check");
3160 
3161   void* oldhand2  = oldAct.sa_sigaction
3162                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3163                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3164   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3165 }
3166 
3167 // install signal handlers for signals that HotSpot needs to
3168 // handle in order to support Java-level exception handling.
3169 
3170 void os::Bsd::install_signal_handlers() {
3171   if (!signal_handlers_are_installed) {
3172     signal_handlers_are_installed = true;
3173 
3174     // signal-chaining
3175     typedef void (*signal_setting_t)();
3176     signal_setting_t begin_signal_setting = NULL;
3177     signal_setting_t end_signal_setting = NULL;
3178     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3179                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3180     if (begin_signal_setting != NULL) {
3181       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3182                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3183       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3184                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3185       libjsig_is_loaded = true;
3186       assert(UseSignalChaining, "should enable signal-chaining");
3187     }
3188     if (libjsig_is_loaded) {
3189       // Tell libjsig jvm is setting signal handlers
3190       (*begin_signal_setting)();
3191     }
3192 
3193     set_signal_handler(SIGSEGV, true);
3194     set_signal_handler(SIGPIPE, true);
3195     set_signal_handler(SIGBUS, true);
3196     set_signal_handler(SIGILL, true);
3197     set_signal_handler(SIGFPE, true);
3198     set_signal_handler(SIGXFSZ, true);
3199 
3200 #if defined(__APPLE__)
3201     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3202     // signals caught and handled by the JVM. To work around this, we reset the mach task
3203     // signal handler that's placed on our process by CrashReporter. This disables
3204     // CrashReporter-based reporting.
3205     //
3206     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3207     // on caught fatal signals.
3208     //
3209     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3210     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3211     // exception handling, while leaving the standard BSD signal handlers functional.
3212     kern_return_t kr;
3213     kr = task_set_exception_ports(mach_task_self(),
3214         EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3215         MACH_PORT_NULL,
3216         EXCEPTION_STATE_IDENTITY,
3217         MACHINE_THREAD_STATE);
3218 
3219     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3220 #endif
3221 
3222     if (libjsig_is_loaded) {
3223       // Tell libjsig jvm finishes setting signal handlers
3224       (*end_signal_setting)();
3225     }
3226 
3227     // We don't activate signal checker if libjsig is in place, we trust ourselves
3228     // and if UserSignalHandler is installed all bets are off
3229     if (CheckJNICalls) {
3230       if (libjsig_is_loaded) {
3231         if (PrintJNIResolving) {
3232           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3233         }
3234         check_signals = false;
3235       }
3236       if (AllowUserSignalHandlers) {
3237         if (PrintJNIResolving) {
3238           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3239         }
3240         check_signals = false;
3241       }
3242     }
3243   }
3244 }
3245 
3246 
3247 /////
3248 // glibc on Bsd platform uses non-documented flag
3249 // to indicate, that some special sort of signal
3250 // trampoline is used.
3251 // We will never set this flag, and we should
3252 // ignore this flag in our diagnostic
3253 #ifdef SIGNIFICANT_SIGNAL_MASK
3254 #undef SIGNIFICANT_SIGNAL_MASK
3255 #endif
3256 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3257 
3258 static const char* get_signal_handler_name(address handler,
3259                                            char* buf, int buflen) {
3260   int offset;
3261   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3262   if (found) {
3263     // skip directory names
3264     const char *p1, *p2;
3265     p1 = buf;
3266     size_t len = strlen(os::file_separator());
3267     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3268     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3269   } else {
3270     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3271   }
3272   return buf;
3273 }
3274 
3275 static void print_signal_handler(outputStream* st, int sig,
3276                                  char* buf, size_t buflen) {
3277   struct sigaction sa;
3278 
3279   sigaction(sig, NULL, &sa);
3280 
3281   // See comment for SIGNIFICANT_SIGNAL_MASK define
3282   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3283 
3284   st->print("%s: ", os::exception_name(sig, buf, buflen));
3285 
3286   address handler = (sa.sa_flags & SA_SIGINFO)
3287     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3288     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3289 
3290   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3291     st->print("SIG_DFL");
3292   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3293     st->print("SIG_IGN");
3294   } else {
3295     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3296   }
3297 
3298   st->print(", sa_mask[0]=");
3299   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3300 
3301   address rh = VMError::get_resetted_sighandler(sig);
3302   // May be, handler was resetted by VMError?
3303   if(rh != NULL) {
3304     handler = rh;
3305     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3306   }
3307 
3308   st->print(", sa_flags=");
3309   os::Posix::print_sa_flags(st, sa.sa_flags);
3310 
3311   // Check: is it our handler?
3312   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3313      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3314     // It is our signal handler
3315     // check for flags, reset system-used one!
3316     if((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3317       st->print(
3318                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3319                 os::Bsd::get_our_sigflags(sig));
3320     }
3321   }
3322   st->cr();
3323 }
3324 
3325 
3326 #define DO_SIGNAL_CHECK(sig) \
3327   if (!sigismember(&check_signal_done, sig)) \
3328     os::Bsd::check_signal_handler(sig)
3329 
3330 // This method is a periodic task to check for misbehaving JNI applications
3331 // under CheckJNI, we can add any periodic checks here
3332 
3333 void os::run_periodic_checks() {
3334 
3335   if (check_signals == false) return;
3336 
3337   // SEGV and BUS if overridden could potentially prevent
3338   // generation of hs*.log in the event of a crash, debugging
3339   // such a case can be very challenging, so we absolutely
3340   // check the following for a good measure:
3341   DO_SIGNAL_CHECK(SIGSEGV);
3342   DO_SIGNAL_CHECK(SIGILL);
3343   DO_SIGNAL_CHECK(SIGFPE);
3344   DO_SIGNAL_CHECK(SIGBUS);
3345   DO_SIGNAL_CHECK(SIGPIPE);
3346   DO_SIGNAL_CHECK(SIGXFSZ);
3347 
3348 
3349   // ReduceSignalUsage allows the user to override these handlers
3350   // see comments at the very top and jvm_solaris.h
3351   if (!ReduceSignalUsage) {
3352     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3353     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3354     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3355     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3356   }
3357 
3358   DO_SIGNAL_CHECK(SR_signum);
3359   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
3360 }
3361 
3362 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3363 
3364 static os_sigaction_t os_sigaction = NULL;
3365 
3366 void os::Bsd::check_signal_handler(int sig) {
3367   char buf[O_BUFLEN];
3368   address jvmHandler = NULL;
3369 
3370 
3371   struct sigaction act;
3372   if (os_sigaction == NULL) {
3373     // only trust the default sigaction, in case it has been interposed
3374     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3375     if (os_sigaction == NULL) return;
3376   }
3377 
3378   os_sigaction(sig, (struct sigaction*)NULL, &act);
3379 
3380 
3381   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3382 
3383   address thisHandler = (act.sa_flags & SA_SIGINFO)
3384     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3385     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
3386 
3387 
3388   switch(sig) {
3389   case SIGSEGV:
3390   case SIGBUS:
3391   case SIGFPE:
3392   case SIGPIPE:
3393   case SIGILL:
3394   case SIGXFSZ:
3395     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3396     break;
3397 
3398   case SHUTDOWN1_SIGNAL:
3399   case SHUTDOWN2_SIGNAL:
3400   case SHUTDOWN3_SIGNAL:
3401   case BREAK_SIGNAL:
3402     jvmHandler = (address)user_handler();
3403     break;
3404 
3405   case INTERRUPT_SIGNAL:
3406     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
3407     break;
3408 
3409   default:
3410     if (sig == SR_signum) {
3411       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3412     } else {
3413       return;
3414     }
3415     break;
3416   }
3417 
3418   if (thisHandler != jvmHandler) {
3419     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3420     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3421     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3422     // No need to check this sig any longer
3423     sigaddset(&check_signal_done, sig);
3424     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3425     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3426       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3427                     exception_name(sig, buf, O_BUFLEN));
3428     }
3429   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3430     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3431     tty->print("expected:" PTR32_FORMAT, os::Bsd::get_our_sigflags(sig));
3432     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
3433     // No need to check this sig any longer
3434     sigaddset(&check_signal_done, sig);
3435   }
3436 
3437   // Dump all the signal
3438   if (sigismember(&check_signal_done, sig)) {
3439     print_signal_handlers(tty, buf, O_BUFLEN);
3440   }
3441 }
3442 
3443 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
3444 
3445 extern bool signal_name(int signo, char* buf, size_t len);
3446 
3447 const char* os::exception_name(int exception_code, char* buf, size_t size) {
3448   if (0 < exception_code && exception_code <= SIGRTMAX) {
3449     // signal
3450     if (!signal_name(exception_code, buf, size)) {
3451       jio_snprintf(buf, size, "SIG%d", exception_code);
3452     }
3453     return buf;
3454   } else {
3455     return NULL;
3456   }
3457 }
3458 
3459 // this is called _before_ the most of global arguments have been parsed
3460 void os::init(void) {
3461   char dummy;   /* used to get a guess on initial stack address */
3462 //  first_hrtime = gethrtime();
3463 
3464   // With BsdThreads the JavaMain thread pid (primordial thread)
3465   // is different than the pid of the java launcher thread.
3466   // So, on Bsd, the launcher thread pid is passed to the VM
3467   // via the sun.java.launcher.pid property.
3468   // Use this property instead of getpid() if it was correctly passed.
3469   // See bug 6351349.
3470   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3471 
3472   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3473 
3474   clock_tics_per_sec = CLK_TCK;
3475 
3476   init_random(1234567);
3477 
3478   ThreadCritical::initialize();
3479 
3480   Bsd::set_page_size(getpagesize());
3481   if (Bsd::page_size() == -1) {
3482     fatal(err_msg("os_bsd.cpp: os::init: sysconf failed (%s)",
3483                   strerror(errno)));
3484   }
3485   init_page_sizes((size_t) Bsd::page_size());
3486 
3487   Bsd::initialize_system_info();
3488 
3489   // main_thread points to the aboriginal thread
3490   Bsd::_main_thread = pthread_self();
3491 
3492   Bsd::clock_init();
3493   initial_time_count = javaTimeNanos();
3494 
3495 #ifdef __APPLE__
3496   // XXXDARWIN
3497   // Work around the unaligned VM callbacks in hotspot's
3498   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3499   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3500   // alignment when doing symbol lookup. To work around this, we force early
3501   // binding of all symbols now, thus binding when alignment is known-good.
3502   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3503 #endif
3504 }
3505 
3506 // To install functions for atexit system call
3507 extern "C" {
3508   static void perfMemory_exit_helper() {
3509     perfMemory_exit();
3510   }
3511 }
3512 
3513 // this is called _after_ the global arguments have been parsed
3514 jint os::init_2(void)
3515 {
3516   // Allocate a single page and mark it as readable for safepoint polling
3517   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3518   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
3519 
3520   os::set_polling_page( polling_page );
3521 
3522 #ifndef PRODUCT
3523   if(Verbose && PrintMiscellaneous)
3524     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3525 #endif
3526 
3527   if (!UseMembar) {
3528     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3529     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3530     os::set_memory_serialize_page( mem_serialize_page );
3531 
3532 #ifndef PRODUCT
3533     if(Verbose && PrintMiscellaneous)
3534       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3535 #endif
3536   }
3537 
3538   // initialize suspend/resume support - must do this before signal_sets_init()
3539   if (SR_initialize() != 0) {
3540     perror("SR_initialize failed");
3541     return JNI_ERR;
3542   }
3543 
3544   Bsd::signal_sets_init();
3545   Bsd::install_signal_handlers();
3546 
3547   // Check minimum allowable stack size for thread creation and to initialize
3548   // the java system classes, including StackOverflowError - depends on page
3549   // size.  Add a page for compiler2 recursion in main thread.
3550   // Add in 2*BytesPerWord times page size to account for VM stack during
3551   // class initialization depending on 32 or 64 bit VM.
3552   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3553             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3554                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3555 
3556   size_t threadStackSizeInBytes = ThreadStackSize * K;
3557   if (threadStackSizeInBytes != 0 &&
3558       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3559         tty->print_cr("\nThe stack size specified is too small, "
3560                       "Specify at least %dk",
3561                       os::Bsd::min_stack_allowed/ K);
3562         return JNI_ERR;
3563   }
3564 
3565   // Make the stack size a multiple of the page size so that
3566   // the yellow/red zones can be guarded.
3567   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3568         vm_page_size()));
3569 
3570   if (MaxFDLimit) {
3571     // set the number of file descriptors to max. print out error
3572     // if getrlimit/setrlimit fails but continue regardless.
3573     struct rlimit nbr_files;
3574     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3575     if (status != 0) {
3576       if (PrintMiscellaneous && (Verbose || WizardMode))
3577         perror("os::init_2 getrlimit failed");
3578     } else {
3579       nbr_files.rlim_cur = nbr_files.rlim_max;
3580 
3581 #ifdef __APPLE__
3582       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3583       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3584       // be used instead
3585       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3586 #endif
3587 
3588       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3589       if (status != 0) {
3590         if (PrintMiscellaneous && (Verbose || WizardMode))
3591           perror("os::init_2 setrlimit failed");
3592       }
3593     }
3594   }
3595 
3596   // at-exit methods are called in the reverse order of their registration.
3597   // atexit functions are called on return from main or as a result of a
3598   // call to exit(3C). There can be only 32 of these functions registered
3599   // and atexit() does not set errno.
3600 
3601   if (PerfAllowAtExitRegistration) {
3602     // only register atexit functions if PerfAllowAtExitRegistration is set.
3603     // atexit functions can be delayed until process exit time, which
3604     // can be problematic for embedded VM situations. Embedded VMs should
3605     // call DestroyJavaVM() to assure that VM resources are released.
3606 
3607     // note: perfMemory_exit_helper atexit function may be removed in
3608     // the future if the appropriate cleanup code can be added to the
3609     // VM_Exit VMOperation's doit method.
3610     if (atexit(perfMemory_exit_helper) != 0) {
3611       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3612     }
3613   }
3614 
3615   // initialize thread priority policy
3616   prio_init();
3617 
3618 #ifdef __APPLE__
3619   // dynamically link to objective c gc registration
3620   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3621   if (handleLibObjc != NULL) {
3622     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3623   }
3624 #endif
3625 
3626   return JNI_OK;
3627 }
3628 
3629 // this is called at the end of vm_initialization
3630 void os::init_3(void) { }
3631 
3632 // Mark the polling page as unreadable
3633 void os::make_polling_page_unreadable(void) {
3634   if( !guard_memory((char*)_polling_page, Bsd::page_size()) )
3635     fatal("Could not disable polling page");
3636 };
3637 
3638 // Mark the polling page as readable
3639 void os::make_polling_page_readable(void) {
3640   if( !bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3641     fatal("Could not enable polling page");
3642   }
3643 };
3644 
3645 int os::active_processor_count() {
3646   return _processor_count;
3647 }
3648 
3649 void os::set_native_thread_name(const char *name) {
3650 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3651   // This is only supported in Snow Leopard and beyond
3652   if (name != NULL) {
3653     // Add a "Java: " prefix to the name
3654     char buf[MAXTHREADNAMESIZE];
3655     snprintf(buf, sizeof(buf), "Java: %s", name);
3656     pthread_setname_np(buf);
3657   }
3658 #endif
3659 }
3660 
3661 bool os::distribute_processes(uint length, uint* distribution) {
3662   // Not yet implemented.
3663   return false;
3664 }
3665 
3666 bool os::bind_to_processor(uint processor_id) {
3667   // Not yet implemented.
3668   return false;
3669 }
3670 
3671 void os::SuspendedThreadTask::internal_do_task() {
3672   if (do_suspend(_thread->osthread())) {
3673     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3674     do_task(context);
3675     do_resume(_thread->osthread());
3676   }
3677 }
3678 
3679 ///
3680 class PcFetcher : public os::SuspendedThreadTask {
3681 public:
3682   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3683   ExtendedPC result();
3684 protected:
3685   void do_task(const os::SuspendedThreadTaskContext& context);
3686 private:
3687   ExtendedPC _epc;
3688 };
3689 
3690 ExtendedPC PcFetcher::result() {
3691   guarantee(is_done(), "task is not done yet.");
3692   return _epc;
3693 }
3694 
3695 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3696   Thread* thread = context.thread();
3697   OSThread* osthread = thread->osthread();
3698   if (osthread->ucontext() != NULL) {
3699     _epc = os::Bsd::ucontext_get_pc((ucontext_t *) context.ucontext());
3700   } else {
3701     // NULL context is unexpected, double-check this is the VMThread
3702     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3703   }
3704 }
3705 
3706 // Suspends the target using the signal mechanism and then grabs the PC before
3707 // resuming the target. Used by the flat-profiler only
3708 ExtendedPC os::get_thread_pc(Thread* thread) {
3709   // Make sure that it is called by the watcher for the VMThread
3710   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3711   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3712 
3713   PcFetcher fetcher(thread);
3714   fetcher.run();
3715   return fetcher.result();
3716 }
3717 
3718 int os::Bsd::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
3719 {
3720   return pthread_cond_timedwait(_cond, _mutex, _abstime);
3721 }
3722 
3723 ////////////////////////////////////////////////////////////////////////////////
3724 // debug support
3725 
3726 bool os::find(address addr, outputStream* st) {
3727   Dl_info dlinfo;
3728   memset(&dlinfo, 0, sizeof(dlinfo));
3729   if (dladdr(addr, &dlinfo) != 0) {
3730     st->print(PTR_FORMAT ": ", addr);
3731     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3732       st->print("%s+%#x", dlinfo.dli_sname,
3733                  addr - (intptr_t)dlinfo.dli_saddr);
3734     } else if (dlinfo.dli_fbase != NULL) {
3735       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3736     } else {
3737       st->print("<absolute address>");
3738     }
3739     if (dlinfo.dli_fname != NULL) {
3740       st->print(" in %s", dlinfo.dli_fname);
3741     }
3742     if (dlinfo.dli_fbase != NULL) {
3743       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3744     }
3745     st->cr();
3746 
3747     if (Verbose) {
3748       // decode some bytes around the PC
3749       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3750       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3751       address       lowest = (address) dlinfo.dli_sname;
3752       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3753       if (begin < lowest)  begin = lowest;
3754       Dl_info dlinfo2;
3755       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3756           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
3757         end = (address) dlinfo2.dli_saddr;
3758       Disassembler::decode(begin, end, st);
3759     }
3760     return true;
3761   }
3762   return false;
3763 }
3764 
3765 ////////////////////////////////////////////////////////////////////////////////
3766 // misc
3767 
3768 // This does not do anything on Bsd. This is basically a hook for being
3769 // able to use structured exception handling (thread-local exception filters)
3770 // on, e.g., Win32.
3771 void
3772 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
3773                          JavaCallArguments* args, Thread* thread) {
3774   f(value, method, args, thread);
3775 }
3776 
3777 void os::print_statistics() {
3778 }
3779 
3780 int os::message_box(const char* title, const char* message) {
3781   int i;
3782   fdStream err(defaultStream::error_fd());
3783   for (i = 0; i < 78; i++) err.print_raw("=");
3784   err.cr();
3785   err.print_raw_cr(title);
3786   for (i = 0; i < 78; i++) err.print_raw("-");
3787   err.cr();
3788   err.print_raw_cr(message);
3789   for (i = 0; i < 78; i++) err.print_raw("=");
3790   err.cr();
3791 
3792   char buf[16];
3793   // Prevent process from exiting upon "read error" without consuming all CPU
3794   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3795 
3796   return buf[0] == 'y' || buf[0] == 'Y';
3797 }
3798 
3799 int os::stat(const char *path, struct stat *sbuf) {
3800   char pathbuf[MAX_PATH];
3801   if (strlen(path) > MAX_PATH - 1) {
3802     errno = ENAMETOOLONG;
3803     return -1;
3804   }
3805   os::native_path(strcpy(pathbuf, path));
3806   return ::stat(pathbuf, sbuf);
3807 }
3808 
3809 bool os::check_heap(bool force) {
3810   return true;
3811 }
3812 
3813 ATTRIBUTE_PRINTF(3, 0)
3814 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
3815   return ::vsnprintf(buf, count, format, args);
3816 }
3817 
3818 // Is a (classpath) directory empty?
3819 bool os::dir_is_empty(const char* path) {
3820   DIR *dir = NULL;
3821   struct dirent *ptr;
3822 
3823   dir = opendir(path);
3824   if (dir == NULL) return true;
3825 
3826   /* Scan the directory */
3827   bool result = true;
3828   char buf[sizeof(struct dirent) + MAX_PATH];
3829   while (result && (ptr = ::readdir(dir)) != NULL) {
3830     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3831       result = false;
3832     }
3833   }
3834   closedir(dir);
3835   return result;
3836 }
3837 
3838 // This code originates from JDK's sysOpen and open64_w
3839 // from src/solaris/hpi/src/system_md.c
3840 
3841 #ifndef O_DELETE
3842 #define O_DELETE 0x10000
3843 #endif
3844 
3845 // Open a file. Unlink the file immediately after open returns
3846 // if the specified oflag has the O_DELETE flag set.
3847 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
3848 
3849 int os::open(const char *path, int oflag, int mode) {
3850 
3851   if (strlen(path) > MAX_PATH - 1) {
3852     errno = ENAMETOOLONG;
3853     return -1;
3854   }
3855   int fd;
3856   int o_delete = (oflag & O_DELETE);
3857   oflag = oflag & ~O_DELETE;
3858 
3859   fd = ::open(path, oflag, mode);
3860   if (fd == -1) return -1;
3861 
3862   //If the open succeeded, the file might still be a directory
3863   {
3864     struct stat buf;
3865     int ret = ::fstat(fd, &buf);
3866     int st_mode = buf.st_mode;
3867 
3868     if (ret != -1) {
3869       if ((st_mode & S_IFMT) == S_IFDIR) {
3870         errno = EISDIR;
3871         ::close(fd);
3872         return -1;
3873       }
3874     } else {
3875       ::close(fd);
3876       return -1;
3877     }
3878   }
3879 
3880     /*
3881      * All file descriptors that are opened in the JVM and not
3882      * specifically destined for a subprocess should have the
3883      * close-on-exec flag set.  If we don't set it, then careless 3rd
3884      * party native code might fork and exec without closing all
3885      * appropriate file descriptors (e.g. as we do in closeDescriptors in
3886      * UNIXProcess.c), and this in turn might:
3887      *
3888      * - cause end-of-file to fail to be detected on some file
3889      *   descriptors, resulting in mysterious hangs, or
3890      *
3891      * - might cause an fopen in the subprocess to fail on a system
3892      *   suffering from bug 1085341.
3893      *
3894      * (Yes, the default setting of the close-on-exec flag is a Unix
3895      * design flaw)
3896      *
3897      * See:
3898      * 1085341: 32-bit stdio routines should support file descriptors >255
3899      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3900      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3901      */
3902 #ifdef FD_CLOEXEC
3903     {
3904         int flags = ::fcntl(fd, F_GETFD);
3905         if (flags != -1)
3906             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3907     }
3908 #endif
3909 
3910   if (o_delete != 0) {
3911     ::unlink(path);
3912   }
3913   return fd;
3914 }
3915 
3916 
3917 // create binary file, rewriting existing file if required
3918 int os::create_binary_file(const char* path, bool rewrite_existing) {
3919   int oflags = O_WRONLY | O_CREAT;
3920   if (!rewrite_existing) {
3921     oflags |= O_EXCL;
3922   }
3923   return ::open(path, oflags, S_IREAD | S_IWRITE);
3924 }
3925 
3926 // return current position of file pointer
3927 jlong os::current_file_offset(int fd) {
3928   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3929 }
3930 
3931 // move file pointer to the specified offset
3932 jlong os::seek_to_file_offset(int fd, jlong offset) {
3933   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3934 }
3935 
3936 // This code originates from JDK's sysAvailable
3937 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3938 
3939 int os::available(int fd, jlong *bytes) {
3940   jlong cur, end;
3941   int mode;
3942   struct stat buf;
3943 
3944   if (::fstat(fd, &buf) >= 0) {
3945     mode = buf.st_mode;
3946     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3947       /*
3948       * XXX: is the following call interruptible? If so, this might
3949       * need to go through the INTERRUPT_IO() wrapper as for other
3950       * blocking, interruptible calls in this file.
3951       */
3952       int n;
3953       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3954         *bytes = n;
3955         return 1;
3956       }
3957     }
3958   }
3959   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3960     return 0;
3961   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3962     return 0;
3963   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3964     return 0;
3965   }
3966   *bytes = end - cur;
3967   return 1;
3968 }
3969 
3970 int os::socket_available(int fd, jint *pbytes) {
3971    if (fd < 0)
3972      return OS_OK;
3973 
3974    int ret;
3975 
3976    RESTARTABLE(::ioctl(fd, FIONREAD, pbytes), ret);
3977 
3978    //%% note ioctl can return 0 when successful, JVM_SocketAvailable
3979    // is expected to return 0 on failure and 1 on success to the jdk.
3980 
3981    return (ret == OS_ERR) ? 0 : 1;
3982 }
3983 
3984 // Map a block of memory.
3985 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3986                      char *addr, size_t bytes, bool read_only,
3987                      bool allow_exec) {
3988   int prot;
3989   int flags;
3990 
3991   if (read_only) {
3992     prot = PROT_READ;
3993     flags = MAP_SHARED;
3994   } else {
3995     prot = PROT_READ | PROT_WRITE;
3996     flags = MAP_PRIVATE;
3997   }
3998 
3999   if (allow_exec) {
4000     prot |= PROT_EXEC;
4001   }
4002 
4003   if (addr != NULL) {
4004     flags |= MAP_FIXED;
4005   }
4006 
4007   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4008                                      fd, file_offset);
4009   if (mapped_address == MAP_FAILED) {
4010     return NULL;
4011   }
4012   return mapped_address;
4013 }
4014 
4015 
4016 // Remap a block of memory.
4017 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4018                        char *addr, size_t bytes, bool read_only,
4019                        bool allow_exec) {
4020   // same as map_memory() on this OS
4021   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4022                         allow_exec);
4023 }
4024 
4025 
4026 // Unmap a block of memory.
4027 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4028   return munmap(addr, bytes) == 0;
4029 }
4030 
4031 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4032 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4033 // of a thread.
4034 //
4035 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4036 // the fast estimate available on the platform.
4037 
4038 jlong os::current_thread_cpu_time() {
4039 #ifdef __APPLE__
4040   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
4041 #else
4042   Unimplemented();
4043   return 0;
4044 #endif
4045 }
4046 
4047 jlong os::thread_cpu_time(Thread* thread) {
4048 #ifdef __APPLE__
4049   return os::thread_cpu_time(thread, true /* user + sys */);
4050 #else
4051   Unimplemented();
4052   return 0;
4053 #endif
4054 }
4055 
4056 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4057 #ifdef __APPLE__
4058   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4059 #else
4060   Unimplemented();
4061   return 0;
4062 #endif
4063 }
4064 
4065 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4066 #ifdef __APPLE__
4067   struct thread_basic_info tinfo;
4068   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
4069   kern_return_t kr;
4070   thread_t mach_thread;
4071 
4072   mach_thread = thread->osthread()->thread_id();
4073   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
4074   if (kr != KERN_SUCCESS)
4075     return -1;
4076 
4077   if (user_sys_cpu_time) {
4078     jlong nanos;
4079     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
4080     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
4081     return nanos;
4082   } else {
4083     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
4084   }
4085 #else
4086   Unimplemented();
4087   return 0;
4088 #endif
4089 }
4090 
4091 
4092 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4093   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4094   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4095   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4096   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4097 }
4098 
4099 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4100   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4101   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4102   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4103   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4104 }
4105 
4106 bool os::is_thread_cpu_time_supported() {
4107 #ifdef __APPLE__
4108   return true;
4109 #else
4110   return false;
4111 #endif
4112 }
4113 
4114 // System loadavg support.  Returns -1 if load average cannot be obtained.
4115 // Bsd doesn't yet have a (official) notion of processor sets,
4116 // so just return the system wide load average.
4117 int os::loadavg(double loadavg[], int nelem) {
4118   return ::getloadavg(loadavg, nelem);
4119 }
4120 
4121 void os::pause() {
4122   char filename[MAX_PATH];
4123   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4124     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4125   } else {
4126     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4127   }
4128 
4129   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4130   if (fd != -1) {
4131     struct stat buf;
4132     ::close(fd);
4133     while (::stat(filename, &buf) == 0) {
4134       (void)::poll(NULL, 0, 100);
4135     }
4136   } else {
4137     jio_fprintf(stderr,
4138       "Could not open pause file '%s', continuing immediately.\n", filename);
4139   }
4140 }
4141 
4142 
4143 // Refer to the comments in os_solaris.cpp park-unpark.
4144 //
4145 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4146 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4147 // For specifics regarding the bug see GLIBC BUGID 261237 :
4148 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4149 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4150 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4151 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4152 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4153 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4154 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4155 // of libpthread avoids the problem, but isn't practical.
4156 //
4157 // Possible remedies:
4158 //
4159 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4160 //      This is palliative and probabilistic, however.  If the thread is preempted
4161 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4162 //      than the minimum period may have passed, and the abstime may be stale (in the
4163 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4164 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4165 //
4166 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4167 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4168 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4169 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4170 //      thread.
4171 //
4172 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4173 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4174 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4175 //      This also works well.  In fact it avoids kernel-level scalability impediments
4176 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4177 //      timers in a graceful fashion.
4178 //
4179 // 4.   When the abstime value is in the past it appears that control returns
4180 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4181 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4182 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4183 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4184 //      It may be possible to avoid reinitialization by checking the return
4185 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4186 //      condvar we must establish the invariant that cond_signal() is only called
4187 //      within critical sections protected by the adjunct mutex.  This prevents
4188 //      cond_signal() from "seeing" a condvar that's in the midst of being
4189 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4190 //      desirable signal-after-unlock optimization that avoids futile context switching.
4191 //
4192 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4193 //      structure when a condvar is used or initialized.  cond_destroy()  would
4194 //      release the helper structure.  Our reinitialize-after-timedwait fix
4195 //      put excessive stress on malloc/free and locks protecting the c-heap.
4196 //
4197 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4198 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4199 // and only enabling the work-around for vulnerable environments.
4200 
4201 // utility to compute the abstime argument to timedwait:
4202 // millis is the relative timeout time
4203 // abstime will be the absolute timeout time
4204 // TODO: replace compute_abstime() with unpackTime()
4205 
4206 static struct timespec* compute_abstime(struct timespec* abstime, jlong millis) {
4207   if (millis < 0)  millis = 0;
4208   struct timeval now;
4209   int status = gettimeofday(&now, NULL);
4210   assert(status == 0, "gettimeofday");
4211   jlong seconds = millis / 1000;
4212   millis %= 1000;
4213   if (seconds > 50000000) { // see man cond_timedwait(3T)
4214     seconds = 50000000;
4215   }
4216   abstime->tv_sec = now.tv_sec  + seconds;
4217   long       usec = now.tv_usec + millis * 1000;
4218   if (usec >= 1000000) {
4219     abstime->tv_sec += 1;
4220     usec -= 1000000;
4221   }
4222   abstime->tv_nsec = usec * 1000;
4223   return abstime;
4224 }
4225 
4226 
4227 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4228 // Conceptually TryPark() should be equivalent to park(0).
4229 
4230 int os::PlatformEvent::TryPark() {
4231   for (;;) {
4232     const int v = _Event ;
4233     guarantee ((v == 0) || (v == 1), "invariant") ;
4234     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4235   }
4236 }
4237 
4238 void os::PlatformEvent::park() {       // AKA "down()"
4239   // Invariant: Only the thread associated with the Event/PlatformEvent
4240   // may call park().
4241   // TODO: assert that _Assoc != NULL or _Assoc == Self
4242   int v ;
4243   for (;;) {
4244       v = _Event ;
4245       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4246   }
4247   guarantee (v >= 0, "invariant") ;
4248   if (v == 0) {
4249      // Do this the hard way by blocking ...
4250      int status = pthread_mutex_lock(_mutex);
4251      assert_status(status == 0, status, "mutex_lock");
4252      guarantee (_nParked == 0, "invariant") ;
4253      ++ _nParked ;
4254      while (_Event < 0) {
4255         status = pthread_cond_wait(_cond, _mutex);
4256         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4257         // Treat this the same as if the wait was interrupted
4258         if (status == ETIMEDOUT) { status = EINTR; }
4259         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4260      }
4261      -- _nParked ;
4262 
4263     _Event = 0 ;
4264      status = pthread_mutex_unlock(_mutex);
4265      assert_status(status == 0, status, "mutex_unlock");
4266     // Paranoia to ensure our locked and lock-free paths interact
4267     // correctly with each other.
4268     OrderAccess::fence();
4269   }
4270   guarantee (_Event >= 0, "invariant") ;
4271 }
4272 
4273 int os::PlatformEvent::park(jlong millis) {
4274   guarantee (_nParked == 0, "invariant") ;
4275 
4276   int v ;
4277   for (;;) {
4278       v = _Event ;
4279       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4280   }
4281   guarantee (v >= 0, "invariant") ;
4282   if (v != 0) return OS_OK ;
4283 
4284   // We do this the hard way, by blocking the thread.
4285   // Consider enforcing a minimum timeout value.
4286   struct timespec abst;
4287   compute_abstime(&abst, millis);
4288 
4289   int ret = OS_TIMEOUT;
4290   int status = pthread_mutex_lock(_mutex);
4291   assert_status(status == 0, status, "mutex_lock");
4292   guarantee (_nParked == 0, "invariant") ;
4293   ++_nParked ;
4294 
4295   // Object.wait(timo) will return because of
4296   // (a) notification
4297   // (b) timeout
4298   // (c) thread.interrupt
4299   //
4300   // Thread.interrupt and object.notify{All} both call Event::set.
4301   // That is, we treat thread.interrupt as a special case of notification.
4302   // We must filter out spurious wakeups.
4303   // We assume all ETIME returns are valid.
4304   //
4305   // TODO: properly differentiate simultaneous notify+interrupt.
4306   // In that case, we should propagate the notify to another waiter.
4307 
4308   while (_Event < 0) {
4309     status = os::Bsd::safe_cond_timedwait(_cond, _mutex, &abst);
4310     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4311       pthread_cond_destroy (_cond);
4312       pthread_cond_init (_cond, NULL) ;
4313     }
4314     assert_status(status == 0 || status == EINTR ||
4315                   status == ETIMEDOUT,
4316                   status, "cond_timedwait");
4317     if (!FilterSpuriousWakeups) break ;                 // previous semantics
4318     if (status == ETIMEDOUT) break ;
4319     // We consume and ignore EINTR and spurious wakeups.
4320   }
4321   --_nParked ;
4322   if (_Event >= 0) {
4323      ret = OS_OK;
4324   }
4325   _Event = 0 ;
4326   status = pthread_mutex_unlock(_mutex);
4327   assert_status(status == 0, status, "mutex_unlock");
4328   assert (_nParked == 0, "invariant") ;
4329   // Paranoia to ensure our locked and lock-free paths interact
4330   // correctly with each other.
4331   OrderAccess::fence();
4332   return ret;
4333 }
4334 
4335 void os::PlatformEvent::unpark() {
4336   // Transitions for _Event:
4337   //    0 :=> 1
4338   //    1 :=> 1
4339   //   -1 :=> either 0 or 1; must signal target thread
4340   //          That is, we can safely transition _Event from -1 to either
4341   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4342   //          unpark() calls.
4343   // See also: "Semaphores in Plan 9" by Mullender & Cox
4344   //
4345   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4346   // that it will take two back-to-back park() calls for the owning
4347   // thread to block. This has the benefit of forcing a spurious return
4348   // from the first park() call after an unpark() call which will help
4349   // shake out uses of park() and unpark() without condition variables.
4350 
4351   if (Atomic::xchg(1, &_Event) >= 0) return;
4352 
4353   // Wait for the thread associated with the event to vacate
4354   int status = pthread_mutex_lock(_mutex);
4355   assert_status(status == 0, status, "mutex_lock");
4356   int AnyWaiters = _nParked;
4357   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4358   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
4359     AnyWaiters = 0;
4360     pthread_cond_signal(_cond);
4361   }
4362   status = pthread_mutex_unlock(_mutex);
4363   assert_status(status == 0, status, "mutex_unlock");
4364   if (AnyWaiters != 0) {
4365     status = pthread_cond_signal(_cond);
4366     assert_status(status == 0, status, "cond_signal");
4367   }
4368 
4369   // Note that we signal() _after dropping the lock for "immortal" Events.
4370   // This is safe and avoids a common class of  futile wakeups.  In rare
4371   // circumstances this can cause a thread to return prematurely from
4372   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
4373   // simply re-test the condition and re-park itself.
4374 }
4375 
4376 
4377 // JSR166
4378 // -------------------------------------------------------
4379 
4380 /*
4381  * The solaris and bsd implementations of park/unpark are fairly
4382  * conservative for now, but can be improved. They currently use a
4383  * mutex/condvar pair, plus a a count.
4384  * Park decrements count if > 0, else does a condvar wait.  Unpark
4385  * sets count to 1 and signals condvar.  Only one thread ever waits
4386  * on the condvar. Contention seen when trying to park implies that someone
4387  * is unparking you, so don't wait. And spurious returns are fine, so there
4388  * is no need to track notifications.
4389  */
4390 
4391 #define MAX_SECS 100000000
4392 /*
4393  * This code is common to bsd and solaris and will be moved to a
4394  * common place in dolphin.
4395  *
4396  * The passed in time value is either a relative time in nanoseconds
4397  * or an absolute time in milliseconds. Either way it has to be unpacked
4398  * into suitable seconds and nanoseconds components and stored in the
4399  * given timespec structure.
4400  * Given time is a 64-bit value and the time_t used in the timespec is only
4401  * a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4402  * overflow if times way in the future are given. Further on Solaris versions
4403  * prior to 10 there is a restriction (see cond_timedwait) that the specified
4404  * number of seconds, in abstime, is less than current_time  + 100,000,000.
4405  * As it will be 28 years before "now + 100000000" will overflow we can
4406  * ignore overflow and just impose a hard-limit on seconds using the value
4407  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
4408  * years from "now".
4409  */
4410 
4411 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4412   assert (time > 0, "convertTime");
4413 
4414   struct timeval now;
4415   int status = gettimeofday(&now, NULL);
4416   assert(status == 0, "gettimeofday");
4417 
4418   time_t max_secs = now.tv_sec + MAX_SECS;
4419 
4420   if (isAbsolute) {
4421     jlong secs = time / 1000;
4422     if (secs > max_secs) {
4423       absTime->tv_sec = max_secs;
4424     }
4425     else {
4426       absTime->tv_sec = secs;
4427     }
4428     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4429   }
4430   else {
4431     jlong secs = time / NANOSECS_PER_SEC;
4432     if (secs >= MAX_SECS) {
4433       absTime->tv_sec = max_secs;
4434       absTime->tv_nsec = 0;
4435     }
4436     else {
4437       absTime->tv_sec = now.tv_sec + secs;
4438       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4439       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4440         absTime->tv_nsec -= NANOSECS_PER_SEC;
4441         ++absTime->tv_sec; // note: this must be <= max_secs
4442       }
4443     }
4444   }
4445   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4446   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4447   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4448   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4449 }
4450 
4451 void Parker::park(bool isAbsolute, jlong time) {
4452   // Ideally we'd do something useful while spinning, such
4453   // as calling unpackTime().
4454 
4455   // Optional fast-path check:
4456   // Return immediately if a permit is available.
4457   // We depend on Atomic::xchg() having full barrier semantics
4458   // since we are doing a lock-free update to _counter.
4459   if (Atomic::xchg(0, &_counter) > 0) return;
4460 
4461   Thread* thread = Thread::current();
4462   assert(thread->is_Java_thread(), "Must be JavaThread");
4463   JavaThread *jt = (JavaThread *)thread;
4464 
4465   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4466   // Check interrupt before trying to wait
4467   if (Thread::is_interrupted(thread, false)) {
4468     return;
4469   }
4470 
4471   // Next, demultiplex/decode time arguments
4472   struct timespec absTime;
4473   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
4474     return;
4475   }
4476   if (time > 0) {
4477     unpackTime(&absTime, isAbsolute, time);
4478   }
4479 
4480 
4481   // Enter safepoint region
4482   // Beware of deadlocks such as 6317397.
4483   // The per-thread Parker:: mutex is a classic leaf-lock.
4484   // In particular a thread must never block on the Threads_lock while
4485   // holding the Parker:: mutex.  If safepoints are pending both the
4486   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4487   ThreadBlockInVM tbivm(jt);
4488 
4489   // Don't wait if cannot get lock since interference arises from
4490   // unblocking.  Also. check interrupt before trying wait
4491   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4492     return;
4493   }
4494 
4495   int status ;
4496   if (_counter > 0)  { // no wait needed
4497     _counter = 0;
4498     status = pthread_mutex_unlock(_mutex);
4499     assert (status == 0, "invariant") ;
4500     // Paranoia to ensure our locked and lock-free paths interact
4501     // correctly with each other and Java-level accesses.
4502     OrderAccess::fence();
4503     return;
4504   }
4505 
4506 #ifdef ASSERT
4507   // Don't catch signals while blocked; let the running threads have the signals.
4508   // (This allows a debugger to break into the running thread.)
4509   sigset_t oldsigs;
4510   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4511   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4512 #endif
4513 
4514   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4515   jt->set_suspend_equivalent();
4516   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4517 
4518   if (time == 0) {
4519     status = pthread_cond_wait (_cond, _mutex) ;
4520   } else {
4521     status = os::Bsd::safe_cond_timedwait (_cond, _mutex, &absTime) ;
4522     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
4523       pthread_cond_destroy (_cond) ;
4524       pthread_cond_init    (_cond, NULL);
4525     }
4526   }
4527   assert_status(status == 0 || status == EINTR ||
4528                 status == ETIMEDOUT,
4529                 status, "cond_timedwait");
4530 
4531 #ifdef ASSERT
4532   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4533 #endif
4534 
4535   _counter = 0 ;
4536   status = pthread_mutex_unlock(_mutex) ;
4537   assert_status(status == 0, status, "invariant") ;
4538   // Paranoia to ensure our locked and lock-free paths interact
4539   // correctly with each other and Java-level accesses.
4540   OrderAccess::fence();
4541 
4542   // If externally suspended while waiting, re-suspend
4543   if (jt->handle_special_suspend_equivalent_condition()) {
4544     jt->java_suspend_self();
4545   }
4546 }
4547 
4548 void Parker::unpark() {
4549   int s, status ;
4550   status = pthread_mutex_lock(_mutex);
4551   assert (status == 0, "invariant") ;
4552   s = _counter;
4553   _counter = 1;
4554   if (s < 1) {
4555      if (WorkAroundNPTLTimedWaitHang) {
4556         status = pthread_cond_signal (_cond) ;
4557         assert (status == 0, "invariant") ;
4558         status = pthread_mutex_unlock(_mutex);
4559         assert (status == 0, "invariant") ;
4560      } else {
4561         status = pthread_mutex_unlock(_mutex);
4562         assert (status == 0, "invariant") ;
4563         status = pthread_cond_signal (_cond) ;
4564         assert (status == 0, "invariant") ;
4565      }
4566   } else {
4567     pthread_mutex_unlock(_mutex);
4568     assert (status == 0, "invariant") ;
4569   }
4570 }
4571 
4572 
4573 /* Darwin has no "environ" in a dynamic library. */
4574 #ifdef __APPLE__
4575 #include <crt_externs.h>
4576 #define environ (*_NSGetEnviron())
4577 #else
4578 extern char** environ;
4579 #endif
4580 
4581 // Run the specified command in a separate process. Return its exit value,
4582 // or -1 on failure (e.g. can't fork a new process).
4583 // Unlike system(), this function can be called from signal handler. It
4584 // doesn't block SIGINT et al.
4585 int os::fork_and_exec(char* cmd) {
4586   const char * argv[4] = {"sh", "-c", cmd, NULL};
4587 
4588   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4589   // pthread_atfork handlers and reset pthread library. All we need is a
4590   // separate process to execve. Make a direct syscall to fork process.
4591   // On IA64 there's no fork syscall, we have to use fork() and hope for
4592   // the best...
4593   pid_t pid = fork();
4594 
4595   if (pid < 0) {
4596     // fork failed
4597     return -1;
4598 
4599   } else if (pid == 0) {
4600     // child process
4601 
4602     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4603     // first to kill every thread on the thread list. Because this list is
4604     // not reset by fork() (see notes above), execve() will instead kill
4605     // every thread in the parent process. We know this is the only thread
4606     // in the new process, so make a system call directly.
4607     // IA64 should use normal execve() from glibc to match the glibc fork()
4608     // above.
4609     execve("/bin/sh", (char* const*)argv, environ);
4610 
4611     // execve failed
4612     _exit(-1);
4613 
4614   } else  {
4615     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4616     // care about the actual exit code, for now.
4617 
4618     int status;
4619 
4620     // Wait for the child process to exit.  This returns immediately if
4621     // the child has already exited. */
4622     while (waitpid(pid, &status, 0) < 0) {
4623         switch (errno) {
4624         case ECHILD: return 0;
4625         case EINTR: break;
4626         default: return -1;
4627         }
4628     }
4629 
4630     if (WIFEXITED(status)) {
4631        // The child exited normally; get its exit code.
4632        return WEXITSTATUS(status);
4633     } else if (WIFSIGNALED(status)) {
4634        // The child exited because of a signal
4635        // The best value to return is 0x80 + signal number,
4636        // because that is what all Unix shells do, and because
4637        // it allows callers to distinguish between process exit and
4638        // process death by signal.
4639        return 0x80 + WTERMSIG(status);
4640     } else {
4641        // Unknown exit code; pass it through
4642        return status;
4643     }
4644   }
4645 }
4646 
4647 // is_headless_jre()
4648 //
4649 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4650 // in order to report if we are running in a headless jre
4651 //
4652 // Since JDK8 xawt/libmawt.so was moved into the same directory
4653 // as libawt.so, and renamed libawt_xawt.so
4654 //
4655 bool os::is_headless_jre() {
4656 #ifdef __APPLE__
4657     // We no longer build headless-only on Mac OS X
4658     return false;
4659 #else
4660     struct stat statbuf;
4661     char buf[MAXPATHLEN];
4662     char libmawtpath[MAXPATHLEN];
4663     const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4664     const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4665     char *p;
4666 
4667     // Get path to libjvm.so
4668     os::jvm_path(buf, sizeof(buf));
4669 
4670     // Get rid of libjvm.so
4671     p = strrchr(buf, '/');
4672     if (p == NULL) return false;
4673     else *p = '\0';
4674 
4675     // Get rid of client or server
4676     p = strrchr(buf, '/');
4677     if (p == NULL) return false;
4678     else *p = '\0';
4679 
4680     // check xawt/libmawt.so
4681     strcpy(libmawtpath, buf);
4682     strcat(libmawtpath, xawtstr);
4683     if (::stat(libmawtpath, &statbuf) == 0) return false;
4684 
4685     // check libawt_xawt.so
4686     strcpy(libmawtpath, buf);
4687     strcat(libmawtpath, new_xawtstr);
4688     if (::stat(libmawtpath, &statbuf) == 0) return false;
4689 
4690     return true;
4691 #endif
4692 }
4693 
4694 // Get the default path to the core file
4695 // Returns the length of the string
4696 int os::get_core_path(char* buffer, size_t bufferSize) {
4697   int n = jio_snprintf(buffer, bufferSize, "/cores");
4698 
4699   // Truncate if theoretical string was longer than bufferSize
4700   n = MIN2(n, (int)bufferSize);
4701 
4702   return n;
4703 }
4704 
4705 #ifndef PRODUCT
4706 void TestReserveMemorySpecial_test() {
4707   // No tests available for this platform
4708 }
4709 #endif