1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_ALLOCATION_HPP
  26 #define SHARE_VM_MEMORY_ALLOCATION_HPP
  27 
  28 #include "runtime/globals.hpp"
  29 #include "utilities/globalDefinitions.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include <new>
  33 
  34 class AllocFailStrategy {
  35 public:
  36   enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
  37 };
  38 typedef AllocFailStrategy::AllocFailEnum AllocFailType;
  39 
  40 // All classes in the virtual machine must be subclassed
  41 // by one of the following allocation classes:
  42 //
  43 // For objects allocated in the resource area (see resourceArea.hpp).
  44 // - ResourceObj
  45 //
  46 // For objects allocated in the C-heap (managed by: free & malloc).
  47 // - CHeapObj
  48 //
  49 // For objects allocated on the stack.
  50 // - StackObj
  51 //
  52 // For embedded objects.
  53 // - ValueObj
  54 //
  55 // For classes used as name spaces.
  56 // - AllStatic
  57 //
  58 // For classes in Metaspace (class data)
  59 // - MetaspaceObj
  60 //
  61 // The printable subclasses are used for debugging and define virtual
  62 // member functions for printing. Classes that avoid allocating the
  63 // vtbl entries in the objects should therefore not be the printable
  64 // subclasses.
  65 //
  66 // The following macros and function should be used to allocate memory
  67 // directly in the resource area or in the C-heap, The _OBJ variants
  68 // of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
  69 // objects which are not inherited from CHeapObj, note constructor and
  70 // destructor are not called. The preferable way to allocate objects
  71 // is using the new operator.
  72 //
  73 // WARNING: The array variant must only be used for a homogenous array
  74 // where all objects are of the exact type specified. If subtypes are
  75 // stored in the array then must pay attention to calling destructors
  76 // at needed.
  77 //
  78 //   NEW_RESOURCE_ARRAY(type, size)
  79 //   NEW_RESOURCE_OBJ(type)
  80 //   NEW_C_HEAP_ARRAY(type, size)
  81 //   NEW_C_HEAP_OBJ(type, memflags)
  82 //   FREE_C_HEAP_ARRAY(type, old)
  83 //   FREE_C_HEAP_OBJ(objname, type, memflags)
  84 //   char* AllocateHeap(size_t size, const char* name);
  85 //   void  FreeHeap(void* p);
  86 //
  87 // C-heap allocation can be traced using +PrintHeapAllocation.
  88 // malloc and free should therefore never called directly.
  89 
  90 // Base class for objects allocated in the C-heap.
  91 
  92 // In non product mode we introduce a super class for all allocation classes
  93 // that supports printing.
  94 // We avoid the superclass in product mode since some C++ compilers add
  95 // a word overhead for empty super classes.
  96 
  97 #ifdef PRODUCT
  98 #define ALLOCATION_SUPER_CLASS_SPEC
  99 #else
 100 #define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
 101 class AllocatedObj {
 102  public:
 103   // Printing support
 104   void print() const;
 105   void print_value() const;
 106 
 107   virtual void print_on(outputStream* st) const;
 108   virtual void print_value_on(outputStream* st) const;
 109 };
 110 #endif
 111 
 112 
 113 /*
 114  * Memory types
 115  */
 116 enum MemoryType {
 117   // Memory type by sub systems. It occupies lower byte.
 118   mtJavaHeap          = 0x00,  // Java heap
 119   mtClass             = 0x01,  // memory class for Java classes
 120   mtThread            = 0x02,  // memory for thread objects
 121   mtThreadStack       = 0x03,
 122   mtCode              = 0x04,  // memory for generated code
 123   mtGC                = 0x05,  // memory for GC
 124   mtCompiler          = 0x06,  // memory for compiler
 125   mtInternal          = 0x07,  // memory used by VM, but does not belong to
 126                                  // any of above categories, and not used for
 127                                  // native memory tracking
 128   mtOther             = 0x08,  // memory not used by VM
 129   mtSymbol            = 0x09,  // symbol
 130   mtNMT               = 0x0A,  // memory used by native memory tracking
 131   mtClassShared       = 0x0B,  // class data sharing
 132   mtChunk             = 0x0C,  // chunk that holds content of arenas
 133   mtTest              = 0x0D,  // Test type for verifying NMT
 134   mtTracing           = 0x0E,  // memory used for Tracing
 135   mtLogging           = 0x0F,  // memory for logging
 136   mtArguments         = 0x10,  // memory for argument processing
 137   mtModule            = 0x11,  // memory for module processing
 138   mtNone              = 0x12,  // undefined
 139   mt_number_of_types  = 0x13   // number of memory types (mtDontTrack
 140                                  // is not included as validate type)
 141 };
 142 
 143 typedef MemoryType MEMFLAGS;
 144 
 145 
 146 #if INCLUDE_NMT
 147 
 148 extern bool NMT_track_callsite;
 149 
 150 #else
 151 
 152 const bool NMT_track_callsite = false;
 153 
 154 #endif // INCLUDE_NMT
 155 
 156 class NativeCallStack;
 157 
 158 
 159 template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
 160  public:
 161   NOINLINE void* operator new(size_t size, const NativeCallStack& stack) throw();
 162   NOINLINE void* operator new(size_t size) throw();
 163   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant,
 164                                const NativeCallStack& stack) throw();
 165   NOINLINE void* operator new (size_t size, const std::nothrow_t&  nothrow_constant)
 166                                throw();
 167   NOINLINE void* operator new [](size_t size, const NativeCallStack& stack) throw();
 168   NOINLINE void* operator new [](size_t size) throw();
 169   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 170                                const NativeCallStack& stack) throw();
 171   NOINLINE void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant)
 172                                throw();
 173   void  operator delete(void* p);
 174   void  operator delete [] (void* p);
 175 };
 176 
 177 // Base class for objects allocated on the stack only.
 178 // Calling new or delete will result in fatal error.
 179 
 180 class StackObj ALLOCATION_SUPER_CLASS_SPEC {
 181  private:
 182   void* operator new(size_t size) throw();
 183   void* operator new [](size_t size) throw();
 184 #ifdef __IBMCPP__
 185  public:
 186 #endif
 187   void  operator delete(void* p);
 188   void  operator delete [](void* p);
 189 };
 190 
 191 // Base class for objects used as value objects.
 192 // Calling new or delete will result in fatal error.
 193 //
 194 // Portability note: Certain compilers (e.g. gcc) will
 195 // always make classes bigger if it has a superclass, even
 196 // if the superclass does not have any virtual methods or
 197 // instance fields. The HotSpot implementation relies on this
 198 // not to happen. So never make a ValueObj class a direct subclass
 199 // of this object, but use the VALUE_OBJ_CLASS_SPEC class instead, e.g.,
 200 // like this:
 201 //
 202 //   class A VALUE_OBJ_CLASS_SPEC {
 203 //     ...
 204 //   }
 205 //
 206 // With gcc and possible other compilers the VALUE_OBJ_CLASS_SPEC can
 207 // be defined as a an empty string "".
 208 //
 209 class _ValueObj {
 210  private:
 211   void* operator new(size_t size) throw();
 212   void  operator delete(void* p);
 213   void* operator new [](size_t size) throw();
 214   void  operator delete [](void* p);
 215 };
 216 
 217 
 218 // Base class for objects stored in Metaspace.
 219 // Calling delete will result in fatal error.
 220 //
 221 // Do not inherit from something with a vptr because this class does
 222 // not introduce one.  This class is used to allocate both shared read-only
 223 // and shared read-write classes.
 224 //
 225 
 226 class ClassLoaderData;
 227 class MetaspaceClosure;
 228 
 229 class MetaspaceObj {
 230  public:
 231   bool is_metaspace_object() const;
 232   bool is_shared() const;
 233   void print_address_on(outputStream* st) const;  // nonvirtual address printing
 234 
 235 #define METASPACE_OBJ_TYPES_DO(f) \
 236   f(Class) \
 237   f(Symbol) \
 238   f(TypeArrayU1) \
 239   f(TypeArrayU2) \
 240   f(TypeArrayU4) \
 241   f(TypeArrayU8) \
 242   f(TypeArrayOther) \
 243   f(Method) \
 244   f(ConstMethod) \
 245   f(MethodData) \
 246   f(ConstantPool) \
 247   f(ConstantPoolCache) \
 248   f(Annotations) \
 249   f(MethodCounters)
 250 
 251 #define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
 252 #define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
 253 
 254   enum Type {
 255     // Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
 256     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
 257     _number_of_types
 258   };
 259 
 260   static const char * type_name(Type type) {
 261     switch(type) {
 262     METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
 263     default:
 264       ShouldNotReachHere();
 265       return NULL;
 266     }
 267   }
 268 
 269   static MetaspaceObj::Type array_type(size_t elem_size) {
 270     switch (elem_size) {
 271     case 1: return TypeArrayU1Type;
 272     case 2: return TypeArrayU2Type;
 273     case 4: return TypeArrayU4Type;
 274     case 8: return TypeArrayU8Type;
 275     default:
 276       return TypeArrayOtherType;
 277     }
 278   }
 279 
 280   void* operator new(size_t size, ClassLoaderData* loader_data,
 281                      size_t word_size,
 282                      Type type, Thread* thread) throw();
 283                      // can't use TRAPS from this header file.
 284   void operator delete(void* p) { ShouldNotCallThis(); }
 285 
 286   // Declare a *static* method with the same signature in any subclass of MetaspaceObj
 287   // that should be read-only by default. See symbol.hpp for an example. This function
 288   // is used by the templates in metaspaceClosure.hpp
 289   static bool is_read_only_by_default() { return false; }
 290 };
 291 
 292 // Base class for classes that constitute name spaces.
 293 
 294 class Arena;
 295 
 296 class AllStatic {
 297  public:
 298   AllStatic()  { ShouldNotCallThis(); }
 299   ~AllStatic() { ShouldNotCallThis(); }
 300 };
 301 
 302 
 303 extern char* resource_allocate_bytes(size_t size,
 304     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 305 extern char* resource_allocate_bytes(Thread* thread, size_t size,
 306     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 307 extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
 308     AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
 309 extern void resource_free_bytes( char *old, size_t size );
 310 
 311 //----------------------------------------------------------------------
 312 // Base class for objects allocated in the resource area per default.
 313 // Optionally, objects may be allocated on the C heap with
 314 // new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
 315 // ResourceObj's can be allocated within other objects, but don't use
 316 // new or delete (allocation_type is unknown).  If new is used to allocate,
 317 // use delete to deallocate.
 318 class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
 319  public:
 320   enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
 321   static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
 322 #ifdef ASSERT
 323  private:
 324   // When this object is allocated on stack the new() operator is not
 325   // called but garbage on stack may look like a valid allocation_type.
 326   // Store negated 'this' pointer when new() is called to distinguish cases.
 327   // Use second array's element for verification value to distinguish garbage.
 328   uintptr_t _allocation_t[2];
 329   bool is_type_set() const;
 330  public:
 331   allocation_type get_allocation_type() const;
 332   bool allocated_on_stack()    const { return get_allocation_type() == STACK_OR_EMBEDDED; }
 333   bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
 334   bool allocated_on_C_heap()   const { return get_allocation_type() == C_HEAP; }
 335   bool allocated_on_arena()    const { return get_allocation_type() == ARENA; }
 336   ResourceObj(); // default constructor
 337   ResourceObj(const ResourceObj& r); // default copy constructor
 338   ResourceObj& operator=(const ResourceObj& r); // default copy assignment
 339   ~ResourceObj();
 340 #endif // ASSERT
 341 
 342  public:
 343   void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
 344   void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
 345   void* operator new(size_t size, const std::nothrow_t&  nothrow_constant,
 346       allocation_type type, MEMFLAGS flags) throw();
 347   void* operator new [](size_t size, const std::nothrow_t&  nothrow_constant,
 348       allocation_type type, MEMFLAGS flags) throw();
 349 
 350   void* operator new(size_t size, Arena *arena) throw();
 351 
 352   void* operator new [](size_t size, Arena *arena) throw();
 353 
 354   void* operator new(size_t size) throw() {
 355       address res = (address)resource_allocate_bytes(size);
 356       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 357       return res;
 358   }
 359 
 360   void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
 361       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 362       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 363       return res;
 364   }
 365 
 366   void* operator new [](size_t size) throw() {
 367       address res = (address)resource_allocate_bytes(size);
 368       DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
 369       return res;
 370   }
 371 
 372   void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
 373       address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
 374       DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
 375       return res;
 376   }
 377 
 378   void  operator delete(void* p);
 379   void  operator delete [](void* p);
 380 };
 381 
 382 // One of the following macros must be used when allocating an array
 383 // or object to determine whether it should reside in the C heap on in
 384 // the resource area.
 385 
 386 #define NEW_RESOURCE_ARRAY(type, size)\
 387   (type*) resource_allocate_bytes((size) * sizeof(type))
 388 
 389 #define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
 390   (type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 391 
 392 #define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
 393   (type*) resource_allocate_bytes(thread, (size) * sizeof(type))
 394 
 395 #define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
 396   (type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 397 
 398 #define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
 399   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
 400 
 401 #define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
 402   (type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
 403                                     (new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
 404 
 405 #define FREE_RESOURCE_ARRAY(type, old, size)\
 406   resource_free_bytes((char*)(old), (size) * sizeof(type))
 407 
 408 #define FREE_FAST(old)\
 409     /* nop */
 410 
 411 #define NEW_RESOURCE_OBJ(type)\
 412   NEW_RESOURCE_ARRAY(type, 1)
 413 
 414 #define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
 415   NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
 416 
 417 #define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
 418   (type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
 419 
 420 #define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
 421   (type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
 422 
 423 #define NEW_C_HEAP_ARRAY(type, size, memflags)\
 424   (type*) (AllocateHeap((size) * sizeof(type), memflags))
 425 
 426 #define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
 427   NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
 428 
 429 #define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
 430   NEW_C_HEAP_ARRAY3(type, (size), memflags, CURRENT_PC, AllocFailStrategy::RETURN_NULL)
 431 
 432 #define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
 433   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
 434 
 435 #define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
 436   (type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
 437 
 438 #define FREE_C_HEAP_ARRAY(type, old) \
 439   FreeHeap((char*)(old))
 440 
 441 // allocate type in heap without calling ctor
 442 #define NEW_C_HEAP_OBJ(type, memflags)\
 443   NEW_C_HEAP_ARRAY(type, 1, memflags)
 444 
 445 #define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
 446   NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
 447 
 448 // deallocate obj of type in heap without calling dtor
 449 #define FREE_C_HEAP_OBJ(objname)\
 450   FreeHeap((char*)objname);
 451 
 452 // for statistics
 453 #ifndef PRODUCT
 454 class AllocStats : StackObj {
 455   julong start_mallocs, start_frees;
 456   julong start_malloc_bytes, start_mfree_bytes, start_res_bytes;
 457  public:
 458   AllocStats();
 459 
 460   julong num_mallocs();    // since creation of receiver
 461   julong alloc_bytes();
 462   julong num_frees();
 463   julong free_bytes();
 464   julong resource_bytes();
 465   void   print();
 466 };
 467 #endif
 468 
 469 
 470 //------------------------------ReallocMark---------------------------------
 471 // Code which uses REALLOC_RESOURCE_ARRAY should check an associated
 472 // ReallocMark, which is declared in the same scope as the reallocated
 473 // pointer.  Any operation that could __potentially__ cause a reallocation
 474 // should check the ReallocMark.
 475 class ReallocMark: public StackObj {
 476 protected:
 477   NOT_PRODUCT(int _nesting;)
 478 
 479 public:
 480   ReallocMark()   PRODUCT_RETURN;
 481   void check()    PRODUCT_RETURN;
 482 };
 483 
 484 // Helper class to allocate arrays that may become large.
 485 // Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
 486 // and uses mapped memory for larger allocations.
 487 // Most OS mallocs do something similar but Solaris malloc does not revert
 488 // to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
 489 // is set so that we always use malloc except for Solaris where we set the
 490 // limit to get mapped memory.
 491 template <class E>
 492 class ArrayAllocator : public AllStatic {
 493  private:
 494   static bool should_use_malloc(size_t length);
 495 
 496   static E* allocate_malloc(size_t length, MEMFLAGS flags);
 497   static E* allocate_mmap(size_t length, MEMFLAGS flags);
 498 
 499   static void free_malloc(E* addr, size_t length);
 500   static void free_mmap(E* addr, size_t length);
 501 
 502  public:
 503   static E* allocate(size_t length, MEMFLAGS flags);
 504   static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
 505   static void free(E* addr, size_t length);
 506 };
 507 
 508 // Uses mmaped memory for all allocations. All allocations are initially
 509 // zero-filled. No pre-touching.
 510 template <class E>
 511 class MmapArrayAllocator : public AllStatic {
 512  private:
 513   static size_t size_for(size_t length);
 514 
 515  public:
 516   static E* allocate_or_null(size_t length, MEMFLAGS flags);
 517   static E* allocate(size_t length, MEMFLAGS flags);
 518   static void free(E* addr, size_t length);
 519 };
 520 
 521 // Uses malloc:ed memory for all allocations.
 522 template <class E>
 523 class MallocArrayAllocator : public AllStatic {
 524  public:
 525   static size_t size_for(size_t length);
 526 
 527   static E* allocate(size_t length, MEMFLAGS flags);
 528   static void free(E* addr, size_t length);
 529 };
 530 
 531 #endif // SHARE_VM_MEMORY_ALLOCATION_HPP